WorldWideScience

Sample records for sectoral energy utilization

  1. Energy and exergy utilization in transportation sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper we present an analysis of energy and exergy utilization in the transportation sector of Saudi Arabia by considering the sectoral energy and exergy flows for the years of 1990-2001. Energy and exergy analyses are conducted for its three subsectors, namely road, air and marine, and hence the energy and exergy efficiencies are obtained for comparison. Road subsector appears to be the most efficient one compared to air and marine subsectors. It is found that the energy efficiencies in air and marine subsectors are found to be equal to the corresponding exergy efficiencies due to the values of exergy grade function. A comparison of the overall energy and exergy efficiencies of Saudi Arabian transportation sector with the Turkish transportation sector is also presented for the year 1993 based on the data available. Although the sectoral coverage is not same for both countries, it is still useful to illustrate the situation on how subsectoral energy and exergy efficiencies vary over the years. Turkish transportation sector appears to be a bit more efficient for that particular year. It is believed that the present technique is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficient energy and exergy are used in transportation sector. It is also be helpful to establish standards, based on exergy, to facilitate applications in industry and in other planning processes such as energy planning

  2. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  3. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  4. Assessment of the Turkish utility sector through energy and exergy analyses

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2007-01-01

    The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  5. Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2006-01-01

    The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential-commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential-commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied

  6. Energy sector

    International Nuclear Information System (INIS)

    1995-01-01

    Within the framework of assessing the state of the environment in Lebanon, this chapter describes primary energy demand, the electricity generating sector and environmental impacts arising from the energy sector.Apart from hydropower and traditional energy sources, which together represent 1.7% of energy consumption, all energy in Lebanon derives from imported petroleum products and some coal.Tables present the imports of different petroleum products (Gasoil, Kerosene, fuel oil, coal etc...), their use, the energy balance and demand.Energy pricing and pricing policies, formal and informal electricity generations in Lebanon are described emphasized by tables. The main environmental impacts are briefly summarized. Thermal power stations give rise to emissions of Sulphur dioxide (SO 2 ), particulates, oxides of nitrogen (NO x ) and CO/CO 2 from combustion of primary fuel informally generated power from both industry and domestic consumption produce particulate materials and emissions of NO x and SO 2 projected emissions of SO 2 from the power sector with the present generating capacity and with the new combined cycle power plants in operation are shown. Other environmental impacts are described. Recommendations for supply and environment policy are presented

  7. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

    International Nuclear Information System (INIS)

    Motasemi, F.; Afzal, Muhammad T.; Salema, Arshad Adam; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R.

    2014-01-01

    Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO 2 (80%), NO x (72%), and CO (carbon monoxide) (96%); air SO 2 (86%); rail NO x (6%) and marine NO x (7%). The road subsector produced the highest amount of emissions. - Highlights: • Energy, exergy and emission performance for Canadian transport was analyzed. • Maximum energy and exergy efficiencies were 22.55% and 21.87% in 2006 respectively. • Energy and exergy efficiencies may decrease in the year 2035. • CO 2 was the largest pollutant emitted followed by CO, NO x , and SO 2 . • Utilization of green fuels can improve exergy and emission performance

  8. Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors

    International Nuclear Information System (INIS)

    Kondo, Kumiko

    2009-01-01

    Unlike the manufacturing sector, the residential/commercial sectors of Japan struggle to meet their environmental requirements. For instance, their CO 2 emission levels have increased tremendously since 1990. This research estimates energy and 'exergy (available energy)' efficiencies in Japan's residential/commercial sectors during the period 1990-2006. Since an exergy analysis reveals 'available energy losses', it is an effective tool to achieve sustainable societies. The primary objective of this paper is to examine the potential for advancing the 'true' energy efficiency in Japan's residential/commercial sectors-by observing energy and exergy efficiency disparities. The results show large differences between the overall energy and exergy efficiencies in the residential (60.12%, 6.33%)/commercial sectors (51.78%, 5.74%) in 2006. This implies great potential for energy savings in both sectors. Furthermore, this research suggests that the residential sector may face more difficulties than the commercial sector, although the latter appears to be less energy-efficient, according to recent statistics. This is because the disparity between energy and exergy efficiencies has expanded in the residential sector since 2000. This study illustrates the importance of exergy analyses in promoting sustainable energy policies and new adaptation strategies.

  9. Energy policy and European utilities' strategy: Lessons from the liberalisation and privatisation of the energy sector in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Haar, Laura N., E-mail: laura.n.haar@mbs.ac.u [University of Manchester, Manchester Business School, Booth Street West, Manchester M15 6PB (United Kingdom); Marinescu, Nicolae, E-mail: marinescu@unitbv.r [Transylvania University of Brasov, Faculty of Economic Sciences, 29 Eroilor Bd, Brasov 500 036 (Romania)

    2011-05-15

    In the context of energy sector reforms pursued by Romanian government since 1990s, we compare and contrast the market outcomes of European utilities' investment with the host government policy objectives. We begin with energy market reform in Romania and review governments' efforts to attract foreign direct investment (FDI) and to gradually withdraw from the distribution and supply segments of electricity market. Subsequently, we illustrate the scope European utilities have had, market policy and design notwithstanding, for consolidating market power through regional dominance. We examine the extent to which these utilities have sought to enhance their positions through horizontal and vertical integration, counter to the EU plans for a competitive market structure. We find that the investments of European incumbents have not been resoundingly successful: although market entrance may have been justified on long-term strategic grounds, in the immediate term, segments acquired through competitive auctions have yielded modest regulated returns. Finally, we discuss the extent to which policy makers have achieved their goals. Although the short-term benefits of a competitive market structure have reached some consumers, a renewed interest in promoting 'national champions' reflect frustration with market mechanisms as a means of ensuring long-term strategic investments in the sector. - Research highlights: {yields} We analyze the European Utilities activities in Romania after market liberalization. {yields} We find government efforts to reform energy sector attracted foreign direct investment. {yields} We find utilities consolidated market power horizontally in Central European region. {yields} The short-term benefits of competitive forces contrast the weak returns by utilities. {yields} To encourage further investment, government should not promote national champions.

  10. Energy policy and European utilities' strategy: Lessons from the liberalisation and privatisation of the energy sector in Romania

    International Nuclear Information System (INIS)

    Haar, Laura N.; Marinescu, Nicolae

    2011-01-01

    In the context of energy sector reforms pursued by Romanian government since 1990s, we compare and contrast the market outcomes of European utilities' investment with the host government policy objectives. We begin with energy market reform in Romania and review governments' efforts to attract foreign direct investment (FDI) and to gradually withdraw from the distribution and supply segments of electricity market. Subsequently, we illustrate the scope European utilities have had, market policy and design notwithstanding, for consolidating market power through regional dominance. We examine the extent to which these utilities have sought to enhance their positions through horizontal and vertical integration, counter to the EU plans for a competitive market structure. We find that the investments of European incumbents have not been resoundingly successful: although market entrance may have been justified on long-term strategic grounds, in the immediate term, segments acquired through competitive auctions have yielded modest regulated returns. Finally, we discuss the extent to which policy makers have achieved their goals. Although the short-term benefits of a competitive market structure have reached some consumers, a renewed interest in promoting 'national champions' reflect frustration with market mechanisms as a means of ensuring long-term strategic investments in the sector. - Research highlights: → We analyze the European Utilities activities in Romania after market liberalization. → We find government efforts to reform energy sector attracted foreign direct investment. → We find utilities consolidated market power horizontally in Central European region. → The short-term benefits of competitive forces contrast the weak returns by utilities. → To encourage further investment, government should not promote national champions.

  11. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  12. Profiles in Renewable Energy: Case Studies of Successful Utility-Sector

    Science.gov (United States)

    increasingly interested in acquiring hands-on experience with renewable energy technologies in order to plan establish contracts to purchase QFs' power output at "avoided cost," or the cost that the utility state utility regulations. Utility power purchase contracts, which many projects received under the

  13. Natural gas utilization in the electricity sector in a framework of supporting an energy diversification policy: the case of Indonesia

    International Nuclear Information System (INIS)

    Sudiyanto Wahyuputro, B.

    1992-01-01

    Although the Government of Indonesia (GOI) has been trying to balance its economy, oil and gas (MIGAS) sector still has an important role. The revenue from exporting oil has been needed to sustain national economic development. For that reason, the GOI has determined to diversify and to develop alternative energy resources for domestic consumption. The alternative energy resources available are classified into non-renewable energy resources such as natural gas and coal; and renewable energy resources such as geothermal, biomass, solar energy, wind energy, ocean thermal energy conversion (OTEC), etc. Natural gas is one of the potential non-renewable energy resources available in Indonesia abundantly. The total potential reserves in Indonesia is estimated about 109.1 TSCF, which is including proven reserve of 80.2 TSCF. By the estimated production level of 2.0 TSCF per year for the fiscal year 1993/1994, these proven reserves can be still produced for 30 years more. Besides the reserves is available abundantly, the other advantage in developing natural gas for domestic consumption is a 'clean energy' rather than other fossil fuels. So that, it should be promoted to support the energy diversification and the clean environment policies. In the other side, electricity sector has a bigger opportunity than other sectors in supporting the energy diversification policy. There are several kinds of power generating plant which utilize various types of primary energy such as oil, gas, coal, geothermal, and hydro. Nevertheless, until this moment the utilization of natural gas in the electricity sector is still low of 15 percent. Recently, the growth of electricity demand in Indonesia is very high, especially in the Java-Bali grid system. There is a wide chance for natural gas to improve its role in electricity sector, and there is an economic variable which will determine the development of natural gas reserve, that is natural gas price itself. 4 refs., 2 figs., 4 tabs

  14. Energy consumption behavior in the commercial sector: An ethnographic analysis of utility bill information and customer comprehension in the workplace

    Science.gov (United States)

    Payne, Christopher Todd

    The commercial and industrial sectors of the United States compose roughly one-third of total United States energy consumption. Many studies have suggested that significant cost-effective energy savings opportunities exist in this sector, but there is a gap between predictions of potential and actual investment in energy-efficient technologies. Very few studies have been conducted to examine the decision-making environment of the business sector. In particular, there is essentially no information about how small-business decision-makers make choices about energy consumption. My research is intended to begin the process of understanding this important arena of energy consumption behavior. Using semi-structured interview techniques, I interviewed forty-four businesses in ten states. The focus of the interviews was the business decision-maker's handling and use of the utility bill---the main (often sole) piece of information that links energy consumption to cost. Through the interviews, I collected information about how utility bills are understood and misunderstood, what components of the bill are seen as useful or confusing, and how energy consumption was seen in the context of larger business decision-making. In addition, I collected data on two forms of energy consumption feedback: historic consumption feedback, in which informants compared their current energy use to patterns of their own energy consumption over time; and group comparison consumption feedback, in which informants compared their energy consumption to the consumption of a group of similar energy consumers. Finally, I collected data on sources of information to which decision-makers turned when they wanted to seek more information about energy consumption alternatives. Overall, my findings suggest that the current utility bill format is often misunderstood. In many cases, particularly in the small-business and medium-size-business categories, the link between energy consumption and energy cost is

  15. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  16. Energy. Sector 1

    International Nuclear Information System (INIS)

    1994-01-01

    The aim of this article is to report the results of the greenhouse gas (GHG) emission inventory for the year 1994. The following GHG are of interest in the energy sector: Carbon dioxide CO 2 , methane CH 4 , nitrous oxide N 2 O, oxides of nitrogen NO x , carbon monoxide CO, sulphur dioxide SO 2 and non-methane volatile organic compounds (NMVOCs). The inventory has focused on the following GHG related sources: -Electricity generation through the electric utility. -Private generation of electricity -Manufacturing industries and construction -Transport: road, domestic aviation and national navigation -Energy use in the residential sector -Energy use in the commercial/institutional sector -Energy use in the agriculture/forestry/fishing sector The fuel types taken into consideration are:Gasoline, jet Kerosene, Kerosene for household use, gas oil, diesel oil, fuel oil, LPG, lubricating oil, coal, wood and charcoal (solid biomass). Care has been taken to eliminate the fuel used by international marine and aviation bunkers from the national inventory. The amount of GHG released to the atmosphere has been estimated using the IPCC methodology and emission factors .Where national emission factors differed from those of IPCC, the factors are discussed. Complete documentation of compiled information and data sources are attached to this article.Finally both the reference approach and analysis by source categories have been carried out and are reported in this inventory

  17. Remunicipalisation and Foundation of Municipal Utilities in the German Energy Sector: Details about Newly Established Enterprises

    Directory of Open Access Journals (Sweden)

    Oliver Wagner

    2017-09-01

    Full Text Available Since the majority of network concession contracts in Germany were set to expire some time between 2005 and 2016, a window of opportunity arose in which to rebuild and remunicipalise the local energy supply. As a result, 72 new local power companies were established in Germany within the space of just seven years (between early 2005 and late 2012. This paper provides an introduction to the topic of establishing municipal utilities in Germany. The findings were identified on the basis of the comprehensive screening of all newly established municipal utilities in Germany. Our analysis provides information about regional concentration, the size of municipalities, the legal forms of the newly founded municipal public utilities and the role of strategic partnerships. The key findings are that remunicipalisation is not a question of size and that knowledge gaps may be closed by entering into close strategic partnerships.

  18. Renewable energy utilization and CO2 mitigation in the power sector: A case study in selected GMS countries

    Directory of Open Access Journals (Sweden)

    Kong Pagnarith

    2011-06-01

    Full Text Available Renewable energy is an alternative resource to substitute fossil fuels. Currently, the share of renewable energy inpower generation is very low. The selected Greater Mekong Sub-region (GMS, namely, Cambodia, Laos, Thailand andVietnam is a region having abundant of renewable energy resources. Though these countries have a high potential of renewableenergy utilization, they are still highly dependent on the imported fossil fuels for electricity generation. The less contributionof renewable energy in the power sector in the region is due to the high cost of technologies. Renewable energytechnology cannot compete with the conventional power plant. However, in order to promote renewable energy utilizationand reduce dependency on imported fossil fuel as well as to mitigate CO2 emissions from the power sector, this study introducesfour renewable energy technologies, namely, biomass, wind, solar PV, and geothermal power, for substitution of conventionaltechnologies. To make the renewable energy competitive to the fossil fuels, incentives in terms of carbon credit of20$/ton-ne CO2 are taken into account. Results are analyzed by using the Long-Range Energy Alternative Planning System(LEAP modeling. Results of analyses reveal that in the renewable energy (RE scenario the biomass power, wind, solarphotovoltaics, and geothermal would contribute in electricity supply for 5.47 GW in the region, accounted for 3.5% in 2030.The RE scenario with carbon credits could mitigate CO2 emissions at about 36.0 million tonne at lower system cost whencompared to the business-as-usual scenario.

  19. Electricity utilities: Nuclear sector

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The safe and economic operation of nuclear power plants requires an appropriate infrastructure on the part of the operator as well as a high level of technical quality of the plants and of qualification of the personnel. Added to this are a variety of services rendered by specialist firms. The Bayernwerk utility, with plants of its own, has played a major role in the development of nuclear power in the Federal Republic of Germany. The importance of nuclear power to this firm is reflected in the pattern of its electricity sources and in the composition of its power plants. (orig.) [de

  20. Sector Economic Outlook. Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The energy sector is a key driver of the economic pillar of Vision 2030. As the economy grows, urbanization intensifies and incomes increase, corporate and household demand for energy also rises. To meet this growth in demand for energy, the sector needs to increase investments and diversify into more sources of energy such as geothermal and wind power. It is therefore critical that focus is directed towards development and sustainability of the energy sector to ensure delivery of least cost power that will improve Kenya's competitiveness and achieve the Vision 2030 objective of 10% average annual economic growth.

  1. The Italian energy sector

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The energy sector in Italy, as in Europe and in many other areas of the world, is undergoing rapid and profound changes. The 1986 ratification of the European Single Act was intended to create a European internal market, where circulation of people, capital, goods, and services would reach the highest possible liberalization. In 1988, in the document The Energy Internal Market, the European Union (EU) commission stressed the need for creation of an internal energy market--free of obstacles--to increase security of supply, to reduce costs, and to strengthen the competitiveness of the European economic system. In 1990, the Community Council adopted directives to implement the EU energy sector. This article describes Italy's role as part of the EU energy sector. It covers the following topics: the Italian energy sector; electricity vs gas transportation; project finance; recent developments advance Italian power industry; specifying powerplant components -- Italian stype; buyers' guide to Italian equipment, services

  2. Energy sector alliances

    International Nuclear Information System (INIS)

    McQuade, Owen

    1998-09-01

    Contains Executive Summary and Chapters on: A changing energy sector; Rationale for the joint venture, merger or acquisition; Mergers, acquisitions and joint ventures by sector; The joint venture process; Key factors for success; Financing the venture; Case studies; The future outlook. (Author)

  3. Sustainable Entrepreneurship in the Energy Sector: A Perspective from a Brazilian Power Utility Firm

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius de Oliveira Brasil

    2013-12-01

    Full Text Available The key question in this article consists of identifying the conditions under which the social projects developed by the firm Alpha are really promoting the sustainable development in the state of Ceará, located in Northeast Brazil. The general goal is to discuss if the firm’s social projects are related to the sustainable corporate entrepreneurship (SCE. This paper intends to stimulate the scientific community to advance knowledge on entrepreneurial, innovation and sustainability. This case study focuses on four Alpha’s projects: Ecological Initiative, Efficient Exchange, Social Energy, and School of Efficient Paths. The thematic content’s analysis methodology was used in this article. The documental research served as primary data source and helped to better elucidate the studied object. The researcher obtained 12 questionnaires answered. It was found an agreement of respondents to the categories: values, transparency and governance, workforce, environment, suppliers, consumers and customers and community. For the theme government and society, the results showed a disagreement with the category and for the last theme, innovation, the respondents are indifferent. After lexical analysis of data the results confirm in accordance with state of art of literature the existence of triple bottom line in the social projects of Alpha, by the categories resulted (profit, planet, people from content’s analysis of open questions. Alpha is a strong example of social commitment with poverty and environment. In conclusion, the research confirms that the firm promotes sustainable entrepreneurship and innovativeness leading to sustainable development.

  4. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    Science.gov (United States)

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  5. Examination of the factors and issues for an environmental technology utilization partnership between the private sector and the Department of Energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brouse, P.

    1997-05-01

    The Department of Energy (DOE) held a meeting on November 12, 1992 to evaluate the DOE relations with industry and university partners concerning environmental technology utilization. The goal of this meeting was to receive feedback from DOE industry and university partners for the identification of opportunities to improve the DOE cooperative work processes with the private sector. The meeting was designed to collect information and to turn that information into action to improve private sector partnerships with DOE.

  6. Renewable energy burden sharing. REBUS. Requirements and expectations of utilities and consumer organisations in the European energy sector

    International Nuclear Information System (INIS)

    Voogt, M.H.; Uyterlinde, M.A.; Skytte, K.; Leonardi, M.; Whiteley, M.H.

    2001-05-01

    Creation of an internal market for renewable electricity will involve a political negotiation process, similar to previous EU greenhouse gas negotiations. The Energy Ministers in the EU have agreed on an overall target of 21.7% of electricity supply from Renewable Energy Sources (RES-E) and a distribution of targets over the individual Member States. The REBUS project aimed at providing insights in the effects of implementing targets for renewable electricity generation at EU Member State level and the impact of introducing burden sharing systems within the EU, such as a Tradable Green Certificate (TGC) system. Member States can participate in such burden sharing systems to reduce the costs of achieving targets for electricity from renewable sources (RES-E), compared to strictly national implementation measures. The project concentrated on the development of the REBUS model, which quantifies the impact of trade (in green certificates, quotas or targets) and the implementation of different rules to setting targets at individual Member State level. In addition, the project has paid special attention to the participation of stakeholders such as utilities, traders, and consumers of electricity. What is their opinion on the target setting, on the design of a trading system and its practical implementation and monitoring aspects? Utilities and consumer organisations in Denmark, Italy, The Netherlands and the United Kingdom have been asked to comment on these issues. This report is a result of a series of interviews with these stakeholders on their reaction to different burden sharing proposals, and on the socio-economic and financial impacts they foresee. The utilities take a critical view of their position in the renewable energy market and possible future international trading scheme. The main conclusions from the interviews are: Generally, target setting and burden sharing are regarded political questions, on which governments should decide; Stakeholders emphasise

  7. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  8. Energy Sector Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  9. Competition in the electric utility sector?

    International Nuclear Information System (INIS)

    Olsen, O.J.; Fristrup, P.; Munksgaard, J.; Skytte, K.

    2000-01-01

    The book analyses some important problems for the liberaliaction of the electricity market in Denmark and its neighbouring countries. Will the competition and its potential for a more cost-effective electric supply be prevented by the electric companies' many possibilities to utilize market power? Can competition be combined with ambitious energy policy aims about reducing the environmental impacts of the electric supply? Does the Danish tradition for consumer ownership constitute an important supplement to the protection of the smaller consumers in a world of international competition? The intention with the book is not to take concrete position to the many topical problems in the Danish political discussion of restructurns of the electric sector, but to give a theoretical analysis to understand and analyse the development. On this basis the conclusion is, that the competition will work even in combination with ambitious environmental aims. (EHS)

  10. Environmental issues: I - Energy utilization

    International Nuclear Information System (INIS)

    Dincer, I.

    2001-01-01

    In this article, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and consequent environmental issues and policies. Overall, the paper also examines several issues related to energy utilization, environment, sustainable development from both current and future perspectives, and energy use and its environmental impacts in the transportation sector. Finally, the conclusions and recommendations are presented in the form to be beneficial to energy scientists, engineers and energy policy makers. (author)

  11. Concessions in energy sector

    International Nuclear Information System (INIS)

    Livada, T.

    1999-01-01

    Commercial use of natural resources is of essential importance for electricity, oil and gas networks and systems. The paper analyses the existing legal framework, i.e. relevant legislation and special regulations, which define requirements and procedures necessary for obtaining concessions in the field of energy, i.e. use of water power, maritime resources (marine area and ports), as well as exploitation of oil, gas and other fossil sources. In order to protect state interests, decisions related to the concessions for commercial use of natural resources, legally defined as of interest for the Republic of Croatia, are made by the highest state institutions. It is stipulated that concessions may generally be granted both to domestic or foreign physical as well as legal entities for a period not exceeding 99 years. Concessions for gas and thermal energy supply and utilities are granted by institutions of local self-government for a maximum period of 30 years. Public bidding usually precedes the granting of concessions. In order to implement the rights defined by the concession agreement, concession owners are obliged to pay the concession fee. The exact amount, stipulated by law, varies according to the type of the natural resource for which the concession is to be granted, the purpose of concession, the scope of activities, the size of the surface involved, the estimated profitability and the assessment of the project's environmental impact. All concession fees are fiscal categories and the major part of these funds contributes towards the state budget revenues. Utility concession fees providing income for cities and municipalities, as designated funds, represent an exception in this respect. The paper does not provide answers to the amount of the annual state budget revenues from concession fees for specific natural resources, and the issue of whether the present concessionaires meet their financial obligations as defined by the concession agreement also remains

  12. and the Energy Sector

    African Journals Online (AJOL)

    Nigeria's harsh economic situation in 2016 has led major industries to look inwards to resolve supply deficits occasioned ... In the electricity sector, however, the influx of imported electrical .... Engineering Infrastructure in a 2014 address.

  13. New Energy Utility Business Models

    International Nuclear Information System (INIS)

    Potocnik, V.

    2016-01-01

    Recently a lot of big changes happened in the power sector: energy efficiency and renewable energy sources are quickly progressing, distributed or decentralised generation of electricity is expanding, climate change requires reduction of greenhouse gas emissions and price volatility and incertitude of fossil fuel supply is common. Those changes have led to obsolescence of vertically integrated business models which have dominated in energy utility organisations for a hundred years and new business models are being introduced. Those models take into account current changes in the power sector and enable a wider application of energy efficiency and renewable energy sources, especially for consumers, with the decentralisation of electricity generation and complying with the requirements of climate and environment preservation. New business models also solve the questions of financial compensations for utilities because of the reduction of centralised energy generation while contributing to local development and employment.(author).

  14. Utility Sector Impacts of Reduced Electricity Demand

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  15. Speedy changes in energy sector

    International Nuclear Information System (INIS)

    Kazlauskas, J.

    1998-01-01

    Status of the reforms in Lithuania's energy sector and preparation of updated Energy Strategy is presented in this article. The new Strategy has been worked out considering the conclusions of different studies as well as the changes that have taken place in Lithuania and restructuring of its energy sector, the guidelines of the European Union. The principal objectives of the country's energy sector consists in reliable and safe energy supply with minimum expenses, increasing efficiency of energy utilisation, introducing principles of market economy within the sector, reducing environmental impacts, preparing Lithuania's energy sector for integration into the EU. In the field of nuclear energy the top priority is to ensure the safety of Ignalina NPP. Ignalina NPP will only be operated if and as long as it is safe. Two most likely scenarios for the future operation of Ignalina NPP are analysed in the draft Strategy. According to scenario 1, reactor 1 and 2 are to be operated half of the design service life, until 2005 and 2010 respectively, i.e. until the gap between the graphite and fuel channels reaches the critical margin. In accordance with the second scenario, the fuel channels are to be replaced as envisaged in the design, after which the reactors may be operated for another 10 - 15 years

  16. Cartel control in the energy sector

    International Nuclear Information System (INIS)

    Buedenbender, U.

    1995-01-01

    The current regulatory regime governing the electricity and gas supply industries of the energy sector is characterized by the admissibility of protected sales areas defined by demarcation agreements. However, this economic advantage is counterbalanced by legal provisions providing for specific supervision of the utilities under cartel law. The cartel authority exercises the functions of control of abusive practices, focussing on control of prices and general terms and conditions, cooperation between the utilities and operators owners of power generation plants, the very topical aspects of TPA (third party access to networks), and adherence to the principle of conduct of business of the utilities in line with the conditions of free competition. The book addresses all relevant aspects of cartel control relating to existing law and the overall context of the energy sector. General principles of cartel control in the economic sector at large are compared to specific conditions in the energy sector, revealing the differences in competences of the cartel authority. (orig./HP) [de

  17. Electricity sector abounds with energy

    International Nuclear Information System (INIS)

    Berger, P.

    2006-01-01

    This short article takes a look at Swiss energy utilities and provides a brief review of the current state of the electricity business in Switzerland. Increasing turnover has lead to increased profits. The situation in five leading utilities is looked at and commented on. The various activities of the utilities are discussed. Apart from providing normal power supply, these range from international power trading and investment through to the generation and sale of renewable forms of energy such as photovoltaics and wind power

  18. Energy sector in Ecuador: Current status

    International Nuclear Information System (INIS)

    Pelaez-Samaniego, M.R.; Garcia-Perez, M.; Cortez, L.A.B.; Oscullo, J.; Olmedo, G.

    2007-01-01

    This paper describes the current energy sector in Ecuador, its present structure, the oil industry, subsidies, and renewable energy, focusing on the evolution and reform of the electricity sector. Currently, 86% of the primary energy originates from nonrenewable sources. In 2005, the gross electricity generation was 15 127 GWh (45.5% hydropower, 43.11% thermal, and 11.39% imported). Ecuador is the fifth largest oil producer in South America but lacks sufficient oil refining capacity. Reserves of natural gas (NG) are small, and most of NG is produced from oil fields without energy recovery. Several projects are underway to increase the utilization of NG and renewable energies to meet Ecuador commitments to the Kyoto Protocol

  19. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  20. Energy conservation in agriculture sector

    International Nuclear Information System (INIS)

    Maggo, J.N.

    1991-01-01

    The annual production of foodgrains in India rose from 50.8 million tonnes in 1950-51 to 178 million tonnes in 1989-90. One of the factors which led to this impressive growth is the continued increase in input of mechanization and energy in the agricultural sector by way of tractors running on diesel and pumps (for water supply) based on diesel and electricity. Electricity consumption in agricultural sector rose from 833 million kWh in 1960-61 to 47000 million kWh in 1990-91 and is further expected to rise to 81.8 TWH in 1999-2000. Considering the heavy investments required for production and supply of energy, it has become imperative to avoid wasteful use of energy and to use energy more efficiently. This can be done by : (1) Changing the electricity tariff structure from the present horse power related rates to energy consumption related rates. This will induce farmers to avoid waste in energy use. (2) Adopting energy efficiency measures. These measures are : (1) replacement of inefficient foot valves, suction pipes and delivery pipes of the pump sets, (2) increasing power factor of electric motors used for pumps sets, (3) reducing distribution losses over LT lines, and (4) optimizing use of fertilizers. This optimization will indirectly conserve energy by reducing electricity consumption by fertilizer industry. (M.G.B.). 5 refs., 4 tabs

  1. Sectoral energy demand data: Sources and Issues

    International Nuclear Information System (INIS)

    Ounali, A.

    1991-01-01

    This chapter of the publication is dealing with Sectoral Energy Demand Data giving details about the Sources and Issues. Some comments are presented on rural energy surveys. Guidelines for the Definition and Desegregation of Sectoral Energy Consumption is given and Data Necessary for Sectoral Energy Demand Analysis is discussed

  2. Energy utilization in Canada

    International Nuclear Information System (INIS)

    Klassen, J.

    1976-04-01

    The situation of the energy supply of Canada is characterized by its geographic location and by the dispersal of the energy consumers over a wide area. At present, the energy supply leaving the successful CANDU nuclear energy programme out of account, is based mainly on crude oil, natural gas, and electricity as well as on coal imported from the USA. The targets of Canadian enery policies and energy research are stated as follows: a) Reducing and optimizing energy consumption, b) introducing district heating, and c) utilizing the extensive local coal deposits. (GG) [de

  3. Optimization in the energy sector

    International Nuclear Information System (INIS)

    2015-01-01

    The implementation of the energy transition and the developments in the national and international Energy markets constantly require sound analysis and new answers. The symposium ''optimization in the energy sector'' gives an overview of methods and models that can be practically used for decision support. Storage and electromobility as demand flexibility are important factors for the long-term design of the German and European energy system. But methodological aspects such as the consideration of uncertainties at the conference an important place is given. A key issue is also the short and medium term further development of the electricity market design. Not only broadly but also in detail e.g. the standard benefit and intraday markets there is considerable potential for optimization, which will be discussed in the context of technical presentations. And in view of challenging market environment is also new approaches to portfolio management a great importance for the practice. Therefore we are convinced that the Conference and its results for energy companies, public services and new entrants in the energy industry as well are of interest as for consultants, authorities, associations and energy economic research institutes. [de

  4. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  5. Planning competitiveness on the energy sector

    International Nuclear Information System (INIS)

    Hennicke, P.

    1991-01-01

    The book reviews the concept of least cost planning which can be applied in all stages of energy management. It is a system-analytical concept of planning, cost optimisation, and application of investment alternatives in energy supply and energy conversion. In particular, the authors discuss inhowfar the positive results achieved in the USA with cost saving programmes based on least-cost planning can be applied to the situation of the Federal Republic of Germany. It is shown that least-cost planning could make a key contribution to operations scheduling of public utilities, in the establishment and implementation of local and regional energy concepts, and especially in the theory and practice of state supervision of the energy sector. The 14 contributions can be found as separate records in this database. (orig./HP) With 31 figs [de

  6. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  7. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  8. World energy and the Venezuelan energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, F

    1985-01-01

    The purpose of this study of world energy and the Venezuelan energy sector is to provide a comprehensive survey of this basic element essential to life itself and to the progress of humankind. It begins with a brief historical review from the beginning of the twentieth century to the present day and then gives, most importantly, a forecast for the twenty-first century which takes account of past and present trends and looks towards the end of the present century and to the beginning of the future.

  9. Embodied energy use in China's industrial sectors

    International Nuclear Information System (INIS)

    Liu Zhu; Geng Yong; Lindner, Soeren; Zhao Hongyan; Fujita, Tsuyoshi; Guan Dabo

    2012-01-01

    As the world’s top energy consumer, China is facing a great challenge to solve its energy supply issue. In this paper energy use from all industrial sectors in China’s economy of 2007 was explored by conducting an extended environmental input–output analysis. We compare the energy consumption embodied in the final demand for goods and services from 29 sectors with the energy demand required for the actual production process in each sector. Two different viewpoints for sectoral energy use have been presented: energy use is directly allocated to the producer entity, and energy use is reallocated to sector’s supply chain from consumption perspective. Our results show that considerable amount of energy use is embodied in the supply chain, especially for “Construction” and “Other Service Activities” sectors, which is not detected if energy use is allocated on a production basis. When further dividing embodied energy consumption into direct energy consumption and indirect energy consumption, total indirect energy consumption is much higher than that of total direct energy consumption, accounting for 80.6% of total embodied energy consumption in 2007. Our results provide a more holistic picture on sectoral energy consumption and therefore can help decision-makers make more appropriate policies. - Highlights: ► A hybrid IO-LCA model was employed to analyze China’s energy use at sectoral level. ► A case study on China’s sectoral energy consumption is done. ► Construction and service sectors are actually energy intensive from the supply chain perspectives. ► Upstream and downstream ectoral collaboration along the whole supply chain is necessary. ► Energy conservation policies should be based upon a comprehensive analysis on sectoral energy use.

  10. The energy sector in Argentina

    International Nuclear Information System (INIS)

    2016-01-01

    This article first outlines that Argentina produces an important part of its hydrocarbon consumption and comment various aspects of this production: hydrocarbons are at the heart of the Argentinian energetic model; conventional hydrocarbon reserves are however decreasing; the public operator remains the main actor even though the market is opened to multinational companies. The article then describes the crisis faced by this energetic model: the energy balance is now a burden; the increasing unbalance between production and consumption can be explained by supply-related as well as demand-related factors; authorities must intervene on hydrocarbon prices and subsidize the oil price on the domestic market. It appears that the future for hydrocarbons in Argentina relies on non-conventional hydrocarbons. Bio-fuels, a key sector of the Argentinian economy, are a matter of trade dispute with the EU and the USA. Apart from hydroelectricity (some new projects are planned), renewable energies are very few developed in Argentina. Appendices propose a graph of the distribution of energy consumption among the different sources, a map indicating locations of the main exploited hydrocarbon deposits, a presentation of mechanisms implemented to subsidize hydrocarbon production

  11. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  12. Transport Sector Energy 2010; Transportsektorns energianvaendning 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    Today, transport accounts for a quarter of Sweden's energy consumption which consists almost exclusively of fossil fuels. But with the increasing demands for reduced emissions of greenhouse gases, the sector's conversion to other fuels or energy sources will have a major impact the next years. This situation is expected to expand the requirements for statistics of energy consumption of the transport sector. The publication is divided into two parts. Chapter 2 describes the official energy statistics for the transport sector and Chapter 3 presents a breakdown of energy use in passenger and freight services for the respective modes.

  13. Water and Sewage Utilities Sector (NAICS 2213)

    Science.gov (United States)

    Environmental regulation information for water utilities, including drinking and wastewater treatment facilities. Includes links to NESHAP for POTW, compliance information, and information about pretreatment programs.

  14. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  15. Scoping study of integrated resource planning needs in the public utility sector

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, C J; Garrick, J M; Rue, D R [NEOS Corp., Lakewood, CO (United States)

    1993-06-01

    Integrated resource planning (IRP) is an approach to utility resource planning that integrates the evaluation of supply- and demand-site options for providing energy services at the least cost. Many utilities practice IRP; however, most studies about IRP focus on investor-owned utilities (IOUs). This scoping study investigates the IRP activities and needs of public utilities (not-for-profit utilities, including federal, state, municipal, and cooperative utilities). This study (1) profiles IRP-related characteristics of the public utility sector, (2) articulates the needs of public utilities in understanding and implementing IRP, and (3) identifies strategies to advance IRP principles in public utility planning.

  16. Energy utilities and the Internet

    International Nuclear Information System (INIS)

    2000-01-01

    The chances for energy utilities in the Netherlands to present themselves on the Internet are briefly outlined. It appears that other businesses are ahead of the Dutch utilities in offering electronic services with respect to energy

  17. Hydrogen and energy utilities

    Energy Technology Data Exchange (ETDEWEB)

    Hustadt, Daniel [Vattenfall Europe Innovation GmbH (Germany)

    2010-07-01

    Renewable electricity generation plays one major role with the biggest share being wind energy. At the end of the year 2009 a wind power plant capacity of around 26 GW was installed in Germany. Several outlooks come to the conclusion that this capacity can be doubled in ten years (compare Figure 1). Additionally the German government has set a target of 26 GW installed off-shore capacity in North and Baltic Sea until 2030. At Vattenfall only a minor percentage of the electricity production comes from wind power today. This share will be increased up to 12% until 2030 following Vattenfall's strategy 'Making Electricity Clean'. This rapid development of wind power offers several opportunities but also means some challenges to Utilities. (orig.)

  18. Building Capacity in the Public Utility Sectors of Basra, Iraq

    National Research Council Canada - National Science Library

    Trainor, Tim; Henderson, Dale

    2007-01-01

    ... in provincial reconstruction efforts. Specifically, the mission was to assist in building the capacity of the public sector utility leadership in project prioritization, project planning and project management in order to enhance...

  19. Environmental issues of Ukrainian energy sector

    International Nuclear Information System (INIS)

    Streimikiene, D.

    2005-01-01

    Ukraine's power sector is the twelfth-largest in the world in terms of installed capacity, with 54 GW and Ukraine still obtains over 50% of its electricity usage from nuclear source. In terms of energy consumption per dollar, Ukraine has one of the highest levels of energy and carbon intensity in the world. The country has very huge energy sector which cause a significant impact on environment

  20. HR in the Canadian renewable energy sector: HRSDC situational analysis

    International Nuclear Information System (INIS)

    Martin, B.; Ferguson, T.

    2006-01-01

    This paper outlines the human resources needs in the Canadian renewable energy sector. Emerging energies sector has many skills needs, some of which need to be developed. Emerging energy sector includes wind, solar photovoltaic (PV) and bio energy

  1. A review of Ghana’s energy sector national energy statistics and policy framework

    OpenAIRE

    Samuel Asumadu-Sarkodie; Phebe Asantewaa Owusu

    2016-01-01

    In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward...

  2. Public utility regulation and national energy policy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.

    1980-09-01

    The linkage between Public Utility Commission (PUC) regulation, the deteriorating financial health of the electric utility industry, and implementation of national energy policy, particularly the reduction of foreign petroleum consumption in the utility sector is examined. The role of the Nation's utilities in the pursuit of national energy policy goals and postulates a linkage between PUC regulation, the poor financial health of the utility industry, and the current and prospective failure to displace foreign petroleum in the utility sector is discussed. A brief history of PUC regulation is provided. The concept of regulatory climate and how the financial community has developed a system of ranking regulatory climate in the various State jurisdictions are explained. The existing evidence on the hypothesis that the cost of capital to a utility increases and its availability is reduced as regulatory climate grows more unfavorable from an investor's point of view is analyzed. The implications of this cost of capital effect on the electric utilities and collaterally on national energy policy and electric ratepayers are explained. Finally various State, regional and Federal regulatory responses to problems associated with PUC regulation are examined.

  3. Croatian Energy Sector Reform - Results Achieved

    International Nuclear Information System (INIS)

    Nota, R.

    2001-01-01

    During the past ten years, the energy sector has passed through significant changes including fundamental market, economic, legislative and institutional aspects of sector operation. As the main goal of the Republic of Croatia is the integration into the European Union, the energy sector reform ought to be conducted in keeping with the present market development processes of the EU in such a way as to fulfil all safety criteria. In view of the above mentioned, the Croatian Parliament brought a number of laws during its session in July 2001 (''Official Gazette'' 68/01): 1. Energy Law 2. Energy Activities Regulation Law 3. Electricity Market Law 4. Gas Market Law 5. Oil and Oil Derivatives Market Law, which present the commencement of the energy sector reform (www.mingo.hr).(author)

  4. Assessing global resource utilization efficiency in the industrial sector

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  5. Comparison of utility sectors in the Netherlands. Final report

    International Nuclear Information System (INIS)

    Kuit, M.; Kort, M.B.; Stout, H.D.; Boersma, F.C.; Ten Heuvelhof, E.F.; Kuenneke, R.W.; Van Twist, M.J.W.; Weijnen, M.P.C.

    2000-03-01

    There is a growing need of evaluating experiences with the liberalization of different sectors in the Netherlands. To what extent do the technical, economical and organizational characteristics of a sector determine the options to deal with competition? And to what extent does the type of competition determine whether the aimed for improvement of the efficiency and effectiveness of the service will be realized or not? Thereto, a systematic comparative analysis of infrastructure-related sectors has been carried out. In this report the experiences of the liberalization process in the electric and gas utilities sectors and the public transportation (buses and railway) sector are translated to preliminary conclusions and new research questions with respect to the possibilities to introduce competition in the water supply sector. refs

  6. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  7. Assessing global resource utilization efficiency in the industrial sector.

    Science.gov (United States)

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Rating criteria and the Canadian utility sector

    Energy Technology Data Exchange (ETDEWEB)

    DiPerna, D. [Standard and Poors Rating Agency, Toronto, ON (Canada)

    2003-07-01

    This Power Point presentation provides a brief overview of Standard and Poor's, their rating process, rating methodology, symbols, and rating trends. Key industry issues are described as being deregulation within the electric power and petroleum industry, and a series of risks including regulatory, sovereign, political, event, and financial risks. The paper summarized by noting that transmission and distribution companies have the greatest potential for high credit quality, based on monopoly status, efficient operations and supportive regulation. However, they will be challenged by regulatory and integration issues. The greatest business risk will be faced by generation companies. It was also noted that outside of Alberta and Nova Scotia, provincially-owned utilities dominate the electric power industry. 6 tabs., 13 figs.

  9. Rating criteria and the Canadian utility sector

    International Nuclear Information System (INIS)

    DiPerna, D.

    2003-01-01

    This Power Point presentation provides a brief overview of Standard and Poor's, their rating process, rating methodology, symbols, and rating trends. Key industry issues are described as being deregulation within the electric power and petroleum industry, and a series of risks including regulatory, sovereign, political, event, and financial risks. The paper summarized by noting that transmission and distribution companies have the greatest potential for high credit quality, based on monopoly status, efficient operations and supportive regulation. However, they will be challenged by regulatory and integration issues. The greatest business risk will be faced by generation companies. It was also noted that outside of Alberta and Nova Scotia, provincially-owned utilities dominate the electric power industry. 6 tabs., 13 figs

  10. Analysis of sectoral energy conservation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mofleh, Anwar; Taib, Soib; Salah, Wael [School of Electrical and Electronics Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Mujeebu, M. Abdul [School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-06-15

    The electrical energy consumption in Malaysia has increased sharply in the past few years, and modern energy efficient technologies are desperately needed for the national energy policy. This article presents a comprehensive picture of the current status of energy consumption and various energy conservation options viable for Malaysian environment. A detailed survey is made to assess the consumption pattern and the existing techniques for energy efficiency. Based on the survey, the feasibility of improving the available systems and adopting new programs in different sectors is investigated. The study reveals the fact that the energy conservation policy of the country has been fairly improved in the last ten years. However the country has to pay more attention to this area and make urgent measures to adopt more energy efficient technologies in various sectors. (author)

  11. Analysis of sectoral energy conservation in Malaysia

    International Nuclear Information System (INIS)

    Al-Mofleh, Anwar; Taib, Soib; Mujeebu, M. Abdul; Salah, Wael

    2009-01-01

    The electrical energy consumption in Malaysia has increased sharply in the past few years, and modern energy efficient technologies are desperately needed for the national energy policy. This article presents a comprehensive picture of the current status of energy consumption and various energy conservation options viable for Malaysian environment. A detailed survey is made to assess the consumption pattern and the existing techniques for energy efficiency. Based on the survey, the feasibility of improving the available systems and adopting new programs in different sectors is investigated. The study reveals the fact that the energy conservation policy of the country has been fairly improved in the last ten years. However the country has to pay more attention to this area and make urgent measures to adopt more energy efficient technologies in various sectors.

  12. Challenges and policies in Indonesia's energy sector

    International Nuclear Information System (INIS)

    Dutu, Richard

    2016-01-01

    Fossil fuels are central to Indonesia's energy policy, and its main source of export revenues. However, insufficient investment, the lack of transport infrastructure and an unwieldy regulatory environment are inhibiting the sector from reaching its full potential. Looking ahead, growing environmental concerns combined with sharp falls in coal prices and the on-going shale gas revolution call into question the sustainability of an energy strategy based almost exclusively on fossil fuels. This viewpoint challenges Indonesia's current energy policy and proposes ways to increase its energy efficiency and use of renewables. In particular, its gas sector should be further developed to plug the gap until sufficient renewable energy, especially geothermal, comes on line. Government control over the oil industry via state-owned Pertamina should be gradually reduced. Clarifying, streamlining and publicising simple regulations in energy, especially regarding land rights and on-shore processing, and removing foreign-ownership restrictions will help bring much needed investment. The pressure on the environment of natural resource exploitation should also be addressed by properly defining property rights and regulations regarding forest land, and implementing a positive implicit carbon price. - Highlights: • Indonesia's energy sector faces many regulatory, environmental and infrastructure hurdles. • Indonesia's energy policy can be improved through greater use of renewables, especially geothermal. • The gas sector should be further developed until more renewable energy come on line. • Government control over the oil industry should be reduced to boost investment. • Clarifying and simplifying regulations is key to attracting foreign companies and protecting the environment.

  13. Supporting analysis and assessments quality metrics: Utility market sector

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    In FY96, NREL was asked to coordinate all analysis tasks so that in FY97 these tasks will be part of an integrated analysis agenda that will begin to define a 5-15 year R&D roadmap and portfolio for the DOE Hydrogen Program. The purpose of the Supporting Analysis and Assessments task at NREL is to provide this coordination and conduct specific analysis tasks. One of these tasks is to prepare the Quality Metrics (QM) for the Program as part of the overall QM effort at DOE/EERE. The Hydrogen Program one of 39 program planning units conducting QM, a process begun in FY94 to assess benefits/costs of DOE/EERE programs. The purpose of QM is to inform decisionmaking during budget formulation process by describing the expected outcomes of programs during the budget request process. QM is expected to establish first step toward merit-based budget formulation and allow DOE/EERE to get {open_quotes}most bang for its (R&D) buck.{close_quotes} In FY96. NREL coordinated a QM team that prepared a preliminary QM for the utility market sector. In the electricity supply sector, the QM analysis shows hydrogen fuel cells capturing 5% (or 22 GW) of the total market of 390 GW of new capacity additions through 2020. Hydrogen consumption in the utility sector increases from 0.009 Quads in 2005 to 0.4 Quads in 2020. Hydrogen fuel cells are projected to displace over 0.6 Quads of primary energy in 2020. In future work, NREL will assess the market for decentralized, on-site generation, develop cost credits for distributed generation benefits (such as deferral of transmission and distribution investments, uninterruptible power service), cost credits for by-products such as heat and potable water, cost credits for environmental benefits (reduction of criteria air pollutants and greenhouse gas emissions), compete different fuel cell technologies against each other for market share, and begin to address economic benefits, especially employment.

  14. Energy and exergy use in public and private sector of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, I. E-mail: idincer@kfupm.edu.sa; Hussain, M.M.; Al-Zaharnah, I

    2004-09-01

    In this paper, we deal with the analysis of energy and exergy utilization in the public and private sector of Saudi Arabia by considering the energy and exergy flows for the years between 1990 and 2001. Energy and exergy analyses for the public and private sector are undertaken to study the energy and exergy efficiencies. These sectoral efficiencies are then compared, and energy and exergy flow diagrams for the public and private sector over the years are presented, respectively. Energy and exergy efficiencies of the public and private sector are compared for its six sub-sectors, namely commercial, governmental, streets, Mosques, hospitals and charity associations, particularly illustrated for the year 2000. Hospital sub-sector appears to be the most energy efficient sector and government sub-sector the most exergy efficient one. The results presented here provide insights into the sectoral energy use that may assist energy policy makers for the country. It is believed that the present techniques are useful for analyzing sectoral energy and exergy utilization, and that they provide Saudi Arabia with energy savings through energy efficiency and/or energy conservation measures. It is also be helpful to establish standards to facilitate application in industry and in other planning processes such as energy planning.

  15. Energy and exergy use in public and private sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper, we deal with the analysis of energy and exergy utilization in the public and private sector of Saudi Arabia by considering the energy and exergy flows for the years between 1990 and 2001. Energy and exergy analyses for the public and private sector are undertaken to study the energy and exergy efficiencies. These sectoral efficiencies are then compared, and energy and exergy flow diagrams for the public and private sector over the years are presented, respectively. Energy and exergy efficiencies of the public and private sector are compared for its six sub-sectors, namely commercial, governmental, streets, Mosques, hospitals and charity associations, particularly illustrated for the year 2000. Hospital sub-sector appears to be the most energy efficient sector and government sub-sector the most exergy efficient one. The results presented here provide insights into the sectoral energy use that may assist energy policy makers for the country. It is believed that the present techniques are useful for analyzing sectoral energy and exergy utilization, and that they provide Saudi Arabia with energy savings through energy efficiency and/or energy conservation measures. It is also be helpful to establish standards to facilitate application in industry and in other planning processes such as energy planning

  16. Scheme of energy utilities

    International Nuclear Information System (INIS)

    2002-04-01

    This scheme defines the objectives relative to the renewable energies and the rational use of the energy in the framework of the national energy policy. It evaluates the needs and the potentialities of the regions and preconizes the actions between the government and the territorial organizations. The document is presented in four parts: the situation, the stakes and forecasts; the possible actions for new measures; the scheme management and the regional contributions analysis. (A.L.B.)

  17. Energy sector developments in Venezuela

    International Nuclear Information System (INIS)

    Pantin, R.

    1997-01-01

    The current state and future development of the oil, gas and coal sector in Venezuela was discussed. Venezuela has oil reserves of 73 billion barrels, gas reserves of 143 TCF and coal reserves of 6 billion BOE. The country has a refining capacity of 2.9 million barrels per day, a petrochemical capacity of 7.7 million tons per year, and a coal capacity of 4.6 million tons per year. The largest refiners in Venezuela are Shell, Exxon, PDVSA, Mobil, BP, Chevron and Texaco. In 1996 the total oil and derivatives exports for Venezuela were 2.8 million barrels per day. Fifty-eight companies from 14 countries participate in the Venezuelan upstream market. Fifteen operating agreements have been awarded to 27 companies from nine countries. Third round operating agreements have been awarded to 26 companies and profit sharing agreements are in force involving 14 companies. Four vertically integrated projects (Maraven-Conoco, Maraven-Total, Corpoven-Arco-Texaco-Phillips, and Lagoven-Mobil-Veba) are currently underway. The Orimulsion(R) project, the refining system, the natural gas production, marketing and transmission system, associated future projects for the 1997-2006 time frame, and developments in the field of petrochemicals also have been reviewed. 21 figs

  18. Energy. A sector in danger

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    Just like the Three Mile Island and Chernobyl accidents slowed down the pace of development of nuclear energy, several countries put their project of construction of new nuclear reactors into question again after the accident of Fukushima, or at least decided a security assessment of their installations. The article comments the reactions of different political actors in France belonging either to the government or to the opposition. The level of this last accident may surely impact the development of nuclear reactors throughout the world, but may not stop it because of energy needs. Safety standards might be reassessed and some countries might choose other energy sources like gas for example. As Areva claims a high safety level for the EPR, a discussion emerges about the compliance of some French installations (Fessenheim, Cadarache) with anti-seismic construction standards

  19. Electric energy utilization and conservation

    International Nuclear Information System (INIS)

    Tripathy, S.C.

    1991-01-01

    Various aspects of electric energy utilization and conservation are discussed. First chapter reviews thermodynamic aspects of energy conservation. Subsequent chapters describe possibilities and methods of energy conservation in thermal power plants, airconditioning and ventilation systems, electric lighting systems, electric heating systems in industries, and railway electrification. Chapter 8 describes various modes of energy storage and compares their economies. The next chapter discusses various facets of energy economics and the last chapter discusses the practical aspects of energy conservation in different industries and power utilities. (M.G.B.). 100 refs

  20. General overview of the Mexican energy sector

    International Nuclear Information System (INIS)

    Perez-Jacome, D.

    1999-01-01

    An overview of Mexico's energy sector was presented, with particular focus on the natural gas and electricity sectors. Mexico ranks fifth in oil production, eighth in proven oil reserves, and fourteenth in natural gas reserves. In 1998, the energy sector generated 3.3 per cent of Mexico's gross domestic product (GDP), and oil accounted for 7.5 per cent of total exports. National production of natural gas has been forecasted to grow at a rate of 5.2 per cent annually over the next 10 years. This will be largely due to the increased demand for natural gas to produce electricity. The Mexican government has also taken initiatives to restructure the Mexican energy sector with particular focus on increasing the competitiveness of the electric power industry. Electricity demand is also expected to grow at a rate of 6 per cent annually over the next six years. The objectives of energy reform are to promote more investment from all sectors in order to strengthen the development of the electric power industry and to provide a reliable, high quality service at competitive prices. 9 figs

  1. 75 FR 70725 - Spectrum Policy Seminar for the Utility Sector

    Science.gov (United States)

    2010-11-18

    ... Smart Grid Technologies. '' The complete text of the report, and of a second report addressing data access and privacy issues arising from the deployment of smart grid technologies, can be found at: http... utility sector on spectrum policy issues in light of the role wireless communications will surely play in...

  2. Yukon energy sector assessment 2003 : final report

    International Nuclear Information System (INIS)

    Kishchuk, P.

    2003-10-01

    A study was conducted to better understand energy issues in the Yukon. The study was based on the Yukon Energy Matrix which looks at the Yukon energy sector from the perspective of the capacity to supply various forms of energy, the markets for energy in the Yukon, and energy users. The sources of non-renewable energy in the Yukon range from natural gas, coal and oil. Renewable energy sources are also diverse and include water, biomass, wind, solar and geothermal. The main sources of electricity production in the Yukon are oil, water and wind. The link between energy and climate change has gained much attention in recent years, resulting in effective measures to conserve energy and increase energy efficiency. Coal, gas and oil are imported into the Yukon from markets in southern Alaska despite the fact that Yukon has its own vast quantities of these fossil-based forms of energy. As a result, the price of fossil-fuels consumed in the Yukon is determined in national and international markets. The absence of non-renewable energy production in the Yukon is also reflected in the lack of pipeline and rail infrastructure in the territory. The Yukon's electricity transmission grid is also very fragmented. For the purpose of this paper, energy use was categorized into the residential, commercial, industrial and transportation sectors. 19 refs., 8 tabs., 12 figs

  3. UKRAINIAN FUEL AND ENERGY SECTOR: DISTINCTIVE FEATURES

    Directory of Open Access Journals (Sweden)

    Olesia Azarenkova

    2015-07-01

    Full Text Available The paper is devoted to the analysis of Ukrainian fuel and energy sector (FES. The number of risks that threaten the stable supply of energy sources is growing. A high proportion of the energy intensity of developing economies in conjunction with their growing GDP leads to increased competition on world primary energy markets and causes significant fluctuations in energy prices, which negatively affect the global economy. There is also an important issue for world energy - limited use of non-renewable energy resources. Considering the prospects of development of Ukrainian FES, it is important to pay attention to patterns and trends of the global and national power. We have studied the basic trends of Ukrainian FES. It is the most important sector of the economy, and therefore its reform for market economy creation, price liberalization is a very important process. The current task of the energy sector of Ukraine is to be able to consistently produce and use energy to promote economic growth and improve quality of life.

  4. Solar energy storage and utilization

    Science.gov (United States)

    Yuan, S. W.; Bloom, A. M.

    1976-01-01

    A method of storing solar energy in the ground for heating residential buildings is described. The method would utilize heat exchanger pipes with a circulating fluid to transfer the energy beneath the surface as well as to extract the stored energy.

  5. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  6. Analysis of China's energy utilization for 2007

    International Nuclear Information System (INIS)

    Zhang Ming; Wang Wenwen

    2011-01-01

    China is the world's second-largest energy producer and consumer, so that it is very necessary to analyze China's energy situation for saving energy consumption and reducing GHG emission. Energy flow chart is taken as a useful tool for sorting out and displaying energy statistics data. Energy statistics data is the premise and foundation for analyzing energy situation. However, there exit many differences between China and foreign energy balance. Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. And the purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. We find that: (1) coal is the main energy in China, which accounted for 73.2% of total energy supply in 2007; (2) thermal power accounted for 83.2% of the total electricity supply, and 78.43% thermal power was based on coal; (3) in 2007, the secondary industrial sector consumed about 69.93% of energy; (4) China's energy utilization efficiency was about 33.23% in 2007. - Research highlights: → Based on the international criterion of energy balance and some advices given by related experts, the author properly adjusts China's energy balance. → The purpose of this paper is to draft China's energy flow chart for 2007, which is used to study the characteristics of energy production and consumption in China. → We find that China's energy utilization efficiency was about 33.23% in 2007.

  7. Measuring Energy Efficiency in China’s Transport Sector

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-05-01

    Full Text Available Energy efficiency is one of the key factors affecting energy consumption and greenhouse gas (GHG emissions. By focusing on China’s transport sector, this study comprehensively reviews and compares the energy efficiency performance of passenger vehicles, light-duty commercial vehicles, commercial road transport, commercial water transport, aviation transport and railway transport, and identifies the opportunities for further energy efficiency improvements. It is found that railway transport exhibited the greatest improvement in energy efficiency during the past decade, which was mainly driven by progress in its electrification. Passenger vehicles have also experienced considerable energy efficiency improvements, which can be mainly attributed to the establishment of mandatory fuel consumption standards. In contrast, commercial road transport has shown the least improvement, due to insufficient policy implementations. Based on the analysis, it is recommended that, as China’s present policy framework to improve energy efficiency in the transport sector is generally effective, it should be consistently maintained and successively improved. Electrification represents a major opportunity for improvement of energy efficiency in the transport sector. Such potential should be fully tapped for all transport modes. Greater effort should be put into improving the energy efficiency of commercial road transport. The policy instruments utilized to improve the energy efficiency of heavy-duty vehicles should be as intensive and effective as the policy instruments for passenger vehicles.

  8. Energy sector in conditions of market economy

    International Nuclear Information System (INIS)

    Schervashidze, N.

    1993-01-01

    The main dilemma of energy sector in market conditions is: regulation of the monopole producer and/or competition. There is no simple answer and the arguments for and against should be based on the macro economical determination of what kind of market is available for particular energy goods (perfect, monopolistic, oligopolistic, competition of monopolists) and what is the final purpose (improvement in efficiency, service, energy independence, regional development, etc.). Two polar models of economic management in energy sector are distinguished: 1) Free access to transfer net or competition between producers. 2) State regulation of the local monopolist. The experience of Great Britain and US are described as examples of both models. A special attention is paid to pricing methods at regulated monopole. 7 refs. (author)

  9. Oil Prices and the Renewable Energy Sector

    OpenAIRE

    Kyritsis, Evangelos; Serletis, Apostolos

    2017-01-01

    Energy security, climate change, and growing energy demand issues are moving up on the global political agenda, and contribute to the rapid growth of the renewable energy sector. In this paper we investigate the effects of oil price shocks, and also of uncertainty about oil prices, on the stock returns of clean energy and technology companies. In doing so, we use monthly data that span the period from May 1983 to December 2016, and a bivariate structural VAR model that is modified to accommod...

  10. Energy savings in CSFR - building sector

    International Nuclear Information System (INIS)

    Jacobsen, F.R.

    1993-01-01

    The Czechoslovak/Danish project on energy savings in buildings proves that it is possible to save up to 30% of the energy in buildings. 10% can be saved at an investment of 27 bill KCS. The total investment that is needed to save 30% is 140 bill KCS. Further energy savings can be obtained through more energy efficient supply systems. Information dissemination is important for the energy saving programme as are economic incentives. Investments in energy savings should be profitable for the investor, but this is not the case in the Czech and Slovak republics today. Changes are needed. Energy prices are still to low, compared to investment costs. Financial possibilities are not satisfactory for private investors. Price systems are not favourable to investment in energy savings. Training is needed for boiler men and energy consultants. Legislation is essential for the support of the full range of activities in the energy sector. Research and Development activities must back up the development of the sector. Pilot projects can illuminate the savings potential. The production of technical equipment for control and metering and production of insulation materials must be promoted. (AB)

  11. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  12. Energy transition in transport sector from energy substitution perspective

    Science.gov (United States)

    Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang

    2017-10-01

    Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.

  13. Wind energy utilization: A bibliography

    Science.gov (United States)

    1975-01-01

    Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.

  14. Energy Sector of India: Past and Present

    Directory of Open Access Journals (Sweden)

    K. A. Ibragimova

    2017-01-01

    Full Text Available Strengthening the influence of India in the Asian region and in the world requires for resorting of the modernization experience of this country, including the development of its energy sector. India today is among the top ten countries to generate electricity per capita. At the same time, both traditional sources of energy production coexist in India (using the muscular strength of man and animals with the conditions for the development of modern energy infrastructure through foreign investments. The article attempts to trace the main stages of the formation and development of energy industry in India; the modern state of energy is analyzed and plans for its development are considered. The research is based on a complex of traditional methods and approaches based on the principle of scientific objectivity and systemic method used in research in the framework of international relations and political science. For more than a century of history of the development of energy sector in India significant success has been achieved. Starting with the electrification of large cities and industrial enterprises due to foreign investments in the colonial period, India, after gaining the independence, set the task of developing its own infrastructure, electrifying the countryside and providing the industry with energy resources. The greatest progress in the development of electric power and nuclear energy was made. Indian economic growth will increase India’s energy needs and quadruple the demand for electricity over the next 25 years. For this, India needs to solve the problems of energy efficiency, energy complex management, lack of standards and energy imports, as well as actively introduce alternative energy sources and move to clean electricity (increased use of water resources and solar energy, which can be done through the development of Russian -Indian cooperation.

  15. Competition within the energy sector and State regulation

    International Nuclear Information System (INIS)

    Larsen, A.; Jess Olsen, O.

    1995-10-01

    It is presumed that energy markets will be liberalized. Questions discussed are how the Danish electricity and gas sectors are to be re-regulated in order to ensure that this goal is reached in the most satisfactory manner (cheaper energy supply under competitive conditions) and whether there will be a conflict between the goal of liberalization and the environmental goals of clean technology and energy conservation. It is suggested that a compulsory splitting up of the two regional power associations in Denmark should not be necessary. Transmission and distribution must continue to be regulated as these are natural monopolies not compatible with competition. District heating will still be a monopoly and its prices must be closely regulated to prevent soaring. The opening up of the European gas market to competition will threaten Danish energy utilities. The increasing compulsory use of natural gas in cogeneration plants to politically determined high prices is not sustainable under competitive conditions. Energy saving activities should not be affected. Energy surcharges are attractive measures on a liberalized market. The regulation of competition ought to be incorporated explicitly as a restriction in the Ministry of Energy's energy policy regulation. Energy utilities could be excluded from participation in price setting. International regulation of competition will demand a clarification of the separation of regulatory competence between the member states and the European Commission. It will also be necessary to adjust the Danish regulation of the electricity sector to the future Scandinavian system. (AB) 77 refs

  16. Wood-energy - The sector get worried

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane; Bohlinger, Philippe; Guilhem, Jean; De Santis, Audrey; Sredojevic, Alexandre; Defaye, Serge; Maindrault, Marc

    2017-01-01

    Wood energy is, today and certainly also tomorrow, one of the most important renewable energies in France. However, the wood-energy sector seems to slow down as hydrocarbon prices stay extremely low. This document presents 8 articles, describing the context and the characteristics of this evolution, plus some examples of developments in France. The themes of the articles are: the activity of the wood-energy sector should be reinforced to meet the objectives of the French energy multi-year plan; The 2035 prospective of the wood yield in the French forest will meet the future demand, however this evaluation does not take into consideration the effects of the climatic change; the conversion to biomass of the 'Fort de l'Est' (near Paris) heating system (equipped with a boiling fluidized bed boiler) has enabled the heat network to beat the 50 pc share of renewable energy; wood-energy professionals use the 'quality' lever to challenge their fossil fuel competitors; the city of Orleans is now equipped with an innovative biomass cogeneration plant; the example of wood waste valorization in a French sawmill; the French ONF (Forest Administration) Wood-Energy actor has just inaugurated its largest biomass dryer, in order to develop the domestic market for wood as a fuel; analysis of the technical and economical feasibility of using wood to generate electric power or replacing electric space heating by heat network

  17. E-commerce in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Sioshansi, F.P. [Menlo Energy Economics (MEE), Menlo Park, CA (United States)

    2000-09-18

    E-commerce and e-business are now part of the lexicon of modern business everywhere. The energy industry is no exception, although it is somewhat of a latecomer to the field, trailing a number of others. This article, which is based on a multi-client study titled 'E-commerce in the Energy Sector', is focused on the business applications of e-commerce in the energy sector, broadly defined to include oil, electricity, and natural gas industries. The study was conducted by Menlo Energy Economics (MEE) in collaboration with Global Business Network (GBN). (orig.) [German] E-commerce und E-business gehoeren heute im Geschaeftsleben zum guten Ton. Obwohl ein Nachzuegler auf diesem Gebiet, macht die Energiewirtschaft hier keine Ausnahme. Der Artikel, der auf einer von Menlo Energy Economics (MEE) und Global Business Network (GBN) durchgefuehrten Studie zum Thema 'E-commerce im Energie-Sektor' beruht, beschreibt die Anwendungsmoeglichkeiten fuer E-commerce im Energie-Sektor worunter hier Oel-, Elektrizitaets- und Erdgaswirtschaft zu verstehen sind. (orig.)

  18. Strategic Environmental Assessment & The Danish Energy Sector

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    in its infancy in the Danish energy sector, but SEA is achieving increased attention in the sector. - The change agent research approach used in the project is relevant medium for a critical interdependence between theory and practice that at the same time promotes more sustainable decision-making...... on these cases is crucial for reducing the risk of unintended environmental impacts and for enhancing attention to relevant alternatives prior to decision-making....... strategic decisions are made is a prerequisite for achieving this target, and the thesis therefore explores the strategic decision-making processes of contemporary energy infrastructure developments. The highlights of this thesis are: - A combination of disciplines in a continuum of perspectives...

  19. Energy utilization, environmental pollution and renewable energy sources in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K. [Karadeniz Technical University, Trabzon (Turkey). Dept. of Chemistry

    2004-04-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors.

  20. Energy utilization, environmental pollution and renewable energy sources in Turkey

    International Nuclear Information System (INIS)

    Ocak, M.; Ocak, Z.; Bilgen, S.; Keles, S.; Kaygusuz, K.

    2004-01-01

    In this study, energy utilization and its major environmental impacts are discussed from the standpoint of sustainable development, including anticipated patterns of future energy use and subsequent environmental issues in Turkey. Several aspects relating to energy utilization, renewable energy, energy efficiency, environment and sustainable development are examined from both current and future perspectives. Turkey is an energy importing country, more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited, and the lignites are characterised by high ash, sulfur and moisture content. Because of increasing energy consumption, environmental pollution is becoming a serious problem in the future for the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Especially hydropower, biomass, geothermal, solar and wind energy should be considered and seriously supported by governments and private sectors

  1. Water consumption in the energy sector

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and surface water, for water treatment as well as for transport and distribution of water to end......-users. The waste water is often returned to the environment after energy requiring waste water management.......Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil...

  2. Household energy and climate mitigation policies: Investigating energy practices in the housing sector

    International Nuclear Information System (INIS)

    Schaffrin, André; Reibling, Nadine

    2015-01-01

    One central aim of climate change mitigation in the European Union is to reduce energy consumption in the housing sector. In order to ensure effectiveness of policies targeting household energy conservation, it is important to investigate existing energy practices of different social groups. This article describes and explains energy practices in three leading states in environmental politics, technological innovation, and support for renewable energy production: Denmark, Austria, and the United Kingdom. Based on a longitudinal analysis of housing utility costs from the European Community Statistics on Income and Living Conditions we show that income plays a central role in households' energy practices. While high-income households have higher overall energy consumption, low-income groups spend a larger share of their income on utility costs. The variation of energy consumption across income groups is related to household characteristics, characteristics of the dwellings, and cross-national differences in the housing sector. - Highlights: • We explain energy practices in Denmark, Austria, and the United Kingdom. • We show that income plays a central role in households’ energy practices. • High-income households have higher overall energy consumption. • Low-income groups spend a larger share of their income on utility costs. • Consumption depends on the household, dwelling and the housing sector

  3. Energy efficiency and restructuring of the Brazilian power sector

    Energy Technology Data Exchange (ETDEWEB)

    De Martino Jannuzzi, Gilberto [State University of Campinas, Sao Paulo, (Brazil)

    1999-07-01

    Since the early nineties Brazil has initiated a program of reforms in its electric sector which includes utility privatization, de-verticalization. The main objectives were to promote a market-oriented energy industry attractive to private investments. This has led to the loss of sponsorship for the public-interest programs formerly undertaken by the state utilities. In particular, of significant concern are the programs for promotion of energy efficiency, renewable energy technologies, rural electrification and environmental protection. In the midst of the privatization effort, the National Agency for Electrical Energy ANEEL was created (end of 1997). One of the tasks of the regulatory agency is to provide funds and incentives to energy conservation. In this paper we review the role of ANEEL in promoting energy efficiency investments in the context of a market-oriented sector, its limitations and prospects. [Spanish] Desde principios de los anos noventa Brasil ha iniciado un programa de reformas en su sector electrico que incluye la privatizacion del servicio electrico y la desverticalizacion. Los objetivos principales eran promover una industria de la energia orientada comercialmente de la energia electrica, atractiva a las inversiones privadas. Esto ha conducido a la perdida de patrocinio de los programas de interes publico emprendidos antes por las empresas electricas del estado. En particular, de preocupacion significativa estan los programas para la promocion del rendimiento energetico, de las tecnologias de la energia renovable, de la Electrificacion rural y de la proteccion del medio ambiente. En medio del esfuerzo de la privatizacion, la agencia nacional para la energia electrica ANEEL fue creada (finales de 1997). Una de las tareas de la agencia reguladora es proporcionar fondos e incentivos a la conservacion de energia. En este trabajo repasamos el papel de ANEEL en promover inversiones del rendimiento energetico en el contexto de un sector orientado

  4. Does the energy sector call for reform?

    Energy Technology Data Exchange (ETDEWEB)

    Granic, Goran; Pesut, Damir; Jandrilovic, Nada; Jelavic, Branka; Zeljko, Mladen

    2007-07-01

    This paper discusses the course of the energy sector reforms in Europe so far, its objectives, achievements, issues, and dilemmas. In particular, long term and security aspects of energy supply of Europe are analyzed. In addition to the legislative changes regarding the open energy market regulation, and primarily the changes concerning electricity and natural gas markets, the past period saw dynamic changes of institutional framework, such as: increasing members of the european Union, increased number of countries aspiring to the EU (candidate countries or potential candidates), and changes in other European countries out of which Russia is the most significant energy producer. The paper analyzes the issue of responsibility between state - regulator - system operator - trader - energy buyer. In Europe, it is more a complex question because the system of responsibility includes the institution of the European Union. Therefore, the relations between EU - state - regulator - system operator - trader - energy buyer are especially important. The paper looks in to the issue of energy company integrations, creation of energy mega-undertakings and their influence on further market development. The question of monopolies now appears in a new form. The conclusions suggest possible measures for institutional influence on energy market development, especially in the network energy systems, which may have a positive impact on system security and stability and markets development and their long term sustainability. (auth)

  5. Wind energy sector in British Columbia

    International Nuclear Information System (INIS)

    2010-01-01

    British Columbia (BC) possesses significant wind energy resources, and many wind energy projects are currently in the planning phase or are already under construction. Wind power policies in the province have been designed to ensure the secure and orderly development of the wind power industry. Policies in the province include a 10-year exemption from participation rents for new projects as well as a policy that has established the maximum permissible noise levels for wind farms located near residential properties. BC's wind power development plan forms part of the province's aim to become electricity self-sufficient by 2016 while ensuring that clean or renewable energy generation accounts for at least 90 per cent of total generation. This guide provided an outline of the province's wind energy sector, and provided a listing of selected wind power operators. Details of new wind power projects were also presented. 11 fig.

  6. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  7. Sectorial energy observatory: the concentration of the sector intensifies

    International Nuclear Information System (INIS)

    2000-01-01

    The 1998 energy market conjuncture was particularly bad for two main reasons: the collapse of oil prices and the recession of primary energy consumption. This situation occurred while the regulatory framework of markets was becoming overturned because of the forthcoming deregulation of the European power market (February 1999) and of the natural gas market (summer 2000). In this context, the energy actors have concentrated their efforts to the reinforcement of their positions using external growth operations. Apart from the concentration process, the actors of the energy sector have carried on with their strategic initiatives started these last years, internationalization being their main strategic goal. Europe is their favoured zone but they more and more lust after the USA: oil companies are placing their positions downstream of the gas industry file, while gas distributors are moving upstream. The financial performances of energy actors have been greatly lowered with a general decreasing turnover (negative price effect). They have kept some important financial latitude in order to maintain their concentration policy. Their targets will be probably the German, British and Spanish electricity and gas utilities. The electric power sector has been one of the main sectors concerned by external growth operations, but the natural gas industry should encounter a similar evolution since summer 2000. (J.S.)

  8. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  9. Bulgarian energy sector: risks and policies for mitigation of consequences

    International Nuclear Information System (INIS)

    Manchev, B.; Halev, G.

    2010-01-01

    The presentation gives the general situation in Bulgarian economy and energy sector. The data and information are obtained from Eurostat. Data from the National Energy Operator's plan for development of the energy sector with minimum expenses are used. Three main accents are considered: 1. Assurance of energy balance; 2. Energy security; 3. Fulfillment of the Energy Union responsibilities

  10. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  11. Thermodynamic basis for effective energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. T.

    1977-10-15

    A major difficulty in a quantitative assessment of effective energy utilization is that energy is always conserved (the First Law of Thermodynamics). However, the Second Law of Thermodynamics shows that, although energy cannot be destroyed, it can be degraded to a state in which it is of no further use for performing tasks. Thus, in considering the present world energy crisis, we are not really concerned with the conservation of energy but with the conservation of its ability to perform useful tasks. A measure of this ability is thermodynamic availability or, a less familiar term, exergy. In a real sense, we are concerned with an entropy-crisis, rather than an energy crisis. Analysis of energy processes on an exergy basis provides significantly different insights into the processes than those obtained from a conventional energy analysis. For example, process steam generation in an industrial boiler may appear quite efficient on the basis of a conventional analysis, but is shown to have very low effective use of energy when analyzed on an exergy basis. Applications of exergy analysis to other systems, such as large fossil and nuclear power stations, are discussed, and the benefits of extraction combined-purpose plants are demonstrated. Other examples of the application of the exergy concept in the industrial and residential energy sectors are also given. The concept is readily adaptable to economic optimization. Examples are given of economic optimization on an availability basis of an industrial heat exchanger and of a combined-purpose nuclear power and heavy-water production plant. Finally, the utility of the concept of exergy in assessing the energy requirements of an industrial society is discussed.

  12. The energy sector at a cross roads

    International Nuclear Information System (INIS)

    2000-01-01

    The power and gas markets in Europe are changing radically. Increasing competition and comprehensive structural changes affect the conditions for value creation in the energy sector and the development of the Norwegian energy companies, which are mainly publicly owned. At the same time the demand on the owners is increasing, above all when it comes to strategic vigour in connection with necessary structural changes to adapt the companies to the new market conditions. The development of powerful Norwegian energy companies requires that the owners consider changes in the corporate structures, that the companies are partially privatised and at the same time that the goals of the ownership are clarified and the owner competence strengthened

  13. Energy sector during 1993 and 1994

    International Nuclear Information System (INIS)

    Schervashidze, N.

    1993-01-01

    The author emphasises the most important problem facing Bulgarian energy sector during the transition period to market economy - pricing reform. He discusses the way of forming the price based on 'long-term marginal expenditures' (LTME) for delivering the services. LTME include 'short-term marginal expenditures'(STME), (operational expenditures, energy cost) and additional investments for modernization of existing units. The first step of the pricing reform should be an increase of the prices at least up to the level of STME. Eventually the pricing reform must change the tariff structure responsible for stimulation of energy savings and market principles adapted for domestic realities. An attempt to connect the monopolist economic theory at market conditions with particular price corrections proposed by the Committee of Energetics for 1994 is made. 9 figs. (author)

  14. Energy sector reform in India : a review

    International Nuclear Information System (INIS)

    Aruna, M.; Raj, M.G.

    2008-01-01

    The government of India cannot afford to fund the total investment needed for restructuring the country's electric power sector. As such, India's Electricity Act of 2003 encouraged private participation to implement the required measures for efficient and optimum use of energy resources available in India and to supply quality power at the best cost to consumers. This paper described the present status of India's power sector with respect to generation, transmission and distribution of electricity. India's economy is growing at a faster rate compared to many other developing countries. It is expected that in the next 6 to 7 years additional capacity of 84,000 MW will be needed to meet the projected electricity demand. The Power Finance Corporation Limited (PFC) was established in 1986 in order to generate and provide funds for the power sector, which is in the process of reforms in every element of the electricity value chain. India is facing an energy deficit and peak power deficit of 8 per cent and 12.2 per cent, respectively. The inter-regional power transmission capacity is planned to be increased from 16,500 MW to 37,000 MW by 2012. Thermal and nuclear energy are major sources for electricity production in India. As most of these resources are non renewable, they must be efficiently used. Coal will continue to contribute about 60 per cent of power generation in India. It was concluded that a large capacity national power grid is necessary for inter-regional power transfer, and that Transmission Super Highways are needed for the development of a high capacity National Power Grid. 7 refs., 1 tab., 3 figs

  15. Market study for direct utilization of geothermal resources by selected sectors of economy

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

  16. Sustainability reporting in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2016-01-01

    Full Text Available Development of the concepts of sustainable development and corporate social responsibility has a great impact on reporting in companies. The increase of their importance has resulted in a need to create a reporting system that would provide information on not only the methods but also the results of implementation of those concepts in companies. Globally, there are many organizations that promote and support companies in the area of integrated reporting. The most popular standard for reporting non-financial data that is used by a number of companies worldwide is the Global Reporting Initiative (GRI Guidelines. The main objective of the GRI is to support the development of sustainable economy in which companies take responsibility for the economic, social, and environmental consequences of their operations, manage that responsibility, and report all their actions. An example of a sector where the concept of sustainable development and its transparent reporting has an impact on the formation of values is the energy sector, which creates value for stakeholders and, together with the financial sector, has the greatest impact on national economies.

  17. SWOT analyses of the national energy sector for sustainable energy development

    International Nuclear Information System (INIS)

    Markovska, N.; Taseska, V.; Pop-Jordanov, J.

    2009-01-01

    A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

  18. Aspects of marginal expenditures in energy sector

    International Nuclear Information System (INIS)

    Stojchev, D.; Kynev, K.

    1994-01-01

    Technical and economical problems of marginal analysis methodology, its application procedure in energy sector and marginal expenditures determination are outlined. A comparative characteristics of the application is made for different periods of time. The differences in calculation of the marginal expenditures and prices are discussed. The operational costs, investments and inflation are analyzed. The mechanism of application of this approach in different planing horizon is outlined. The role of the change in the costs in time, the time unit, volume, the scope of application, etc. are determined. The areas of transition from one to other form of marginal expenditures are shown. 4 refs. (orig.)

  19. Energy and exergy utilizations of the Jordanian SMEs industries

    International Nuclear Information System (INIS)

    Al-Ghandoor, A.; Al Salaymeh, M.; Al-Abdallat, Y.; Al-Rawashdeh, M.

    2013-01-01

    Highlights: ► We analyze the energy and exergy utilizations of the Jordanian SMEs industries. ► We developed an energy balance for the Jordanian SMEs industries. ► The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist. - Abstract: This study presents detailed analysis of the energy and exergy utilizations of the Jordanian Small-Medium Enterprises (SMEs) by considering the flows of energy and exergy through the main end uses in the Jordanian industrial sector. To achieve this purpose, a survey covering 180 facilities was conducted and energy consumption data was gathered to establish detailed end-use balance for the Jordanian industrial sector. The energy end-use balance provides a starting point to estimate the site and embodied energy and exergy efficiencies. The average site energy and exergy efficiencies of the Jordanian SMEs industries sector are estimated as 78.3% and 37.9% respectively, while the embodied energy and exergy efficiencies are estimated as 58.9% and 21.2% respectively. The low efficiencies values suggest that many opportunities for better industrial energy utilizations still exist.

  20. Engineering in the energy sector. The single market and the engineering sector

    International Nuclear Information System (INIS)

    Garcia Rodrigues, A.

    1993-01-01

    Projects with large infrastructures, particularly those in the field of energy, provide a strong boost to certain industrial sectors in the country. In the case of Spain, the policy of direct management 'by components' of these projects - hydroelectric power plants, petrochemical plants, thermoelectric plants and nuclear power plants - adopted by the electric utility owners has furthered not only the local equipment manufacturing industry but also the engineering sector. At present, with full implementation of the Single Market in sight, it is particularly interesting for Spain to continue building up a powerful engineering sector, increasing its size and usefulness, and extending its traditional areas of action to other technologies, more on the lines of engineering and consulting firms in the USA than in the rest of Europe. The intention is to endow our equipment and construction companies with the skills necessary to enable them to compete with large European conglomerates in their respective sectors. The structure of these conglomerates usually contains engineering capabilities which are not habitual in our industry. Examples are given, showing how this model has been used to compete and win awards for important international projects. A specific analysis has been made of the position of Spanish engineering and industry in nuclear power generation projects in the former Soviet Union and East European countries, in which large investments are expected to be made. (author)

  1. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  2. Renewable energy in the Lithuanian heating sector

    International Nuclear Information System (INIS)

    Konstantinaviciute, Inga; Bobinaite, Viktorija; Tarvydas, Dalius; Gatautis, Ramunas

    2013-01-01

    The paper analyses the role of renewable energy sources (RES) in the Lithuanian heating sector and the existing support measures. RES consumption has been continuously growing in Lithuania. During the period of 2000–2009, RES used for heat production in the district heating sector increased more than 4 times. Wood and wood products have been the most widely used RES for heat production (RES-H). The lower prices were one of the main reasons which motivated district heating companies to switch fuel to biomass. At the same time subsidies, soft loans, EU Structural Funds for 2007–2013 and some fiscal measures, which are currently available for RES-H promotion, also have some impact on the increase of RES consumption. However, seeking to achieve a 23% national RES target, additional support measures are essential. A qualitative analysis based on the selected set of criteria and consultation with stakeholders showed that energy policy package for RES promotion in the Lithuanian heating sector could encompass the following measures: tax relieves (differentiated VAT and personal income tax breaks), subsidies, soft loans, standardization, support for research, development and demonstration. These measures are market-oriented and meet cost efficiency and low transaction costs criteria. - Highlights: • Existing support measures are not strongly motivating market players. • In order to meet ambitious 23% targets consistent promotion policy package is required. • The proposed package could consist of 4 instruments: tax related, soft loans, standardization and support for RD and D. • The proposed support measures are market oriented and meets cost efficiency and low transaction costs criteria. • There is no single measure that is fairly suitable to support RES-H

  3. A review of Ghana’s energy sector national energy statistics and policy framework

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward? The future research in Ghana cannot progress without consulting the past. In order to ensure access to affordable, reliable, sustainable, and modern energy for all, Ghana has begun expanding her economy with the growing Ghanaian population as a way to meet the SDG (1, which seeks to end poverty and improve well-being. There are a number of intervention strategies by Ghana’s Energy sector which provides new, high-quality, and cost-competitive energy services to poor people and communities, thus alleviating poverty. Ghana’s Energy sector has initiated the National Electrification Scheme, a Self-Help Electrification Program, a National Off-grid Rural Electrification Program, and a Renewable Energy Development Program (REDP. The REDP aims to: assess the availability of renewable energy resources, examine the technical feasibility and cost-effectiveness of promising renewable energy technologies, ensure the efficient production and use of the Ghana’s renewable energy resources, and develop an information base that facilitates the establishment of a planning framework for the rational development and the use of the Ghana’s renewable energy resources.

  4. Energy sector reforms status of Danish energy policy - 2000

    International Nuclear Information System (INIS)

    Gullev, L.

    2000-01-01

    The new millennium brings change and new ways of thinking to the energy sector. Today the sector faces new challenges which it must deal with at a time where increasing market liberalisation and increasing internalisation is creating completely new frameworks for the sector. The Danish tradition of progressive energy policy action plans is the best possible basis on which to build. The target remains set. Energy policy must create the framework for structuring future energy systems so as to ensure that they are sustainable. Over many years there have been numerous initiatives to transfer consumption to cleaner energy sources, which has now led to a steady reduction in CO 2 emissions. The government places great importance on a continuation of this current development, both short term and long term. The adoption of the Electricity Reform in spring 1999 was an important step in the right direction. The government can, with great satisfaction, conclude that an agreement has now been made with most of the Parliament regarding a Gas reform, modernisation of the heat Supply Act and a new Energy Saving Act. In addition to this, the agreement also includes a follow up to the Electricity Reform concerning utilisation of biomass, offshore wind turbines, harmonisation of costs for priority electricity production, private generator's payment to priority electricity and the establishment of a market for electricity based on renewable. (author)

  5. Energy sector reform, energy transitions and the poor in Africa

    International Nuclear Information System (INIS)

    Prasad, Gisela

    2008-01-01

    There is little systematic information about the impact of energy sector reform on all sources and methods of energy utilised or potentially utilised by the poor. It is not sufficiently known what fuels the poor use, if a larger range of fuels becomes available and affordable and if barriers to access and consumption are reduced. A detailed assessment is presented for four countries, three in Africa (Botswana, Ghana and Senegal) and for comparison one in Latin America (Honduras), of steps taken to reform the energy sector and their effect on various groups of poor households. The paper analyses the pattern of energy supply to, and use by, poor households and explores the link-or its absence-to energy policy. We investigate what works for the poor and which type of reforms and implementation are effective and lead to a transition to more efficient and clean fuels from which the poor benefit. Energy sector reforms when adjusted to the specific conditions of the poor have a positive impact on access and use of clean, safe and efficient fuels. The poor are using gradually less wood as cooking fuel. Gas and kerosene are made more widely available through market liberalisation and subsidy in the particular case of Senegal. Electricity access and use is generally promoted or subsidised through changes in payment conditions and lifeline tariffs

  6. Energy sector reform, energy transitions and the poor in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Gisela [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2008-08-15

    There is little systematic information about the impact of energy sector reform on all sources and methods of energy utilised or potentially utilised by the poor. It is not sufficiently known what fuels the poor use, if a larger range of fuels becomes available and affordable and if barriers to access and consumption are reduced. A detailed assessment is presented for four countries, three in Africa (Botswana, Ghana and Senegal) and for comparison one in Latin America (Honduras), of steps taken to reform the energy sector and their effect on various groups of poor households. The paper analyses the pattern of energy supply to, and use by, poor households and explores the link - or its absence - to energy policy. We investigate what works for the poor and which type of reforms and implementation are effective and lead to a transition to more efficient and clean fuels from which the poor benefit. Energy sector reforms when adjusted to the specific conditions of the poor have a positive impact on access and use of clean, safe and efficient fuels. The poor are using gradually less wood as cooking fuel. Gas and kerosene are made more widely available through market liberalisation and subsidy in the particular case of Senegal. Electricity access and use is generally promoted or subsidised through changes in payment conditions and lifeline tariffs. (author)

  7. Aggregate Energy Consumption and Sectoral Output in Nigeria ...

    African Journals Online (AJOL)

    First Lady

    2012-10-27

    Oct 27, 2012 ... 2005); or from economic growth to aggregate energy consumption (Binh,. 2011; Yoo and Kim, ... in order identify sectors of the economy that are energy dependent and also to avoid energy ..... in Indonesia. Energy Policy ...

  8. GreenSynFuels. Economical and technological statement regarding integration and storage of renewable energy in the energy sector by production of green synthetic fuels for utilization in fuel cells. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Lebaek, J. (Danish Technological Institute, Aarhus (Denmark)); Boegild Hansen, J. (Haldor Topsoee, Kgs. Lyngby (Denmark)); Mogensen, Mogens (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2011-03-15

    The purpose of the project is to select and validate technology concepts for the establishment of a Danish production of green synthetic fuels primarily for fuel cells. The feasibility of the selected concepts is assessed trough a techno-economical calculation, which includes mass and energy balances and economics including CAPEX and OPEX assessments. It is envisioned by the project partners that a production of green synthetic fuels, such as methanol, can 1) bring stability to a future electricity grid with a high share of renewable energy, 2) replace fossil fuels in the transport sector, and 3) boost Danish green technology export. In the project, two technology concepts were derived through carefully considerations and plenum discussions by the project group members: Concept 1): Methanol/DME Synthesis based on Electrolysis assisted Gasification of Wood. Concept 2): Methanol/DME synthesis based on biogas temporarily stored in the natural gas network. Concept 1) is clearly the most favored by the project group and is therefore analyzed for its techno-economic feasibility. Using mass and energy balances the technical perspectives of the concept were investigated, along with an economic breakdown of the CAPEX and OPEX cost of the methanol production plant. The plant was technically compared to a traditional methanol production plant using gasified biomass. The project group has decided to focus on large scale plants, as the scale economics favor large scale plants. Therefore, the dimensioning input of the concept 1) plant is 1000 tons wood per day. This is truly a large scale gasification plant; however, in a methanol synthesis context the plant is not particularly large. The SOEC electrolyzer unit is dimensioned by the need of hydrogen to balance the stoichiometric ratio of the methanol synthesis reaction, which will result in 141 MW installed SOEC. The resulting methanol output is 1,050 tons methanol per day. In comparison to a traditional methanol synthesis plant

  9. Direct utilization of geothermal energy

    International Nuclear Information System (INIS)

    Lund, J. W.

    2010-01-01

    The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010) which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005). This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MW th , almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO 2 being released to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity). (author)

  10. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  11. Utility Energy Services Contracts: Enabling Documents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  12. End use energy consumption data base: transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  13. Africa's energy sector: energy availability and the underlying financial challenges

    International Nuclear Information System (INIS)

    Lebesa, Motselisi; Ndyeshobola, Ahmed.

    1994-01-01

    The objective of this paper is to provide a brief overview of energy availability in Africa and the attendant financing concerns in the African energy sector. The paper departs from three key premises: firstly that energy resources in Africa are abundant, but current trends in its consumption and inherent externalities are unsustainable. This abundance is also affected by social and political stability. Secondly, that the majority of Africa's population lacks access to adequate energy services. Poverty issues and effects undermine the urgency of energy and environmental concerns. Thirdly, that Africa's sustainable development calls for more energy supply not less. Future energy requirements and related supply and financing issues are discussed with the time horizon of the year 2020. (author)

  14. Long term energy demand projections for croatian transport sector

    DEFF Research Database (Denmark)

    Puksec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    Transport sector in Croatia represents one of the largest consumers of energy today with a share of almost one third of final energy demand. That is why improving energy efficiency and implementing different mechanisms that would lead to energy savings in this sector would be relevant. Through th...

  15. Metrology considerations in a fast emerging new energy sector

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    2013-01-01

    The wind energy sector is emerging on the global energy scene as a fast new energy sector. In 2002 the globally installed wind energy capacity passed 32GW, corresponding to 0,4% of worlds electricity supply. The last five years the sector increased in installed capacity by 33% per year. A leading...... and loads, and measurements. Measurement institutes are organized in the MEASNET network and arrange regular conformity testing....

  16. Interacting vacuum energy in the dark sector

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L. P. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428 (Argentina); Carneiro, S. [Instituto de Física, Uníversídade Federal da Bahia, 40210-340, Salvador, BA (Brazil)

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  17. Energy Sector Liberalisation and Privatisation in Switzerland

    International Nuclear Information System (INIS)

    Bartlome, J. E.

    2001-01-01

    Due to its geographical situation, Switzerland is important for the transit lines of electricity and gas through the Alps. But Switzerland is not a member of the European Union. Furthermore, Swiss citizens enjoy extended direct-democratic rights. The author presents the story of energy sector liberalisation and privatisation in their three phases: 1. The late nineties: The phase of expectations 2. The phase of legislation: Open electricity market and elements of sustainable development as mitigating factors 3. The new awareness: Public service The Swiss citizens will have to adopt the law installing an open electricity market in June or September 2002. For the case of a (still very possible) rejection of the law, the author presents a no-go-solution and three realistic scenarios.(author)

  18. Engineering in the energy sector. The single market and the engineering sector; Ingenieria en el sector energetico. El mercado unico y el sector de ingenieria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodrigues, A [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    Projects with large infrastructures, particularly those in the field of energy, provide a strong boost to certain industrial sectors in the country. In the case of Spain, the policy of direct management 'by components' of these projects - hydroelectric power plants, petrochemical plants, thermoelectric plants and nuclear power plants - adopted by the electric utility owners has furthered not only the local equipment manufacturing industry but also the engineering sector. At present, with full implementation of the Single Market in sight, it is particularly interesting for Spain to continue building up a powerful engineering sector, increasing its size and usefulness, and extending its traditional areas of action to other technologies, more on the lines of engineering and consulting firms in the USA than in the rest of Europe. The intention is to endow our equipment and construction companies with the skills necessary to enable them to compete with large European conglomerates in their respective sectors. The structure of these conglomerates usually contains engineering capabilities which are not habitual in our industry. Examples are given, showing how this model has been used to compete and win awards for important international projects. A specific analysis has been made of the position of Spanish engineering and industry in nuclear power generation projects in the former Soviet Union and East European countries, in which large investments are expected to be made. (author)

  19. Innovation management in renewable energy sector

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  20. UTILIZATION OF QUALITY TOOLS: DOES SECTOR AND SIZE MATTER?

    Directory of Open Access Journals (Sweden)

    Luis Fonseca

    2015-12-01

    Full Text Available This research focuses on the influence of company sector and size on the level of utilization of Basic and Advanced Quality Tools. The paper starts with a literature review and then presents the methodology used for the survey. Based on the responses from 202 managers of Portuguese ISO 9001:2008 Quality Management System certified organizations, statistical tests were performed. Results show, with 95% confidence level, that industry and services have a similar proportion of use of Basic and Advanced Quality Tools. Concerning size, bigger companies show a higher trend to use Advanced Quality Tools than smaller ones. For Basic Quality Tools, there was no statistical significant difference at a 95% confidence level for different company sizes. The three basic Quality tools with higher utilization were Check sheets, Flow charts and Histograms (for Services or Control Charts/ (for Industry, however 22% of the surveyed organizations reported not using Basic Quality Tools, which highlights a major improvement opportunity for these companies. Additional studies addressing motivations, benefits and barriers for Quality Tools application should be undertaken for further validation and understanding of these results.

  1. Energy conservation and the residential and commercial sector

    Science.gov (United States)

    1975-01-01

    A detailed analysis of energy conservation actions relevant to the residential and commercial sector has led to the conclusion that the potential for savings is great. The task will not be easy, however, since many of the actions require significant life style changes that are difficult to accomplish. Furthermore, many of the conservation actions cited as instant solutions to the energy crisis are those with only mid to long term potential, such as solar energy or heat pumps. Three significant conservation approaches are viable: adjusting price structure, mandating actions, and educating consumers. The first two appear to be the most feasible. But they are not without a price. Higher utility bills adversely affect the poor and the elderly on fixed incomes. Likewise, strict mandatory measures can be quite distasteful. But the effect of alternatives, such as voluntary savings accomplished through education processes, is minimal in a nation without a true conservation ethic.

  2. Energy policy and development of the energy sector in Macedonia

    International Nuclear Information System (INIS)

    Blazhev, Blagoja.

    1996-01-01

    Energetics is an important precondition for everyday life in the economic activities as well as the social activities on the whole. The main goal of the energy sector is to monitor and support the planned social development. Consequently, the development of the society and the development of energetics must be coordinated as much as possible. If not, with an autarchic development of the energy system, because of its capital characteristic, could mean a substantial erosion of the social accumulation, without an appropriate contribution to the growth of the national income. Because of this, the issue we wish to speak of is constantly current. (author). 1 tab., 6 ills

  3. Utility Energy Services Contracts Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    This document describes best practices in the use of Utility Energy Services Contracts. The recommendations were generated by a group of innovative energy managers in many successful projects. The topics include project financing, competition between utility franchises, and water conservation.

  4. The renewable energy sector. A Flemish socio-economic analysis

    International Nuclear Information System (INIS)

    Hutsebaut, E.; De Decker, M.

    2010-10-01

    This study examines the most important characteristics of the renewable energy sector in Flanders, Belgium, based on interviews held with the sector. The addressed parameters include turnover, employment, Financial ratios, the characteristics of the sector such as Legal form, year of establishment, geographical location, and so on. [nl

  5. Financial groups charmed by energy sector

    International Nuclear Information System (INIS)

    Haluza, I.; Marcan, P.

    2006-01-01

    The Slovak power industry is no longer the domain of big state-controlled and international companies. Local financial groups that grew up on equity deals, revitalisation of industry, real estate and receivables business have developed an interest in the field as well. They are contemplating the possibility of investing a part of their gains into energy sources. They can see the gap that the closure of the V1 power plant in Jaslovske Bohunice will create in Slovakian's power capacity. Although the new owner of Slovenske elektrarne, Italian Enel, will attend to filling the gap, local market players also sense an opportunity. Apart from the closure of V1 there is also rising energy demand driven by growing industry and growing energy prices. What is more, the state supports renewable energy sources like wind and biomass though subsidies, tax allowances or higher purchase prices. According to standard economic formulas at least, increased competition should exert pressure on prices. However, renewable energy sources are more expensive then traditional ones and new gas or coal driven power plants will certainly not push prices down. The electricity produced by power plants in Jaslovske Bohunice, which is to be closed, is the cheapest we have. So nobody dares to predict with 100-percent certainty what energy prices will look like in two years. Investment director of private equity group Penta, Vladimir Brodnan, says that new investors are not entering the energy business because of guaranteed profit. Utility regulator URSO only sets fixed prices for distribution companies but, on the other hand, the draft amendment to the regulation act indicates that the government would like to change this status. In future the powers of the regulator should also cover the prices of electricity as a commodity. In addition, the possibility of the regulator being able to interfere with the liberalised market concerns investors. (authors)

  6. Severe Accidents in the Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S; Spiekerman, G; Dones, R

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  7. Severe Accidents in the Energy Sector

    International Nuclear Information System (INIS)

    Hirschberg, S.; Spiekerman, G.; Dones, R.

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  8. Carbon Capture and Utilization in the Industrial Sector.

    Science.gov (United States)

    Psarras, Peter C; Comello, Stephen; Bains, Praveen; Charoensawadpong, Panunya; Reichelstein, Stefan; Wilcox, Jennifer

    2017-10-03

    The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO 2 emissions. As a climate mitigation strategy, CO 2 capture from flue gases of industrial processes-much like that of the power sector-has not experienced wide adoption given its high associated costs. However, some industrial processes with relatively high CO 2 flue concentration may be viable candidates to cost-competitively supply CO 2 for utilization purposes (e.g., polymer manufacturing, etc.). This work develops a methodology that determines the levelized cost ($/tCO 2 ) of separating, compressing, and transporting carbon dioxide. A top-down model determines the cost of separating and compressing CO 2 across 18 industrial processes. Further, the study calculates the cost of transporting CO 2 via pipeline and tanker truck to appropriately paired sinks using a bottom-up cost model and geo-referencing approach. The results show that truck transportation is generally the low-cost alternative given the relatively small volumes (ca. 100 kt CO 2 /a). We apply our methodology to a regional case study in Pennsylvania, which shows steel and cement manufacturing paired to suitable sinks as having the lowest levelized cost of capture, compression, and transportation.

  9. Restructuring and privatization in energy sector

    International Nuclear Information System (INIS)

    Stojchev, D.; Pyrvanov, V.

    1994-01-01

    The ways of solving problems of the transition period to market economy are discussed. The current conditions in Bulgarian energy sector are defined taking into account different processes, stages, elements, objects. The criteria of the transition -economical. technological, organizational, social, ecological -and the problems - unemployment, requalification, privatization, contamination - are postulated. The recent experience of Bulgaria and other ex-communist countries in restructuring and privatization of the economy are considered. The scope of suitable approaches, methods, means and rates are outlined. The mechanisms of the tackled processes are analyzed by comparative investigation and management ways for impact on different levels are looked for. The possible consequences of given situation, advantages and shortcomings of different alternatives are formulated. The ways for assessment and selection of compromise solutions are proposed. An overall technology for assessment and application of different ways of transition is discussed. Their tools for business estimation of economic units, the legislative, economic and social aspects of the process are scrutiny observed. Some problems of a real example of application of proposed assessment are discussed. Conclusions about methodology and efficiency of different alternatives are made. 2 refs

  10. Energy consumption in the transport sector

    International Nuclear Information System (INIS)

    Plouchart, G.

    2004-01-01

    During the 20. century, transport sector demand in the OECD countries boomed. The main drivers for growth were road transport and, more recently, air transport. As emerging countries continue to develop and the world faces the threat of climate change, this sector represents a major long-term challenge

  11. Structure of financing investments in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2017-01-01

    The article shows how the financing structure of the companies from the fuel and energy sector, listed on the Warsaw Stock Exchange, has evolved over the years. The authors also estimated the cost of equity. The results were compared with the chosen mining companies in Poland. Companies from the energy sector have lower investment risk than companies from the fuel sector. Looking at the profitability of investments it should be emphasized that the financing by outside capital is more advantageous than equity financing.

  12. Energy demand analysis in the household, commercial and agriculture sector

    International Nuclear Information System (INIS)

    Lapillonne, B.

    1991-01-01

    This chapter of the publication is dealing with Energy Demand Analysis in the Household, Commercial and Agricultural Sector. Per Capita total energy consumption in the residential and commercial sector is given and variation among countries are discussed. 12 figs, 1 tab

  13. Energy sector in transition - technologies and regulatory policies in flux

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2005-01-01

    Liberalising the energy sector has been followed by a number of new regulatory measures that are argued to maintain a process towards a sustainable energy sector. The article argues based on empirical material from Denmark and other European countries that the EU regulations and especially...... the simple market oriented models do not lead to or secure sustainability....

  14. Energy conservation in nationalised transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R C

    1980-01-01

    About 60% of high speed diesel is consumed by the road transport industry. The hike in fuel prices calls for urgent measures to conserve diesel. The paper discusses the various measures undertaken to conserve diesel in the nationalized transport sector.

  15. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    Johansson, Bengt.

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO 2 emission reduction per unit arable and forest land used for biomass production (kg CO 2 /ha,year) and costs for CO 2 emission reduction (SEK/kg CO 2 ) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO 2 emission reduction. In a medium long perspective, the costs for CO 2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  16. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  17. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  18. The energy sector in Chile: An introductory outlook

    International Nuclear Information System (INIS)

    1991-10-01

    After an introduction on Chilean energy policy, governmental structure in the energy sector, and foreign investment regulations, descriptions and analyses are provided of the main energy sectors in Chile: petroleum, electric power, natural gas, coal, and non-traditional energy sources. The descriptions include a general overview, government policies, current legislation, incentives and restrictions to energy production, organizations that have a bearing on policy design, and the role of the particular sector in the national economy. The analyses outline the current and possible future state of activity in each sector and provide an indication of areas of interest and business opportunities for Canadian investors. A directory is included of public organizations and other entities related to energy. 12 refs, 1 fig., 9 tabs

  19. Reducing barriers to energy efficiency in the German energy service companies sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koewener, D.; Schleich, J.

    2000-12-01

    This report describes the empirical research conducted in the German energy service sector to assess to what extent energy service companies (ESCOs) can help overcome the barriers to energy in the higher education, brewing and mechanical engineering sectors. This report complements the sector for Germany within the BARRIERS project (Sorrell et al., 2000; Schleich/Boede 2000a; Schleich/Boede 2000b; Schleich et al., 2000). The report characterises the German energy service sector, contains a description and analysis of four case studies in the energy service sector, identifies the main barriers and chances for ESCOs in the higher education, brewery and mechanical engineering sectors, and concludes with brief recommendations on how these barriers may be overcome. The results of the study are summarised here under the following headings: Characterising the energy service sector in Germany; - Case studies of energy service companies in Germany; - The role of ESCOs in the case-study sectors; - Policy implications. (orig.)

  20. The energy sector changes the face of the world

    International Nuclear Information System (INIS)

    Ludrovsky, P.

    2012-01-01

    Energy systems are becoming more and more complicated every day. The growing number of wind and solar power plants is changing the structure of grids in a fundamental way. However, energy production from fossil fuels still remains of the greatest importance within the energy sector. Old and new energy sources must learn to coexist together. (Authors)

  1. Ten years of energy consumption in the tertiary sector

    International Nuclear Information System (INIS)

    Rabai, Yacine

    2012-11-01

    This document presents and comments data regarding electricity consumption by the tertiary sector over the last ten years in France. It notably outlines its strong increase compared to the other sectors (housing, industry, transport, agriculture). It comments the evolution of the energy mix of the tertiary sector (electricity with 47%, gas with 25% and oil with 19% are prevailing). It briefly comments the evolution of energy efficiency within this sector. It indicates and comments the shares of energy consumption, of high voltage electricity and gas consumption by the different sub-sectors (retail, automobile and motorcycle repair, public administration, health and social activity, real estate, specialised, scientific and technical activities, education, and so on)

  2. The ECVET toolkit customization for the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von

    2015-01-01

    As part of its support to the introduction of ECVET in the nuclear energy sector, the Institute for Energy and Transport (IET) of the Joint Research Centre (JRC), European Commission (EC), through the ECVET Team of the European Human Resources Observatory for the Nuclear energy sector (EHRO-N), developed in the last six years (2009-2014) a sectorial approach and a road map for ECVET implementation in the nuclear energy sector. In order to observe the road map for the ECVET implementation, the toolkit customization for nuclear energy sector is required. This article describes the outcomes of the toolkit customization, based on ECVET approach, for nuclear qualifications design. The process of the toolkit customization took into account the fact that nuclear qualifications are mostly of higher levels (five and above) of the European Qualifications Framework.

  3. The ECVET toolkit customization for the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von [European Commission, Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport

    2015-04-15

    As part of its support to the introduction of ECVET in the nuclear energy sector, the Institute for Energy and Transport (IET) of the Joint Research Centre (JRC), European Commission (EC), through the ECVET Team of the European Human Resources Observatory for the Nuclear energy sector (EHRO-N), developed in the last six years (2009-2014) a sectorial approach and a road map for ECVET implementation in the nuclear energy sector. In order to observe the road map for the ECVET implementation, the toolkit customization for nuclear energy sector is required. This article describes the outcomes of the toolkit customization, based on ECVET approach, for nuclear qualifications design. The process of the toolkit customization took into account the fact that nuclear qualifications are mostly of higher levels (five and above) of the European Qualifications Framework.

  4. An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Amalnick, M.S.; Ghaderi, S.F.; Asadzadeh, S.M.

    2007-01-01

    This paper introduces an integrated approach based on data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT) for total energy efficiency assessment and optimization in energy intensive manufacturing sectors. Total energy efficiency assessment and optimization of the proposed approach considers structural indicators in addition conventional consumption and manufacturing sector output indicators. The validity of the DEA model is verified and validated by PCA and NT through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical energy carriers. Four energy intensive manufacturing sectors are discussed in this paper: iron and steel, pulp and paper, petroleum refining and cement manufacturing sectors. To show superiority and applicability, the proposed approach has been applied to refinery sub-sectors of some OECD (Organization for Economic Cooperation and Development) countries. This study has several unique features which are: (1) a total approach which considers structural indicators in addition to conventional energy efficiency indicators; (2) a verification and validation mechanism for DEA by PCA and NT and (3) utilization of DEA for total energy efficiency assessment and consumption optimization of energy intensive manufacturing sectors

  5. An analysis of Grenada's power sector and energy resources: a role for renewable energy technologies?

    International Nuclear Information System (INIS)

    Wiesser, D.

    2004-01-01

    Presently, Grenada's power sector is fully dependent on fossil fuel imports for meeting the country's electricity demand. Electric utilities in Small Island Developing States (SIDS), in general, face high cost of electricity generation due to diseconomies of scale in production, consumption and logistical aspects. Grenada's private power monopoly is no exception and the high cost of import dependent electricity generation places an increasing burden on economic development. In light of rapid technological and economic improvement of renewable energy technologies (RETs), the country's abundant sources of renewable energy should be harnessed. Benefits are envisaged to include lower electricity cost, better environmental performance and a safer and diversified supply of energy. However, barriers for shifting power production towards meaningful contributions from RETs exist, both in government and industry. This work analyses important economic interactions between the power sector and economic development, bringing to attention the importance of power sector reform. Further, present problems of integrating RETs into the grid, ranging from technical and regulatory issues to shareholder interest are investigated. A summary and analysis of past research into renewable sources of energy (RES) underscore the potential for power production from RETs in Grenada. (author)

  6. Trade Exposure of Energy Intensive Sectors

    International Nuclear Information System (INIS)

    Korteland, M.H.; Nelissen, D.; De Bruyn, S.M.

    2010-04-01

    In this report we analysed the origin and destinations of trade flows between EU and non-EU countries with respect to eight industrial sectors. In addition we looked at the political pledges made during the Copenhagen negotiations last December. If we combine these two types of insights, we get an idea of the risk of carbon leakage due to EU climate policies. Our analysis shows that the EU often trades with countries that have climate policy in place. As these major trading partners of the EU can be expected to adopt similar stringent climate policies, CO2 might get a price in these markets as well and the risk of carbon leakage is reduced/absent. Trade intensities should be corrected for that. In case the EU will adopt a -30% emission reduction target, trade with Australia, New Zealand, Japan, Switzerland, Brazil and Mexico, need to be excluded from the calculation of trade intensities since those countries will adopt comparable climate policies. The average downward correction on trade intensities is 3%. If the EU eventually decides to adopt a -20% reduction scenario, trade flows with Russia, Canada and the USA should also be excluded. Those countries will then have policies of similar stringency. The average correction on trade intensities is then -8,5%. These findings have direct consequences on the allocation mechanism for some sectors, which will no longer receive free emission rights as they do not qualify as 'exposed' to international competition anymore. These sectors are listed in Table 4 (-30% scenario) and Table 5 (-20% scenario) on page 31. Yet, those sectors that are expected to face large cost increases (>5%) due to EU ETS, will still receive free allocation.

  7. CO2 Emission Reduction in Energy Sector

    International Nuclear Information System (INIS)

    Bole, A.; Sustersic, A.; Voncina, R.

    2013-01-01

    Due to human activities, concentrations of the greenhouse gases increase in the atmosphere much quicker than they naturally would. Today it is clear that climate change is the result of human activities. With the purpose of preventing, reducing and mitigating of climate change, the EU, whose member is also Slovenia, set ambitious goals. In order to keep rise of the global atmosphere temperature below 2 degrees of C, the European Council set an objective of reducing greenhouse gas emissions by 80 - 95 % by 2050 compared to 1990. It is important that every single individual is included in achieving of these goals. Certainly, the most important role is assumed by individual sectors especially Public Electricity and Heat Production sector as one of the greatest emitters of the greenhouse gases. As a possible solution of radical reduction of the greenhouse gases emission from mentioned sector Carbon Capture and Storage (CCS) technology is implemented. In the article the range of CO 2 reduction possibilities, technology demands and environmental side effects of CCS technology are described. Evaluation of CCS implementation possibilities in Slovenia is also included.(author)

  8. Calculating economy-wide energy intensity decline rate: The role of sectoral output and energy shares

    International Nuclear Information System (INIS)

    Baksi, Soham; Green, Chris

    2007-01-01

    We specify formulas for computing the rate of decline in economy-wide energy intensity by aggregating its two determinants-technical efficiency improvements in the various sectors of the economy, and shifts in economic activity among these sectors. The formulas incorporate the interdependence between sectoral shares, and establish a one-to-one relation between sectoral output and energy shares. This helps to eliminate future energy intensity decline scenarios which involve implausible values of either sectoral share. An illustrative application of the formulas is provided, using within-sector efficiency improvement estimates suggested by Lightfoot-Green and Harvey

  9. Current and future energy and exergy efficiencies in the Iran’s transportation sector

    International Nuclear Information System (INIS)

    Zarifi, F.; Mahlia, T.M.I.; Motasemi, F.; Shekarchian, M.; Moghavvemi, M.

    2013-01-01

    Highlights: • The overall energy and exergy efficiencies of the sector were calculated. • The overall efficiencies were compared to other countries. • The overall energy and exergy efficiencies have been predicted by scenario approach. • A summary of recommendations to improve the sector is provided. - Abstract: Transportation is the second largest energy consumer sector in Iran which accounts for 24% of total energy consumption in 2009. This large percentage (almost a quarter) of energy consumption necessitates the determination of energy and exergy flows and their respective losses, which will enable the reduction of both energy growth and its consequent environmental impacts in the near future. This paper attempts to analyze and investigate the energy and exergy utilization of the transportation sector in Iran for the period of 1998–2009. Additionally, the total energy consumption in each subsector and the overall energy and exergy efficiencies are predicted via scenario approach. A comparison of the overall energy and exergy efficiencies of Iran with six other countries is also presented. The results show that the overall energy and exergy efficiencies of transportation sector in Iran is higher than China and Norway, while it is lower than Saudi Arabia, Jordan, Turkey, and Malaysia for the year 2000. Road appears to be the most efficient subsector. The overall energy efficiency is determined to be in the range of 22.02% in 1998, to 21.49% in 2009, while the overall exergy efficiency is determine to be in the range of 21.47% in 1998, to 21.19% in 2009. The energy consumption in each subsector is predicted from 2010 to 2035. It was discovered that the overall energy and exergy efficiencies possesses an upward trend during this time period. Finally, some recommendations vis-à-vis the improvement of the energy and exergy efficiencies in Iranian transportation sector in the future was provided and duly discussed

  10. Methodology for Modeling Building Energy Performance across the Commercial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

    2008-03-01

    This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

  11. Energy Sector Development for 2010-2050 using Message Model

    International Nuclear Information System (INIS)

    Kumar, M.; Muhammed Zulfakar Mohd Zolkaffly; Alawiah Musa; Aisha Raihan Abdul Kadir

    2011-01-01

    Strengthening a country's energy supply security is vital in ensuring a long term electricity supply to fulfil the growing energy demand. With the increase of number and resiliency of energy supply options to create a balance energy mix, Malaysia can overcome the national energy security, environmental and sustainable development issues. Introducing nuclear power would increase the diversity of energy supplies as well as increases the efficient use of natural resources in energy sector. This paper presents the use of IAEA energy planning tool, MESSAGE to analyse, simulate and compare energy mix and nuclear option in Malaysia taking into account the national energy policies. (author)

  12. Inventory of Green House Gas Emissions from the Energy Sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N

    1998-01-01

    The presentation highlighted two features of Kenya's energy sector namely: imported petroleum fuel for modern sector and wood fuel for domestic and informal sectors. The main objectives was to evaluate the amount and type of Green House emitted between 1989 and 1992 from the total national fuel wood consumption, the charcoal production, total charcoal consumption and the generation of possible recommendations on possible options available in the energy sector to mitigate against adverse effects of human induced climate change impacts. Under fossil fuels, the paper looked at emissions resulting from combustion of liquid fossil fuels, burning coal for energy, crude oil refining, storage and handling, whilst under traditional biomass fuels, fuel wood burned from energy, charcoal production and consumption, Nitrous Oxides were targeted

  13. Approaches to state regulation of the energy sector

    International Nuclear Information System (INIS)

    Shervashidze, N.; Stojchev, D.

    1995-01-01

    Theory and practice of economical regulation by repaying coefficient and by partial co-ordinated expenses are discussed. The example of England, Ireland, Wales and US are pointed out as showing the features of both approaches being quite interesting for Bulgarian energy sector, facing the introduction of modern economical regulation. The specific character of Bulgarian energy sector is described and some conclusions are drawn concerning appropriate regulating methods. 6 refs. (orig.)

  14. Energy research in the public sector

    International Nuclear Information System (INIS)

    Gfeller, J.

    1980-01-01

    The objects of state-sponsored energy research in Switzerland are stated to include specialist training in co-operation with the technical universities, and long term energy technology as well as international liaison. Tables are presented which indicate the trends in sources of funding for research, and the division between various technological areas, including energy conservation (10%), solar energy (10%), bioenergy, geothermal energy and wind power (4.5%), atomic energy (40%), nuclear fusion (20%), electricity (6%) and environmental studies (7%). These ratios are compared with those for other developed countries and it is concluded that the aim must be to approach smoothly the 'post-oil era'. (Auth.)

  15. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  16. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  17. Climate change impacts on chosen activities from the energy sector

    International Nuclear Information System (INIS)

    Fonte Hernandez, Aramis; Rivero Vega, Roger

    2006-01-01

    The present work, results of a study carried out about the possible impact of climate change on the energy sector in the province Camaguey are shown. First of all, the main activities in companies, utilities, and farms related to the most significant energy consumption were chosen in order to model corresponding equivalent fuel consumption. Impacts were determined taking into account differences between present and future consumptions for each kind of energy. In developed countries, this kind of work is done using well-known empirical-statistical models, which usually require a lot of data at a nation-wide scale, but to attempt it in an undeveloped country demands the use of specific methodology, which in this case was non-existent and required us to create it. This resulted in a carefully posed question since we had to take into consideration that the spatial scale is only that of a province, and so it was necessary, above all, to study specific characteristics of provincial fuel consumption. We used the Magic-Scengen system and SRES scenarios, and outputs of general circulation models like HadCM2 to obtain values of chosen climatic variables for use in energy consumption regression models, previously developed for each kind of activity in the corresponding companies, firm, and facilities included in the present research. It made possible to estimate energy consumption in each activity at the selected time periods centered at 2020, 2050, and 2080. The study shows that impact could rise the consumption by 2,5% of the present energy level in this territory

  18. Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective

    International Nuclear Information System (INIS)

    Xu, Xianshuo; Zhao, Tao; Liu, Nan; Kang, Jidong

    2014-01-01

    Highlights: • We analyzed the factors impacting China’s emissions from a sectoral perspective. • Sector-specific policies and measures for emissions mitigation were evaluated. • Economic growth dominantly increased the emissions in the economic sectors. • Energy intensity decrease primarily reduced the emissions in the economic sectors. • Residential emissions growth was mainly driven by increase in per-capita energy use. - Abstract: In order to better understand sectoral greenhouse gas (GHG) emissions in China, this study utilized a logarithmic mean Divisia index (LMDI) decomposition analysis to study emission changes from a sectoral perspective. Based on the decomposition results, recently implemented policies and measures for emissions mitigation in China were evaluated. The results show that for the economic sectors, economic growth was the dominant factor in increasing emissions from 1996 to 2011, whereas the decline in energy intensity was primarily responsible for the emission decrease. As a result of the expansion of industrial development, economic structure change also contributed to growth in emissions. For the residential sector, increased emissions were primarily driven by an increase in per-capita energy use, which is partially confirmed by population migration. For all sectors, the shift in energy mix and variation in emission coefficient only contributed marginally to the emissions changes. The decomposition results imply that energy efficiency policy in China has been successful during the past decade, i.e., Top 1000 Priorities, Ten-Key Projects programs, the establishment of fuel consumption limits and vehicle emission standards, and encouragement of efficient appliances. Moreover, the results also indicate that readjusting economic structure and promoting clean and renewable energy is urgently required in order to further mitigate emissions in China

  19. The utilization of wind energy

    International Nuclear Information System (INIS)

    1976-10-01

    The statistics of the wind energy in the three aerology stations in the Shahbanu Farah Dam region - over a period of eight years - were evaluated and analyzed. The average of maximal velocity calculations indicates a speed of 15 m/s. The yearly physical conversion value of this energy, is 150,000 kW/h which is quite sufficient for a family of five persons. On a larger scale, this power can be used to supply the energy required for the sediment dredging activities of the Shahbanu Farah Dam. (author)

  20. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  1. Energy consumption in the Transport Sector 2008; Transportsektorns energianvaendning 2008

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    Transport energy use in Sweden increased by 80% during the period 1970 to 2008. Today, the transport sector is responsible for a quarter of Sweden's energy use. Since the transport sector is almost exclusively using fossil fuels its conversion to other fuels/energy sources will have a major impact in the coming years, with the increasing requirements to reduce emissions of greenhouse gases. The first chapter reports the official energy statistics for the transport sector. The second chapter presents a breakdown of energy use for freight and passengers for each transport modes. However, it is important to emphasize that the division of personal and freight does not belong to the official energy statistics

  2. Environmental impacts of energy utilization

    International Nuclear Information System (INIS)

    Prado, C.P.C. do; Orsini, C.M.Q.; Rodrigues, D.; Barolli, E.; Nogueira, F.R.; Bosco, F.A.R.; Tabacniks, M.H.; Artaxo Netto, P.E.

    1981-04-01

    A survey is done of the available data on the physical environmental impacts in Brazil, derived from energetic systems such as: petroleum, hydroelectricity, firewood, coal, ethanol, methanol and hydrogen. A critical evalution of these data is done with respect to the preservation of the environment. The necessity of studying the environmental impact of the utilization of ethanol, nuclear fuels and coal is stressed. (M.A.) [pt

  3. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E. A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  4. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  5. Major changes ahead for Dutch energy sector

    International Nuclear Information System (INIS)

    Kort, C.J.M.

    1996-01-01

    The Dutch energy distribution companies are again facing important adaptations to current market forces. The operational activities of the conventional energy distribution companies are split into monopoly tasks and commercial activities. By separation of functions and by further technological developments and market trends quite different types of companies will emerge, such as grid operators, energy-telecommunications-environment concerns and energy sellers. Some companies will focus on grid operation, while others will clearly opt for more commercial enterprising. Just like other private companies energy companies will develop new activities in other markets based on their own corporate strategies. Grid operation may then become only a mirror element or be abandoned altogether. 5 figs

  6. Consumers satisfaction in the energy sector in Kenya

    International Nuclear Information System (INIS)

    Mutua, John; Ngui, Dianah; Osiolo, Helen; Aligula, Eric; Gachanja, James

    2012-01-01

    This paper analyzes consumer satisfaction in the energy sector in Kenya to assess the quality and level of service delivery. By use of the European Consumer Satisfaction Index (ECSI), the paper estimates consumer satisfaction in biomass, petroleum, electricity and renewable energy subsectors. The findings are that consumer satisfaction is highest in the renewable energy sub sector at 74.7% followed by petroleum at 62.8%. The electricity sub sector has the lowest consumer satisfaction of 53.06%. Further, it is found that the image of renewable energy providers is also the highest at 72.5% followed by that of petroleum companies at 63.1%. In the electricity sub sector, perceived value scored the highest at 64.2%. The paper concludes that image of a service provider, loyalty of consumers, consumer expectations, perceived value, perceived quality and the way complains are handled are very important factors that determine consumer satisfaction levels. It is recommended that for monitoring and evaluation purposes in the performance of the energy sector, the Energy RegulatoryCommission(ERC) could use the consumer satisfaction index level to evaluate whether the regulatory policies and their implementation are bearing fruit where a high index would be associated with good performance and vice versa. - Highlights: ► The paper estimates consumer satisfaction in biomass, petroleum, electricity and renewable energy subsectors. ► Consumer satisfaction is highest in the renewable energy sub sector at 74.7%. ► The electricity sub sector has the lowest consumer satisfaction of 53.06%. ► Image of renewable energy providers is also the highest at 72.5%. ► Factors explaining consumer satisfaction are; Image, consumers’ loyalty, expectations, perceived value, and perceived quality.

  7. Utilization of renewable energy in architectural design

    Institute of Scientific and Technical Information of China (English)

    TIAN Lei; QIN Youguo

    2007-01-01

    Renewable energy does not simply equal to using a photovoltaic (PV) board.In addition to heating,ventilation and air conditioning (HVAC) engineering considerations,the design approaches of architects are crucial to the utilization condition and methods of renewable energy.Through profound comprehension of the relationship between renewable energy utilization and design approaches,we can achieve a dual-standard of building environment performance and esthetics.

  8. Next-Generation Performance-Based Regulation: Emphasizing Utility Performance to Unleash Power Sector Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zinaman, Owen R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Littell, David [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Kadoch, Camille [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Baker, Phil [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Bharvirkar, Ranjit [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Dupuy, Max [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Hausauer, Brenda [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Linvill, Carl [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Migden-Ostrander, Janine [Regulatory Assistance Project (RAP), Montpelier, VT (United States); Rosenow, Jan [Regulatory Assistance Project; Xuan, Wang [Regulatory Assistance Project

    2017-09-12

    Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributed generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.

  9. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  10. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  11. Detection and Analysis of Threats to the Energy Sector: DATES

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso Valdes

    2010-03-31

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008

  12. Sustainable energy utilization in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E.

    1996-12-31

    Finland tops the statistics for the industrialised world in the utilisation of bioenergy. In 1995 bioenergy, including peat-fired heat and power, accounted for 20 % of the total energy consumption. The declared goal of the government is to increase the use of bioenergy by not less than 25 % (1.5 million toe by the year 2005). Research and development plays a crucial role in the promotion of the expanded use of bioenergy in Finland. The aim is to identify and develop technologies for establishing and sustaining economically, environmentally and socially viable bioenergy niches in the energy system

  13. Exploring the Hidden Sector @ Low Energies

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Over the years we have accumulated a large number of indications for physics beyond the standard model. This new physics is often sought-after at high masses and energies. Here collider experiments can bring decisive insights. However, over recent years it has become increasingly clear that new physics can also appear at low energy, but extremely weak coupling. Experiments and observations at this `low energy frontier' therefore provide a powerful tool to gain insight into fundamental physics, which is complementary to accelerators.

  14. Biogas - Energy from the agricultural sector

    International Nuclear Information System (INIS)

    Membrez, Y.

    2006-01-01

    Swiss agriculture produces biomass in the form of manure, crop residue or specifically grown biomass energy crops. There are a variety of procedures available to make use of this biomass. The right choice depends on the type of biomass and the energy end-product. For example thermal energy use, power generation or biogenetic fuels require physical, thermo-chemical or biological conversion. The following reports presents an overview of existing technologies, gives details of selected case studies on agricultural biogas production and discusses the importance of agricultural biomass energy use for the attainment of Swiss climate protection targets. (author)

  15. The environment and energy sector in the Czech republic

    International Nuclear Information System (INIS)

    2004-08-01

    The objective of this report is to give Danish investors, consultants, and subcontractors With interest in the Czech environment and energy sector, a basis for evaluating its market opportunities. Furthermore, the report will provide the reader With an overview of potential finance sources for projects within the environment and energy sector. With the prospects of EU membership, the Czech Republic has put a great effort into improving the country's environmental conditions as well as restructuring its energy sector. In particular in the area of the environment, the Czech Republic has experienced considerable progress. However, in several environmental areas, the Czech Republic is still lacking behind other EU countries. The process of meeting the environmental standards of the EU continues to demand large investments, especially within the field of water and waste treatment. In the process of adapting to the requirements of the EU in the field of the environment, the Czech Republic can expect to receive around EUR 615 million in EU funds betaveen 2004 and 2006. The Czech energy sector is the most air-polluting sector in the country and there is a general demand for knove-hove and technology in the field of energy efficiency and udlisation of renewable energy. Renewable energy makes up only 2% of the Czech Republic's total energy production. The goal of the Czech government is to increase the share to 8% before 2010. This report illustrates hove the large investments required in the area of environment and energy combmed with a wide range of national and international financing opportunities open up for significant market opportunities in the Czech Republic for Danish companies specialised within the environment and energy sector. As a foundation of the report there will first be a brief explanation of the inarket conditions in the Czech Republic. Secondly, the report will describe the environmental sector in depth within the areas water, waste, and air, and

  16. An investigation on energy consumption trend in Japan. Transportation sector

    International Nuclear Information System (INIS)

    Suzuki, Takayoshi

    2005-08-01

    Although energy consumption in the industry sector has almost been stable, energy consumption in the transportation (passenger and freight) sector has increased much after the oil crisis. The increase of energy consumption in the passenger sector can be attributed to the increase in transportation by private passenger vehicles; while the increase in the freight sector was due to the modal shift to trucks. Among transportation methods, automobiles, i.e. passenger vehicles and trucks, are now dominant in terms of energy consumption and also in terms of amount of transportation. Therefore implementing energy conservation measures relating to automobiles is very important in order to suppress the energy consumption in the transportation sector. This report summarizes the results of investigation on energy conservation measures, especially relevant to automobiles. It was found from the investigation that most promising and effective technologies or measures are promoting market penetration of vehicles satisfying ''top runner standard'', development and employment of hybrid vehicles, and introduction of vehicles with ''idling-stop'' systems. (author)

  17. EU Cooperation in the Energy Sector

    International Nuclear Information System (INIS)

    Goumas, T.

    1998-01-01

    The European Union with 15 Member States at the end of the century and with 6 more countries in the accession phase has set up certain instruments which enhance energy cooperation among them and with third countries. The major dimensions of EU energy policy presented in the White Paper are the external dimension - globalization of markets, the increasing environmental concern, the technology developments and the EU institutional responsibilities. To contribute to these, certain EU initiatives and supporting actions are undertaken through the energy and the broader co-operation programmes like THERMIE, SYNERGY, SAVE, ALTENER, PHARE, etc. The THERMIE programme supports the demonstration application and dissemination of innovative and successful energy technologies. SYNERGY is a programme for energy co-operation with third countries in energy policy and strategy implementation issues. SAVE and ALTENER concentrate on the promotion and enhancement of energy efficiency practices and use of renewable respectively. PHARE is a technical assistance programme addressed to Eastern European Countries which are in the phase of transition to market economy. There are also other initiatives like the Transeuropean Energy Network (TEN) and the activities managed by the financial institutions namely the European Bank for Reconstruction and Development (EBRD) and the European Investment Bank (EIB). All this context of programmes and initiatives is modified from period to period in order to serve the EU energy policies and the developments in the energy markets. The recent agreement which came up from the Kyoto conference has actually influenced the direction of actions towards more intensive amelioration of environmental pollution. (author)

  18. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  19. The Sustainable Energy Utility (SEU) Model for Energy Service Delivery

    Science.gov (United States)

    Houck, Jason; Rickerson, Wilson

    2009-01-01

    Climate change, energy price spikes, and concerns about energy security have reignited interest in state and local efforts to promote end-use energy efficiency, customer-sited renewable energy, and energy conservation. Government agencies and utilities have historically designed and administered such demand-side measures, but innovative…

  20. Danish Sector Guide for Calculation of the Actual Energy Consumption

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard

    2016-01-01

    , the innovation network for sustainable construction, InnoBYG started work on a Danish sector guide for the calculation of actual energy consumption in relation to upgrading of buildings. The focus was to make a common guide for energy calculations that can be used by consultants performing calculations...... consumption compared with the estimated energy demand by calculation. The paper concludes that the result of an energy calculation should not be given as a single figure but rather as a spread between the best and worst case for the assumed conditions. Finally, a brief update on current actions is given...... related to the sector guide for calculation of actual energy consumption. Keywords – Energy calculations, actual energy consumption, energy perfomance...

  1. Long Term Outlook of Energy Sector in Serbia

    International Nuclear Information System (INIS)

    Dajic, N.; Mesarovic, M.

    2008-01-01

    Major Serbian energy policy goals set up by the new Energy Law (2004) emerge from the purpose to establish qualitatively new working and development conditions inside the energy production and consumption sectors under the new circumstances in the country and in the region of South Eastern Europe. This is expected to give a new impetus to the economic development of the Republic of Serbia by increasing energy efficiency, intensifying the use of renewable energy sources and reducing harmful emissions from energy production and consumption sectors, as well as to ease integration into regional and European energy markets. The above has also been de?ned by the 'Strategy of Serbian Energy Sector Development by the Year 2015' (adopted by the Serbian Parliament in 2005) and in more details by the 'Programme of the Implementation of the Strategy by the Year 2012' (adopted by the Serbian Government in 2007). Based on these strategic and other documents, which were drawn up with participation of the Serbian WEC MC as well, this paper presents a vision of the Serbian energy sector development during the period up to the year 2030.(author)

  2. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  3. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  4. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  5. Account for sector heterogeneity in China's energy consumption. Sector price indices vs. GDP deflator

    International Nuclear Information System (INIS)

    Ma, Chunbo

    2010-01-01

    A common practice in decomposition analyses is to deflate output indicators to purge the impact of inflation by using a general deflator. This practice fails to account for sector heterogeneity and can be hazardous. Although the general identified patterns are largely correct, the calculated magnitudes can be misleading or even wrongly signed. Instead, it is strongly recommended that sector heterogeneity is accounted for by using individual sector price indices for all relevant sectors instead of one general (GDP) deflator. This paper analyzes this advanced decomposition using Chinese data and compares to the usual method of using only one deflator. It is found that while most differences are only of quantitative quality, some show even a qualitative difference. Furthermore, the rising energy intensity in the early 2000s, which has been discussed by previous studies, vanishes completely. (author)

  6. Research policy in energy sector - falsely programmed

    International Nuclear Information System (INIS)

    Wuestenhagen, H.

    1976-01-01

    The author attaches in a well-known form the nuclear energy experts as 'technocrats' and as the true masters over parlament. He speaks of extremist scientists and experts. Facit: Continuous repetition of the same irrelevent talk. (TK) [de

  7. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  8. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  9. Energy sector pricing: On the role of neglected nonlinearity

    International Nuclear Information System (INIS)

    Kyrtsou, Catherine; Malliaris, Anastasios G.; Serletis, Apostolos

    2009-01-01

    Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.

  10. Energy sector pricing: On the role of neglected nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)], E-mail: Serletis@ucalgary.ca

    2009-05-15

    Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.

  11. Energy sector pricing. On the role of neglected nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)

    2009-05-15

    Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices. (author)

  12. Energy transition in the transport sector

    International Nuclear Information System (INIS)

    Duchemin, Bruno; Genest, Sebastien

    2013-01-01

    Within the European framework, France has committed to a 20% reduction of its GHG emission by 2020 compared with 1990, and reaching the 'factor 4' by 2050. The 2005 POPE Act (the French Energy Policy Guidance Act) makes climate change a priority of the energy policy, setting out a 3% yearly reduction of our country's GHG emissions. This means combining energy efficiency and restraint, as is highlighted by the first chapter of the 'energy transition road-map'. Energy is a major component of transport. Designing its transition requires us to question the very organisation of our society: materials and their usage, the means of transport to favour and the infrastructures to implement, costs for competitiveness, the organisation of work and commuting... At a global scale, needs for mobility are increasing, as is the urgent need to deal with environmental problems. There are huge emerging markets for public transport, increasingly efficient and smart cars, information and transmission networks, infrastructures, the organisation of transport... However, France has all the assets to become a world leader in carbon-free transport. Succeeding in this change means organising the service to meet the needs of all, people, businesses, transport operators and industry, starting this transition right away. Policies must clearly define objectives and the means of achieving them through coordinated actions within a long term approach. The ESEC formulates a set of proposals in this direction

  13. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    Science.gov (United States)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  14. Policy Perspective: School Turnaround in England. Utilizing the Private Sector

    Science.gov (United States)

    Corbett, Julie

    2014-01-01

    This paper, written by strategic partner of the Center on School Turnaround (CST), Julie Corbett, provides research and examples on England's approach to turning around its lowest performing schools. The English education system utilizes private vendors to support chronically low-performing schools and districts. The introduction is followed by…

  15. Kyoto protocol and Nepal's energy sector

    International Nuclear Information System (INIS)

    Pokharel, Shaligram

    2007-01-01

    Nepal has recently ratified Kyoto Protocol, which considers justifiable use of resources to limit or reduce the emission of gases that contribute to green house gas inventory in the atmosphere. Nepal's per capita green gas (GHG) emission from energy use is insignificant. However, it is important for Nepal to adopt environmentally friendly energy options based on local resources like hydropower and biomass. Nepal can benefit from the provisions of clean development mechanism (CDM) under the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCC) or carbon funds being promoted by various organizations in order to obtain funding for new projects that reduce GHG emissions (ER). Funding can be generated through Carbon trading in international market as well. In this paper, the country's current contribution to GHG due to energy consumption is evaluated. Options for promoting more sustainable and environmentally friendly projects have also been discussed

  16. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  17. Subsidization in China's Renewable Energy Sector

    DEFF Research Database (Denmark)

    Høyrup Christensen, Nis

    2015-01-01

    The Chinese government's decision to push for large-scale build up of renewable energy capacity was followed by a range of industrial policies to support this change of track. Most importantly, various forms of subsidies were launched to support both industries and markets. While important new re...

  18. Renewable energy sector development in the Caribbean: Current trends and lessons from history

    International Nuclear Information System (INIS)

    Shirley, Rebekah; Kammen, Daniel

    2013-01-01

    Island regions and isolated communities represent an understudied area of not only clean energy development but also of innovation. Caribbean states have for some time shown interest in developing a regional sustainable energy policy and in implementing measures which could help to protect its member states from volatile oil markets while promoting reliance on local resources. Here we examine four case studies of renewable energy advancements being made by public utility companies and independent energy companies in the Caribbean. We attempt to locate renewable energy advances in a broader historical framework of energy sector development, indicating a few policy lessons. We find that different degrees of regulatory and legislative sophistication have evolved in different islands. Islands should have specialized policy focus, contrasting the ad-hoc nature of current regional energy policy discussion. We also conduct a cost benefit analysis which shows that these early, innovative alternative energy projects show themselves to be both profitable and significant sources of emissions reduction and job creation. This lends support to the potential benefits of regional energy policy. - Highlights: ► We examine relationships between energy sector players in the Caribbean. ► We conduct a cost benefit analysis of four Caribbean renewable energy projects. ► Results show early, innovative alternative energy projects provide numerous benefits. ► Islands differ greatly in energy industry scale, utility ownership and government involvement. ► We provide subsequent considerations for an enabling regional energy policy framework

  19. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  20. Quality of renewable energy utilization in transport in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2015-04-01

    Renewable energy utilization in transportation (RES-T) is a long way behind its utilization in power (RES-E) and heat (RES-H) sectors. International and national environmental policies have recently given a lot of emphasis on this problem. For that reason information is sought on how to implement solutions both politically and technologically. As Sweden is a global leader in this area, it can provide valuable examples. In 2012 Sweden became the first country to reach the binding requirement of the European Union for at least 10 % share for renewable energy in transport energy consumption. But qualitative development has been even stronger than quantitative. Among the success stories behind qualitative progress, most noteworthy are those created by innovative municipal policies. By 2030 Sweden aims to achieve fossil fuel independent road transport system and by 2050 completely carbon neutral transport system in all modes of transport.

  1. Accident risks in the energy sector

    International Nuclear Information System (INIS)

    Burgherr, P.

    2005-01-01

    This article discusses the accident rate of natural gas installations, which are quoted by the author to be lowest of all fossil fuels. The statistics on accidents and their consequences are looked at for the whole natural gas supply chain. The results of a study commissioned by the Swiss Gas and Water Professionals Association (SVGW) are presented and discussed. Statistics for the European Union and Eastern Europe are looked at and analysed. The study's methodological basis is described and the criteria used for the definition of an accident considered to be 'serious' are listed. The results of comparisons made of various energy chains are presented and discussed. Graphics are presented of frequency of occurrence and seriousness of damage for various forms of energy as well as for maximum possible consequences of accidents. Specific analyses for the natural gas chain are presented

  2. Secure Control Systems for the Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rhett [Schweitzer Engineering Lab., Inc., Alpharetta, GA (United States); Stewart, John [Tennessee Valley Authority, Knoxville, TN (United States); Chavez, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-22

    The Padlock Project is an alliance between Tennessee Valley Authority (TVA), Sandia National Laboratories (SNL), and Schweitzer Engineering Laboratories Inc. (SEL). SEL is the prime contractor on the Padlock project. Rhett Smith (SEL) is the project director and Adrian Chaves (SNL) and John Stewart (TVA) are principle investigators. SEL is the world’s leader in microprocessor-based electronic equipment for protecting electric power systems. The Tennessee Valley Authority, a corporation owned by the U.S. government, provides electricity for 9 million people in parts of seven southeastern states at prices below the national average. TVA, which receives no taxpayer money and makes no profits, also provides flood control, navigation and land management for the Tennessee River system and assists utilities, and state and local governments with economic development.

  3. Research planning in the energy sector

    International Nuclear Information System (INIS)

    Graenicher, H.

    1977-06-01

    The author considers research planning split into four separate aspects: the character of the research situation; the function of planning stages; the type of research target; and the limit of the application of research planning by planning stages. He then considers the specific problem of energy research and discusses the question of what the state is to do and how to do it with particular attention to the Swiss situation. (G.T.H)

  4. The Japanese energy sector: Current situation, and future paths

    International Nuclear Information System (INIS)

    Takase, Kae; Suzuki, Tatsujiro

    2011-01-01

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  5. The Japanese energy sector: Current situation, and future paths

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Kae, E-mail: kae@gdl.jp [Governance Design Laboratory, Inc., 2301 City Tower Bashamichi 5-71 Onoe-cho, Naka-ku, Yokohama, Kanagawa 231-0015 (Japan); Suzuki, Tatsujiro [University of Tokyo, Graduate School of Public Policy, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0081 (Japan)

    2011-11-15

    As the world's third leading economy and a major importer of fuels, the choice of future energy paths and policies that Japan makes in the next few years will have a significant influence on the energy security of the world as a whole, and of the Northeast Asia region in particular. In this article we describe the current status of and recent trends in the Japanese energy sector, including energy demand and supply by fuel and by sector. We then discuss the current energy policy situation in Japan, focusing on policies related to climate change targets, renewable energy development and deployment, liberalization of energy markets, and the evolution of the Japanese nuclear power sector. The final section of the article presents the structure of the Japan LEAP (long-range energy alternatives planning software system) dataset, describes several alternative energy paths for Japan - with an emphasis on alternative paths for nuclear power development and GHG emission abatement - and touches upon key current issues of energy policy facing Japan, as reflected in the modeling inputs and results.

  6. Wind energy systems. Application to regional utilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This study developed a generic planning process that utilities can use to determine the feasibility of utilizing WECS (Wind Energy Conversion Systems) as part of their future mix of equipment. While this is primarily an economic process, other questions dealing with WECS availability, capacity credit, operating reserve, performance of WECS arrays, etc., had to be addressed. The approach was to establish the worth, or breakeven value, of WECS to the utility and to determine the impact that WECS additions would have on the utilities mix of conventional source.

  7. Investing in the Energy Sector: An Issue of Governance

    International Nuclear Information System (INIS)

    Horst Keppler, J.; Schulke, Ch.

    2009-01-01

    Of all economic sectors, energy is among those where the issue of investments is the most urgent. Because of its technological structure and significant fixed costs, the energy sector is by nature heavily capital intensive. With growing demand and increasingly difficult access to resources, the amounts needed become enormous. The International Energy Agency (IEA) estimates in its World Energy Outlook 2008 that total energy investment needs between now and 2030 will stand at $26 trillion, or close to $1 trillion per year. This is just for energy supply. Half of these investments will be needed in the electricity sector (see below for more details on these estimations). Even after putting these figures into perspective in terms of total worldwide investments over the next 25 years, the amount of money is still significant. All types of energy are involved - oil, gas, coal, nuclear and renewables. In addition, all steps in the supply chain are included - exploration, production, transformation and transportation. The stakes are high. Without the necessary investments, security of supply, global economic growth and environmental integrity are put at risk. The most important challenge for the energy sector in the years to come is thus to pave the way for realising timely and appropriate investments. The current economic recession that is threatening to curb global economic growth will not change this fact. Even if global energy demand slows down in the next two or three years, the world will return to its long term growth path. An energy facility lasts between 20 and 60 years. Thus, the structure of energy production in 2050, when the current economic crisis has been forgotten, will be determined now and over the next years. Even if global energy demand remains stable between now and 2050 (which is highly improbable), the replacement of existing facilities that have reached the end of their life-cycle will still require considerable efforts. (authors)

  8. Energy-economy interactions revisited within a comprehensive sectoral model

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D. A.; Laitner, J. A.

    2000-07-24

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  9. Phase change materials in energy sector - applications and material requirements

    Science.gov (United States)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  10. Sector review of UK higher education energy consumption

    International Nuclear Information System (INIS)

    Ward, Ian; Ogbonna, Anthony; Altan, Hasim

    2008-01-01

    The UK education and education-related services are said to be one of the fastest-growing export earners in recent years and are known to have had significant impacts at the micro- and macro-levels of the UK. This review looks at energy consumption of this fast growing sector. It concentrates on the energy consumption patterns of the funded higher education institutions in the UK. The findings indicate energy consumption in the sector has been on the increase in the 6 years up to 2006; rising by about 2.7% above the 2001 consumption levels. This increase is, however, not evenly spread across the entire sector. The high energy-consuming institutions appear to be increasing their net consumption, relative to other institutions. Gross internal area, staff and research student full-time equivalent were found to have highest correlation with energy consumption across the sector and may be used as proxy indicators for energy consumption as well as the targets of interventions

  11. The role of the European Bank in the energy sector

    International Nuclear Information System (INIS)

    Coleman, John

    1994-01-01

    The European Bank for Reconstruction and Development was established in 1991 and is owned by the western industrialized countries, including Canada, and the former communist countries of Europe and Central Asia. Its purpose is to assist the latter to make the transition from command to market economies in a democratic framework. In the energy sector, most of the EBRD's lending has been in the oil and gas sector in Russia, but it is open for business in other sectors and in all countries of operation. Unlike other development banks, the EBRD is prepared to finance nuclear power projects. The bank is also prepared to finance conventional power plants where these would permit the closure of obsolete or unsafe nuclear plants. In the oil and gas sector, most of the EBRD's lending has related to private sector, joint venture projects aimed at oil field rehabilitation and development. The private sector ventures supported by the Bank normally involve joint stock companies owned 50 per cent by western partners and 50 per cent by Russian state oil companies, which are being privatized or are operating according to private sector principles. (author)

  12. Financing the energy sector in developing countries: context and overview

    International Nuclear Information System (INIS)

    Dunkerley, Joy.

    1995-01-01

    Traditional 'business as usual' financing methods will no longer be adequate to meet the unprecedented demands for capital to finance energy sector expansion in the developing countries. In recognition, many countries are opening up their power sectors to private investment, initially through the establishment of independent power projects, but in some cases through sector privatization. Project financing has many advantages, but further sectoral reorganization, including tariff reform, will be needed to attract resources on the scale required, especially from domestic investors. In oil and gas, in contrast to power, private capital from the international oil companies has always played a major role in the developing countries. However, sharply increasing investment requirements require a growing role for external finance. There should, in principle, be no shortage of investible funds to finance energy sector expansion in developing countries so long as host countries establish conditions which are attractive to private investors. The augmented role of private finance requires a continuing, if different, role for the public sector in both host countries and official aid agencies. (author)

  13. Marine renewable energy sector early-stage supply chain

    International Nuclear Information System (INIS)

    2011-01-01

    Marine renewable energy is an emergent sector in Canada. Although supply chain studies have been performed on the United Kingdom and the United States markets, no study has been conducted yet in Canada. The aim of this study was therefore to perform a supply chain analysis in Canada to assess the maturity, strengths, and weaknesses of the sector and determine where the opportunities lie. The study emphasises that the sector is still at the prototype stage in Canada and that the industry must learn to improve its technology and begin to take on large scale projects. Canada has several strengths in the marine renewable energy sector, mainly in terms of resources and facilities, but there are also weaknesses pertaining to technology development and experience. The study concluded that the development of the sector must be centered on a solid vision; in the near term, technological innovation is needed to reach pre-commercialization while in the long term, the sector should aim for commercial application.

  14. Energy Consumption Forecasting for University Sector Buildings

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2017-10-01

    Full Text Available Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type. A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

  15. The single European energy market: the electricity supply sector

    International Nuclear Information System (INIS)

    Halliwell, A.A.

    1991-01-01

    The completion of the Internal Market in the Community by the end of 1992 has become a key objective and the focal point of the revival of the European Community. Within this overall objective, the development of the Single European Energy Market, the Internal Energy market, is a major element. The energy objectives for the Community, adopted in 1986 by the Council of Ministers and relating to targets in the energy sector to be achieved by 1995, contain what are effectively the aims of the Internal Energy Market. This is in a reference to the need for greater integration, free from barriers to trade, of the Internal Energy Market with a view to improving security of supply, reducing costs and improving economic competitiveness. In the light of these aims, the Commission drew up, in 1988, an inventory of potential obstacles to the achievement of the Internal Energy Market. This was accepted by the Council, together with a list of suggested priority areas of work, and has formed the basis of the Commission's efforts to move forward as quickly as possible in the development of the Internal Energy Market, in all branches of the energy sector. The impact on the electricity sector, in particular, is considered here. (author)

  16. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  17. Power without manpower: Forecasting labour demand for Estonian energy sector

    International Nuclear Information System (INIS)

    Meriküll, Jaanika; Eamets, Raul; Humal, Katrin; Espenberg, Kerly

    2012-01-01

    As energy demand and prices continue to grow, oil shale might help mitigate the energy crisis—it can widely be found all over the world but so far has not been widely used. Estonia is unique in the world for producing a large majority of energy out of oil shale and has been set as an example in numerous papers covering oil shale deposits, technology etc. This paper is the first to analyse oil shale energy related workforce and provides scenario forecasts of the labour demand for the Estonian energy sector in 2010–2020. The contribution of the paper is twofold. First, the paper provides a valuable insight into oil shale energy related workforce, enabling to take into consideration the educational needs in countries where oil shale industry might be set up. Second, methodology-wise, the paper relates labour demand and supply to different scenarios of energy production capacities. The results illustrate problems related to aging of the workforce in energy production. If the existing trends continue in educational attainment in Estonia, there will be a serious shortage of high-skilled engineering and manufacturing specialists. Our method provides a simple yet reliable enough way to check for such problems early enough. - Highlights: ► This paper analyses oil shale energy related workforce and provides scenario forecasts. ► This is the first study to investigate the workforce related to oil shale energy production. ► The main workforce-related problem in the sector is ageing of the workforce. ► Workers immigrating to the sector during the Soviet times are at the retirement age. ► There will be a serious shortage of engineers for energy sector in the near future.

  18. Market leadership by example: Government sector energy efficiency in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  19. Investment requirements in the energy sector and their financing

    International Nuclear Information System (INIS)

    Diehl, R.; Radtke, G.; Stoessel, R.

    1980-01-01

    The authors investigate the investment requirements of the energy economy, especially for the Federal Republic Germany, but also for parts of the world. Possibilities for financing are shown which can be considered as assured, under certain conditions. Included are the investments and the capital requirements for the fossil energy-carriers (coal, brown coal, oil, natural gas), for the electricity economy and for the regenerativ energy sources (e.g. tidal energy, wind, solar radiation). The last chapter deals with financing the necessary investments in the energy sector, considering the financing structure, financial problems of individual branches and the development of the credit volume. (orig.) [de

  20. Investment requirements in the energy sector and their financing

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, R; Radtke, G; Stoessel, R [Dresdner Bank A.G., Duesseldorf (Germany, F.R.)

    1980-01-01

    The authors investigate the investment requirements of the energy economy, especially for the Federal Republic Germany, but also for parts of the world. Possibilities for financing are shown which can be considered as assured, under certain conditions. Included are the investments and the capital requirements for the fossil energy-carriers (coal, brown coal, oil, natural gas), for the electricity economy and for the regenerativ energy sources (e.g. tidal energy, wind, solar radiation). The last chapter deals with financing the necessary investments in the energy sector, considering the financing structure, financial problems of individual branches and the development of the credit volume.

  1. Nuclear energy and opportunity to strengthen the sustainable electricity sector

    International Nuclear Information System (INIS)

    Robles N, A. G.

    2016-09-01

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  2. Land use and energy utilization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, T.O.; Nathans, R.; Palmedo, P.F.

    1977-06-01

    Land use plays an important role in structuring the basic patterns in which energy is consumed in many areas of the U.S. Thus, in considering policies at a national or local level, which are aimed at either utilizing energy supplies in a more efficient manner, or in establishing the compatibility of new energy supply, conversion, and end use technologies with our existing social patterns of energy use, it is important to understand the interdependencies between land use and energy. The Land Use-Energy Utilization Project initiated in July 1974 was designed to explore the quantitative relationships between alternative regional land-use patterns and their resultant energy and fuel demands and the impacts of these demands on the regional and national energy supply-distribution systems. The project studies and analyses described briefly in this report provide a framework for delineating the energy system impacts of current and projected regional land-use development; a base of information dealing with the energy intensiveness of assorted land-use activities; models that enable Federal and regional planners to estimate the ranges of potential energy savings that could be derived from employing alternative land-use activity configurations; and a user manual for allowing local land use planners to carry out their own land use-energy impact evaluations. Much remains to be done to elucidate the complicated interdependencies between land use and energy utilization: what is accomplished here is an initial structuring of the problem. On the other hand, the recent increase in interest in establishing new ways for the U.S. to achieve energy conservation suggests that actions will be taken in the near future to tie land-use development to national and local targets for conservation.

  3. Priority mitigation measures in non-energy sector in Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  4. The energy sector in Israel: The renewable energies place

    International Nuclear Information System (INIS)

    1997-11-01

    The energy production, in Israel, is not sufficient to satisfy the country needs, that is perpetually growing. Today 96% of the energy consumption is imported, essentially with petroleum and coal. To reduce this energy dependence, the government encourages the scientific researches and innovations in the field of clean and renewable energies. The paper presents political and economical aspects of the management and the exploitation of the following energy resources, developed in Israel: fossil fuels with oil shales; solar energy; biomass; wind energy; geothermal energy and hydraulic energy. (A.L.B.)

  5. The strategy of European energy utilities

    International Nuclear Information System (INIS)

    Blakey, S.; Kramer, M.; Sauquet, P.; Sire, D.; Venet, D.; Lenoir, J.

    2007-01-01

    After a relatively quiet period, the concentration movement in the energy sector is growing up again. What will be the limit of this dynamics? What will be tomorrow's European energy actors? Will it be a mix of big groups, medium-size and small companies with a specialized activity like today, or only big groups with multi-energy supply and production activities which will directly supply the end-users? What is the provisions foreseen by such groups to ensure the security of supplies? What are the synergies in terms of size and/or multi-energy offers? Five participants and a journalist have debated these questions at this round table. (J.S.)

  6. Utilities and energy efficiency Denmark report

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, G.B.; Lyck, N.C.

    1996-11-01

    The report is the Danish contribution to the project `Utilities and Energy Efficiency` produced for the European Commission by IET, Nikkel straat 15, 4823 AE Breda, The Netherlands. Information is given under the headings of existing situation and desired situation. Recommendations are also given under the headings of legislation concerning the objectives of the utilities, of government programs and targets, of organizational structure, required market dependence and internal objectives of the utilities, for regulation and standardization, and of tariff structure. Flow diagrams are presented for the Danish energy system 1990, 1993. The 1993 follow up of the energy plan `Energy 2000` points out that the goals set up at that time, first and foremost the 20% reduction in CO{sub 2} emissions in 2005 compared to the 1988 level, will not be reached without changes in policy, such as an increase in the use of renewable energy, more transparent and consistent tariff systems as a greater incentive for energy conservation, regulations on thermal insulation of houses, increase in public information activities,a new subsidy scheme to stimulate improvements of energy efficiency in buildings and regulations on energy supply to large buildings. (ARW) 55 refs.

  7. Energy Efficiency Tracking in Thai Manufacturing Sector by Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Wongsapai Wongkot

    2016-01-01

    Full Text Available This paper presents an analysis of energy saving and changes in energy intensities in Thai manufacturing sector by Logarithmic Mean Divisia Index decomposition technique. This method includes three effects consists of the energy intensity effect, the structural effect and the effect of the economic growth on the energy consumption in Thailand by using the 25-year annual data from 1990 to 2014, carried out in four phases; (i before National Energy Conservation law, (ii during the effect of the law, (iii Transition period of the law from first to second version, and (iv during the effect of the law (No.2. We found that the most effective intensity effect is in the third phase due to the effect of the implementation of new energy efficient equipment from the second phase by enforcement of the law, especially in non-metallic sector, while the first phase illustrates the lowest intensity effect due to the energy conservation law had not been occurred. However, due to the highest economic growth of the country and change from agricultural to industrial development direction, the first phase presents the most effective structural effect, then this effect continuously decreased by time. We also conclude that the energy conservation law have direct effect to energy efficiency of the country however, strictly individual regulation which have target to enforce to energy intensive industries is still required for sustainable energy efficiency improvement.

  8. Economy, environment and energy: an application to the construction sector

    International Nuclear Information System (INIS)

    Amarilla, Beatriz Cecilia

    1992-01-01

    This paper aims to study the relationships between energy, environment, economy and the construction sector. An economical evaluation of environmental benefits is presented, discussing different aspects about the environment and the impacts from the constructions. 10 refs., 4 figs., 3 tabs

  9. The role of the European Bank in the energy sector

    International Nuclear Information System (INIS)

    Coleman, J.

    1993-01-01

    The European Bank for Reconstruction and Development was established in 1991 to assist central and eastern European countries in making the transition from command economies to market economies. The Bank provides loans, equity investments, guarantees, advice, and technical cooperation to qualified applicants through its merchant banking and development banking operations. In the energy sector, the Bank recognizes that the energy resources of eastern Europe are enormous but so are the problems associated with their development. Since its foundation, most of the Bank's energy-related lending has been in the oil and gas sector in Russia and the Baltic countries. The Bank has approved eight projects in that sector with total capital costs of ca US$1.7 billion. Major problem areas to be overcome include uneconomic domestic pricing, high energy intensity and pollution, inadequate legal frameworks, inappropriate tax structures, and institutional complexity. Canadian firms have been actively involed in Bank-financed projects in the Russian oil and gas sector, and two such projects are briefly described. They comprise joint ventures with Russian enterprises or associations and include rehabilitation of Siberian oil fields and drilling new wells in the Komi (Arctic) region. A common feature of these projects is that they were well under way before the Bank got involved, but the Bank brings the benefits of additional financing and providing moral support and expertise which can be useful in overcoming administrative and regulatory difficulties

  10. Building Resilience in Nigeria's Energy Sector for Sustainable ...

    African Journals Online (AJOL)

    Resilience is the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks. Incidentally, Nigeria's energy sector is the heart beat of the nation. This paper therefore analyses resilience building efforts in Nigeria's ...

  11. Forecasting long-term energy demand of Croatian transport sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Krajačić, Goran; Lulić, Zoran

    2013-01-01

    predictions for the Croatian transport sector are presented. Special emphasis is given to different influencing mechanisms, both legal and financial. The energy demand predictions presented in this paper are based on an end-use simulation model developed and tested with Croatia as a case study. The model...

  12. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  13. Link between intermittent electrical energy sources and district heating sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo

    2016-01-01

    Energy has always been one of the key challenges in planning of societies' development worldwide. The COP conference in Paris in December 2015 has shown unprecedented mutual understanding of harmful consequences climate change can cause. Integrating power and heating sectors in an efficient way...

  14. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  15. A new strategy for the restructuring of Polish energy sector

    International Nuclear Information System (INIS)

    Kozlowski, R.H.; Tallat, J.

    2006-01-01

    In accordance with strategic planning in the military, the leader (in this case the Minister of Economy) is responsible for setting goals, finding the right people to accomplish these goals (those working in the energy sector), analysing the current situation (state of the energy sector) and evaluating available resources (conventional and renewable energy resources). In terms of economic planning (this term is proper for an economy that sets numerous laws and quotas), the goal is to get the Polish economy out of economic slump, which is the result of seventeen years of improper government practices, into a state of prosperity corresponding to no less than the European average. The only way of accomplishing this goal of high economic growth and catching up with highly-developed countries is to develop local inexpensive energy resources. This study focuses on the potential to develop abundant Polish geothermal resources as well as natural gas based co-generation. (author)

  16. Energy-WEB. Greenhouse sector in a sustainable regional energy network. Starting paper

    International Nuclear Information System (INIS)

    Van Liere, J.; Van Wunnik, A.W.M.; Van der Burgt, M.J.; Van Oosten, H.J.

    2004-08-01

    The horticulture sector can make use of surplus heat, produced within the greenhouses, and supply the heat to several energy consuming parties (other greenhouse businesses, buildings, etc.). Thus, a local or regional web of suppliers and consumers starts. This report is a starting memo which should inspire the debate on a sustainable energy supply for the greenhouse sector in the Netherlands [nl

  17. Macroeconomic and sectoral effects of energy taxation in Austria

    International Nuclear Information System (INIS)

    Koeppl, A.; Kratena, K.; Pichl, C.; Schebeck, F.; Wueger, M.; Schleicher, S.

    1996-01-01

    The effects of energy taxation on the Austrian economy are analyzed. Simulations are carried out with a linked input output macromodel. The macroeconomic effects of an energy tax on economic growth, employment, the rate of inflation (change in the consumer price index), the budget deficit and the current account will be explained, as well as the sectoral impact on differenT industries. 7 tabs., 7 refs

  18. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  19. Geothermal Energy Utilization for the Homeowner

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W

    1978-12-01

    The purpose of this article is to describe how geothermal energy can be utilized for residential space heating. Background information on the resource introduce this natural source of energy, followed by an explanation of the development of the resource (mainly by drilling wells) and the extraction of the energy. Various types of heat convectors and heat exchangers are described, along with how to estimate energy requirements and the associated costs. Finally, regulations and tax advantages are covered together with additional sources of information and a list of agencies who can provide assistance.

  20. Overcoming the energy efficiency gap in India's household sector

    International Nuclear Information System (INIS)

    Reddy, B.S.

    2003-01-01

    Energy efficiency generates substantial financial savings while simultaneously improving environmental quality. Despite these benefits, developing countries like India are missing out on energy efficiency opportunities and instead concentrating on increased energy production. This paper identifies the efficient technologies in the household sector in India, and details their benefits to the consumer as well as to the society. It identifies the barriers that prevent the government from achieving its energy efficiency goals, analyses programs that addresses these barriers, and explores the creation of an institutional mechanism

  1. Hydrogen energy for the transportation sector in China

    International Nuclear Information System (INIS)

    Zong Qiangmao

    2006-01-01

    Hydrogen is a promising energy carrier for providing a clean, reliable and affordable energy supply. This paper provides a blueprint for the hydrogen energy in the transportation sector in the future of China. This paper is divided into three parts. The first part answers this question: why is China interested in hydrogen energy? The second part describes the possibility of a hydrogen fuel cell engine and a hydrogen internal-combustion engine in the transportation in China in the near future. The final part describes the production of hydrogen in China. (author)

  2. Assessment of terrorist threats to the Canadian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Shull, A. [Carleton Univ., Ottawa, ON (Canada). Norman Paterson School of International Affairs]|[Ottawa Univ., ON (Canada). Faculty of Law

    2006-03-15

    A critical terrorist threat assessment of Canadian energy systems was presented, as well as an analysis of integrated continental systems. Recent responses to heightened threat levels on the part of the Canadian government have ranged from information sharing to emergency preparedness and disaster mitigation strategies. This paper examined threats that the energy sector has traditionally encountered and argued that response capabilities do not match current threats posed by terrorism. The potential of a terrorist attack on the Canadian energy infrastructure is significant and has been referred to as a possible target by terrorist organizations. Actions taken by the Canadian government in response to heightened threat levels were examined. A review of energy industry security measures included outlines of: the natural gas industry, the electric sector, and nuclear reactors and waste. It was noted that not all elements of the critical energy infrastructure share the same level of risk. Recommendations included increased information sharing between government agencies and the private sector; resiliency standards in densely populated areas; and insulating the energy grid against a cascading blackout through the use of DC rather than AC lines. 59 refs.

  3. Assessment of terrorist threats to the Canadian energy sector

    International Nuclear Information System (INIS)

    Shull, A.

    2006-01-01

    A critical terrorist threat assessment of Canadian energy systems was presented, as well as an analysis of integrated continental systems. Recent responses to heightened threat levels on the part of the Canadian government have ranged from information sharing to emergency preparedness and disaster mitigation strategies. This paper examined threats that the energy sector has traditionally encountered and argued that response capabilities do not match current threats posed by terrorism. The potential of a terrorist attack on the Canadian energy infrastructure is significant and has been referred to as a possible target by terrorist organizations. Actions taken by the Canadian government in response to heightened threat levels were examined. A review of energy industry security measures included outlines of: the natural gas industry, the electric sector, and nuclear reactors and waste. It was noted that not all elements of the critical energy infrastructure share the same level of risk. Recommendations included increased information sharing between government agencies and the private sector; resiliency standards in densely populated areas; and insulating the energy grid against a cascading blackout through the use of DC rather than AC lines. 59 refs

  4. Research on statistical methodology to investigate energy consumption in public buildings sector in China

    International Nuclear Information System (INIS)

    Chen Shuqin; Li Nianping; Guan Jun

    2008-01-01

    The purpose of this research is to find a statistical methodology to investigate the national energy consumption in the public buildings sector in China, in order to look into the actuality of the national energy consumption of public buildings and to provide abundant data for building energy efficiency work. The frame of a national statistical system of energy consumption for public buildings is presented in this paper. The statistical index system of energy consumption is constituted, which refers to the general characteristics of public buildings, their possession and utilization of energy consumption equipment and their energy consumption quantities. Sequentially, a set of statistical report forms is designed to investigate the energy consumption of cities, provinces and the country, respectively. On this base, the above statistical methodology is used to gather statistics of a public building for annual energy consumption

  5. Structure of financing investments in the energy sector

    OpenAIRE

    Kowal Barbara; Ranosz Robert; Sobczyk Wiktoria

    2017-01-01

    The purpose of this article is to discuss the issues of financing investments in the fuel and energy sector. The manner of financing business activities of every company depends on the decisions made by the management board, which need to take into consideration the effective striving for optimal level of the capital cost. The capital raised by the companies from the aforesaid sector may be in the form of equity or outside capital. This study depicts such sources of capital as bank loans a...

  6. Integrated IDA–ANN–DEA for assessment and optimization of energy consumption in industrial sectors

    International Nuclear Information System (INIS)

    Olanrewaju, O.A.; Jimoh, A.A.; Kholopane, P.A.

    2012-01-01

    This paper puts forward an integrated approach, based on logarithmic mean divisia index (LMDI) – an index decomposition analysis (IDA) method, an artificial neural network (ANN) and a data envelopment analysis (DEA) for the analysis of total energy efficiency and optimization in an industrial sector. The energy efficiency assessment and the optimization of the proposed model use LMDI to decompose energy consumption into activity, structural and intensity indicators, which serve as inputs to the ANN. The ANN model is verified and validated by performing a linear regression comparison between the specifically measured energy consumption and the corresponding predicted energy consumption. The proposed approach utilizes the measure-specific, super-efficient DEA model for sensitivity analysis to determine the critical measured energy consumption and its optimization reductions. The proposed method is validated by its application to determine the efficiency computation and an analysis of historical data as well as the prediction and optimization capability of the Canadian industrial sector. -- Highlights: ► An integrated IDA–ANN–DEA model for energy management is proposed. ► The model relies on aggregate energy and GDP data. ► The model explains how energy can be managed in the Canadian Industrial sector.

  7. Danish energy-sector exports. Products and consulting services

    International Nuclear Information System (INIS)

    Wolter, H.C.

    2000-06-01

    Danish Energy Agency has previously carried out studies of Danish energy-sector exports. The latest results were published in the report, Energisektorens eksport. Produkter og raadgivning. Danish Energy Agency, September 1998. The present survey is an update of the earlier studies, and includes 1998 exports. As previously, the study, carried out in cooperation with the Confederation of Danish Industries and the Danish Council of Consulting Architects and Engineers, is based on questionnaires sent to relevant companies. In addition, information has been obtained from companies that do not belong to these organisations. On the basis of the answers received, 58 Danish companies exported products to a value of approximately DKK 16,000 million, and 22 consulting firms exported consulting services to a value of approximately DKK 370 million. These exports of approximately DKK 16.5 billion accounted for 5% of all Danish exports in 1998. In comparison with 1996, energy-sector exports have risen by more than 40% in a period in which Danish exports in general have risen by an average of 8%. Energy sector exports provide employment for more than 18,000 persons in Denmark - approximately 17,500 employees in companies that export products, and approximately 600 persons in consulting firms. To this must be added a presumably significantly larger number of persons employed by sub-suppliers to the above companies computed by value, 80% of the exports come from relatively few companies, i.e. 13 companies with products, and five offering consulting services. Energy-sector exports fall within the following product areas: 1) Wind turbines (25%). 2) District heating and combined heat and power (CHP) (21%). 3) Energy savings and control (20%). 4) Oil and natural gas (13%). 5) Electricity plants and power supply (13%). 6) Other (8%). 67% of the exports go to Western Europe, 18% to Asia, 7% to Eastern and Central Europe, and 8% to other parts of the world. (EHS)

  8. Use of scenarios in the planning of the energy sector; Uso de escenarios en la planeacion del sector energetico

    Energy Technology Data Exchange (ETDEWEB)

    Sacristan Roy, Antonio [Asociacion Mexicana para la Economia Energetica (AMEE), (Mexico)

    2004-06-15

    A scenario is a logical and congruent narration on the future, which describes the future in terms of the consequences on the surroundings of tendency forces (descriptive scenario) or as a result of caused changes (normative scenario). Unlike an econometric projection, that fundamentally considers economic forces, a scenario takes into consideration the impact of political, technological, social and legal forces, in addition to the economic ones, and the uncertainty of the future can be covered using several different scenarios. The construction of scenarios constitutes an extremely useful tool for long term planning of and the design of governmental policies for the energy sector. In this work an investment to twenty-five years in the national energy sector, with a long term planning of using scenarios, the design of a policy of the possible savings and bases for the future technological development and investigation effort is estimated. [Spanish] Un escenario es una narracion logica y congruente sobre el futuro, la cual describe el futuro en terminos de las consecuencias sobre el entorno de fuerzas tendenciales (escenario descriptivo) o como resultado de cambios provocados (escenario normativo). A diferencia de una proyeccion econometrica, que fundamentalmente considera fuerzas economicos, un escenario toma en consideracion el impacto de fuerzas politicas, tecnologicas, sociales y juridicas, ademas de las economicas, la incertidumbre del futuro se puede cubrir utilizando varios escenarios distintos. La construccion de escenarios constituye una herramienta sumamente util para la planeacion de largo plazo y el diseno de politicas gubernamentales para el sector energetico. En este trabajo se estima una inversion a veinticinco anos en el sector energetico nacional, con una planeacion de largo plazo utilizando escenarios, el diseno de una politica los posibles ahorros y la base para el futuro desarrollo tecnologico y esfuerzo de investigacion.

  9. Utilization of Geothermal Energy in Slovakia

    OpenAIRE

    Gabriel Wittenberger; Ján Pinka

    2005-01-01

    Owing to favourable geological conditions, Slovakia is a country abundant in occurrence of low-enthalpy sources. The Slovakian government sponsors new renewable ecological energy sources, among which belongs the geothermal energy. Geothermal water is utilized for recreation (swimming pools, spas), agriculture (heating of greenhouses, fishing) and heating of houses. The effectivity of utilisation is about 30 % due to its seasonal use. That is why the annual house-heating and the hot water supp...

  10. Energy consumptions per sector; Les consommations d'energie par secteur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document presents the energy consumption data of France per energy type and sector of use in the form of tables and graphics for the last decade and sometimes before: 1 - residential and tertiary sector: energy consumption per energy source, energy consumption per use (coal, heavy and domestic fuels, natural gas, LPG (butane, propane), electricity), comparison of the share of each energy source between 1973 and 2003, 20 years of space heating data in main dwellings (1982-2002), district heating networks from 1987 to 1997; 2 - transportation sector: fuel consumption of individual cars in France (1990-2003, 1990-2002, 1990-2001, 1987-1999), some indicators about the energy consumption in transports in France (2000-2001); 3 - industry sector: consumption of fuel substitutes in the cement industry in 2001, importance and limitations. (J.S.)

  11. Why is energy use rising in the freight sector?

    International Nuclear Information System (INIS)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985 endash 2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades

  12. Global warming combat policies in energy sector of Iran

    International Nuclear Information System (INIS)

    Rahimi, N.; Karbassi, A. R.; Abbaspour, M.

    2002-01-01

    Among the efforts to slow the potential for climate change are measures to reduce emissions of CO 2 from energy use, and promote long-term storage of carbon in forests and soils. Important environmental changes due to climate change and global warming pose potentially significant risks to humans, social systems, and natural world. Many uncertainties remain regarding precise timing,magnitude, and regional patterns of climate change and the extent to which mankind and nature can adapt to any changes. Estimating technical / economical / environmental potentials for reducing CO 2 emission in energy sector and preventing of global warming is one of the main activities, which have been performed for the first time in Iran. By use of 26 factors, model on global warming combat policies in energy sector of Iran in long-medium and short term determine decreasing amount of CO 2 emission. The results and also method of providing this model will be described in this paper

  13. Energy - an overview of issues in power sector

    International Nuclear Information System (INIS)

    Rajan, Y.S.; Anil Kumar, B.

    1998-01-01

    Economic growth is critically dependent on energy which is a key input in all forms of products. With the ecological and environmental concerns for sustainable use of energy, much emphasis is being laid on demand side management, energy efficiency and conservation and alternative sources of energy. This is being witnessed in the long term trends of energy - gross domestic product (GDP) elasticity, which has declined due to changing technology especially for the industrial sector whose share is comparatively reducing in the overall energy consumption. This paper examines mainly the issues involved in meeting the growing demand for electricity, most important form of energy. These issues have been classified as Technical, Financial, Institutional, Policy, Political and International. Each issue is not mutually exclusive of the other and therefore calls for an integrated and holistic approach while addressing them. (author)

  14. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  15. The energy sector abroad. Part 5. Norwegian energy sector large exporter of natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1997-01-01

    Some facts about the Norwegian natural gas and oil industry are presented. In 1995 the industries took 12.5% of GNP and no less than 47.6% of export revenues. The use of natural gas in Norway is low. In 1996 Norway exported 37.9 billion m 3 of natural gas. It is planned to double that volume within the next 10 years. Therefore, a strategic alliance between two major foreign competitors (Gasunie in the Netherlands and Gazprom in the Russian Federation) was not met with enthusiasm. The three most important companies in the Norwegian oil and gas industry are Statoil, Norsk Hydro, and Saga Petroleum. Overall turnover of the sector in 1994 was 40.6 billion Dutch guilders. Some 17,500 people are directly employed by the sector. 5 ills., 5 tabs

  16. Modeling energy flexibility of low energy buildings utilizing thermal mass

    DEFF Research Database (Denmark)

    Foteinaki, Kyriaki; Heller, Alfred; Rode, Carsten

    2016-01-01

    In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption...... to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study...... the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off...

  17. Potential of energy savings in the hotel sector in Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahya [Department of Humanities and Social Sciences, Faculty of Arts, Hashemite University, Zarqa 13115 (Jordan); Mustafa, Mairna [Department of Sustainable Tourism, Queen Rania' s Institute of Tourism and Heritage, Hashemite University, Zarqa 13115 (Jordan); Al-Mashaqbah, Shireen [International Office, Hashemite University, Zarqa 13115 (Jordan); Mashal, Kholoud [Department of Land Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa 13115 (Jordan); Mohsen, Mousa [Department of Mechanical Engineering, Faculty of Engineering, Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    This paper presents some insights into Jordan's energy consumption in the tourist accommodation sector. The results of a recent survey on environmental performance in the tourist accommodation sector in Jordan were used to evaluate energy conservation in hotels. A survey was designed and distributed to hotels' managers and departments' supervisors in order to understand the environmental performance in the tourist accommodation sector in Jordan during the period 10-17 August 2006. Also some field visits were conducted to fully understand hotels interaction regarding the environment, in addition to help interpreting the results of the survey. The study is limited to all classified hotels in Jordan. It was found that lighting hotels' main building and outside areas, and air conditioning consume more electricity compared to other departments. The results show that few classified hotels already installed energy saving equipments, though, it was noticed that managers of one star hotels were not really willing to make such changes in their hotels, on the other hand, other classified hotels (2-5 star hotels) have shown a high willingness to make changes in their hotels to reduce the consumption of different types of energy. Hotel's classification played a significant role in explaining variations in most of the results, particularly when it comes to long-term investments to reduce energy consumption by using energy efficient appliances. Five and four star hotels were the most hotels willing to use energy efficient appliances to reduce energy consumption. The study suggested some strategies to help reduce the negative impacts of high energy consumption in hotels. These strategies include better insulation, and enhanced insulation for the hot water reticulation system. Moreover, enhancing and increasing the level of awareness among all hoteliers through a directed and well-designed campaign. Also offer interest free loans; and activate precise

  18. Potential of energy savings in the hotel sector in Jordan

    International Nuclear Information System (INIS)

    Ali, Yahya; Mustafa, Mairna; Al-Mashaqbah, Shireen; Mashal, Kholoud; Mohsen, Mousa

    2008-01-01

    This paper presents some insights into Jordan's energy consumption in the tourist accommodation sector. The results of a recent survey on environmental performance in the tourist accommodation sector in Jordan were used to evaluate energy conservation in hotels. A survey was designed and distributed to hotels' managers and departments' supervisors in order to understand the environmental performance in the tourist accommodation sector in Jordan during the period 10-17 August 2006. Also some field visits were conducted to fully understand hotels interaction regarding the environment, in addition to help interpreting the results of the survey. The study is limited to all classified hotels in Jordan. It was found that lighting hotels' main building and outside areas, and air conditioning consume more electricity compared to other departments. The results show that few classified hotels already installed energy saving equipments, though, it was noticed that managers of one star hotels were not really willing to make such changes in their hotels, on the other hand, other classified hotels (2-5 star hotels) have shown a high willingness to make changes in their hotels to reduce the consumption of different types of energy. Hotel's classification played a significant role in explaining variations in most of the results, particularly when it comes to long-term investments to reduce energy consumption by using energy efficient appliances. Five and four star hotels were the most hotels willing to use energy efficient appliances to reduce energy consumption. The study suggested some strategies to help reduce the negative impacts of high energy consumption in hotels. These strategies include better insulation, and enhanced insulation for the hot water reticulation system. Moreover, enhancing and increasing the level of awareness among all hoteliers through a directed and well-designed campaign. Also offer interest free loans; and activate precise standards and specifications

  19. Microinstallations Based on Renewable Energy Sources in the Construction Sector

    Science.gov (United States)

    Kurzak, Lucjan

    2017-10-01

    The focus of this paper is on the status and prognoses of the use of microinstallations based on renewable energy sources to supply heat and power. The technologies that have been important in Europe and Poland for microgeneration of electricity include photovoltaic systems, micro wind turbines and co-generation systems. Solar collectors, heat pumps and biomass have also been used to generate heat. Microinstallations for renewable energy sources represent the initial point and the foundation for the development of micro networks, intelligent networks and the whole prosumer energy sector.

  20. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan

    2016-01-01

    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.

  1. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  2. Energy Policy and Long Term Energy Demand in Croatian Households Sector

    International Nuclear Information System (INIS)

    Puksec, T.; Duic, N.

    2011-01-01

    Households sector in Croatia represents one of the largest consumers of energy today with around 75,75PJ, which is almost 29% of Croatia's final energy demand. Considering this consumption, implementing different mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom-up approach model which combines and process large number of input data. The Model will be compared to Croatian national Energy Strategy and certain difference will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels. (author)

  3. Solar energy utilization by physical methods.

    Science.gov (United States)

    Wolf, M

    1974-04-19

    On the basis of the estimated contributions of these differing methods of the utilization of solar energy, their total energy delivery impact on the projected U.S. energy economy (9) can be evaluated (Fig. 5). Despite this late energy impact, the actual sales of solar energy utilization equipment will be significant at an early date. Potential sales in photovoltaic arrays alone could exceed $400 million by 1980, in order to meet the projected capacity buildup (10). Ultimately, the total energy utilization equipment industry should attain an annual sales volume of several tens of billion dollars in the United States, comparable to that of several other energy related industries. Varying amounts of technology development are required to assure the technical and economic feasibility of the different solar energy utilization methods. Several of these developments are far enough along that the paths can be analyzed from the present time to the time of demonstration of technical and economic feasibility, and from there to production and marketing readiness. After that point, a period of market introduction will follow, which will differ in duration according to the type of market addressed. It may be noted that the present rush to find relief from the current energy problem, or to be an early leader in entering a new market, can entail shortcuts in sound engineering practice, particularly in the areas of design for durability and easy maintenance, or of proper application engineering. The result can be loss of customer acceptance, as has been experienced in the past with various products, including solar water heaters. Since this could cause considerable delay in achieving the expected total energy impact, it will be important to spend adequate time at this stage for thorough development. Two other aspects are worth mentioning. The first is concerned with the economic impacts. Upon reflection on this point, one will observe that largescale solar energy utilization will

  4. Employment-generating projects for the energy and minerals sectors of Honduras. Proyectos generadores de empleos para los sectores energetico y minero de Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Frank, J.A.

    1988-12-01

    A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance for small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.

  5. Renewable energy stocks and risk : (systematic risk factors in the renewable energy sector)

    OpenAIRE

    Strømme, Janne

    2016-01-01

    The renewable energy sector is an industry that expects tremendously growth in years to come. This opens interesting investment opportunities for investors and poses challenges for government and legislators as to how to best support the change to a low-carbon emission energy mix. In this study, we have explored the risk and returns characteristics for stocks, focusing on macroeconomic systematic risk. The stock returns from renewable energy sector was regressed on the macroeconomic variables...

  6. Potentials for energy savings and long term energy demand of Croatian households sector

    International Nuclear Information System (INIS)

    Pukšec, Tomislav; Vad Mathiesen, Brian; Duić, Neven

    2013-01-01

    Highlights: ► Long term energy demand of Croatian households sector has been modelled. ► Developed model can describe the whole households sector. ► Main modes include heating, cooling, electrical appliances, cooking and hot water. ► Different scenarios regarding future energy demand are presented and discussed. -- Abstract: Households represent one of the most interesting sectors, when analyzing Croatia’s energy balance. It makes up one of the largest energy consumers with around 75 PJ per year, which is almost 29% of Croatia’s final energy demand. Considering this consumption, implementing various mechanisms, which would lead to improvements in energy efficiency of this sector, seems relevant. In order to plan future energy systems, important would be to know future possibilities and needs regarding energy demand of different sectors. Through this paper, long term energy demand projections of Croatian households sector will be shown. Focus of the paper will be on various mechanisms influencing future energy demand scenarios. Important would be to quantify this influence, whether positive or negative, and see which mechanisms would be the most significant. Energy demand projections in this paper are based upon bottom-up approach model which combines and processes a large number of input data. The model will be compared to Croatian National Energy Strategy and certain differences and conclusions will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which leads to lower GHG emissions and lower Croatian dependence on foreign fossil fuels.

  7. Can energy utilities play a role in local political energy savings programs?

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    2012-01-01

    Danish municipalities are putting climate change high on the agenda with action plans and targets to cut greenhouse gas (GHG) emissions. To reach these targets the municipalities need to engage citizens and the local business sector. In order to find new routes on how to engage and motivate local...... businesses to achieve GHG reductions, seven Danish municipalities (Copenhagen, Albertslund, Allerød, Ballerup, Herning, Kolding and Næstved) have joined forces in an EU LIFE project “Carbon 20”. A key element in the Carbon 20 project is to offer an energy screening free of charge for the participating...... the screening to small companies since the savings are rather limited in absolute terms. This article will focus on the appropriateness of using energy utilities (or consultants working on their behalf) in a local political context of engaging the local business sector in achieving energy savings and GHG...

  8. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  9. DPRK energy sector development priorities: Options and preferences

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter

    2011-01-01

    The goal of international negotiations with the Democratic People's Republic of Korea (DPRK), when they begin again, will be to convince the DPRK to give up its nuclear weapons and the capabilities to produce them. The DPRK's energy sector is a key to resolution of the issue. Thus offering a well-considered, well-structured package of energy sector assistance options will be key to the sustainable success of the negotiations. This article briefly reviews some of the key options for DPRK energy assistance ranging from human capacity-building in fields like energy efficiency, renewable energy, and energy markets, to assistance with rebuilding key electricity and coal mining infrastructure, to integrated pilot energy/electricity grid/economic development projects on the county level, to light-water nuclear reactors. It then reviews preferences for DPRK assistance options as offered by North Koreans, and a summary of the likely points of view of the key DPRK actors that will be involved in negotiations.

  10. Energy Efficiency Services Sector: Workforce Education and Training Needs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  11. The energy-efficiency business - Energy utility strategies

    International Nuclear Information System (INIS)

    Loebbe, S.

    2009-01-01

    This article takes a look at the energy-efficiency business and the advantages it offers. The author quotes that energy-efficiency can contribute to making savings in primary energy, minimise the economic impact of global warming, improve reliability of supply and protect the gross national product. The advantages of new products for the efficient use of energy are reviewed and the resulting advantages for power customers are noted. Also, possibilities for the positioning of electricity suppliers in the environmental niche is noted. The partial markets involved and estimates concerning the impact of energy-efficiency measures are reviewed. Climate protection, co-operation with energy agencies, consulting services and public relations aspects are also discussed. The prerequisites for successful marketing by the utilities are examined and new business models are discussed along with the clear strategies needed. The development from an electricity utility to a system-competence partner is reviewed

  12. Proposal of resolution for the creation of an inquiry commission about the opening to competition of public utilities in the sectors of energy, postal and telecommunication services and railway transports

    International Nuclear Information System (INIS)

    2005-01-01

    This proposal recalls first the philosophy of public utilities, and their social and quality aspects, and the contradiction with the realisation of a European domestic market based on liberalization and competition: new management rules, segmentation of activities, search for profitability, increase of prices, creation of private monopolies are the results of this policy and represent a threat for the economical and social equilibrium of European democracies. (J.S.)

  13. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  14. Price regulation in the Spanish energy sectors: who benefits?

    International Nuclear Information System (INIS)

    Arocena, Pablo; Contin, Ignacio; Huerta, Emilio

    2002-01-01

    This paper analyses the distribution of benefits between firms and consumers due to the price regulation of the Spanish energy sectors (electricity, oil fuels and gas) during the decade 1987-1997. To that effect, we compare the actual evolution of energy prices with alternate benchmarks in order to assess the potential existence of a pro-industry or a pro-consumer bias in the pricing policies followed by the regulator. Our results show a pro-industry-biased regulatory context, where consumers benefited very little from price control. The successive price adjustments over time allowed the companies to keep all the productivity gains and cost reductions and to increase their profitability rates relative to those achieved in the manufacturing sector. (Author)

  15. Energy sector developments in Central America and the Caribbean

    International Nuclear Information System (INIS)

    Perez, J.

    1997-01-01

    Energy sector developments in Central America and the Caribbean were discussed. Central America is composed of six small countries whose total population is 32 million. The Caribbean population is 20.5 million. Central America is generally poor in hydrocarbon reserves but the geological prospects in several of the countries are encouraging. The oil and petroleum products supply and demand picture, the main characteristics of the hydrocarbon market, structure of the oil industry, hydrocarbon market reforms, pricing issues and recent trend towards reforms in the electric power industry in Central America were discussed. An overview of the Inter-American Development Bank's (IDB) effort to provide technical assistance and loans to strengthen the energy sector development in Central America and the Caribbean was also given. 17 refs., 2 tabs., 23 figs

  16. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  17. Price regulation in the Spanish energy sectors: who benefits?

    Energy Technology Data Exchange (ETDEWEB)

    Arocena, Pablo; Contin, Ignacio; Huerta, Emilio [Departamento de Gestion de Empresas, Universidad Publica de Navarra, Campus de Arrosadia. 31006, Pamplona (Spain); [Canterbury Business School, University of Kent Canterbury (United Kingdom)

    2002-08-01

    This paper analyses the distribution of benefits between firms and consumers due to the price regulation of the Spanish energy sectors (electricity, oil fuels and gas) during the decade 1987-1997. To that effect, we compare the actual evolution of energy prices with alternate benchmarks in order to assess the potential existence of a pro-industry or a pro-consumer bias in the pricing policies followed by the regulator. Our results show a pro-industry-biased regulatory context, where consumers benefited very little from price control. The successive price adjustments over time allowed the companies to keep all the productivity gains and cost reductions and to increase their profitability rates relative to those achieved in the manufacturing sector. (Author)

  18. Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future

    Science.gov (United States)

    Averyt, K.; Yates, D. N.; Meldrum, J.

    2014-12-01

    Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.

  19. Reforming Mexico’s Energy Sector to Enhance Stability

    Science.gov (United States)

    2011-10-27

    requirement to reform Mexico’s energy sector. Subsequent analysis demonstrates government ownership of Petroleos Mexico (Pemex) is the fundamental...ownership of Petroleos Mexico (Pemex) is the fundamental destabilizing flaw in regulatory policy, by tracing various problems back to this root cause... Petroleos Mexico (Pemex) is the second largest company in Latin America and the seventh largest producer of oil in the world.1 The government of

  20. ImSET: Impact of Sector Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  1. Vietnam's energy sector: A review of current energy policies and strategies

    International Nuclear Information System (INIS)

    Tien Minh Do; Sharma, Deepak

    2011-01-01

    Since the introduction of market-oriented economy in 1986, Vietnam has made noticeable socio-economic progress. In this progress, the energy sector has played a vital role. This role is likely to deepen in the years to come as Vietnam strives to achieve even higher levels in economic progress. Such deepening in the role of energy, this paper argues, will heighten concerns about the security of energy supply, and economic, environmental, social and political consequences. In order to address these issues, Vietnam has over the last decade, developed a suite of energy policies. A deeper review of these policies suggests that they are typified by economic-growth orientation, exclusive focus on a single-sector or single issue, and largely neglect the significance of cross-sectoral and cross-thematic issues arising from the interdependencies between energy, economy, and the polity at large. The existing energy policy settings are, therefore, unlikely to be able to provide a satisfactory redress to the challenges noted above. This paper provides an overview of the current energy policies with a view to identify areas where further policy effort is needed in order to facilitate a sustainable development of the Vietnamese energy sector. - Highlights: → Identifying challenges faced by the Vietnamese energy sector. → Analyzing limitations of the existing energy policy settings (policies, strategies and institutions) in addressing these challenges. → Developing recommendations on improving the existing energy policy settings to provide a satisfactory redress for the challenges noted above.

  2. Vietnam's energy sector: A review of current energy policies and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Tien Minh Do, E-mail: tmdo@eng.uts.edu.au [Hanoi University of Science and Technology (HUST), 1 Dai Co Viet Street, Hai Ba Trung District, Hanoi (Viet Nam); Sharma, Deepak [University of Technology, Sydney (UTS), Broadway, Ultimo, NSW 2007 (Australia)

    2011-10-15

    Since the introduction of market-oriented economy in 1986, Vietnam has made noticeable socio-economic progress. In this progress, the energy sector has played a vital role. This role is likely to deepen in the years to come as Vietnam strives to achieve even higher levels in economic progress. Such deepening in the role of energy, this paper argues, will heighten concerns about the security of energy supply, and economic, environmental, social and political consequences. In order to address these issues, Vietnam has over the last decade, developed a suite of energy policies. A deeper review of these policies suggests that they are typified by economic-growth orientation, exclusive focus on a single-sector or single issue, and largely neglect the significance of cross-sectoral and cross-thematic issues arising from the interdependencies between energy, economy, and the polity at large. The existing energy policy settings are, therefore, unlikely to be able to provide a satisfactory redress to the challenges noted above. This paper provides an overview of the current energy policies with a view to identify areas where further policy effort is needed in order to facilitate a sustainable development of the Vietnamese energy sector. - Highlights: > Identifying challenges faced by the Vietnamese energy sector. > Analyzing limitations of the existing energy policy settings (policies, strategies and institutions) in addressing these challenges. > Developing recommendations on improving the existing energy policy settings to provide a satisfactory redress for the challenges noted above.

  3. Determinants of energy sector performance in Iraq, 2003 to 2005

    International Nuclear Information System (INIS)

    Tiedemann, K.H.

    2007-01-01

    Iraq's energy sector was rehabilitated from 2003 to 2005. The focus of rehabilitation was on restoring Iraq's electricity and oil infrastructure to pre-war production levels; delivering electricity and refined fuels for domestic consumption; and delivering electricity and oil security. This paper provided an analysis of the impact of Coalition efforts and insurgent activities on energy sector performance using time-series models. The paper presented a simple three-equation model consisting of an insurgent attack equation, an investment equation, and production function. The paper also discussed the phases of the insurgency in Iraq, with particular reference to the beginning of the insurgency; initial bombing campaign; escalation of the insurgency; and intra-Iraqi conflict. Key energy sector indicators and regression results were also presented for oil production; diesel production; gasoline production; oil exports; and production and consumption of electricity. It was concluded that expenditures by the United States on oil infrastructure appear to have been relatively efficiently spent. 16 refs., 9 tabs

  4. Protecting ICS Systems Within the Energy Sector from Cyber Attacks

    Science.gov (United States)

    Barnes, Shaquille

    Advance persistent threat (APT) groups are continuing to attack the energy sector through cyberspace, which poses a risk to our society, national security, and economy. Industrial control systems (ICSs) are not designed to handle cyber-attacks, which is why asset owners need to implement the correct proactive and reactive measures to mitigate the risk to their ICS environments. The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) responded to 290 incidents for fiscal year 2016, where 59 of those incidents came from the Energy Sector. APT groups know how vulnerable energy sector ICS systems are and the destruction they can cause when they go offline such as loss of production, loss of life, and economic impact. Defending against APT groups requires more than just passive controls such as firewalls and antivirus solutions. Asset owners should implement a combination of best practices and active defense in their environment to defend against APT groups. Cyber-attacks against critical infrastructure will become more complex and harder to detect and respond to with traditional security controls. The purpose of this paper was to provide asset owners with the correct security controls and methodologies to help defend against APT groups.

  5. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  6. Waste utilization in electric energy industry

    International Nuclear Information System (INIS)

    Parate, N.S.; Harris, E.

    1991-01-01

    This paper reports that electric energy is an integral element of today's economy and the standard quality of life. The availability of energy at an affordable cost has always been of basic concern because of the intimate relationship of energy to our societal development and progress. Coal and Uranium are the primary alternative energy sources for large electric power plants. Coal remains the dominant fuel for electric generation. The pressurized fluidized bed combustion technology has the potential of utilizing all types of coal, including coal with high ash, high sulphur, and high moisture content. Fluidized bed combustion is a firing technique which fulfills today's pollution control requirements without downstream flue gas cleaning plants like scrubbers, baghouses, and precipitators

  7. Utilization of geothermal energy in the USSR

    International Nuclear Information System (INIS)

    Kononov, V.I.; Dvorov, I.M.

    1990-01-01

    This paper reports that at present geothermal energy is utilized in the USSR mostly for district heating, and for industrial and agricultural purposes. The populations of 7 towns have district heating that is supplied by thermal waters. The population supplied totals about 125,000 people. The total area of greenhouses is 850,000 m 2 . Electric energy generated at geothermal power stations still remains negligible with the installed capacity of the single Pauzhetka station (Kamchatka) being 11 MW. another station at Mutnovka is currently under construction and is expected to be producing 50 MW by 1992 and 200 MW by 1998. The proven geothermal resources in the USSR provide hope for a significant increase in the utilization of the earth's deep heat in the near future

  8. Energy-, environmental and economic evaluation of energy crops utilization

    International Nuclear Information System (INIS)

    1994-06-01

    This preliminary project is prepared in order to clarify the economic possibilities and rentability of energy crops. Examples of energy crop resource potential, environmental and economic consequences are calculated on the basis of existing data. Utilization of annual and perennial crops is evaluated with regard to the usual following of agricultural areas, and to the traditional power generation in a coal-fueled plant. Two technological options are discussed: one based on energy crop fuels supplementing the conventional coal fuel, and the other based on a separate biomass-fueled boiler, connected to the conventional coal-fueled unit. Implementation of the main project,following the preliminary one will permit to estimate the future prospects and strategies of energy crop utilization as a profitable energy resource. (EG)

  9. Water Use in the US Electric Power Sector: Energy Systems ...

    Science.gov (United States)

    This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress

  10. Integrated transportation and energy sector CO2 emission control strategies

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    is the use of biofuel (ethanol) and synthetic fuel (methanol) for internal combustion cars. An increase in the fraction of electricity delivered by fluctuating sources like wind power will lead to excess electricity production and the two aforementioned scenarios have a substantial effect on the decrease...... and power production (CHP), while the transport sector can assist the energy system in integrating a higher degree of intermittent energy and CHP. Two scenarios for partial conversion of the transport fleet have been considered. One is battery cars combined with hydrogen fuel cell cars, while the other...

  11. Energy transition of a sector in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Opstelten, I.J. [Energy research Centre of the Netherlands ECN, Petten (Netherlands); Weterings, R. [TNO, Delft (Netherlands); Versteeg, F.A. [FORGOOD, Amsterdam (Netherlands)

    2010-09-15

    To realize the energy transition in the building sector, three types of obstacles have to be overcome: technology-related, process-related and integration of technology and process. To this end an innovation / implementation program has been set up. The intrinsic driver of the program is the realization of increasingly more ambitious energy concepts in three successive waves, allowing for the different actors to learn from the previous wave, to prepare for the next wave and to scale up these type of projects both in terms of quantity and quality. The establishment process of the program identified a key success factor for the transition process itself: the role of the individual.

  12. Energy Transition of a Sector in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Opstelten, I.J. [Energy in the Built Environment, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Weterings, R. [TNO Innovation and Environment, Delft (Netherlands); Versteeg, F.A. [FORGOOD, Hilversum (Netherlands)

    2010-09-15

    To realize the energy transition in the building sector, three types of obstacles have to be overcome: technology-related, process-related and integration of technology and process. To this end an innovation-implementation program has been constructed. The intrinsic driver of the program is the realization of increasingly more ambitious energy concepts in three successive waves, allowing for the different actors to learn from the previous wave, to prepare for the next wave and to scale up these type of projects both in terms of quantity and quality. The establishment process of the program identified a key success factor for the transition process itself: the role of the individual.

  13. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  14. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2013-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  15. Costs and utilization of public sector family planning services in Pakistan.

    Science.gov (United States)

    Abbas, Khadija; Khan, Adnan Ahmad; Khan, Ayesha

    2013-04-01

    The public sector provides a third of family planning (FP) services in Pakistan. However, these services are viewed as being underutilized and expensive. We explored the utilization patterns and costs of FP services in the public sector. We used overall budgets and time allocation by health and population departments to estimate the total costs of FP by these departments, costs per woman served, and costs per couple-year of protection (CYP). The public sector is the predominant provider of FP to the poorest and is the main provider of female sterilization services. The overall costs of FP in the public sector are USD 55 per woman served, annually (USD 17 per CYP). Within the public sector, the population welfare departments provide services at USD 72 per woman served, annually (USD 17 per CYP) and the health departments at USD 39 per woman per year (USD 29 per CYP). While the public sector has a critical niche in serving the poor and providing female sterilization, its services are considerably more expensive compared to international and even some Pakistani non-government organization (NGO) costs. This reflects inefficiencies in services provided, client mistrust in the quality of services provided, and inadequate referrals, and will require specific actions for improving referrals and the quality of services.

  16. Does the Energy Sector Reform Call for Reform

    International Nuclear Information System (INIS)

    Granic, G.

    2007-01-01

    This paper discusses the course of the energy sector reforms in Europe so far, its objectives, achievements, issues, and dilemmas. In particular, long term and security aspects of energy supply of Europe are analyzed. In addition to the legislative changes regarding the open energy market regulation, and primarily the changes, concerning electricity and natural gas markets, the past period saw dynamic changes of institutional framework such as: increasing members of the European Union, increased number of countries aspiring to the EU (candidate countries and potential candidates), changes in other European countries out of which Russia is the most significant energy producer. The paper analyzes the issue of responsibility between state - regulator - system operator - trader - energy buyer. In Europe, it is more a complex question because the system of responsibility includes the institution of the European Union. Therefore, the relations between EU - state - regulator - system operator - trader - energy buyer are especially important. The paper looks in to the issue of energy company integrations, creation of energy mega-undertakings and their influence on further market development. The question of monopolies now appears in s new form. The conclusions suggest possible measures for institutional influence on energy market development, especially in the network energy systems, which may have a positive impact on system security and stability and markets development and their long term sustainability.(author)

  17. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  18. Policy alternatives in reforming energy utilities in developing countries

    International Nuclear Information System (INIS)

    Gabriele, Alberto

    2004-01-01

    This paper examines the policy alternatives faced by developing countries in their endeavor to preserve and develop their electricity and gas systems, two service-oriented industries which--along with oil--provide the bulk of energy supply both in developed and in developing countries. Even in very poor countries, industrially generated energy is indispensable for carrying out most economic activities. Therefore, governments traditionally recognize that the supply of gas and electricity entails a fundamental public service dimension. The Introduction presents the case for reforming of energy utilities, discusses in general terms the pros and cons of privatization, and attempts to locate the reforms in a broader historical framework in which developing countries' governments faced characterized by increasing financial hardship. Section 2 constitutes the core of the paper. It reviews the main features of gas and power sector reforms in the developing world and analyzes specifically the cases of five semi-industrialized countries in Latin America and Asia. Section 3 (Concluding remarks) briefly evaluates the country experiences reviewed above and indicates a few policy lessons which can be learnt from them. The main conclusion is that, in a long-run development perspective, full-scale privatization of gas and power sectors in developing countries entails significant risks, and therefore a flexible policy approach is preferable to a rigid commitment to extensive liberalization

  19. Globalization of the energy sector: Environmental challenges and options for future actions

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pablo

    1998-12-01

    This publication relates to environmental challenges of the energy sector and options for future action. Following themes are discussed: Globalisation of the energy sector; environmental challenges; the challenge of climate change; options for future action

  20. Development of technologies for solar energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    With relation to the development of photovoltaic power systems for practical use, studies were made on thin-substrate polycrystalline solar cells and thin-film solar cells as manufacturing technology for solar cells for practical use. The technological development for super-high efficiency solar cells was also being advanced. Besides, the research and development have been conducted of evaluation technology for photovoltaic power systems and systems to utilize the photovoltaic power generation and peripheral technologies. The demonstrative research on photovoltaic power systems was continued. The international cooperative research on photovoltaic power systems was also made. The development of a manufacturing system for compound semiconductors for solar cells was carried out. As to the development of solar energy system technologies for industrial use, a study of elemental technologies was first made, and next the development of an advanced heat process type solar energy system was commenced. In addition, the research on passive solar systems was made. An investigational study was carried out of technologies for solar cities and solar energy snow melting systems. As international joint projects, studies were made of solar heat timber/cacao drying plants, etc. The paper also commented on projects for international cooperation for the technological development of solar energy utilization systems. 26 figs., 15 tabs.

  1. Solar energy utilizing technology for future cities

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kei

    1987-11-20

    This report proposes solar energy utilizing technologies for future cities, centering on a system that uses Fresnel lenses and optical fiber cables. This system selects out beams in the visible range and the energy can be sent to end terminals constantly as long as sunlight is available. Optical energy is concentrated 4,000-fold. The system can provide long-distance projection of parallel rays. It will be helpful for efficient utilization of light in cities and can increase the degree of freedom in carrying out urban development. The total efficiency for the introduction into optical fiber can be up to 40 percent. With no heating coil incorporated, there is no danger of fire. The standard size of a light condenser is 2 m in dome diameter and 2.5 m in height. Auxiliary artificial light is used for backup purposes when it is cloudy. Heat pumps operating on solar thermal energy are employed to maintain air conditioning for 24 hours a day in order to ensure the establishment of an environment where residential areas exist in the neighborhood of office areas. Seven automatic solar light collection and transfer systems are currently in practical use at the Arc Hills building. The combination of Fresnel lens and optical fiber is more than six times as high in efficiency as a reflecting mirror. (5 figs, 3 tabs, 8 photos, 6 refs)

  2. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    In the on-going effort within the EU to tackle greenhouse gas emissions and secure future energy supplies, the buildings sector is often referred to as offering a large potential for energy savings. The aim of this thesis is to produce scenarios that highlight the parameters that affect the energy demands and thus potentials for savings of the building sector. Top-down and bottom-up approaches to modelling energy demand in EU buildings are applied in this thesis. The top-down approach uses econometrics to establish the historical contribution of various parameters to energy demands for space and water heating in the residential sectors of four EU countries. The bottom-up approach models the explicit impact of trends in energy efficiency improvement on total energy demand in the EU buildings stock. The two approaches are implemented independently, i.e., the results from the top-down studies do not feed into those from the bottom-up studies or vice versa. The explanatory variables used in the top-down approach are: energy prices; heating degree days, as a proxy for outdoor climate; a linear time trend, as a proxy for technology development; and the lag of energy demand, as a proxy for inertia in the system. In this case, inertia refers to the time it takes to replace space and water heating systems in reaction to price changes. The analysis gives long-term price elasticities of demand as follows: for France, -0.17; for Italy, -0.35; for Sweden, -0.27; and for the UK, -0.35. These results reveal that the price elasticity of demand for space and water heating is inelastic in each of these cases. Nonetheless, scenarios created for the period up to 2050 using these elasticities and an annual price increase of 3 % show that demand can be reduced by more than 1 % per year in France and Sweden and by less than 1 % per year in Italy and the UK. In the bottom-up modelling, varying rates for conversion efficiencies, heating standards for new buildings, end-use efficiency, and

  3. Modelling of capital requirements in the energy sector: capital market access. Final memorandum

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).

  4. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  5. Susceptibility of SCADA systems and the energy sector

    Science.gov (United States)

    Goike, Lindsay

    The research in this paper focused on analyzing SCADA systems in the energy sector for susceptibility to cyber attacks, in furtherance of providing suggestions to mitigate current and future cyber attacks. The research will be addressing the questions: how are SCADA systems susceptible to cyber attacks, and what are the suggested ways to mitigate both current and future cyber attacks. The five main categories of security vulnerabilities facing current SCADA systems were found to be: connectivity to the Internet, failure to plan, interdependency of sectors, numerous different types of threats, and outdated software. Some of the recommendations mentioned to mitigate current and future risks were: virtual private networks, risk assessments, increased physical security, updating of software, and firewalls.

  6. The directions of development of Lithuania's energy sector envisaged in the new strategy

    International Nuclear Information System (INIS)

    Medeliene, D.

    1999-01-01

    More than nine years ago Lithuania regained its independence. After sudden political changes, extremely profound, complicated and in many cases unforeseen changes started taking place in all branches of national economy, including the energy sector. Rocketing prices of primary energy sources and the loss of the former markets in the East, as well as other factors, resulted in a marked decline in industries and in some areas of agriculture. The demand for energy and its generation considerably decreased. Difficulties are also due to the fact that Lithuania has inherited fairly modern energy utilities but at the same time economy which is inefficient in terms of energy that had formed during a very long period of dirt-cheap energy, when there were no stimuli to use fuel and energy efficiently. To reduce energy consumption, substantial investments are required in all branches of national economy. In the present conditions, this cannot be done in a short time. The transition from planned economy in the energy sector is slower and more complicated than was expected. (author)

  7. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  8. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  9. Institutional and Policy Assessment of Renewable Energy Sector in Afghanistan

    Directory of Open Access Journals (Sweden)

    Ahmad Murtaza Ershad

    2017-01-01

    Full Text Available Renewable energy resources could play a vital role in the sustainable economic, social, and environmental development of Afghanistan. Heavy reliance of rural households on firewood, rising costs of fossil fuels, outdoor and indoor air pollution, and climate change are some of the challenges that can be addressed by diversifying our power production fuel inputs and adopting renewable energy technologies. In order to deploy and scale up renewable energy technologies and improve access to sustainable energy, clear policies and targets and dedicated institutions are crucial. Fortunately, Afghan government with the support of international community is setting ambitious targets for the renewable energy sector and is encouraging national and international investors to take part in the generation, transmission, and distribution of renewable energy especially electricity through Power Purchase Agreements or very cheap land leases. Thus, the objectives of this report are (I to review the existing institutions in the field of renewable energy, (II to review renewable energy policies and targets in Afghanistan, and (III to identify institutional and policy gaps and recommend solutions.

  10. Investment requirements in the energy sector and their financing

    Energy Technology Data Exchange (ETDEWEB)

    Diel, R; Radtke, G; Stoesel, R

    1981-06-01

    The present research study illustrates the required volume of investment in the energy sector during the next two decades while referring explicitly to the availability of financial resources. The data for the respective primary energy sources and electric power production relate to the Federal Republic of Germany; still, as far as figures were available, the energy situation of the Western World is taken into account. Starting from the premise that energy needs will continue to grow - albeit at a slower rate -, future investment activity will have to depart from past trends, with their more or less evenly spread recourse to all available primary energy sources, to a substantial reliance on nuclear energy, coal and natural gas as against oil. In addition to the higher capital requirements due to the restructuring of the energy supply, future investment will be characterized by particularly capital-intensive projects and, in addition, by the fact that expensive development schemes must be vigorously pursued. This applies not only to coal gasification and liquifaction but also to regenerative energy sources.

  11. 2010 energy benchmarking report performance of the Canadian office sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-15

    In 2009, REALpac set a target of reducing energy consumption in office buildings to 20 equivalent kilowatt-hours per square foot by 2015. Following this, REALpac launched a national energy benchmarking survey to create a baseline for building energy performance across Canada; this paper provides the results of that survey. The survey was carried out using a tool which can measure energy use in a meaningful way using building characteristics data and energy use data from utility bills. The survey was conducted on 2009 data, 261 office buildings submitted their data which were then analyzed to provide trends and a baseline. Results showed a variety and diversity of performances and a 28.7 ekWh/ft2 annual mean building energy use intensity was found. This survey demonstrated that several office building owners and managers are taking steps to monitor and minimize energy use in their buildings.

  12. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  13. Research on Utilization of Geo-Energy

    Science.gov (United States)

    Bock, Michaela; Scheck-Wenderoth, Magdalena; GeoEn Working Group

    2013-04-01

    The world's energy demand will increase year by year and we have to search for alternative energy resources. New concepts concerning the energy production from geo-resources have to be provided and developed. The joint project GeoEn combines research on the four core themes geothermal energy, shale gas, CO2 capture and CO2 storage. Sustainable energy production from deep geothermal energy resources is addressed including all processes related to geothermal technologies, from reservoir exploitation to energy conversion in the power plant. The research on the unconventional natural gas resource, shale gas, is focussed on the sedimentological, diagenetic and compositional characteristics of gas shales. Technologies and solutions for the prevention of the greenhouse gas carbon dioxide are developed in the research fields CO2 capture technologies, utilization, transport, and CO2 storage. Those four core themes are studied with an integrated approach using the synergy of cross-cutting methodologies. New exploration and reservoir technologies and innovative monitoring methods, e.g. CSMT (controlled-source magnetotellurics) are examined and developed. All disciplines are complemented by numerical simulations of the relevant processes. A particular strength of the project is the availability of large experimental infrastructures where the respective technologies are tested and monitored. These include the power plant Schwarze Pumpe, where the Oxyfuel process is improved, the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß Schönebeck, with two deep wells and an experimental plant overground for research on corrosion. In addition to fundamental research, the acceptance of new technologies, especially in the field of CCS is examined. Another focus addressed is the impact of shale gas production on the environment. A further important goal is the education of young scientists in the new field "geo-energy" to fight skills shortage in this field

  14. The Europeanization of regulation of the energy sector

    International Nuclear Information System (INIS)

    Lavrijsen, S.A.C.M.; Nauta, T.

    2010-01-01

    The main question of this article is how the ongoing Europeanization of regulation relates to the restrictive manner in which the Dutch legislator interprets the principle of legality with respect to the qualification of the independent regulating authorities. To answer this question, research focuses first of all on which demands are imposed by European law on the constitutional position and qualification of the national regulating authorities that implement the energy directives. Anticipating the consequences of the third generation of energy directives for the position of the national authorities, attention is subsequently paid to the question whether any tension exists between European requirements for the regulation of the energy sector and the manner in which the national legislator interprets the principle of legality. [nl

  15. ACCOUNTANCY REFLECTION OF ENVIRONMENT INFORMATION REGARDING THE ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    Lucean MIHALCEA

    2014-06-01

    Full Text Available Natural resources, especially energetical ones, have continuously influenced the evolution of human society, including the economical developement, and so the problem of their deficiency and their limited character is a problem of major interest for the human kind in their quest to find the balance betwen the need of economical expansion and the environment protection. The purpose of this paper work is to show the importancy of energy eficiency by asuming two main action directions: to encrease the quantity of renewable energy and to emprove the energetical efficiency. After the researches we made, we brought in attention the main mechanisms used in the insurance of sustainability security and competitiveness of the energy sector. These practices the objectives of the sustainable development principle, exemplified from accountancy point of view through a new instrument in the economical theory: environmental accountancy which ensures the background regarding the recognition, evaluation and presentation of environment information.

  16. Unfair and excessive prices in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Van der Woude, M. [Erasmus University, Rotterdam (Netherlands)

    2008-05-15

    The concept of competition refers to a process where firms dispute the favour of their customers by proposing better products at the lowest possible price. This consumer welfare creating process is to a large extent Darwinian in nature: those who cannot compete must die. The law of supply and demand is ruthless and so is competition law. Principles of fairness and justice are extraneous to competition law: the lion eats the deer. Still, EC competition law is not amoral, as illustrated by the very first example of abusive conduct given by Article 82 EC: 'directly or indirectly imposing unfair purchase or selling prices or other unfair trading conditions' can constitute an abuse. The concept of fairness as a constituent element of EC competition law may disturb those who analyze the competitive process through a scientific lens. Fairness does not relate to economic effects and cannot be measured or quantified. It is a concept that appeals to ethics and norms. The dichotomy between competition as an amoral welfare creating process, that can be the subject of economic research, and the normative concept of fairness does not necessarily lead to a contradiction. Fairness becomes relevant where the competitive process has ceased to play its welfare creating role: i.e. where monopolies prevail over perfect competition. When confronted to a monopoly, abstention is the customer's only choice and for some goods, such as food, clothing and housing, abstention is not considered as a realistic choice. In scenarios where the monopolist faces an inelastic demand curve, fairness is probably the customer's only safety buoy. The energy sector is one of the sectors where these situations occur. In our modern societies, customers expect the light to go on, when they turn the switch, and their houses to be heated, when activating their boilers. Candles and jumpers not offering realistic alternatives, demand is close to inelastic, at least on the short term. Moreover

  17. Unfair and excessive prices in the energy sector

    International Nuclear Information System (INIS)

    Van der Woude, M.

    2008-01-01

    The concept of competition refers to a process where firms dispute the favour of their customers by proposing better products at the lowest possible price. This consumer welfare creating process is to a large extent Darwinian in nature: those who cannot compete must die. The law of supply and demand is ruthless and so is competition law. Principles of fairness and justice are extraneous to competition law: the lion eats the deer. Still, EC competition law is not amoral, as illustrated by the very first example of abusive conduct given by Article 82 EC: 'directly or indirectly imposing unfair purchase or selling prices or other unfair trading conditions' can constitute an abuse. The concept of fairness as a constituent element of EC competition law may disturb those who analyze the competitive process through a scientific lens. Fairness does not relate to economic effects and cannot be measured or quantified. It is a concept that appeals to ethics and norms. The dichotomy between competition as an amoral welfare creating process, that can be the subject of economic research, and the normative concept of fairness does not necessarily lead to a contradiction. Fairness becomes relevant where the competitive process has ceased to play its welfare creating role: i.e. where monopolies prevail over perfect competition. When confronted to a monopoly, abstention is the customer's only choice and for some goods, such as food, clothing and housing, abstention is not considered as a realistic choice. In scenarios where the monopolist faces an inelastic demand curve, fairness is probably the customer's only safety buoy. The energy sector is one of the sectors where these situations occur. In our modern societies, customers expect the light to go on, when they turn the switch, and their houses to be heated, when activating their boilers. Candles and jumpers not offering realistic alternatives, demand is close to inelastic, at least on the short term. Moreover, the energy sector

  18. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned

    International Nuclear Information System (INIS)

    Okazaki, Teruo; Yamaguchi, Mitsutsune

    2011-01-01

    It is imperative to tackle the issue globally mobilizing all available policies and measures. One of the important ones among them is technology transfer and diffusion. By utilizing international co-operation, industry can promote such measures in two ways: through government policy and through industry's own voluntary initiative. Needless to say, various government policies and measures play essential role. By the same token, industry initiative can complement them. There is much literature documenting the former. On the contrary there are few on the latter. This paper sheds light on the latter. The purpose of this paper is to explore the effectiveness of global voluntary sectoral approach for technology diffusion and transfer based on steel sector experience. The goal is to contribute toward building a worldwide low-carbon society by manufacturing goods with less energy through international cooperation of each sector. The authors believe that the voluntary sectoral approach is an effective method with political and practical feasibilities, and hope to see the continued growth of more initiatives based on this approach. - Highlights: → There exist huge reduction potentials in steel industries globally. → Technology transfer and diffusion are keys to achieve reductions. → Main barriers are economic, technological and policy-related. → Case studies in overcoming barriers are discussed. → In steel industry, a voluntary sectoral approach has shown to be effective.

  19. Designing effective incentives for energy conservation in the public sector

    Science.gov (United States)

    Drezner, Jeffrey Alan

    Understanding why government officials behave in certain ways under particular circumstances is an important theme in political science. This research explores the design of policies and incentives targeted at public sector officials, in particular the use of market based policy tools in a non-market environment, and the influence of that organizational environment on the effectiveness of the policy. The research examines the case of Department of Defense (DoD) facility energy management. DoD energy policy includes a provision for the retention of savings generated by conservation activities: two-thirds of the savings is retained at the installation generating the savings, half to used for further investment in energy conservation, and half to be used for general morale, welfare, and recreation activities. This policy creates a financial incentive for installation energy managers to establish higher quality and more active conservation programs. A formal written survey of installation energy managers within DoD was conducted, providing data to test hypotheses regarding policy effectiveness and factors affecting policy implementation. Additionally, two detailed implementation case studies were conducted in order to gain further insights. Results suggest that policy design needs to account for the environment within which the policy will be implemented, particularly organizational culture and standard operating procedures. The retention of savings policy failed to achieve its intended outcome---retention of savings for re-investment in energy conservation---because the role required of the financial management community was outside its normal mode of operation and interests and the budget process for allocating resources did not include a mechanism for retention of savings. The policy design did not adequately address these start-up barriers to implementation. This analysis has shown that in order for retention of savings, or similar policies based on market

  20. UN Convention on Climate Change: effects on Australia's energy sector

    International Nuclear Information System (INIS)

    Jones, B.P.

    1992-01-01

    The Australian government's interim planning target for reducing greenhouse gas emissions calls for a larger cut in emissions than is implied by the commitments contained in the recently completed United Nations Convention on Climate Change. The commitments in the Convention also leave considerable scope for how fast and by how much emissions are to be reduced. The aim in this article is to present an analysis of the effects on the Australian energy sector of stabilising carbon dioxide emissions at various levels and by various dates consistent with the commitments in the Convention, and to compare these effects with those of meeting the Australian government's current interim target. The major analytical tool used is MENSA, a multiperiod linear program-mining model of the Australian energy sector, The stabilisation targets are modelled to involve a gradual reduction in the amount of coal used for electricity generation from 1995 onwards, but coal continues to be the major source of base load electricity over the entire period to 2020. By contrast, modelling of the government's interim target indicates that coal would have to be almost completely phased out as a fuel for electricity generation by 2005. Analysis using the MENSA linear programming model of the Australian energy system also indicates that the total discounted cost of meeting such targets would be between $4.7 billion and $9.0 billion, compared with $41.2 billion for the government's interim target. 6 refs., 4 tabs., 5 figs

  1. Climate change adaptation in the Canadian energy sector : workshop report

    International Nuclear Information System (INIS)

    2009-01-01

    This workshop on climate change adaptation in the Canadian energy sector was conducted in order to develop a climate change work plan for the Council of Energy Ministers (CEM) as well as to develop awareness and dialogue within Canada's energy sector. Industry members and government officials identified findings from recent assessment reports on climate change adaptation and discussed ways in which the international oil and gas industry is currently adapting its operations and technologies to ensure continuing safety and risk mitigation. The use of hydrological models to forecast the potential impacts of climate change was discussed, and the drivers of climate change adaptation were reviewed. A total of 26 topics were identified, 13 of which were prioritized for group discussions based on their impact and urgency. The following 5 topics were finally identified as top priority topics: (1) climate change adaptation science, (2) co-ordinated local, provincial, national, and international policies, (3) information sharing and knowledge transfer, (4) aging infrastructure and increasing demand, and (5) market mechanisms for adaptation. Four presentations were given during the initial portion of the workshop. 4 tabs., 1 fig

  2. Asset management. Combining knowledge and information for the energy sector

    International Nuclear Information System (INIS)

    Van Wingerden, T.

    1999-01-01

    In recent years information flows have diversified and information management has become increasingly important because of a change in organisation structure. Nowadays, state-of-the-art technology makes it possible to combine data and knowledge. This should result in cost minimization and revenue maximization. Gastec (Dutch centre for Gas technology) and KEMA (Research and Development, Engineering and Consultant for the Electric Power Industry) carried out a definition study into the opportunities of integrated network management in the energy sector. First calculations show that such a system may lead to cost reductions of up to 25%

  3. Policy options when giving negative externalities market value. Clean energy policymaking and restructuring the Western Australian energy sector

    International Nuclear Information System (INIS)

    McHenry, Mark

    2009-01-01

    Uncertainty surrounds the choice of instruments that internalise fossil-fuel pollution at the local, regional and global level. This work outlines the considerable growth in the Western Australian (WA) energy sector and explores the available options and potential hazards of using specific instruments to internalise externalities. These core options are discussed with respect to liberalising energy markets, providing private investment certainty, and imparting commentary on the developments and consequences of reform in the WA context. As a large energy exporter, providing certainty for the WA energy sector investment and the community is necessary to maintain the current prosperity. Remarkably, in the decades of market reform progress, the absence of one essential element is evident: economic externalities. Policymakers are under increasing pressure to understand economic reform, new energy markets and the multifaceted repercussions they entail. With modern energy reform sitting squarely within the milieu of more efficient governments and climate policy, there are clear economic advantages to internalising negative and positive externalities and other market distortions during energy market developments. Ignoring market failures when commercialising government-owned energy utilities in de-regulated and competitive markets invites continued ad-hoc government interference that generates investment uncertainty in addition to a perplexed electorate. (author)

  4. Impacts of energy utilization in a tropical environment

    International Nuclear Information System (INIS)

    Kleemann, M.; Penner, K.; Seele, U.

    1992-01-01

    The purpose of this paper is to present the approach and the interim results of the Indonesian-German scientific co-operation on environmental impacts of future energy utilization in Indonesia. The aim of the planning study is to provide decision support for Indonesian authorities in order to develop environmentally compatible energy supply strategies. The environmental problems will focus on the island of Java with a population density of more than 800 inhabitants/km 2 which might reach 1200 within the next 25 years. Due to the further economic growth and the population increase the energy consumption of the industry, the traffic, and the household sector will increase significantly. In particular the polluting coal utilization will grow overproportionally because of declining oil reserves. Additionally, the industrial development is concentrated on the island of Java which covers only 8% of the land area of the country. A serious pollution of the sensitive tropical ecosystems in the future would be the consequence of this unbalanced developments if no efforts are made to reduce the pollutant emissions. Even today the air quality has already reached critical levels in many parts of Java. 3 figs., 3 tabs

  5. Alberta Energy and Utilities Board, regulatory highlights for 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This new publication informs readers about what the Alberta Energy and Utilities Board (EUB) did in the past year, including important regulatory issues, trends and initiatives. The EUB is an agency of the provincial government, established to regulate Alberta's energy resource and utility sectors. It is part of the Alberta Ministry of Energy. The four main functions of the Board are regulatory initiatives, license applications, enforcement and information. This publication summarized the EUB's position regarding flaring (both solution gas flaring and well test flaring), and Board activities in the areas of animal health concerns, the gas over bitumen controversy, the deregulation of the electric industry and what it means to the EUB, improvements in data quality as a result of improved industry compliance in reporting, and a variety of issues related to the oil sands and the negotiated settlement process. Also, the Board has been proactive in the area of oilfield waste management guidelines, proliferation policies for gas processing facilities, sulphur recovery guidelines, and the expansion of the orphan well program to include facilities and pipelines. As a measure of the success of the EUB, a recent survey of 19 randomly selected focus groups praised EUB for its impartiality, fair and equitable enforcement and independence. It was also praised for its technically competent and experienced staff, its access to quality information and the clarity of its mandate, regulatory requirements and processes. The Board's efforts in the area of timely stakeholder consultation was highlighted. tabs., figs

  6. Alberta Energy and Utilities Board, regulatory highlights for 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    This new publication informs readers about what the Alberta Energy and Utilities Board (EUB) did in the past year, including important regulatory issues, trends and initiatives. The EUB is an agency of the provincial government, established to regulate Alberta`s energy resource and utility sectors. It is part of the Alberta Ministry of Energy. The four main functions of the Board are regulatory initiatives, license applications, enforcement and information. This publication summarized the EUB`s position regarding flaring (both solution gas flaring and well test flaring), and Board activities in the areas of animal health concerns, the gas over bitumen controversy, the deregulation of the electric industry and what it means to the EUB, improvements in data quality as a result of improved industry compliance in reporting, and a variety of issues related to the oil sands and the negotiated settlement process. Also, the Board has been proactive in the area of oilfield waste management guidelines, proliferation policies for gas processing facilities, sulphur recovery guidelines, and the expansion of the orphan well program to include facilities and pipelines. As a measure of the success of the EUB, a recent survey of 19 randomly selected focus groups praised EUB for its impartiality, fair and equitable enforcement and independence. It was also praised for its technically competent and experienced staff, its access to quality information and the clarity of its mandate, regulatory requirements and processes. The Board`s efforts in the area of timely stakeholder consultation was highlighted. tabs., figs.

  7. Reducing barriers to energy efficiency in the German mechanical engineering sector. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  8. Reducing barriers to energy efficiency in the German mechanical engineering sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  9. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  10. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  11. Innovative Nuclear Reactors Implementation in the Armenian Energy Sector

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2006-01-01

    The purpose of the present paper is to demonstrate the importance of nuclear energy development in Armenia with the use of innovative nuclear reactors when considering the long-term energy planning, taking into account the specific conditions and tendencies, which are formed and developed in economy of Armenia and, in particular, in fuel-energy complex of the country. When developing the long-term program, the main factors among others considered were assumed to be the energy independence and energy security of a country, and not only the least 'cost factor', as it was usually done before. When that program was under development, such social aspects as application of the infrastructure existing within the relevant sphere, and financing of decommissioning of existing units of the Armenian NNP were also took into consideration. The studies performed have shown that implementation of innovative medium size reactors would enable the energy sector of Armenia to meet all those requirements. The issues of environmental protection were also taken into consideration when developing that program. (authors)

  12. Energy sector from 1990 to 2005 - analysis and consequences

    International Nuclear Information System (INIS)

    Granic, G.

    2005-01-01

    The paper analyzes the energy sector in the period from 1990 to 2005. What is shown here through an analysis of political, economic, energy, technological and institutional processes, and based on actual developments and non-developments, the consequences on energy situation to be evolved in the next 15 years, are analyzed. A crucial characteristic of this period is the fact that consumption growth is more distant from the trends in the developed countries and is increasingly approaching ones occurring in developing and undeveloped countries. The other such characteristic is lack of technological progress, which could generate desirable structural changes in energy production and demand. Taking in consideration what has been accomplished so far and what has not been accomplished, we cannot expect in the coming period the changes that could significantly modify the relations in the structure of energy production and demand. Keeping the balance between production and demand will be increasingly difficult, as well as keeping the influence on energy prices which will be growing. In this, it is more than ever indispensable that the state takes up its role.(author)

  13. Environmental management in sugar-energy sector: a comparative analysis

    Directory of Open Access Journals (Sweden)

    Andréia Marize Rodrigues

    2014-11-01

    Full Text Available With the rise of the environmental variable in the business environment, companies started to give greater attention to strategies and practices focused on the rational use of natural resources and minimize the environmental impacts of their business operations. Many productive sectors stood out in the reflections on production and the environment, as is the case of the sugar energy industry, which constitutes a sector with a highly demanding industrial activity of natural resources, whether as sources of inputs as depositories of waste production. Thus, the aim of this paper is a comparative analysis of environmental practices of two sugar energy plants, both from the point of view of their operational strategy and regarding the suitability of the disposal of waste generated by the industrial area. It was concluded that, although many practices adopted by businesses are analogous, one of the studied plants have distinctive environmental performance, because of the increased attention given to the implementation of environmental practices and especially the inclusion of the environmental variable in their strategies.

  14. Intelligent sector coupling. Efficient energy transition; Intelligente Sektorkopplung. Effiziente Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Kamphues, Stephan

    2017-04-15

    The transformation process of the German energy industry is advancing. The power line and storage infrastructure still appears to be very neglected. The 2050 climate protection plan, but also the EU winter package, is an all-electric approach despite sector-specific targets. In addition to the exorbitant expansion requirements for renewables, infrastructures with enormous transport and storage potential are ''given away''. As in the interview with OGE CEO Stephan Kamphues becomes clear, an efficient energy transition requires an intelligent coupling of different sectors and infrastructures, ultimately even perhaps network convergence. [German] Der Transformationsprozess der deutschen Energiewirtschaft schreitet voran. Immer noch stark vernachlaessigt erscheint die Leitungs- und Speicherinfrastruktur. Dem Klimaschutzplan 2050, aber auch dem EU-Winterpaket wohnt trotz sektorspezifischer Ziele ein all electric-Ansatz inne. Neben exorbitantem Ausbaubedarf an Erneuerbaren ''verschenkt'' man damit Infrastrukturen mit riesigem Transport- und Speicherpotenzial. Wie im Interview mit OGE-Geschaeftsfuehrer Stephan Kamphues deutlich wird, erfordert eine effiziente Energiewende eine intelligente Kopplung verschiedener Sektoren und Infrastrukturen, letztendlich vielleicht sogar Netzkonvergenz.

  15. Developing competence based qualification system in the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail

    2016-01-01

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  16. The European Community programmes in the sector of wind energy

    International Nuclear Information System (INIS)

    Diamantaras, K.; Ferrero, G.L.

    1992-01-01

    The wind technology market has known a considerable evolution over the last decade. From the early eighties - when there were only a few kilowatts of the research prototype wind turbines installed - the total installed capacity within the European Community has reached nowadays more than 765 MW in commercial machines. This expansion has been brought about with the aid of important R and D energy technology programmes run by national governments, and by the Commission of European Communities with its research, development, demonstration and market development programmes, such as the JOULE, demonstration and THERMIE programmes. This paper presents the activities of the Community demonstration and THERMIE programmes in the wind energy sector from 1983 to 1992. Reference is also made to the Community programmes JOULE II and ALTENER. (au)

  17. Energy saver A-sector power test results

    International Nuclear Information System (INIS)

    Martin, P.; Flora, R.; Tool, G.; Wolff, D.

    1982-01-01

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied by three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply

  18. Developing competence based qualification system in the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail [European Commission, Petten (Netherlands). Inst. for Energy and Transport

    2016-04-15

    The Institute for Energy and Transport of the Joint Research Centre, European Commission, developed a strategy and road map for ECVET implementation. The JRC road map for European Credit System for Vocational Education and Training (ECVET) implementation has reached the stage of Competence-Based Qualification System development. The Competence-Based Qualification System can help bridge the gap between Human Resources demand and supply in the nuclear market by structuring qualifications in small independent parts. This very specific ECVET feature of a qualification, facilitates the process of competences accumulation and the lifelong learning, mobility and flexible learning pathways. New developments are presented about the Competence-Based Qualification System development for the nuclear energy sector.

  19. Some aspects of environmental management in energy - sector

    International Nuclear Information System (INIS)

    Burlacu, M.; Burlacu, N.

    1996-01-01

    Environmental protection issues have exceeded the national borders, they became global. Thus it is necessary to elaborate a unique environmental policy, which will have to take into consideration all the economic aspects of the energy sector in connection with the regional pollution impacts. Energy production units are sever sources of damaging of the environment and that's why it is necessary to implement methods, techniques and environmental managerial instruments. Thus, to ensure a motivational basis for any environmental investment a as complete as possible data supply concerning the air, water and land pollution is needed. This task implies the consideration of all the controllable phenomena and processes dynamics which result in necessity of undertaking the corresponding investigations. The results of this activity are presented in this paper. (author). 1 fig., 5 tabs

  20. Risk management in the energy sector; Energiesector verplicht tot risicomanagement

    Energy Technology Data Exchange (ETDEWEB)

    Razzorenova, I.

    2006-06-15

    Within the framework of The International Financial Reporting Standards (IFRS) since January 1, 2005, energy companies are obliged to give account of their system of risk management. This tool can be used to monitor the new developments in this sector and to control the consequences. Deloitte studied how the risk management tool is used in 16 energy companies. [Dutch] In het kader van de International Financial Reporting Standards zijn energiebedrijven sinds 1 januari 2005 verplicht externe verantwoording af te leggen over het systeem van risicobeheersing, staat risicomanagement hoog op de agenda. Risicomanagement kan worden ingezet als een middel om deze ontwikkelingen en de consequenties ervan te inventariseren en beheersbaar te maken. Deloitte onderzocht bij 16 energiebedrijven hoe dit middel wordt ingezet.

  1. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  2. Direct employment in the wind energy sector: An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)], E-mail: isabel.blanco@ewea.org; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  3. Direct employment in the wind energy sector. An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers - including major sub-components - are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles - project managers, engineers and O and M technicians - is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice. (author)

  4. Direct employment in the wind energy sector: An EU study

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Rodrigues, Gloria

    2009-01-01

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  5. Use competitions with biomass. Effects of the intensified use of biomass in the energy sector on the material utilization in the biomass processing industry and their competitive ability by means of nationally sponsored financial incentives. Final report; Nutzungskonkurrenzen bei Biomasse. Auswirkungen der verstaerkten Nutzung von Biomasse im Energiebereich auf die stoffliche Nuzung in der Biomasse verarbeitenden Industrie und deren Wettbewerbsfaehigkeit durch staatlich induzierte Foerderprogramme. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bringezu, Stefan; Schuetz, Helmut; Arnold, Karin [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (DE)] (and others)

    2008-04-25

    In the contribution under consideration The Wuppertal Institute for Climate, Environment, Energy (Wuppertal, Federal Republic of Germany) and Rhenish Westphalian Institute for Economic Research e.V. (Essen, Federal Republic of Germany) report on the analysis and evaluation of technically usable biomass potentials in Germany as well as on the influence of the promotion of the utilization of biomass in the energy sector regarding to the utilization competition between different uses. The economic effects of the increasing use of biomass for non-food applications were examined for the ranges biodiesel, grain and wood. For biodiesel from rape it is stated that this biodiesel in future represents no cost-efficient climatic protection strategy. In the range of woods efforts are necessary to the activation and expansion of the existing domestic raw material. During the mobilization of forest remainder wood ecological disadvantages and an impairment of long-term yields should be excluded.

  6. Solar energy utilization in the USSR

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1993-01-01

    The conditions for solar energy utilization in the USSR are not too favorable. Only in the country's southern regions is there sufficient insolation to make solar energy utilization economical. In higher latitudes only seasonable use of solar energy is reasonable. Up to now, the main application of solar energy was to produce low temperature heat for hot water production, drying of agricultural goods, space heating and thermal treating of concrete. A substantial part of the solar heating installations is flat plate solar collectors. The total installed area of solar collectors slightly exceeds 100,000 m 2 . The collectors are produced by industry, as well as by small enterprises. In some cases selective coatings are used over the absorber plates; black nickel or chromium is the main coating material. Recently, new projects were launched to develop and produce advanced collectors with enhanced efficiency and reliability. Substantial progress has been made in the USSR in developing and producing photovoltaic cells, mainly for space applications. Terrestrial applications of photovoltaic is only in the very early stage. About 100 Kw of photovoltaic cells are produced annually in the USSR, based on mono or polycrystalline silicon. Some experimental photovoltaic-arrays in the range of several tenth of Kw are installed in different places. Research and development work is carried out to produce thin film cells. Effort are in progress to construct automated production lines for 1 MW per year of crystalline and amorphous silicon. In the Crimea, a solar power plant SES-5 (5 MW peak power) was commissioned some years ago. The plant is of a tower type, with a circular helioscope field. The plants working fluid is steam. The experienced gained demonstrates that this design concept has several disadvantages. The cost of electricity produced by such type plants extremely high. Recently, alternative types of solar power plants have been under development, in particular, a project

  7. Kauai Island Utility Cooperative energy storage study.

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu' e, HI); Murray, Aaron T.

    2009-06-01

    Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce

  8. Aligning Utility Incentives with Investment in Energy Efficiency

    Science.gov (United States)

    Describes the financial effects on a utility of its spending on energy efficiency programs, how those effects could constitute barriers to more aggressive and sustained utility investment in energy efficiency.

  9. Reducing barriers to energy efficiency in the German higher education sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German higher education (HE) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of six case studies of energy management in German universities. The results are analysed using the theoretical framework developed for the BARRIERS project (Sorrell et al., 2000). The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the sector may be improved. The results of the study for the higher education sector in Germany are summarised in this executive summary under the following headings: - Characterising the higher education sector; - Case studies of energy management in the German higher education sector; - Evidence of barriers in the German higher education sector; - The role of energy service companies in the higher education sector; - Policy implications. (orig.)

  10. Reducing barriers to energy efficiency in the German higher education sector. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German higher education (HE) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of six case studies of energy management in German universities. The results are analysed using the theoretical framework developed for the BARRIERS project (Sorrell et al., 2000). The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the sector may be improved. The results of the study for the higher education sector in Germany are summarised in this executive summary under the following headings: - Characterising the higher education sector; - Case studies of energy management in the German higher education sector; - Evidence of barriers in the German higher education sector; - The role of energy service companies in the higher education sector; - Policy implications. (orig.)

  11. Reducing barriers to energy efficiency in the German brewing sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J; Boede, U; Ostertag, K; Radgen, P

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  12. Reducing barriers to energy efficiency in the German brewing sector. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.; Ostertag, K.; Radgen, P.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector; - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  13. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  14. British Energy - nuclear power in the private sector

    International Nuclear Information System (INIS)

    Hawley, R.

    1997-01-01

    The first four months of the operation of British Energy as a privatised nuclear utility are briefly reviewed. Operational and financial performance have been good as exemplified by the figures for power output and financial return. Freedom from government control means that the options open to the company are much wider but the need to meet the expectations of shareholders is a major consideration. Added to this, the competitive nature of the electricity industry means that the cost reduction is important, though this cannot be at the expense of safety. Shareholder expectations make the funding of new nuclear power stations unrealistic at present. Increasingly, however, markets are opening up in the maintenance of existing plant and the decommissioning of older plant. The British Energy Group also has considerable expertise in the design, operation and management of power stations and of acting in a competitive energy market that could be exported. British Energy's International Division is in place to develop this potential. (UK)

  15. Renewable energies in the transport sector: Costs and possibilities

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2007-01-01

    Alternative fuels based on renewable energy sources, such as biodiesel, bioethanol and hydrogen from RES, have potential to reduce greenhouse gas emissions, climate change, to increase supply security and energy diversity. Transition from a fossil fuels based transport to future sustainable and clean transport is a long term and cost intensive process, especially for hydrogen use in transport. Hydrogen infrastructure is missing and most of hydrogen technologies are still at developing stage.This paper examines the economics of biofuels (bioethanol and biodiesel) and hydrogen production from renewable energy sources. The current and future costs of alternative fuels as well as the costs of the provided energy services are analysed in a dynamic framework till the year 2050. The goal is to identify the market chance of alternative fuels in a long term (till 2050). A rapid increase of fuel cell vehicles with hydrogen on the market is not expected before 2030, mainly because the costs of the fuel cells are still very high and because their efficiency, as well as the travelling range, is rather moderate.However, the use of alternative fuels in transport sector is very dependent on the political will. If political preferences, like e.g. zero-emission-vehicles, gain strong relevance this new fuels could accelerate its market penetration significantly

  16. The policy structure of the Dutch nuclear energy sector

    International Nuclear Information System (INIS)

    Zijlstra, G.J.

    1982-01-01

    The main objective of this study has been to indicate the principle structures through which much of governmental nuclear policy is formed and to develop a model for the analysis of policy communication networks. The first chapter begins with a general outline of the international development of nuclear energy and gives an impression of the Dutch nuclear energy sector with special emphasis on the institutional aspects. In chapter II the author elaborates on the place of structural analysis in public policy analysis and argues that it is one of the indispensable elements of public policy analysis. Relations are treated in chapter III. Personal interlocks are given special attention because these are interrelated with financial, informational and other dependency relations and have a special communicative function in public policy-making. The different functions of the interlocks are 'translated' in graph theoretical concepts. Chapter IV introduces a method derived from graph analysis to analyse public policy networks. Several structural configurations are distinguished. In the same chapter an outline of the empirical research on the nuclear energy network will be given. In chapters V and VI the nuclear energy network is analysed, and in chapter VII the decision-making concerning some nuclear items is described in a general way. (Auth.)

  17. Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1990-06-01

    This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

  18. Electric vehicles from the point of view of an energy utility; Elektrofahrzeuge aus Sicht eines Energieversorgers

    Energy Technology Data Exchange (ETDEWEB)

    Corpataux, M.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Marcel Corpataux from the Elektra Baselland utility (EBL) takes a look at the utility's activities in the renewable energies sector and the need for balancing energy supply and demand. Various methods on the demand side are briefly looked at and the use of 'vehicle-to-grid' concepts that use hybrid vehicles as storage facilities for electrical power are commented on. The chances offered to electricity utilities by using hybrid vehicles as buffer storage for electrical power are discussed.

  19. Sectoral analysis of energy consumption and energy related CO2 emissions in Finland 1990-1999

    International Nuclear Information System (INIS)

    Kirjavainen, M.; Tamminen, E.

    2002-03-01

    This study describes the development of energy consumption and energy related CO 2 emissions in Finland between 1990-1999. For better understanding of the factors behind the development in main sectors, special indicators are calculated to evaluate how the overall development of the sector is affected by the general activity of the sector, changes in sectoral structure and changes in end-use intensities within the sector. The specific energy consumption of space heating reduced especially during the first half of the decade. Also the total CO 2 emissions caused by space heating reduced, in spite of the increase in the building stock. The main reason for this has been the reduction in specific CO 2 emissions in production of district heat. Regardless of the increased traffic and slightly increased use of passenger cars over public transport, the total energy consumption as well as total CO 2 emissions in passenger transport reduced during the decade. The main reason for this is that the specific fuel consumption of passenger cars has reduced significantly. Volumes in freight traffic increased rapidly after the recession, and as no significant changes have occurred in either specific consumptions or in shares of different transport modes, the total energy use as well as total CO 2 emissions of freight transport have increased. The major factors affecting the energy use and CO 2 emissions of the manufacturing sector have been changes in production volumes. After the recession, growth has been rapid and that has resulted in increased total energy use and CO 2 emissions. Anyway, the especially rapid growth of the less energy intensive electronics industry has resulted in downward overall energy intensity within manufacturing sector. Major factors affecting the specific CO 2 emissions in energy production have been changes in the primary energy supply mix. In electricity production, the major factors have been the increase in nuclear capacity and the variation in net

  20. The energy sector exposed to the cyber-threat

    International Nuclear Information System (INIS)

    Desarnaud, Gabrielle

    2016-01-01

    Technologies of information and communication (TICs) are present at all stages of energy production, transport and distribution, and this development is an opportunity for a better resources allocation, but also makes physical infrastructures more vulnerable to cyber-crime. The example of a cyber-attack against Ukrainian utilities in 2015 showed that this threat is an actual one, and the author outlines how energy companies are particularly vulnerable to these threats for cultural, historical and organisational reasons. Some simulations already assessed the huge costs of a cyber-attack against these infrastructures. The author then discusses the perspective and possibilities of development of a cyber-safety in Europe

  1. A LINEAR PROGRAMMING METHOD TO ENHANCE RESOURCE UTILIZATION CASE OF ETHIOPIAN APPAREL SECTOR

    Directory of Open Access Journals (Sweden)

    Gezahegn Tesfaye

    2016-06-01

    Full Text Available The Ethiopian industrial development strategy is characterized by export-led and labor intensive industrialization. The country is emerging as the most important investment destination in its apparel sector. Thought this sector is expected to generate more income from the export market, its export earnings remain trivial mainly due to the inefficient organizational resource utilization. One of the competent techniques that help companies to efficiently improve the use of their resources to increase their profit is linear programming. In apparel manufacturing firms, efficient use of materials such as fabrics and sewing threads and processing time at different stages of production as well as minimization of labor and materials cost are necessary to enhance their profitability. Cutting, sewing, and finishing operations deserve more attention for apparel process optimization. However, the issue of proper resource allocation remains an unsolved problem within the Ethiopian apparel industry. The aim of this research is to devise efficient resource utilization mechanism for Ethiopian apparel sector to improve their resource utilization and profitability, taking one of the garment factories engaged in the export market as a case study. Five types of products the company is currently producing, the amount of resources employed to produce each unit of the products, and the value of profit per unit from the sale of each products have been collected from the case company. The monthly availability of resources utilized and the monthly production volume of the five products have also been collected from the company. The data gathered was mathematically modeled using a linear programming technique, and solved using MS-Excel solver. The findings of the study depicts that all of the organizational resources are severely underutilized. This research proved that the resource utilization of the case company can be improved from 46.41% of the current resource

  2. Nuclear Accidents: Consequences for Human, Society and Energy Sector

    Directory of Open Access Journals (Sweden)

    L. A. Bolshov

    2016-01-01

    Full Text Available The article examines radiation and hygienic regulations with regard to the elimination of consequences of the Chernobyl NPP accident in the context of relationships with other aspects, primarily socio-economic and political factors. This experience is reasonable to take into account when defining criteria in other regulatory fields, for example, in radioactive waste classification and remediation of areas. The article presents an analysis of joint features and peculiarities of nuclear accidents in the industry and energy sectors. It is noted that the scale of global consequences of the Chernobyl NPP accident is defined by the large-scale release of radioactivity into the environment, as well as an affiliation of the nuclear installation with the energy sector. Large-scale radiation accidents affect the most diverse spheres of human activities, what, in its turn, evokes the reverse reaction from the society and its institutions, including involvement of political means of settlement. If the latter is seeing for criteria that are scientifically justified and feasible, then the preconditions for minimizing socio-economic impacts are created. In other cases, political decisions, such as nuclear units’ shutdown and phasing out of nuclear energy, appear to be an economic price which society, as a whole and a single industry sector, pay to compensate the negative public response. The article describes fundamental changes in approaches to ensure nuclear and radiation safety that occurred after the Chernobyl NPP accident. Multiple and negative consequences of the Chernobyl accident for human and society are balanced to some extent by a higher level of operational safety, emergency preparedness, and life-cycle safety. The article indicates that harmonization and ensuring consistency of regulations that involve different aspects of nuclear and radiation safety are important to implement practical solutions to the nuclear legacy problems. The

  3. Sectoral trends in global energy use and greenhouse gasemissions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth

  4. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna [ed.

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland has been

  5. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  6. Massive use of photovoltaic systems on flat roofs in the utility sector

    International Nuclear Information System (INIS)

    Boomsma, H.; Borsboom, W.

    2000-09-01

    The aim of the study on the title subject is to give insight into the development of the market for photovoltaic power systems on flat roofs, as well as technical developments and building engineering aspects of such systems. The result of the study is an overview of the most successful product-market combinations to stimulate and introduce the use of solar energy in the fore-mentioned sector in the Netherlands. 11 refs

  7. N.6 report realized for the economical Affairs Commission on the law project, adopted by the National Assembly after urgency declaration, relative to the energy sector

    International Nuclear Information System (INIS)

    Poniatowski, L.

    2006-10-01

    This law project concerns the organization of the french energy sector and the definition of the public utilities. After a presentation of the juridical environment of the european energy sector, the author shows, in the framework of the world energy situation, that the evolution of the juridical aspects of Gaz de France answers a real necessity. He then presents the initial law project dispositions, the modifications of the National Assembly and the amendment of the commission. (A.L.B.)

  8. Increasing the participation of women in energy and mining sectors

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, C.J. [Canadian Coalition of Women in Engineering, Sciences, Trades and Technology, Mississauga, ON (Canada)

    2008-07-01

    A significant shortage of skilled trades people in the oil and gas industry is expected by 2016, and there are currently only 1200 geology graduates in Canada to fill an estimated 9000 positions available in 2008. This presentation discussed methods of increasing the participation of women in the energy and mining sectors in Canada. Women comprise 47 per cent of the Canadian workforce, but only 12.2 per cent and 4.0 per cent respectively of the engineering and construction workforce. Various associations have been developed in Newfoundland to encourage women to train for science and engineering positions in the oil and gas industry. The Canadian Coalition of Women in Engineering, Sciences, Trades and Technology (CCWESTT) is a pan-Canadian network that designs outreach and professional development programs for women. CCWESTT takes collaborative action with partners and stakeholders in diverse sectors, and is currently conducting recruitment and retention pilot programs with union training centre administrators in Newfoundland. The programs are designed to develop recruitment, selection, orientation, and human resources strategies for oil and gas companies. CCWESTT will help companies to prevent future skills shortages while ensuring that women contribute to the future of the oil and gas industry. tabs., figs.

  9. Planning Energy Sector Development in Croatian Agricultural Sector Following Guidelines of the European Energy Policy 20-20-20

    International Nuclear Information System (INIS)

    Kirac, M.; Krajacic, G.; Duic, N.

    2009-01-01

    Energy system planning is among the most important tasks of any society. A stable energy system is a foundation for economic growth, growing living standard and general prosperity of the society. Agriculture represents an important factor in overall Croatian economy; therefore, planning of the agriculture's energy system is a major task. To foresee the trend of consumption and to ensure reasonable economic energy supply in accordance with this trend is a process which should be continuously optimised so that the planned scenario could reflect actual situation. The agriculture, thanks to natural resources, land features and climate advantages represents a major economic sector. This activity has significant impact on food industry, trade, tourism, transport, chemical industry, etc. The relevance of agriculture is also visible in the present number of employees, future potential for employment and foreign trade balance. According to numerous parameters, agricultural activities in Croatia lag behind the EU countries. Great potential can be achieved by implementation of measures for energy intensity reduction and productivity increase.(author).

  10. Energy - dichotomies within the European Union? Outlook of the Turkish energy sector

    International Nuclear Information System (INIS)

    Dilli, B.

    2001-01-01

    Turkey, an alley of the West, and being in the process of rapid integration with the world economy, has started a comprehensive restructuring endeavor in the energy sector. In today's power markets where globalisation and competition plays an increasing role, supply security, economic growth and social targets must be harmonized effectively. Following topics can be considered as basic instruments in this context; restructuring of the power sector (privatization, demonopolization); removal of governmental intervention in the markets; creating a better regional/global cooperation for the deployment of new technologies; enhancing energy efficiency. (author)

  11. Open innovation in the power & energy sector: Bringing together government policies, companies’ interests, and academic essence

    International Nuclear Information System (INIS)

    Greco, Marco; Locatelli, Giorgio; Lisi, Stefano

    2017-01-01

    The Power and Energy (P&E) sector needs to respond to several challenges fostering investments in research and development. According to the Open Innovation (OI) paradigm, key stakeholders like utilities, vendors, laboratories, universities etc. should take advantage of external knowledge to improve their innovation performance. Several studies have demonstrated that firms adopting the OI paradigm are more likely to innovate. Despite the interest of P&E firms in enhancing their innovation capabilities, surprisingly few articles (usually case studies) described the implementation of the OI paradigm in P&E firms. This article fills the gap by identifying the key drivers that encourage a firm in the P&E sector to embrace the OI paradigm. The authors adopt a hybrid research approach collecting evidence from the literature and through a multiple case-study analysis involving seven British firms and universities operating in the P&E industry. As the drivers of OI have mutual influence, this article describes them with a fuzzy cognitive map. Finally, the authors identify appropriated policies to enhance the OI adoption and, consequently, the sustainability of innovation in the P&E sector. A salient research agenda closes the paper. - Highlights: • Stakeholders are increasingly adopting the Open Innovation (OI) paradigm. • OI can enhance firms and universities innovation performance. • Few studies analyzed the OI implementation in the Power and Energy (P&E) sector. • We identify the factors encouraging the adoption of the OI paradigm in the P&E sector. • We show benefits of OI obtained by P&E firms, universities, and associates in the UK.

  12. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the following areas will offer business

  13. China. Top Sector Energy. Sustainable Building. Opportunities for Dutch companies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    For China, sustainable design is necessary for controlling energy usage in crowded and constantly expanding urban areas. It is well known that China is the world's biggest construction market. Nearly half of the new buildings annually constructed worldwide are located in China by 2015. However, only about 4% of these are built according to energy efficiency standards. China's construction market will by 2020 account for 40% of the country's total energy consumption. While it contributes 15% of the world's GDP, China consumes 30% of the earth's steel and half its concrete. On top of which, buildings in China consume a third of the country's increasingly endangered water supplies. Recent research showed that almost half of the national energy consumption has been used for construction related purposes. Of existing buildings, a huge amount needs sustainable redesign and retrofitting technologies.Chinese government has recognized the urgency of widely implementing sustainable buildings. As a result, a national 3-star China National Green Building rating system has been launched in 2006. Yet the Chinese green building revolution is still in its infancy. Main problems are, amongst others, low level of regulations and standards, problematic implementations at local level, lack of awareness and transparency in related public and private sector, lack of expertise of integrated sustainable building design and construction among engineers, designers and constructors. It is also to be expected that more aggressive energy saving and environmental protection targets will be set by the 12th Five Year Plan. Promote green buildings will be one of the top priorities in China's swift urbanization process with focus on saving land, energy, water and materials. Chinese government has recognized the urgency of widely implementing sustainable buildings. Yet the Chinese green building revolution is still in its infancy. Under this framework, the

  14. Search for dark sectors in missing energy events

    CERN Multimedia

    Enik, T; Rubbia, A; Depero, E; Krasnikov, N; Petukhov, O; Kuleshov, S; Volkov, P; Trifonov, A; Radics, B; Toropin, A; Dermenev, A; Ahmed, N; Peshekhonov, D; Peshekhonov, V; Kekelidze, G; Dusaev, R; Vasilishin, B; Crivelli, P; Tlisov, D; Karjavine, V; Donskov, S; Lyubovitsky, V; Zhukov, K; Kirsanov, M; Karneyeu, A; Matveev, V; Lysan, V; Samoylenko, V

    The NA64 experiment (known as P348 at the proposal stage) is a fixed-target experiment at the CERN SPS combining the active beam dump and missing energy techniques to search for rare events. The experiment will build and operate a fully hermetic detector placed on the H4 beam line with the primary goal to search for light dark bosons (Z') from dark sector that are coupled to photons, e.g. dark photons (A'), or sub-GeV Z' coupled only to quarks. In some cases the Z' is coupled only to µ or tau, so we call the Z′ the dark leptonic gauge boson. The experiment is also capable to search for K_L -> invisible decay, which is complementary to K+ -> π+ + ν ν, and invisible decays of π0, η, η′, K_S mesons.

  15. Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method

    International Nuclear Information System (INIS)

    Bhattacharya, Anindya; Kojima, Satoshi

    2012-01-01

    The conventional pricing mechanism used for electricity systematically hides huge investment risks which are embedded in the overall cost of production. Although consumers are often unaware of these risks, they present a large financial burden on the economy. This study applies the portfolio optimization concepts from the field of finance to demonstrate the scope of greater utilization of renewable energies (RE) while reducing the embedded investment risk in the conventional electricity sector and its related financial burden. This study demonstrates that RE investment can compensate for the risks associated with the total input costs; such costs being external volatilities of fossil fuel prices, capital costs, operating and maintenance costs and the carbon costs. By means of example, this case study shows that Japan could in theory obtain up to 9% of its electricity supply from green sources, as compared to the present 1.37%, based on the utilization of a portfolio risk-analysis evaluation. Explicit comparison of the monetary values of the investment risks of conventional and renewable energy sources shows that renewable energies have high market competitiveness. The study concludes with a recommendation that, as a business objective, investors would benefit by focusing on electricity supply portfolio risk minimization instead of cost. This could also inherently increase the supply of renewable energy in the market. - Research highlights: ►Energy sector investors should not be bothered only about the absolute cost figures of the input factors like fossil fuels but should also be careful about the fluctuation of their costs while making the investment decisions. ►Inclusion of renewable energy in the investment portfolio can increase the cost apparently but can reduce the risk hedging costs, too. ►International carbon price may not be a good factor to encourage renewable energy investment in the market.

  16. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  17. Environmental accounting and reporting of energy utility companies. Research notes

    International Nuclear Information System (INIS)

    Heiskanen, E.; Heininen, M.; Heurlin, E.; Lovio, R.; Paenkaelaeinen, M.

    1997-09-01

    The research note consists of articles written by a number of authors. The aim of the articles is to describe general development trends of environmental accounting and reporting from the point of view of the energy sector

  18. A reform strategy of the energy sector of the 12 countries of North Africa and the Eastern Mediterranean

    International Nuclear Information System (INIS)

    Patlitzianas, Konstantinos D.; Doukas, Haris; Kagiannas, Argyris G.; Askounis, Dimitris Th.

    2006-01-01

    The development of an energy reform strategy based on the market economy so as to introduce competition in the market segments is of crucial importance for provision of a stable and favourable environment for energy investments. Reform strategies have begun developing in most of the 12 Mediterranean Countries of North Africa and the Eastern Mediterranean, especially in the context of the Euro-Mediterranean Free Trade Area. Even though energy sector reforms have been initiated, they are still at an early stage in most of these countries. The majority of energy utilities remain state owned, vertically integrated monopolies. Few of these countries have established energy regulators, and where they have, these institutions have many difficulties in effective development. In addition, competition is virtually absent from the sector, and private participation has been confined to independent power plants, which tend to be introduced into unreformed sectors. The aim of this paper is to propose energy reform strategies for the reform of the sector by 2010 in terms of the development of the regional oil, gas and electricity sectors in these countries

  19. An energy literacy strategy from the University of Calgary for the entire energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C.; Heffernan, B.; Jenden, J.; Lloyd, E.R.; Toor, J.; Williams, J.E., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada)

    2014-07-01

    The public at large needs to have a better understanding of the entire energy sector in order to put the benefits and drawbacks of nuclear power into proper perspective.University science departments can and should play a more significant role in educating the public about various aspects of nuclear power, and energy in general. This paper discusses how the University of Calgary is launching initiatives to help teach the public about energy issues. These initiatives include a course for non-technical students on energy, a similar course for people within the energy industry without a technical background, and an extensive online encyclopedia to support these courses. (author)

  20. An energy literacy strategy from the University of Calgary for the entire energy sector

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Heffernan, B.; Jenden, J.; Lloyd, E.R.; Toor, J.; Williams, J.E.

    2014-01-01

    The public at large needs to have a better understanding of the entire energy sector in order to put the benefits and drawbacks of nuclear power into proper perspective.University science departments can and should play a more significant role in educating the public about various aspects of nuclear power, and energy in general. This paper discusses how the University of Calgary is launching initiatives to help teach the public about energy issues. These initiatives include a course for non-technical students on energy, a similar course for people within the energy industry without a technical background, and an extensive online encyclopedia to support these courses. (author)

  1. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  2. A new hybrid decision framework for prioritizing funding allocation to Iran's energy sector

    International Nuclear Information System (INIS)

    Alipour, M.; Alighaleh, S.; Hafezi, R.; Omranievardi, M.

    2017-01-01

    With the historic nuclear agreement now in effect, Iran's energy sector expects a new transformation to spark back into life. The government seeks to recover the years of backwardness by capital injections and attract foreign cash into the sector long starved of investment. In this respect, an appropriate and convenient resource allocation scheme in a long-term perspective is vital to keep Iran's position as a major energy supplier. This study develops a new hybrid multi-criteria decision-making model through integrating fuzzy Analytical hierarchy process with the Cumulative belief degree model to effectively evaluate energy alternatives for investment in Iran. Fuzzy analytical hierarchy process adds more benefits to the integrated model by providing the fuzzy pairwise comparison to identify weights of criteria while the Cumulative belief degree approach offers higher quality results of overall experts' opinions since it can deal with the missing values. STEEP analysis is also used to ensure capturing influential factors in five categories: social, technological, economic, environmental, and political. As a real application, the proposed methodology is applied to prioritize major energy resources for investment in Iran. Results indicate that natural gas is the ideal option for receiving the highest funding priority followed by solar and oil. - Highlights: • A new hybrid multi-criteria decision making method is proposed. • Cumulative belief degree model is combined with fuzzy analytical hierarchy process. • Utilization of STEEP analysis to capture all influential parameters. • Evaluation of Iran's energy sector to prioritize alternatives for investment. • Natural gas is Iran's best energy investment option followed by solar and oil.

  3. Comparative risk assessment of severe accidents in the energy sector

    International Nuclear Information System (INIS)

    Burgherr, Peter; Hirschberg, Stefan

    2014-01-01

    Comparative assessment of accident risks in the energy sector is a key aspect in a comprehensive evaluation of sustainability and energy security concerns. Safety performance of energy systems can have important implications on the environmental, economic and social dimensions of sustainability as well as availability, acceptability and accessibility aspects of energy security. Therefore, this study provides a broad comparison of energy technologies based on the objective expression of accident risks for complete energy chains. For fossil chains and hydropower the extensive historical experience available in PSI's Energy-related Severe Accident Database (ENSAD) is used, whereas for nuclear a simplified probabilistic safety assessment (PSA) is applied, and evaluations of new renewables are based on a combination of available data, modeling, and expert judgment. Generally, OECD and EU 27 countries perform better than non-OECD. Fatality rates are lowest for Western hydropower and nuclear as well as for new renewables. In contrast, maximum consequences can be by far highest for nuclear and hydro, intermediate for fossil, and very small for new renewables, which are less prone to severe accidents. Centralized, low-carbon technology options could generally contribute to achieve large reductions in CO 2 -emissions; however, the principal challenge for both fossil with Carbon Capture and Storage and nuclear is public acceptance. Although, external costs of severe accidents are significantly smaller than those caused by air pollution, accidents can have disastrous and long-term impacts. Overall, no technology performs best or worst in all respects, thus tradeoffs and priorities are needed to balance the conflicting objectives such as energy security, sustainability and risk aversion to support rationale decision making. - Highlights: • Accident risks are compared across a broad range of energy technologies. • Analysis of historical experience was based on the

  4. Deregulation and growth in China's energy sector: a review of recent development

    International Nuclear Information System (INIS)

    Wu, Yanrui.

    2003-01-01

    Dramatic changes have taken place in China's energy sector over the past decade. These changes have important implications for energy consumption, trade, production and regulatory policies in China and beyond. The objective of this paper is to review some of the key issues associated with deregulation and growth in China's energy sector. Specifically, the paper presents a survey of recent reforms in this sector; it also analyses the impact of deregulation on energy policy, ownership, foreign investment and trade, and sheds some lights on the sources of growth in China's energy sector

  5. Methodology for getting the end use of energy in the industrial sector from Parana State

    International Nuclear Information System (INIS)

    Haag Filho, A.

    1990-03-01

    A methodology for a survey on the utilization of energy in the industrial sector from Parana state, at low costs, and aiming the supply of data with the desired reliability and disaggregation is presented. The obtained data shall provide elements for the adoption of short term actions as well as serve as a basis for the elaboration of medium and long terms scenarios. The survey shall be conducted throughout the state, comprising all fields of activity and having the following objectives: determine the state's energetic consumption profile by industrial segment and by end use of energy; determine the state's energetic profile with the spatial distribution of consumption and detect the industrial segments which are more sensitive to the energetic substitution programs and/or of energy conservation. (author)

  6. Estimating energy conservation potential in China's commercial sector

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Ailun

    2015-01-01

    With low energy intensity and great potential for growth, the commercial sector has become one of the key sectors for energy conservation and emission reduction in the context of China's rapid urbanization process. Based on the EIA (Energy Information Administration) statistical methods, this paper calculates the energy consumption of China's commercial sector from 1981 to 2012, specifies the determinants of commercial energy demand, forecasts future energy consumption and estimates the energy conservation potentials using the Johansen co-integration methodology. The results indicate: (i) GDP (Gross Domestic Product) and urbanization have positive effects on the energy consumption of the commercial sector while labor productivity and energy price contribute to reduction in the sector's energy consumption. (ii) Under the basic scenario, energy consumption of the commercial sector will be 317.34 and 469.84 Mtce (million tons of coal equivalent) in 2015 and 2020 respectively. (iii) Under the moderate and advanced scenario, about 187.00 and 531.45 Mtce respectively of the energy consumption of the commercial sector can be conserved from 2013 to 2020. The findings have important implications for policy-makers to enact energy-saving policies. - Highlights: • Calculation of China's commercial energy consumption and saving potential. • Co-integration model is applied to estimate commercial energy efficiency. • Decomposition of driving forces of energy consumption. • Future policies for commercial energy efficiency are discussed

  7. Emissions reduction scenarios in the Argentinean Energy Sector

    International Nuclear Information System (INIS)

    Di Sbroiavacca, Nicolás; Nadal, Gustavo; Lallana, Francisco; Falzon, James; Calvin, Katherine

    2016-01-01

    In this paper the LEAP, TIAM-ECN, and GCAM models were applied to evaluate the impact of a variety of climate change control policies (including carbon pricing and emission constraints relative to a base year) on primary energy consumption, final energy consumption, electricity sector development, and CO_2 emission savings of the energy sector in Argentina over the 2010–2050 period. The LEAP model results indicate that if Argentina fully implements the most feasible mitigation measures currently under consideration by official bodies and key academic institutions on energy supply and demand, such as the ProBiomass program, a cumulative incremental economic cost of 22.8 billion US$(2005) to 2050 is expected, resulting in a 16% reduction in GHG emissions compared to a business-as-usual scenario. These measures also bring economic co-benefits, such as a reduction of energy imports improving the balance of trade. A Low CO_2 price scenario in LEAP results in the replacement of coal by nuclear and wind energy in electricity expansion. A High CO_2 price leverages additional investments in hydropower. By way of cross-model comparison with the TIAM-ECN and GCAM global integrated assessment models, significant variation in projected emissions reductions in the carbon price scenarios was observed, which illustrates the inherent uncertainties associated with such long-term projections. These models predict approximately 37% and 94% reductions under the High CO_2 price scenario, respectively. By comparison, the LEAP model, using an approach based on the assessment of a limited set of mitigation options, predicts an 11.3% reduction. The main reasons for this difference include varying assumptions about technology cost and availability, CO_2 storage capacity, and the ability to import bioenergy. An emission cap scenario (2050 emissions 20% lower than 2010 emissions) is feasible by including such measures as CCS and Bio CCS, but at a significant cost. In terms of technology

  8. Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA

    International Nuclear Information System (INIS)

    Yu, Xuewei; Moreno-Cruz, Juan; Crittenden, John C.

    2015-01-01

    Rebound effect is defined as the lost part of ceteris paribus energy savings from improvements on energy efficiency. In this paper, we investigate economy-wide energy rebound effects by developing a computable general equilibrium (CGE) model for Georgia, USA. The model adopts a highly disaggregated sector profile and highlights the substitution possibilities between different energy sources in the production structure. These two features allow us to better characterize the change in energy use in face of an efficiency shock, and to explore in detail how a sector-level shock propagates throughout the economic structure to generate aggregate impacts. We find that with economy-wide energy efficiency improvement on the production side, economy-wide rebound is moderate. Energy price levels fall very slightly, yet sectors respond to these changing prices quite differently in terms of local production and demand. Energy efficiency improvements in particular sectors (epicenters) induce quite different economy-wide impacts. In general, we expect large rebound if the epicenter sector is an energy production sector, a direct upstream/downstream sector of energy production sectors, a transportation sector or a sector with high production elasticity. Our analysis offers valuable insights for policy makers aiming to achieve energy conservation through increasing energy efficiency. - Highlights: • We developed a CGE model to investigate economy-wide energy rebound in Georgia, USA. • The CGE model has detailed treatment for different energy inputs for production. • The model has a highly disaggregated sector profile helpful for policy making. • We compared the economy-wide impact shocks in different epicenter sectors. • We analyzed why epicenters generate dramatically different economy-wide impacts.

  9. Energy transition in the transport sector. An action plan: how to finance the exploitation of sources of energy efficiency of the sector?

    International Nuclear Information System (INIS)

    Fink, Meike; Legrand, Vincent

    2014-05-01

    This report aims at identifying measures to be implemented during coming years in order energy consumption of the transport sector to become consistent with energy scenarios, and at studying how these measures could be funded. After a presentation of the situation of the transport sector in terms of energy consumption (energy consumption by the different sub-sectors, greenhouse effect, relationship with mobility, issue of infrastructures and related investments) and of its objectives, this study proposes an overview of the content of various scenarios (NegaWatt, Ademe, Ministry of Ecology, Greenpeace). It proposes a brief overview and discussion of energy saving potentials and sources, and presents issues related to energy efficiency in the transport sector. It develops an action plan aimed at exploiting energy efficiency sources in transports. This action plan notably comprises: a political signal for a more efficient mobility, a support to change in mobility, actions in town planning to ease energy efficiency in transports, a more efficient use of the rolling stock, infrastructures for a more efficient transport sector, a price signal in favour of a more efficient transport. The next parts of the study discuss expenses of the transport sector, incomes and funding tools for energy efficiency in transports, financial needs for efficiency improvement, financial resources, and propose a road map

  10. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  11. Reducing Operating Costs and Energy Consumption at Water Utilities

    Science.gov (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  12. Modelling a sector undergoing structural change: The case of Danish energy supply

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2000-01-01

    for the demand of the produced goods. Environmental priorities and targets for emission reductions are important for defining energy policy in Denmark. As the energy supply sector at present is a major contributor to emissions of CO2 and SO2, knowledge of this sector is vital for reducing these emissions......This paper examines structural change in the power and heat producing sector (energy supply) and its implications for the economy. An integrated approach is used to describe the interactions between this sector and the rest of the economy. Thus, a very detailed model of the sector for Denmark has...... been linked to a macroeconometric model of the Danish economy. It is argued that analysing sectors that undergo radical changes, for example, the energy supply sector should be undertaken by using a model that describes the technological and organisational changes in production along with implications...

  13. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  14. European Utility Requirements: European nuclear energy

    International Nuclear Information System (INIS)

    Komsi, M.; Patrakka, E.

    1997-01-01

    The work procedure and the content of the European Utility Requirements (EUR) concerning the future LWRs is described in the article. European Utility Requirements, produced by utilities in a number of European countries, is a document specifying the details relating to engineered safety, operating performance, reliability and economics of the reactors to be built by manufacturers for the European market

  15. Public contracts in the Dutch energy sector. A strategic investigation with regard to normalisation

    International Nuclear Information System (INIS)

    Van der Feen, E.J.; Maas, P.J.J.

    1995-01-01

    A number of strategic investigations is carried out to determine if and to what extent normalization of public contracts can support the position of the Dutch businesses and industry in the European market. The strategic investigation in this report is limited to clusters within the Dutch energy utilities' sector concerning the production, transportation and distribution of electricity and heat, and the distribution of natural gas in the Netherlands. The results of this report can support those companies that will acquire orders via public contracts in the future; companies that wish to continue existing relations with tender services, if they will change to public contracts; and tender services that will have to put their orders via public contracts.Relevant European guidelines and accompanying procedures are outlined. The economic interest of the total Dutch energy sector and the different energy clusters in the Netherlands is discussed. Also attention is paid to the process of normalization, the role of standards and other technical documents regarding the guidelines Public Contracts. An inventory of available standards and conceptual standards is given for each energy cluster. Finally, an indication is given of the actual compliance of the guidelines. 5 figs., 4 tabs., 16 appendices

  16. Optimization in the energy sector; Optimierung in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The implementation of the energy transition and the developments in the national and international Energy markets constantly require sound analysis and new answers. The symposium ''optimization in the energy sector'' gives an overview of methods and models that can be practically used for decision support. Storage and electromobility as demand flexibility are important factors for the long-term design of the German and European energy system. But methodological aspects such as the consideration of uncertainties at the conference an important place is given. A key issue is also the short and medium term further development of the electricity market design. Not only broadly but also in detail e.g. the standard benefit and intraday markets there is considerable potential for optimization, which will be discussed in the context of technical presentations. And in view of challenging market environment is also new approaches to portfolio management a great importance for the practice. Therefore we are convinced that the Conference and its results for energy companies, public services and new entrants in the energy industry as well are of interest as for consultants, authorities, associations and energy economic research institutes. [German] Die Umsetzung der Energiewende und die Entwicklungen auf den nationalen und internationalen Energiemaerkten erfordern immer wieder fundierte Analysen und neue Antworten. Die Fachtagung ''Optimierung in der Energiewirtschaft'' gibt hier einen Ueberblick ueber Methoden und Modelle, die praxisnah zur Entscheidungsunterstuetzung eingesetzt werden koennen. Speicher und Elektromobilitaet ebenso wie Nachfrageflexibilitaet sind wichtige Faktoren fuer die langfristige Gestaltung des deutschen und europaeischen Energiesystems. Aber auch methodischen Aspekten wie die Beruecksichtigung von Unsicherheiten wird im Rahmen der Tagung ein wichtiger Platz eingeraeumt. Ein zentrales Thema ist zudem die kurz- und

  17. Impacts of Renewable Energy Quota System on China's Future Power Sector

    OpenAIRE

    Xiong, Weiming; Zhang, Da; Mischke, Peggy; Zhang, Xiliang

    2014-01-01

    As the biggest carbon emitting sector which produces 44% of current national carbon emission in China, the coal-dominated power sector has a tremendous potential for CO2 mitigation in the next two decades. Renewable energy quota system is currently discussed as a potential future policy instrument for the power sector, which requires certain fraction of renewable energy in total power generation for each province and grid zone. The quantitative studies on renewable energy quota for China are ...

  18. Combined generation of electric and heating energy in future development of Yugoslav energy sector until 2000

    International Nuclear Information System (INIS)

    Djajic, Nenad; Zivanovic, Vladimir

    2000-01-01

    Development of the district heating system in the FR Yugoslavia, beside the combined generation of electric and heating energy presents a necessity for energy, economic and ecological reasons. Although the structure of energy reserves is rather unfavourable considering that the lignite is being predominantly used, available reserves of energy raw material are able to ensure the long-term development of Yugoslav energy sector, and to offer real possibilities for considerable substitution of foreign good quality fuels, especially in district heating systems. Their further development will depend, among other things: on the implementation of new technological solutions for the exploitation of local energy resources; need of reconstruction, revitalisation and transformation of old condensing thermal power plants into the cogeneration plants; installation of remote controlled transmission of heating energy as well as on development of heating plants and smaller co-generation plants based on local energy resources. (Authors)

  19. Impact of alternative energy forms on public utilities

    Science.gov (United States)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  20. A new NAMA framework for dispersed energy end-use sectors

    DEFF Research Database (Denmark)

    Cheng, Chia-Chin

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two ...

  1. The transport sector's energy usage in 2011; Transportsektorns energianvaendning 2011

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ellen; Kadic, Zinaida; Lindblom, Helen

    2012-11-01

    Today, the transport sector accounts for a quarter of the Sweden's energy consumption. As the transport sector is almost exclusively using fossil fuels, its conversion to other fuel-/energy types have a major impact in the coming years with the increasing requirements for reduced emissions of greenhouse gases. This situation is expected to change and expand requirements for statistics on the transport sector's energy use. Since 2008, as a result of the increased interest, the Swedish Energy Agency publish an annual collection of statistics for the transport sector.

  2. Demand-side management and demand response in the Ontario energy sectors

    International Nuclear Information System (INIS)

    2004-01-01

    A directive from the former Minister of Energy was received by the Ontario Energy Board (OEB), directing the Board to consult with stakeholders on options for the delivery of demand-side management (DSM) and demand response (DR) activities within the electricity sector, including the role of local distribution companies in such activities. The implementation costs were to be balanced with the benefits to both consumers and the entire system. The scope of the review was expanded by the Board to include the role of gas distribution companies in DSM. A consultation process was implemented and stakeholders were invited to participate. A series of recommendations was made, including: (1) a hybrid framework utilizing market-based and public-policy approaches should deliver DSM and DR activities in Ontario's energy markets, (2) DSM and DR activities should come under the responsibility of a central agency, (3) DSM and DR activities should be coordinated through cooperation between the Ministry of Energy, the Independent Electricity Market Operator (IMO) and the Ontario Energy Board, (4) regulatory mechanisms to induce gas distributors, electricity transmitters and electricity distributors to reduce distribution system losses should be put in place, (5) all electricity consumers should fund electricity DSM and some retail DR initiatives through a transparent, non-bypassable consumption charge, and (6) the Board should design, develop and deliver information to consumers regarding energy conservation, energy efficiency, load management, and cleaner sources of energy. refs., 4 figs

  3. Energy and the rural sector in Papua New Guinea

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J L

    1977-03-15

    Energy in a dispersed form and at a low cost is needed if it is to have a significant effect in Papua, New Guinea. Appropriate application of energy at an intermediate-technology level would involve local residents in the construction and operation of solar and wind systems, inexpensive water systems, and a waste-fueled power system. The region's primary resource, manpower, must be utilized to overcome the disadvantages of poverty and a difficult terrain. Wood is the principal fuel and is burned directly as well as converted to producer gas. A review of the village's resources and potential for development concludes that medium-scale projects are feasible if the people are given guidance to help them develop technical and mechanical competence. 7 references. (DCK)

  4. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    Science.gov (United States)

    Indati, M. S.; Ghate, A. T.; Leong, Y. P.

    2013-06-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  5. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Indati, M S; Leong, Y P; Ghate, A T

    2013-01-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  6. Contribution to electrical energy sector reform: Maghreb's case

    International Nuclear Information System (INIS)

    Rahmouni, A.

    2008-01-01

    This article presents an electrical energy sector reform 'initiative' adapted to developing countries, in particular those of Maghreb, in order to promote competitive electricity business outside of market structures. It is a matter 1) of authorizing access to networks and international interconnections for all high or low voltage consumers, in particular those very sensitive to electricity prices and to competition, in order to get electricity supply on foreign markets and/or from private producers and/or develop their own productions directly or via consortium; 2) of authorizing access to networks and international interconnections for every independent production destined for internal and/or foreign markets, resulting especially in the development of competitive supplies which are renewable or reduce network constraints; 3) of initiating (or promoting) the integrated management of supply, demand and network systems, around the fundamental principles of technical and economical optimizations, bearing in mind the sector's unique character in order to develop the trans-border electricity business. Much appreciated by internal and external economic operators, the outcome of this initiative applied to the development of self generation and launched for the first time in Morocco, is impressive, since less than one year following its launch, several national and foreign company associations committed, by way of signed agreements, to equip around a dozen wind energy sites spread across the whole of the land and totaling a power of more than 1000 MW so 20% to 25% of the country's current peak demand. Some of the region's countries have shown their keen interest in this solution. In addition, analysis and simulation studies carried out on the integrated systems of Maghreb and the Iberian Peninsula show that access to international networks and interconnections in order to choose one's own suppliers, means among other things that significant gains on production costs of

  7. Analysis of the sector petroleum refineries in energy scenarios for The Netherlands. Analyse van de sector raffinaderijen voor de Nationale Energie Verkenningen

    Energy Technology Data Exchange (ETDEWEB)

    Van Oostvoorn, F

    1926-07-01

    The calculations with regard to the oil sector in general and the petroleum refineries in particular of the energy scenarios for The Netherlands are described. Calculations have been made with the help of the energy models SELPE and SERUM, developed for the total energy scene of The Netherlands and the petroleum refineries respectively. The results of the calculations with respect to the petroleum refineries are compared. This resulted in adjustment of the parameters for the oil sector in the SELPE energy model and the consequences of these adjustments for the energy scenarios for The Netherlands. 3 figs., 15 tabs., 10 refs.

  8. Challenges for Sustainable Energy Sectors in Developing Countries- with Case Studies from Zambia, Zimbabwe, India and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Regine

    1998-12-31

    Most of the developing countries have severe constraints on economic development caused by serious problems in their power sector. This report analyses the technical and financial situation of the sector from the perspective of sustainable electricity strategies. The core problem of the electricity sector is the complete lack of energy efficiency at all levels from generation to end user. The current emphasis on private participation in new electricity generation projects fails to solve the core problem and even diverts attention from the real challenge. An arm`s length relationship between governments and utilities is of central importance for a sound performance of the power sector. But more autonomous power sector decisions, such as reformed tariff structures, might contribute to inflation and political unrest. This is a main barrier to steps towards power sector autonomy. Another barrier is the lack of institutional capacity, despite over staffed utilities. Most important is the fact that the organizational structures are designed for supply-side management and that the incentive structures for good performance are often weak. The case of Thailand shows that end-use efficiency can be developed considerably by means of incentives and regulations and that transparency was an important condition for achieving this. The real challenge for development cooperation is to support the improvement of energy efficiency at all levels and the institutional and financial preconditions. It is also an important challenge to support developing countries in preparing for future utilization of viable new renewable energy carriers. Apart from this, it is important to continue the work for environmental impact assessments of planned power projects, and to support measures for minimizing the environmental impacts of old power plants. 48 refs., 2 figs.

  9. Challenges for Sustainable Energy Sectors in Developing Countries- with Case Studies from Zambia, Zimbabwe, India and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Regine

    1997-12-31

    Most of the developing countries have severe constraints on economic development caused by serious problems in their power sector. This report analyses the technical and financial situation of the sector from the perspective of sustainable electricity strategies. The core problem of the electricity sector is the complete lack of energy efficiency at all levels from generation to end user. The current emphasis on private participation in new electricity generation projects fails to solve the core problem and even diverts attention from the real challenge. An arm`s length relationship between governments and utilities is of central importance for a sound performance of the power sector. But more autonomous power sector decisions, such as reformed tariff structures, might contribute to inflation and political unrest. This is a main barrier to steps towards power sector autonomy. Another barrier is the lack of institutional capacity, despite over staffed utilities. Most important is the fact that the organizational structures are designed for supply-side management and that the incentive structures for good performance are often weak. The case of Thailand shows that end-use efficiency can be developed considerably by means of incentives and regulations and that transparency was an important condition for achieving this. The real challenge for development cooperation is to support the improvement of energy efficiency at all levels and the institutional and financial preconditions. It is also an important challenge to support developing countries in preparing for future utilization of viable new renewable energy carriers. Apart from this, it is important to continue the work for environmental impact assessments of planned power projects, and to support measures for minimizing the environmental impacts of old power plants. 48 refs., 2 figs.

  10. Assessment of energy efficiency options in the building sector of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.; Ghajar, R.F.

    2004-01-01

    This paper examines the merits of implementing energy efficiency policies in the building sector in Lebanon following the approach normally adopted in Climate Change studies. The paper first examines the impact of the energy sector on the Lebanese economy, and then assesses the feasibility of implementing suitable energy efficiency options in the building sector. For this purpose, a detailed analysis of the building sector in Lebanon is presented with emphasis on the thermal characteristics of building envelopes and the energy consuming equipment. The long-term benefits of applying energy efficiency options in the building sector are then assessed using a scenario-type analysis that compares these benefits against those of a baseline scenario that assumes no significant implementation of energy efficiency policies. Finally, feasible options are highlighted and recommendations to remove the major barriers hindering the penetration of energy efficiency options in the Lebanese market are provided

  11. Utilizing scalar electromagnetics to tap vacuum energy

    International Nuclear Information System (INIS)

    Sweet, F.; Bearden, T.E.

    1991-01-01

    Based on E.T. Whittaker's previously unnoticed 1903-1904 papers which established a hidden bidirectional EM wave structure in a standing forcefield free scalar potential, a method of directly engineering the ambient potential of the vacuum has been developed and realized experimentally. Adding Whittaker's engineerable hidden variable theory to classical electromagnetic, quantum mechanics, and general relativity produces supersets of each discipline. These supersets are joined by the common Whittaker subset, producing a unified field theory that is engineerable and tested. By treating the nucleus of the atom as a pumped phase conjugate mirror, several working model energy units have been produced which excite and organize the local vacuum, increase the local virtual photon flux between local vacuum and nucleus, establish coherent self-oscillations between the local excited vacuum and the affected nuclei, utilized the self-oscillating standing wave for self-pumping of the nuclei/mirrors, introduce a very tiny signal wave to the mirrors, and output into an external load circuit a powerful, amplified, time-reversed phase conjugate replica wave at 60 Hertz frequency and nominal 120 volt sine wave power. Several models have been built, ranging from 6 watts early on to one of 5 kilowatts. Both closed battery-less systems with damped positive feedback and open loop systems with battery-powered input have been successfully built. Open loop power gains of from 5 x 10 4 to 1.5 x 10 6 have been achieved. Antigravity experiments have also been successfully conducted where the weight of the unit was reduced by 90% in controlled experiments, with a signal wave input of 175 microwatts and an output of 1 kilowatt. The basic theory of the device is briefly explained and experimental results presented

  12. Nuclear energy and opportunity to strengthen the sustainable electricity sector; Energia nuclear una oportunidad para fortalecer el sector electrico sustentable

    Energy Technology Data Exchange (ETDEWEB)

    Robles N, A. G. [Comision Federal de Electricidad, Direccion de Proyectos de Inversion Financiada, Gerencia de Proteccion Ambiental, Paseo de la Reforma No. 164, Col. Juarez, 06600 Ciudad de Mexico (Mexico)

    2016-09-15

    The beginning of electricity in Mexico was through the use and exploitation of natural resources; as the demand grew, more generation power plants were required with great capacity and at the same time the fuels used varied, although, oil continued to be the main fuel. At present, due to the effects of climate change, the Conference of the Parties has proposed to reduce the consumption of fossil fuels to give way to clean energy (wind, solar, geothermal, nuclear, etc.), which entails gradually modifying the energy matrix of the electricity sector. The National Development Plan and the National Electricity Sector Development Program, this coordinated by the Energy Secretariat in Mexico, establish policies to promote sustainable development, increasing electricity generation through clean energy sources, including nuclear energy. However, such plans are not accurate in the strategy to be followed to ensure compliance with the increased participation of nuclear energy. This article proposes a nuclear program for the Mexican electricity sector, under the terms of a State policy, aimed at crystallizing a sustainable electricity development 2015-2036; considering that the application to the electricity sector constitutes a representative and justified example of the incorporation of environmental aspects in decision processes for the preservation of the environment. In order to determine the quantity and type of reactors, as well as the number of nuclear power plants and increase of the installed capacity, the general planning scheme of the electric sector was used, taking as reference the modeling criteria of the WASP planning system. Finally, is concluded that the electricity generated by fission of radioactive elements is an opportunity to fulfill the commitments made by Mexico at COP 21 and to meet in an environmentally friendly way the energy requirement that our country needs. (Author)

  13. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Fath, Brian D.

    2014-01-01

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  14. Sectoral energy demand studies: Application of the end-use approach to Asian countries

    International Nuclear Information System (INIS)

    1991-01-01

    Events since August 1990 have shown that the world is still dependent on oil despite efforts to decrease that dependency since the oil crisis of 1973 and 1979. Thirteen countries participated in the REDP (UNDP-funded Regional Energy Development Programme) energy planning activities called ''Sectoral energy demand studies'' in which country teams benefited from training in energy data analysis, sectoral accounting of energy demand, and forecasting with the use of MEDEE-S model. This publication documents the training materials on sectoral energy demand series. It includes eight chapters which were indexed separately. Refs, figs, tabs

  15. The Philippine electricity sector reform and the urban question: How metro Manila's utility is tackling urban poverty

    International Nuclear Information System (INIS)

    Mouton, Morgan

    2015-01-01

    In the early 2000s, the Philippine government reformed its electricity sector following neoliberal principles: unbundling of the power industry, privatisation of assets and commodification of electricity. This paper shows that the reform was primarily driven by the need to secure electricity supply and cut down tariffs. These national objectives ousted other issues, and notably those that find their expression at the urban level, among which the question of access to electricity in Metro Manila's urban poor communities. The central state withdrew its attention from the issue of electrification, and local actors had to react as they were confronted to social tensions and practices of pilferage. As a consequence, city governments and local administrations are getting involved in this issue, which opens the way to participation of civil society. This paper shows how the “rolling back” of the central state led to new partnerships and arrangements between the distribution utility, local governments and community organisations. This movement points to an urbanisation of energy issues, which could bring positive results for end-users provided that it is accompanied by a clearer regulatory framework. - Highlights: • The electricity reform did not take the urban poor into consideration. • The state retreated from issues of electrification. • Decentralisation favoured the emergence of new, local actors for this aspect of energy policy. • The distribution utility is left with an increased power over issues of access to electricity. • Territorially and qualitatively, electrification programs are more diverse

  16. Electric utilities strategies in final energy markets

    International Nuclear Information System (INIS)

    Bianchi, A.

    2000-01-01

    In rapidly changing markets, electric utilities pay growing attention to customers and service. They are aware that competition needs strategies capable of transforming and strengthening the privileged position resulting from the knowledge of the market. Moreover, this aspect is the link between different value chains to describe new multi utility approaches [it

  17. Environmental damage costs in Iran by the energy sector

    International Nuclear Information System (INIS)

    Shafie-Pour, Majid; Ardestani, Mojtaba

    2007-01-01

    On the basis of the energy supply and demand, this paper assesses the environmental damage from air pollution in Iran using the Extern-E study that has extended over 10 years and is still in progress in the European Union (EU) commission. Damage costs were transferred from Western European practice to the conditions of Iran by scaling according to GDP per capital measured in PPP terms. Using this approach, the total health damage from air pollution in 2001 is assessed at about $7 billion; equivalent to 8.4% of nominal GDP. In the absence of price reform and control policies, it is estimated that damage in Iran will grow to $9 billion by 2019, in the money of 2001. This is equivalent to 10.9% of nominal GDP, i.e. a larger percentage of a larger GDP. Of this total, $8.4 billion comes from the transport sector. The damage cost to the global environment from the flaring of natural gas, assessed on the basis of a carbon price of $10/ton CO 2 and found to be approximately $600 million per year. This is equal to a little less than 1% of current GDP. There are larger costs associated with recovery and use of such gas, but equally there are large potential benefits

  18. Economic and financial aspects of geothermal energy utilization

    International Nuclear Information System (INIS)

    Gazo, F.M.; Datuin, R.

    1990-01-01

    This paper reports on the historical development of geothermal energy in the Philippines, its present status and future possibilities. It also illustrates the average power generation and utilization from primary energy sources (hydro, oil, coal, and geothermal energy) in the country from 1981 to 1988. A comparison is made between electricity generating costs and results of operations from these power sources, showing that geothermal energy utilization is very competitive. Moreover, it also discusses the economic viability of geothermal energy utilization as a result of separate studies conducted by World Bank and an Italian energy consulting firm

  19. Effective drinking water collaborations are not accidental: Interagency relationships in the international water utility sector

    International Nuclear Information System (INIS)

    Jalba, D.I.; Cromar, N.J.; Pollard, S.J.T.; Charrois, J.W.; Bradshaw, R.; Hrudey, S.E.

    2014-01-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. - Highlights: • Qualitative analysis of current water sector practices on interagency relations • Identification of suboptimal approaches to working with public health agencies • Effective strategies for developing and maintaining institutional collaborations • Supporting the implementation of WHO guidelines for drinking water quality

  20. Effective drinking water collaborations are not accidental: Interagency relationships in the international water utility sector

    Energy Technology Data Exchange (ETDEWEB)

    Jalba, D.I. [School of Medicine, Flinders University, GPO 2100, Adelaide, SA 5001 (Australia); Cromar, N.J., E-mail: nancy.cromar@flinders.edu.au [School of the Environment, Flinders University, GPO 2100, Adelaide, SA 5001 (Australia); Pollard, S.J.T. [Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Charrois, J.W. [Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Bradshaw, R. [Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Hrudey, S.E. [Analytical and Environmental Toxicology Division, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, AB T6G 2G3 (Canada)

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. - Highlights: • Qualitative analysis of current water sector practices on interagency relations • Identification of suboptimal approaches to working with public health agencies • Effective strategies for developing and maintaining institutional collaborations • Supporting the implementation of WHO guidelines for drinking water quality.

  1. Is free knowledge transfer history in the energy sector?

    International Nuclear Information System (INIS)

    Zewald, H.

    2000-01-01

    The European power industry is gradually changing from a government-controlled sector of monopolists to an internationally privatized free sector. Companies that used to cooperate are now competing with one another. The question is: can the international knowledge transfer institutes escape from this competitive climate or will they fall victim to it?

  2. CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

    African Journals Online (AJOL)

    Global Journal

    in Togo in 2012 in order to provide decision-makers, producers, distributors and final ... In line with the IPCC 2006 methodologies, greenhouse gas emissions in 2012 in Togo ... estimates by the sectoral and reference methods, the inventory is coherent as a whole. ..... oil in the residential, commercial and industrial sectors.

  3. Which Processes Can We Expect to See in the Croatian Energy Sector Until 2050

    International Nuclear Information System (INIS)

    Granic, G.

    2010-01-01

    The paper analyzes the processes that can be expected to take place in the Croatian energy sector until 2050 in the conditions of significant reductions of CO 2 and other greenhouses gases emissions. It also shows the main factors influencing energy consumption; limitations in energy sector development deriving from climate changes and environment preservation; technological development and its impact on the energy sector development; potentials of available resources and energy infrastructure for energy transport/transmission and energy import, as well as the security and quality of supply. The paper highlights significant changes in the energy sector, necessity of developing new economic policies which would be based on enhancing energy efficiency and use of low CO 2 and GHG technologies or use of those technologies which contribute to substantial reduction of the emissions.(author).

  4. Sectoral shift in industrial natural gas demand: A comparison with other energy types

    International Nuclear Information System (INIS)

    Boyd, G.; Fisher, R.; Hanson, D.; Ross, M.

    1989-01-01

    It has been recognized in a variety of studies that energy demand by industry has been effected not only by the changing energy intensity of the various sectors of industry, but also by the composition of industrial sector. A previous study group of the Energy Modeling Forum (EMF-8) found that sectoral shift, i.e., the relative decline in the energy intensive sectors of industry, has contributed at least one third of the decline in aggregate manufacturing energy intensity since the early 1970s. The specific types of energy use may also be important, however. For example, the effect of shifts in production by electricity intensive sectors has been shown to be somewhat different than that for fossil fuel

  5. Conception for economical energy utilization and supply

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H; Canzler, B

    1977-10-01

    This study was performed to study the factors which determine energy consumption within buildings and how to optimize such energy use. The parameters of the principal energy consumers, i.e., HVAC and lighting systems, were analyzed. Possibilities for obtaining economical energy supplies and for reducing energy consumption were studied with emphasis on adapting the building mechanical equipment and the building design and construction to each other. It was concluded that planning for energy conservation in buildings will decrease the cost of constructing and operating buildings if the architect, building contractor and building operator work together from the initial planning stages.

  6. Energy strategy and mitigation potential in energy sector of the Russian federation

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  7. Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach

    International Nuclear Information System (INIS)

    Wang, H.; Ang, B.W.; Wang, Q.W.; Zhou, P.

    2017-01-01

    Evaluating economy-wide energy performance is an integral part of assessing the effectiveness of a country's energy efficiency policy. Non-parametric frontier approach has been widely used by researchers for such a purpose. This paper proposes an extended non-parametric frontier approach to studying economy-wide energy efficiency and productivity performances by accounting for sectoral heterogeneity. Relevant techniques in index number theory are incorporated to quantify the driving forces behind changes in the economy-wide energy productivity index. The proposed approach facilitates flexible modelling of different sectors' production processes, and helps to examine sectors' impact on the aggregate energy performance. A case study of China's economy-wide energy efficiency and productivity performances in its 11th five-year plan period (2006–2010) is presented. It is found that sectoral heterogeneities in terms of energy performance are significant in China. Meanwhile, China's economy-wide energy productivity increased slightly during the study period, mainly driven by the technical efficiency improvement. A number of other findings have also been reported. - Highlights: • We model economy-wide energy performance by considering sectoral heterogeneity. • The proposed approach can identify sectors' impact on the aggregate energy performance. • Obvious sectoral heterogeneities are identified in evaluating China's energy performance.

  8. Handbook of the energy sector 1992-1997; 1. ed.; Prontuario del sector de energia 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fuentes, Adrian; Ylizaliturri Ridriguez, Jose Carlos; Aguilar Alejandre, Vicente; Gomez Chiu, Rebeca [Secretaria de Energia, Mexico, D. F. (Mexico)

    1998-12-31

    The planning of the energy sector requires a detailed knowledge of the relations that exist among the International markets of energy and the position of Mexico with respect to these. The Handbook of the energy sector 1992-1997 analyzes the tendency of the International markets of energy and the relative importance of the countries in relationship to its resources, production volumes, energy demand, fuel prices and foreign trade. It allows to know how and to what extent the energy sector has responded to the new economic conditions of the country and to the global tendencies, presenting statistics of easy consultation, updated information at International level on the reserves, installed capacity, production, consumption, prices and commerce of the main energy sources, and of the position of Mexico within this context. The information consists of seven chapters: First, analyzes the world-wide balance of energy, detailing the consumption of primary energy by region and source; in the second, the main crude petroleum statistics are analyzed, of selected countries; the third analyzes the refined products of petroleum, the fourth analyzes the world-wide natural gas reserves; the fifth the world-wide coal reserves and the sixth, the installed capacity of electricity generation in several countries. [Espanol] La planeacion del sector de energia requiere un conocimiento detallado de las relaciones que existen entre los mercados internacionales de energia y la posicion de Mexico con respecto a estos. El Prontuario del sector de energia 1992-1997 analiza la tendencia de los mercados internacionales de energia y la importancia relativa de los paises en relacion con sus recursos, volumenes de produccion, demanda de energia, precios de combustibles y comercio exterior. Permite conocer como y en que medida el sector de energia ha respondido a las nuevas condiciones economicas del pais y a las tendencias globales, al presentar estadisticas de facil consulta, de informacion

  9. Assessing the efficiency versus the inefficiency of the energy sectors in formerly centrally planned economies

    Energy Technology Data Exchange (ETDEWEB)

    Vorsatz, D. [Lawrence Berkeley Laboratory, CA (United States)

    1995-12-01

    As much the extreme inefficiency of Eastern European energy sectors is emphasized, as little attention their relatively efficient aspects receive. Indeed, a few efficiency indicators show the highest global efficiencies for the formerly centrally planned economies, such as the overall primary to useful energy efficiency. These figures draw the attention to an underestimated feature of former socialist energy sectors and to crucial policy implications: in some respects central planning lead to a more efficient use of energy than the market economy. Consequently, if transitions from the central planning to the market economy are not managed carefully, further reductions in energy efficiency can be expected in some sectors of the economy.

  10. Innovation in the European energy sector and regulatory responses to it : Guest editorial note

    NARCIS (Netherlands)

    Hoppe, T.; Butenko, Anna; Heldeweg, Michiel

    2018-01-01

    The European energy sector is an important economic sector that is also traditionally highly regulated. With the increasing tempo in which innovations in technology and markets occur, catalysed inter alia by the energy transition and accompanied by new formats of innovation (disruptive and

  11. Innovation in the European energy sector and regulatory responses to it : Guest editorial note

    NARCIS (Netherlands)

    Hoppe, Thomas; Butenko, Anna; Heldeweg, Michiel

    2018-01-01

    The European energy sector is an important economic sector that is also traditionally highly regulated. With the increasing tempo in which innovations in technology and markets occur, catalysed inter alia by the energy transition and accompanied by new formats of innovation (disruptive and

  12. Experience curves in the wind energy sector use : analysis and recommendations

    NARCIS (Netherlands)

    Junginger, Martin

    2000-01-01

    The wind energy sector is one of the fastest-growing energy sectors in the world. Both prices of wind turbines and cost of wind-generated electricity have dropped significantly over the last twenty years. However, electricity from wind is not yet fully able to compete with fossil fuel based

  13. Radical innovation in the energy sector and the impact on regulation

    NARCIS (Netherlands)

    Lavrijssen, Saskia; Carrillo, Arturo

    2017-01-01

    The electricity sector is in a transition towards a Smart Energy System where the roles of private and institutional actors are evolving. This work deals with the influence of some technological innovations on the regulation of the energy sector. It identifies the main radical innovations in the

  14. Villa Design and Solar Energy Utilization

    OpenAIRE

    Olofsson, Martin

    2013-01-01

    This paper goes through solar energy and what uses it has. It is also a guide in the choice of solar collectors for the real estate that I have drawn for the thesis work. Solar energy is a renewable source of energy from the Sun's light. Energy can be used to produce both heat and electricity through solar collectors and solar cells. Some of the benefits of solar energy is that it is completely free to extract, environmentally friendly and virtually maintenance-free. Disadvantages are that th...

  15. Integrated framework to capture the interdependencies between transportation and energy sectors due to policy decisions.

    Science.gov (United States)

    2014-05-01

    Currently, transportation and energy sectors are developed, managed, and operated independently of : one another. Due to the non-renewable nature of fossil fuels, energy security has evolved into a : strategic goal for the United States. The transpor...

  16. Energy and Water Consumption End-Use Survey in Commercial and Industrial Sectors in Georgia

    Data.gov (United States)

    US Agency for International Development — The objective of survey was to collect statistical energy and water end-use data for commercial and industrial sectors. The survey identified volumes of energy and...

  17. Energy from wood biomass: The experience of the Brazilian forest sector

    Energy Technology Data Exchange (ETDEWEB)

    Couto, L. [Universidade Federal de Vicosa (Brazil); Graca, L.R. [Centro Nacional de Pesquisa de Floresta, Colombo (Brazil); Betters, D.R. [Colorado State Univ., Fort Collins, CO (United States)

    1993-12-31

    Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being built in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.

  18. Climate Change and its Impact on the Energy Sector in the Eastern Mediterranean

    Science.gov (United States)

    Lange, M. A.

    2009-04-01

    It is anticipated that the Eastern Mediterranean and Cyprus will be disproportionally and adversely affected by future climate change. Impacts of these changes include rising summer temperatures and decreasing annual precipitation thereby causing strains on the energy sector in the region. Increases in the frequency of heat waves and tropical nights will lead to rising demands for air-conditioning of private and public housing on the one hand and to growing water scarcity, which will have to be satisfied by additional seawater desalination, on the other, to name just two of the repercussions of climate change on energy demand. Coping with these impacts will require additional electricity generation and will lead to enhanced energy demands. In the case of Cyprus, this will add to an already strained sector of the economy. The current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of hydrocarbon products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to app. 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. Possible remedies, which will be relevant for other countries in the Eastern Mediterranean, as well include energy saving measures in the building sector and the use of renewable energy sources. With regard to sustainable building technologies, new and innovative building materials will have to be introduced. This includes advanced thermochromic materials based on nanotechnology techniques combined with phase change microcapsules, photochromic coatings able to present very high or low solar reflectance, chameleon coatings presenting very low emissivity and time varying

  19. Regenesys utility scale energy storage. Project summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed.

  20. Regenesys utility scale energy storage. Project summary

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarises the work to date, the current situation and the future direction of a project carried out by Regenesys Technology Ltd. (RGN) to investigate the benefits of electrochemical energy storage for power generators using renewable energy sources focussing on wind energy. The background to the study is traced covering the progress of the Regenesys energy storage technology, and the milestones achieved and lessons learnt. Details are given of the planned renewable-store-market interface to allow renewable generators optimise revenue under the New Electricity Trading Arrangements (NETA) and help in the connection of the renewable energy to the electric grid system. The four integrated work programmes of the project are described and involve a system study examining market penetration of renewable generators, a technical study into connection of renewable generators and energy storage, a small scale demonstration, and a pilot scale energy storage plant at Little Barton in Cambridgeshire. Problems leading to the closure of the project are discussed

  1. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  2. Cost analysis of energy storage systems for electric utility applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  3. Financial markets regulation in the energy sector. A few financial aspects of energy transactions

    International Nuclear Information System (INIS)

    Simonetti, S.

    2007-01-01

    In addition to energy legislation, financial markets legislation and regulation (FMR) are becoming increasingly important for the energy sector. Consequently, parties on the energy market not only have to deal with the energy and competition authorities (the Dte and NMa respectively), but may also face supervision by The Netherlands Authority for the Financial Markets (AFM). Energy transactions may trigger certain prohibitions and obligations under financial and securities law, the most relevant of which are discussed in this article. Both the recent changes as a result of the Financial Markets Supervision Act ('Wet op het financieel toezicht', Wft) entering into force as per 1 January 2007 and the anticipated future amendments following the implementation of the Markets in Financial Instruments Directive (MiFID) are examined [nl

  4. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  5. Technological Changes as the Development Factor of the Global and Russian Energy Sector

    OpenAIRE

    Dudin, Mihail Nikolaevich; Lyasnikov, Nikolai Vasil’evich; Sekerin, Vladimir Dmitrievich; Gorokhova, Anna Evgen’evna; Danko, Tamara Petrovna; Bank, Olga Anatol’evna

    2017-01-01

    This article aims to study the real and hidden technological changes that will shape the strategic contours of the world energy civilization development, as well as the development of the Russian energy sector. The paper presents the following main conclusions: i) global energy development and nation states energy sector development are determined by a set of issues, foremost of which is innovation and technological aspect that determines the local and global changes that are likely to lead t...

  6. Utilization of wind energy in greater Hanover

    International Nuclear Information System (INIS)

    Sahling, U.

    1993-01-01

    Since the beginning of the Eighties, the association of communities of Greater Hanover has dealt intensively with energy and ecopolitical questions in the scope of regional planning. Renewable energy sources play a dominant role in this context. This brochure is the third contribution to the subject ''Energy policy and environmental protection''. Experts as well as possibly interested parties are addressed especially. For all 8 contributions contained, separate entries have been recorded in this database. (BWI) [de

  7. Utility and risk of nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    The present report contains lectures of a seminar that was arranged by the programme group nuclear power and environment of the Kernforschungsanlage Juelich . The items were: 1) Do we need nuclear energy. An attempt at a system analytic answer. 2) Energy production by means of nuclear fission. 3) The nuclear power plants. 4) Nuclear energy and radiation hazard. 5) Safety of nuclear power plants. (RW) [de

  8. Energy consumption of audiovisual devices in the residential sector: Economic impact of harmonic losses

    International Nuclear Information System (INIS)

    Santiago, I.; López-Rodríguez, M.A.; Gil-de-Castro, A.; Moreno-Munoz, A.; Luna-Rodríguez, J.J.

    2013-01-01

    In this work, energy losses and the economic consequences of the use of small appliances containing power electronics (PE) in the Spanish residential sector were estimated. Audiovisual devices emit harmonics, originating in the distribution system an increment in wiring losses and a greater demand in the total apparent power. Time Use Surveys (2009–10) conducted by the National Statistical Institute in Spain were used to obtain information about the activities occurring in Spanish homes regarding the use of audiovisual equipment. Moreover, measurements of different types of household appliances available in the PANDA database were also utilized, and the active and non-active annual power demand of these residential-sector devices were determined. Although a single audiovisual device has an almost negligible contribution, the aggregated actions of this type of appliances, whose total annual energy demand is greater than 4000 GWh, can be significant enough to be taken into account in any energy efficiency program. It was proven that a reduction in the total harmonic distortion in the distribution systems ranging from 50% to 5% can reduce energy losses significantly, with economic savings of around several million Euros. - Highlights: • Time Use Survey provides information about Spanish household electricity consumption. • The annual aggregated energy demand of audiovisual appliances is very significant. • TV use accounts for more than 80% of household audiovisual electricity consumption. • A reduction from 50% to 5% in the total harmonic distortion would have economic savings of around several million Euros. • Stricter regulations regarding harmonic emissions must be demanded

  9. Energy conservation in China: Key provincial sectors at two-digit level

    International Nuclear Information System (INIS)

    Liao, Hua; Du, Jian; Wei, Yi-Ming

    2013-01-01

    Highlights: ► We identify the keys for energy conversation across China’s 31 provinces × 65 sectors. ► The results are visualized in map and matrix tables, and easy for use. ► 39 Industrial sectors by province are classified into three categories for conservation. ► There is large energy wasting in the public management sector. ► There are both urban–rural gap and provincial inequality on electricity consumption. - Abstract: In March 2011, China’s central government set a new challenging target of reducing its energy intensity by 16% during 2011–2015, after it had achieved a reduction of 19.1% during 2006–2010. And this new target was assigned to provincial authorities in August 2011. However, China’s provincial energy-economic developments are unbalanced and different provinces have different key sectors for energy conservation. Most previous studies focused on provincial energy efficiency at the aggregate level, or the three-industry level (or one-digit level). However, whether for policy decision or academic research, it is necessary to further subdivide the sectors. In this paper, we use three indicators (Gini Coefficient, energy consumption share and energy intensity) to compare provincial energy conservation potentials at the two-digit sector level. To our knowledge, this paper is the first one to identify the keys for energy conversation across the 31 provinces × 65 sectors. And the results are shown in visualized maps and matrix tables to help identify the key province × sectors for energy conservation easier. This also helps the central and provincial governments to distinguish key sectors when they monitor the energy conservation progress

  10. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  11. Nuclear energy - A label for the financial sector: 'Energy transition and climate'

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2015-01-01

    This publication states the opinion of the SFEN (the French Society of Nuclear Energy) about the project proposed by the French Ministry of Ecology for the creation of a label named 'Energy transition and climate' for the financial sector. Such a label aims at mobilising a part of savings for the benefit of energy and ecology transition, and at bringing the French ecological expertise at the European level. In this document, the SFEN expresses its surprise that labels will not be awarded to activities related to the nuclear sector whereas, as it is herein commented and outlined, nuclear energy is a low-carbon energy, and meets environmental and social requirements associated with the label (preservation of air quality, optimisation of the water resource by nuclear plants, strict regulation and controls of releases made by nuclear installations, management of the uranium resource, measures of protection of biodiversity about nuclear sites, exemplary governance and dialogue on environmental and social issues with the public)

  12. An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Ahmed, S.; Hashim, U.

    2007-01-01

    The purpose of this work is to apply the useful energy and exergy analysis models for different modes of transport in Malaysia and to compare the result with a few countries. In this paper, energy and exergy efficiencies of the various sub-sectors are presented by considering the energy and exergy flows from 1995 to 2003. Respective flow diagrams to find the overall energy and exergy efficiencies of Malaysian transportation sector are also presented. The estimated overall energy efficiency ranges from 22.74% (1999) to 22.98% (1998) with a mean of 22.82+/-0.06% and that of overall exergy efficiency ranges from 22.44% (2000) to 22.82% (1998) with a mean of 22.55+/-0.12%. The results are compared with respect to present energy and exergy efficiencies in each sub-sector. The transportation sector used about 40% of the total energy consumed in 2002. Therefore, it is important to identify the energy and exergy flows and the pertinent losses. The road sub-sector has appeared to be the most efficient one compared to the air and marine sub-sectors. Also found that the energy and exergy efficiencies of Malaysian transportation sector are lower than that of Turkey but higher than Norway

  13. Public utility service in energy field

    International Nuclear Information System (INIS)

    Abenante, R.

    2000-01-01

    Under the current legislation, the idea of public utility service is thoroughly expressed and settled within that of public service. Lacking a new definition, not all businesses in the electricity and gas industries are subjected to the authoritative and regulatory opinions of the Authority established by act 481/95 which can only be expressed in matters strictly concerning public services [it

  14. Energy consumption in the industrial sector. Evolution and perspectives; Consumo energetico en el sector industrial. Evolucion y perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra Fernandez, Arturo; Cortes Mendez, Carlos

    1993-12-31

    This article has the purpose of analyzing the main determinants of energy use in the industrial sector, standing out the economical, social and technological implications that determine a specific consumption pattern, departing from which, -as first hand indicators- the efficiency conditions under which this consumption is effected, are evaluated. Likewise, a break-up by branch for the analysis is proposed, taking as a reference point the importance of each one of these in the sector global consumption as well as the available information for each one of them. Finally, the execution of a prospective with an horizon to the year 2005, taking into consideration a macroeconomic scenario, in general, and the potential saving for each sub-sector, in particular, is proposed. [Espanol] El articulo tiene como finalidad analizar los determinantes principales del consumo energetico del sector industrial, destacando las implicaciones de caracter economico, social y tecnologico que conlleva a un patron especifico de consumo, a partir del cual se evaluan - con indicadores de primera mano - las condiciones de eficiencia bajo las cuales se realiza dicho consumo. Asimismo, se propone una desagregacion por rama para el analisis, tomando como punto de referencia la importancia de cada una de estas en el consumo global del sector, asi como la informacion disponible para cada una. Finalmente, se propone un ejercicio de prospectiva con un horizonte hasta el ano 2005 tomando en consideracion un escenario macroeconomico en general y el potencial de ahorro para cada subsector en particular.

  15. Energy consumption in the industrial sector. Evolution and perspectives; Consumo energetico en el sector industrial. Evolucion y perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Vieyra Fernandez, Arturo; Cortes Mendez, Carlos

    1992-12-31

    This article has the purpose of analyzing the main determinants of energy use in the industrial sector, standing out the economical, social and technological implications that determine a specific consumption pattern, departing from which, -as first hand indicators- the efficiency conditions under which this consumption is effected, are evaluated. Likewise, a break-up by branch for the analysis is proposed, taking as a reference point the importance of each one of these in the sector global consumption as well as the available information for each one of them. Finally, the execution of a prospective with an horizon to the year 2005, taking into consideration a macroeconomic scenario, in general, and the potential saving for each sub-sector, in particular, is proposed. [Espanol] El articulo tiene como finalidad analizar los determinantes principales del consumo energetico del sector industrial, destacando las implicaciones de caracter economico, social y tecnologico que conlleva a un patron especifico de consumo, a partir del cual se evaluan - con indicadores de primera mano - las condiciones de eficiencia bajo las cuales se realiza dicho consumo. Asimismo, se propone una desagregacion por rama para el analisis, tomando como punto de referencia la importancia de cada una de estas en el consumo global del sector, asi como la informacion disponible para cada una. Finalmente, se propone un ejercicio de prospectiva con un horizonte hasta el ano 2005 tomando en consideracion un escenario macroeconomico en general y el potencial de ahorro para cada subsector en particular.

  16. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  17. 'Key' sectors in final energy consumption: an input-output application to the Spanish case

    International Nuclear Information System (INIS)

    Alcantara, Vicent; Padilla, Emilio

    2003-01-01

    In this paper we analyze the determination of 'key' sectors in the final energy consumption. We approach this issue from an input-output perspective and we design a methodology based on the elasticities of the demands of final energy consumption. As an exercise, we apply the proposed methodology to the Spanish economy. The analysis allows us to indicate the greater or lesser relevance of the different sectors in the consumption of final energy, pointing out which sectors deserve greater attention in the Spanish case and showing the implications for energy policy

  18. Biomass-based energy carriers in the transportation sector; Biomassebaserade energibaerare foer transportsektorn

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Bengt

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO{sub 2} emission reduction per unit arable and forest land used for biomass production (kg CO{sub 2}/ha,year) and costs for CO{sub 2} emission reduction (SEK/kg CO{sub 2}) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO{sub 2} emission reduction. In a medium long perspective, the costs for CO{sub 2} emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  19. Coupling model of energy consumption with changes in environmental utility

    International Nuclear Information System (INIS)

    He Hongming; Jim, C.Y.

    2012-01-01

    This study explores the relationships between metropolis energy consumption and environmental utility changes by a proposed Environmental Utility of Energy Consumption (EUEC) model. Based on the dynamic equilibrium of input–output economics theory, it considers three simulation scenarios: fixed-technology, technological-innovation, and green-building effect. It is applied to analyse Hong Kong in 1980–2007. Continual increase in energy consumption with rapid economic growth degraded environmental utility. First, energy consumption at fixed-technology was determined by economic outcome. In 1990, it reached a critical balanced state when energy consumption was 22×10 9 kWh. Before 1990 (x 1 9 kWh), rise in energy consumption improved both economic development and environmental utility. After 1990 (x 1 >22×10 9 kWh), expansion of energy consumption facilitated socio-economic development but suppressed environmental benefits. Second, technological-innovation strongly influenced energy demand and improved environmental benefits. The balanced state remained in 1999 when energy consumption reached 32.33×10 9 kWh. Technological-innovation dampened energy consumption by 12.99%, exceeding the fixed-technology condition. Finally, green buildings reduced energy consumption by an average of 17.5% in 1990–2007. They contributed significantly to energy saving, and buffered temperature fluctuations between external and internal environment. The case investigations verified the efficiency of the EUEC model, which can effectively evaluate the interplay of energy consumption and environmental quality. - Highlights: ► We explore relationships between metropolis energy consumption and environmental utility. ► An Environmental Utility of Energy Consumption (EUEC) model is proposed. ► Technological innovation mitigates energy consumption impacts on environmental quality. ► Technological innovation decreases demand of energy consumption more than fixed technology scenario

  20. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  1. Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.; Zorić, Jelena

    2014-01-01

    The promotion of energy efficiency is seen as one of the top priorities of EU energy policy (EC, 2010). In order to design and implement effective energy policy instruments, it is necessary to have information on energy demand price and income elasticities in addition to sound indicators of energy efficiency. This research combines the approaches taken in energy demand modelling and frontier analysis in order to econometrically estimate the level of energy efficiency for the residential sector in the EU-27 member states for the period 1996 to 2009. The estimates for the energy efficiency confirm that the EU residential sector indeed holds a relatively high potential for energy savings from reduced inefficiency. Therefore, despite the common objective to decrease ‘wasteful’ energy consumption, considerable variation in energy efficiency between the EU member states is established. Furthermore, an attempt is made to evaluate the impact of energy-efficiency measures undertaken in the EU residential sector by introducing an additional set of variables into the model and the results suggest that financial incentives and energy performance standards play an important role in promoting energy efficiency improvements, whereas informative measures do not have a significant impact. - Highlights: • The level of energy efficiency of the EU residential sector is estimated. • Considerable potential for energy savings from reduced inefficiency is established. • The impact of introduced energy-efficiency policy measures is also evaluated. • Financial incentives are found to promote energy efficiency improvements. • Energy performance standards also play an important role

  2. Impacts of energy subsidy reform on the Malaysian economy and transportation sector

    International Nuclear Information System (INIS)

    Solaymani, Saeed; Kari, Fatimah

    2014-01-01

    Malaysia is paying a high level of subsidies on the consumption of energy (about 5% of its GDP). Therefore, reforming the energy subsidies, as planned by the government, will have a significant impact on household welfare and energy-intensive sectors, such as the transport sector. This study employs a computable general equilibrium (CGE) model to highlight the transmission channels through which the removal of energy subsidies affects the domestic economy. The findings show that the shock increases real GDP and real investment, while decreasing Malaysian total exports and imports. The removal of energy subsidies also decreases the aggregate energy demand, and, consequently, decreases the level of carbon emissions in the Malaysian economy. In addition, households experience significant falls in their consumption and welfare. The transport sector is significantly influenced through an increase in production costs due to an increase in the prices of intermediate inputs. The total output and total exports of the whole transport sector decrease while its imports increase. In addition, the use of all kinds of transport by households decreases significantly. The Malaysian energy subsidy reform, leads to an initial decrease in CO 2 emissions and demand for electricity, gas, and petroleum products in the entire transport sector. - Highlights: • Malaysia pays a high level of subsidy on consumption of energy. • The transportation sector in this country is the highest energy consumer among others. • A general equilibrium model used to analyse the effects of energy subsidy reform. • The shock increases real GDP and decreases energy and carbon emission in this sector. • It is not beneficial for the transport sector as decreases the output of this sector

  3. Energy Law in the Netherlands. Recent developments in the Dutch energy sector

    International Nuclear Information System (INIS)

    In de Braekt, M.; Berger, K.; Ouwehand, P.; Reinders, E.M.

    2007-01-01

    European Energy Review 2007 provides an overview of the key developments that have taken place in the energy sector in 30 European jurisdictions during in 2006. Written by law firms in those jurisdictions, the review also includes a summary of each legal and regulatory energy framework. Issues such as industry structure, Third Party Access, the framework applying to use of system both at the transmission and distribution levels, market entry, promotion of renewable generation, nuclear power and cross border interconnection are examined. The jurisdictions covered are: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, The Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. This record concerns Energy Law The Netherlands.

  4. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  5. The energy rebound effects across China’s industrial sectors: An output distance function approach

    International Nuclear Information System (INIS)

    Li, Ke; Zhang, Ning; Liu, Yanchu

    2016-01-01

    Highlights: • Output distance function for the energy rebound effect is developed. • The aggregate energy rebound effect of China is 88.42%. • Investment-driven economic growth is not conducive to energy-saving. - Abstract: Improving energy efficiency sustainability is a target of the Chinese government. However, the effectiveness of energy conservation policy is affected by the energy rebound effect under which energy efficiency improvement reduces the effective price of energy services, thereby completely or partially offsetting the energy saved by efficiency improvement. Based on the output distance function, this paper develops an improved estimation model of the energy rebound effect, which is logically consistent with the quantities of energy savings and energy rebounds induced by technological progress. Results show that the aggregate energy rebound effect of 36 industrial sectors in China over 1998–2011 is 88.42%, which implies that most of the expected energy savings are mitigated. Investment-driven economic growth is not conducive to energy-saving and results in a strong energy rebound effect in the following year. The equipment and high-end manufacturing sectors have low levels of rebound effect, indicating that increasing the proportion of such firms in the total manufacturing sector can improve the performance of energy conservation. The high level and heterogeneity in rebound effects strongly suggest that varies strategies are necessary for energy conservation among China’s industrial sectors.

  6. A Study on promotion of utilizing waste energy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae Ho [Korea Energy Economics Institute, Euiwang (Korea)

    1999-01-01

    The utilization of waste energy occupying over 80% of alternative energy has been an important issue with the trend of large-sized waste incinerator. The object of this study is to seek the methods for the active application of waste energy, which is produced at the process of waste generation and disposal. It is expected to help energy saving, foreign currency saving and prevent environmental pollution by utilizing alternative energy actively. It should have basic information, related information for examining technical feasibility, and feasibility examination of the surroundings for developing the demand place. Moreover, it should enhance the energy saving by recommending use of waste energy with introducing recommendation system of installing waste energy collection system. It should also consider the support of the introduction of waste energy system as well as the aspect of regional energy policy. In addition, the development and distribution of applied technology for waste energy are needed. (author). 36 refs., 4 figs., 77 tabs.

  7. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  8. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  9. The national energy monitoring center (OEN) - a new structure for the prognosis of the energy sector development

    International Nuclear Information System (INIS)

    Budulan, P.; Rugina, V.; Izsak, D.; Bogzianu, R.

    2002-01-01

    OEN is a new structure for the permanent assessment of energy performances by means of a complex system of indicators and methodologies, corresponding to the ones existing at the international and European levels. The OEN database contributes to the prognosis of the energy system development enabling a sustainable and competitive utilisation of natural resources. The energy sector prognosis is developed on the basis of energy balances data, energy indicators and potential of the renewable energy sources. The paper presents the actual stage of OEN development and its role in the restructuring and liberalisation of the energy sector. (author)

  10. Regulatory competences of the EC in the energy sector; Regelungszustaendigkeiten der EG im Bereich Energie

    Energy Technology Data Exchange (ETDEWEB)

    Baur, J.F.; Blask, H. [Koeln Univ. (Germany). Inst. fuer das Recht der Europaeischen Gemeinschaften und Inst. fuer Energierecht

    2002-09-01

    In the light of necessary amendments of the Internal Electricity Market Directive and the Internal Gas Market Directive, a debate has evolved within the European Community about lawmaking powers for the energy sector. Whereas the Member States refer to the EC Treaty and deny any lawmaking powers of the EC for the energy sector, the EC defends its position that the EC should have and can derive lawmaking competence for energy policy decisions from the EC Treaty. The author reviews the situation from the legal point of view based on existing provisions and gives an outlook on a possible outcome of the ''constitutional convention'' of the EC which is to meet for discussing a revision of the EC Treaty. (orig./CB) [German] In Bezug auf die geplanten Aenderungen der Binnenmarktrichtlinien fuer Elektrizitaet und Gas werden moegliche Kompetenzen der EG im Bereich der Energiepolitik und ihre Grenzen eroertert. In einer Schlussbetrachtung werden die Ergebnisse zusammengefasst und ein kurzer Ausblick auf die Arbeit des 'Verfassungskonvents' der EU und die anstehende Vertragsrevision geworfen, in deren Rahmen die Implikation einer eigenstaendigen Spezialkompetenz im Bereich Energie erneut thematisiert werden koennte. (orig./CB)

  11. Solar Adoption and Energy Consumption in the Residential Sector

    Science.gov (United States)

    McAllister, Joseph Andrew

    This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region that have been assembled or otherwise acquired by the author, the dissertation quantifies changes in energy consumption after solar-PV installation and determines whether certain household characteristics are correlated with such changes. In doing so, it seeks to answer two related questions: First, "Do residential solar adopters increase or decrease their electricity consumption after they install a solar-PV system?" Assuming that certain categories of residential adopters increase and others decrease, the second question is "Which residential adopters increase and which decrease their consumption and why?" The database that was used to conduct this analysis includes information about 5,243 residential systems in San Diego Gas & Electric's (SDG&E) service territory installed between January 2007 and December 2010. San Diego is a national leader in the installation of small-scale solar-electric systems, with over 12,000 systems in the region installed as of January 2012, or around 14% of the total number installed in California. The author performed detailed characterization of a significant subset of the solar installations in the San Diego region. Assembled data included technical and economic characteristics of the systems themselves; the solar companies that sold and installed them; individual customer electric utility billing data; metered PV production data for a subgroup of these solar systems; and data about the properties where the systems are located. Primarily, the author was able to conduct an electricity consumption analysis at the individual household level for 2,410 PV systems installed in SDG&E service territory between January 2007 and December 2010. This analysis was designed to detect changes in electricity consumption from the pre-solar to the post-installation period. To

  12. Terrorism in Indo-Pak nuclear energy sector

    International Nuclear Information System (INIS)

    Varma, R.

    2005-01-01

    Full text: Issue of terrorism, militancy and nuclear security of South Asia evokes a lot of concern not only to South-Asians but also to the larger world. The most difficult problem in relations between India and Pakistan since partition in August 1947 has been their dispute over Kashmir. A summary of root cause analysis has been presented in the paper. Nuclear terrorism, should it emerge, could prove the final destruction of sanity in South Asia. Widespread availability of radioactive materials worldwide makes threat of radiological terrorism plausible. Terrorist groups are trying to strangulate and talibanize Pakistan, sucking it into vortex of failed states, nuclear banana republics with their praetorian culture, and a whole new category of 'North Koreas' in the central Asian region. This would be highly unstable, as these rabid adventurous states would pose extreme risks to the neighboring states in the future. Two case studies have been presented in the paper, estimating horrifying future of the unfolding story, with visions of a nuclear attack on energy sectors at Mumbai in India, and Karachi in Pakistan; may be a crude bomb or a radiological dispersal devices. The statistical consequences of the strike are horrifying to say the least. Methodology of preventing such a happening has been worked out with deep analysis of society and bringing out remedial measures. Methodology of conflict management has been discussed at length. With suggestive organization, its relevance modus operandi, role and limitations. There is a great need to think rationally, indeed, compassionately and charitably. The resumption of serious, high-level dialogue provides an opening for Indian and Pakistani leaders to depart from scripts that reduce room for diplomatic manoeuvre. Given the multiplicity of targets and terrorist scenarios, India and Pakistan need to be persuaded that nuclear weapons make the world a more dangerous, not a safer, place and to take a step back and realize that

  13. The energy sector in southern Africa: a preliminary survey of post-apartheid challenges

    Energy Technology Data Exchange (ETDEWEB)

    Eleri, E.O. [Fridtjof Nansens Inst., Lysaker (Norway)

    1996-01-01

    The energy sector in SADC countries has been beset by several decades of crises. The decline in regional tensions is providing a conducive climate for broadening political, economic and environmental reform programmes. This paper reassesses the new environment for energy policy making and the nature of the crisis in the provision of energy services for sustainable development. It goes on to review the forces shaping new developments in the sector and the challenges ahead for stakeholders. (Author)

  14. Climate friendly technology transfer in the energy sector: A case study of Iran

    International Nuclear Information System (INIS)

    Talaei, Alireza; Ahadi, Mohammad Sadegh; Maghsoudy, Soroush

    2014-01-01

    The energy sector is the biggest contributor of anthropogenic emissions of greenhouse gases into the atmosphere in Iran. However, abundant potential for implementing low-carbon technologies offers considerable emissions mitigation potential in this sector, and technology transfer is expected to play an important role in the widespread roll-out of these technologies. In the current work, globally existing low-carbon energy technologies that are compatible with the energy sector of Iran are identified and then prioritised against different criteria (i.e. Multi Criteria Decision Analysis). Results of technology prioritisation and a comprehensive literature review were then applied to conduct a SWOT analysis and develop a policy package aiming at facilitating the transfer of low carbon technologies to the country. Results of technology prioritisation suggest that the transport, oil and gas and electricity sectors are the highest priority sectors from technological needs perspective. In the policy package, while fuel price reform and environmental regulations are categorised as high priority policies, information campaigns and development of human resources are considered to have moderate effects on the process of technology transfer. - Highlights: • We examined the process of technology transfer in the energy sector of Iran. • Multi Criteria Decision Analysis techniques are used to prioritise the technological needs of the country. • Transportation, electricity and oil and gas sectors are found as recipients of new technologies. • A policy package was designed for facilitating technology transfer in the energy sector

  15. Report on the de-carbonated energy sector in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    For different de-carbonated energies, this report presents the available technologies, describes the value chain, presents the regulatory and legal European and French frameworks, gives a brief overview of the world, European and French markets, presents the main actors at the international or French level, briefly presents research projects, and skill centres. The report addresses the following energies: bio-fuels, biomass energy, wind energy, sea energy, photovoltaic energy, thermal solar energy, CO 2 capture and storage, geothermal energy, hydrogen and fuel cells, smart grids, energy storage, nuclear energy, hydroelectricity, and the de-carbonated vehicle

  16. Uruguay Energy Supply Options Study: a Detailed Multi-Sector Integrated Energy Supply and Demand Analysis

    International Nuclear Information System (INIS)

    Conzelmann, G.; Veselka, T.

    1997-01-01

    Uruguay is in the middle of making critical decisions affecting the design of its future energy supply system.Momentum for change is expected to come from several directions including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country s membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay.The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay s energy supply system.The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries.The Government of Uruguay contracted Argonne National Laboratory (ANL) to study several energy development scenario ns with the support of several Uruguayan Institutions.Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios

  17. Utilization of superconductivity in energy applications