WorldWideScience

Sample records for sector energy efficiency

  1. Energy efficient lighting in the retail sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This Good Practice Guide gives details on how energy efficient lighting can be incorporated in the brief for a lighting consultant or contractor. The advantages of energy efficiency are highlighted, and the lighting of retail stores, the introduction of energy efficiency measures, and the application of good practice are discussed. Case studies of W H Smith, Cambridge, Tesco Stores, Boots plc, the Harvey Centre, Harlow, and the National Westminster Bank plc are presented. A guide for senior executives and specialists in lighting design is also included. (UK)

  2. Improving energy efficiency in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  3. Measuring Energy Efficiency in China’s Transport Sector

    Directory of Open Access Journals (Sweden)

    Han Hao

    2017-05-01

    Full Text Available Energy efficiency is one of the key factors affecting energy consumption and greenhouse gas (GHG emissions. By focusing on China’s transport sector, this study comprehensively reviews and compares the energy efficiency performance of passenger vehicles, light-duty commercial vehicles, commercial road transport, commercial water transport, aviation transport and railway transport, and identifies the opportunities for further energy efficiency improvements. It is found that railway transport exhibited the greatest improvement in energy efficiency during the past decade, which was mainly driven by progress in its electrification. Passenger vehicles have also experienced considerable energy efficiency improvements, which can be mainly attributed to the establishment of mandatory fuel consumption standards. In contrast, commercial road transport has shown the least improvement, due to insufficient policy implementations. Based on the analysis, it is recommended that, as China’s present policy framework to improve energy efficiency in the transport sector is generally effective, it should be consistently maintained and successively improved. Electrification represents a major opportunity for improvement of energy efficiency in the transport sector. Such potential should be fully tapped for all transport modes. Greater effort should be put into improving the energy efficiency of commercial road transport. The policy instruments utilized to improve the energy efficiency of heavy-duty vehicles should be as intensive and effective as the policy instruments for passenger vehicles.

  4. Overcoming the energy efficiency gap in India's household sector

    International Nuclear Information System (INIS)

    Reddy, B.S.

    2003-01-01

    Energy efficiency generates substantial financial savings while simultaneously improving environmental quality. Despite these benefits, developing countries like India are missing out on energy efficiency opportunities and instead concentrating on increased energy production. This paper identifies the efficient technologies in the household sector in India, and details their benefits to the consumer as well as to the society. It identifies the barriers that prevent the government from achieving its energy efficiency goals, analyses programs that addresses these barriers, and explores the creation of an institutional mechanism

  5. Energy Efficiency Services Sector: Workforce Education and Training Needs

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  6. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  7. Energy Efficiency Tracking in Thai Manufacturing Sector by Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Wongsapai Wongkot

    2016-01-01

    Full Text Available This paper presents an analysis of energy saving and changes in energy intensities in Thai manufacturing sector by Logarithmic Mean Divisia Index decomposition technique. This method includes three effects consists of the energy intensity effect, the structural effect and the effect of the economic growth on the energy consumption in Thailand by using the 25-year annual data from 1990 to 2014, carried out in four phases; (i before National Energy Conservation law, (ii during the effect of the law, (iii Transition period of the law from first to second version, and (iv during the effect of the law (No.2. We found that the most effective intensity effect is in the third phase due to the effect of the implementation of new energy efficient equipment from the second phase by enforcement of the law, especially in non-metallic sector, while the first phase illustrates the lowest intensity effect due to the energy conservation law had not been occurred. However, due to the highest economic growth of the country and change from agricultural to industrial development direction, the first phase presents the most effective structural effect, then this effect continuously decreased by time. We also conclude that the energy conservation law have direct effect to energy efficiency of the country however, strictly individual regulation which have target to enforce to energy intensive industries is still required for sustainable energy efficiency improvement.

  8. Sustainability and Energy Efficiency in the Automotive Sector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

  9. Energy efficiency and restructuring of the Brazilian power sector

    Energy Technology Data Exchange (ETDEWEB)

    De Martino Jannuzzi, Gilberto [State University of Campinas, Sao Paulo, (Brazil)

    1999-07-01

    Since the early nineties Brazil has initiated a program of reforms in its electric sector which includes utility privatization, de-verticalization. The main objectives were to promote a market-oriented energy industry attractive to private investments. This has led to the loss of sponsorship for the public-interest programs formerly undertaken by the state utilities. In particular, of significant concern are the programs for promotion of energy efficiency, renewable energy technologies, rural electrification and environmental protection. In the midst of the privatization effort, the National Agency for Electrical Energy ANEEL was created (end of 1997). One of the tasks of the regulatory agency is to provide funds and incentives to energy conservation. In this paper we review the role of ANEEL in promoting energy efficiency investments in the context of a market-oriented sector, its limitations and prospects. [Spanish] Desde principios de los anos noventa Brasil ha iniciado un programa de reformas en su sector electrico que incluye la privatizacion del servicio electrico y la desverticalizacion. Los objetivos principales eran promover una industria de la energia orientada comercialmente de la energia electrica, atractiva a las inversiones privadas. Esto ha conducido a la perdida de patrocinio de los programas de interes publico emprendidos antes por las empresas electricas del estado. En particular, de preocupacion significativa estan los programas para la promocion del rendimiento energetico, de las tecnologias de la energia renovable, de la Electrificacion rural y de la proteccion del medio ambiente. En medio del esfuerzo de la privatizacion, la agencia nacional para la energia electrica ANEEL fue creada (finales de 1997). Una de las tareas de la agencia reguladora es proporcionar fondos e incentivos a la conservacion de energia. En este trabajo repasamos el papel de ANEEL en promover inversiones del rendimiento energetico en el contexto de un sector orientado

  10. Public sector energy management: A strategy for catalyzing energy efficiency in Malaysia

    Science.gov (United States)

    Roy, Anish Kumar

    To date the public sector role in facilitating the transition to a sustainable energy future has been envisaged mainly from a regulatory perspective. In such a role, the public sector provides the push factors---enforcing regulations and providing incentives---to correct market imperfections that impede energy transitions. An alternative and complementary role of the public sector that is now gaining increasing attention is that of catalyzing energy transitions through public sector energy management initiatives. This dissertation offers a conceptual framework to rationalize such a role for the public sector by combining recent theories of sustainable energy transition and public management. In particular, the framework identifies innovative public management strategies (such as performance contracting and procurement) for effectively implementing sustainable energy projects in government facilities. The dissertation evaluates a model of sustainable public sector energy management for promoting energy efficiency in Malaysia. The public sector in Malaysia can be a major player in leading and catalyzing energy efficiency efforts as it is not only the largest and one of the most influential energy consumers, but it also plays a central role in setting national development strategy. The dissertation makes several recommendations on how a public sector energy management strategy can be implemented in Malaysia. The US Federal Energy Management Program (FEMP) is used as a practical model. The analysis, however, shows that in applying the FEMP model to the Malaysian context, there are a number of limitations that will have to be taken into consideration to enable a public sector energy management strategy to be effectively implemented. Overall the analysis of this dissertation contributes to a rethinking of the public sector role in sustainable energy development that can strengthen the sector's credibility both in terms of governance and institutional performance. In

  11. Intelligent sector coupling. Efficient energy transition; Intelligente Sektorkopplung. Effiziente Energiewende

    Energy Technology Data Exchange (ETDEWEB)

    Kamphues, Stephan

    2017-04-15

    The transformation process of the German energy industry is advancing. The power line and storage infrastructure still appears to be very neglected. The 2050 climate protection plan, but also the EU winter package, is an all-electric approach despite sector-specific targets. In addition to the exorbitant expansion requirements for renewables, infrastructures with enormous transport and storage potential are ''given away''. As in the interview with OGE CEO Stephan Kamphues becomes clear, an efficient energy transition requires an intelligent coupling of different sectors and infrastructures, ultimately even perhaps network convergence. [German] Der Transformationsprozess der deutschen Energiewirtschaft schreitet voran. Immer noch stark vernachlaessigt erscheint die Leitungs- und Speicherinfrastruktur. Dem Klimaschutzplan 2050, aber auch dem EU-Winterpaket wohnt trotz sektorspezifischer Ziele ein all electric-Ansatz inne. Neben exorbitantem Ausbaubedarf an Erneuerbaren ''verschenkt'' man damit Infrastrukturen mit riesigem Transport- und Speicherpotenzial. Wie im Interview mit OGE-Geschaeftsfuehrer Stephan Kamphues deutlich wird, erfordert eine effiziente Energiewende eine intelligente Kopplung verschiedener Sektoren und Infrastrukturen, letztendlich vielleicht sogar Netzkonvergenz.

  12. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  13. Assessing the efficiency versus the inefficiency of the energy sectors in formerly centrally planned economies

    Energy Technology Data Exchange (ETDEWEB)

    Vorsatz, D. [Lawrence Berkeley Laboratory, CA (United States)

    1995-12-01

    As much the extreme inefficiency of Eastern European energy sectors is emphasized, as little attention their relatively efficient aspects receive. Indeed, a few efficiency indicators show the highest global efficiencies for the formerly centrally planned economies, such as the overall primary to useful energy efficiency. These figures draw the attention to an underestimated feature of former socialist energy sectors and to crucial policy implications: in some respects central planning lead to a more efficient use of energy than the market economy. Consequently, if transitions from the central planning to the market economy are not managed carefully, further reductions in energy efficiency can be expected in some sectors of the economy.

  14. Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-12

    The goal of this study is to develop a new bottom-up industry sector energy-modeling framework with an agenda of addressing least cost regional and global carbon reduction strategies, improving the capabilities and limitations of the existing models that allows trading across regions and countries as an alternative.

  15. Reducing barriers to energy efficiency in the German mechanical engineering sector. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  16. Reducing barriers to energy efficiency in the German mechanical engineering sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  17. Assessment of energy efficiency options in the building sector of Lebanon

    International Nuclear Information System (INIS)

    Chedid, R.B.; Ghajar, R.F.

    2004-01-01

    This paper examines the merits of implementing energy efficiency policies in the building sector in Lebanon following the approach normally adopted in Climate Change studies. The paper first examines the impact of the energy sector on the Lebanese economy, and then assesses the feasibility of implementing suitable energy efficiency options in the building sector. For this purpose, a detailed analysis of the building sector in Lebanon is presented with emphasis on the thermal characteristics of building envelopes and the energy consuming equipment. The long-term benefits of applying energy efficiency options in the building sector are then assessed using a scenario-type analysis that compares these benefits against those of a baseline scenario that assumes no significant implementation of energy efficiency policies. Finally, feasible options are highlighted and recommendations to remove the major barriers hindering the penetration of energy efficiency options in the Lebanese market are provided

  18. Energy and exergy utilization efficiencies in the Japanese residential/commercial sectors

    International Nuclear Information System (INIS)

    Kondo, Kumiko

    2009-01-01

    Unlike the manufacturing sector, the residential/commercial sectors of Japan struggle to meet their environmental requirements. For instance, their CO 2 emission levels have increased tremendously since 1990. This research estimates energy and 'exergy (available energy)' efficiencies in Japan's residential/commercial sectors during the period 1990-2006. Since an exergy analysis reveals 'available energy losses', it is an effective tool to achieve sustainable societies. The primary objective of this paper is to examine the potential for advancing the 'true' energy efficiency in Japan's residential/commercial sectors-by observing energy and exergy efficiency disparities. The results show large differences between the overall energy and exergy efficiencies in the residential (60.12%, 6.33%)/commercial sectors (51.78%, 5.74%) in 2006. This implies great potential for energy savings in both sectors. Furthermore, this research suggests that the residential sector may face more difficulties than the commercial sector, although the latter appears to be less energy-efficient, according to recent statistics. This is because the disparity between energy and exergy efficiencies has expanded in the residential sector since 2000. This study illustrates the importance of exergy analyses in promoting sustainable energy policies and new adaptation strategies.

  19. ENERGY EFFICIENCY IN THE SHIPPING SECTOR – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    BRANISLAV DRAGOVIŠ

    2017-12-01

    Full Text Available The improvement of Ship Energy Efficiency has been a major issue for the Shipping industry, primarily for three reasons; Firstly because fuel expenses of merchant ships contribute substantially to the overall expenses, secondarily, as conventional diesel engines and gas turbines emit large amounts of Greenhouse Gases (GHGs, contributing to the Climate Change and thirdly due to recent legislation including IMO Resolutions and EU Directives. The above in addition to the recent economic recession, have made it imperative for the industry to lower costs and introduce novel technologies and technical innovations, through the application of the Energy Efficiency Design Index (EEDI and Energy Efficiency Operation Index (EEOI.This paper aims to contribute to the identification of methods and management tools in order to improve energy efficiency, by developing Ship Energy Efficiency Management Plans (SEEMPs. The paper focuses especially on investments, modifications, management and operational changes that can be deployed, in order to improve energy efficiency of existing ships. Finally, the economic result of modifications made on an existing vessel is presented, using data from a study performed by the authors in collaboration with several shipping companies.

  20. Reducing barriers to energy efficiency in the German higher education sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German higher education (HE) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of six case studies of energy management in German universities. The results are analysed using the theoretical framework developed for the BARRIERS project (Sorrell et al., 2000). The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the sector may be improved. The results of the study for the higher education sector in Germany are summarised in this executive summary under the following headings: - Characterising the higher education sector; - Case studies of energy management in the German higher education sector; - Evidence of barriers in the German higher education sector; - The role of energy service companies in the higher education sector; - Policy implications. (orig.)

  1. Reducing barriers to energy efficiency in the German higher education sector. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German higher education (HE) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of six case studies of energy management in German universities. The results are analysed using the theoretical framework developed for the BARRIERS project (Sorrell et al., 2000). The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the sector may be improved. The results of the study for the higher education sector in Germany are summarised in this executive summary under the following headings: - Characterising the higher education sector; - Case studies of energy management in the German higher education sector; - Evidence of barriers in the German higher education sector; - The role of energy service companies in the higher education sector; - Policy implications. (orig.)

  2. Reducing barriers to energy efficiency in the German brewing sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J; Boede, U; Ostertag, K; Radgen, P

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  3. Reducing barriers to energy efficiency in the German brewing sector. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.; Ostertag, K.; Radgen, P.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German brewing sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of five case studies of energy management in German breweries. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the brewing sector may be improved. The results of the study for the brewing sector in Germany are summarised in this executive summary under the following headings: - Characterising the brewing sector; - Case studies of energy management in the German brewing sector; - Evidence of barriers in the German brewing sector; - The role of energy service companies in the brewing sector; - Policy implications. (orig.)

  4. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  5. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector

    International Nuclear Information System (INIS)

    Kuder, Ralf

    2014-01-01

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO 2 emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The subsectors

  6. Energy use efficiency in the Indian manufacturing sector: An interstate analysis

    International Nuclear Information System (INIS)

    Mukherjee, Kankana

    2008-01-01

    This paper approaches the measurement of energy efficiency from a production theoretic framework and uses Data Envelopment Analysis to measure energy efficiency in the Indian manufacturing sector. Using data from the Annual Survey of Industries for the years 1998-99 through 2003-04, the study compares the energy efficiency in manufacturing across states, based on several models. The results show considerable variation in energy efficiency across states. Comparing the results across our models, we find that the relative pricing of energy does not provide the appropriate incentives for energy conservation. A second-stage regression analysis reveals that states with a larger share of manufacturing output in energy-intensive industries have lower energy efficiency. Also, higher quality labor force associates with higher energy efficiency. Finally, the power sector reforms have not yet had any significant impact on achieving energy efficiency

  7. Current and future energy and exergy efficiencies in the Iran’s transportation sector

    International Nuclear Information System (INIS)

    Zarifi, F.; Mahlia, T.M.I.; Motasemi, F.; Shekarchian, M.; Moghavvemi, M.

    2013-01-01

    Highlights: • The overall energy and exergy efficiencies of the sector were calculated. • The overall efficiencies were compared to other countries. • The overall energy and exergy efficiencies have been predicted by scenario approach. • A summary of recommendations to improve the sector is provided. - Abstract: Transportation is the second largest energy consumer sector in Iran which accounts for 24% of total energy consumption in 2009. This large percentage (almost a quarter) of energy consumption necessitates the determination of energy and exergy flows and their respective losses, which will enable the reduction of both energy growth and its consequent environmental impacts in the near future. This paper attempts to analyze and investigate the energy and exergy utilization of the transportation sector in Iran for the period of 1998–2009. Additionally, the total energy consumption in each subsector and the overall energy and exergy efficiencies are predicted via scenario approach. A comparison of the overall energy and exergy efficiencies of Iran with six other countries is also presented. The results show that the overall energy and exergy efficiencies of transportation sector in Iran is higher than China and Norway, while it is lower than Saudi Arabia, Jordan, Turkey, and Malaysia for the year 2000. Road appears to be the most efficient subsector. The overall energy efficiency is determined to be in the range of 22.02% in 1998, to 21.49% in 2009, while the overall exergy efficiency is determine to be in the range of 21.47% in 1998, to 21.19% in 2009. The energy consumption in each subsector is predicted from 2010 to 2035. It was discovered that the overall energy and exergy efficiencies possesses an upward trend during this time period. Finally, some recommendations vis-à-vis the improvement of the energy and exergy efficiencies in Iranian transportation sector in the future was provided and duly discussed

  8. Regional total factor energy efficiency: An empirical analysis of industrial sector in China

    International Nuclear Information System (INIS)

    Wang, Zhao-Hua; Zeng, Hua-Lin; Wei, Yi-Ming; Zhang, Yi-Xiang

    2012-01-01

    Highlights: ► We evaluate energy efficiency under framework of total factor energy efficiency. ► We focus on industry sector of China. ► We use statistical data of industrial enterprises above designated size. ► Energy efficiencies among regions in China are obvious because of technological differences. ► Large scale of investment should be stopped especially in central and western regions. -- Abstract: The rapid growth of the Chinese economy has resulted in great pressure on energy consumption, especially the energy intensive sector – the industrial sector. To achieve sustainable development, China has to consider how to promote energy efficiency to meet the demand of Chinese rapid economic growth, as the energy efficiency of China is relatively low. Meanwhile, the appeal of energy saving and emission reduction has been made by the Chinese central government. Therefore, it is important to evaluate the energy efficiency of industrial sector in China and to assess efficiency development probabilities. The framework of total factor energy efficiency index is adopted to determine the discrepancy of energy efficiency in Chinese industrial sector based on the provincial statistical data of industrial enterprises above designated size in 30 provinces from 2005 to 2009, with gross industrial output as the output value and energy consumption, average remaining balance of capital assets and average amount of working force as the input values. Besides, in considerate of the regional divide of China, namely eastern, central, and western, and economic development differences in each region, energy efficiency of each region is also analysed in this paper. The results show that there is room for China to improve its energy efficiency, especially western provinces which have large amount of energy input excess. Generally speaking, insufficient technological investment and fail of reaching best scale of manufacture are two factors preventing China from energy

  9. Energy Audit as a Tool for Improving System Efficiency in Industrial Sector

    OpenAIRE

    Gopi Srinath,; N. Uday Kumar

    2014-01-01

    This paper presents the characteristics of energy consumption in industrial sector, the methodology and results of energy audits (EA) performed in industrial sites and potentials for energy efficiency (EE) improvements. The present state of industrial energy in India could be characterized by significant technological out-of–date, low energy efficiency and low level of environmental protection. Presented analysis of the results of conducted energy audits in selected industrial...

  10. Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector

    International Nuclear Information System (INIS)

    Filippini, Massimo; Hunt, Lester C.; Zorić, Jelena

    2014-01-01

    The promotion of energy efficiency is seen as one of the top priorities of EU energy policy (EC, 2010). In order to design and implement effective energy policy instruments, it is necessary to have information on energy demand price and income elasticities in addition to sound indicators of energy efficiency. This research combines the approaches taken in energy demand modelling and frontier analysis in order to econometrically estimate the level of energy efficiency for the residential sector in the EU-27 member states for the period 1996 to 2009. The estimates for the energy efficiency confirm that the EU residential sector indeed holds a relatively high potential for energy savings from reduced inefficiency. Therefore, despite the common objective to decrease ‘wasteful’ energy consumption, considerable variation in energy efficiency between the EU member states is established. Furthermore, an attempt is made to evaluate the impact of energy-efficiency measures undertaken in the EU residential sector by introducing an additional set of variables into the model and the results suggest that financial incentives and energy performance standards play an important role in promoting energy efficiency improvements, whereas informative measures do not have a significant impact. - Highlights: • The level of energy efficiency of the EU residential sector is estimated. • Considerable potential for energy savings from reduced inefficiency is established. • The impact of introduced energy-efficiency policy measures is also evaluated. • Financial incentives are found to promote energy efficiency improvements. • Energy performance standards also play an important role

  11. Reducing barriers to energy efficiency in the German energy service companies sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koewener, D.; Schleich, J.

    2000-12-01

    This report describes the empirical research conducted in the German energy service sector to assess to what extent energy service companies (ESCOs) can help overcome the barriers to energy in the higher education, brewing and mechanical engineering sectors. This report complements the sector for Germany within the BARRIERS project (Sorrell et al., 2000; Schleich/Boede 2000a; Schleich/Boede 2000b; Schleich et al., 2000). The report characterises the German energy service sector, contains a description and analysis of four case studies in the energy service sector, identifies the main barriers and chances for ESCOs in the higher education, brewery and mechanical engineering sectors, and concludes with brief recommendations on how these barriers may be overcome. The results of the study are summarised here under the following headings: Characterising the energy service sector in Germany; - Case studies of energy service companies in Germany; - The role of ESCOs in the case-study sectors; - Policy implications. (orig.)

  12. Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA

    International Nuclear Information System (INIS)

    Yu, Xuewei; Moreno-Cruz, Juan; Crittenden, John C.

    2015-01-01

    Rebound effect is defined as the lost part of ceteris paribus energy savings from improvements on energy efficiency. In this paper, we investigate economy-wide energy rebound effects by developing a computable general equilibrium (CGE) model for Georgia, USA. The model adopts a highly disaggregated sector profile and highlights the substitution possibilities between different energy sources in the production structure. These two features allow us to better characterize the change in energy use in face of an efficiency shock, and to explore in detail how a sector-level shock propagates throughout the economic structure to generate aggregate impacts. We find that with economy-wide energy efficiency improvement on the production side, economy-wide rebound is moderate. Energy price levels fall very slightly, yet sectors respond to these changing prices quite differently in terms of local production and demand. Energy efficiency improvements in particular sectors (epicenters) induce quite different economy-wide impacts. In general, we expect large rebound if the epicenter sector is an energy production sector, a direct upstream/downstream sector of energy production sectors, a transportation sector or a sector with high production elasticity. Our analysis offers valuable insights for policy makers aiming to achieve energy conservation through increasing energy efficiency. - Highlights: • We developed a CGE model to investigate economy-wide energy rebound in Georgia, USA. • The CGE model has detailed treatment for different energy inputs for production. • The model has a highly disaggregated sector profile helpful for policy making. • We compared the economy-wide impact shocks in different epicenter sectors. • We analyzed why epicenters generate dramatically different economy-wide impacts.

  13. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    Science.gov (United States)

    Indati, M. S.; Ghate, A. T.; Leong, Y. P.

    2013-06-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  14. Towards greener environment: Energy efficient pathways for the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Indati, M S; Leong, Y P; Ghate, A T

    2013-01-01

    Transportation sector is the second most energy consuming sector after industrial sector, accounting for 40% of total energy consumption in Malaysia. The transportation sector is one of the most energy intensive sectors in the country and relies primarily on petroleum products, which in total account for nearly 98% of the total consumption in the sector. Since it is heavily reliant on petroleum based fuels, the sector contributes significantly to the greenhouse gas (GHG) emissions. The need to reduce the greenhouse gas emission is paramount as Malaysia at Conference of the Parties (COP15) pledged to reduce its carbon intensity by 40% by 2020 from 2005 level subject to availability of technology and finance. Transport sector will be among the first sectors that need to be addressed to achieve this goal, as two-thirds of the emissions come from fuel combustion in transport sector. This paper will analyse the factors influencing the transport sector's growth and energy consumption trends and discuss the key issues and challenges for greener environment and sustainable transportation in Malaysia. The paper will also discuss the policy and strategic options aimed towards energy efficient pathways in Malaysia.

  15. Energy transition in the transport sector. An action plan: how to finance the exploitation of sources of energy efficiency of the sector?

    International Nuclear Information System (INIS)

    Fink, Meike; Legrand, Vincent

    2014-05-01

    This report aims at identifying measures to be implemented during coming years in order energy consumption of the transport sector to become consistent with energy scenarios, and at studying how these measures could be funded. After a presentation of the situation of the transport sector in terms of energy consumption (energy consumption by the different sub-sectors, greenhouse effect, relationship with mobility, issue of infrastructures and related investments) and of its objectives, this study proposes an overview of the content of various scenarios (NegaWatt, Ademe, Ministry of Ecology, Greenpeace). It proposes a brief overview and discussion of energy saving potentials and sources, and presents issues related to energy efficiency in the transport sector. It develops an action plan aimed at exploiting energy efficiency sources in transports. This action plan notably comprises: a political signal for a more efficient mobility, a support to change in mobility, actions in town planning to ease energy efficiency in transports, a more efficient use of the rolling stock, infrastructures for a more efficient transport sector, a price signal in favour of a more efficient transport. The next parts of the study discuss expenses of the transport sector, incomes and funding tools for energy efficiency in transports, financial needs for efficiency improvement, financial resources, and propose a road map

  16. An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Ahmed, S.; Hashim, U.

    2007-01-01

    The purpose of this work is to apply the useful energy and exergy analysis models for different modes of transport in Malaysia and to compare the result with a few countries. In this paper, energy and exergy efficiencies of the various sub-sectors are presented by considering the energy and exergy flows from 1995 to 2003. Respective flow diagrams to find the overall energy and exergy efficiencies of Malaysian transportation sector are also presented. The estimated overall energy efficiency ranges from 22.74% (1999) to 22.98% (1998) with a mean of 22.82+/-0.06% and that of overall exergy efficiency ranges from 22.44% (2000) to 22.82% (1998) with a mean of 22.55+/-0.12%. The results are compared with respect to present energy and exergy efficiencies in each sub-sector. The transportation sector used about 40% of the total energy consumed in 2002. Therefore, it is important to identify the energy and exergy flows and the pertinent losses. The road sub-sector has appeared to be the most efficient one compared to the air and marine sub-sectors. Also found that the energy and exergy efficiencies of Malaysian transportation sector are lower than that of Turkey but higher than Norway

  17. Linking energy efficiency legislation and the agricultural sector in South Africa

    Directory of Open Access Journals (Sweden)

    Joseph N. Lekunze

    2017-04-01

    Full Text Available There are different ways of measuring energy efficiency. Although there is no generally agreed definition of the concept, it should, however, always be approached according to particular circumstances and contexts. As such, technological, operational, performance and equipment efficiencies should be taken into consideration. Generally, energy utilisation in most sectors of the South African economy is inefficient. This requires more energy needs to be generated in order to cater for losses. An increase in generation causes environmental problems at global, regional and local levels. A review of literature on energy efficiency was undertaken and a gap identified between legislation and efficiency in the agricultural sector. This article seeks to suggest ways of implementing an energy legislation in this sector in South Africa. Such implementation will address concerns in terms of harnessing, generating and utilising energy in different sectors in South Africa. Legislation is vital in reducing energy consumption in the agricultural sector. It also ensures efficient use of energy and the maintenance of current levels of production.

  18. Energy efficiency in the transport sector in the EU-27: A dynamic dematerialization analysis

    International Nuclear Information System (INIS)

    Ziolkowska, Jadwiga R.; Ziolkowski, Bozydar

    2015-01-01

    Energy use in the European Union's (EU) transport sector amounted to 340 Mtoe in 1999 with the following increasing trend up to 379 Mtoe in 2007 and a decrease from 2008 on, down to 365 Mtoe in 2010. This changing pattern posed several fundamental questions and uncertainties regarding the broader picture of energy efficiency and environmental protection. One of them refers to absolute changes in energy use efficiency in the transport sector over time and the ways of measuring efficiency. Traditional scientific approaches conceptualized to measure efficiency of energy use do not address annual dynamics of changes in the energy use in a given sector per capita. Thus, they are not precise enough for political and methodological purposes as they do not reflect the exact amount of energy consumed in the respective countries and societies. This paper shows a possible solution to this problem and a new perspective on measuring energy efficiency by using the product generational dematerialization (PGD) indicator. The PGD indicator allows for measuring energy efficiency as a dynamic change of consumption and population occurring simultaneously. Thus, it provides an extension to the traditional methodology commonly used for measuring efficiency. To visualize a practical application of this approach, the paper provides an example of evaluating energy efficiency in the transport sector in the EU-27 in 2000–2010. The results of the analysis show a clear materialization tendency in the transport sector (the energy consumption change exceeded the population growth) until 2007 and a reverse tendency (dematerialization) between 2008 and 2010. As energy consumption has a direct impact on environmental quality and exhaustion of natural resources, the paper points out the necessity of extending sustainable resource management policies by new methodologies and providing more efficient solutions for energy consumption in the transport sector. - Highlights: • PGD indicator proves a

  19. Energy efficiency achievements in China's industrial and transport sectors: How do they rate?

    International Nuclear Information System (INIS)

    Wu, Libo; Huo, Hong

    2014-01-01

    China is experiencing intensified industrialisation and motorisation. In the world's largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors' performances reflect the effectiveness of China's energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector's demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China's near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and GHGs by 34–35 per cent. - Highlights: • This article makes an investigation into the effectiveness of energy conservation policies in China. • Efficiency improvement reflects the effective governance of energy conservation in China. • Numerous actions have been taken to reduce the road transport sector's demand for energy. • Coal-based energy saving technologies are critical for China's near and medium-term energy saving. • In the long run, renewable energy and expanding the railway transport system are the most effective ways

  20. Market leadership by example: Government sector energy efficiency in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  1. Environment-adjusted total-factor energy efficiency of Taiwan's service sectors

    International Nuclear Information System (INIS)

    Fang, Chin-Yi; Hu, Jin-Li; Lou, Tze-Kai

    2013-01-01

    This study computes the pure technical efficiency (PTE) and energy-saving target of Taiwan's service sectors during 2001–2008 by using the input-oriented data envelopment analysis (DEA) approach with the assumption of a variable returns-to-scale (VRS) situation. This paper further investigates the effects of industry characteristics on the energy-saving target by applying the four-stage DEA proposed by Fried et al. (1999). We also calculate the pre-adjusted and environment-adjusted total-factor energy efficiency (TFEE) scores in these service sectors. There are three inputs (labor, capital stock, and energy consumption) and a single output (real GDP) in the DEA model. The most energy efficient service sector is finance, insurance and real estate, which has an average TFEE of 0.994 and an environment-adjusted TFEE (EATFEE) of 0.807. The study utilizes the panel-data, random-effects Tobit regression model with the energy-saving target (EST) as the dependent variable. Those service industries with a larger GDP output have greater excess use of energy. The capital–labor ratio has a significantly positive effect while the time trend variable has a significantly negative impact on the EST, suggesting that future new capital investment should also be accompanied with energy-saving technology in the service sectors. - Highlights: • The technical efficiency and energy-saving target of service sectors are assessed. • The pre-adjusted and environment-adjusted total-factor energy efficiency scores in services are assessed. • The industrial characteristic differences are examined by the panel-data, random-effects Tobit regression model. • Labor, capital, and energy and an output (GDP) are included in the DEA model. • Future new capital investment should also be accompanied with energy-saving technology in the service sectors

  2. Miniguide. Energy efficiency in the public sector; Mini-Wegweiser. Energieeffizienz im oeffentlichen Sektor

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Birgit; Joest, Steffen; Grimm, Nadia (comps.)

    2010-12-15

    The public sector faces a big challenge if it wants to fulfill its tasks in spite of tight budgets and increasing costs. The focus is on high energy costs and the challenging targets for energy efficiency and climate protection. The contribution under consideration presents a selection of the successfully implemented public projects for energy efficiency as well as an overview on key fields of activity and specific services for decision makers in territorial authorities and public institutions.

  3. An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Amalnick, M.S.; Ghaderi, S.F.; Asadzadeh, S.M.

    2007-01-01

    This paper introduces an integrated approach based on data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT) for total energy efficiency assessment and optimization in energy intensive manufacturing sectors. Total energy efficiency assessment and optimization of the proposed approach considers structural indicators in addition conventional consumption and manufacturing sector output indicators. The validity of the DEA model is verified and validated by PCA and NT through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical energy carriers. Four energy intensive manufacturing sectors are discussed in this paper: iron and steel, pulp and paper, petroleum refining and cement manufacturing sectors. To show superiority and applicability, the proposed approach has been applied to refinery sub-sectors of some OECD (Organization for Economic Cooperation and Development) countries. This study has several unique features which are: (1) a total approach which considers structural indicators in addition to conventional energy efficiency indicators; (2) a verification and validation mechanism for DEA by PCA and NT and (3) utilization of DEA for total energy efficiency assessment and consumption optimization of energy intensive manufacturing sectors

  4. Energy sector

    International Nuclear Information System (INIS)

    1995-01-01

    Within the framework of assessing the state of the environment in Lebanon, this chapter describes primary energy demand, the electricity generating sector and environmental impacts arising from the energy sector.Apart from hydropower and traditional energy sources, which together represent 1.7% of energy consumption, all energy in Lebanon derives from imported petroleum products and some coal.Tables present the imports of different petroleum products (Gasoil, Kerosene, fuel oil, coal etc...), their use, the energy balance and demand.Energy pricing and pricing policies, formal and informal electricity generations in Lebanon are described emphasized by tables. The main environmental impacts are briefly summarized. Thermal power stations give rise to emissions of Sulphur dioxide (SO 2 ), particulates, oxides of nitrogen (NO x ) and CO/CO 2 from combustion of primary fuel informally generated power from both industry and domestic consumption produce particulate materials and emissions of NO x and SO 2 projected emissions of SO 2 from the power sector with the present generating capacity and with the new combined cycle power plants in operation are shown. Other environmental impacts are described. Recommendations for supply and environment policy are presented

  5. A study of energy efficiency of transport sector in China from 2003 to 2009

    International Nuclear Information System (INIS)

    Chung, William; Zhou, Guanghui; Yeung, Iris M.H.

    2013-01-01

    Highlights: • The activity effect accounts for 98.05% increase in energy use. • Only Eastern’s structural effect contributes energy savings. • Intensity effect contributes energy saving in −4.24% of total energy changes. • Energy-mix effect is insignificant. - Abstract: As one of the three high-energy consumption sectors (industry, building, and transportation) in China, the transport sector faced a devastating resource and environment challenge. The transport sector was reportedly responsible for about 15.9% of the country’s total final energy consumption in 2008. This paper investigates the energy consumption and efficiency of China’s transport sector from 2003 to 2009. The transport energy data of 30 China administrative regions were divided into “three-belts” (Eastern, Western, and Central areas), and the corresponding turnovers were reported and analyzed using an index decomposition analysis (Logarithmic Mean Divisia Index). The energy data and turnover of the transport sector indicated that the high growth rate of turnover results is attributed to the high growth rate of diesel, assuming that diesel is the major fuel for freight transport. The growth of diesel is the main contributor to the overall growth of energy consumption. The growth rate of gasoline has become minimal since 2006. Since 2005, all three-belt areas, with regard to the effectiveness of energy conservation policies, have continuously improved their energy efficiencies based on the results of decomposition analysis. The energy intensity effect shows that the energy conservation and efficiency policies were more effective in the Central and Western areas than that in the Eastern area. On the other hand, the regional shift effect indicates that the policies favor to the Eastern area since only its regional shift effect contributes energy savings since 2008. The energy-mix effect is insignificant, which indicates that it is not necessary to conduct CO 2 emission decomposition

  6. Energy and exergy efficiencies in Turkish transportation sector, 1988-2004

    International Nuclear Information System (INIS)

    Ediger, Volkan S.; Camdali, Unal

    2007-01-01

    This study aims at examining energy and exergy efficiencies in Turkish transportation sector. Unlike the previous studies, historical data is used to investigate the development of efficiencies of 17 years period from 1988 to 2004. The energy consumption values in tons-of-oil equivalent for eight transport modes of four transportation subsectors of the Turkish transportation sector, including hard coal, lignite, oil, and electricity for railways, oil for seaways and airways, and oil and natural gas for highways, are used. The weighted mean energy and exergy efficiencies are calculated for each mode of transport by multiplying weighting factors with efficiency values of that mode. They are then summed up to calculate the weighted mean overall efficiencies for a particular year. Although the energy and exergy efficiencies in Turkish transport sector are slightly improved from 1988 to 2004, the historical pattern is cyclic. The energy efficieny is found to range from 22.16% (2002) to 22.62% (1998 and 2004) with a mean of 22.42±0.14% and exergy efficiency to range from 22.39% (2002) to 22.85% (1998 and 2004) with a mean of 22.65±0.15%. Overall energy and exergy efficiencies of the transport sector consist mostly of energy and exergy efficiencies of the highways subsector in percentages varying from 81.5% in 2004 to 91.7% in 2002. The rest of them are consisted of other subsectors such as railways, seaways, and airways. The overall efficiency patterns are basically controlled by the fuel consumption in airways in spite of this subsector's consisting only a small fraction of total. The major reasons for this are that airways efficiencies and the rate of change in fuel consumption in airways are greater than those of the others. This study shows that airway transportation should be increased to improve the energy and exergy efficiencies of the Turkish transport sectors. However, it should also be noted that no innovations and other advances in transport technologies are

  7. Two Paths to Transforming Markets through Public Sector EnergyEfficiency: Bottom Up versus Top Down

    Energy Technology Data Exchange (ETDEWEB)

    Van Wie McGrory, Laura; Coleman, Philip; Fridley, David; Harris,Jeffrey; Villasenor Franco, Edgar

    2006-05-10

    The evolution of government purchasing initiatives in Mexicoand China, part of the PEPS (Promoting an Energy-efficient Public Sector)program, demonstrates the need for flexibility in designingenergy-efficiency strategies in the public sector. Several years ofpursuing a top-down (federally led) strategy in Mexico produced fewresults, and it was not until the program was restructured in 2004 tofocus on municipal-level purchasing that the program gained momentum.Today, a new partnership with the Mexican federal government is leadingto an intergovernmental initiative with strong support at the federallevel. By contrast, the PEPS purchasing initiative in China wassuccessfully initiated and led at the central government level withstrategic support from international experts. The very different successtrajectories in these two countries provide valuable lessons fordesigning country-specific public sector energy-efficiency initiatives.Enabling conditions for any successful public sector purchasinginitiative include the existence of mandatory energy-efficiencyperformance standards, an effective energy-efficiency endorsementlabeling program, an immediate need for energy conservation, a simplepilot phase (focusing on a limited number of strategically chosenproducts), and specialized technical assistance. Top-down purchasingprograms are likely to be more successful where there is high-levelpolitical endorsement and a national procurement law in place, supportedby a network of trained purchasers. Bottom-up (municipally led)purchasing programs require that municipalities have the authority to settheir own purchasing policies, and also benefit from existing networks ofcities, supported by motivated municipal leaders and trained purchasingofficials.

  8. Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes

    International Nuclear Information System (INIS)

    Hope, Alexander John; Booth, Alexander

    2014-01-01

    The UK's housing stock generates approximately 27% of the country's total annual carbon emissions. In light of the legally binding targets to reduce carbon emissions, new housing is subject to a tightening of regulations governing energy demand and efficiency resulting in a gradual improvement in carbon emissions. The question is how to achieve the deep carbon emission reductions from existing domestic properties, of which 75% will still be in use in 2050. Government has sought to provide incentives to homeowners to improve the energy efficiency of their households, and mandate improvements in socially rented housing using a range of fiscal measures, most recently the ‘Green Deal’. There has however been little consideration of the 18% of UK households who privately rent their home, a tenure that is growing fast. The aim of this research is to investigate the factors that influence private sector landlords when considering energy efficiency improvements to their tenanted homes. The results indicate that government policy has consistently failed to engage private sector landlords in the issue of energy efficiency and thus measures must be taken to understand the motivations of landlords in order to design effective incentives and interventions. - Highlights: • Attitudes of private sector landlords to energy efficiency in their tenanted homes are analysed. • Reports on the actions taken by private landlords to improve energy efficiency. • Privately rented homes poorly performing in terms of energy performance. • The private rented sector is disengaged with the issue of housing energy performance. • Current government initiatives such as Green Deal offer little incentive for improvements

  9. Use of modern information technologies for making budgetary sectors of the economy more energy-efficient

    Science.gov (United States)

    Klimenko, A. V.; Bobryakov, A. V.

    2010-12-01

    A strategy of administrative management and technological control of heat consumption and energy conservation processes in budgetary sectors of the economy is described together with a system of integrated indicators for estimating the efficiency of these processes and the main results obtained from putting the strategy in use in the system of the Russian Federal Agency for Education are presented.

  10. Energy Efficiency Sector in Russia. Market Survey of Equipment and Services

    International Nuclear Information System (INIS)

    2006-02-01

    The aim of the present Survey is to give an insight of energy efficiency (EE) in Russia and to assess the demand for EE equipment and services in the energy sector. In the Survey the term 'Energy Efficiency' means the efficient generation, distribution and consumption of heat and power. The main EE measures are classified as recovery of sources of energy, measuring and controlling systems, optimal use of the equipment, modernisation, in-house energy generation and renewable energy sources. Chapter 3 gives an overview of the current situation of the Russian energy sector. The term 'energy sector' is used in the context of generation, distribution and consumption of heat and power. The infrastructure and the ownership of the energy sector are examined. In this chapter special attention is paid to the Power Sector Reform and how the Reform affects the development of EE in the Russian energy sector. Chapter 4 describes the current situation in EE, giving the reasons of inefficiency in energy use and possible solutions for improving. Chapter 5 presents a market research of equipment that could make a great input into EE development. The research has shown that the most promising opportunities for suppliers of EE equipment lie in the heat sector (generation, distribution, consumption). This chapter also describes the development of ESCOs (Energy Service Companies) in Russia. Chapter 6 gives an overview of domestic and foreign capital available to finance EE development. According to conventional market based incentives, end users invest into increasing their profits more intensively than into projects aiming at energy saving. That is mostly because energy is relatively cheap in Russia and the federal governmental policy does not stimulate EE development either. Chapter 7 on the market approach advises on steps that have to be taken and risks that need to be avoided in order to enter the Russian market successfully. It warns of the possible pitfalls on this way. Chapter 8

  11. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    Energy Technology Data Exchange (ETDEWEB)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  12. The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study

    International Nuclear Information System (INIS)

    Buck, J.; Young, D.

    2007-01-01

    The achievement of energy efficiency in commercial buildings is a function of the activities undertaken, the technology in place, and the extent to which those technologies are used efficiently. We study the factors that affect efficient energy use in the Canadian commercial sector by applying a stochastic frontier approach to a cross-section of Canadian commercial buildings included in the Commercial and Institutional Building Energy Use Survey (CIBEUS). Structural and climate-control features of the buildings as well as climatic conditions are assumed to determine the location of the frontier, while management-related variables including such factors as ownership type and activities govern whether or not the maximally attainable efficiency along the frontier is achieved. Our results indicate that although, on average, buildings appear to be fairly efficient, certain types of operations are more likely than others to exhibit energy efficiencies that are significantly worse than average. These results, along with those related to the effects of physical characteristics on the stochastic efficiency frontier, suggest that there is scope for focused policy initiatives to increase energy efficiency in this sector

  13. Power sector reforms in Brazil and its impacts on energy efficiency and research and development activities

    International Nuclear Information System (INIS)

    Jannuzzi, G.M. de

    2005-01-01

    Since the mid-nineties Brazil has implemented significant changes in the country's power sector, including privatization, introduction of competition and the creation of regulatory agency. As reform started in Brazil traditional support to energy efficiency and energy research and development suffered a discontinuation, budget cuts and re-definition of roles of the public agents in charge. At the same time, new regulatory measures and the creation of a national public interest fund have helped to maintain and potentially enhance the country's effort to promote energy efficiency and investments in energy R and D. This paper analyses the impacts of these changes in the areas of energy efficiency and energy research and development and argues for an increased role of developing countries to provide solutions for a meeting energy demand requirements more suitable to their internal markets

  14. Energy and exergy utilization efficiencies and emission performance of Canadian transportation sector, 1990–2035

    International Nuclear Information System (INIS)

    Motasemi, F.; Afzal, Muhammad T.; Salema, Arshad Adam; Moghavvemi, M.; Shekarchian, M.; Zarifi, F.; Mohsin, R.

    2014-01-01

    Transportation sector of Canada is the second largest energy consuming sector which accounts for 30% of the total energy consumption of the country in 2009. The purpose of this work was to analyze the energy, exergy, and emission performance for four different modes of transport (road, air, rail, and marine) from the year 1990–2035. For historical period, the estimated overall energy efficiency ranges from 22.41% (1991) to 22.55% (2006) with a mean of 22.48 ± 0.07% and the overall exergy efficiency ranges from 21.61% (2001) to 21.87 (2006) with a mean of 21.74 ± 0.13%. Energy and exergy efficiencies may reach 20.95% and 20.97% in the year 2035 respectively based on the forecasted data. In comparison with other countries, we found that in the year 2000 the overall energy and exergy efficiencies for Canadian transportation sector were higher than Jordan, China, Norway, and Saudi Arabia but lower than Turkey and Malaysia. Between the year 1990–2009, the highest amount of emission produced in each subsector was: road CO 2 (80%), NO x (72%), and CO (carbon monoxide) (96%); air SO 2 (86%); rail NO x (6%) and marine NO x (7%). The road subsector produced the highest amount of emissions. - Highlights: • Energy, exergy and emission performance for Canadian transport was analyzed. • Maximum energy and exergy efficiencies were 22.55% and 21.87% in 2006 respectively. • Energy and exergy efficiencies may decrease in the year 2035. • CO 2 was the largest pollutant emitted followed by CO, NO x , and SO 2 . • Utilization of green fuels can improve exergy and emission performance

  15. Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis

    International Nuclear Information System (INIS)

    Liu, Yingnan; Wang, Ke

    2015-01-01

    The process of energy conservation and emission reduction in China requires the specific and accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 percent of China's total energy consumption. Previous studies have used a “black box” DEA (data envelopment analysis) model to obtain the energy efficiency without considering the inner structure of the industry sector. However, differences in the properties of energy utilization (final consumption or intermediate conversion) in different industry departments may lead to bias in energy efficiency measures under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation bias. By separating the energy-producing department and energy-consuming department, this adjusted evaluation model was then applied to evaluate the energy efficiency of China's provincial industry sector. - Highlights: • An adjusted network DEA (data envelopment analysis) model for energy efficiency evaluation is proposed. • The inner structure of industry sector is taken into account for energy efficiency evaluation. • Energy final consumption and energy intermediate conversion processes are separately modeled. • China's provincial industry energy efficiency is measured through the adjusted model.

  16. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  17. Estimating the energy and exergy utilization efficiencies for the residential-commercial sector: an application

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2006-01-01

    The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential-commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential-commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied

  18. Energy efficiency programs and policies in the industrial sector in industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  19. Exploring the range of energy savings likely from energy efficiency retrofit measures in Ireland's residential sector

    International Nuclear Information System (INIS)

    Dineen, D.; Ó Gallachóir, B.P.

    2017-01-01

    This paper estimates the potential energy savings in the Irish residential sector by 2020 due to the introduction of an ambitious retrofit programme. We estimate the technical energy savings potential of retrofit measures targeting energy efficiency of the space and water heating end uses of the 2011 stock of residential dwellings between 2012 and 2020. We build eight separate scenarios, varying the number of dwellings retrofitted and the depth of retrofit carried out in order to investigate the range of energy savings possible. In 2020 the estimated technical savings potential lies in the range from 1713 GWh to 10,817 GWh, but is more likely to fall within the lower end of this range, i.e. between 1700 and 4360 GWh. When rebound effects are taken into account this reduces further to 1100 GWh and 2800 GWh per annum. The purpose of this paper was to test the robustness of the NEEAP target savings for residential retrofit, i.e. 3000 GWh by 2020. We conclude that this target is technically feasible but very challenging and unlikely to be achieved based on progress to date. It will require a significant shift towards deeper retrofit measures compared to what has been achieved by previous schemes. - Highlights: • Paper estimates range of energy savings likely from Irish residential retrofit. • Achieving NEEAP target savings of 3000 GWh by 2020 is feasible but very challenging. • Likely savings of 1100–2800 GWh per annum in 2020, including rebound. • NEEAP target unlikely to be achieved based on current trends.

  20. An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector

    International Nuclear Information System (INIS)

    Marinakis, Vangelis; Doukas, Haris; Karakosta, Charikleia; Psarras, John

    2013-01-01

    Highlights: ► We developed an interactive software for building automation systems. ► Monitoring of energy consumption in real time. ► Optimization of energy consumption implementing appropriate control scenarios. ► Pilot appraisal on remote control of active systems in the tertiary sector building. ► Significant decrease in energy and operating cost of A/C system. -- Abstract: Although integrated building automation systems have become increasingly popular, an integrated system which includes remote control technology to enable real-time monitoring of the energy consumption by energy end-users, as well as optimization functions is required. To respond to this common interest, the main aim of the paper is to present an integrated system for buildings’ energy-efficient automation. The proposed system is based on a prototype software tool for the simulation and optimization of energy consumption in the building sector, enhancing the interactivity of building automation systems. The system can incorporate energy-efficient automation functions for heating, cooling and/or lighting based on recent guidance and decisions of the National Law, energy efficiency requirements of EN 15232 and ISO 50001 Energy Management Standard among others. The presented system was applied to a supermarket building in Greece and focused on the remote control of active systems.

  1. Stagnating energy efficiency in the Swedish building sector-Economic and organisational explanations

    International Nuclear Information System (INIS)

    Naessen, Jonas; Sprei, Frances; Holmberg, John

    2008-01-01

    The development towards higher energy efficiency in the Swedish building sector stagnated in the late 1980s and 1990s. In new buildings the average specific energy use for heating is twice as high as in the best performing buildings 20 years ago. By combining econometric studies and interviews with actors in the building sector we analyse the underlying economic and organisational causes for this development. In the stock of buildings, specific energy use for heating (kWh/m 2 /yr) has a high correlation with increasing energy prices and price elasticities have not changed markedly over time. This implies that the stagnation to a large extent can be explained by energy price trends. On the contrary, in new buildings the correlation between energy prices and specific energy use is much weaker. One important cause of low sensitivity to price changes is that information about the life cycle cost (LCC) of different investment alternatives is often not available to the involved actors. The most common investment criterion is instead the requirements of the national building energy standard which has developed into a norm rather than a minimum for energy performance. In this paper we also discuss potential improvements in the learning processes within the sector

  2. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector

    NARCIS (Netherlands)

    Kermeli, Katerina; Graus, Wina H J; Worrell, Ernst

    2014-01-01

    The adoption of energy efficiency measures can significantly reduce industrial energy use. This study estimates the future industrial energy consumption under two energy demand scenarios: (1) a reference scenario that follows business as usual trends and (2) a low energy demand scenario that takes

  3. Evaluation of the energy efficiency evolution in the European road freight transport sector

    International Nuclear Information System (INIS)

    Ruzzenenti, F.; Basosi, R.

    2009-01-01

    In this paper, we evaluate energy efficiency in the European freight transport sector over three decades, according to a variety of indicators, methodologies and databases. The aim is, on the one hand, of determining major drawbacks in energy efficiency metrics, on the other hand, identifying a possible trend in the sector. The present analysis shows that energy efficiency evaluation is generally subject to misinterpretation and distortion with regard to the methods and data source adopted. Two different indicators (energy intensity and fuel economy) were initially taken into account to select the most suitable for evaluating vehicles' efficiency. Fuel economy was then adopted and measured according to two different methodologies (top-down and bottom-up). We then considered all the possible sources of distortion (data sources employed, methods of data detection, speed of detection, power enhancement, size factor) with the aim of accomplishing a sound estimation. Fuel economy was eventually divided with the maximum power available (adjusted fuel economy), to account for the power shift of vehicles, that represents a further efficiency improvement.

  4. Analysing policy interactions for promoting energy efficiency in the Hellenic sectors of buildings and transport

    OpenAIRE

    Dr. Popi KONIDARI; Mrs. Anna FLESSA; Ms. Aliki-Nefeli MAVRAKI; Ms. Eleni-Danai MAVRAKI

    2016-01-01

    Policy interactions are important parameters for the successful implementation of policies, measures and policy instruments. The parallel implementation of a number of policy instruments has the potential to create synergies or conflicts that maximize or prevent the achievement of their anticipated outcomes. This paper analyses three cases of policy interactions between two policy instruments for promoting even more the energy efficiency outcomes in Greece for two sectors, buildings and trans...

  5. Kyiv institutional buildings sector energy efficiency program: Lending and implementation assessment

    Energy Technology Data Exchange (ETDEWEB)

    Secrest, T.J.; Freeman, S.L. [Pacific Northwest National Lab., Richland, WA (United States); Popelka, A. [Tysak Engineering, Acton, MA (United States); Shestopal, P.A.; Gagurin, E.V. [Agency for Rational Energy Use and Ecology, Kyiv (Ukraine)

    1997-08-01

    The government of Ukraine, through the State Committee of Energy Conservation (State Committee), is considering the implementation of energy efficiency measures in state and municipal institutional buildings in the city of Kyiv. The State Committee entered into a Memorandum of Cooperation with the US Department of Energy (DOE) to conduct an assessment of the institutional buildings sector efficiency potential. This assessment will be used to support a potential loan by the World Bank for implementing a buildings efficiency improvement program in Kyiv. This report provides an assessment of the options for structuring the lending scenarios and the implementation of the program. Components to the lending structure are options for the disbursement of funds, options for the loan service, and other financial options and considerations. Program implementation includes management structures, reporting, installation activities, and post-installation activities such as training and verification.

  6. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  7. International comparisons of energy and environmental efficiency in the road transport sector

    International Nuclear Information System (INIS)

    Ben Abdallah, Khaled; Belloumi, Mounir; De Wolf, Daniel

    2015-01-01

    The present work provides an international comparison of the energy intensity and the carbon dioxide intensity in road transport for a group of 90 countries over the period 1980–2012. This paper attempts to perform a comparative analysis to find the most appropriate mapping of the energy performance in road transport taking into account the three dimensions of sustainable energy development, namely road transport-related energy consumption, economic growth and carbon dioxide emissions. An important result of the study is the inverse relationship between energy efficiency and environmental efficiency. Through the calculated Theil coefficient, our empirical findings highlight the existence of spatial and temporal disparities between countries. In 2012, Tunisia occupies the 48th and the 38th rank respectively in terms of energy and environmental efficiency. Based on a general index of energy performance in the road transport sector, it is deemed to have a medium–high energy performance by occupying the 34th rank. The study shows the importance of enhancing a number of policies for the road transport system through the joint improvement of the fuel price policy, of the road infrastructure policy and of the fuel-efficient road vehicles policy, in order to maintain sustainable energy road transport. - Highlights: • The paper presents an international comparative analysis of the energy performance. • The road transport is analyzed for a group of 90 countries over the period 1980–2012. • There is no convergence between energy and environmental efficiencies. • Tunisia has a medium-high energy performance by occupying the 34th rank in 2012. • The findings show the importance of enhancing some policies for the road transport.

  8. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs

    International Nuclear Information System (INIS)

    Onuet, Semih; Soner, Selin

    2007-01-01

    Small and medium size enterprises (SMEs) have an important role in the Turkish economy because of the workforce involved. According to the size of the industrial facilities, there are different cost components related to the total production costs. Energy cost is usually a small portion of the total production cost, but the Turkish industrial sector comprises approximately 35% of Turkey's total energy consumption and 98.8% of the total number of enterprises in Turkey constitutes the SMEs. Because of the uncertainty of energy costs in the world, it is important to take preventive measures to reduce energy costs and increase efficiencies in industry and consequently in SMEs. In this paper, medium sized enterprises are taken into consideration essentially. Because of getting homogeneity, enterprises with the number of workers between 100 and 200 in the metallic goods industry have been considered in the survey. Energy management includes increasing the profitability by reduced operational costs, and it is also a potential for improving market share. Many different evaluation models have been published in the energy management literature. However, there have not been so many systematic approaches to compare the relative efficiency of the systems. Data envelopment analysis (DEA) is a special linear programming model for deriving the comparative efficiency of multiple-input multiple-output decision making units (DMUs). An evaluation of energy efficiency in 20 medium sized companies has been conducted, and the results are discussed in this paper

  9. Cross-sectoral coordination for sustainable solutions in Croatia: The (meta) governance of energy efficiency

    International Nuclear Information System (INIS)

    Christopoulos, Stamatios; Demir, Cansu; Kull, Michael

    2016-01-01

    Increasing the energy efficiency not only requires the improvement of current technologies, but also advancement of and more coherent institutional governance. This paper captures the major structural and organisational elements of institutional governance in place for promoting energy efficiency. Looking at Croatia – one of the most successful cases of energy efficiency programming of the past decade – the paper zooms in on governance coordination (metagovernance) between actors from different sectors and operating at multiple levels. By showcasing the positive implications of the programme, the authors contribute to the debate concerned with identifying better institutional frameworks to attain sustainable development. The programme showed effective governance through vertical and horizontal coordination among institutions and stakeholders resulting in simultaneous social and economic development and improved energy efficiency in public buildings. Through the case of Croatia, this study identifies how metagovernance has supported coordination among actors aiming to create sustainable development in general and how metagovernance functions in energy efficiency related projects, in particular. The paper also sheds light on communication frameworks of governance coordination and institutional constraints lying at the heart of the vagueness of sustainable development. It also discusses private sector involvement to achieve better institutional framework to attain sustainable development. - Highlights: • This study identified how metagovernance has supported coordination among actors. • State played a key role in the coordination by acting as a catalyst. • UNDP acted as a mediator between government and society for capacity building. • Public authorities are less likely to continue activities without external support. • Private sector’s knowledge and resources are crucial to support project objectives.

  10. Energy efficiency outlook in China’s urban buildings sector through 2030

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Feng, Wei; Rue du Can, Stephane de la; Khanna, Nina Zheng; Ke, Jing; Zhou, Nan

    2016-01-01

    This study uses bottom-up modeling framework in order to quantify potential energy savings and emission reduction impacts from the implementation of energy efficiency programs in the building sector in China. Policies considered include (1) accelerated building codes in residential and commercial buildings, (2) increased penetration of district heat metering and controls, (3) district heating efficiency improvement, (4) building energy efficiency labeling programs and (5) retrofits of existing commercial buildings. Among these programs, we found that the implementation of building codes provide by far the largest savings opportunity, leading to an overall 17% reduction in overall space heating and cooling demand relative to the baseline. Second are energy efficiency labels with 6%, followed by reductions of losses associated with district heating representing 4% reduction and finally, retrofits representing only about a 1% savings. - Highlights: • We use a bottom-up modeling approach to quantify emission reduction from efficiency programs. • Heating and cooling are the main focus of this study. • We find that building codes lead to 17% reduction compare to the baseline. • Other programs analyzed concern district heat, building labeling and retrofits of buildings.

  11. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  13. An energy efficiency plan for the Iranian building sub-sector

    International Nuclear Information System (INIS)

    Sadegh Zadeh, S.M.

    2007-01-01

    The objective of this paper is to develop a 25-year least cost plan for energy management in the Iranian building sub-sector. For this purpose, an energy flow optimization from the point where the final energy is delivered to consumers, until the useful energy and energy services point is investigated. This will help to select the most economically feasible technologies as well as energy carriers considering all technical and social constraints. Based on the optimization results, absorption cooling for the regions where natural gas network is available, grades A and B evaporative coolers and air conditioners for those areas where there is no gas service, gas fired heating systems, wall insulation, double-glazed windows, equipments and appliances with highest energy labelling grade and compact and non-compact fluorescent lamps are among the selections. The results of the sensitivity analysis indicates that if the cost of natural gas network development to the regions where there is no gas will result in the tripling rate of the actual cost of the natural gas, in those areas, the priority should be still given to the consumption of gas. The proposed energy efficiency plan results in 27%, 54% and 10% saving in energy consumption, energy cost and investment cost, respectively

  14. Perspectives of energy efficient technologies penetration in the Greek domestic sector, through the analysis of Energy Performance Certificates

    International Nuclear Information System (INIS)

    Gelegenis, J.; Diakoulaki, D.; Lampropoulou, H.; Giannakidis, G.; Samarakou, M.; Plytas, N.

    2014-01-01

    The building sector in Greece presents a huge energy saving potential, the largest part of which is remaining unexploited. The recently enacted legislation for the energy performance of buildings, in combination with the financial support provided by funding programmes to low income families is expected to significantly boost the deployment of energy efficient technologies in the Greek domestic sector. The exploitation of these legal and financial instruments follows a formalised process of energy audits, resulting in buildings classification and in the submission of Energy Performance Certificates (EPCs) including suggestions to improve the dwellings' energy performance. The paper aims at an ex-ante evaluation of the market trends revealed by EPCs in Greece, in order to identify the perspectives of individual technologies and to assess the degree to which the certification procedure helps in improving the energy performance of buildings. The results indicate a strong trend towards less cost-effective technologies, revealing a sub-optimal allocation of financial resources and putting into risk the path towards the achievement of EU targets for 2020. - Highlights: • Energy Performance Certificates reveal market trends of energy efficient technologies. • SWH, replacement of windows and walls/roof insulation are most often recommended. • Other measures are controls, switch to NG; low cost measures are rarely recommended. • Cost-effectiveness is not the main factor explaining technology recommendations. • Amendment of EPC document and inspection process may enhance its effectiveness

  15. How do policies for efficient energy use in the household sector induce energy-efficiency innovation? An evaluation of European countries

    International Nuclear Information System (INIS)

    Girod, Bastien; Stucki, Tobias; Woerter, Martin

    2017-01-01

    Research on innovation induced by climate-mitigation policy has been focused predominantly on the supply side of the energy system. Despite considerable climate-mitigation potential on the demand side, less attention is given to the innovation effect of policies addressing the household sector. Based on a comprehensive data set, including 550 policy measures over 30 years (1980–2009) and covering 21 European countries, we find—based on econometric estimations—that policies targeting efficient energy use in the household sector significantly increase the number of patented energy-efficiency inventions. A comparison of the different policy types reveals a particularly strong influence from financial subsidies and energy labels. The results indicate that policies supporting early market adoption of energy-efficient technologies are effective in fostering innovation. - Highlights: • We evaluate the impact of energy-efficiency policy on energy-efficiency innovation. • The dataset covers patents and policies for 1980–2009 in 21 European countries. • Household policies show a positive influence on innovation activity (patented inventions). • The influence is most pronounced for financial subsidies and energy labels.

  16. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets

    International Nuclear Information System (INIS)

    Fais, Birgit; Sabio, Nagore; Strachan, Neil

    2016-01-01

    Highlights: • A new industrial modelling approach in a whole energy systems model is developed. • The contribution of UK industry to long-term energy policy targets is analysed. • Emission reductions of up to 77% can be achieved in the UK industry until 2050. • The UK industry sector is essential for achieving the overall efficiency commitments. • UK industry can make a moderate contribution to the expansion of renewable energies. - Abstract: This paper evaluates the critical contribution of the industry sector to long-term decarbonisation, efficiency and renewable energy policy targets. Its methodological novelty is the incorporation of a process-oriented modelling approach based on a comprehensive technology database for the industry sector in a national energy system model for the UK (UKTM), allowing quantification of the role of both decarbonisation of upstream energy vectors and of mitigation options in the industrial sub-categories. This enhanced model is then applied in a comparative policy scenario analysis that explores various target dimensions on emission mitigation, renewable energy and energy efficiency at both a national and European level. The results show that ambitious emission cuts in the industry sector of up to 77% until 2050 compared to 2010 can be achieved. Moreover, with a reduction in industrial energy demand of up to 31% between 2010 and 2050, the sector is essential for achieving the overall efficiency commitments. The industry sector also makes a moderate contribution to the expansion of renewable energies mostly through the use of biomass for low-temperature heating services. However, additional sub-targets on renewable sources and energy efficiency need to be assessed critically, as they can significantly distort the cost-efficiency of the long-term mitigation pathway.

  17. The argentine electric sector reform and its correlation with energy efficiency; La reforma del sector electrico argentino y su relacion con la eficiencia energetica

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, Claudio [MGM International (Argentina)

    2005-04-15

    The reforms in the Argentine electrical sector and the effect these have originated in the energy efficiency policies for public sector are presented. The characteristics exposed of the Argentina Electric sector previous to the 1992 transformation are the departing base that gave rise to the reform fundaments, generating privatizations and a vertical economic scheme. The transformation of the electric sector departing from its environmental regulations yielded in a quality service, good electricity distribution, better prices and proper energy efficiency. [Spanish] Se presentan las reformas en el sector electrico argentino y el efecto que han tenido sobre las politicas de eficiencia energetica elaboradas en el sector publico. Las caracteristicas expuestas del sector electrico argentino previas a la transformacion de 1992 son la base de partida que dio lugar a los fundamentos de la reforma generando privatizaciones y un esquema economico vertical. La transformacion del sector electrico a partir de sus regulaciones energeticas y ambientales redituaron en calidad de servicio, de distribucion de electricidad, precios y en la propia eficiencia energetica.

  18. Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector

    International Nuclear Information System (INIS)

    Kelly, Scott

    2011-01-01

    Energy consumption from the residential sector is a complex socio-technical problem that can be explained using a combination of physical, demographic and behavioural characteristics of a dwelling and its occupants. A structural equation model (SEM) is introduced to calculate the magnitude and significance of explanatory variables on residential energy consumption. The benefit of this approach is that it explains the complex relationships that exist between manifest variables and their overall effect though direct, indirect and total effects. Using the English House Condition Survey (EHCS) consisting of 2531 unique cases, the main drivers behind residential energy consumption are found to be the number of household occupants, floor area, household income, dwelling efficiency (SAP), household heating patterns and living room temperature. In the multivariate case, SAP explains very little of the variance of residential energy consumption. However, this procedure fails to account for simultaneity bias between energy consumption and SAP. Using SEM its shown that dwelling energy efficiency (SAP), has reciprocal causality with dwelling energy consumption and the magnitude of these two effects are calculable. When non-recursivity between SAP and energy consumption is allowed for, SAP is shown to have a negative effect on energy consumption but conversely, homes with a propensity to consume more energy also have higher SAP rates. -- Highlights: → A Structural Equation Model (SEM) is developed to explain residential energy demand. → Key variables that drive residential energy consumption are empirically identified. → Direct, indirect and total effects are determined. → It is found that occupancy and household income are strongly mediated by floor area. → A non-recursive relationship is found to exist between energy consumption and SAP.

  19. New energy efficiency technologies associated with increased natural gas demand in delivery and consumption sectors of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Alghalandis, Saeid Mansouri

    2010-09-15

    Increasing population and economic growth in developing countries has changed their energy consumption patterns. So, the conventional systems of energy supply have become inadequate to deal with rising energy demand. Iran has great reservoirs of natural gas and its natural gas usage is far more than average international standard. Dominance of natural gas share in energy basket in Iran, make it necessary to consider energy efficient technologies and solutions for this domain. In this study new technologies for increasing energy efficiency (EE) in natural gas delivery and consumption sub sectors are discussed and evaluated according to available infrastructures in Iran.

  20. Energy Sector Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  1. Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector

    International Nuclear Information System (INIS)

    Cagno, Enrico; Ramirez-Portilla, Andres; Trianni, Andrea

    2015-01-01

    The Europe 2020 strategy currently promotes energy efficiency and innovation through disconnected targets focusing on either energy or R&D. Similar policies indicate that in practice, these two concepts are usually perceived as mutually exclusive. Furthermore, evidence in the literature regarding the relationship between R&D and energy efficiency is still highly limited. This exploratory study aims to address this gap by investigating the link between innovation practices and energy efficiency through a multiple case study of 30 foundries in Northern Italy. We analysed the firms' innovativeness, measured by internal R&D and Open Innovation practices (inbound and outbound), and energy efficiency, measured by specific energy consumption, level of adoption of energy-efficient technologies and barriers to energy efficiency. The results seem to show that those foundries complementing internal R&D with inbound practices have a higher level of energy efficiency, a higher level of adoption of available technologies, and a lower perception of barriers to efficiency improvements. This finding suggests that diversifying innovation practices could lead to better performance with respect to all three indicators of energy efficiency analysed. This study contributes to understanding how more innovative firms can be more energy efficient, providing interesting highlights for managers and policymakers. -- Highlights: •The relation between innovation practices and energy efficiency is articulated. •The link between innovation practices and energy efficiency is tested for foundries. •Energy efficiency is measured with three different indicators. •Analyses of the relations between these indicators support the link with innovation. •Concurrent adoption of internal R&D and inbound practices leads to higher efficiency

  2. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  3. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Amelie [Institute for Industrial Productivity (United States); Taylor, Robert P. [Institute for Industrial Productivity (United States); Hedman, Bruce [Institute for Industrial Productivity (United States)

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  4. Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors

    International Nuclear Information System (INIS)

    Urpelainen, Johannes

    2011-01-01

    Why are some countries developing many energy efficiency innovations, while others are lagging behind? I argue that export orientation and electricity at low variable cost from nuclear and hydropower plants have an interactive effect on energy efficiency innovation. Export-oriented countries have strong incentives to invest in energy efficiency innovation, as they are in a position to export these technology innovations for global markets. But if inexpensive electricity is supplied in a country, the domestic demand for energy efficiency innovation is missing, and so the home market cannot serve as a springboard for international commercialization. I test this theory against international patent data on energy efficiency innovation in insulation, heating, and lighting for 22 OECD countries, 1991-2007. The statistical analysis indicates that export orientation has large positive effects on energy efficiency innovation in countries that do not rely on nuclear and hydroelectricity. - Highlights: → Export-oriented countries produce energy efficiency innovations. → Nuclear and hydropower reduce energy efficiency innovation. → Data on international patents from industrialized countries support the argument.

  5. Competition, regulation, and energy efficiency options in the electricity sector: Opportunities and challenges in developing countries

    Science.gov (United States)

    Phadke, Amol Anant

    This dissertation explores issues related to competition in and regulation of electricity sectors in developing countries on the backdrop of fundamental reforms in their electricity sectors. In most cases, electricity sector reforms promoted privatization based on the rationale that it will lower prices and improve quality. In Chapter 2, I analyze this rationale by examining the stated capital cost of independent (private) power producer's (IPPs) power projects in eight developing countries and find that the stated capital cost of projects selected via competitive bidding is on an average about 40% to 60% lower than that of the projects selected via negotiations, which, I argue, represents the extent to which the costs of negotiated projects are overstated. My results indicate that the policy of promoting private sector without an adequate focus on improving competition or regulation has not worked in most cases in terms of getting competitively priced private sector projects. Given the importance of facilitating effective competition or regulation, In Chapter 3, I examine the challenges and opportunities of establishing a competitive wholesale electricity market in a developing country context. I model a potential wholesale electricity market in Maharashtra (MH) state, India and find that it would be robustly competitive even in a situation of up-to five percent of supply shortage, when opportunities for demand response are combined with policies such as divestiture and requiring long-term contracts. My results indicate that with appropriate policies, some developing countries could establish competitive wholesale electricity markets. In Chapter 4, I focus on the demand side and analyze the cost effectiveness of improving end-use efficiency in an electricity sector with subsidized tariffs and electricity shortages and show that they offer the least expensive way of reducing shortages in Maharashtra State, India. In Chapter 5, I examine the costs of reducing carbon

  6. Review of policies and measures for energy efficiency in industry sector

    International Nuclear Information System (INIS)

    Tanaka, Kanako

    2011-01-01

    Energy efficiency in industry plays key roles in improving energy security, environmental sustainability and economic performance. It is particularly important in strategies to mitigate climate change. The evidence of great potential for cost-effective efficiency-derived reductions in industrial energy use and greenhouse gas (GHG) emissions have prompted governments to implement numerous policies and measures aimed at improving their manufacturing industries' energy efficiency. What can be learned from these many and varied initiatives? This paper provides foundation for policy analysis for enhancing energy efficiency and conservation in industry, by surveying more than 300 policies, encompassing about 570 measures, implemented by governments in IEA countries, Brazil, China, India, Mexico, Russia and South Africa. It outlines the measures' main features, their incidence of use, and their connections with specific technical actions and key stakeholders (i.e., how and where measures affect the energy efficiency of industry). It also examines the key features underlying the measures' success: (1) potential to reduce energy use and CO 2 emissions cost-efficiently; (2) ease of policy development, execution and assessment and (3) ancillary societal effects. - Highlights: → Provides foundation for policy analysis for energy efficiency in industry. → Surveys more than 300 policies and their trends, of mainly IEA countries. → Outlines measures' features, incidence of use, technical actions and stakeholders. → Examines the key features underlying the measures' success.

  7. Energy efficiency

    International Nuclear Information System (INIS)

    Marvillet, Ch.; Tochon, P.; Mercier, P.

    2004-01-01

    World energy demand is constantly rising. This is a legitimate trend, insofar as access to energy enables enhanced quality of life and sanitation levels for populations. On the other hand, such increased consumption generates effects that may be catastrophic for the future of the planet (climate change, environmental imbalance), should this growth conform to the patterns followed, up to recent times, by most industrialized countries. Reduction of greenhouse gas emissions, development of new energy sources and energy efficiency are seen as the major challenges to be taken up for the world of tomorrow. In France, the National Energy Debate indeed emphasized, in 2003, the requirement to control both demand for, and offer of, energy, through a strategic orientation law for energy. The French position corresponds to a slightly singular situation - and a privileged one, compared to other countries - owing to massive use of nuclear power for electricity generation. This option allows France to be responsible for a mere 2% of worldwide greenhouse gas emissions. Real advances can nonetheless still be achieved as regards improved energy efficiency, particularly in the transportation and residential-tertiary sectors, following the lead, in this respect, shown by industry. These two sectors indeed account for over half of the country CO 2 emissions (26% and 25% respectively). With respect to transportation, the work carried out by CEA on the hydrogen pathway, energy converters, and electricity storage has been covered by the preceding chapters. As regards housing, a topic addressed by one of the papers in this chapter, investigations at CEA concern integration of the various devices enabling value-added use of renewable energies. At the same time, the organization is carrying through its activity in the extensive area of heat exchangers, allowing industry to benefit from improved understanding in the modeling of flows. An activity evidenced by advances in energy efficiency for

  8. Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector

    International Nuclear Information System (INIS)

    Elsland, Rainer; Divrak, Can; Fleiter, Tobias; Wietschel, Martin

    2014-01-01

    Turkey’s energy demand has been growing by 4.5% per year over the last decade. As a reaction to this, the Turkish government has implemented the Strategic Energy Efficiency Plan (SEEP), which provides a guideline for energy efficiency policies in all sectors. The aim of this study is to analyse the potential of the SEEP on final energy demand in the Turkish residential sector until 2030. Three scenarios are developed based on a detailed bottom-up modelling approach using a vintage stock model to simulate the energy demand of heating systems and appliances. The results show a decreasing final energy demand in the reference scenario from about 944 PJ in 2008 to 843 PJ in 2030. This reflects a structural break, which is mainly caused by a high building demolition rate and low efficiency in the existing building stock. The SEEP achieves additional savings of around 111 PJ until 2030, while a scenario with even higher efficiency shows further savings of 91 PJ. Electricity demand increases in all scenarios – mainly due to growing ownership rates of appliances. The SEEP will achieve around 10 TWh of electricity savings in 2030 compared to the reference scenario, mainly through more ambitious end-use standards

  9. Case study; Paper on the energy efficiency evolution in the European road freight transport sector

    OpenAIRE

    Riccardo Basosi; Franco Ruzzenenti

    2014-01-01

    One of the goals of WP7 is that of analyzing the energy crisis within the global economic crisis and assess to what extent fuel prices can promote the transition towards a more sustainable and efficient energy regime. This paper addresses the European freight transport system, national and cross-boarder, and assesses the evolution of its efficiency and intensity during the period 1998-2011, when oil prices globally increased, up the hike of the 2008. It will also be investigated the rebound e...

  10. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    Energy Technology Data Exchange (ETDEWEB)

    Can, Stephane de la Rue du; Shah, Nihar; Phadke, Amol

    2011-07-13

    A large variety of energy-efficiency policy measures exist. Some are mandatory, some are informative, and some use financial incentives to promote diffusion of efficient equipment. From country to country, financial incentives vary considerably in scope and form, the type of framework used to implement them, and the actors that administer them. They range from rebate programs administered by utilities under an Energy-Efficiency Resource Standards (EERS) regulatory framework (California, USA) to the distribution of Eco-points rewarding customers for buying highly efficient appliances (Japan). All have the primary objective of transforming the current market to accelerate the diffusion of efficient technologies by addressing up-front cost barriers faced by consumers; in most instances, efficient technologies require a greater initial investment than conventional technologies. In this paper, we review the different market transformation measures involving the use of financial incentives in the countries belonging to the Major Economies Forum. We characterize the main types of measures, discuss their mechanisms, and provide information on program impacts to the extent that ex-ante or ex-post evaluations have been conducted. Finally, we identify best practices in financial incentive programs and opportunities for coordination between Major Economies Forum countries as envisioned under the Super Efficient Appliance Deployment (SEAD) initiative.

  11. Sector Economic Outlook. Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The energy sector is a key driver of the economic pillar of Vision 2030. As the economy grows, urbanization intensifies and incomes increase, corporate and household demand for energy also rises. To meet this growth in demand for energy, the sector needs to increase investments and diversify into more sources of energy such as geothermal and wind power. It is therefore critical that focus is directed towards development and sustainability of the energy sector to ensure delivery of least cost power that will improve Kenya's competitiveness and achieve the Vision 2030 objective of 10% average annual economic growth.

  12. Evaluation of the long-term agreement on energy efficiency in the mushroom sector [in the Netherlands]; Evaluatie Meerjaren Afspraak energie in de Paddestoelensector

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, P.A.E. [et al.] [HAS KennisTransfer, Den Bosch (Netherlands)

    2005-08-15

    In 1998, the Long-Term Agreement on energy efficiency for the mushroom cultivation sector was signed by the Dutch Ministry of Economic Affairs and representatives of the mushroom cultivation sector. The main consideration were improvement of the sector's image, cost reductions, increasing awareness and preservation of a relatively beneficial energy rate. In the Long-Term Agreement, the target for 2005 was to realize an energy efficiency improvement of 20% compared to the year 1995 (reference year) and to strive for 5% sustainable energy deployment in 2005 [Dutch] In 1998 is de Meerjarenafspraak Energie voor de paddestoelensector ondertekend door het Ministerie van Economische Zaken en de vertegenwoordiging van de paddestoelensector met als belangrijkste overwegingen verbetering van het imago van de sector, kostenbeperking, bewustwording en behoud van een relatief voordelig energietarief. In de Meerjarenafspraak is als doel gesteld om in 2005 een verbetering van de energie-efficiency te realiseren van 20% ten opzichte van het jaar 1995 (basisjaar) en te streven naar 5% gebruik van duurzame energie in 2005.

  13. Research on energy efficiency evaluation based on indicators for industry sectors in China

    International Nuclear Information System (INIS)

    Song, Chenxi; Li, Mingjia; Wen, Zhexi; He, Ya-Ling; Tao, Wen-Quan; Li, Yangzhe; Wei, Xiangyang; Yin, Xiaolan; Huang, Xing

    2014-01-01

    Highlights: • We try to evaluate energy efficiency of industry at the plant-level. • The Hierarchical–Indicator Comparison (HIC) method is proposed. • The HIC method can be implemented based on indicators at multi-levels. • The purified terephthalic acid (PTA) industry is used to illustrate the HIC method. • The construction procedure of indicators and the way to use them are presented. - Abstract: The so-called Hierarchical–Indicator Comparison (HIC) method is introduced in this paper. It mainly serves for industrial energy conservation programs in China. A chemical industry named purified terephthalic acid (PTA) is used to outline this method. Two key points of the HIC method are the construction of energy efficiency indicators (EEI) system and the way to utilize indicators appropriately. After a brief review of EE evaluation methods in literature, the construction procedure of energy efficiency indicators (EEI) system for PTA industry is presented firstly. How to correct reference values for indicators according to non-comparable factors is discussed. Then, how to implement the HIC method based on EEI system is presented. Every indicator has its own advantages and disadvantages. Disadvantages of an indicator can be conquered by other indicators. With multiple indicators used together, more objective EE evaluation result can be obtained. Finally, some proposals for further work of this method are also presented

  14. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess

  15. Achieving growth within the UK's Domestic Energy Efficiency Retrofitting Services sector, practitioner experiences and strategies moving forward

    International Nuclear Information System (INIS)

    Gooding, Luke; Gul, Mehreen S.

    2017-01-01

    The adoption of the UK Green Deal policy provided an unprecedented change within the policy arena of domestic retrofit. Government financial support present within previous policy regimes was reduced and private industry was enlisted to provide finance, delivery mechanisms and management schemes for national domestic low carbon retrofit. Consequently, the Energy Efficiency Retrofit Services (EERS) sector needed to grow capacity and deliver retrofit at a larger scale. This research focuses on assessing the present EERS sector industry and its strategy to increase retrofit activity. This paper provides findings from on the ground interviews with UK EERS sector practitioners with relation to their experience of working with the Green Deal, and also their suggested strategies progressing forward now the Green Deal is no longer operational. Key findings suggest that UK EERS sector practitioners were unprepared to professionally deal with the expectation of the Green Deal, in terms of business administration and also dealing with the policy itself. Moving forward an emphasis is suggested which focused on training, to enable an increase in EERS sector capabilities, and to also enable an improvement of the quality and variety of work completed. Additionally, findings detail the requirement for enhanced communication between clients and policy administrators, to increase clarity in policy implementation and stakeholder expectation. - Highlights: • Assessment of Green Deal from supply chain perspective. • Highlighting of strategies utilised by retrofit practitioners to implement policy. • Indication of possible routes forward for domestic retrofit policy.

  16. Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector

    International Nuclear Information System (INIS)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2014-01-01

    Highlights: • Use ISEEM to evaluate energy and emission reduction in U.S. Iron and Steel sector. • ISEEM is a new bottom-up optimization model for industry sector energy planning. • Energy and emission reduction includes efficiency measure and international trading. • International trading includes commodity and carbon among U.S., China and India. • Project annual energy use, CO 2 emissions, production, and costs from 2010 to 2050. - Abstract: Using the ISEEM modeling framework, we analyzed the roles of energy efficiency measures, steel commodity and international carbon trading in achieving specific CO 2 emission reduction targets in the U.S iron and steel sector from 2010 to 2050. We modeled how steel demand is balanced under three alternative emission reduction scenarios designed to include national energy efficiency measures, commodity trading, and international carbon trading as key instruments to meet a particular emission restriction target in the U.S. iron and steel sector; and how production, process structure, energy supply, and system costs change with those scenarios. The results advance our understanding of long-term impacts of different energy policy options designed to reduce energy consumption and CO 2 emissions for U.S. iron and steel sector, and generate insight of policy implications for the sector’s environmentally and economically sustainable development. The alternative scenarios associated with 20% emission-reduction target are projected to result in approximately 11–19% annual energy reduction in the medium term (i.e., 2030) and 9–20% annual energy reduction in the long term (i.e., 2050) compared to the Base scenario

  17. The Italian energy sector

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The energy sector in Italy, as in Europe and in many other areas of the world, is undergoing rapid and profound changes. The 1986 ratification of the European Single Act was intended to create a European internal market, where circulation of people, capital, goods, and services would reach the highest possible liberalization. In 1988, in the document The Energy Internal Market, the European Union (EU) commission stressed the need for creation of an internal energy market--free of obstacles--to increase security of supply, to reduce costs, and to strengthen the competitiveness of the European economic system. In 1990, the Community Council adopted directives to implement the EU energy sector. This article describes Italy's role as part of the EU energy sector. It covers the following topics: the Italian energy sector; electricity vs gas transportation; project finance; recent developments advance Italian power industry; specifying powerplant components -- Italian stype; buyers' guide to Italian equipment, services

  18. Energy sector alliances

    International Nuclear Information System (INIS)

    McQuade, Owen

    1998-09-01

    Contains Executive Summary and Chapters on: A changing energy sector; Rationale for the joint venture, merger or acquisition; Mergers, acquisitions and joint ventures by sector; The joint venture process; Key factors for success; Financing the venture; Case studies; The future outlook. (Author)

  19. Submission to the Ontario Energy Board regarding the review of further efficiencies in the electricity distribution sector

    International Nuclear Information System (INIS)

    Silano, B.E.; Boodhoo, D.; Shelton, A.

    2004-02-01

    This report presents the views of the Ontario Division of the Canadian Union of Public Employees (CUPE) on the Ontario Energy Board's consideration to promote further efficiencies in the power distribution sector. CUPE claims that efficiencies aimed at lowering costs through amalgamations often lead to increased costs, degradation in services and decreased reliability of power distribution. CUPE also argues that the main concerns of Ontario ratepayers is reliability and the threat of increased prices. CUPE recommends that the Ontario Energy Board hold open consultations with ratepayers, who are in fact shareholders in their local utilities. This report reviewed the current regulatory regime known as Performance Based Regulation and its effect on local distribution utilities. It also reviewed the impacts of mergers, amalgamations, acquisitions and divestitures (MAAD), with particular reference to rates, privatization of utility services, service degradation and job losses

  20. Impact of energy efficiency measures on the CO{sub 2} emissions in the residential sector, a large scale analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hens, H.; Verbeeck, G.; Verdonck, B. [Department of Civil Engineering, Laboratory for Building Physics, Leuven (Belgium)

    2000-07-01

    Like all industrialised countries, Belgium accepted to diminish its greenhouse gas emissions in the frame of the Kyoto agreement. On top of the list figures CO{sub 2}. A major emission source for CO{sub 2} is burning fossil fuels. As the residential sector accounts for 28% of the country's annual energy consumption and as this consumption mainly concerns fossil fuels, it has an equally important share in the CO{sub 2} release. Hence, at first sight, the best policy for a decrease is by improving the energy efficiency. The question to be solved, however, is which improvement could generate the reduction needed? This study discusses a methodology and comments simulations that help in answering that question. The results are not as simple as one should like. The housing stock in fact acts as a conservatory system. For the case being, the impact of energy efficient new construction on the CO{sub 2} release remains quite marginal if the period considered does not extend beyond a decade. The effect becomes significant only over a longer period, on condition that more stringent energy efficiency measures are combined with a shift from new construction to retrofit and reconstruction. Also a diminishing increase in the number of households may help in reducing energy consumption and CO{sub 2} release. (author)

  1. Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons

    International Nuclear Information System (INIS)

    Noailly, Joelle; Batrakova, Svetlana

    2010-01-01

    In the Netherlands where the building sector accounts for 33% of carbon emissions, the government aims to halve the total energy use from buildings by 2030 compared to 1990 levels. To this end, the Dutch government has set specific goals in order to foster technological innovation related to energy efficiency in buildings. The objective of this paper is to explore the links between technological innovation and public policies in this sector over the last 30 years. The paper aims (1) to measure the evolution of innovations related to energy efficiency in buildings in the Netherlands using patent counts and (2) to provide a historical overview of the policy framework. Descriptive data on patenting activities show that the Netherlands have a clear comparative advantage in the field of energy-saving lighting technologies, mainly due to intensive patenting activities by Philips. High-efficiency boilers also represent a substantial share of Dutch innovation activities in this domain over the last decades. In many other fields (such as insulation, heat-pumps and cogeneration, solar boilers, etc.), however, Germany, Austria and Scandinavian countries rank much higher than the Netherlands. The descriptive analysis of Dutch energy policy shows an intensification of energy policy in the mid-1990s, followed by a slight decline after 2001. Overall, the simultaneous introduction of policy instruments makes it difficult to evaluate the effectiveness of policies. Also, the policy framework is characterized by the introduction of a large number of short-lived policy instruments and frequent policy changes. The lack of stability and continuity of energy policy may be damaging for innovation. - Research Highlights: →The Netherlands are a top innovative country in the field of energy-efficient innovations for buildings, mainly due to high patenting activities by Philips in energy-saving lighting technologies. →In many other fields (insulation, heat-pumps, etc) Germany, Austria and

  2. Energy efficiency

    International Nuclear Information System (INIS)

    2010-01-01

    After a speech of the CEA's (Commissariat a l'Energie Atomique) general administrator about energy efficiency as a first rank challenge for the planet and for France, this publications proposes several contributions: a discussion of the efficiency of nuclear energy, an economic analysis of R and D's value in the field of fourth generation fast reactors, discussions about biofuels and the relationship between energy efficiency and economic competitiveness, and a discussion about solar photovoltaic efficiency

  3. SEE Action Guide for States: Energy Efficiency as a Least-Cost Strategy to Reduce Greenhouse Gases and Air Pollution and Meet Energy Needs in the Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); shenot, John [US Department of Energy, Washington, DC (United States); Colburn, Ken [US Department of Energy, Washington, DC (United States); James, Chris [US Department of Energy, Washington, DC (United States); Zetterberg, Johanna [US Department of Energy, Washington, DC (United States); Roy, Molly [US Department of Energy, Washington, DC (United States)

    2016-02-01

    This guide is designed to provide information to state decision makers and staff on options to advance energy efficiency through strategies designed or implemented at the state and local levels of government and in the private sector.1 The information in this guide is intended to be useful to a wide variety of partners and stakeholders involved in energy-related discussions and decision-making at state and local levels. These energy efficiency options, or “pathways” as they are identified in this guide, can assist states in using energy efficiency to meet air pollution reduction and other policy objectives such as energy affordability and reliability. A pathway is a set of interdependent actions that results in measurable energy savings streams and associated avoided air emissions and other benefits over a period of time. These activities can include state, local, or private sector regulations, policies, programs and other activities. For each of five broad pathways that offer sizable cost-effective energy savings, the guide addresses likely questions policy makers and regulators face when screening for the best opportunities to advance energy efficiency in their state.

  4. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  5. Lack of Energy Efficiency Legislation in the Malaysian Building Sector Contributes to Malaysia’s Growing GHG Emissions

    Directory of Open Access Journals (Sweden)

    Zaid Suzaini M.

    2014-01-01

    Full Text Available Malaysia’s carbon emissions grew by +235.6% from 1990 to 2005, largely due to an increase in national energy demand of 210.7% from 1990 to 2004. This unparalleled carbon emission growth, along with business-as-usual (BAU practices will put Malaysia at high risk for carbon lock-in and a very unsustainable path of development. Malaysia clearly needs to make significant and urgent changes in its policy, economy, industries and lifestyle in order to reduce its climate change impacts. In 2010 Malaysia announced a voluntary commitment to reduce 40% of its greenhouse gases (GHG emissions by 2020 (from 1990 levels. Without emissions mitigation and conservation policies, Malaysia is unlikely to meet its emissions reduction targets. Presently, Malaysia has no energy efficiency legislation in its growing building sector. This paper reviews existing building policies and energy efficiency measures in Malaysia and highlights the need to implement mandatory energy efficiency building codes in reducing the sector’s impact on climate change.

  6. Speedy changes in energy sector

    International Nuclear Information System (INIS)

    Kazlauskas, J.

    1998-01-01

    Status of the reforms in Lithuania's energy sector and preparation of updated Energy Strategy is presented in this article. The new Strategy has been worked out considering the conclusions of different studies as well as the changes that have taken place in Lithuania and restructuring of its energy sector, the guidelines of the European Union. The principal objectives of the country's energy sector consists in reliable and safe energy supply with minimum expenses, increasing efficiency of energy utilisation, introducing principles of market economy within the sector, reducing environmental impacts, preparing Lithuania's energy sector for integration into the EU. In the field of nuclear energy the top priority is to ensure the safety of Ignalina NPP. Ignalina NPP will only be operated if and as long as it is safe. Two most likely scenarios for the future operation of Ignalina NPP are analysed in the draft Strategy. According to scenario 1, reactor 1 and 2 are to be operated half of the design service life, until 2005 and 2010 respectively, i.e. until the gap between the graphite and fuel channels reaches the critical margin. In accordance with the second scenario, the fuel channels are to be replaced as envisaged in the design, after which the reactors may be operated for another 10 - 15 years

  7. Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries

    International Nuclear Information System (INIS)

    Meyers, Steven; Schmitt, Bastian; Chester-Jones, Mae; Sturm, Barbara

    2016-01-01

    Basic and detailed audits of small and medium sized food and beverage enterprises were conducted in six European Union countries to determine product specific energy consumption and measures to reduce energy use and carbon emissions. Collected results showed that the companies’ products had similar specific energy consumption as prior studies, but due to no standard metrics, the range was rather large. Auditors primarily recommended energy savings measures (process optimization and heat recovery), due to their low payback periods. Lower carbon energy sources were also recommended (solar thermal and combined heat/power), but often at higher costs, supported through government incentive programs. Through these measures, energy savings of up to 45% and carbon to 30% (∼30,000 t CO_2 equivalent in the audited companies) were possible, dependent on the type, size of company, and fuel choice. Typically, very small companies and those using coal showed the greatest margin for improvement, though it varied greatly depending on the type of product produced and the installed heating and cooling equipment. Auditors noted significant barriers toward the implementation of measures, e.g. companies found the costs too high, did not know of efficient technologies and their performance, or did not have managerial support to implement efficiency measures. - Highlights: • The Food and Beverage sector in Europe was assessed for carbon reduction potential. • Significant emission reductions can be achieved by energy efficiency and renewables. • The Bakery and Meat branches can reduce energy consumption by 30–40%. • Small and coal burning companies have the greatest potential for emission reduction. • Financial barriers remain the hardest obstacle to realize reduction potential.

  8. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.

    Science.gov (United States)

    McDonald, Robert I; Olden, Julian D; Opperman, Jeffrey J; Miller, William M; Fargione, Joseph; Revenga, Carmen; Higgins, Jonathan V; Powell, Jimmie

    2012-01-01

    Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3) in 2010 to 2,359,000-3,271,000 Mm(3) in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3) consumption in 2010 to 21,000-58,400 Mm(3) consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3)GJ(-1) (0.1-0.5 m(3)GJ(-1) consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3)GJ(-1) (0.2-0.3 m(3)GJ(-1) consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3) (20,300 Mm(3) consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur

  9. Energy, water and fish: biodiversity impacts of energy-sector water demand in the United States depend on efficiency and policy measures.

    Directory of Open Access Journals (Sweden)

    Robert I McDonald

    Full Text Available Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3 in 2010 to 2,359,000-3,271,000 Mm(3 in 2035 under the Reference Case of the Energy Information Administration (EIA. Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3 consumption in 2010 to 21,000-58,400 Mm(3 consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3GJ(-1 (0.1-0.5 m(3GJ(-1 consumption, while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3GJ(-1 (0.2-0.3 m(3GJ(-1 consumption. The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3 (20,300 Mm(3 consumption. The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur

  10. Canada's hydrogen energy sector

    International Nuclear Information System (INIS)

    Kimmel, T.B.

    2009-01-01

    Canada produces the most hydrogen per capita of any Organization of Economic Cooperation and Development (OECD) country. The majority of this hydrogen is produced by steam methane reforming for industrial use (predominantly oil upgrading and fertilizer production). Canada also has a world leading hydrogen and fuel cell sector. This sector is seeking new methods for making hydrogen for its future energy needs. The paper will discuss Canada's hydrogen and fuel cell sector in the context of its capabilities, its demonstration and commercialization activities and its stature on the world stage. (author)

  11. Integrated assessment of energy efficiency technologies and CO_2 abatement cost curves in China’s road passenger car sector

    International Nuclear Information System (INIS)

    Peng, Bin-Bin; Fan, Ying; Xu, Jin-Hua

    2016-01-01

    Highlights: • Energy efficiency technologies in Chinese passenger cars are classified in detail. • CO_2-reduction potential and abatement cost are analyzed for technology bundles. • Marginal abatement cost curve is established from both micro and macro perspectives. • Spark ignition, diesel and hybrid electric vehicle paths should be firstly promoted. • Technology promotion should start from the area of taxies and high-performance cars. - Abstract: Road transport is one of the main sources of energy consumption and CO_2 emissions. It is essential to conserve energy and reduce emissions by promoting energy efficiency technologies (EETs) in this sector. This study first identifies EETs for the passenger cars and then classifies them into various technology bundles. It then analyzes the CO_2-reduction potentials and emissions abatement costs of 55 type-path, 246 type-path-technology, and 465 type-path-subtechnology bundles from micro-vehicular and macro-industrial perspectives during 2010–2030, based on which marginal abatement cost (MAC) curve for China’s road passenger car sector is established. Results show that the cumulative CO_2-reduction potential of EETs on passenger cars in China during 2010–2030 is about 2698.8 Mt, but only 4% is cost-effective. The EETs with low emissions abatement costs are mainly available in the spark ignition (SI), diesel, and hybrid electric vehicle (HEV) paths on the taxis and high-performance cars, and also in the transmission, vehicle body and SI technologies on the private cars, which could be promoted at present. The technologies with large emissions reduction potential are mainly available in the plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) paths, which would be the main channels for reducing carbon emissions in the long run.

  12. Technology intervention to improve the energy efficiency and productivity of silk reeling sector

    International Nuclear Information System (INIS)

    Dhingra, Sunil; Mande, Sanjay; Raman, P.; Srinivas, S.N.; Kishore, V.V.N.

    2004-01-01

    The Energy and Resources Institute (TERI) has been actively involved in development of biomass gasifier system for thermal and power generation use. Though the basic science of gasification is well established, there have not many efforts in the past on product development. By continuous interaction with users, silk experts and consultants, TERI could able to develop a gasifier based silk reeling oven. A major thrust on this development work was to evolve marketable product by continued efforts to gain an insight of the actual process and user feedback through an extended presence and interaction at field level, and then translating this experience in product design. The present paper gives a summary of design, development and testing of gasifier based cottage basin system for cocoon cooking in silk reeling industry in order to achieve higher fuel efficiency and increase productivity of the process. The paper describes in detail the approach of different technology development stages, its testing both at laboratory and field and economic viability of the system

  13. TRIGENERATION - A highly energy efficient source for heating, domestic hot water preparation, electricity and air cooling systems for tertiary sector

    International Nuclear Information System (INIS)

    Barbuta, Mariana; Ghitulescu, Mircea; Nicolau, Irina; Athanasovici, Cristian; Constantin, Cristinel; Ivan, Robert

    2004-01-01

    The general concerns relating to sustainable energy development have led to the implementation of certain solutions at the international level that have increased both energy generation and energy consuming processes efficiency. In our country the first steps in this direction have been carried out by the private companies that, after having analyzed the income increase and costs diminishing, have come to the conclusion that a reliable way to save money would be the rational use of the energy resources for utilities. A favorable consequence was the synergetic effect of the measures meant to increase energy efficiency for the energy generation and consumption processes that are also accompanied by benefit effects on the environmental impact by reduction CO 2 emissions. One of the solutions making the utmost of primary energy is the combined heat and power production (co-generation) that has significantly developed in our country within the energy sector as a whole. Co-generation may be considered environmentally friendly because it saves fuel on the one hand and, technologically, generates less emissions as compared to the separate generation of heat and power, on the other hand. The most favorable applications of co-generation at a medium and small scale are in the tertiary sector (hotels, hospitals, and office buildings) where heat consumption is usually high enough and is accompanied by relatively constant electricity consumption. By corroborating the above mentioned facts relating to local cogeneration installation utilization with those relating to the increased need for cooling in the tertiary buildings, a concept named 'TRI-GENERATION' in specialized literature has occurred, representing, in fact, utilization of cogeneration installations for supplying energy to the electricity, heat and cold consumer. Thus, the cogeneration installation utilization time will be practically prolonged over the entire duration of a year a fact that has extremely favorable

  14. Energy. Sector 1

    International Nuclear Information System (INIS)

    1994-01-01

    The aim of this article is to report the results of the greenhouse gas (GHG) emission inventory for the year 1994. The following GHG are of interest in the energy sector: Carbon dioxide CO 2 , methane CH 4 , nitrous oxide N 2 O, oxides of nitrogen NO x , carbon monoxide CO, sulphur dioxide SO 2 and non-methane volatile organic compounds (NMVOCs). The inventory has focused on the following GHG related sources: -Electricity generation through the electric utility. -Private generation of electricity -Manufacturing industries and construction -Transport: road, domestic aviation and national navigation -Energy use in the residential sector -Energy use in the commercial/institutional sector -Energy use in the agriculture/forestry/fishing sector The fuel types taken into consideration are:Gasoline, jet Kerosene, Kerosene for household use, gas oil, diesel oil, fuel oil, LPG, lubricating oil, coal, wood and charcoal (solid biomass). Care has been taken to eliminate the fuel used by international marine and aviation bunkers from the national inventory. The amount of GHG released to the atmosphere has been estimated using the IPCC methodology and emission factors .Where national emission factors differed from those of IPCC, the factors are discussed. Complete documentation of compiled information and data sources are attached to this article.Finally both the reference approach and analysis by source categories have been carried out and are reported in this inventory

  15. Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations

    International Nuclear Information System (INIS)

    Amstalden, Roger W.; Kost, Michael; Nathani, Carsten; Imboden, Dieter M.

    2007-01-01

    The aim of this paper is to analyse the profitability of energy-efficient retrofit investments in the Swiss residential building sector from the house owner's perspective. Different energy price expectations, policy instruments such as subsidies, income tax deduction and a carbon tax, as well as potential future cost degression of energy efficiency measures were taken into account. The discounted cash flow method was used for the investment analysis of different retrofit packages applied to a model building scheduled for renovation, i.e. a single-family house constructed between 1948 and 1975. The results show that present Swiss policy instruments push investments for energy-efficient retrofitting to profitability. Cost degression has a minor significance for investment profitability. However, the most relevant factor for the investment analysis is the expected energy price. Expecting a future fuel oil price at the level of 2005, efficiency investments are close to profitability even without policy support. If higher energy prices were expected, energy-efficient retrofitting would be an attractive investment opportunity

  16. The Wave Energy Sector

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2017-01-01

    This Handbook for Ocean Wave Energy aims at providing a guide into the field of ocean wave energy utilization. The handbook offers a concise yet comprehensive overview of the main aspects and disciplines involved in the development of wave energy converters (WECs). The idea for the book has been...... shaped by the development, research, and teaching that we have carried out at the Wave Energy Research Group at Aalborg University over the past decades. It is our belief and experience that it would be useful writing and compiling such a handbook in order to enhance the understanding of the sector...

  17. Energy efficiency in the Hellenic building sector: An assessment of the restrictions and perspectives of the market

    International Nuclear Information System (INIS)

    Karkanias, C.; Boemi, S.N.; Papadopoulos, A.M.; Tsoutsos, T.D.; Karagiannidis, A.

    2010-01-01

    The significance of bioclimatic architecture has become widely accepted since the 1970s and the implementation of its principles in practice is a key factor in order to achieve energy efficiency in the building sector. The way, however, from scientific acceptance to commercial utilization is not a straightforward one. This paper deals with the notion of bioclimatic architecture in buildings and investigates the aspects of this concept in Hellas. A sample of university researchers, building contractors and members of public organisations was interviewed using a standardised set of guidelines. The barriers to promoting bioclimatic design, role of the local government in the adoption process, level of environmental culture as well as perspectives of this concept in Hellas were the key areas of discussion in each of the interviews. The results from the data analysis reveal insufficient economic incentives, a lack in technical information as well as a lack in specific environmental policies that would foster the propagation of bioclimatic architecture.

  18. Transport Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Transport is the sector with the highest final energy consumption and, without any significant policy changes, is forecast to remain so. In 2008, the IEA published 25 energy efficiency recommendations, among which four are for the transport sector. The recommendations focus on road transport and include policies on improving tyre energy efficiency, fuel economy standards for both light-duty vehicles and heavy-duty vehicles, and eco-driving. Implementation of the recommendations has been weaker in the transport sector than others. This paper updates the progress that has been made in implementing the transport energy efficiency recommendations in IEA countries since March 2009. Many countries have in the last year moved from 'planning to implement' to 'implementation underway', but none have fully implemented all transport energy efficiency recommendations. The IEA calls therefore for full and immediate implementation of the recommendations.

  19. Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector

    International Nuclear Information System (INIS)

    Morrissey, J.; Meyrick, B.; Sivaraman, D.; Horne, R.E.; Berry, M.

    2013-01-01

    This article focuses on the impact of the discount rate on cost-benefit assessment of investment options for residential building efficiency. An integrated thermal modeling, life cycle costing approach is applied to an extensive sample of dominant house designs for Australian conditions. The relative significance of predicted thermal performance and the applied discount rate on the Present Value of energy savings from alternative investment scenarios is investigated. Costs and benefits are also evaluated at the economy-wide scale, including carbon pricing considerations, and for a test-case household faced with alternative investment options at the point of construction. The influence of the applied discount rate on produced cost-benefit calculations is investigated, as is the interaction between critical cost-benefit input parameters. Findings support that the discounting framework is the primary driver of difference in estimates about costs and benefits of higher standards of efficiency in the residential sector. Results demonstrate that agreement on a low discount rate based on sustainability principals would prioritise those projects with significant environmental benefits. - Highlights: ► High thermal efficiency is a key strategy to limit energy use in buildings. ► Integrated thermal modeling—life-cycle costing methods are applied to dominant house designs. ► The discounting framework is the primary driver of difference in observed costs. ► The selection of optimal performance investment options depends on the discount rate. ► Application of a discount rate of 3.5% or lower favours energy saving projects

  20. Exploring No-Cost Opportunities for Public Sector Information Systems Energy Efficiency: A Tennessee Application

    Directory of Open Access Journals (Sweden)

    Kendra Abkowitz Brooks

    2015-11-01

    Full Text Available The Tennessee Department of Environment and Conservation (TDEC completed a pilot project within its Central Office spaces to test the utilization of computer power management (CPM technologies to implement power saving settings on state-owned, network-connected computer equipment. Currently, the State of Tennessee has no clear protocol regarding energy-conserving power settings on state-owned machines. Activation of monitor sleep modes and system standby and hibernation modes on 615 Central Office computers over an 18-month period reduced energy consumption by an estimated 8093 kWh and $526 per month, amounting to approximately $6312 in cost savings for Tennessee annually. If implemented throughout State of Tennessee executive agencies across the state, energy cost savings could amount to an estimated $323,341 annually. The research endeavored to understand both positive and negative impacts that strategic power management approaches can have on energy consumption, worker productivity, network security, and state budgets. Nearly all impacts discussed were positive. Based on successful results within TDEC Central Office spaces in Tennessee Tower, and considering the potential cost savings that could be achieved, expansion of the implementation of computer power management policies to machines in offices across the state was recommended.

  1. Challenges for energy efficiency in the buildings sector in the Sao Paulo State, Brazil; Desafios para eficiencia energetica no setor de edificios no estado de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Maria Ines; Parente, Virginia [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2010-07-01

    The consumption of energy in the building sector accounts for more than one third of the total final electricity consumption in Sao Paulo State. Considering that, the development of policy measures aiming at the promotion of energy efficiency in the sector should be encouraged. Analysed data reveals the continuing rise of energy consumption resulting form the high number of new buildings and the rising standards of the population in consequence of economic development. Besides this, the retrofit of old buildings presents a huge potential for energy savings. The article analyses and suggests the use of Building Codes as a suitable policy instrument for the Sao Paulo Sate reality. (author)

  2. Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector

    International Nuclear Information System (INIS)

    Anson, Sam; Turner, Karen

    2009-01-01

    In this paper, we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on Scottish refined oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish refined oil supply sector. This 'disinvestment effect' acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production.

  3. Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Anson, Sam [Transport Analytical Services, Scottish Government, Victoria Quay, Edinburgh, EH6 6QQ (United Kingdom); Turner, Karen [Department of Economics, University of Strathclyde, Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE (United Kingdom)

    2009-09-15

    In this paper, we use an energy-economy-environment computable general equilibrium (CGE) model of the Scottish economy to examine the impacts of an exogenous increase in energy augmenting technological progress in the domestic commercial Transport sector on the supply and use of energy. We focus our analysis on Scottish refined oil, as the main type of energy input used in commercial transport activity. We find that a 5% increase in energy efficiency in the commercial Transport sector leads to rebound effects in the use of oil-based energy commodities in all time periods, in the target sector and at the economy-wide level. However, our results also suggest that such an efficiency improvement may cause a contraction in capacity in the Scottish refined oil supply sector. This 'disinvestment effect' acts as a constraint on the size of rebound effects. However, the magnitude of rebound effects and presence of the disinvestment effect in the simulations conducted here are sensitive to the specification of key elasticities of substitution in the nested production function for the target sector, particularly the substitutability of energy for non-energy intermediate inputs to production. (author)

  4. Energy conservation in agriculture sector

    International Nuclear Information System (INIS)

    Maggo, J.N.

    1991-01-01

    The annual production of foodgrains in India rose from 50.8 million tonnes in 1950-51 to 178 million tonnes in 1989-90. One of the factors which led to this impressive growth is the continued increase in input of mechanization and energy in the agricultural sector by way of tractors running on diesel and pumps (for water supply) based on diesel and electricity. Electricity consumption in agricultural sector rose from 833 million kWh in 1960-61 to 47000 million kWh in 1990-91 and is further expected to rise to 81.8 TWH in 1999-2000. Considering the heavy investments required for production and supply of energy, it has become imperative to avoid wasteful use of energy and to use energy more efficiently. This can be done by : (1) Changing the electricity tariff structure from the present horse power related rates to energy consumption related rates. This will induce farmers to avoid waste in energy use. (2) Adopting energy efficiency measures. These measures are : (1) replacement of inefficient foot valves, suction pipes and delivery pipes of the pump sets, (2) increasing power factor of electric motors used for pumps sets, (3) reducing distribution losses over LT lines, and (4) optimizing use of fertilizers. This optimization will indirectly conserve energy by reducing electricity consumption by fertilizer industry. (M.G.B.). 5 refs., 4 tabs

  5. Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China

    International Nuclear Information System (INIS)

    Wang, Ke; Wang, Shanshan; Liu, Lei; Yue, Hui; Zhang, Ruiqin; Tang, Xiaoyan

    2016-01-01

    Highlights: • Pollutant surcharge is considered in Energy Conservation Supply Curve. • Intake Fraction method is incorporated into Energy Conservation Supply Curve. • Health benefits contribute 97% of co-benefits of energy efficiency improvement. - Abstract: The coal-fired power sector is one of the major contributors to environmental problems and has great potential of air pollution abatement. This study employs Energy Conservation Supply Curves (ECSCs) combined with pollutant surcharge and health benefits to evaluate the environmental co-benefits of energy efficiency improvement in the coal-fired power sector. Health benefits and the pollution surcharge are considered as the environmental co-benefits that reduce costs of conserved energy (CCEs) in ECSCs. The health benefits of energy efficiency improvement are quantified using Intake Fraction method, while the pollutant surcharge is calculated based on the regulation. Three scenarios including a Business As Usual (BAU) scenario, an Energy Efficiency Improvement (EEI) scenario, and an Upgrading Standards and Incentive (USI) scenario is considered in a case study for Henan Province of China. Our results show that costs of conserved energy (CCEs) are reduced by 0.56 and 0.29 USD/GJ under the EEI and USI scenarios due to health benefits and pollutant surcharge reductions related to energy efficient technologies, respectively. In particular, health benefits account for 97% of the reductions in CCEs, while the pollutant surcharge only contributes 3%. Under the EEI and USI scenarios, in 2020, energy efficiency improvement reduces energy consumption in Henan’s coal-fired power sector by 3.3% and 3.5% compared with the BAU scenario, respectively. The EEI and USI scenarios indicates that health benefits of 1.5 × 10"9 and 2.4 × 10"9 USD are gained and the reductions of pollutant surcharges of 197 and 226 million USD are realized in 2020, respectively.

  6. Assessing global resource utilization efficiency in the industrial sector

    International Nuclear Information System (INIS)

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  7. CO2 reduction in the Danish transportation sector. Working paper 5: Technological improvement of energy efficiency. Average requirements to energy efficiency of the new vehicles. Subsidies to research and development

    International Nuclear Information System (INIS)

    1997-03-01

    The road traffic is expected to be responsible for 9/10 of the total CO 2 emission from transportation sector in 2005. Especially private cars contribute more than half of the total CO 2 emission. Cars are not produced in Denmark, so energy efficiency of the new models depends entirely on the foreign manufacturers. Measurements of energy efficiency on test facilities show usually slightly better efficiency than on-the-road results. Efficiency estimates are based on test results. Within 10-15 years the whole car park will show essential efficiency improvement due to exchanging to newer models. Shadow price of CO 2 emission reduction is defined. (EG) Prepared for Trafikministeriet. 27 refs

  8. HEAT PUMP TECHNOLOGY – POTENTIAL IMPACT ON ENERGY EFFICIENCY PROBLEM AND CLIMATE ACTION GOALS WITHIN UKRAINIAN ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    O. Ostapenko

    2015-12-01

    Full Text Available The increasing demand of energy sources for urban, household and industrial facilities requires strategies development for seeking new energy sources. In recent years an important problem is to have energy storage, energy production and energy consumption which fulfill the environment friendly expectations. A lot of attention is devoted to renewable energy sources. One of the most attracting among them is energy production form geothermal sources. At a few meters below the earth’s surface the underground maintains a constant temperature in an approximation through the year allowing to withdraw heat in winter for heating needs and to surrender heat during summer for air-conditioning purposes. Heat pump is a rapidly developing technology for heating and domestic hot water production. Using ground as a heat source, heat exchange is carried out with heat pumps compound to vertical ground heat exchanger tubes that allows the heating and cooling of the buildings utilizing a single unit installation. Heat pump unit provides a high degree of productivity with moderate electric power consumption. In this paper a theoretical performance study of a vapor compression heat pump system with various natural and synthetic refrigerants (HFCs is presented. Operation mode of the heat pump unit was chosen according to European Standard EN14511-2:2007 and EN255-2. An influence of discharge temperature on system performance was evaluated at different boiling temperatures. The comparison of mass flow rate and coefficient of performance for considered refrigerants at constant cooling capacity and condensation temperature was performed.

  9. Cancellation of the energy efficiency program in Peru because of the electrical sector privatization; Cancelacion del programa de eficiencia energetica en Peru por la privatizacion del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Tomecich Cordova, Anibal [Centro de Conservacion de Energia y del Ambiente (CENERGIA) (Peru)

    2005-04-15

    The evolution of the activities related to the electric efficiency before and after the reforms of the electrical sector in Peru derived from the liberation of the economy is explained. In the first part it is explained as an antecedent the development of one of the most successful campaigns regarding demand management, considering it as a variable and not as a datum of the problem for statistic effects. The results of such campaign demonstrated that a proper management of the variable electricity demand, capital investments can be deferred in the electric infrastructure within the frame of sustainable social development. Afterwards it is explained the new regulatory frame and the principles that prevail for the fixation of the tariffs when the electrical sector evolves from a vertical structure to a horizontal structure. Finally it is mentioned the activities that have been carried out in a latter period to the implantation of the reforms in the sector and some important examples such as the obligation for the electric utilities to reduce their technical and commercial losses. [Spanish] Se explica la evolucion de las actividades relacionadas a la eficiencia energetica antes y despues de las reformas del sector electrico en Peru, derivada de la liberacion de la economia. En la primera parte se explica como antecedente el desarrollo de una de las campanas mas exitosas en el manejo de la demanda, considerandola como una variable y no como un dato del problema para efectos estadisticos. Los resultados de tal campana demostraron que manejando adecuadamente la variable demanda de electricidad, se puede diferir inversiones de capital en la infraestructura electrica dentro del marco de un desarrollo social sostenible. A continuacion se explica el nuevo marco regulatorio y los principios que rigen para la fijacion de las tarifas cuando el sector electrico se transforma de una estructura vertical a una estructura horizontal. Finalmente, se menciona las actividades que se

  10. National energy efficiency programme

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper focusses on energy conservation and specifically on energy efficiency which includes efficiency in the production, delivery and utilisation of energy as part of the total energy system of the economy. A National Energy Efficiency Programme is being launched in the Eighth Plan that will take into account both macro level and policy and planning considerations as well as micro level responses for different category of users in the industry, agriculture, transport and domestic sectors. The need for such a National Energy Efficiency Programme after making an assessment of existing energy conservation activities in the country is discussed. The broad framework and contents of the National Energy Efficiency Programme have been outlined and the Eighth Plan targets for energy conservation and their break-up have been given. These targets, as per the Eighth Plan document are 5000 MW in electricity installed capacity and 6 million tonnes of petroleum products by the terminal year of the Eighth Plan. The issues that need to be examined for each sector for achieving the above targets for energy conservation in the Eighth Plan are discussed briefly. They are: (a) policy and planning, (b) implementation arrangements which include the institutional setup and selective legislation, (c) technological requirements, and (d) resource requirements which include human resources and financial resources. (author)

  11. Energy efficiency through energy audit

    International Nuclear Information System (INIS)

    Esan, A. A.

    2000-08-01

    Energy is an essential factor to economic and social development and improved standards of living in developing countries. Nigeria in particular. There is a strong need for greater energy efficiency in every sector of economy in order to reduce costs. enhance competitiveness, conserve energy resources and reduce environmental impacts associated with production, distribution and use of energy. Energy auditing and monitoring has a significant role in any energy management and conservation project. Energy auditing as an important part of industrial energy management on plant level, represents a complex of activities aiming at the efficient use of energy. The activities are undertaken by a team of experts who use a set of measuring instruments to monitor and evaluate all the necessary data to elaborate a package of recommendations on improvements in the field of energy efficiency and possible product quality. The inefficient conversion and use of energy have been identified as a central problem for all developing countries, Nigeria inclusive, since they all consume significantly higher amounts of energy per unit of GDP than OECD countries. This aggravates energy-related environmental problems and is also a burden on domestic resources and foreign exchange. Energy prices have risen drastically in many developing countries, while energy intensities remain high. Price changes alone are not rapidly translating energy efficiency improvements. Identifying and removing the obstacles to greater energy efficiency should be priority for government in developing countries. This is why the Energy Commission, an apex organ of government on Energy matters in all its ramifications is out to encourage relatively low-cost energy audits for the Textile industries - such audits can identify ''good house-keeping's' measures, such as simply process improvements, that reduce energy consumption and operating costs. This will be followed by the training of plant workers/energy managers

  12. Energy efficiency in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    In Finland a significant portion of energy originates from renewable sources and cogeneration, that is, combined production of electricity and heat. Combined heat and electricity production is typical in the Finnish industry and in the district heating sector. One third of all electricity and 15 % of district heating is produced by cogeneration. District heating schemes provide about 45 % of heat in buildings. Overall efficiency in industry exceeds 80 % and is even higher in the district heating sector. In 1996 25 % of Finland`s primary energy was produced from renewable energy sources which is a far higher proportion than the European Union average of 6 %. Finland is one of the leading users of bioenergy. Biomass including peat, provides approximately 50 % of fuel consumed by industry and is utilised in significant amounts in combined heat and electricity plants. For example, in the pulp and paper industry, by burning black liquor and bark during the production of chemical pulp, significant amounts of energy are generated and used in paper mills. Conservation and efficient use of energy are central to the Finnish Government`s Energy Strategy. The energy conservation programme aims to increase energy efficiency by 10-20 % by the year 2010. Energy saving technology plays a key role in making the production and use of energy more efficient. In 1996 of FIM 335 million (ECU 57 million) spent on funding research, FIM 120 million (ECU 20 million) was spent on research into energy conservation

  13. Energy efficiency in the industrial sector. Model based analysis of the efficient use of energy in the EU-27 with focus on the industrial sector; Energieeffizienz in der Industrie. Modellgestuetzte Analyse des effizienten Energieeinsatzes in der EU-27 mit Fokus auf den Industriesektor

    Energy Technology Data Exchange (ETDEWEB)

    Kuder, Ralf

    2014-01-09

    Energy efficiency is a highly important topic and currently omnipresent in the energy political discussion. Despite this high importance there's no common understanding even concerning the definition of the term energy efficiency. In addition, there are plenty so called energy efficiency targets and several indicators. Therefore this study should provide a deepened understanding of the efficient use of energy. The inconsistent definition of energy efficiency is related to the use of this term for a specific as well as an absolute reduction of energy consumption. Furthermore both static views on efficiency as a status and also dynamic views on efficiency as an improvement of a value compared to a reference number are used. Additional differences occur in the evaluation of the energy use and in the selection of a reference value in a key figure to assess energy efficiency. Moreover the focus of the current general understanding is mainly only on the consumption of energy. All other resources next to the energy input which are needed to provide energy services are not considered even though there are strong interactions and substitution possibilities among these resources. Hence the understanding of energy efficiency is extended in this study by these additional resources which were not considered yet. Based on this extension the efficient use of the resource energy is a result of an optimisation of the relation of these total costs of all resources to the related benefit. To determine the efficient use of energy in the industrial sector, a deeper understanding of the sector and its characteristics is necessary. The industrial sector is the largest consumer of electricity within the EU. Also a quarter of the final energy consumption and about 20 % of the CO{sub 2} emissions are related to this sector. Typical for this sector are the heterogeneous and high temperature level of the heat demand and the process emissions which accrue in transformation processes. The

  14. Assessing global resource utilization efficiency in the industrial sector.

    Science.gov (United States)

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Danish Energy Efficiency Policy

    DEFF Research Database (Denmark)

    Togeby, Mikael; Larsen, Anders; Dyhr-Mikkelsen, Kirsten

    2009-01-01

    Ten groups of policy instruments for promoting energy efficiency are actively used in Denmark. Among these are the EU instruments such as the CO2 emissions trading scheme and labelling of appliances, labelling of all buildings, combined with national instruments such as high taxes especially...... of the entire Danish energy efficiency policy portfolio must be carried out before end 2008 and put forward for discussion among governing parties no later than February 2009. A consortium comprising Ea Energy Analyses, Niras, the Department of Society and Globalisation (Roskilde University) and 4-Fact...... on households and the public sector, obligations for energy companies (electricity, natural gas, district heating, and oil) to deliver documented savings, strict building codes, special instructions for the public sector, and an Electricity Saving Trust. A political agreement from 2005 states that an evaluation...

  16. Energy-economy models and energy efficiency policy evaluation for the household sector. An analysis of modelling tools and analytical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena

    2009-10-15

    Using the residential sector as a case study, the research presented in this report is separated into five main parts: (1) review of bottom-up methodologies and corresponding energy-economy models; (2) key drivers of energy demand and end-use coverage, (3) choice-determinants for efficient-technologies embedded in modelling methodologies; and (4) the analysis of modelling studies that focus on ex-ante energy efficiency policy evaluation. Based on the findings, (5) several research areas to further advance models are identified and discussed. We first identify four types of methodological categories: simulation, optimisation, accounting and hybrid models. A representative sample of these various methodological categories is reviewed. Technology representation is mostly explicit and technologically rich across all the reviewed models. This is a critical requisite for simulating energy efficiency policy instruments or portfolios that aim to induce ample technological change. Regardless the methodological approach, the explicit and rich technological component allows coverage of numerous energy services. All the reviewed models originate from the OECD region and more than 60 per cent of the identified applications focus mostly on developed countries. To some extent, this finding correlates with the claims about the need for more policy evaluation efforts to assist energy efficiency policy and other GHG mitigation options for the building sector in developing countries. We find that whereas capital and operating costs are relevant for efficient-technology (non-)adoption, they represent only a part of a great variety of determinants that drives consumer's energy-related decisions regarding technology choices. Factors including design, comfort, brand, functionality, reliability, environmental awareness, among others, are likely to influence the decisions of consumers in reality. Whereas economic variables are used as key determinants for technology choice in energy

  17. and the Energy Sector

    African Journals Online (AJOL)

    Nigeria's harsh economic situation in 2016 has led major industries to look inwards to resolve supply deficits occasioned ... In the electricity sector, however, the influx of imported electrical .... Engineering Infrastructure in a 2014 address.

  18. Analysis of sectoral energy conservation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mofleh, Anwar; Taib, Soib; Salah, Wael [School of Electrical and Electronics Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Mujeebu, M. Abdul [School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2009-06-15

    The electrical energy consumption in Malaysia has increased sharply in the past few years, and modern energy efficient technologies are desperately needed for the national energy policy. This article presents a comprehensive picture of the current status of energy consumption and various energy conservation options viable for Malaysian environment. A detailed survey is made to assess the consumption pattern and the existing techniques for energy efficiency. Based on the survey, the feasibility of improving the available systems and adopting new programs in different sectors is investigated. The study reveals the fact that the energy conservation policy of the country has been fairly improved in the last ten years. However the country has to pay more attention to this area and make urgent measures to adopt more energy efficient technologies in various sectors. (author)

  19. Analysis of sectoral energy conservation in Malaysia

    International Nuclear Information System (INIS)

    Al-Mofleh, Anwar; Taib, Soib; Mujeebu, M. Abdul; Salah, Wael

    2009-01-01

    The electrical energy consumption in Malaysia has increased sharply in the past few years, and modern energy efficient technologies are desperately needed for the national energy policy. This article presents a comprehensive picture of the current status of energy consumption and various energy conservation options viable for Malaysian environment. A detailed survey is made to assess the consumption pattern and the existing techniques for energy efficiency. Based on the survey, the feasibility of improving the available systems and adopting new programs in different sectors is investigated. The study reveals the fact that the energy conservation policy of the country has been fairly improved in the last ten years. However the country has to pay more attention to this area and make urgent measures to adopt more energy efficient technologies in various sectors.

  20. A fuzzy analytic hierarchy/data envelopment analysis approach for measuring the relative efficiency of hydrogen R and D programs in the sector of developing hydrogen energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongkon; Kim, Jongwook [Korea Institute of Energy Research (Korea, Republic of). Energy Policy Research Center; Mogi, Gento [Tokyo Univ. (Japan). Graduate School of Engineering; Hui, K.S. [Hong Kong City Univ. (China). Manufacturing Engineering and Engineering Management

    2010-07-01

    list of evaluation criteria for assessing and prioritize hydrogen energy technologies in the sector of hydrogen ETRM with finite resources and R and D funds. The criteria are composed of economic impact, commercial potential, inner capacity, and technical spin-off. Hydrogen ETRM supplies primary energy technologies to be developed with a long-term view for the low carbon green growth. We suggest Korea's long-term direction and strategy for developing hydrogen energy technologies in the sector of hydrogen ETRM with the hydrogen economy. The main purpose of this research is to assess the priority of hydrogen energy technologies in the sector of hydrogen ETRM since we allocate and invest R and D budgets strategically as an extended research [1]. In this paper, we focus on the assessment of hydrogen energy technologies econometrically by using an integrated 2- stage approach, which is fuzzy analytic hierarchy (Fuzzy AHP) process and the data envelopment analysis (DEA) in the sector of hydrogen energy technologies. The research results suggest the most efficient hydrogen energy technology is selected by the multi-criteria decision making approach. In addition it also provides Korean hydrogen energy technology policymakers and decision makers with the right hydrogen energy technologies econometrically as they implement a strategic R and D plan. This extended abstract is composed as follows: Section 2 presents the fuzzy sets and numbers, Section 3 includes the Fuzzy AHP concepts. Section 4 presents the DEA approach. Section 5 shows the numerical examples. Finally, Section 6 presents the conclusions. (orig.)

  1. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  2. Modelling energy demand of Croatian industry sector

    DEFF Research Database (Denmark)

    Medić, Zlatko Bačelić; Pukšec, Tomislav; Mathiesen, Brian Vad

    2014-01-01

    Industry represents one of the most interesting sectors when analysing Croatian final energy demand. Croatian industry represents 20% of nation's GDP and employs 25% of total labour force making it a significant subject for the economy. Today, with around 60 PJ of final energy demand...... it is the third most energy intensive sector in Croatia after transport and households. Implementing mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. Through this paper, long-term energy demand projections for Croatian industry will be shown. The central point...... for development of the model will be parameters influencing the industry in Croatia. Energy demand predictions in this paper are based upon bottom-up approach model. IED model produces results which can be compared to Croatian National Energy Strategy. One of the conclusions shown in this paper is significant...

  3. State of the Art on Energy Efficiency in Agriculture, Country data on energy consumption in different agroproduction sectors in the European countries

    NARCIS (Netherlands)

    Visser, de C.L.M.; Buisonje, de F.E.; Ellen, H.H.; Stanghellini, C.; Voort, van der M.P.J.

    2012-01-01

    Energy efficiency is the goal of efforts to reduce the amount of energy required to provide products and services. The general term "energy efficiency", when applied to agriculture, reflects changes in technology, governmental and EC policies – including the Common Agricultural Policy, climate

  4. Dialogue and collaboration for Energy Efficient Facilities Management: municipal sector strategies and the role of external service providers

    DEFF Research Database (Denmark)

    Stenqvist, Christian; Nielsen, Susanne Balslev; Bengtsson, Per-Otto

    2015-01-01

    and public-private partnership in FM. The paper covers the empirical case of a Swedish policy that stimulates energy efficiency strategies on municipal level. A dialogue-oriented interview methodology is used to assess the current strategies and practices for buildings owned and managed by municipal FM...... organisations. Findings . Silo mentality can hinder strategies and practices from becoming as comprehensive as intended by policy regulation, e.g. focus on non-residential rather than residential buildings is demonstrated by reported activities and impact on specific energy use. Findings also confirm...

  5. Mechanisms of energetic efficiency in the transportation sector: environmental impacts and reflections in final energy consumption: PNE 2030; Mecanismos de eficiencia energetica no setor de transportes: impactos ambientais e os reflexos no consumo final de energia: PNE 2030

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], email: mauro_berni@nipeunicamp.org.br; Dorileo, Ivo Leandro [Universidade Federal do Mato Grosso (NIEPE/UFMT), Cuiaba, MT (Brazil). Nucleo Interdisciplinar de Estudos em Planejamento Energetico; Perez, Andrea Juliana Ortiz [Universidade Estadual de Campinas (DE/FEM/UNICAMP), SP (Brazil). Dept. de Energia. Fac. de Engenharia Mecanica; Paccola, Jose Angelo; Silva Junior, Herculano Xavier da; Bernardes, Cyro Barbosa [MCPAR Engenharia, Campinas, SP (Brazil)

    2010-07-01

    This work presents an energy efficiency mechanisms analysis in the Brazilian transport sector. Significant energy savings can be made in this sector and rely on urgent widespread implementation of mechanisms. The experience of the developed countries serves as base for the critical evaluation of the Brazilian situation, considering the current technological period, the investments and initiatives to reduce CO{sub 2} emissions. (author)

  6. Energy efficiency in Swedish industry

    International Nuclear Information System (INIS)

    Zhang, Shanshan; Lundgren, Tommy; Zhou, Wenchao

    2016-01-01

    This paper assesses energy efficiency in Swedish industry. Using unique firm-level panel data covering the years 2001–2008, the efficiency estimates are obtained for firms in 14 industrial sectors by using data envelopment analysis (DEA). The analysis accounts for multi-output technologies where undesirable outputs are produced alongside with the desirable output. The results show that there was potential to improve energy efficiency in all the sectors and relatively large energy inefficiencies existed in small energy-use industries in the sample period. Also, we assess how the EU ETS, the carbon dioxide (CO_2) tax and the energy tax affect energy efficiency by conducting a second-stage regression analysis. To obtain consistent estimates for the regression model, we apply a modified, input-oriented version of the double bootstrap procedure of Simar and Wilson (2007). The results of the regression analysis reveal that the EU ETS and the CO_2 tax did not have significant influences on energy efficiency in the sample period. However, the energy tax had a positive relation with the energy efficiency. - Highlights: • We use DEA to estimate firm-level energy efficiency in Swedish industry. • We examine impacts of climate and energy policies on energy efficiency. • The analyzed policies are Swedish carbon and energy taxes and the EU ETS. • Carbon tax and EU ETS did not have significant influences on energy efficiency. • The energy tax had a positive relation with energy efficiency.

  7. Toward a More Efficient and Innovative Electricity Sector in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Russia is in the process of one of the most ambitious electricity sector reforms ever undertaken, reflecting the importance of an efficient and reliable electricity sector for promoting economic activity, growth and community prosperity. The outcome of this process will have a substantial impact on Russia’s energy sector and longer-term economic performance. It will help to determine the nature and pace of investment and modernisation of the sector and will help to shape incentives for efficient, flexible and innovative operation and end-use.

  8. Energy Efficiency

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government...

  9. Barriers and opportunities for improving energy efficiency in the social housing sector: Case study of E4C's Division of Housing and Mental Health

    Science.gov (United States)

    Marchand-Smith, Patrick

    Energy efficiency improvements in the social housing sector have the potential to produce a range of environmental and social benefits. These improvements can be produced through retrofits that deliver energy savings or new construction built to a high standard of energetic efficiency. However, implementation of these approaches is hindered by economic and organizational constraints affecting the agencies that provide society with social housing and the governments that support the provision of these services. This thesis builds on the work of other researchers studying these constraints by supplying an in-depth case study from Alberta and a discussion based on its findings. The case study focuses on E4C, a social service agency with several housing projects. Overall, findings matched important themes identified in the academic literature. The in-depth nature of the case study added additional insight to many of these themes. Most barriers are economic in nature and related to a lack of sufficient funding or the up-front costs of energy-saving retrofits. The recommendations presented are based on consideration of the multiple barriers and opportunities faced. Most of these require a considerable investment of time on the part of agencies and would be followed up by capital investments to implement energy-saving changes. Therefore it is important to note that the most significant barrier is commitment, which is one of E4C's central values. This thesis showed that commitment cannot exceed capacity to act. Greater commitment on the part of governments, agencies or society at large could have significant impacts in improving the energy efficiency of buildings in the Albertan, and Canadian, social housing sector.

  10. Development of an integrated energy concept: survey of the potential for reducing emissions of climate-influencing trace gases through efficient utilisation in the old Laender. Sector traffic

    International Nuclear Information System (INIS)

    Oppermann, F.

    1993-11-01

    If CO 2 emissions are to be reduced on account of their major contribution to the anthropogenic greenhouse effect, as planned, for example, by the Federal Government, then a key role will have to be assigned to the traffic sector because this is the only sector whose energy consumption and consequent CO 2 emissions is relentlessly increasing. This forms the background to the present study's intent of sketching out possible routes of development of the traffic system in the old Laender. Three scenarios having particular regard to traffic-related CO 2 emissions are presented. The study is based on the reference years 1987, 2005, and 2020; its scope is defined by the so-called inland concept. The scenario calculations are based on, firstly, a detailed quantitative survey of the West German traffic system in 1987 as the starting year and, secondly, a dp-supported traffic model that is capable of generating a scenario and describes traffic systems in terms of parameters such as traffic volume and CO 2 emissions taking interdependencies with other energy consuming sectors into account. Working from a general transsectoral scenario formulation, measures appropriate to the respective framework conditions governing the three scenarios 'Business as usual' (BAU), 'Efficiency', and 'Ecologically structured policy' are defined and the resulting effects on the individual elements of the traffic system are assessed. The results of the subsequently performed scenario calculations largely consist of detailed, absolute, traffic-volume-specific CO 2 emission values for each reference year. (orig.) [de

  11. Energy Efficiency

    OpenAIRE

    Petrichenko, Ksenia; Farrell, Timothy Clifford; Thorsch Krader, Thomas; Tsakiris, Aristeidis

    2016-01-01

    This report was commissioned by REN21 and produced in collaboration with a global network of research partners. Financing was provided by the German Federal Ministry for Economic Cooperation and Development (BMZ), the German Federal Ministry for Economic Affairs and Energy (BMWi), the Government of South Africa, the Inter-American Development Bank (IDB), the United Nations Environment Programme (UNEP) and the World Bank Group. A large share of the research for this report was conducted on a v...

  12. Energy and exergy utilization in transportation sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper we present an analysis of energy and exergy utilization in the transportation sector of Saudi Arabia by considering the sectoral energy and exergy flows for the years of 1990-2001. Energy and exergy analyses are conducted for its three subsectors, namely road, air and marine, and hence the energy and exergy efficiencies are obtained for comparison. Road subsector appears to be the most efficient one compared to air and marine subsectors. It is found that the energy efficiencies in air and marine subsectors are found to be equal to the corresponding exergy efficiencies due to the values of exergy grade function. A comparison of the overall energy and exergy efficiencies of Saudi Arabian transportation sector with the Turkish transportation sector is also presented for the year 1993 based on the data available. Although the sectoral coverage is not same for both countries, it is still useful to illustrate the situation on how subsectoral energy and exergy efficiencies vary over the years. Turkish transportation sector appears to be a bit more efficient for that particular year. It is believed that the present technique is practical and useful for analyzing sectoral energy and exergy utilization to determine how efficient energy and exergy are used in transportation sector. It is also be helpful to establish standards, based on exergy, to facilitate applications in industry and in other planning processes such as energy planning

  13. The use of long term agreements to improve energy efficiency in the industrial sector: Overview of the European experiences and proposal for a common framework

    International Nuclear Information System (INIS)

    Bertoldi, P.

    1999-01-01

    In the European Union efficiency improvements in the industrial sector are regarded as a key element of Member States' strategies to meet their Kyoto target. Besides the traditional policy instruments, such as fiscal and financial aids, minimum efficiency standards, R and D and technology programs, there is an increasing interest by both public authorities and industry for voluntary approaches to improve industrial energy efficiency. In the European context the term voluntary approach is often used to describe a wide range of industry actions including, inter alia: industry covenants, negotiated agreements, long term agreements, self regulations, codes of conduct, benchmarking and monitoring schemes. These voluntary approaches differ in relation to their form, legal status, provisions and enforceability. The paper provides an up-to-date overview of the present status of the different voluntary approaches for the industrial sector in several Member States (the Netherlands, Sweden, Germany, Denmark, Finland, Ireland, and the United Kingdom). The paper will focus on the particular type of voluntary approach implemented in the Netherlands and commonly called Long Term Agreements (LTA). The paper analyses the opportunities and advantages for creating a common EU framework for the conclusion and implementation of LTAs, based on the successful Dutch model. In doing so, the paper intends also to contribute to the approximation of the LTA's essential elements throughout the Community in order to reduce possible distortions of the internal market and of the competitive position of national industries, thus enlarging the acceptability of this instrument by public authorities and industry. For some industrial sectors, which are quite homogeneous throughout the Community and represent a limited number of companies, the paper analyses the advantages of having European LTAs and recommends their implementation. The paper presents the achievable results at EU level in terms of

  14. Future air conditioning energy consumption in developing countries and what can be done about it: the potential of efficiency in the residential sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory (United States)

    2007-07-01

    The dynamics of air conditioning are of particular interest to energy analysts, both because of the high energy consumption of this product, but also its disproportionate impact on peak load. This paper addresses the special role of this end use as a driver of residential electricity consumption in rapidly developing economies. Recent history has shown that air conditioner ownership grows more rapidly than economic growth in warm-climate countries. In 1990, less than a percent of urban Chinese households owned an air conditioner; by 2003 this number rose to 62 %. The evidence suggests a similar explosion of air conditioner use in many other countries is not far behind. Room air conditioner purchases in India are currently growing at 20 % per year, with about half of these purchases attributed to the residential sector. This paper draws on two distinct methodological elements to assess future residential air conditioner 'business as usual' electricity consumption by country/region and to consider specific alternative 'high efficiency' scenarios. The first component is an econometric ownership and use model based on household income, climate and demographic parameters. The second combines ownership forecasts and stock accounting with geographically specific efficiency scenarios within a unique analysis framework (BUENAS) developed by LBNL. The efficiency scenario module considers current efficiency baselines, available technologies, and achievable timelines for development of market transformation programs, such as minimum efficiency performance standards (MEPS) and labeling programs. The result is a detailed set of consumption and emissions scenarios for residential air conditioning.

  15. Challenges and policies in Indonesia's energy sector

    International Nuclear Information System (INIS)

    Dutu, Richard

    2016-01-01

    Fossil fuels are central to Indonesia's energy policy, and its main source of export revenues. However, insufficient investment, the lack of transport infrastructure and an unwieldy regulatory environment are inhibiting the sector from reaching its full potential. Looking ahead, growing environmental concerns combined with sharp falls in coal prices and the on-going shale gas revolution call into question the sustainability of an energy strategy based almost exclusively on fossil fuels. This viewpoint challenges Indonesia's current energy policy and proposes ways to increase its energy efficiency and use of renewables. In particular, its gas sector should be further developed to plug the gap until sufficient renewable energy, especially geothermal, comes on line. Government control over the oil industry via state-owned Pertamina should be gradually reduced. Clarifying, streamlining and publicising simple regulations in energy, especially regarding land rights and on-shore processing, and removing foreign-ownership restrictions will help bring much needed investment. The pressure on the environment of natural resource exploitation should also be addressed by properly defining property rights and regulations regarding forest land, and implementing a positive implicit carbon price. - Highlights: • Indonesia's energy sector faces many regulatory, environmental and infrastructure hurdles. • Indonesia's energy policy can be improved through greater use of renewables, especially geothermal. • The gas sector should be further developed until more renewable energy come on line. • Government control over the oil industry should be reduced to boost investment. • Clarifying and simplifying regulations is key to attracting foreign companies and protecting the environment.

  16. Concessions in energy sector

    International Nuclear Information System (INIS)

    Livada, T.

    1999-01-01

    Commercial use of natural resources is of essential importance for electricity, oil and gas networks and systems. The paper analyses the existing legal framework, i.e. relevant legislation and special regulations, which define requirements and procedures necessary for obtaining concessions in the field of energy, i.e. use of water power, maritime resources (marine area and ports), as well as exploitation of oil, gas and other fossil sources. In order to protect state interests, decisions related to the concessions for commercial use of natural resources, legally defined as of interest for the Republic of Croatia, are made by the highest state institutions. It is stipulated that concessions may generally be granted both to domestic or foreign physical as well as legal entities for a period not exceeding 99 years. Concessions for gas and thermal energy supply and utilities are granted by institutions of local self-government for a maximum period of 30 years. Public bidding usually precedes the granting of concessions. In order to implement the rights defined by the concession agreement, concession owners are obliged to pay the concession fee. The exact amount, stipulated by law, varies according to the type of the natural resource for which the concession is to be granted, the purpose of concession, the scope of activities, the size of the surface involved, the estimated profitability and the assessment of the project's environmental impact. All concession fees are fiscal categories and the major part of these funds contributes towards the state budget revenues. Utility concession fees providing income for cities and municipalities, as designated funds, represent an exception in this respect. The paper does not provide answers to the amount of the annual state budget revenues from concession fees for specific natural resources, and the issue of whether the present concessionaires meet their financial obligations as defined by the concession agreement also remains

  17. Long term energy demand projections for croatian transport sector

    DEFF Research Database (Denmark)

    Puksec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    Transport sector in Croatia represents one of the largest consumers of energy today with a share of almost one third of final energy demand. That is why improving energy efficiency and implementing different mechanisms that would lead to energy savings in this sector would be relevant. Through th...

  18. Coordinating Demand-Side Efficiency Evaluation, Measurement and Verification Among Western States: Options for Documenting Energy and Non-Energy Impacts for the Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-22

    Demand-side energy efficiency (efficiency) represents a low-cost opportunity to reduce electricity consumption and demand and provide a wide range of non-energy benefits, including avoiding air pollution. Efficiency-related energy and non-energy impacts are determined and documented by implementing evaluation, measurement and verification (EM&V) systems. This technical brief describes efficiency EM&V coordination strategies that Western states can consider taking on together, outlines EM&V-related products that might be appropriate for multistate coordination, and identifies some implications of coordination. Coordinating efficiency EM&V activities can save both time and costs for state agencies and stakeholders engaged in efficiency activities and can be particularly beneficial for multiple states served by the same utility. First, the brief summarizes basic information on efficiency, its myriad potential benefits and EM&V for assessing those benefits. Second, the brief introduces the concept of multistate EM&V coordination in the context of assessing such benefits, including achievement of state and federal goals to reduce air pollutants.1 Next, the brief presents three coordination strategy options for efficiency EM&V: information clearinghouse/exchange, EM&V product development, and a regional energy efficiency tracking system platform. The brief then describes five regional EM&V products that could be developed on a multistate basis: EM&V reporting formats, database of consistent deemed electricity savings values, glossary of definitions and concepts, efficiency EM&V methodologies, and EM&V professional standards or accreditation processes. Finally, the brief discusses options for next steps that Western states can take to consider multistate coordination on efficiency EM&V. Appendices provide background information on efficiency and EM&V, as well as definitions and suggested resources on the covered topics. This brief is intended to inform state public

  19. Saving, efficiency and management of electric sector demand

    International Nuclear Information System (INIS)

    Sanchez de Tembleque, L. J.

    2007-01-01

    Spanish economic model of development is based on energy consumption, and its main source is imported fossil fuels, which have some environmental and scarcity consequences in the mid term, among others. These problems could be reduced in two ways: economic activity reduction or energy efficiency improvement. In the presence of these possibilities, It may be desirable to bet for saving and energy efficiency, to maintain the economic development. This assignment analyzes the main available regulatory and social mechanisms to promote saving and energy efficiency in the power sector, like systems to internalize social costs in the electricity price, efficiency standards, and encourage the new saving culture. (Author) 15 refs

  20. Energy efficiency: Lever for the Energy Transition

    International Nuclear Information System (INIS)

    2012-12-01

    The Eco-electric industry group (FFIE, FGME, Gimelec, IGNES, SERCE) has conducted a study to evaluate the energy saving potential of active energy efficiency solutions in the residential and commercial building sectors. Based on field implementations and demonstrators, it has been demonstrated that active energy efficiency can sustainably achieve substantial savings for households, companies and public authorities. Energy Efficiency - Lever for the energy transition presents the results and conclusions of that study, alongside with recommendations for public authority in terms of building retrofit policy for putting France on the best possible 'trajectory' from a budgetary and environmental point of view. (author)

  1. Efficiency of the Macedonian banking sector

    Directory of Open Access Journals (Sweden)

    Naumovska Elena

    2016-01-01

    Full Text Available The subject of this paper is to measure the efficiency of the Macedonian banking sector by applying two approaches: firstly, comparative analysis on the efficiency indicators of the banking sector in the Republic of Macedonia and the countries of Central and Southeastern Europe (CSEE and secondly, Data Envelopment Analysis (DEA. The aim is to provide directions and guidelines for further strengthening of the Macedonian banking sector. According to the comparative analysis of the efficiency indicators (net interest margin and operating costs of the Macedonian banking sector and the countries of CSEE, the countries whose banking sector shows lower operating costs are characterized with a higher level of financial deepening and greater degree of financial intermediation. The high interest margins direct towards unsuitable allocation of financial resources and insufficient competitiveness in the domestic banking sector. When applying the DEA approach, it can be stated that the group of large banks marks the highest efficiency within the Macedonian banking sector. The high concentration degree of banking activities within the group of large banks with a leading role in determining the interest rates, results in a rigid interest policy of the banks. In the direction of strengthening the efficiency of the Macedonian banking sector as a whole, the obtained results show that it is necessary for the banks to be further consolidated so as to utilize the advantages of the economies of scale, increase competitiveness, offer a diversified structure of products, invest in new contemporary software solutions that will allow reinforcement of their employees’ productivity and long-term reduction of the operating costs, as well.

  2. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  3. Accelerating energy efficiency improvement in the public sector, using Energy Performance Contracting - a workshop on Nordic experiences and needs for improvements

    Energy Technology Data Exchange (ETDEWEB)

    Gottberg, Annika; Gode, Jenny; Axelsson, Ulrik

    2009-08-15

    This report provides documentation on a workshop on experiences of Energy Performance Contracting (EPC) in the Nordic countries, aiming to identify strengths, weaknesses and needs for improvements. The results of surveys undertaken to inform presentations and discussions at the workshop are reported. Furthermore, the outcomes of the discussions during the workshop and resulting recommend actions for different actors to further and accelerate the use of EPC in the public sector are reported. Target groups for this documentation are existing and potential EPC customers, providers and policy-makers

  4. How does the European Regional Development Fund finance energy efficiency and renewable investments in housing sector in Bulgaria, Poland and Romania?

    International Nuclear Information System (INIS)

    2009-11-01

    The European Union (EU) is leading the global fight against climate change, and has made it a top priority. Its ambitious targets are spelt out in the EU Climate Action and Renewable Energy Package which commits Member States to curb their CO_2 emissions by at least 20% by 2020 through improved energy efficiency and use of renewable energy sources. The housing sector, responsible for 40% of the EU CO_2 emissions, represents a huge potential for energy and emissions savings. The policy at EU level is adopted and the facts are clear - we know in which sectors and how to act to achieve the common objectives. The EU even allocates some funds for EE/RES actions in housing sector, e.g. through the Cohesion policy. Since May 2009, all EU Member States can allocate 4% of their total ERDF allocations to energy efficiency measures in housing, in particular social housing. It would seem that all the conditions are favorable but the reality is different - EE/RES actions are still not the priority of the EU Member States and/or the European funds are rarely used for this type of actions. The case of three EU-12 countries - Bulgaria, Poland and Romania - proves that the Structural Funds available for improvement of housing and particularly social housing sector, are not fully used also for the following reasons: Housing and social housing are not the priorities or national budgets allocated to these sectors are not sufficient to co-finance projects supported by the Structural Funds: - In Romanian operational programs, (social) housing is mentioned very vaguely - eligible measures are not specified in details. - In Bulgaria, the priorities in the operational programs are well identified, however municipalities have difficulties to find even 5% co-financing for their EE/RES projects as national budget is not allocated to this type of measures. Administration of the Structural Funds and criteria of their use are complicated; national governments are lacking human capacities to

  5. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2012-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... of an Open Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC... new capital for investment in the U.S. renewable energy and energy efficiency sectors, increasing the...

  6. Yukon energy sector assessment 2003 : final report

    International Nuclear Information System (INIS)

    Kishchuk, P.

    2003-10-01

    A study was conducted to better understand energy issues in the Yukon. The study was based on the Yukon Energy Matrix which looks at the Yukon energy sector from the perspective of the capacity to supply various forms of energy, the markets for energy in the Yukon, and energy users. The sources of non-renewable energy in the Yukon range from natural gas, coal and oil. Renewable energy sources are also diverse and include water, biomass, wind, solar and geothermal. The main sources of electricity production in the Yukon are oil, water and wind. The link between energy and climate change has gained much attention in recent years, resulting in effective measures to conserve energy and increase energy efficiency. Coal, gas and oil are imported into the Yukon from markets in southern Alaska despite the fact that Yukon has its own vast quantities of these fossil-based forms of energy. As a result, the price of fossil-fuels consumed in the Yukon is determined in national and international markets. The absence of non-renewable energy production in the Yukon is also reflected in the lack of pipeline and rail infrastructure in the territory. The Yukon's electricity transmission grid is also very fragmented. For the purpose of this paper, energy use was categorized into the residential, commercial, industrial and transportation sectors. 19 refs., 8 tabs., 12 figs

  7. Energy transition in transport sector from energy substitution perspective

    Science.gov (United States)

    Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang

    2017-10-01

    Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.

  8. China's energy efficiency target 2010

    International Nuclear Information System (INIS)

    Yang Ming

    2008-01-01

    The Chinese government has set an ambitious target: reducing China's energy intensity by 20%, or 4.36% each year between 2006 and 2010 on the 2005 level. Real data showed that China missed its target in 2006, having reduced its energy intensity only by 1.3%. The objective of this study is to evaluate the feasibility and potential of the Chinese to achieve the target. This paper presents issues of macro-economy, population migration, energy savings, and energy efficiency policy measures to achieve the target. A top-down approach was used to analyse the relationship between the Chinese economic development and energy demand cycles and to identify the potentials of energy savings in sub-sectors of the Chinese economy. A number of factors that contribute to China's energy intensity are identified in a number of energy-intensive sectors. This paper concludes that China needs to develop its economy at its potential GDP growth rate; strengthen energy efficiency auditing, monitoring and verification; change its national economy from a heavy-industry-dominated mode to a light industry or a commerce-dominated mode; phase out inefficient equipment in industrial sectors; develop mass and fast railway transportation; and promote energy-efficient technologies at the end use. This paper transfers key messages to policy makers for designing their policy to achieve China's energy efficiency target

  9. Energy sector in conditions of market economy

    International Nuclear Information System (INIS)

    Schervashidze, N.

    1993-01-01

    The main dilemma of energy sector in market conditions is: regulation of the monopole producer and/or competition. There is no simple answer and the arguments for and against should be based on the macro economical determination of what kind of market is available for particular energy goods (perfect, monopolistic, oligopolistic, competition of monopolists) and what is the final purpose (improvement in efficiency, service, energy independence, regional development, etc.). Two polar models of economic management in energy sector are distinguished: 1) Free access to transfer net or competition between producers. 2) State regulation of the local monopolist. The experience of Great Britain and US are described as examples of both models. A special attention is paid to pricing methods at regulated monopole. 7 refs. (author)

  10. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  11. Sectoral energy demand data: Sources and Issues

    International Nuclear Information System (INIS)

    Ounali, A.

    1991-01-01

    This chapter of the publication is dealing with Sectoral Energy Demand Data giving details about the Sources and Issues. Some comments are presented on rural energy surveys. Guidelines for the Definition and Desegregation of Sectoral Energy Consumption is given and Data Necessary for Sectoral Energy Demand Analysis is discussed

  12. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  13. Energy savings in CSFR - building sector

    International Nuclear Information System (INIS)

    Jacobsen, F.R.

    1993-01-01

    The Czechoslovak/Danish project on energy savings in buildings proves that it is possible to save up to 30% of the energy in buildings. 10% can be saved at an investment of 27 bill KCS. The total investment that is needed to save 30% is 140 bill KCS. Further energy savings can be obtained through more energy efficient supply systems. Information dissemination is important for the energy saving programme as are economic incentives. Investments in energy savings should be profitable for the investor, but this is not the case in the Czech and Slovak republics today. Changes are needed. Energy prices are still to low, compared to investment costs. Financial possibilities are not satisfactory for private investors. Price systems are not favourable to investment in energy savings. Training is needed for boiler men and energy consultants. Legislation is essential for the support of the full range of activities in the energy sector. Research and Development activities must back up the development of the sector. Pilot projects can illuminate the savings potential. The production of technical equipment for control and metering and production of insulation materials must be promoted. (AB)

  14. Evaluating the scope for energy-efficiency improvements in the public sector: Benchmarking NHSScotland's smaller health buildings

    International Nuclear Information System (INIS)

    Murray, Joe; Pahl, O.; Burek, S.

    2008-01-01

    The National Health Service in Scotland (NHSScotland) has, in recent years, done much to reduce energy consumption in its major healthcare buildings (hospitals). On average, a reduction of 2% per year has been achieved since 2000, based on hospital buildings. However, there had been little or no attention paid to smaller premises such as health centres, clinics, dentists, etc. Such smaller healthcare buildings in Scotland constitute 29% of the total treated floor area of all NHSScotland buildings and, therefore, may contribute a similar percentage of carbon and other emissions to the environment. By concentrating on a sample of local health centres in Scotland, this paper outlines the creation of an energy benchmark target, which is part of a wider research project to investigate the environmental impacts of small healthcare buildings in Scotland and the scope for improvements. It was found that energy consumption varied widely between different centres but this variation could not be linked to building style, floor area or volume. Overall, it was found that a benchmark of 0.2 GJ/m 3 would be challenging, but realistic

  15. Calculating economy-wide energy intensity decline rate: The role of sectoral output and energy shares

    International Nuclear Information System (INIS)

    Baksi, Soham; Green, Chris

    2007-01-01

    We specify formulas for computing the rate of decline in economy-wide energy intensity by aggregating its two determinants-technical efficiency improvements in the various sectors of the economy, and shifts in economic activity among these sectors. The formulas incorporate the interdependence between sectoral shares, and establish a one-to-one relation between sectoral output and energy shares. This helps to eliminate future energy intensity decline scenarios which involve implausible values of either sectoral share. An illustrative application of the formulas is provided, using within-sector efficiency improvement estimates suggested by Lightfoot-Green and Harvey

  16. Energy efficiency: from principles to reality

    International Nuclear Information System (INIS)

    Baudry, Paul; Ballot-Miguel, Benedicte; Binet, Guillaume; Bordigoni, Mathieu; Decellas, Fabrice; Hauser, Chantal; Hita, Laurent; Laurent, Marie-Helene; Osso, Dominique; Peureux, Jean-Louis; Pham Van Cang, Christian

    2015-01-01

    This collective publication proposes a comprehensive overview of issues related to energy efficiency: associated stakes, methods of assessment of energy savings and of their costs, methods of action for energy efficiency policies, application in the housing, office building and industry sectors based on energy consumption modes in these different sectors, and main technologies aimed at improving energy efficiency. The first chapter proposes an historical perspective on energy, outlines the crucial role of energy efficiency in today's and tomorrow's contexts, and discusses which are the different levers of action to increase this efficiency. The next chapters address methods of assessment of energy efficiency, identify and discuss the use of different potential sources of energy saving, propose an overview of the various objectives and instruments of policies for energy efficiency, and address the issue of energy efficiency in the housing sector, in the office building sector, and in the industry sector by indicating the current levels of energy consumption, by identifying the various potential sources of energy saving, and by indicating available technologies aimed at improving energy efficiency

  17. Lack of Energy Efficiency Legislation in the Malaysian Building Sector Contributes to Malaysia’s Growing GHG Emissions

    OpenAIRE

    Zaid Suzaini M.; Myeda Nik Elyna; Mahyuddin Norhayati; Sulaiman Raha

    2014-01-01

    Malaysia’s carbon emissions grew by +235.6% from 1990 to 2005, largely due to an increase in national energy demand of 210.7% from 1990 to 2004. This unparalleled carbon emission growth, along with business-as-usual (BAU) practices will put Malaysia at high risk for carbon lock-in and a very unsustainable path of development. Malaysia clearly needs to make significant and urgent changes in its policy, economy, industries and lifestyle in order to reduce its climate change impacts. In 2010 Mal...

  18. Energy Efficiency Policy in Slovenia

    International Nuclear Information System (INIS)

    Beravs, F.

    1998-01-01

    When Slovenia gained its independence in 1991, its energy sector was characterised by largely centralised state planning and artificially low prices maintained by widespread subsidies. Supply side considerations tended to dominate the energy policy and sectoral planning. As a result the final energy intensity in Slovenia was (still albeit declining) considerably higher than the EU average. In order to support economic growth and transition to a modern market economy, integrated and competitive in the European and world market structures, the National Assembly of the Republic of Slovenia adopted a resolution on the Strategy of Energy Use and Supply of Slovenia in early 1996. In the field of energy use, the long-term strategic orientation is to increase energy efficiency in all sectors of energy consumption. The main objective can be summarised as to secure the provision of reliable and environmentally friendly energy services at least costs. In quantitative terms the Strategy attaches a high priority to energy efficiency and environmental protection and sets the target of improving the overall energy efficiency by 2% p.a. over the next 10 to 15 years. To achieve the target mentioned above the sectoral approach and a number of policy instruments have been foreseen. Besides market based energy prices which will, according to the European Energy Charter, gradually incorporate the cost of environment and social impacts, the following policy instruments will be intensified and budget-supported: education and awareness building, energy consultation, regulations and agreements, financial incentives, innovation and technology development. The ambitious energy conservation objectives represent a great challenge to the whole society. (author)

  19. Optimization in the energy sector

    International Nuclear Information System (INIS)

    2015-01-01

    The implementation of the energy transition and the developments in the national and international Energy markets constantly require sound analysis and new answers. The symposium ''optimization in the energy sector'' gives an overview of methods and models that can be practically used for decision support. Storage and electromobility as demand flexibility are important factors for the long-term design of the German and European energy system. But methodological aspects such as the consideration of uncertainties at the conference an important place is given. A key issue is also the short and medium term further development of the electricity market design. Not only broadly but also in detail e.g. the standard benefit and intraday markets there is considerable potential for optimization, which will be discussed in the context of technical presentations. And in view of challenging market environment is also new approaches to portfolio management a great importance for the practice. Therefore we are convinced that the Conference and its results for energy companies, public services and new entrants in the energy industry as well are of interest as for consultants, authorities, associations and energy economic research institutes. [de

  20. Energy efficiency indicators. Case study, Liguria

    International Nuclear Information System (INIS)

    Ciarallo, M. A.

    2001-01-01

    The report examines the trend in the Liguria Region's energy requirements over the period 1988-1996. The trend was analysed using the regional energy balances and energy efficiency indicators, both in aggregate form and on a single sector basis. The residential sector, in particular, was singled out for an in-depth analysis using publishing and processed data [it

  1. Efficient use of green taxes in the CHP sector

    International Nuclear Information System (INIS)

    Skovsgaard Nielsen, L.; Mognesen, Martin Frank; Pade, L.L.

    2007-06-01

    Since 1977 green taxes have been used in the Danish power and heat sector. Green taxes principally assure an efficient, market-based reduction of pollution by reducing the energy consumption or increasing the share of renewable energy in power and heat production. This report takes its point of departure in four potential barriers which prevent a marketbased, cost-effective increase of the proportion of renewable energy in power and heat production. We primarily concentrate on three policy measures. 5. green and lessgreen taxes; 6. mandatory combined heat and power production; 7. fuel restrictions. Furthermore, we analyse a fourth characteristic in the law: 8. high transactions costs connected to the enlargement of renewable energy. The purpose of the report is to describe how the four potential barriers contradict the theoretically efficient application of green taxes in the power and heat sector. We do this: 1) by clarifying how legislation in the power and heat sector affects the extension of renewable energy; and 2) by evaluating the theoretically efficient application of green taxes in the power and heat sector in relation to legislation. (au)

  2. Cross-sectoral modeling and optimization of a future German energy system, taking energy efficiency measures into account in the building sector; Sektoruebergreifende Modellierung und Optimierung eines zukuenftigen deutschen Energiesystems unter Beruecksichtigung von Energieeffizienzmassnahmen im Gebaeudesektor

    Energy Technology Data Exchange (ETDEWEB)

    Palzer, Andreas

    2016-07-01

    With the aim of reducing greenhouse gas emissions, comprehensive climate protection measures have already been adopted both nationally and internationally. This raises the question of how economically and ecologically useful system infrastructure looks, which at the same time ensures the supply reliability of all consumers. The regenerative energy model (REMod) presented in this book has been developed to provide answers. The sectors electricity, heat, transport and industry are considered for the first time simultaneous in an energy system model. In particular, in order to satisfy the criterion of reliability of supply, the model calculates the energy flows in hourly resolution for the period from today (2015) to 2050. The system is optimized with regard to minimum overall costs and under the boundary condition that a maximum set quantity of permitted greenhouse gas emissions is not exceed. On the example of Germany (REMod-D), the results show that, in particular, the interaction of the sectors can lead to strong differences in the design of the system infrastructure. [German] Mit dem Ziel den Ausstoss der Treibhausgase zu reduzieren, wurden bereits national wie international umfangreiche Klimaschutzmassnahmen verabschiedet. Hieraus ergibt sich die Frage wie eine oekonomisch und oekologisch sinnvolle Systeminfrastruktur aussieht, die gleichzeitig die Versorgungssicherheit aller Verbraucher gewaehrleistet. Das in diesem Buch vorgestellte Regenerative Energien Modell (REMod) wurde entwickelt um hierauf Antworten zu liefern. Beruecksichtigt werden erstmalig in einem Energiesystemmodell die Sektoren Strom, Waerme, Verkehr und Industrie gleichzeitig. Insbesondere um dem Kriterium der Versorgungssicherheit gerecht zu werden, berechnet das Modell die Energiefluesse in stuendlicher Aufloesung fuer den Zeitraum von heute (2015) bis 2050. Optimiert wird das System hinsichtlich minimaler Gesamtkosten und unter der Randbedingung, dass eine maximal vorgegebene Menge erlaubter

  3. World energy and the Venezuelan energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo, F

    1985-01-01

    The purpose of this study of world energy and the Venezuelan energy sector is to provide a comprehensive survey of this basic element essential to life itself and to the progress of humankind. It begins with a brief historical review from the beginning of the twentieth century to the present day and then gives, most importantly, a forecast for the twenty-first century which takes account of past and present trends and looks towards the end of the present century and to the beginning of the future.

  4. CEE Energy Efficiency Report - Slovakia

    International Nuclear Information System (INIS)

    Hecl, V.

    2005-01-01

    A review of future trends of energy consumption shows that, in the absence of an active energy policy which promotes energy efficiency, energy consumption will increase as a whole by approximately 6.8% by 2012 continuing to raise after this period.. This result hides large differences between the different sources of energy (mainly heat, fuels and electricity) and between the different sectors - transport, industry, buildings etc. It is therefore clear that a strong energy policy is needed to counterbalance the expected increase in energy consumption in all sectors, with emphasis on measures in the building sector (both residential and tertiary) and in the transport sector. Furthermore improvements in the district heating sector are also essential to prevent further disconnection from district heating and a shift to other means of heating. A review of the main barriers to energy efficiency leads to the conclusion that while significant changes are needed in the regulatory framework, the lack of access to finance and the general lack of awareness about existing technologies and best practice represent the greatest barriers. In order to evaluate the success of energy. In a few studies available from past 2-3 years the calculation of low and high targets for energy policy was elaborated. The low targets would represent about 11% - 12% reduction in overall energy consumption. The high targets would represent a 13% - 15% reduction in overall energy consumption. Policy instruments have been identified which can turn energy efficiency into one of the driving forces of the overall economic and development strategy of the country. Some of these instruments deal with general issues such as general policy issues, regulatory and legal aspects, the institutional framework and fiscal, taxation and pricing policy. They are designed to improve the present conditions and would use only a limited part of the available public budget. The state budget dedicated to energy issues will

  5. Energy Sector of India: Past and Present

    Directory of Open Access Journals (Sweden)

    K. A. Ibragimova

    2017-01-01

    Full Text Available Strengthening the influence of India in the Asian region and in the world requires for resorting of the modernization experience of this country, including the development of its energy sector. India today is among the top ten countries to generate electricity per capita. At the same time, both traditional sources of energy production coexist in India (using the muscular strength of man and animals with the conditions for the development of modern energy infrastructure through foreign investments. The article attempts to trace the main stages of the formation and development of energy industry in India; the modern state of energy is analyzed and plans for its development are considered. The research is based on a complex of traditional methods and approaches based on the principle of scientific objectivity and systemic method used in research in the framework of international relations and political science. For more than a century of history of the development of energy sector in India significant success has been achieved. Starting with the electrification of large cities and industrial enterprises due to foreign investments in the colonial period, India, after gaining the independence, set the task of developing its own infrastructure, electrifying the countryside and providing the industry with energy resources. The greatest progress in the development of electric power and nuclear energy was made. Indian economic growth will increase India’s energy needs and quadruple the demand for electricity over the next 25 years. For this, India needs to solve the problems of energy efficiency, energy complex management, lack of standards and energy imports, as well as actively introduce alternative energy sources and move to clean electricity (increased use of water resources and solar energy, which can be done through the development of Russian -Indian cooperation.

  6. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030

    International Nuclear Information System (INIS)

    Xiao, He; Wei, Qingpeng; Wang, Hailin

    2014-01-01

    China achieved an energy savings of 67.5 Mtce in the building sector at the end of the 11th Five-Year Plan and set a new target of 116 Mtce by the end of the 12th Five-Year Plan. In this paper, an improved bottom-up model is developed to assess the carbon abatement potential and marginal abatement cost (MAC) of 34 selected energy-saving technologies/measures for China's building sector. The total reduction potential is 499.8 million t-CO 2 by 2030. 4.8 Gt-CO 2 potential will be achieved cumulatively to 2030. By 2030, total primary energy consumption of Chinese building sector will rise continuously to 1343 Mtce in the reference scenario and 1114 Mtce in the carbon reduction scenario. Total carbon dioxide emission will rise to 2.39 Gt-CO 2 and 1.9 Gt-CO 2 in two scenarios separately. The average carbon abatement cost of the aforementioned technologies is 19.5 $/t-CO 2 . The analysis reveals that strengthening successfully energy-saving technologies is important, especially for the residential building sector. The central government's direct investments in such technologies should be reduced without imposing significant negative effects. - Highlights: • MAC of 34 energy-saving technologies of China's building sector is calculated. • Energy use and CO 2 emission of China's building sector by 2030 is forecasted. • The reference and the carbon reduction scenarios are compared

  7. Embodied energy use in China's industrial sectors

    International Nuclear Information System (INIS)

    Liu Zhu; Geng Yong; Lindner, Soeren; Zhao Hongyan; Fujita, Tsuyoshi; Guan Dabo

    2012-01-01

    As the world’s top energy consumer, China is facing a great challenge to solve its energy supply issue. In this paper energy use from all industrial sectors in China’s economy of 2007 was explored by conducting an extended environmental input–output analysis. We compare the energy consumption embodied in the final demand for goods and services from 29 sectors with the energy demand required for the actual production process in each sector. Two different viewpoints for sectoral energy use have been presented: energy use is directly allocated to the producer entity, and energy use is reallocated to sector’s supply chain from consumption perspective. Our results show that considerable amount of energy use is embodied in the supply chain, especially for “Construction” and “Other Service Activities” sectors, which is not detected if energy use is allocated on a production basis. When further dividing embodied energy consumption into direct energy consumption and indirect energy consumption, total indirect energy consumption is much higher than that of total direct energy consumption, accounting for 80.6% of total embodied energy consumption in 2007. Our results provide a more holistic picture on sectoral energy consumption and therefore can help decision-makers make more appropriate policies. - Highlights: ► A hybrid IO-LCA model was employed to analyze China’s energy use at sectoral level. ► A case study on China’s sectoral energy consumption is done. ► Construction and service sectors are actually energy intensive from the supply chain perspectives. ► Upstream and downstream ectoral collaboration along the whole supply chain is necessary. ► Energy conservation policies should be based upon a comprehensive analysis on sectoral energy use.

  8. Energy and exergy analyses of energy consumptions in the industrial sector in South Africa

    International Nuclear Information System (INIS)

    Oladiran, M.T.; Meyer, J.P.

    2007-01-01

    The energy-utilization over a 10-year period (1994-2003) has been analysed for the South African industrial sector, which consumes more primary energy than any other sector of the economy. Four principal sub-sectors, namely iron and steel, chemical and petrochemical, mining and quarrying, and non-ferrous metals/non-metallic minerals were considered in this study. Primary-energy utilization data were used to calculate the weighted mean energy and exergy efficiencies for the sub-sectors and then overall values for the industrial sector were obtained. The results indicate that exergy efficiency is considerably lower than energy efficiency in all the sub-sectors, particularly in mining and quarrying processes, for which the values were approximately 83% and 16%, respectively. The performance of exergy utilization in the industrial sector can be improved by introducing various conservation strategies. Results from this study were compared with those for other countries

  9. Energy sector reform, energy transitions and the poor in Africa

    International Nuclear Information System (INIS)

    Prasad, Gisela

    2008-01-01

    There is little systematic information about the impact of energy sector reform on all sources and methods of energy utilised or potentially utilised by the poor. It is not sufficiently known what fuels the poor use, if a larger range of fuels becomes available and affordable and if barriers to access and consumption are reduced. A detailed assessment is presented for four countries, three in Africa (Botswana, Ghana and Senegal) and for comparison one in Latin America (Honduras), of steps taken to reform the energy sector and their effect on various groups of poor households. The paper analyses the pattern of energy supply to, and use by, poor households and explores the link-or its absence-to energy policy. We investigate what works for the poor and which type of reforms and implementation are effective and lead to a transition to more efficient and clean fuels from which the poor benefit. Energy sector reforms when adjusted to the specific conditions of the poor have a positive impact on access and use of clean, safe and efficient fuels. The poor are using gradually less wood as cooking fuel. Gas and kerosene are made more widely available through market liberalisation and subsidy in the particular case of Senegal. Electricity access and use is generally promoted or subsidised through changes in payment conditions and lifeline tariffs

  10. Energy sector reform, energy transitions and the poor in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Gisela [Energy Research Centre, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa)

    2008-08-15

    There is little systematic information about the impact of energy sector reform on all sources and methods of energy utilised or potentially utilised by the poor. It is not sufficiently known what fuels the poor use, if a larger range of fuels becomes available and affordable and if barriers to access and consumption are reduced. A detailed assessment is presented for four countries, three in Africa (Botswana, Ghana and Senegal) and for comparison one in Latin America (Honduras), of steps taken to reform the energy sector and their effect on various groups of poor households. The paper analyses the pattern of energy supply to, and use by, poor households and explores the link - or its absence - to energy policy. We investigate what works for the poor and which type of reforms and implementation are effective and lead to a transition to more efficient and clean fuels from which the poor benefit. Energy sector reforms when adjusted to the specific conditions of the poor have a positive impact on access and use of clean, safe and efficient fuels. The poor are using gradually less wood as cooking fuel. Gas and kerosene are made more widely available through market liberalisation and subsidy in the particular case of Senegal. Electricity access and use is generally promoted or subsidised through changes in payment conditions and lifeline tariffs. (author)

  11. The energy sector in Argentina

    International Nuclear Information System (INIS)

    2016-01-01

    This article first outlines that Argentina produces an important part of its hydrocarbon consumption and comment various aspects of this production: hydrocarbons are at the heart of the Argentinian energetic model; conventional hydrocarbon reserves are however decreasing; the public operator remains the main actor even though the market is opened to multinational companies. The article then describes the crisis faced by this energetic model: the energy balance is now a burden; the increasing unbalance between production and consumption can be explained by supply-related as well as demand-related factors; authorities must intervene on hydrocarbon prices and subsidize the oil price on the domestic market. It appears that the future for hydrocarbons in Argentina relies on non-conventional hydrocarbons. Bio-fuels, a key sector of the Argentinian economy, are a matter of trade dispute with the EU and the USA. Apart from hydroelectricity (some new projects are planned), renewable energies are very few developed in Argentina. Appendices propose a graph of the distribution of energy consumption among the different sources, a map indicating locations of the main exploited hydrocarbon deposits, a presentation of mechanisms implemented to subsidize hydrocarbon production

  12. Energy efficiency; Efficacite energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the energy efficiency. It presents the energy efficiency and intensity around the world with a particular focus on Europe, the energy efficiency in industry and Total commitment. (A.L.B.)

  13. Mobilising Investment in Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Taxes, loans and grants, trading schemes and white certificates, public procurement and investment in R&D or infrastructure: known collectively as 'economic instruments', these tools can be powerful means of mobilising the finances needed to achieve policy goals by implementing energy efficiency measures. The role of economic instruments is to kick-start the private financial markets and to motivate private investors to fund EE measures. They should reinforce and promote energy performance regulations. This IEA analysis addresses the fact that, to date, relatively little effort has been directed toward evaluating how well economic instruments work. Using the buildings sector to illustrate how such measures can support energy efficiency, this paper can help policy makers better select and design economic instruments appropriate to their policy objectives and national contexts. This report’s three main aims are to: 1) Examine how economic instruments are currently used in energy efficiency policy; 2) Consider how economic instruments can be more effective and efficient in supporting low-energy buildings; and 3) Assess how economic instruments should be funded, where public outlay is needed. Detailed case studies in this report assess examples of economic instruments for energy efficiency in the buildings sector in Canada (grants), France (tax relief and loans), Germany (loans and grants), Ireland (grants) and Italy (white certificates and tax relief).

  14. Energy and exergy utilizations of the Chinese urban residential sector

    International Nuclear Information System (INIS)

    Liu, Yanfeng; Li, Yang; Wang, Dengjia; Liu, Jiaping

    2014-01-01

    Highlights: • The energy and exergy use in China’s urban residential sector between 2002 and 2011 are analyzed. • The primary locations and causes of energy and exergy losses in the CURS are identified. • The large gap between the energy and exergy efficiencies implies great potential for energy saving. • The exergy utilization can be improved by using appropriate technology, management and policy. - Abstract: In this paper, the energy and exergy utilizations in the Chinese urban residential sector (CURS) are analyzed by considering the energy and exergy flows for the years between 2002 and 2011. The energy and exergy efficiencies of this sector are calculated to examine the potential for advancing the ‘true’ energy efficiency and determine the real energy losses. The results demonstrate large differences between the overall energy efficiencies (62.8–70.2%) and the exergy efficiencies (11.0–12.2%) for the years analyzed. The sizable gap between the energy and exergy efficiencies implies a high potential for energy savings in the CURS. Future energy saving strategies should pay more attention to the improvement in exergy efficiencies. Moreover, it is found that direct fuel use constituted the primary exergy losses of the CURS; coal-fired boiler heating systems cause approximately 35% of the total exergy losses. Gas stoves, cogeneration systems, coal stoves and gas water heaters constitute 15.3%, 15%, 5.5% and 4.9% of the total exergy losses, respectively

  15. The Energy Efficient Enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Bashir

    2010-09-15

    Since rising energy costs have become a crucial factor for the economy of production processes, the optimization of energy efficiency is of essential importance for industrial enterprises. Enterprises establish energy saving programs, specific to their needs. The most important elements of these energy efficiency programs are energy savings, energy controlling, energy optimization, and energy management. This article highlights the industrial enterprise approach to establish sustainable energy management programs based on the above elements. Globally, if organizations follow this approach, they can significantly reduce the overall energy consumption and cost.

  16. Reconsidering energy efficiency

    International Nuclear Information System (INIS)

    Goldoni, Giovanni

    2007-01-01

    Energy and environmental policies are reconsidering energy efficiency. In a perfect market, rational and well informed consumers reach economic efficiency which, at the given prices of energy and capital, corresponds to physical efficiency. In the real world, market failures and cognitive frictions distort the consumers from perfectly rational and informed choices. Green incentive schemes aim at balancing market failures and directing consumers toward more efficient goods and services. The problem is to fine tune the incentive schemes [it

  17. Market conditions affecting energy efficiency investments

    International Nuclear Information System (INIS)

    Seabright, J.

    1996-01-01

    The global energy efficiency market is growing, due in part to energy sector and macroeconomic reforms and increased awareness of the environmental benefits of energy efficiency. Many countries have promoted open, competitive markets, thereby stimulating economic growth. They have reduced or removed subsidies on energy prices, and governments have initiated energy conservation programs that have spurred the wider adoption of energy efficiency technologies. The market outlook for energy efficiency is quite positive. The global market for end-use energy efficiency in the industrial, residential and commercial sectors is now estimated to total more than $34 billion per year. There is still enormous technical potential to implement energy conservation measures and to upgrade to the best available technologies for new investments. For many technologies, energy-efficient designs now represent less than 10--20% of new product sales. Thus, creating favorable market conditions should be a priority. There are a number of actions that can be taken to create favorable market conditions for investing in energy efficiency. Fostering a market-oriented energy sector will lead to energy prices that reflect the true cost of supply. Policy initiatives should address known market failures and should support energy efficiency initiatives. And market transformation for energy efficiency products and services can be facilitated by creating an institutional and legal structure that favors commercially-oriented entities

  18. Energy sector reform in India : a review

    International Nuclear Information System (INIS)

    Aruna, M.; Raj, M.G.

    2008-01-01

    The government of India cannot afford to fund the total investment needed for restructuring the country's electric power sector. As such, India's Electricity Act of 2003 encouraged private participation to implement the required measures for efficient and optimum use of energy resources available in India and to supply quality power at the best cost to consumers. This paper described the present status of India's power sector with respect to generation, transmission and distribution of electricity. India's economy is growing at a faster rate compared to many other developing countries. It is expected that in the next 6 to 7 years additional capacity of 84,000 MW will be needed to meet the projected electricity demand. The Power Finance Corporation Limited (PFC) was established in 1986 in order to generate and provide funds for the power sector, which is in the process of reforms in every element of the electricity value chain. India is facing an energy deficit and peak power deficit of 8 per cent and 12.2 per cent, respectively. The inter-regional power transmission capacity is planned to be increased from 16,500 MW to 37,000 MW by 2012. Thermal and nuclear energy are major sources for electricity production in India. As most of these resources are non renewable, they must be efficiently used. Coal will continue to contribute about 60 per cent of power generation in India. It was concluded that a large capacity national power grid is necessary for inter-regional power transfer, and that Transmission Super Highways are needed for the development of a high capacity National Power Grid. 7 refs., 1 tab., 3 figs

  19. Energy and Exergy Analyses of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    A detailed analysis of the Danish industry is presented in this paper using the energy and exergy methods. For the 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industrial sector, detailed end-use models were created and analysed...... of using electricity and district heat in the industry is shown. The exergy efficiencies for each process industry were found to be in the range of 12% to 56% in 2012. However variations in the efficiencies within the sectors for individual process industries occur, underlining the need for detailed......, by determining the sectors losses and exergy destruction. In addition the importance of applying a system analysis is shown, which corrects the site efficiencies for electricity and district heating use. The use of 22 industries,further highlights differences amongst industries belonging to the same sector....

  20. Energy Efficiency: Finding Leadership Opportunities

    Directory of Open Access Journals (Sweden)

    William Rosehart

    2014-01-01

    Full Text Available Between 1995 and 2011, the population of Alberta increased by roughly 40 per cent, but energy use in the province grew much faster, with a 62 per cent increase over the same period. In the industrial sector, the province’s largest energy consumer, demands grew 110 per cent. In mining and oil-and-gas extraction specifically, energy use over that period soared, growing by 355 per cent. That remarkable growth in energy consumption creates a particular challenge for Alberta Premier Alison Redford, who in 2011 ordered her ministers to develop a plan that “would make Alberta the national leader in energy efficiency and sustainability.” The province is still waiting. The incentives to become more energy efficient are not particularly strong in Alberta. The province’s terrain and size favour larger and less-efficient vehicles. Energy in the province is abundant, so there is little cause for concern over energy security. And energy is relatively affordable, particularly for a population that is more affluent than the Canadian average. There is little pressure on Albertans to radically alter their energy consumption behaviour. Yet, improved energy efficiency could position businesses in Alberta to become even more globally competitive, in addition to leading to improved air quality and public health. And for a province racing to keep up with growing energy demand, effective measures that promote conservation will prove much cheaper than adding yet more expensive infrastructure to the energy network. Many other jurisdictions have already provided examples of methods Alberta could employ to effectively promote energy conservation. First, Alberta must set hard targets for its goals to save energy, and then monitor that progress through transparent accounting, measuring and reporting. The provincial government can also nurture a culture of energy conservation, by formally and publicly recognizing leadership in efficiency improvements in industry and

  1. Energy demand analysis in the industrial sector

    International Nuclear Information System (INIS)

    Lapillone, B.

    1991-01-01

    This Chapter of the publication is dealing with Energy Demand Analysis in the Industrial Sector.Different estimates of energy consumption in Industry taking Thailand as an example is given. Major energy consuming industrial sectors in selected Asian countries are given. Suggestion for the analysis of the energy consumption trends in industry, whether at the overall level or at the sub-sector level (e.g. food) using the conventional approach , through energy/output ratio is given. 4 refs, 7 figs, 13 tabs

  2. Transport Sector Energy 2010; Transportsektorns energianvaendning 2010

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    Today, transport accounts for a quarter of Sweden's energy consumption which consists almost exclusively of fossil fuels. But with the increasing demands for reduced emissions of greenhouse gases, the sector's conversion to other fuels or energy sources will have a major impact the next years. This situation is expected to expand the requirements for statistics of energy consumption of the transport sector. The publication is divided into two parts. Chapter 2 describes the official energy statistics for the transport sector and Chapter 3 presents a breakdown of energy use in passenger and freight services for the respective modes.

  3. Renewable energy in the Lithuanian heating sector

    International Nuclear Information System (INIS)

    Konstantinaviciute, Inga; Bobinaite, Viktorija; Tarvydas, Dalius; Gatautis, Ramunas

    2013-01-01

    The paper analyses the role of renewable energy sources (RES) in the Lithuanian heating sector and the existing support measures. RES consumption has been continuously growing in Lithuania. During the period of 2000–2009, RES used for heat production in the district heating sector increased more than 4 times. Wood and wood products have been the most widely used RES for heat production (RES-H). The lower prices were one of the main reasons which motivated district heating companies to switch fuel to biomass. At the same time subsidies, soft loans, EU Structural Funds for 2007–2013 and some fiscal measures, which are currently available for RES-H promotion, also have some impact on the increase of RES consumption. However, seeking to achieve a 23% national RES target, additional support measures are essential. A qualitative analysis based on the selected set of criteria and consultation with stakeholders showed that energy policy package for RES promotion in the Lithuanian heating sector could encompass the following measures: tax relieves (differentiated VAT and personal income tax breaks), subsidies, soft loans, standardization, support for research, development and demonstration. These measures are market-oriented and meet cost efficiency and low transaction costs criteria. - Highlights: • Existing support measures are not strongly motivating market players. • In order to meet ambitious 23% targets consistent promotion policy package is required. • The proposed package could consist of 4 instruments: tax related, soft loans, standardization and support for RD and D. • The proposed support measures are market oriented and meets cost efficiency and low transaction costs criteria. • There is no single measure that is fairly suitable to support RES-H

  4. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  5. Energy - efficient buildings in pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Qureshi, M.U.D.

    2011-01-01

    Pakistan is one of the countries with the highest energy consumption for domestic use. Annual energy consumption by the domestic sector is 45.9 % of the total, while the industrial sector, consumes about 27.5%. About half of the total energy consumed is used in buildings and/or heating, ventilation and air-conditioning (HVAC) and lighting appliances. The energy consumed for the same purposes in China and UK is 25 to 30 % and 40 %, respectively, even in extreme weather conditions. Energy deficiency in Pakistan is approximately 5,000 MWe, which results in worst load-shedding in summers and, lately, even in winters. Building new energy sources like dams, coal power plants and renewable energy power projects are some possible solutions, but these are time taking and need at least 2 to 6 years to complete, depending upon the nature of the project. Fast development of energy-efficient buildings is, therefore, necessary to deal with exacerbating energy-crisis and related environmental impact in Pakistan. Innovations in the prevailing building-design will help the country in reducing the energy burden. These innovations may include improved architectural designs, energy-efficient building materials, electrical appliances and implementation of building energy-efficiency codes. In 1987, the National Energy Conservation Centre (ENERCON), was established under Ministry of Environment, Government of Pakistan, with the aim to build awareness among the masses for energy conservation, and to make policies regarding energy-conservation structures in the country. But no policy regarding building energy codes has been introduced by ENERCON till now. In collaboration with Pakistan Engineering Council (PEC), ENERCON has recently finalized the Building Energy Code of Pakistan Energy Provisions 2011 for which statutory notification is under process for necessary amendment in the building by-laws. The implementation of this Energy Code will result in 25 to 30 % of energy savings in the

  6. The energy efficiency of onboard hydrogen storage

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng; Bjerrum, Niels

    2010-01-01

    Global warming resulting from the use of fossil fuels is threatening the environment and energy efficiency is one of the most important ways to reduce this threat. Industry, transport and buildings are all high energy-using sectors in the world and even in the most technologically optimistic...... perspectives energy use is projected to increase in the next 50 years. How and when energy is used determines society's ability to create long-term sustainable energy systems. This is why this book, focusing on energy efficiency in these sectors and from different perspectives, is sharp and also important...

  7. Energy and exergy use in public and private sector of Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Dincer, I. E-mail: idincer@kfupm.edu.sa; Hussain, M.M.; Al-Zaharnah, I

    2004-09-01

    In this paper, we deal with the analysis of energy and exergy utilization in the public and private sector of Saudi Arabia by considering the energy and exergy flows for the years between 1990 and 2001. Energy and exergy analyses for the public and private sector are undertaken to study the energy and exergy efficiencies. These sectoral efficiencies are then compared, and energy and exergy flow diagrams for the public and private sector over the years are presented, respectively. Energy and exergy efficiencies of the public and private sector are compared for its six sub-sectors, namely commercial, governmental, streets, Mosques, hospitals and charity associations, particularly illustrated for the year 2000. Hospital sub-sector appears to be the most energy efficient sector and government sub-sector the most exergy efficient one. The results presented here provide insights into the sectoral energy use that may assist energy policy makers for the country. It is believed that the present techniques are useful for analyzing sectoral energy and exergy utilization, and that they provide Saudi Arabia with energy savings through energy efficiency and/or energy conservation measures. It is also be helpful to establish standards to facilitate application in industry and in other planning processes such as energy planning.

  8. Energy and exergy use in public and private sector of Saudi Arabia

    International Nuclear Information System (INIS)

    Dincer, I.; Hussain, M.M.; Al-Zaharnah, I.

    2004-01-01

    In this paper, we deal with the analysis of energy and exergy utilization in the public and private sector of Saudi Arabia by considering the energy and exergy flows for the years between 1990 and 2001. Energy and exergy analyses for the public and private sector are undertaken to study the energy and exergy efficiencies. These sectoral efficiencies are then compared, and energy and exergy flow diagrams for the public and private sector over the years are presented, respectively. Energy and exergy efficiencies of the public and private sector are compared for its six sub-sectors, namely commercial, governmental, streets, Mosques, hospitals and charity associations, particularly illustrated for the year 2000. Hospital sub-sector appears to be the most energy efficient sector and government sub-sector the most exergy efficient one. The results presented here provide insights into the sectoral energy use that may assist energy policy makers for the country. It is believed that the present techniques are useful for analyzing sectoral energy and exergy utilization, and that they provide Saudi Arabia with energy savings through energy efficiency and/or energy conservation measures. It is also be helpful to establish standards to facilitate application in industry and in other planning processes such as energy planning

  9. Energy efficiency. Lever for the German energy transition

    International Nuclear Information System (INIS)

    Persem, Melanie; Roesner, Sven

    2014-05-01

    This document provides some key data on energy consumption in housing and public buildings, indicates the national German objectives in terms of reduction of energy consumption, of reduction of electricity consumption, of energy efficiency, and of evolution of energy consumption in housing and public buildings and in the transport sector. It gives some data related to energy saving and achievements: energy efficiency of the German economy, improvements in housing energy efficiency and insulation, financial support for low income households, reduction of energy consumption within small-medium enterprises, the public sector, the data processing sector and public lighting, and energy saving potential by renewal of public buildings. It indicates the main measures and arrangements: information, support programs for enterprises, local communities and individuals. A graph illustrates a comparison of shares of household power consumption in France and in Germany

  10. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  11. Energy Efficiency Collaboratives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Michael [US Department of Energy, Washington, DC (United States); Bryson, Joe [US Environmental Protection Agency, Washington, DC (United States)

    2015-09-01

    Collaboratives for energy efficiency have a long and successful history and are currently used, in some form, in more than half of the states. Historically, many state utility commissions have used some form of collaborative group process to resolve complex issues that emerge during a rate proceeding. Rather than debate the issues through the formality of a commission proceeding, disagreeing parties are sent to discuss issues in a less-formal setting and bring back resolutions to the commission. Energy efficiency collaboratives take this concept and apply it specifically to energy efficiency programs—often in anticipation of future issues as opposed to reacting to a present disagreement. Energy efficiency collaboratives can operate long term and can address the full suite of issues associated with designing, implementing, and improving energy efficiency programs. Collaboratives can be useful to gather stakeholder input on changing program budgets and program changes in response to performance or market shifts, as well as to provide continuity while regulators come and go, identify additional energy efficiency opportunities and innovations, assess the role of energy efficiency in new regulatory contexts, and draw on lessons learned and best practices from a diverse group. Details about specific collaboratives in the United States are in the appendix to this guide. Collectively, they demonstrate the value of collaborative stakeholder processes in producing successful energy efficiency programs.

  12. Ten years of energy consumption in the tertiary sector

    International Nuclear Information System (INIS)

    Rabai, Yacine

    2012-11-01

    This document presents and comments data regarding electricity consumption by the tertiary sector over the last ten years in France. It notably outlines its strong increase compared to the other sectors (housing, industry, transport, agriculture). It comments the evolution of the energy mix of the tertiary sector (electricity with 47%, gas with 25% and oil with 19% are prevailing). It briefly comments the evolution of energy efficiency within this sector. It indicates and comments the shares of energy consumption, of high voltage electricity and gas consumption by the different sub-sectors (retail, automobile and motorcycle repair, public administration, health and social activity, real estate, specialised, scientific and technical activities, education, and so on)

  13. Energy Sector Development for 2010-2050 using Message Model

    International Nuclear Information System (INIS)

    Kumar, M.; Muhammed Zulfakar Mohd Zolkaffly; Alawiah Musa; Aisha Raihan Abdul Kadir

    2011-01-01

    Strengthening a country's energy supply security is vital in ensuring a long term electricity supply to fulfil the growing energy demand. With the increase of number and resiliency of energy supply options to create a balance energy mix, Malaysia can overcome the national energy security, environmental and sustainable development issues. Introducing nuclear power would increase the diversity of energy supplies as well as increases the efficient use of natural resources in energy sector. This paper presents the use of IAEA energy planning tool, MESSAGE to analyse, simulate and compare energy mix and nuclear option in Malaysia taking into account the national energy policies. (author)

  14. Energy efficiency and behaviour

    DEFF Research Database (Denmark)

    Carstensen, Trine Agervig; Kunnasvirta, Annika; Kiviluoto, Katariina

    separate key aspects hinders strategic energy efficiency planning. For this reason, the PLEEC project – “Planning for Energy Efficient Cities” – funded by the EU Seventh Framework Programme uses an integrative approach to achieve the sus‐ tainable, energy– efficient, smart city. By coordinating strategies...... to conduct behavioural interventions, to be presented in Deliverable 5.5., the final report. This report will also provide valuable information for the WP6 general model for an Energy-Smart City. Altogether 38 behavioural interventions are analysed in this report. Each collected and analysed case study...... of the European Union’s 20‐20‐20 plan is to improve energy efficiency by 20% in 2020. However, holistic knowledge about energy efficiency potentials in cities is far from complete. Currently, a WP4 location in PLEEC project page 3 variety of individual strategies and approaches by different stakeholders tackling...

  15. Energy Efficiency and Renewable Energy in Low-Income Communities

    Science.gov (United States)

    State and local governments can provide benefits to low-income communities by investing in energy efficiency. Use the Program Finder table to identify those programs that reach the sectors and audiences of interest in your organization.

  16. Trends in energy efficiency in countries of the Mediterranean Rim

    International Nuclear Information System (INIS)

    2014-04-01

    This report describes trends in energy efficiency in four countries of the southern side of the Mediterranean Sea (Algeria, Lebanon, Morocco and Tunisia) and five Mediterranean European countries (France, Spain, Italy, Greece and Portugal). This study is based on energy efficiency indicators per sector of energy consumption as they are developed within the frame of the MEDENER project for the four southern countries and of the ODYSSEE-MURE project for the European countries. The report presents the context of energy efficiency (challenges and objectives, trends in energy consumption, primary and final intensities), discusses trends of energy efficiency in the transformation sector, in the housing sector, in the transport sector (trends in consumption, road and air transport), in the industry (sector intensities), in the tertiary sector (global trends, sector indicators), and in agriculture and fishing (global trends and sector indicators)

  17. Environmental issues of Ukrainian energy sector

    International Nuclear Information System (INIS)

    Streimikiene, D.

    2005-01-01

    Ukraine's power sector is the twelfth-largest in the world in terms of installed capacity, with 54 GW and Ukraine still obtains over 50% of its electricity usage from nuclear source. In terms of energy consumption per dollar, Ukraine has one of the highest levels of energy and carbon intensity in the world. The country has very huge energy sector which cause a significant impact on environment

  18. Energy Efficiency in Norway 1990-2000

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2003-06-01

    This is the national report for Norway in the EU/SAVE project ''Indicators for Energy Efficiency Monitoring and Target setting (ODYSSEE)''. The report deals with energy use and energy efficiency in Norway 1990-2000 (2001 for overall energy use). Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.9% pr year in the period 1990 to 2001. The energy efficiency improvement has been calculated to 0.6% pr year, while the role of structural changes has been 1.3% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 11 TWh from 1990 to 2000. (author)

  19. HR in the Canadian renewable energy sector: HRSDC situational analysis

    International Nuclear Information System (INIS)

    Martin, B.; Ferguson, T.

    2006-01-01

    This paper outlines the human resources needs in the Canadian renewable energy sector. Emerging energies sector has many skills needs, some of which need to be developed. Emerging energy sector includes wind, solar photovoltaic (PV) and bio energy

  20. Energy efficient design

    International Nuclear Information System (INIS)

    1991-01-01

    Solar Applications and Energy Efficiency in Building Design and Town Planning (RER/87/006) is a United Nations Development Programme (UNDP) project of the Governments of Albania, Bulgaria, Cyprus, The Czech and Slovak Federal Republic, France, Hungary, Malta, Poland, Turkey, United Kingdom and Yugoslavia. The project began in 1988 and comes to a conclusion at the end of 1991. It is to enhance the professional skills of practicing architects, engineers and town planners in European countries to design energy efficient buildings which reduce energy consumption and make greater use of passive solar heating and natural cooling techniques. The United Nations Economic Commission for Europe (ECE) is the Executing Agency of the project which is implemented under the auspices of the Committee on Energy, General Energy Programme of Work for 1990-1994, sub-programme 5 Energy Conservation and Efficiency (ECE/ENERGY/15). The project has five main outputs or results: an international network of institutions for low energy building design; a state-of-the-art survey of energy use in the built environment of European IPF countries; a simple computer program for energy efficient building design; a design guide and computer program operators' manual; and a series of international training courses in participating European IPF countries. Energy Efficient Design is the fourth output of the project. It comprises the design guide for practicing architects and engineers, for use mainly in mid-career training courses, and the operators' manual for the project's computer program

  1. Energy Efficiency Indicators Methodology Booklet

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  2. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  3. Financing Energy Efficient Homes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Existing buildings require over 40% of the world's total final energy consumption, and account for 24% of world CO2 emissions (IEA, 2006). Much of this consumption could be avoided through improved efficiency of building energy systems (IEA, 2006) using current, commercially-viable technology. In most cases, these technologies make economic sense on a life-cycle cost analysis (IEA, 2006b). Moreover, to the extent that they reduce dependence on risk-prone fossil energy sources, energy efficient technologies also address concerns of energy security.

  4. Croatian Energy Sector Reform - Results Achieved

    International Nuclear Information System (INIS)

    Nota, R.

    2001-01-01

    During the past ten years, the energy sector has passed through significant changes including fundamental market, economic, legislative and institutional aspects of sector operation. As the main goal of the Republic of Croatia is the integration into the European Union, the energy sector reform ought to be conducted in keeping with the present market development processes of the EU in such a way as to fulfil all safety criteria. In view of the above mentioned, the Croatian Parliament brought a number of laws during its session in July 2001 (''Official Gazette'' 68/01): 1. Energy Law 2. Energy Activities Regulation Law 3. Electricity Market Law 4. Gas Market Law 5. Oil and Oil Derivatives Market Law, which present the commencement of the energy sector reform (www.mingo.hr).(author)

  5. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  6. Energy Efficiency Center - Overview

    International Nuclear Information System (INIS)

    Obryk, E.

    2000-01-01

    Full text: The Energy Efficiency Center (EEC) activities have been concentrated on Energy Efficiency Network (SEGE), education and training of energy auditors. EEC has started studies related to renewable fuels (bio fuel, wastes) and other topics related to environment protection. EEC has continued close collaboration with Institute for Energy Technology, Kjeller, Norway. It has been organized and conducted Seminar and Workshop on ''How to Reduce Energy and Water Cost in Higher Education Buildings'' for general and technical managers of the higher education institutions. This Seminar was proceeded by the working meeting on energy efficiency strategy in higher education at the Ministry of National Education. EEC has worked out proposal for activities of Cracow Regional Agency for Energy Efficiency and Environment and has made offer to provide services for this Agency in the field of training, education and consulting. The vast knowledge and experiences in the field of energy audits have been used by the members of EEC in lecturing at energy auditors courses authorized by the National Energy Efficiency Agency (KAPE). Altogether 20 lectures have been delivered. (author)

  7. Financial Crisis and Energy Efficiency. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    de T' Serclaes, Philippine; Gasc, Emilien; Saussay, Aurelien

    2009-10-15

    Governments have understood the importance of financing energy efficiency now. This realisation is exemplified through the central role occupied by energy efficiency in most stimulus packages. The purpose of this memo is to identify the impact of the financial and economic crisis on the evolution of public sector investments, energy efficiency policy development, and private sector investments. The paper will first identify trends which have emerged from the implementation of IEA government stimulus packages. Most relevant case studies are then provided along with lessons and challenges.

  8. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  9. Energy and exergy analysis at the utility and commercial sectors of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Sattar, M.A.; Masjuki, H.H.; Abdessalam, H.; Shahruan, B.S.

    2007-01-01

    In this paper, sectoral energy and exergy analysis model is applied to the utility and commercial sectors of Malaysia by considering the energy and exergy flows from 1990 to 2003. The energy and exergy efficiencies are determined for the sub-sectors and devices used in these two sectors. It has been found the hydroelectric power plant sub-sector is more energy and exergy efficient compared to the thermal power plant sub-sector. The energy and exergy efficiencies of utility and commercial sectors of Malaysia are compared with a few other countries around the world as well. The utility and commercial sectors of Malaysia are found to be more efficient than that of Thailand, Brunei, China, and Vietnam in 1999

  10. State-Level Benefits of Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [ORNL

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  11. State-level benefits of energy efficiency

    International Nuclear Information System (INIS)

    Tonn, Bruce; Peretz, Jean H.

    2007-01-01

    This paper describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20% and 30% energy savings in homes and plants, respectively. Over a 20-year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies. Energy efficiency programs are cost-effective; typical benefit-cost ratios exceed 3:1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. (author)

  12. Restructuring the industry sector - the impact on energy demand

    International Nuclear Information System (INIS)

    Constantinescu, M.

    1994-01-01

    The structure of the industrial sector is a factor of major importance in analyzing the evolution of energy intensity or in setting-up realistic development scenarios. A positive influence on the energy intensity value is expected for Romania from the process of restructuring the industry sector towards low energy consumption products. In order to reach this target though, suitable end comprehensive strategies have to become operational without delay, promoting energy efficiency and modern technologies at a nation-wide scale. The benefits of such strategies extend from improvement of the security of supply through environmental protection and reduction of unemployment. (Author)

  13. Efficient use of energy

    CERN Document Server

    Dryden, IGC

    2013-01-01

    The Efficient Use of Energy, Second Edition is a compendium of papers discussing the efficiency with which energy is used in industry. The collection covers relevant topics in energy handling and describes the more important features of plant and equipment. The book is organized into six parts. Part I presents the various methods of heat production. The second part discusses the use of heat in industry and includes topics in furnace design, industrial heating, boiler plants, and water treatment. Part III deals with the production of mechanical and electrical energy. It tackles the principles o

  14. A review of Ghana’s energy sector national energy statistics and policy framework

    OpenAIRE

    Samuel Asumadu-Sarkodie; Phebe Asantewaa Owusu

    2016-01-01

    In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward...

  15. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  16. The Challenge of Energy Efficiency

    International Nuclear Information System (INIS)

    Alonso Gonzalez, J. A.

    2009-01-01

    Recent Directive 2009/28/EC on the promotion of the use of renewable energies sets some binding targets for the contribution of renewable energies in 2020 to total consumption, setting the share at 20% of final energy demand, with a particularisation of 10% for the transport sector, and also a 20% reduction of greenhouse gases Together with these targets, it also sets another target relative to energy efficiency, aiming for a 20% improvement, under the terms set down by the Commission in its announcement dated 19 October 2006. This energy saving target is going to have a decisive influence on the achievement of the other two. In order to quantify the degree of difficulty of achieving the saving target and determine the policies and measures to be taken, we are going to analyze the evolution of energy efficiency (energy consumption energy units per unit of GDP - economic unit) in Spain from 1980 to date and the value of energy intensity that we should have in 2020 to achieve the targets. This will give us an idea of the magnitude of the challenge and, therefore, of the efforts we will have to make to achieve the target. (Author)

  17. Energy efficient policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang, M.

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector. (author)

  18. Energy efficiency policy impact in India: case study of investment in industrial energy efficiency

    International Nuclear Information System (INIS)

    Yang Ming

    2006-01-01

    The objective of this paper is to identify the effectiveness of energy policy and capital investment in energy efficiency technologies in the industrial sector in India. Indian energy policies relating to industrial energy efficiency over the past 25 years are briefly reviewed, and a comparison study of these energy efficiency policies and strategies in India and China has been carried out. Interviews were conducted with a number of government policy-making institutions and a national industrial development bank. The accounts of 26 industrial enterprises which applied and used a loan of the Asian Development Bank were audited for data collection. Field-visits to seven industrial entrepreneurs were undertaken in a case study. Methodologies used in this study include documentation, cross-country reviews on energy policies, questionnaire design and distribution in the industrial sector, and on-site auditing of energy efficiency technologies. This paper concludes that current energy policies and strategies in India need further improvement to promote energy efficiency investment and energy efficiency technology development in the industrial sector. This paper will interest those policy makers and industrial entrepreneurs who are willing to finance energy efficiency projects and improve energy efficiency in the industrial sector

  19. Energy efficiency trends and policy in Slovenia

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad

    2011-01-01

    The energy dependency of Slovenia is high (52.1%), but it is a little lower than the average energy dependency in the EU 27 (53.8%). Slovenia imports all its petroleum products and natural gas and partly coal and electricity. The energy intensity of Slovenia is higher by about 50% than the average in the EU 27. The target of the EU Directive on energy end-use efficiency and energy services adopted in 2006 is to achieve a 9% improvement of EE (energy efficiency) within the period 2008-2016. The new target of the EU climate and energy package '20-20-20 plan' is a 20% increase in EE by 2020. Since 1991 the Slovenian government has been supporting energy efficiency activities. The improvement of EE was one of the targets of strategic energy documents ReSROE (Resolution on the Strategy of Use and Supply of Energy in Slovenia from 1996 and ReNEP (Resolution on the National Energy Programme) from 2004 adopted by the Slovenian National Assembly (Parliament) in previous years. The Energy Act adopted in 1999 defines the objective of energy policy as giving priority to EE and utilization of renewable energy sources. The goals of the 'National Energy Action Plan 2008-2016 (NEEAP)' adopted by the Slovenian government in 2008 include a set of energy efficiency improvement instruments in the residential, industrial, transport and tertiary sectors. The target of the NEEAP is to save final energy in the 2008-2016 period, amounting to at least 4261 GWh or 9% of baseline consumption. The indicators of energy efficiency trends show considerable improvement in the period from 1998 to 2007. The improvement of EE was reached in all sectors: manufacturing, transport and households. The paper analyses the structure, trends of energy consumption and energy efficiency indicators by sectors of economic activity. A review of energy efficiency policy and measures is described in the paper.

  20. Measuring energy efficiency in economics: Shadow value approach

    Science.gov (United States)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  1. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  2. Energy efficiency; Energieffektivisering

    Energy Technology Data Exchange (ETDEWEB)

    2009-06-15

    The Low Energy Panel will halve the consumption in buildings. The Panel has proposed a halving of consumption in the construction within 2040 and 20 percent reduction in the consumption in the industry within 2020. The Panel consider it as possible to gradually reduce consumption in buildings from the current level of 80 TWh with 10 TWh in 2020, 25 TWh in 2030 and 40 TWh in 2040. According the committee one such halving can be reached by significant efforts relating to energy efficiency, by greater rehabilitations, energy efficiency in consisting building stock and stricter requirements for new construction. For the industry field the Panel recommend a political goal to be set at least 20 percent reduction in specific energy consumption in the industry and primary industry beyond general technological development by the end of 2020. This is equivalent to approximately 17 TWh based on current level of activity. The Panel believes that a 5 percent reduction should be achieved by the end of 2012 by carrying out simple measures. The Low Energy Panel has since March 2009 considered possibilities to strengthen the authorities' work with energy efficiency in Norway. The wide complex panel adds up proposals for a comprehensive approach for increased energy efficiency in particular in the building- and industry field. The Panel has looked into the potential for energy efficiency, barriers for energy efficiency, assessment of strengths and weaknesses in the existing policy instruments and members of the Panel's recommendations. In addition the report contains a review of theoretical principles for effects of instruments together with an extensive background. One of the committee members have chosen to take special notes on the main recommendations in the report. (AG)

  3. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  4. Monitoring tools for energy efficiency in Europe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document brings together the different definitions of the indicators used in the European Odyssee project on energy efficiency indicators. This project was initiated in 1990. It benefits from the combined support of the SAVE programme of the European Commission, of Ademe and of 15 national Efficiency Agencies within the European network of energy efficiency agencies. The objective of the project is to develop and maintain indicators that enable to review progress in energy efficiency and CO{sub 2} emissions abatement, by sector, end-use, etc.. for each country and the EU as a whole. To reach this objective, all data and indicators are stored in a common database called ODYSSEE that is regularly updated. A common methodology is used to produce comparative energy efficiency indicators from the database. The definitions presented in this document concern: 1) the general points (energy intensity, consumption, savings, efficiency, the unit consumption effect and index, the technological effect or savings, the substitution effect and the behavioural/management effect); 2) the macro-indicators (primary and final energy intensities at constant structure, at purchasing power parities, at reference economic structure); 3) industry (energy intensity of industry/manufacturing, of industry at constant structure and at reference structure, unit consumption of steel, cement etc.., process effect); 4) transports (energy intensity, unit consumption of vehicles, average specific consumption, test specific consumption, unit consumption, specific consumption, behavioural energy savings; 5) households and services (unit consumption, specific consumption, energy intensity of households, appliances); 6) transformations (apparent efficiency of energy sector or transformations, efficiency at constant fuel mix, efficiency of electricity sector). The same work is made for the 'key energy efficiency indicators', for the 'aggregate energy efficiency indicators' for

  5. Efficient renewable energy scenarios study for Victoria

    International Nuclear Information System (INIS)

    Armstrong, Graham

    1991-01-01

    This study examines the possible evolution of Victorian energy markets over the 1998-2030 period from technical, economic and environmental perspectives. The focus is on the technical and economic potential over the study period for renewable energy and energy efficiency to increase their share of energy markets, through their economic competitiveness with the non-renewables of oil, gas and fossil fulled electricity. The study identifies a range of energy options that have a lower impact on carbon dioxide emissions that current projections for the Victorian energy sector, together with the savings in energy, dollars and carbon dioxide emissions. In addition the macroeconomic implications of the energy paths are estimated. Specifically it examines a scenario (R-efficient renewable) where energy efficiency and renewable energy sources realise their estimated economic potential to displace non-renewable energy over the 1988-2030 period. In addition, a scenario (T-Toronto) is examined where energy markets are pushed somewhat harder, but again on an economic basis, so that what is called the Toronto target of reducing 1988 carbon dioxide (CO 2 ) emissions by 20 per cent by 2005 is attained. It is concluded that over the next forty years there is substantial economic potential in Victoria for significant gains from energy efficiency in all sectors - residential, commercial, industrial and transport - and contributions from renewable energy both in those sectors and in electricity generations. 7 figs., 5 tabs

  6. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct a brief review of different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by the problem statement, and a description of the basic concepts of quantifying the cost of conserved energy including integrating no-regrets options.

  7. Electricity sector abounds with energy

    International Nuclear Information System (INIS)

    Berger, P.

    2006-01-01

    This short article takes a look at Swiss energy utilities and provides a brief review of the current state of the electricity business in Switzerland. Increasing turnover has lead to increased profits. The situation in five leading utilities is looked at and commented on. The various activities of the utilities are discussed. Apart from providing normal power supply, these range from international power trading and investment through to the generation and sale of renewable forms of energy such as photovoltaics and wind power

  8. Energy and Exergy Analysis of the Danish Industry Sector

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2015-01-01

    % to 56% in 2012. Industries with high-temperature processes, such as the cement and metal production sectors, present the highest exergy efficiencies but the lowest energy ones. The opposite conclusion is drawn for the food, paper and chemical industries. The exergy losses, which indicate the potential......A detailed analysis of the Danish industry is presented in this paper using the energy, exergy and embodied exergy methods. The 22 most energy-intensive process industries, which represent about 80% of the total primary energy use of the industry, were modelled and analysed in details for the years...... is not seen with the embodied exergy efficiency, which remains at around 29% for the Danish industry. This analysis shows that there are still large potentials to recover waste heat in most Danish industrial sectors and thus to increase their efficiencies....

  9. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  10. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  11. Energy sector developments in Venezuela

    International Nuclear Information System (INIS)

    Pantin, R.

    1997-01-01

    The current state and future development of the oil, gas and coal sector in Venezuela was discussed. Venezuela has oil reserves of 73 billion barrels, gas reserves of 143 TCF and coal reserves of 6 billion BOE. The country has a refining capacity of 2.9 million barrels per day, a petrochemical capacity of 7.7 million tons per year, and a coal capacity of 4.6 million tons per year. The largest refiners in Venezuela are Shell, Exxon, PDVSA, Mobil, BP, Chevron and Texaco. In 1996 the total oil and derivatives exports for Venezuela were 2.8 million barrels per day. Fifty-eight companies from 14 countries participate in the Venezuelan upstream market. Fifteen operating agreements have been awarded to 27 companies from nine countries. Third round operating agreements have been awarded to 26 companies and profit sharing agreements are in force involving 14 companies. Four vertically integrated projects (Maraven-Conoco, Maraven-Total, Corpoven-Arco-Texaco-Phillips, and Lagoven-Mobil-Veba) are currently underway. The Orimulsion(R) project, the refining system, the natural gas production, marketing and transmission system, associated future projects for the 1997-2006 time frame, and developments in the field of petrochemicals also have been reviewed. 21 figs

  12. Energy efficient elevators and escalators

    Energy Technology Data Exchange (ETDEWEB)

    Patrao, Carlos; Fong, Joao; Almeida, Anibal de (Dep. Electrical Engineering, Univ. of Coimbra, Coimbra (Portugal)); Rivet, Luc

    2009-07-01

    Elevators and escalators are the crucial element that makes it practical to live and work several floors above ground - more than 4,3 million units are installed in Europe. Due to ageing of the European population the installation of elevators in single family houses is experiencing a significant growth, as well as equipping existing buildings. Elevators use about 4% of the electricity in tertiary sector buildings. High untapped saving potentials exist with respect to energy-efficient technologies, investment decisions and behavioural approaches, in these sectors. This paper presents preliminary results from the IEE project E4, whose overall objective is the improvement of the energy performance of elevators and escalators, in tertiary sector buildings and in multi family residential buildings. The project is characterizing people conveyors electricity consumption in the tertiary sector and in residential buildings in the EU. The installed park is characterised by a survey among elevators national associations in each country. An assessment of the barriers has been made in the first phase of the project and will be presented. Monitoring campaigns in elevators and escalators are being conducted in each country according to a common developed methodology. More than fifty elevators and escalators will be audited. This will allow the collection of load curves (start up, travel up and down, travel full and empty), including the characterization of standby consumption. Standby consumption of an elevator can represent up to 80% of the total energy consumed per year, and can be drastically reduced. This paper presents the preliminary results of the first ten audits performed in Portugal by Isr-UC.

  13. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  14. Energy. A sector in danger

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    Just like the Three Mile Island and Chernobyl accidents slowed down the pace of development of nuclear energy, several countries put their project of construction of new nuclear reactors into question again after the accident of Fukushima, or at least decided a security assessment of their installations. The article comments the reactions of different political actors in France belonging either to the government or to the opposition. The level of this last accident may surely impact the development of nuclear reactors throughout the world, but may not stop it because of energy needs. Safety standards might be reassessed and some countries might choose other energy sources like gas for example. As Areva claims a high safety level for the EPR, a discussion emerges about the compliance of some French installations (Fessenheim, Cadarache) with anti-seismic construction standards

  15. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  16. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  17. Link between intermittent electrical energy sources and district heating sector

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo

    2016-01-01

    Energy has always been one of the key challenges in planning of societies' development worldwide. The COP conference in Paris in December 2015 has shown unprecedented mutual understanding of harmful consequences climate change can cause. Integrating power and heating sectors in an efficient way...

  18. The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2015-01-01

    This paper introduces an improved total-factor ESTR (energy-saving target ratio) index, which combines the sequence technique and the “energy direction” to a DEA (data envelopment analysis) model, in order to measure the possible energy saving potential of a manufacturing sector. Afterward, the energy saving potentials of four different energy carriers, namely coal, gasoline, diesel oil and electricity, for 27 manufacturing sectors during the period of 1998–2011 in China are calculated. The results and its policy implications are as follows: (1) the average ESTRs of coal, gasoline, diesel oil and electricity are 1.714%, 49.939%, 24.465% and 3.487% respectively. Hence, energy saving of manufacturing sectors should put more emphasis on gasoline and diesel oil. (2) The key sectors for gasoline saving is the energy-intensive sectors, while the key sectors for diesel oil saving is the equipment manufacturing sectors. (3) The manufacture of raw chemical materials and chemical products sector not only consumes a large amount of oil, but also has a low efficiency of oil usage. Therefore, it is the key sector for oil saving. (4) Manufacture of tobacco and manufacture of communication equipment, computers and other electronic equipment are the benchmark for the four major energy carriers of energy-saving ratios. - Highlights: • An improved total-factor energy-saving target ratio is proposed. • Energy saving potentials of energy carriers for sectors in 1998–2011 are calculated. • Policy implications for energy savings in sectors and energy carriers are discussed. • Some suggestions for the energy policies of China's economy are discussed

  19. Analysis of Public Sector Efficiency in Developed Countries

    Directory of Open Access Journals (Sweden)

    Ivan Lovre

    2017-06-01

    Full Text Available The public sector in developed countries went through various forms of transformation in the twentieth century. The expansion of the public sector resulted in high levels of public spending in developed countries. The financial crisis of 2008 led to recessions in the economies of developed countries, the public debt growth, and actualized the issue of the public sector optimal size and efficiency. This study analysed the public sector efficiency in 19 developed countries. The analysis focuses on the relationship between the size of public expenditure and economic growth in the global financial crisis and the measures implemented. The aim of the research in this paper is a comparison of total and partial efficiency of the public sector in developed countries, in order to determine the characteristics of the public sector operations. The comparison covers the areas of the public sector operations in order to identify sources of inefficiency. Partial and overall efficiency of countries are analysed with different size and concept of the public sector, to determine the relationship between the public sector size, efficiency and welfare of citizens. The research results clearly indicate (unjustified state intervention in developed countries.

  20. General overview of the Mexican energy sector

    International Nuclear Information System (INIS)

    Perez-Jacome, D.

    1999-01-01

    An overview of Mexico's energy sector was presented, with particular focus on the natural gas and electricity sectors. Mexico ranks fifth in oil production, eighth in proven oil reserves, and fourteenth in natural gas reserves. In 1998, the energy sector generated 3.3 per cent of Mexico's gross domestic product (GDP), and oil accounted for 7.5 per cent of total exports. National production of natural gas has been forecasted to grow at a rate of 5.2 per cent annually over the next 10 years. This will be largely due to the increased demand for natural gas to produce electricity. The Mexican government has also taken initiatives to restructure the Mexican energy sector with particular focus on increasing the competitiveness of the electric power industry. Electricity demand is also expected to grow at a rate of 6 per cent annually over the next six years. The objectives of energy reform are to promote more investment from all sectors in order to strengthen the development of the electric power industry and to provide a reliable, high quality service at competitive prices. 9 figs

  1. An interdisciplinary perspective on industrial energy efficiency

    International Nuclear Information System (INIS)

    Palm, Jenny; Thollander, Patrik

    2010-01-01

    This paper combines engineering and social science approaches to enhance our understanding of industrial energy efficiency and broaden our perspective on policy making in Europe. Sustainable development demands new strategies, solutions, and policy-making approaches. Numerous studies of energy efficiency potential state that cost-effective energy efficiency technologies in industry are not always implemented for various reasons, such as lack of information, procedural impediments, and routines not favoring energy efficiency. Another reason for the efficiency gap is the existence of particular values, unsupportive of energy efficiency, in the dominant networks of a branch of trade. Analysis indicates that different sectors of rather closed communities have established their own tacit knowledge, perceived truths, and routines concerning energy efficiency measures. Actors in different industrial sectors highlight different barriers to energy efficiency and why cost-effective energy efficiency measures are not being implemented. The identified barriers can be problematized in relation to the social context to understand their existence and how to resolve them.

  2. Energy-economy interactions revisited within a comprehensive sectoral model

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D. A.; Laitner, J. A.

    2000-07-24

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  3. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  4. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  5. UKRAINIAN FUEL AND ENERGY SECTOR: DISTINCTIVE FEATURES

    Directory of Open Access Journals (Sweden)

    Olesia Azarenkova

    2015-07-01

    Full Text Available The paper is devoted to the analysis of Ukrainian fuel and energy sector (FES. The number of risks that threaten the stable supply of energy sources is growing. A high proportion of the energy intensity of developing economies in conjunction with their growing GDP leads to increased competition on world primary energy markets and causes significant fluctuations in energy prices, which negatively affect the global economy. There is also an important issue for world energy - limited use of non-renewable energy resources. Considering the prospects of development of Ukrainian FES, it is important to pay attention to patterns and trends of the global and national power. We have studied the basic trends of Ukrainian FES. It is the most important sector of the economy, and therefore its reform for market economy creation, price liberalization is a very important process. The current task of the energy sector of Ukraine is to be able to consistently produce and use energy to promote economic growth and improve quality of life.

  6. Energy technologies and energy efficiency in economic modelling

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    1998-01-01

    This paper discusses different approaches to incorporating energy technologies and technological development in energy-economic models. Technological development is a very important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological ...... of renewable energy and especially wind power will increase the rate of efficiency improvement. A technologically based model in this case indirectly makes the energy efficiency endogenous in the aggregate energy-economy model....... technological development. This paper examines the effect on aggregate energy efficiency of using technological models to describe a number of specific technologies and of incorporating these models in an economic model. Different effects from the technology representation are illustrated. Vintage effects...... illustrates the dependence of average efficiencies and productivity on capacity utilisation rates. In the long run regulation induced by environmental policies are also very important for the improvement of aggregate energy efficiency in the energy supply sector. A Danish policy to increase the share...

  7. Long Term Outlook of Energy Sector in Serbia

    International Nuclear Information System (INIS)

    Dajic, N.; Mesarovic, M.

    2008-01-01

    Major Serbian energy policy goals set up by the new Energy Law (2004) emerge from the purpose to establish qualitatively new working and development conditions inside the energy production and consumption sectors under the new circumstances in the country and in the region of South Eastern Europe. This is expected to give a new impetus to the economic development of the Republic of Serbia by increasing energy efficiency, intensifying the use of renewable energy sources and reducing harmful emissions from energy production and consumption sectors, as well as to ease integration into regional and European energy markets. The above has also been de?ned by the 'Strategy of Serbian Energy Sector Development by the Year 2015' (adopted by the Serbian Parliament in 2005) and in more details by the 'Programme of the Implementation of the Strategy by the Year 2012' (adopted by the Serbian Government in 2007). Based on these strategic and other documents, which were drawn up with participation of the Serbian WEC MC as well, this paper presents a vision of the Serbian energy sector development during the period up to the year 2030.(author)

  8. Energy efficiency in Norway (1997). Cross Country Comparison on Energy Efficiency Indicators - Phase 5

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    2000-02-01

    This is the national report for Norway in phase 5 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of maximum 7-8 TWH from 1990 to 1997. This corresponds to a saving of 0.5% per year. In the same period, final energy use per Gross Domestic Product (GDP) was reduced by approx 2.4% per year. Thereby most of the reduction in final energy intensity can not be attributed to increased energy efficiency. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  9. Fourth Annual Report on Energy Efficiency

    International Nuclear Information System (INIS)

    Di Franco, Nino; Bertini, Ilaria; Federici, Alessandro; Moneta Roberto

    2015-01-01

    Here we present the main elements of the annual report on energy efficiency 2015. The results indicate that, thanks to national policies for energy efficiency, Italy saved over 7.5 million tons of oil equivalent per year in the period 2005-2013. Compared to the National Plan for Energy Efficiency 2014, the report shows that the 2020 objectives have already been achieved for more than 20%, with residential (35.7% of the target) and industry (26.6%) among the sectors that contributed most to this result. Substantial savings could result from the agribusiness sector through the dissemination of efficient technologies in the logistics and large retail chains. A key role lies with the banks: 86% of banks has developed products dedicated to efficiency, necessitating guidelines for replicability of projects, and audit and rating to assess their quality [it

  10. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  11. Sustainable Energy for All and the private sector

    Energy Technology Data Exchange (ETDEWEB)

    Bellanca, Raffaella; Wilson, Emma

    2012-06-15

    The UN's Sustainable Energy for All initiative (SE4ALL) has a strong focus on the private sector to deliver universal energy access, improved efficiency and increased investment in renewable energy. Leading private sector associations have bought into SE4ALL, including the World Business Council for Sustainable Development (WBCSD) and the Global Compact. However, critics argue that SE4ALL is focusing too much on large-scale infrastructure investment and is missing opportunities to stimulate enterprise more locally and to benefit the poorest. The private sector – including large and smaller-scale businesses, both local and international – is keen to get involved in energy access in low-income markets and sees the value of an initiative such as SE4ALL. Yet some feel that SE4ALL is failing to engage all levels of the private sector effectively. To deliver universal energy access, SE4ALL needs to address the lack of finance for enterprises and end users, especially in untested markets; infrastructure and support services for new businesses; local skills, capacity and information about workable models; and favourable policy frameworks. With the right incentives, business can open up low-income markets by providing lifeimproving services to emerging middle class populations who are still excluded from energy access. To reach the poorest SE4ALL can promote private sector partnerships with government and NGOs, encourage corporate responsibility initiatives and support social entrepreneurs.

  12. Energy efficiency labelling

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This research assesses the likely effects on UK consumers of the proposed EEC energy-efficiency labeling scheme. Unless (or until) an energy-labeling scheme is introduced, it is impossible to do more than postulate its likely effects on consumer behavior. This report shows that there are indeed significant differences in energy consumption between different brands and models of the same appliance of which consumers are unaware. Further, the report suggests that, if a readily intelligible energy-labeling scheme were introduced, it would provide useful information that consumers currently lack; and that, if this information were successfully presented, it would be used and could have substantial effects in reducing domestic fuel consumption. Therefore, it is recommended that an energy labeling scheme be introduced.

  13. Indicators for industrial energy efficiency in India

    International Nuclear Information System (INIS)

    Gielen, Dolf; Taylor, Peter

    2009-01-01

    India accounts for 4.5% of industrial energy use worldwide. This share is projected to increase as the economy expands rapidly. The level of industrial energy efficiency in India varies widely. Certain sectors, such as cement, are relatively efficient, while others, such as pulp and paper, are relatively inefficient. Future energy efficiency efforts should focus on direct reduced iron, pulp and paper and small-scale cement kilns because the potentials for improvement are important in both percentage and absolute terms. Under business as usual, industrial energy use is projected to rise faster than total final energy use. A strong focus on energy efficiency can reduce this growth, but CO 2 emissions will still rise substantially. If more substantial CO 2 emissions reductions are to be achieved then energy efficiency will need to be combined with measures that reduce the carbon intensity of the industrial fuel mix.

  14. Public sector leadership: Transforming the market for efficient products and services

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Jeffrey [Lawrence Berkeley National Laboratory, CA (United States); Aebischer, Bernard [Swiss Federal Inst. of Technology, Zurich (Switzerland); Glickman, Joan [Federal Energy Management Program, Washington, DC (United States); Magnin, Gerard [Energie-Cites, Besancon (France); Meier, Alan [International Energy Agency, Paris (France); Viegand, Jan [Jan Viegand Analysis and Information, Copenhagen (Denmark)

    2005-07-01

    The public sector represents a significant share of all economic activity (15-25%) in Europe's industrial and transition economies. Government agencies, often the largest energy users and the biggest buyers of energy-using equipment, have significant potential to reduce energy use in their facilities and operations, while also saving taxpayer dollars and avoiding emissions of air pollutants and greenhouse gases. Public sector leadership can be the first step toward market transformation, as government creates entry markets and sets an example for other sectors to adopt efficient technologies and practices. While public sector energy efficiency has not been highlighted in EU or IEA policy compilations, many government agencies from the national to the municipal level have acted to reduce their own energy use, stimulate market demand, and provide an example to others through intergovernmental networking. Several EU projects have addressed the use of government buying power to help commercialize new technologies and to increase the market share of efficient appliances. However, additional steps are needed in order to establish public sector energy efficiency as a core element of energy and climate change policy in Europe. Based on a selected review of public sector energy efficiency activities in the EU we define five program categories: Policies and targets (energy/cost savings; pollution/CO{sub 2} reductions; measurement and verification; tracking and reporting); Public buildings (energy-saving retrofit and operation of existing facilities, as well as sustainability in new construction); Energy-efficient government procurement; Efficiency and renewable energy use in public infrastructure (transit, roads, water, and other public services); Information, training, incentives, and recognition of leadership by agencies and individuals; We discuss examples of program success, lessons learned, and future initiatives to strengthen these activities through increased

  15. Public sector leadership: Transforming the market for efficient products and services

    International Nuclear Information System (INIS)

    Harris, Jeffrey; Aebischer, Bernard; Glickman, Joan; Magnin, Gerard; Meier, Alan; Viegand, Jan

    2005-01-01

    The public sector represents a significant share of all economic activity (15-25%) in Europe's industrial and transition economies. Government agencies, often the largest energy users and the biggest buyers of energy-using equipment, have significant potential to reduce energy use in their facilities and operations, while also saving taxpayer dollars and avoiding emissions of air pollutants and greenhouse gases. Public sector leadership can be the first step toward market transformation, as government creates entry markets and sets an example for other sectors to adopt efficient technologies and practices. While public sector energy efficiency has not been highlighted in EU or IEA policy compilations, many government agencies from the national to the municipal level have acted to reduce their own energy use, stimulate market demand, and provide an example to others through intergovernmental networking. Several EU projects have addressed the use of government buying power to help commercialize new technologies and to increase the market share of efficient appliances. However, additional steps are needed in order to establish public sector energy efficiency as a core element of energy and climate change policy in Europe. Based on a selected review of public sector energy efficiency activities in the EU we define five program categories: Policies and targets (energy/cost savings; pollution/CO 2 reductions; measurement and verification; tracking and reporting); Public buildings (energy-saving retrofit and operation of existing facilities, as well as sustainability in new construction); Energy-efficient government procurement; Efficiency and renewable energy use in public infrastructure (transit, roads, water, and other public services); Information, training, incentives, and recognition of leadership by agencies and individuals; We discuss examples of program success, lessons learned, and future initiatives to strengthen these activities through increased recognition

  16. Energy sector in Ecuador: Current status

    International Nuclear Information System (INIS)

    Pelaez-Samaniego, M.R.; Garcia-Perez, M.; Cortez, L.A.B.; Oscullo, J.; Olmedo, G.

    2007-01-01

    This paper describes the current energy sector in Ecuador, its present structure, the oil industry, subsidies, and renewable energy, focusing on the evolution and reform of the electricity sector. Currently, 86% of the primary energy originates from nonrenewable sources. In 2005, the gross electricity generation was 15 127 GWh (45.5% hydropower, 43.11% thermal, and 11.39% imported). Ecuador is the fifth largest oil producer in South America but lacks sufficient oil refining capacity. Reserves of natural gas (NG) are small, and most of NG is produced from oil fields without energy recovery. Several projects are underway to increase the utilization of NG and renewable energies to meet Ecuador commitments to the Kyoto Protocol

  17. Economic Efficiency of Innovative Materials for Sectors of Economy

    Directory of Open Access Journals (Sweden)

    Miroshnikova Tatyana

    2016-01-01

    Full Text Available The paper proposes an approach to the assessment of the economic efficiency of innovative anti-corrosion coatings for sectors of the national economy of the Russia on the basis of a synthesis of strategic sectoral and cost analysis. According to the authors, a comparative analysis of composite polymeric anticorrosion protecting coatings with similar products, estimating of direct and indirect economic effect and prognosis of implementation, forms a deeper understanding of the role of innovative technologies in the Russian state development of import substitution, the investment attractiveness of Russian industries in the new part technologies, applied research activities of private companies. Metal consumption sectors of the economy were chosen as an object of research, as they are characterized by the use of the following products: industrial construction and reconstruction, nuclear and thermal power, chemical, oil and gas, utilities, food processing, automotive, shipbuilding, aviation and rocket science, other industry. Basic modeling of implementation of anticorrosion protecting coatings in industrial enterprises was carried out on the basis of generating energy enterprises as one of the main end-users of anti-corrosive materials that also issue accurate statements.

  18. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  19. Energy efficient data centers

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed

  20. Energy Efficiency Policy Developments: September 2011-September 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The purpose of this report is to highlight energy efficiency policy action and planning in IEA member and key non-member countries over the period from September 2011 to September 2012. The report provides an overview of energy efficiency policy developments across the seven sectors covered by the IEA 25 Energy Efficiency Policy Recommendations (25 EEPR) – Cross-sectoral activities, Buildings, Appliances and Equipment, Lighting, Transport, Industry and Energy Providers.

  1. Restructuring and privatization in energy sector

    International Nuclear Information System (INIS)

    Stojchev, D.; Pyrvanov, V.

    1994-01-01

    The ways of solving problems of the transition period to market economy are discussed. The current conditions in Bulgarian energy sector are defined taking into account different processes, stages, elements, objects. The criteria of the transition -economical. technological, organizational, social, ecological -and the problems - unemployment, requalification, privatization, contamination - are postulated. The recent experience of Bulgaria and other ex-communist countries in restructuring and privatization of the economy are considered. The scope of suitable approaches, methods, means and rates are outlined. The mechanisms of the tackled processes are analyzed by comparative investigation and management ways for impact on different levels are looked for. The possible consequences of given situation, advantages and shortcomings of different alternatives are formulated. The ways for assessment and selection of compromise solutions are proposed. An overall technology for assessment and application of different ways of transition is discussed. Their tools for business estimation of economic units, the legislative, economic and social aspects of the process are scrutiny observed. Some problems of a real example of application of proposed assessment are discussed. Conclusions about methodology and efficiency of different alternatives are made. 2 refs

  2. The environment and energy sector in the Czech republic

    International Nuclear Information System (INIS)

    2004-08-01

    The objective of this report is to give Danish investors, consultants, and subcontractors With interest in the Czech environment and energy sector, a basis for evaluating its market opportunities. Furthermore, the report will provide the reader With an overview of potential finance sources for projects within the environment and energy sector. With the prospects of EU membership, the Czech Republic has put a great effort into improving the country's environmental conditions as well as restructuring its energy sector. In particular in the area of the environment, the Czech Republic has experienced considerable progress. However, in several environmental areas, the Czech Republic is still lacking behind other EU countries. The process of meeting the environmental standards of the EU continues to demand large investments, especially within the field of water and waste treatment. In the process of adapting to the requirements of the EU in the field of the environment, the Czech Republic can expect to receive around EUR 615 million in EU funds betaveen 2004 and 2006. The Czech energy sector is the most air-polluting sector in the country and there is a general demand for knove-hove and technology in the field of energy efficiency and udlisation of renewable energy. Renewable energy makes up only 2% of the Czech Republic's total energy production. The goal of the Czech government is to increase the share to 8% before 2010. This report illustrates hove the large investments required in the area of environment and energy combmed with a wide range of national and international financing opportunities open up for significant market opportunities in the Czech Republic for Danish companies specialised within the environment and energy sector. As a foundation of the report there will first be a brief explanation of the inarket conditions in the Czech Republic. Secondly, the report will describe the environmental sector in depth within the areas water, waste, and air, and

  3. Energy Policy and Long Term Energy Demand in Croatian Households Sector

    International Nuclear Information System (INIS)

    Puksec, T.; Duic, N.

    2011-01-01

    Households sector in Croatia represents one of the largest consumers of energy today with around 75,75PJ, which is almost 29% of Croatia's final energy demand. Considering this consumption, implementing different mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom-up approach model which combines and process large number of input data. The Model will be compared to Croatian national Energy Strategy and certain difference will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels. (author)

  4. Oil Prices and the Renewable Energy Sector

    OpenAIRE

    Kyritsis, Evangelos; Serletis, Apostolos

    2017-01-01

    Energy security, climate change, and growing energy demand issues are moving up on the global political agenda, and contribute to the rapid growth of the renewable energy sector. In this paper we investigate the effects of oil price shocks, and also of uncertainty about oil prices, on the stock returns of clean energy and technology companies. In doing so, we use monthly data that span the period from May 1983 to December 2016, and a bivariate structural VAR model that is modified to accommod...

  5. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  6. Economical efficiency of bio energy as the level of prices in the agricultural sector rises; Wirtschaftlichkeit der Bioenergie bei steigendem Agrarpreisniveau

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, Hubert [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow (Germany). Inst. fuer Pflanzenproduktion und Betriebswirtschaft

    2013-10-01

    The food versus fuel debate is still of high social relevance. Changes to the framework conditions can have serious consequences for the profitability and the raw material supply of bioenergy plants. With the German Renewable Energy Act (EEG) economic incentives were created in the past to expand the growing of renewable raw materials on arable land for the production of biogas as well as for combined heat and power generation. In the meantime, agricultural prices have developed very dynamically; there can currently hardly be any talk of excessive promotion by the EEG. Taking into account the opportunity cost of agricultural/and use, from the perspective of the grower raw material prices which call into question the profitable supply of biogas plants are sometimes necessary - even for maize, the most important and efficient field fodder. The expiration of long-term supply agreements can lead to supply shortages, especially for biogas plants that do not belong to farms. (orig.)

  7. Cartel control in the energy sector

    International Nuclear Information System (INIS)

    Buedenbender, U.

    1995-01-01

    The current regulatory regime governing the electricity and gas supply industries of the energy sector is characterized by the admissibility of protected sales areas defined by demarcation agreements. However, this economic advantage is counterbalanced by legal provisions providing for specific supervision of the utilities under cartel law. The cartel authority exercises the functions of control of abusive practices, focussing on control of prices and general terms and conditions, cooperation between the utilities and operators owners of power generation plants, the very topical aspects of TPA (third party access to networks), and adherence to the principle of conduct of business of the utilities in line with the conditions of free competition. The book addresses all relevant aspects of cartel control relating to existing law and the overall context of the energy sector. General principles of cartel control in the economic sector at large are compared to specific conditions in the energy sector, revealing the differences in competences of the cartel authority. (orig./HP) [de

  8. Using energy efficiently

    International Nuclear Information System (INIS)

    Nipkow, J.; Brunner, C. U.

    2005-01-01

    This comprehensive article discusses the perspectives for reducing electricity consumption in Switzerland. The increase in consumption is discussed that has occurred in spite of the efforts of the Swiss national energy programmes 'Energy 2000' and 'SwissEnergy'. The fact that energy consumption is still on the increase although efficient and economically-viable technology is available is commented on. The authors are of the opinion that the market alone cannot provide a complete solution and that national and international efforts are needed to remedy things. In particular, the external costs that are often not included when estimating costs are stressed. Several technical options available, such as the use of fluorescent lighting, LCD monitors and efficient electric motors, are looked at as are other technologies quoted as being a means of reducing power consumption. Ways of reducing stand-by losses and system optimisation are looked at as are various scenarios for further development and measures that can be implemented in order to reduce power consumption

  9. Energy efficiency fallacies revisited

    International Nuclear Information System (INIS)

    Brookes, Leonard

    2000-01-01

    A number of governments including that of the UK subscribe to the belief that a national program devoted to raising energy efficiency throughout the economy provides a costless - indeed profitable - route to meeting international environmental obligations. This is a seductive policy. It constitutes the proverbial free lunch - not only avoiding politically unpopular measures like outlawing, taxing or rationing offending fuels or expanding non-carboniferous sources of energy like nuclear power but doing so with economic benefit. The author of this contribution came to doubt the validity of this solution when it was offered as a way of mitigating the effect of the OPEC price hikes of the 1970s, maintaining that economically justified improvement in energy efficiency led to higher levels of energy consumption at the economy-wide level than in the absence of any efficiency response. More fundamentally, he argues that there is no case for preferentially singling out energy, from among all the resources available to us, for efficiency maximisation. The least damaging policy is to determine targets, enact the restrictive measures needed to curb consumption, and then leave it to consumers - intermediate and final - to reallocate all the resources available to them to best effect subject to the new enacted constraints and any others they might be experiencing. There is no reason to suppose that it is right for all the economic adjustment following a new resource constraint to take the form of improvements in the productivity of that resource alone. As many others have argued, any action to impose resource constraint entails an inevitable economic cost in the shape of a reduction in production and consumption possibilities: there would be no free lunch. In the last few years debate about the validity of these contentions has blossomed, especially under the influence of writers on the western side of the Atlantic. In this contribution the author outlines the original arguments

  10. Potentials for energy savings and long term energy demand of Croatian households sector

    International Nuclear Information System (INIS)

    Pukšec, Tomislav; Vad Mathiesen, Brian; Duić, Neven

    2013-01-01

    Highlights: ► Long term energy demand of Croatian households sector has been modelled. ► Developed model can describe the whole households sector. ► Main modes include heating, cooling, electrical appliances, cooking and hot water. ► Different scenarios regarding future energy demand are presented and discussed. -- Abstract: Households represent one of the most interesting sectors, when analyzing Croatia’s energy balance. It makes up one of the largest energy consumers with around 75 PJ per year, which is almost 29% of Croatia’s final energy demand. Considering this consumption, implementing various mechanisms, which would lead to improvements in energy efficiency of this sector, seems relevant. In order to plan future energy systems, important would be to know future possibilities and needs regarding energy demand of different sectors. Through this paper, long term energy demand projections of Croatian households sector will be shown. Focus of the paper will be on various mechanisms influencing future energy demand scenarios. Important would be to quantify this influence, whether positive or negative, and see which mechanisms would be the most significant. Energy demand projections in this paper are based upon bottom-up approach model which combines and processes a large number of input data. The model will be compared to Croatian National Energy Strategy and certain differences and conclusions will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which leads to lower GHG emissions and lower Croatian dependence on foreign fossil fuels.

  11. France's action plan for energy efficiency

    International Nuclear Information System (INIS)

    2011-01-01

    This report first presents the French strategy for energy efficiency which is notably based on several commitments and an energy conservation policy. The second part describes the various policies and measures which have been implemented in France for different sectors: energy demand, housing and office building, transports, industry, exemplary State and local communities, agriculture, wastes, public information and sensitization. Several large appendices complete this report. They address assessment methods, policies and measures, and a European directive

  12. Energy efficiency practices among road freight hauliers

    International Nuclear Information System (INIS)

    Liimatainen, Heikki; Stenholm, Pekka; Tapio, Petri; McKinnon, Alan

    2012-01-01

    The reduction of greenhouse gases (GHG) is a highly prevalent public policy goal among European Union member countries. In the new White Paper on transport, the role of road freight transports in this is strongly emphasized. This far, however, the efficiency practices utilised in logistics firms are less studied. Drawing from policy goals and new survey data on 295 road transport firms our results show that hauliers are aware of the possible energy efficiency actions but lack the knowledge and resources to fully utilize them. Energy efficiency seems also to be unimportant for many shippers, so there are no incentives for hauliers to improve it. Examples from various countries show that clear energy efficiency improvements can be achieved with active cooperation between hauliers, shippers and policy makers. Such cooperation can be developed in Finland through the sectoral energy efficiency agreements. The novelty and the utility of these results allow scholars to answer important open questions in the national-level determinants of enhancing energy efficiency practices among road freight hauliers, and contribute to our understanding of how these can be fostered in public policies. - Highlights: ► Hauliers still monitor their fuel consumption with unsophisticated methods. ► Larger hauliers are more active in energy efficiency related issues than smaller ones. ► Hauliers are aware of energy efficiency actions, but lack knowledge of implementation. ► Finnish energy efficiency agreement provides a good framework for public policies. ► Companies that monitor and improve energy efficiency may gain competitive advantage.

  13. Wood-energy - The sector get worried

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane; Bohlinger, Philippe; Guilhem, Jean; De Santis, Audrey; Sredojevic, Alexandre; Defaye, Serge; Maindrault, Marc

    2017-01-01

    Wood energy is, today and certainly also tomorrow, one of the most important renewable energies in France. However, the wood-energy sector seems to slow down as hydrocarbon prices stay extremely low. This document presents 8 articles, describing the context and the characteristics of this evolution, plus some examples of developments in France. The themes of the articles are: the activity of the wood-energy sector should be reinforced to meet the objectives of the French energy multi-year plan; The 2035 prospective of the wood yield in the French forest will meet the future demand, however this evaluation does not take into consideration the effects of the climatic change; the conversion to biomass of the 'Fort de l'Est' (near Paris) heating system (equipped with a boiling fluidized bed boiler) has enabled the heat network to beat the 50 pc share of renewable energy; wood-energy professionals use the 'quality' lever to challenge their fossil fuel competitors; the city of Orleans is now equipped with an innovative biomass cogeneration plant; the example of wood waste valorization in a French sawmill; the French ONF (Forest Administration) Wood-Energy actor has just inaugurated its largest biomass dryer, in order to develop the domestic market for wood as a fuel; analysis of the technical and economical feasibility of using wood to generate electric power or replacing electric space heating by heat network

  14. Energy efficiency in existing detached housing

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup

    This memo is written as an input to the German project Enef-haus on energy- efficient restoration of single-family houses in Germany. The memo contains a summary of the Danish experiences divided into three main sections: first is a short historic overview of the Danish energy policy indicating...... when different relevant instruments have been introduced to increase the energy efficiency of privately owned single-family houses. Second is a short introduction to the Danish housing sector and its energy supplies. The third and main part of the report is an examination of the most recent...

  15. Efficiency potential in the district heating sector. Final report

    International Nuclear Information System (INIS)

    Agrell, P.; Bogetoft, P.; Fristrup, P.; Munksgaard, J.; Pade, L.L.

    2003-10-01

    This report is the final documentation for the research project 'District heating prices in a liberalised energy market - benchmarking the production of combined heat and power'. The project compares activities for almost 300 companies, members of the Danish District Heating Society. The main aim of the analyses has been to uncover the saving potential by comparing each individual company to the most efficient companies in the sector. The variable costs have been studied, amounting to almost 7 billion Danish kroner a year, and the analyses found saving potential ranging from 5% to 60% dependent on the expectations to flexibility assigned to the individual companies. The data used are not available for the public as they exceed the Danish District Heating Society's annual statistics. (BA)

  16. E-commerce in the energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Sioshansi, F.P. [Menlo Energy Economics (MEE), Menlo Park, CA (United States)

    2000-09-18

    E-commerce and e-business are now part of the lexicon of modern business everywhere. The energy industry is no exception, although it is somewhat of a latecomer to the field, trailing a number of others. This article, which is based on a multi-client study titled 'E-commerce in the Energy Sector', is focused on the business applications of e-commerce in the energy sector, broadly defined to include oil, electricity, and natural gas industries. The study was conducted by Menlo Energy Economics (MEE) in collaboration with Global Business Network (GBN). (orig.) [German] E-commerce und E-business gehoeren heute im Geschaeftsleben zum guten Ton. Obwohl ein Nachzuegler auf diesem Gebiet, macht die Energiewirtschaft hier keine Ausnahme. Der Artikel, der auf einer von Menlo Energy Economics (MEE) und Global Business Network (GBN) durchgefuehrten Studie zum Thema 'E-commerce im Energie-Sektor' beruht, beschreibt die Anwendungsmoeglichkeiten fuer E-commerce im Energie-Sektor worunter hier Oel-, Elektrizitaets- und Erdgaswirtschaft zu verstehen sind. (orig.)

  17. Strategic Environmental Assessment & The Danish Energy Sector

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    in its infancy in the Danish energy sector, but SEA is achieving increased attention in the sector. - The change agent research approach used in the project is relevant medium for a critical interdependence between theory and practice that at the same time promotes more sustainable decision-making...... on these cases is crucial for reducing the risk of unintended environmental impacts and for enhancing attention to relevant alternatives prior to decision-making....... strategic decisions are made is a prerequisite for achieving this target, and the thesis therefore explores the strategic decision-making processes of contemporary energy infrastructure developments. The highlights of this thesis are: - A combination of disciplines in a continuum of perspectives...

  18. Renewable energy sources: Energy Efficiency Agency

    International Nuclear Information System (INIS)

    Bulgarensky, Mihael

    2004-01-01

    The paper presents the activities of the Energy Efficiency Agency, its main functions, as well as the new legislation stimulating the use of RES, stipulated in the new Energy Law of Bulgaria. The second part of the paper describes the potential of renewable energy in i.e. wind energy; solar energy; biomass energy; hydro energy; geothermal energy; draft of a National Program on RES 2005-2015. The third part describes the main issues of the new ENERGY EFFICIENCY LAW and the established Energy efficiency fund. (Author)

  19. Technical efficiency in the Chilean agribusiness sector

    OpenAIRE

    Rivera Aedo, Edinson; Lakner, Sebastian; Brümmer, Bernhard

    2011-01-01

    The reform-process towards a higher world-market orientation has a long tradition in Chile, with all its strengths and weaknesses. The food processing industry is highly competitive on the worldmarket. The following paper investigates the technical efficiency of the Chilean food processing industry between 2001 and 2007. We used a data-set from the 5,941 of firms in food processing industry. The observations are taken of the 'Annual National Industrial Survey'. The method of stochastic fronti...

  20. Planning competitiveness on the energy sector

    International Nuclear Information System (INIS)

    Hennicke, P.

    1991-01-01

    The book reviews the concept of least cost planning which can be applied in all stages of energy management. It is a system-analytical concept of planning, cost optimisation, and application of investment alternatives in energy supply and energy conversion. In particular, the authors discuss inhowfar the positive results achieved in the USA with cost saving programmes based on least-cost planning can be applied to the situation of the Federal Republic of Germany. It is shown that least-cost planning could make a key contribution to operations scheduling of public utilities, in the establishment and implementation of local and regional energy concepts, and especially in the theory and practice of state supervision of the energy sector. The 14 contributions can be found as separate records in this database. (orig./HP) With 31 figs [de

  1. Water consumption in the energy sector

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Gani, Rafiqul

    2016-01-01

    or biofuels. Hydropower is based on water in rivers or reservoirs. Feedstock production for biofuels may depend on water for irrigation. On the other hand, energy is necessary for pumping of ground- and surface water, for water treatment as well as for transport and distribution of water to end......-users. The waste water is often returned to the environment after energy requiring waste water management.......Energy, water, and food systems are closely interlinked in the Energy-Water-Food Nexus. Water is of paramount importance for the energy sector. Fossil fuels require water for extraction, trans-port and processing. Thermal power plants require water for cooling, whether they use nuclear, fossil...

  2. Energy data sourcebook for the US residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  3. Regional level approach for increasing energy efficiency

    International Nuclear Information System (INIS)

    Viholainen, Juha; Luoranen, Mika; Väisänen, Sanni; Niskanen, Antti; Horttanainen, Mika; Soukka, Risto

    2016-01-01

    Highlights: • Comprehensive snapshot of regional energy system for decision makers. • Connecting regional sustainability targets and energy planning. • Involving local players in energy planning. - Abstract: Actions for increasing the renewable share in the energy supply and improving both production and end-use energy efficiency are often built into the regional level sustainability targets. Because of this, many local stakeholders such as local governments, energy producers and distributors, industry, and public and private sector operators require information on the current state and development aspects of the regional energy efficiency. The drawback is that an overall view on the focal energy system operators, their energy interests, and future energy service needs in the region is often not available for the stakeholders. To support the local energy planning and management of the regional energy services, an approach for increasing the regional energy efficiency is being introduced. The presented approach can be seen as a solid framework for gathering the required data for energy efficiency analysis and also evaluating the energy system development, planned improvement actions, and the required energy services at the region. This study defines the theoretical structure of the energy efficiency approach and the required steps for revealing such energy system improvement actions that support the regional energy plan. To demonstrate the use of the approach, a case study of a Finnish small-town of Lohja is presented. In the case example, possible actions linked to the regional energy targets were evaluated with energy efficiency analysis. The results of the case example are system specific, but the conducted study can be seen as a justified example of generating easily attainable and transparent information on the impacts of different improvement actions on the regional energy system.

  4. Energy-efficient buildings: Does the marketplace work?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.

    1996-12-31

    For a variety of reasons, U.S. households, businesses, manufacturers, and government agencies all fail to take full advantage of cost-effective, energy-efficiency opportunities. Despite a growing environmental ethic among Americans and a concern for energy independence, consumers in this country are underinvesting in technologies, products, and practices that would cut their energy bills. The result is a large untapped potential for improving energy productivity, economic competitiveness, environmental quality, and energy security. The thesis of this paper is that the marketplace for energy efficiency, in general, is not operating perfectly, and the marketplace for energy-efficient buildings, in particular, is flawed. The reasons for underinvestments in cost-effective, energy efficiency are numerous and complicated. They also vary from sector to sector: the principal causes of energy inefficiencies in agriculture, manufacturing, and transportation are not the same as the causes of inefficiencies in homes and office buildings, although there are some similarities. One of the reasons for these differences is that the structure of marketplace for delivering new technologies and products in each sector differs. Energy-efficiency improvements in the buildings sector is critical to reducing greenhouse gas emissions, since most of the energy consumed in buildings comes from the burning of fossil fuels. This paper therefore begins by describing energy use and energy trends in the U.S. buildings sector. Characteristics of the marketplace for delivering energy efficiency technologies and products are then described in detail, arguing that this marketplace structure significantly inhibits rapid efficiency improvements.

  5. Efficiency in the Community College Sector: Stochastic Frontier Analysis

    Science.gov (United States)

    Agasisti, Tommaso; Belfield, Clive

    2017-01-01

    This paper estimates technical efficiency scores across the community college sector in the United States. Using stochastic frontier analysis and data from the Integrated Postsecondary Education Data System for 2003-2010, we estimate efficiency scores for 950 community colleges and perform a series of sensitivity tests to check for robustness. We…

  6. Energy Efficient Mobile Operating Systems

    OpenAIRE

    Muhammad Waseem

    2013-01-01

    Energy is an important resource in mobile computers now days. It is important to manage energy in efficient manner so that energy consumption will be reduced. Developers of operating system decided to increase the battery life time of mobile phones at operating system level. So, design of energy efficient mobile operating system is the best way to reduce the energy consumption in mobile devices. In this paper, currently used energy efficient mobile operating system is discussed and compared. ...

  7. Restructuring and energy efficiency improvement of the Bulgarian energy economy

    International Nuclear Information System (INIS)

    Moumdjian, G.

    1993-01-01

    The structure of the national energy economy of Bulgaria implies characteristic features that specify low efficiency as regards power production, ecology and economics. Even the qualitative assessments show that these indices stand far away from the standards established in developed countries like Denmark, Finland, Sweden, etc. The best starting position for harmful energy efficiency improvement as well as emission reduction must be based on the restructuring of energy economy. The strategy of restructuring and development of energy economy covers the whole integrated national energy flow system 'resources - end user'. The preliminary study shows that energy efficiency can be increased by 25-30% within a period of 6-10 years using the least-cost investment strategy (including the research and development activities expenses). The study covers the existing structure of energy sector. Scenarios are being elaborated for its development and restructuring in respect to: heat production and transfer; electricity generation and transmission; energy consumption and conservation in residential buildings, public buildings and commercial sector; energy consumption in transport sector and agriculture. The approach for identification of the real potential opportunities in relation to the above stated areas is based on mathematical statistics and stochastic differential equations, multicriterial assessments, approach of self organisation systems and demand-side management. (author)

  8. Assessment of the Turkish utility sector through energy and exergy analyses

    International Nuclear Information System (INIS)

    Utlu, Zafer; Hepbasli, Arif

    2007-01-01

    The present study deals with evaluating the utility sector in terms of energetic and exergetic aspects. In this regard, energy and exergy utilization efficiencies in the Turkish utility sector over a wide range of period from 1990 to 2004 are assessed in this study. Energy and exergy analyses are performed for eight power plant modes, while they are based on the actual data over the period studied. Sectoral energy and exergy analyses are conducted to study the variations of energy and exergy efficiencies for each power plants throughout the years, and overall energy and exergy efficiencies are compared for these power plants. The energy utilization efficiencies for the overall Turkish utility sector range from 32.64% to 45.69%, while the exergy utilization efficiencies vary from 32.20% to 46.81% in the analyzed years. Exergetic improvement potential for this sector are also determined to be 332 PJ in 2004. It may be concluded that the methodology used in this study is practical and useful for analyzing sectoral and subsectoral energy and exergy utilization to determine how efficient energy and exergy are used in the sector studied. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  9. Does the energy sector call for reform?

    Energy Technology Data Exchange (ETDEWEB)

    Granic, Goran; Pesut, Damir; Jandrilovic, Nada; Jelavic, Branka; Zeljko, Mladen

    2007-07-01

    This paper discusses the course of the energy sector reforms in Europe so far, its objectives, achievements, issues, and dilemmas. In particular, long term and security aspects of energy supply of Europe are analyzed. In addition to the legislative changes regarding the open energy market regulation, and primarily the changes concerning electricity and natural gas markets, the past period saw dynamic changes of institutional framework, such as: increasing members of the european Union, increased number of countries aspiring to the EU (candidate countries or potential candidates), and changes in other European countries out of which Russia is the most significant energy producer. The paper analyzes the issue of responsibility between state - regulator - system operator - trader - energy buyer. In Europe, it is more a complex question because the system of responsibility includes the institution of the European Union. Therefore, the relations between EU - state - regulator - system operator - trader - energy buyer are especially important. The paper looks in to the issue of energy company integrations, creation of energy mega-undertakings and their influence on further market development. The question of monopolies now appears in a new form. The conclusions suggest possible measures for institutional influence on energy market development, especially in the network energy systems, which may have a positive impact on system security and stability and markets development and their long term sustainability. (auth)

  10. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  11. Energy efficiency: The Italian situation and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, Alessandro; Beccarello, Massimo; Gallanti, Massimo

    2010-09-15

    The paper reports the results of a study led by Confindustria (Italian Federation of Industrial Associations) on the Italian situation with respect to energy efficiency policies and their effective implementations. The study is being continuously updated with the contributions of ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) and ERSE (previously CESI Ricerca) and highlights the obtainable savings through efficient technologies now already available for applications in the final uses of energy for both the industrial, commercial and domestic sectors.

  12. ImSET: Impact of Sector Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  13. Energy efficiency policies and measures in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2012-07-01

    This report represents the national case study of Norway for the IEE-project {sup M}onitoring of EU and national energy efficiency targets (ODYSSEE-MURE 2010)'. The Norwegian part of the project is co-funded by Enova. The report presents the recent energy efficiency trends in Norway on the basis of indicators extracted from the ODYSSEE database. The database contains information on energy use in a detailed level of the industry, transport, household and service sectors and other energy use. lt also contains information on energy drivers like heated square meters in the households and services sectors, transported passenger-km and ton-km of gods, value added, production index, production volumes etc. Final energy consumption has increased from 195 TWh in 1990 lo 229 TWh in 2010 The last ten years the energy consumption has varied between 212I Wh (2009) and 229 TWh (2010) with an annual average of 221TfUh. The sector using most energy is the industry, but the share has decreased from 40 % in 1990 to 31 % in 2010. From 1990 to 2010 the growth rate has been highest in the transport sector. Half of the energy end-use was electricity in 20,10, 42 % was fossil fuels and 6 % was biomass. The electricity use has an annual increase of 0.8 % since 1990, but the last decade the annual increase is reduced to 0.14 %. The consumption of oil products has decreased in stationary end-use (heating) and increased in the transport sector. In ODYSSEE, an aggregate bottom-up energy efficiency index, ODEX, is calculated. This energy efficiency index aggregates the trends in the detailed bottom-up indicators in one single indicator. This ODEX has improved by 26 o/o from 1990 to 2010 or by 1.3 o/o per year. This means that energy efficiency policies and measures implemented since 1990 have contributed to a decrease in the energy use of 2010 of approximately 59 TWh. (Author)

  14. Wind energy sector in British Columbia

    International Nuclear Information System (INIS)

    2010-01-01

    British Columbia (BC) possesses significant wind energy resources, and many wind energy projects are currently in the planning phase or are already under construction. Wind power policies in the province have been designed to ensure the secure and orderly development of the wind power industry. Policies in the province include a 10-year exemption from participation rents for new projects as well as a policy that has established the maximum permissible noise levels for wind farms located near residential properties. BC's wind power development plan forms part of the province's aim to become electricity self-sufficient by 2016 while ensuring that clean or renewable energy generation accounts for at least 90 per cent of total generation. This guide provided an outline of the province's wind energy sector, and provided a listing of selected wind power operators. Details of new wind power projects were also presented. 11 fig.

  15. Energy Efficiency Policy and Carbon Pricing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The main message of this paper is that while carbon pricing is a prerequisite for least-cost carbon mitigation strategies, carbon pricing is not enough to overcome all the barriers to cost-effective energy efficiency actions. Energy efficiency policy should be designed carefully for each sector to ensure optimal outcomes for a combination of economic, social and climate change goals. This paper aims to examine the justification for specific energy efficiency policies in economies with carbon pricing in place. The paper begins with an inventory of existing market failures that attempt to explain the limited uptake of energy efficiency. These market failures are investigated to see which can be overcome by carbon pricing in two subsectors -- electricity use in residential appliances and heating energy use in buildings. This analysis finds that carbon pricing addresses energy efficiency market failures such as externalities and imperfect energy markets. However, several market and behavioural failures in the two subsectors are identified that appear not to be addressed by carbon pricing. These include: imperfect information; principal-agent problems; and behavioural failures. In this analysis, the policies that address these market failures are identified as complementary to carbon pricing and their level of interaction with carbon pricing policies is relatively positive. These policies should be implemented when they can improve energy efficiency effectively and efficiently (and achieve other national goals such as improving socio-economic efficiency).

  16. Estimating energy conservation potential in China's commercial sector

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Ailun

    2015-01-01

    With low energy intensity and great potential for growth, the commercial sector has become one of the key sectors for energy conservation and emission reduction in the context of China's rapid urbanization process. Based on the EIA (Energy Information Administration) statistical methods, this paper calculates the energy consumption of China's commercial sector from 1981 to 2012, specifies the determinants of commercial energy demand, forecasts future energy consumption and estimates the energy conservation potentials using the Johansen co-integration methodology. The results indicate: (i) GDP (Gross Domestic Product) and urbanization have positive effects on the energy consumption of the commercial sector while labor productivity and energy price contribute to reduction in the sector's energy consumption. (ii) Under the basic scenario, energy consumption of the commercial sector will be 317.34 and 469.84 Mtce (million tons of coal equivalent) in 2015 and 2020 respectively. (iii) Under the moderate and advanced scenario, about 187.00 and 531.45 Mtce respectively of the energy consumption of the commercial sector can be conserved from 2013 to 2020. The findings have important implications for policy-makers to enact energy-saving policies. - Highlights: • Calculation of China's commercial energy consumption and saving potential. • Co-integration model is applied to estimate commercial energy efficiency. • Decomposition of driving forces of energy consumption. • Future policies for commercial energy efficiency are discussed

  17. The energy efficiency and demand side management programs as implemented by the energy efficiency division of the department of energy

    International Nuclear Information System (INIS)

    Anunciacion, Jesus C.

    1997-01-01

    The thrust of the Philippine energy sector. specifically the government side, is to involve the active participation of not only all the government agencies involved in energy activities but the private sector as well. This participation shall mean technical and financial participation, directly and indirectly. The Department of Energy is on the process involving the continuing update and development of a Philippine Energy Plan (PEP) which has a 30-year time scope, which will help the country monitor and determine energy supply and demand vis-a-vis the growing demands of an industrializing country like the Philippines. Among the most vital component of the PEP is the thrust to pursue national programs for energy efficiency and demand-side management. Seven energy efficiency sub-programs have been identified for implementation, with a target savings of 623 million barrels of fuel oil equivalent (MMBFOE). A cumulative net savings of 237 billion pesos shall be generated against a total investment cost of 54.5 billion pesos. The Philippine energy sector will continue to develop and implement strategies to promote the efficient utilization of energy which will cover all aspects of the energy industry. The plan is focussed on the training and education of the various sectors on the aspects involved in the implementation of energy efficiency and demand-side management elements on a more aggressive note. The implementation of technical strategies by the department will continue on a higher and more extensive level, these are: energy utilization monitoring, consultancy and engineering services, energy efficiency testing and labelling program, and demand-side management programs for each sector. In summary, the PEP, as anchored in energy efficiency and demand-side management tools, among others, will ensure a continuous energy supply at affordable prices while incorporating environmental and social considerations. (author)

  18. Energy - an overview of issues in power sector

    International Nuclear Information System (INIS)

    Rajan, Y.S.; Anil Kumar, B.

    1998-01-01

    Economic growth is critically dependent on energy which is a key input in all forms of products. With the ecological and environmental concerns for sustainable use of energy, much emphasis is being laid on demand side management, energy efficiency and conservation and alternative sources of energy. This is being witnessed in the long term trends of energy - gross domestic product (GDP) elasticity, which has declined due to changing technology especially for the industrial sector whose share is comparatively reducing in the overall energy consumption. This paper examines mainly the issues involved in meeting the growing demand for electricity, most important form of energy. These issues have been classified as Technical, Financial, Institutional, Policy, Political and International. Each issue is not mutually exclusive of the other and therefore calls for an integrated and holistic approach while addressing them. (author)

  19. Energy Efficiency in Swimming Facilities

    OpenAIRE

    Kampel, Wolfgang

    2015-01-01

    High and increasing energy use is a worldwide issue that has been reported and documented in the literature. Various studies have been performed on renewable energy and energy efficiency to counteract this trend. Although using renewable energy sources reduces pollution, improvements in energy efficiency reduce total energy use and protect the environment from further damage. In Europe, 40 % of the total energy use is linked to buildings, making them a main objective concerning...

  20. Analysis of energy end-use efficiency policy in Spain

    International Nuclear Information System (INIS)

    Collado, Rocío Román; Díaz, María Teresa Sanz

    2017-01-01

    The implementation of saving measures and energy efficiency entails the need to evaluate achievements in terms of energy saving and spending. This paper aims at analysing the effectiveness and economic efficiency of energy saving measures implemented in the Energy Savings and Efficiency Action Plan (2008–2012) (EAP4+) in Spain for 2010. The lack of assessment related to energy savings achieved and public spending allocated by the EAP4+ justifies the need of this analysis. The results show that the transport and building sectors seem to be the most important, from the energy efficiency perspective. Although they did not reach the direct energy savings that were expected, there is scope for reduction with the appropriate energy measures. For the effectiveness indicator, the best performance are achieved by public service, agricultural and fisheries and building sectors, while in terms of energy efficiency per monetary unit, the best results are achieved by transport, industry and agriculture sectors. Authors conclude that it is necessary that central, regional and local administrations will get involved, in order to get better estimates of the energy savings achieved and thus to affect the design of future energy efficiency measures at the lowest possible cost to the citizens. - Highlights: • Energy end-use efficiency policy is analysed in terms of energy savings and spending. • The energy savings achieved by some measures are not always provided. • The total energy savings achieved by transport and building sectors are large. • Different levels of administration should get involved in estimating energy savings.

  1. Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach

    International Nuclear Information System (INIS)

    Wang, H.; Ang, B.W.; Wang, Q.W.; Zhou, P.

    2017-01-01

    Evaluating economy-wide energy performance is an integral part of assessing the effectiveness of a country's energy efficiency policy. Non-parametric frontier approach has been widely used by researchers for such a purpose. This paper proposes an extended non-parametric frontier approach to studying economy-wide energy efficiency and productivity performances by accounting for sectoral heterogeneity. Relevant techniques in index number theory are incorporated to quantify the driving forces behind changes in the economy-wide energy productivity index. The proposed approach facilitates flexible modelling of different sectors' production processes, and helps to examine sectors' impact on the aggregate energy performance. A case study of China's economy-wide energy efficiency and productivity performances in its 11th five-year plan period (2006–2010) is presented. It is found that sectoral heterogeneities in terms of energy performance are significant in China. Meanwhile, China's economy-wide energy productivity increased slightly during the study period, mainly driven by the technical efficiency improvement. A number of other findings have also been reported. - Highlights: • We model economy-wide energy performance by considering sectoral heterogeneity. • The proposed approach can identify sectors' impact on the aggregate energy performance. • Obvious sectoral heterogeneities are identified in evaluating China's energy performance.

  2. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  3. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  4. Potential of energy savings in the hotel sector in Jordan

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahya [Department of Humanities and Social Sciences, Faculty of Arts, Hashemite University, Zarqa 13115 (Jordan); Mustafa, Mairna [Department of Sustainable Tourism, Queen Rania' s Institute of Tourism and Heritage, Hashemite University, Zarqa 13115 (Jordan); Al-Mashaqbah, Shireen [International Office, Hashemite University, Zarqa 13115 (Jordan); Mashal, Kholoud [Department of Land Management and Environment, Faculty of Natural Resources and Environment, Hashemite University, Zarqa 13115 (Jordan); Mohsen, Mousa [Department of Mechanical Engineering, Faculty of Engineering, Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    This paper presents some insights into Jordan's energy consumption in the tourist accommodation sector. The results of a recent survey on environmental performance in the tourist accommodation sector in Jordan were used to evaluate energy conservation in hotels. A survey was designed and distributed to hotels' managers and departments' supervisors in order to understand the environmental performance in the tourist accommodation sector in Jordan during the period 10-17 August 2006. Also some field visits were conducted to fully understand hotels interaction regarding the environment, in addition to help interpreting the results of the survey. The study is limited to all classified hotels in Jordan. It was found that lighting hotels' main building and outside areas, and air conditioning consume more electricity compared to other departments. The results show that few classified hotels already installed energy saving equipments, though, it was noticed that managers of one star hotels were not really willing to make such changes in their hotels, on the other hand, other classified hotels (2-5 star hotels) have shown a high willingness to make changes in their hotels to reduce the consumption of different types of energy. Hotel's classification played a significant role in explaining variations in most of the results, particularly when it comes to long-term investments to reduce energy consumption by using energy efficient appliances. Five and four star hotels were the most hotels willing to use energy efficient appliances to reduce energy consumption. The study suggested some strategies to help reduce the negative impacts of high energy consumption in hotels. These strategies include better insulation, and enhanced insulation for the hot water reticulation system. Moreover, enhancing and increasing the level of awareness among all hoteliers through a directed and well-designed campaign. Also offer interest free loans; and activate precise

  5. Potential of energy savings in the hotel sector in Jordan

    International Nuclear Information System (INIS)

    Ali, Yahya; Mustafa, Mairna; Al-Mashaqbah, Shireen; Mashal, Kholoud; Mohsen, Mousa

    2008-01-01

    This paper presents some insights into Jordan's energy consumption in the tourist accommodation sector. The results of a recent survey on environmental performance in the tourist accommodation sector in Jordan were used to evaluate energy conservation in hotels. A survey was designed and distributed to hotels' managers and departments' supervisors in order to understand the environmental performance in the tourist accommodation sector in Jordan during the period 10-17 August 2006. Also some field visits were conducted to fully understand hotels interaction regarding the environment, in addition to help interpreting the results of the survey. The study is limited to all classified hotels in Jordan. It was found that lighting hotels' main building and outside areas, and air conditioning consume more electricity compared to other departments. The results show that few classified hotels already installed energy saving equipments, though, it was noticed that managers of one star hotels were not really willing to make such changes in their hotels, on the other hand, other classified hotels (2-5 star hotels) have shown a high willingness to make changes in their hotels to reduce the consumption of different types of energy. Hotel's classification played a significant role in explaining variations in most of the results, particularly when it comes to long-term investments to reduce energy consumption by using energy efficient appliances. Five and four star hotels were the most hotels willing to use energy efficient appliances to reduce energy consumption. The study suggested some strategies to help reduce the negative impacts of high energy consumption in hotels. These strategies include better insulation, and enhanced insulation for the hot water reticulation system. Moreover, enhancing and increasing the level of awareness among all hoteliers through a directed and well-designed campaign. Also offer interest free loans; and activate precise standards and specifications

  6. CO2 reduction in the Danish transportation sector. Working paper 10: Energy efficiency of the private cars - a package of control measures

    International Nuclear Information System (INIS)

    1997-03-01

    Average requirements to automotive fuel efficiency in new cars and differentiation of registration and weight taxes according to fuel consumption by a car result in fewer new cars due to very high registration tax and lower driving costs per km, which is against the CO 2 reduction measure. More efficient car manufacturing would eventually lead to a lower registration tax. Higher tax on fuels is another solution to the problem. (EG)

  7. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  8. Bulgarian energy sector: risks and policies for mitigation of consequences

    International Nuclear Information System (INIS)

    Manchev, B.; Halev, G.

    2010-01-01

    The presentation gives the general situation in Bulgarian economy and energy sector. The data and information are obtained from Eurostat. Data from the National Energy Operator's plan for development of the energy sector with minimum expenses are used. Three main accents are considered: 1. Assurance of energy balance; 2. Energy security; 3. Fulfillment of the Energy Union responsibilities

  9. Evaluating Energy Efficiency Policies with Energy-Economy Models

    Energy Technology Data Exchange (ETDEWEB)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  10. Energy efficiency in the world and Turkey and investigation of energy efficiency in Turkish Industry

    International Nuclear Information System (INIS)

    Kavak, K.

    2005-09-01

    The reserves of fossil fuels which currently respond to the major part of world energy requirements are being running out very fast. Because it is forecasted that reserves of some fossil fuels like oil and natural gas will come to an end in the second half of this century, exploiting all energy resources in an efficient manner has great importance. Throughout the world where the energy demand grows continuously but the resources decrease gradually, many types of programs are implemented to provide efficient energy use. In Turkey, although there have been some efforts in last two decades, the importance of the issue could not be undersood yet. Turkey'sgeneral energy policy still focuses on supply security and finding ways to meet the growing demand, rather than decreasing the demand by energy efficiency. In this study, the possible opportunities and benefits that Turkey would gain by energy efficiency is pointed out. The studies about energy efficiency which have been conducted in the world and Turkey are examined. The measurement that can be taken in the sectors such as industry, power plants, buildings, transportation and the utilities of these measures for energy economy are indicated. The successful practices of energy efficiency studies in various countries, the state of some countries which pioneer efficiency implementations. Turkey's situation in energy in the light of basic indicators such as energy consumption per capita and enrgy intensity, the energy efficiency studies that have been done and should be done in various sectors of Turkey are also discussed in this thesis. Turkish industry's energy comsumption is analyzed as a seperate chapter by taking into consideration energy efficiency, energy intensity and energy resources. The general energy consumption and energy intensity tendencies of main manufacturing industries between 1995 and 2002 are explored and resource utilization ratios are investigated. This chapter provides to find out what kind of

  11. A review of Ghana’s energy sector national energy statistics and policy framework

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available In this study, a review of Ghana’s energy sector national energy statistics and policy framework is done to create awareness of the strategic planning and energy policies of Ghana’s energy sector that will serve as an informative tool for both local and foreign investors, help in national decision-making for the efficient development and utilization of energy resources. The review of Ghana’s energy sector policy is to answer the question, what has been done so far? And what is the way forward? The future research in Ghana cannot progress without consulting the past. In order to ensure access to affordable, reliable, sustainable, and modern energy for all, Ghana has begun expanding her economy with the growing Ghanaian population as a way to meet the SDG (1, which seeks to end poverty and improve well-being. There are a number of intervention strategies by Ghana’s Energy sector which provides new, high-quality, and cost-competitive energy services to poor people and communities, thus alleviating poverty. Ghana’s Energy sector has initiated the National Electrification Scheme, a Self-Help Electrification Program, a National Off-grid Rural Electrification Program, and a Renewable Energy Development Program (REDP. The REDP aims to: assess the availability of renewable energy resources, examine the technical feasibility and cost-effectiveness of promising renewable energy technologies, ensure the efficient production and use of the Ghana’s renewable energy resources, and develop an information base that facilitates the establishment of a planning framework for the rational development and the use of the Ghana’s renewable energy resources.

  12. The energy sector at a cross roads

    International Nuclear Information System (INIS)

    2000-01-01

    The power and gas markets in Europe are changing radically. Increasing competition and comprehensive structural changes affect the conditions for value creation in the energy sector and the development of the Norwegian energy companies, which are mainly publicly owned. At the same time the demand on the owners is increasing, above all when it comes to strategic vigour in connection with necessary structural changes to adapt the companies to the new market conditions. The development of powerful Norwegian energy companies requires that the owners consider changes in the corporate structures, that the companies are partially privatised and at the same time that the goals of the ownership are clarified and the owner competence strengthened

  13. Energy sector during 1993 and 1994

    International Nuclear Information System (INIS)

    Schervashidze, N.

    1993-01-01

    The author emphasises the most important problem facing Bulgarian energy sector during the transition period to market economy - pricing reform. He discusses the way of forming the price based on 'long-term marginal expenditures' (LTME) for delivering the services. LTME include 'short-term marginal expenditures'(STME), (operational expenditures, energy cost) and additional investments for modernization of existing units. The first step of the pricing reform should be an increase of the prices at least up to the level of STME. Eventually the pricing reform must change the tariff structure responsible for stimulation of energy savings and market principles adapted for domestic realities. An attempt to connect the monopolist economic theory at market conditions with particular price corrections proposed by the Committee of Energetics for 1994 is made. 9 figs. (author)

  14. An application of energy and exergy analysis in agricultural sector of Malaysia

    International Nuclear Information System (INIS)

    Ahamed, J.U.; Saidur, R.; Masjuki, H.H.; Mekhilef, S.; Ali, M.B.; Furqon, M.H.

    2011-01-01

    Thermodynamic losses usually take place in machineries used for agricultural activities. Therefore, it is important to identify and quantify the losses in order to devise strategies or policies to reduce them. An exergy analysis is a tool that can identify the losses occurred in any sector. In this study, an analysis has been carried out to estimate energy and exergy consumption of the agricultural sector in Malaysia. Energy and exergy efficiencies have been determined for the devices used in the agricultural sector of Malaysia, where petrol, diesel and fuel oil are used to run the machineries. Energy and exergy flow diagrams for the overall efficiencies of Malaysian agricultural sector are presented as well. The average overall energy and exergy efficiencies of this sector were found to be 22% and 20.728%, respectively, within the period from 1991 to 2009. These figures were found to be lower than those of Norway but higher than Turkey. - Highlights: ► Highest exergy efficiency was found about 20.7% for the year 2007. ► The exergy efficiency of the agro-sector in Malaysia was lower than that of energy efficiency. ► It was also found that this sector of Malaysia is less efficient than Saudi Arabia and Norway. ► Energy and exergy losses were identified through this analysis. ► Part of the losses can be reduced using appropriate technology, management and policy.

  15. Toward a Low-Carbon Economy : Renewable Energy and Energy Efficiency Portfolio Review

    OpenAIRE

    World Bank

    2013-01-01

    Renewable energy and energy efficiency projects continue to perform strongly in the World Bank Group (WBG) energy portfolio and are increasingly being mainstreamed in the WBG's energy lending. In fiscal 2007 a total of US$1,433 million supported 63 renewable energy and energy efficiency projects in 32 countries. In addition to operational activities, the WBG engages in a variety of economic sector work and technical assistance focused on renewable energy and energy efficiency. This work is an...

  16. Sustainability reporting in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2016-01-01

    Full Text Available Development of the concepts of sustainable development and corporate social responsibility has a great impact on reporting in companies. The increase of their importance has resulted in a need to create a reporting system that would provide information on not only the methods but also the results of implementation of those concepts in companies. Globally, there are many organizations that promote and support companies in the area of integrated reporting. The most popular standard for reporting non-financial data that is used by a number of companies worldwide is the Global Reporting Initiative (GRI Guidelines. The main objective of the GRI is to support the development of sustainable economy in which companies take responsibility for the economic, social, and environmental consequences of their operations, manage that responsibility, and report all their actions. An example of a sector where the concept of sustainable development and its transparent reporting has an impact on the formation of values is the energy sector, which creates value for stakeholders and, together with the financial sector, has the greatest impact on national economies.

  17. China Energy Group - Sustainable Growth Through EnergyEfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various

  18. Why is energy use rising in the freight sector?

    International Nuclear Information System (INIS)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985 endash 2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades

  19. Aspects of marginal expenditures in energy sector

    International Nuclear Information System (INIS)

    Stojchev, D.; Kynev, K.

    1994-01-01

    Technical and economical problems of marginal analysis methodology, its application procedure in energy sector and marginal expenditures determination are outlined. A comparative characteristics of the application is made for different periods of time. The differences in calculation of the marginal expenditures and prices are discussed. The operational costs, investments and inflation are analyzed. The mechanism of application of this approach in different planing horizon is outlined. The role of the change in the costs in time, the time unit, volume, the scope of application, etc. are determined. The areas of transition from one to other form of marginal expenditures are shown. 4 refs. (orig.)

  20. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    Science.gov (United States)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  1. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    OpenAIRE

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01

    The dynamics of air conditioning are of particular interest to energy analysts, both because of the high energy consumption of this product, but also its disproportionate impact on peak load. This paper addresses the special role of this end use as a driver of residential electricity consumption in rapidly developing economies. Recent history has shown that air conditioner ownership can grow grows more rapidly than economic growth in warm-climate countries. In 1990, less than a percent o...

  2. End-use energy analysis in the Malaysian industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Rahim, N.A.; Mekhilef, S.; Ping, H.W. [Department of Electrical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Jamaluddin, M.F. [Tenaga Nasional Berhad (TNB), Head Office, Bangsar, Kuala Lumpur (Malaysia)

    2009-02-15

    The industrial sector is the second largest consumer of energy in Malaysia. In this energy audit, the most important parameters that have been collected are as follows: power rating and operation time of energy-consuming equipments/machineries; fossil fuel and other sources of energy use; production figure; peak and off-peak tariff usage behavior and power factor. These data were then analyzed to investigate the breakdown of end-use equipments/machineries energy use, the peak and off-peak usage behavior, power factor trend and specific energy use. The results of the energy audit showed that the highest electrical energy-using equipment was an electric motor followed by pumps and air compressors. The specific energy use has been estimated and compared with four Indonesian industries and it was found that three Malaysian industries were more efficient than the Indonesian counterpart. The study also found that about 64% electrical energy was used in peak hours by the industries and the average power factor ranged from 0.88 to 0.92. The study also estimated energy and bill savings using highly efficient electrical motors along with the payback period. (author)

  3. Energy efficiency in Norway (1996). Cross Country Comparison on Energy Efficiency Indicators, Phase 4

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Leif Kristian

    1998-12-01

    This is the national report for Norway in phase 4 of the SAVE project 'Cross country comparison of energy efficiency indicators'. The report deals with energy use and energy efficiency in Norway the last 20 years, with a special emphasis on the period after 1990. Final energy use per Gross Domestic Product (GDP) was reduced by approx 2.3% per year from 1990 to 1996. Doing detailed sector analysis we are applying Laspeyres indices to attribute changes in energy use to either activity, structure or intensity. Calculating an aggregate intensity index from the sector intensities gives an average intensity reduction of 0.4% per year. Thereby most of the reduction in final energy per unit GDP are due to structural changes, and not technical improvements. Almost all data are taken from official Norwegian statistics (Statistics Norway). (author)

  4. Functional materials for energy-efficient buildings

    Science.gov (United States)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  5. Functional materials for energy-efficient buildings

    Directory of Open Access Journals (Sweden)

    Ebert H.-P

    2015-01-01

    Full Text Available The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  6. Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    de la Rue du Can, Stephane; Pudleiner, David; Jones, David; Khan, Aleisha

    2017-06-15

    Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated into energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives

  7. Energy sector reforms status of Danish energy policy - 2000

    International Nuclear Information System (INIS)

    Gullev, L.

    2000-01-01

    The new millennium brings change and new ways of thinking to the energy sector. Today the sector faces new challenges which it must deal with at a time where increasing market liberalisation and increasing internalisation is creating completely new frameworks for the sector. The Danish tradition of progressive energy policy action plans is the best possible basis on which to build. The target remains set. Energy policy must create the framework for structuring future energy systems so as to ensure that they are sustainable. Over many years there have been numerous initiatives to transfer consumption to cleaner energy sources, which has now led to a steady reduction in CO 2 emissions. The government places great importance on a continuation of this current development, both short term and long term. The adoption of the Electricity Reform in spring 1999 was an important step in the right direction. The government can, with great satisfaction, conclude that an agreement has now been made with most of the Parliament regarding a Gas reform, modernisation of the heat Supply Act and a new Energy Saving Act. In addition to this, the agreement also includes a follow up to the Electricity Reform concerning utilisation of biomass, offshore wind turbines, harmonisation of costs for priority electricity production, private generator's payment to priority electricity and the establishment of a market for electricity based on renewable. (author)

  8. Assessment of potential energy efficiency improvements in the traction sector of the Swiss Federal Railways; Potentialermittlung Energieeffizienz Traktion bei den SBB - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Menth, S.; Lerjen, M.

    2007-07-01

    Possibilities to reduce the consumption of 16.7-Hz traction energy of Swiss Federal Railways (SBB) have been investigated. Various proposals have been discussed together with experts of SBB's Passenger, Cargo and Infrastructure divisions. Based on numerical simulations for representative train runs, the total consumption of the SBB network could be calculated and compared with real values. The possible reduction e.g. by energy optimised driving could be derived from this comparison; it is between 3 and 5 % of the specific consumption both for the influence by train driver and by traffic control. Technical measures in traction units and passenger coaches lead to reductions of up to about 3%, depending on the vehicle type. It is important that all measures take into account the extremely dense traffic on SBB's network and do not reduce the attractiveness for the customers. (author)

  9. Aggregate Energy Consumption and Sectoral Output in Nigeria ...

    African Journals Online (AJOL)

    First Lady

    2012-10-27

    Oct 27, 2012 ... 2005); or from economic growth to aggregate energy consumption (Binh,. 2011; Yoo and Kim, ... in order identify sectors of the economy that are energy dependent and also to avoid energy ..... in Indonesia. Energy Policy ...

  10. Modelling energy demand in the buildings sector within the EU

    Energy Technology Data Exchange (ETDEWEB)

    O Broin, Eoin

    2012-11-01

    In the on-going effort within the EU to tackle greenhouse gas emissions and secure future energy supplies, the buildings sector is often referred to as offering a large potential for energy savings. The aim of this thesis is to produce scenarios that highlight the parameters that affect the energy demands and thus potentials for savings of the building sector. Top-down and bottom-up approaches to modelling energy demand in EU buildings are applied in this thesis. The top-down approach uses econometrics to establish the historical contribution of various parameters to energy demands for space and water heating in the residential sectors of four EU countries. The bottom-up approach models the explicit impact of trends in energy efficiency improvement on total energy demand in the EU buildings stock. The two approaches are implemented independently, i.e., the results from the top-down studies do not feed into those from the bottom-up studies or vice versa. The explanatory variables used in the top-down approach are: energy prices; heating degree days, as a proxy for outdoor climate; a linear time trend, as a proxy for technology development; and the lag of energy demand, as a proxy for inertia in the system. In this case, inertia refers to the time it takes to replace space and water heating systems in reaction to price changes. The analysis gives long-term price elasticities of demand as follows: for France, -0.17; for Italy, -0.35; for Sweden, -0.27; and for the UK, -0.35. These results reveal that the price elasticity of demand for space and water heating is inelastic in each of these cases. Nonetheless, scenarios created for the period up to 2050 using these elasticities and an annual price increase of 3 % show that demand can be reduced by more than 1 % per year in France and Sweden and by less than 1 % per year in Italy and the UK. In the bottom-up modelling, varying rates for conversion efficiencies, heating standards for new buildings, end-use efficiency, and

  11. Energy efficiency in Serbia national energy efficiency program: Strategy and priorities for the future

    Directory of Open Access Journals (Sweden)

    Oka Simeon

    2006-01-01

    Full Text Available Energy system in Serbia, in the whole energy chain, from exploitation of primary energy sources, transformations in electric power plants and district heating plants, energy (electric and heat transmission and distribution to final users, and up to final energy consumption, is faced with a number of irrational and inefficient behavior and processes. In order to fight with such situation National Energy Efficiency Program, financed by the Ministry of Science and Environmental Protection has been founded in 2001. Basic facts about status of energy sector in Serbia, with special emphasis on the energy efficiency and use of renewable energy sources have been given in the review paper published in the issue No. 2, 2006 of this journal. In present paper new strategy and priorities of the National Energy Efficiency Program for the future period from 2006 to 2008, and beyond, is presented. This strategy and priorities are mainly based on the same concept and principles as previous, but new reality and new and more simulative economic and financial environment in energy sector made by the Energy low (accepted by Parliament in 2004 and Strategy of Development of Energy Sector in Republic Serbia up to 2015 (accepted by the Parliament in May 2005, have been taken into account. Also, responsibilities that are formulated in the Energy Community Treaty signed by the South-East European countries, and also coming from documents and directives of the European Community and Kyoto Protocol are included in new strategy. Once again necessity of legislative framework and influence of regulations and standards, as well as of the governmental support, has been pointed out if increased energy efficiency and increased use of renewable energy sources are expected. .

  12. The economic impacts of energy efficiency

    International Nuclear Information System (INIS)

    Jean, R.

    1990-01-01

    Hydro Quebec's energy efficiency initiatives are reviewed and the economic benefits it expects to garner from such programs are described. Energy efficiency programs affect the cost of supplying electricity, and rates usually rise during the early years and are subsequently offset by the benefits the program generates. Energy efficiency programs should allow Hydro Quebec to avoid $6 billion in expenditures for electricity supply, while entailing contributions of $1.4 billion for the efficiency measures. Evaluation of the potential for efficiency has allowed Hydro Quebec to set a target of 12.9 TWh/y in 1999 on a potential estimated at 18% of regular sales in Quebec in 1989, namely 23.3 TWh. Customers, who contribute $1.4 billion of their own funds to efficiency programs will realize savings of $3.2 billion. Hydro Quebec programs insist strongly on replacement of appliances and motors of all sorts, and in the residential sector, purchases of slightly less than $0.5 billion will consist of electric lamps (3%), water heaters (2.4%), insulation products (32%), hardware (2.5%), and various electric appliances (33%). In the commercial sector, expenditures will be higher, reaching ca $650 million. These are allocated to purchases of electric lamps (18%), heating equipment (12%), insulation products (24%), street lighting (4%), and various electric devices such as controls (39%). 2 figs., 4 tabs

  13. Energy conservation, efficiency and energy audit

    International Nuclear Information System (INIS)

    Sharma, R.A.

    2006-01-01

    In this paper the author discusses the conservation, efficiency, audit, fundamentals, differences and methods, the objectives of energy conservation, definitions of energy audit, scope, short term, medium term and long term measures to be taken for conservation are discussed

  14. DPRK energy sector development priorities: Options and preferences

    International Nuclear Information System (INIS)

    Hippel, David von; Hayes, Peter

    2011-01-01

    The goal of international negotiations with the Democratic People's Republic of Korea (DPRK), when they begin again, will be to convince the DPRK to give up its nuclear weapons and the capabilities to produce them. The DPRK's energy sector is a key to resolution of the issue. Thus offering a well-considered, well-structured package of energy sector assistance options will be key to the sustainable success of the negotiations. This article briefly reviews some of the key options for DPRK energy assistance ranging from human capacity-building in fields like energy efficiency, renewable energy, and energy markets, to assistance with rebuilding key electricity and coal mining infrastructure, to integrated pilot energy/electricity grid/economic development projects on the county level, to light-water nuclear reactors. It then reviews preferences for DPRK assistance options as offered by North Koreans, and a summary of the likely points of view of the key DPRK actors that will be involved in negotiations.

  15. Efficiency Evaluation of Energy Systems

    CERN Document Server

    Kanoğlu, Mehmet; Dinçer, İbrahim

    2012-01-01

    Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear ...

  16. Macroeconomic impacts of energy efficiency measures in the housing, business and transport sectors; Gesamtwirtschaftliche Wirkungen von Energieeffizienzmassnahmen in den Bereichen Gebaeude, Unternehmen und Verkehr

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Luellmann, Arne; Beckmann, Ruth; Koehler, Jonathan [Fraunhofer-Institut System- und Innovationsforschung (ISI), Karlsruhe (Germany)

    2009-10-15

    In August 2007 the German government agreed on the Integrated Energy and Climate Package (IECP) at Meseberg. This IECP-Macro study analyses the macroeconomic impacts of the IECP in Germany. The focus of analysis in IECP-Macro was on macroeconomic indicators, in particular on gross domestic product (GDP), consumption, investment and employment. This study links a bottom-up analysis of single policy measures with a macroeconomic analysis. The bottom-up impacts are fed into the ASTRA model, in which they trigger the macroeconomic impacts, e.g. a change of final demand in terms of investment or consumption. In total five scenarios have been analysed and have been compared with a reference scenario of the ASTRA model that has been aligned with the business-as-usual scenario of the project ''Politics Scenarios IV''. The basic conclusion of the analysis is that the economic stimulus of increased investment in climate policy stimulates economic growth in the short- and medium-term. Energy savings have the greatest effect to safeguard or even increase employment in the long run. (orig.)

  17. Africa's energy sector: energy availability and the underlying financial challenges

    International Nuclear Information System (INIS)

    Lebesa, Motselisi; Ndyeshobola, Ahmed.

    1994-01-01

    The objective of this paper is to provide a brief overview of energy availability in Africa and the attendant financing concerns in the African energy sector. The paper departs from three key premises: firstly that energy resources in Africa are abundant, but current trends in its consumption and inherent externalities are unsustainable. This abundance is also affected by social and political stability. Secondly, that the majority of Africa's population lacks access to adequate energy services. Poverty issues and effects undermine the urgency of energy and environmental concerns. Thirdly, that Africa's sustainable development calls for more energy supply not less. Future energy requirements and related supply and financing issues are discussed with the time horizon of the year 2020. (author)

  18. Energy efficient lighting

    International Nuclear Information System (INIS)

    Aslam, M.

    1992-01-01

    The main sources of Pakistan's energy supply are oil, natural gas, coal, hydro power, nuclear power and liquefied petroleum gas. At present 75 % of total energy delivered is met through oil and gas. The limited resources and financial constraints have proved to be stumbling block in the way of prosperity and economics stability. Lighting is a conspicuous consumer of energy and thus an easy prey for saving drives which is indeed a very promising target for energy saving. (A.B.)

  19. Grant credit lines for energy efficiency

    International Nuclear Information System (INIS)

    Gramatikov, P.; Iliev, I.

    2010-01-01

    The European Commission established a mechanism of credit lines to integrate more quickly the Bulgarian economy to the open international markets. Thereby it was enabled certain Bulgarian banks to provide grant loans to private companies in the industrial sector for projects of improvement of the energy efficiency of their production. The Bulgarian experience in using of two European credit lines and their role in the current economic crisis is presented in this paper. (authors)

  20. Energy Efficient Televisions

    DEFF Research Database (Denmark)

    Andersen, Rikke Dorothea; Remmen, Arne

    The EuP Directive sets the frame for implementing ecodesign requirements for energy-using and energy-related products. The aim of the Directive is to achieve a high level of protection for the environment by reducing the potential environmental impact of energy-related products. The focus...

  1. Energy efficiency and renewables policies: Promoting efficiency or facilitating monopsony?

    International Nuclear Information System (INIS)

    Brennan, Timothy J.

    2011-01-01

    The cliche in the electricity sector, the 'cheapest power plant is the one we don't build,' neglects the benefits of the energy that plant would generate. That economy-wide perspective need not apply in considering benefits to only consumers if not building that plant was the exercise of monopsony power. A regulator maximizing consumer welfare may need to avoid rationing demand at monopsony prices. Subsidizing energy efficiency to reduce electricity demand at the margin can solve that problem, if energy efficiency and electricity use are substitutes. Renewable energy subsidies, percentage use standards, or feed in tariffs may also serve monopsony as well with sufficient inelasticity in fossil fuel electricity supply. We may not observe these effects if the regulator can set price as well as quantity, lacks buyer-side market power, or is legally precluded from denying generators a reasonable return on capital. Nevertheless, the possibility of monopsony remains significant in light of the debate as to whether antitrust enforcement should maximize consumer welfare or total welfare. - Research Highlights: → Subsidizing energy efficiency can promote monopsony, if efficiency and use are substitutes. → Renewable energy subsidies, portfolio standards, or feed-in tariffs may also promote monopsony. → Effects require buyer-side market power and ability to deny generators a reasonable return. → Monopsony is significant in light of whether antitrust should maximize consumer or total welfare.

  2. Energy efficiency: 2004 world overview

    International Nuclear Information System (INIS)

    2004-01-01

    Since 1992 the World Energy Council (WEC) has been collaborating with ADEME (Agency for Environment and Energy Efficiency, France) on a joint project 'Energy Efficiency Policies and Indicators'. APERC (Asia Pacific Energy Research Centre) and OLADE (Latin American Energy Organisation) have also participated in the study, which has been monitoring and evaluating energy efficiency policies and their impacts around the world. WEC Member Committees have been providing data and information and ENERDATA (France) has provided technical assistance. This report, published in August 2004, presents and evaluates energy efficiency policies in 63 countries, with a specific focus on five policy measures, for which in-depth case studies were prepared by selected experts: - Minimum energy efficiency standards for household electrical appliances; - Innovative energy efficiency funds; - Voluntary/negotiated agreements on energy efficiency/ CO 2 ; - Local energy information centres; - Packages of measures. In particular, the report identifies the policy measures, which have proven to be the most effective, and can be recommended to countries which have recently embarked on the development and implementation of energy demand management policies. During the past ten years, the Kyoto Protocol and, more recently, emerging concerns about security of supply have raised, both the public and the political profile of energy efficiency. Almost all OECD countries and an increasing number of other countries are implementing energy efficiency policies adapted to their national circumstances. In addition to the market instruments (voluntary agreements, labels, information, etc.), regulatory measures are widely introduced where the market fails to give the right signals (buildings, appliances). In developing countries, energy efficiency is equally important, even if the drivers are different compared to industrialized countries. Reduction of greenhouse gas emissions and local pollution often have a

  3. Metrology considerations in a fast emerging new energy sector

    DEFF Research Database (Denmark)

    Friis Pedersen, Troels

    2013-01-01

    The wind energy sector is emerging on the global energy scene as a fast new energy sector. In 2002 the globally installed wind energy capacity passed 32GW, corresponding to 0,4% of worlds electricity supply. The last five years the sector increased in installed capacity by 33% per year. A leading...... and loads, and measurements. Measurement institutes are organized in the MEASNET network and arrange regular conformity testing....

  4. Energy - dichotomies within the European Union? Outlook of the Turkish energy sector

    International Nuclear Information System (INIS)

    Dilli, B.

    2001-01-01

    Turkey, an alley of the West, and being in the process of rapid integration with the world economy, has started a comprehensive restructuring endeavor in the energy sector. In today's power markets where globalisation and competition plays an increasing role, supply security, economic growth and social targets must be harmonized effectively. Following topics can be considered as basic instruments in this context; restructuring of the power sector (privatization, demonopolization); removal of governmental intervention in the markets; creating a better regional/global cooperation for the deployment of new technologies; enhancing energy efficiency. (author)

  5. Determinants of eco-efficiency in the Chinese industrial sector.

    Science.gov (United States)

    Fujii, Hidemichi; Managi, Shunsuke

    2013-12-01

    This study measures productive inefficiency within the context of multi-environmental pollution (eco-efficiency) in the Chinese industrial sector. The weighted Russell directional distance model is applied to measure eco-efficiency using production technology. The objective is to clarify how external factors affect eco-efficiency. The major findings are that both foreign direct investment and investment for pollution abatement improve eco-efficiency as measured by air pollutant substances. A levy system for wastewater discharge improves eco-efficiency as measured by wastewater pollutant substances. However, an air pollutant levy does not significantly affect eco-efficiency as measured by air pollutants. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Interacting vacuum energy in the dark sector

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L. P. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428 (Argentina); Carneiro, S. [Instituto de Física, Uníversídade Federal da Bahia, 40210-340, Salvador, BA (Brazil)

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  7. Energy Sector Liberalisation and Privatisation in Switzerland

    International Nuclear Information System (INIS)

    Bartlome, J. E.

    2001-01-01

    Due to its geographical situation, Switzerland is important for the transit lines of electricity and gas through the Alps. But Switzerland is not a member of the European Union. Furthermore, Swiss citizens enjoy extended direct-democratic rights. The author presents the story of energy sector liberalisation and privatisation in their three phases: 1. The late nineties: The phase of expectations 2. The phase of legislation: Open electricity market and elements of sustainable development as mitigating factors 3. The new awareness: Public service The Swiss citizens will have to adopt the law installing an open electricity market in June or September 2002. For the case of a (still very possible) rejection of the law, the author presents a no-go-solution and three realistic scenarios.(author)

  8. Municipalities as promoters of energy efficient buildings

    DEFF Research Database (Denmark)

    Quitzau, Maj-Britt; Hoffmann, Birgitte; Elle, Morten

    Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since the author......Planning authorities generally experience difficulties in disseminating energy efficient technologies in the built environment. Although planning authorities formulate objectives to promote energy efficient build-ings, these objectives often turn out to be declarations of intent, since...... with practitioners in the building sector at the local level. The aim of this report is to look into municipal efforts to promote energy efficient buildings to learn from their experiences: What types of challenges are municipalities facing, when attempting to disseminate energy efficient technologies in local...... building projects through municipal planning practices, and how do they cope with these challenges? The report is based on an in-depth study of proactive planning practices performed by municipal partners in the Class 1 project and a series of experiences, strategies and instru-ments are identified...

  9. Determinants of energy sector performance in Iraq, 2003 to 2005

    International Nuclear Information System (INIS)

    Tiedemann, K.H.

    2007-01-01

    Iraq's energy sector was rehabilitated from 2003 to 2005. The focus of rehabilitation was on restoring Iraq's electricity and oil infrastructure to pre-war production levels; delivering electricity and refined fuels for domestic consumption; and delivering electricity and oil security. This paper provided an analysis of the impact of Coalition efforts and insurgent activities on energy sector performance using time-series models. The paper presented a simple three-equation model consisting of an insurgent attack equation, an investment equation, and production function. The paper also discussed the phases of the insurgency in Iraq, with particular reference to the beginning of the insurgency; initial bombing campaign; escalation of the insurgency; and intra-Iraqi conflict. Key energy sector indicators and regression results were also presented for oil production; diesel production; gasoline production; oil exports; and production and consumption of electricity. It was concluded that expenditures by the United States on oil infrastructure appear to have been relatively efficiently spent. 16 refs., 9 tabs

  10. Energy efficiency: utopia or reality?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In its 2006 allocution the world council on the energy WEC, analyzes the role of the energy efficiency in the energy life cycle. In spite of different objectives followed by the developing and developed countries, implement a world energy efficiency economy is a challenge possible by the cooperation.The WEC is an ideal forum for the information and experience exchange. (A.L.B.)

  11. Innovation management in renewable energy sector

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  12. Innovative procurement frameworks for energy performance contracting in the UK public sector

    OpenAIRE

    Nolden, Colin; Sorrell, Steve; Polzin, Friedemann

    2015-01-01

    Procurement Frameworks for Energy Performance Contracting (PFEPCs) simplify the process of negotiating, developing and implementing Energy Performance Contracts (EPCs) with Energy Service Companies (ESCOs). This paper analyses their role in promoting the implementation of cost-effective energy efficiency measures in the UK public sector. Compared to conventional approaches to procuring goods and services involving detailed specifications, PFEPCs translate the challenge of upgrading, retrofitt...

  13. Energy transition in the transport sector

    International Nuclear Information System (INIS)

    Duchemin, Bruno; Genest, Sebastien

    2013-01-01

    Within the European framework, France has committed to a 20% reduction of its GHG emission by 2020 compared with 1990, and reaching the 'factor 4' by 2050. The 2005 POPE Act (the French Energy Policy Guidance Act) makes climate change a priority of the energy policy, setting out a 3% yearly reduction of our country's GHG emissions. This means combining energy efficiency and restraint, as is highlighted by the first chapter of the 'energy transition road-map'. Energy is a major component of transport. Designing its transition requires us to question the very organisation of our society: materials and their usage, the means of transport to favour and the infrastructures to implement, costs for competitiveness, the organisation of work and commuting... At a global scale, needs for mobility are increasing, as is the urgent need to deal with environmental problems. There are huge emerging markets for public transport, increasingly efficient and smart cars, information and transmission networks, infrastructures, the organisation of transport... However, France has all the assets to become a world leader in carbon-free transport. Succeeding in this change means organising the service to meet the needs of all, people, businesses, transport operators and industry, starting this transition right away. Policies must clearly define objectives and the means of achieving them through coordinated actions within a long term approach. The ESEC formulates a set of proposals in this direction

  14. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  15. Which Processes Can We Expect to See in the Croatian Energy Sector Until 2050

    International Nuclear Information System (INIS)

    Granic, G.

    2010-01-01

    The paper analyzes the processes that can be expected to take place in the Croatian energy sector until 2050 in the conditions of significant reductions of CO 2 and other greenhouses gases emissions. It also shows the main factors influencing energy consumption; limitations in energy sector development deriving from climate changes and environment preservation; technological development and its impact on the energy sector development; potentials of available resources and energy infrastructure for energy transport/transmission and energy import, as well as the security and quality of supply. The paper highlights significant changes in the energy sector, necessity of developing new economic policies which would be based on enhancing energy efficiency and use of low CO 2 and GHG technologies or use of those technologies which contribute to substantial reduction of the emissions.(author).

  16. USSR energy efficiency and prospects

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1991-06-01

    The U.S.S.R. is the largest energy producer and the second largest energy consumer in the world. Its share of global energy use reached above 17% in 1988. The soviet energy system is characterized by low efficiency and high per capita energy consumption, although there are some reasons justifying the greater U.S.S.R. energy use per unit of product output than in other industrialized countries. The present energy-savings potential is approximately equal to one-half of the domestic energy consumption. Improvements in energy efficiency at all levels of the national economy are now considered to be the primary goal of national energy policy for the next couple of decades. Being endowed with abundant natural gas resources, the U.S.S.R. will count on this energy source in the future to improve its energy efficiency, reduce expenses and cope with air pollution. After 2005-2010, stabilized primary energy consumption may be reached or there may even be a decline of total energy use. The U.S.S.R. could reduce CO 2 emissions by 20% by 2030 but with substantial negative impacts on GNP growth. Required improvements in the Soviet energy system depend on changes in energy management, including reduction of the role of centralized planning, decentralization and privatization of energy-producing facilities, energy-price reforms, reshaping of investment patterns, reduction in military expenditures, etc. (author)

  17. Is energy efficiency environmentally friendly?

    Energy Technology Data Exchange (ETDEWEB)

    Herring, H. [Open University, Milton Keynes (United Kingdom). Energy and Environment Research Unit

    2000-07-01

    The paper challenges the view that improving the efficiency of energy use will lead to a reduction in national energy consumption, and hence is an effective policy for reducing CO{sub 2} emissions. It argues that improving energy efficiency lowers the implicit price of energy and hence makes its use more affordable, thus leading to greater use. The paper presents the views of economists, as well as green critics of 'efficiency' and the 'dematerialization' thesis. It argues that a more effective CO{sub 2} policy is to concentrate on shifting to non-fossil fuel, like renewables, subsidized through a carbon tax. Ultimately what is needed, to limit energy consumption is energy conservation not energy efficiency. 44 refs.

  18. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  19. The energy rebound effects across China’s industrial sectors: An output distance function approach

    International Nuclear Information System (INIS)

    Li, Ke; Zhang, Ning; Liu, Yanchu

    2016-01-01

    Highlights: • Output distance function for the energy rebound effect is developed. • The aggregate energy rebound effect of China is 88.42%. • Investment-driven economic growth is not conducive to energy-saving. - Abstract: Improving energy efficiency sustainability is a target of the Chinese government. However, the effectiveness of energy conservation policy is affected by the energy rebound effect under which energy efficiency improvement reduces the effective price of energy services, thereby completely or partially offsetting the energy saved by efficiency improvement. Based on the output distance function, this paper develops an improved estimation model of the energy rebound effect, which is logically consistent with the quantities of energy savings and energy rebounds induced by technological progress. Results show that the aggregate energy rebound effect of 36 industrial sectors in China over 1998–2011 is 88.42%, which implies that most of the expected energy savings are mitigated. Investment-driven economic growth is not conducive to energy-saving and results in a strong energy rebound effect in the following year. The equipment and high-end manufacturing sectors have low levels of rebound effect, indicating that increasing the proportion of such firms in the total manufacturing sector can improve the performance of energy conservation. The high level and heterogeneity in rebound effects strongly suggest that varies strategies are necessary for energy conservation among China’s industrial sectors.

  20. EU Cooperation in the Energy Sector

    International Nuclear Information System (INIS)

    Goumas, T.

    1998-01-01

    The European Union with 15 Member States at the end of the century and with 6 more countries in the accession phase has set up certain instruments which enhance energy cooperation among them and with third countries. The major dimensions of EU energy policy presented in the White Paper are the external dimension - globalization of markets, the increasing environmental concern, the technology developments and the EU institutional responsibilities. To contribute to these, certain EU initiatives and supporting actions are undertaken through the energy and the broader co-operation programmes like THERMIE, SYNERGY, SAVE, ALTENER, PHARE, etc. The THERMIE programme supports the demonstration application and dissemination of innovative and successful energy technologies. SYNERGY is a programme for energy co-operation with third countries in energy policy and strategy implementation issues. SAVE and ALTENER concentrate on the promotion and enhancement of energy efficiency practices and use of renewable respectively. PHARE is a technical assistance programme addressed to Eastern European Countries which are in the phase of transition to market economy. There are also other initiatives like the Transeuropean Energy Network (TEN) and the activities managed by the financial institutions namely the European Bank for Reconstruction and Development (EBRD) and the European Investment Bank (EIB). All this context of programmes and initiatives is modified from period to period in order to serve the EU energy policies and the developments in the energy markets. The recent agreement which came up from the Kyoto conference has actually influenced the direction of actions towards more intensive amelioration of environmental pollution. (author)

  1. Sector strength and efficiency on developed and emerging financial markets

    Science.gov (United States)

    Fiedor, Paweł

    2014-11-01

    In this paper we analyse the importance of sectors and market efficiency on developed and emerging financial markets. To perform this we analyse New York Stock Exchange between 2004 and 2013 and Warsaw Stock Exchange between 2000 and 2013. To find out the importance of sectors we construct minimal spanning trees for annual time series consisting of daily log returns and calculate centrality measures for all stocks, which we then aggregate by sectors. Such analysis is of interest to analysts for whom the knowledge of the influence of particular groups of stocks to the market behaviour is crucial. We also analyse the predictability of price changes on those two markets formally, using the information-theoretic concept of entropy rate, to find out the differences in market efficiency between a developed and an emerging market, and between sectors themselves. We postulate that such analysis is important to the study of financial markets as it can contribute to the profitability of investments, particularly in the case of algorithmic trading.

  2. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Science.gov (United States)

    2013-08-12

    ... Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: International Trade... the international competitiveness of the U.S. renewable energy and energy efficiency industries. The... Renewable Energy and Energy Efficiency Advisory Committee, Attention: Ryan Mulholland, Office of Energy and...

  3. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  4. Technical efficiency of FDI firms in the Vietnamese manufacturing sector

    Directory of Open Access Journals (Sweden)

    Vu Hoang Duong

    2016-09-01

    Full Text Available The study examines technical efficiency of Foreign Direct Investment (FDI firms in the Vietnamese manufacturing sector by applying stochastic production frontier model and making use of cross-sectional data in the period 2009-2013. The average level of technical efficiency of FDI firms is about 60% and it is higher than that of domestic firms (including private firms and state-owned firms. In addition, the study also analyses correlation between technical efficiency of FDI firms and other factors. It finds that there are positive correlations between FDI technical efficiency and net revenue per labour, firm’s age or export activities in 2013. However, the study is unable to find evidence of a relationship between FDI technical efficiency and infrastructure or firm’s investment activities.

  5. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  6. Buildings sector demand-side efficiency technology summaries

    Energy Technology Data Exchange (ETDEWEB)

    Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  7. Mainstreaming Governance in Tajikistan through its Energy, Extractives, and Public Procurement Sectors

    OpenAIRE

    Mikulova, Kristina; Johns, Kimberly; Kunicova, Jana

    2014-01-01

    The governance partnership facility (GPF) supported program mainstreaming governance in Tajikistan portfolio (FY2010-14) was a landmark achievement in applying governance analysis and looking for entry points to improve transparency and accountability in key sectors in Tajikistan. This brief provides recommendations from its energy-efficiency audit, the extractive industries sector, and pu...

  8. Analysis of the Russian Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lychuk, Taras; Evans, Meredydd; Halverson, Mark A.; Roshchanka, Volha

    2012-12-01

    This report provides analysis of the Russian energy efficiency market for the building sector from the perspective of U.S. businesses interested in exporting relevant technologies, products and experience to Russia. We aim to help U.S. energy efficiency and environmental technologies businesses to better understand the Russian building market to plan their market strategy.

  9. SWOT analyses of the national energy sector for sustainable energy development

    International Nuclear Information System (INIS)

    Markovska, N.; Taseska, V.; Pop-Jordanov, J.

    2009-01-01

    A holistic perspective of various energy stakeholders regarding the Strengths, Weaknesses, Opportunities and Threats (SWOTs) of the energy sector in Macedonia is utilized as baseline to diagnose the current state and to sketch future action lines towards sustainable energy development. The resulting SWOT analyses pointed to the progressive adoption of European Union (EU) standards in energy policy and regulation as the most important achievement in the energy sector. The most important problems the national energy sector faces are scarce domestic resources and unfavorable energy mix, low electricity prices, a high degree of inefficiency in energy production and use, as well as insufficient institutional and human capacities. The formulated portfolio of actions towards enabling sustainable energy development urges the adoption of a comprehensive energy strategy built upon sustainability principles, intensified utilization of the natural gas, economic prices of electricity, structural changes in industry, promotion of energy efficiency and renewables, including Clean Development Mechanism (CDM) projects, enforcement of EU environmental standards and meeting the environmental requirements, as well as institutional and human capacity building.

  10. Energy efficiency policies and measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document makes a review of the energy efficiency and demand side management (DSM) policies and measures in European Union countries and Norway in 1999: institutional changes, measures and programmes, budget, taxation, existence of a national DSM programme, national budgets for DSM programmes, electricity pricing: energy/environment tax, national efficiency standards and regulation for new electrical appliances, implementation of Commission directives, efficiency requirements, labelling, fiscal and economic incentives. (J.S.)

  11. Energy policy and development of the energy sector in Macedonia

    International Nuclear Information System (INIS)

    Blazhev, Blagoja.

    1996-01-01

    Energetics is an important precondition for everyday life in the economic activities as well as the social activities on the whole. The main goal of the energy sector is to monitor and support the planned social development. Consequently, the development of the society and the development of energetics must be coordinated as much as possible. If not, with an autarchic development of the energy system, because of its capital characteristic, could mean a substantial erosion of the social accumulation, without an appropriate contribution to the growth of the national income. Because of this, the issue we wish to speak of is constantly current. (author). 1 tab., 6 ills

  12. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  13. Energy efficiency, renewable energy and sustainable development

    International Nuclear Information System (INIS)

    Ervin, C.A.

    1994-01-01

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren't always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation

  14. Energy economy and industrial ecology in the Brazilian cement sector

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Schaeffer, Roberto

    1999-01-01

    The article discusses the following issues of the Brazilian cement sector: the Brazilian cement main types specification, cement quantities evolution produced in Brazil from 1987 to 1997, energy conservation in the cement production process with additives, energy economy cost estimates from the utilization of additives, and several technologies energy economy cost used in the industrial sector

  15. The renewable energy sector. A Flemish socio-economic analysis

    International Nuclear Information System (INIS)

    Hutsebaut, E.; De Decker, M.

    2010-10-01

    This study examines the most important characteristics of the renewable energy sector in Flanders, Belgium, based on interviews held with the sector. The addressed parameters include turnover, employment, Financial ratios, the characteristics of the sector such as Legal form, year of establishment, geographical location, and so on. [nl

  16. ACCOUNTANCY REFLECTION OF ENVIRONMENT INFORMATION REGARDING THE ENERGY SECTOR

    Directory of Open Access Journals (Sweden)

    Lucean MIHALCEA

    2014-06-01

    Full Text Available Natural resources, especially energetical ones, have continuously influenced the evolution of human society, including the economical developement, and so the problem of their deficiency and their limited character is a problem of major interest for the human kind in their quest to find the balance betwen the need of economical expansion and the environment protection. The purpose of this paper work is to show the importancy of energy eficiency by asuming two main action directions: to encrease the quantity of renewable energy and to emprove the energetical efficiency. After the researches we made, we brought in attention the main mechanisms used in the insurance of sustainability security and competitiveness of the energy sector. These practices the objectives of the sustainable development principle, exemplified from accountancy point of view through a new instrument in the economical theory: environmental accountancy which ensures the background regarding the recognition, evaluation and presentation of environment information.

  17. Severe Accidents in the Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S; Spiekerman, G; Dones, R

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  18. Severe Accidents in the Energy Sector

    International Nuclear Information System (INIS)

    Hirschberg, S.; Spiekerman, G.; Dones, R.

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  19. Effective education for energy efficiency

    International Nuclear Information System (INIS)

    Zografakis, Nikolaos; Menegaki, Angeliki N.; Tsagarakis, Konstantinos P.

    2008-01-01

    A lot of today's world vices can be eliminated if certain targeted modules and adapted curricula are introduced in the schooling system. One of these vices is energy squandering with all its negative consequences for the planet (e.g. depletion of finite energy sources and the subsequent climate change). This paper describes the results of an energy-thrift information and education project taking place in different levels of education in Crete-Greece, which records 321 students' and their parents' routine energy-related behavior and proves that this behavior changes to a more energy efficient one, after the dissemination of relevant information and the participation into the energy education projects. Namely, response percentages indicating the energy-efficient behavior increased after project participation while the ones indicating an energy-squandering behavior decreased. The Wilcoxon signed rank test was statistically significant in all energy behavior questions related to students and to most questions related to parents

  20. Efficiency in the European agricultural sector: environment and resources.

    Science.gov (United States)

    Moutinho, Victor; Madaleno, Mara; Macedo, Pedro; Robaina, Margarita; Marques, Carlos

    2018-04-22

    This article intends to compute agriculture technical efficiency scores of 27 European countries during the period 2005-2012, using both data envelopment analysis (DEA) and stochastic frontier analysis (SFA) with a generalized cross-entropy (GCE) approach, for comparison purposes. Afterwards, by using the scores as dependent variable, we apply quantile regressions using a set of possible influencing variables within the agricultural sector able to explain technical efficiency scores. Results allow us to conclude that although DEA and SFA are quite distinguishable methodologies, and despite attained results are different in terms of technical efficiency scores, both are able to identify analogously the worst and better countries. They also suggest that it is important to include resources productivity and subsidies in determining technical efficiency due to its positive and significant exerted influence.

  1. Energy sustainability: consumption, efficiency, and ...

    Science.gov (United States)

    One of the critical challenges in achieving sustainability is finding a way to meet the energy consumption needs of a growing population in the face of increasing economic prosperity and finite resources. According to ecological footprint computations, the global resource consumption began exceeding planetary supply in 1977 and by 2030, global energy demand, population, and gross domestic product are projected to greatly increase over 1977 levels. With the aim of finding sustainable energy solutions, we present a simple yet rigorous procedure for assessing and counterbalancing the relationship between energy demand, environmental impact, population, GDP, and energy efficiency. Our analyses indicated that infeasible increases in energy efficiency (over 100 %) would be required by 2030 to return to 1977 environmental impact levels and annual reductions (2 and 3 %) in energy demand resulted in physical, yet impractical requirements; hence, a combination of policy and technology approaches is needed to tackle this critical challenge. This work emphasizes the difficulty in moving toward energy sustainability and helps to frame possible solutions useful for policy and management. Based on projected energy consumption, environmental impact, human population, gross domestic product (GDP), and energy efficiency, for this study, we explore the increase in energy-use efficiency and the decrease in energy use intensity required to achieve sustainable environmental impact le

  2. Energy efficiency initiatives: Indian experience

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Dipankar [ICFAI Business School, Kolkata, (IBS-K) (India)

    2007-07-01

    India, with a population of over 1.10 billion is one of the fastest growing economies of the world. As domestic sources of different conventional commercial energy are drying up, dependence on foreign energy sources is increasing. There exists a huge potential for saving energy in India. After the first 'oil shock' (1973), the government of India realized the need for conservation of energy and a 'Petroleum Conservation Action Group' was formed in 1976. Since then many initiatives aiming at energy conservation and improving energy efficiency, have been undertaken (the establishment of Petroleum Conservation Research Association in 1978; the notification of Eco labelling scheme in 1991; the formation of Bureau of Energy Efficiency in 2002). But no such initiative was successful. In this paper an attempt has been made to analyze the changing importance of energy conservation/efficiency measures which have been initiated in India between 1970 and 2005.The present study tries to analyze the limitations and the reasons of failure of those initiatives. The probable reasons are: fuel pricing mechanism (including subsidies), political factors, corruption and unethical practices, influence of oil and related industry lobbies - both internal and external, the economic situation and the prolonged protection of domestic industries. Further, as India is opening its economy, the study explores the opportunities that the globally competitive market would offer to improve the overall energy efficiency of the economy. The study suggests that the Bureau of Energy Efficiency (BEE) - the newly formed nodal agency for improving energy efficiency of the economy may be made an autonomous institution where intervention from the politicians would be very low. For proper implementation of different initiatives to improve energy efficiency, BEE should involve more the civil societies (NGO) from the inception to the implementation stage of the programs. The paper also

  3. Energy efficiency in figures. Final report; Energieeffizienz in Zahlen. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Graichen, Verena; Gores, Sabine; Penninger, Gerhard; Zimmer, Wiebke; Cook, Vanessa [Oeko-Institut, Berlin (Germany); Schlomann, Barbara; Fleiter, Tobias; Strigel, Adrian; Eichhammer, Wolfgang [Fraunhofer-Institut fuer System- und Innovationsforschung (FhG-ISI), Karlsruhe (Germany); Ziesing, Hans-Joachim

    2011-07-15

    To examine whether the development of energy productivity and energy efficiency in Germany is in line with targets set by policy, a series of energy efficient indicators and parameters have been developed on the national and sectoral level, the data for which can be regularly updated and documented. It is not sufficient to carry out this analysis on a national macro level; rather it is necessary to use an approach that differentiates between sectors as accurately as possible. Only in this way can the reasons for changes in efficiency and the factors which could have compensated the impact of measures be clearly shown. (orig.)

  4. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  5. Energy efficiency in California laboratory-type facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E.; Bell, G.; Sartor, D. [and others

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  6. The state of energy efficiency in Canada 2006 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This report reviewed energy efficiency strategies in Canada's economic sector, and provided information on the contributions made by various energy efficiency initiatives administered by Natural Resources Canada through its Office of Energy Efficiency. Energy use in Canada increased by 22 per cent between 1990 and 2003, in contrast to the 32 per cent anticipated without energy efficiency increases. Energy-related greenhouse gas (GHG) emissions were 52 megatonnes lower than they would have been without energy efficiency programs, indicating that strong and measurable progress has been made. In the residential sector, the combined effects of a 26 per cent increase in activity, an increase in energy demand due to weather, and an increase in the average number of appliances per household were partly offset by a 19 per cent improvement in energy efficiency. A 45 per cent increase in industrial activity along with a 13 per cent improvement in energy efficiency between 1990-2003 was noted. A 15 per cent increase in passenger transportation and a 40 per cent increase in freight transportation were offset by a 16 per cent improvement in energy efficiency. Basic policy instruments were reviewed, as well as information and voluntary programs, direct financial incentives, and various regulations to eliminate less efficient products from the market. It was noted that the Green Municipal Fund has recently provided over $248 million to support 419 feasibility studies and energy efficiency projects. The federal budget has provided an additional $300 million towards the fund. 22 figs.

  7. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  8. Estimation of energy efficiency of residential buildings

    Directory of Open Access Journals (Sweden)

    Glushkov Sergey

    2017-01-01

    Full Text Available Increasing energy performance of the residential buildings by means of reducing heat consumption on the heating and ventilation is the last segment in the system of energy resources saving. The first segments in the energy saving process are heat producing and transportation over the main lines and outside distribution networks. In the period from 2006 to 2013. by means of the heat-supply schemes optimization and modernization of the heating systems. using expensive (200–300 $US per 1 m though hugely effective preliminary coated pipes. the economy reached 2.7 mln tons of fuel equivalent. Considering the multi-stage and multifactorial nature (electricity. heat and water supply of the residential sector energy saving. the reasonable estimate of the efficiency of the saving of residential buildings energy should be performed in tons of fuel equivalent per unit of time.

  9. Energy planning and energy efficiency assistance

    Energy Technology Data Exchange (ETDEWEB)

    Markel, L. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  10. Energy efficiency: a source of savings; a priority objective

    International Nuclear Information System (INIS)

    Bethencourt, Anne de; Chorin, Jacky

    2013-01-01

    Energy efficiency is defined as consumption of less energy whilst delivering the same service. Significant progress has been made through the impact of technology, price increases and awareness of waste. Too often viewed as a constraint, energy efficiency nonetheless constitutes the leading potential source of domestic energy for the 2020 goal. Energy efficiency is or will be (depending on the will of the stakeholders, public authorities and society as a whole) a key market for the future and a pathway to creative innovation. Everything is pointing in that direction: the obligation to reduce greenhouse gas emissions fourfold, the new European Directive on Energy Efficiency to be incorporated, the expected increase in energy prices, the presence in France of industry leaders and of a small-scale but important industry in this sector. The goals in energy efficiency entail: - at Community level, that the objective of 20% energy savings for the 2020 goal becomes binding; - at national level, that public policies for energy efficiency are part of a long-term vision, based on the achievements of the Grenelle Environment Forum and avoid sending out any wrong signals which might adversely affect progress. The ESEC proposals are built around the following four themes: - (residential and service sector) buildings: Make energy efficiency into a real sector and a new opportunity 'work together', Optimise tools and regulations, Be innovative in terms of financial support; - fuel poverty; - industry and agriculture; - the particular situation of the overseas departments

  11. Energy consumption in the transport sector

    International Nuclear Information System (INIS)

    Plouchart, G.

    2004-01-01

    During the 20. century, transport sector demand in the OECD countries boomed. The main drivers for growth were road transport and, more recently, air transport. As emerging countries continue to develop and the world faces the threat of climate change, this sector represents a major long-term challenge

  12. Energy Efficiency Governance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The purpose of this report is to help EE practitioners, government officials and stakeholders to establish the most effective EE governance structures, given their specific country context. It also aims to provide readers with relevant and accessible information to support the development of comprehensive and effective governance mechanisms. The International Energy Agency (IEA) conducted a global review of many elements of EE governance,including legal frameworks, institutional frameworks, funding mechanisms, co-ordination mechanisms and accountability arrangements, such as evaluation and oversight. The research tools included a survey of over 500 EE experts in 110 countries, follow-up interviews of over 120 experts in 27 countries and extensive desk study and literature searches on good EE governance.

  13. Energy Efficiency in Future PONs

    DEFF Research Database (Denmark)

    Reschat, Halfdan; Laustsen, Johannes Russell; Wessing, Henrik

    2012-01-01

    There is a still increasing tendency to give energy efficiency a high priority, even in already low energy demanding systems. This is also the case for Passive Optical Networks (PONs) for which many different methods for saving energy are proposed. This paper uses simulations to evaluate three...... proposed power saving solutions for PONs which use sleep mechanisms for saving power. The discovered advantages and disadvantages of these methods are then used as a basis for proposing a new solution combining different techniques in order to increase the energy efficiency further. This novel solution...

  14. Structure of financing investments in the energy sector

    Directory of Open Access Journals (Sweden)

    Kowal Barbara

    2017-01-01

    The article shows how the financing structure of the companies from the fuel and energy sector, listed on the Warsaw Stock Exchange, has evolved over the years. The authors also estimated the cost of equity. The results were compared with the chosen mining companies in Poland. Companies from the energy sector have lower investment risk than companies from the fuel sector. Looking at the profitability of investments it should be emphasized that the financing by outside capital is more advantageous than equity financing.

  15. Efficient emission fees in the US electricity sector

    International Nuclear Information System (INIS)

    Spencer Banzhaf, H.; Burtraw, Dallas; Palmer, Karen

    2004-01-01

    This paper provides new estimates of efficient emission fees for sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) emissions in the US electricity sector. The estimates are obtained by coupling a detailed simulation model of the US electricity markets with an integrated assessment model that links changes in emissions with atmospheric transport, environmental endpoints, and valuation of impacts. Efficient fees are found by comparing incremental benefits with emission fee levels. National quantity caps that are equivalent to these fees also are computed, and found to approximate caps under consideration in the current multi-pollutant debate in the US Congress and the recent proposals from the Bush administration for the electricity industry. We also explore whether regional differentiation of caps on different pollutants is likely to enhance efficiency

  16. Energy demand analysis in the household, commercial and agriculture sector

    International Nuclear Information System (INIS)

    Lapillonne, B.

    1991-01-01

    This chapter of the publication is dealing with Energy Demand Analysis in the Household, Commercial and Agricultural Sector. Per Capita total energy consumption in the residential and commercial sector is given and variation among countries are discussed. 12 figs, 1 tab

  17. Energy sector in transition - technologies and regulatory policies in flux

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik

    2005-01-01

    Liberalising the energy sector has been followed by a number of new regulatory measures that are argued to maintain a process towards a sustainable energy sector. The article argues based on empirical material from Denmark and other European countries that the EU regulations and especially...... the simple market oriented models do not lead to or secure sustainability....

  18. Increased energy efficiency of hobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The objective of the project is to save energy when cooking food on hobs. A great part of the total energy consumption used for cooking is consumed by hobs. The amount of energy depends on the temperature used for cooking and energy used for evaporation of liquid, focussing especially on the latter in this project. CHEC B is a method for controlling the supply of energy to the zone, so that a minimum of energy is used for reaching a set temperature of the food/liquid in the pot and maintaining this temperature. Today the efficiency of hobs is between 50 - 75%. Using CHEC B the energy efficiency is expected to be higher. (au)

  19. Energy Efficiency in Norway 1996-1999. Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva

    2002-05-01

    This is the national report for Norway in the EU/SAVE project ''Monitoring tools for energy efficiency in Europe: the ODYSSEE and MURE projects''. The report deals with energy use and energy efficiency in Norway 1990-1999. Final energy use per Gross Domestic Product (GDP) was reduced by approximately 1.6% per year from 1990 to 1999. The energy efficiency improvement has been calculated to 0.4% pr year, while the role of structural changes has been 1.2% pr year. A detailed sector analysis has been done, applying Laspeyres indices to attribute changes in energy use to activity, structure or intensity (efficiency). Aggregating sectors, we have found a total efficiency improvement of approximately 8 TWh from 1990 to 1999. (author)

  20. Incentives for energy efficiency in the EU emission trading scheme

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Joachim [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Rogge, Karoline [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); ETH Zurich (Switzerland). Group for Sustainability and Technology; Betz, Regina [New South Wales Univ. (Australia). Centre for Energy and Environmental Markets

    2008-07-01

    This paper explores the incentives for energy efficiency induced by the European Union Emissions Trading Scheme (EU ETS) for installations in the energy and industry sectors. Our analysis of the National Allocation Plans for 27 EU Member States for phase 2 of the EU ETS (2008-2012) suggests that the price and cost effects for improvements in carbon and energy efficiency in the energy and industry sectors will be stronger than in phase 1 (2005-2007), but only because the European Commission has substantially reduced the number of allowances to be allocated by the Member States. To the extent that companies from these sectors (notably power producers) pass through the extra costs for carbon, higher prices for allowances translate into stronger incentives for demand- side energy efficiency. With the cuts in allocation to energy and industry sectors these will be forced to greater reductions, thus the non-ET sectors like household, tertiary and transport will have to reduce less, which is more in line with the cost-efficient share of emission reductions. The findings also imply that domestic efficiency improvements in the energy and industry sectors may remain limited since companies can make substantial use of credits from the Kyoto mechanisms. The analysis of the rules for existing installations, new projects and closures suggests that incentives for energy efficiency are higher in phase 2 than in phase 1 because of the increased application of benchmarking to new and existing installations and because a lower share of allowances will be allocated for free. Nevertheless, there is still ample scope to further improve the EU ETS so that the full potential for energy efficiency can be realized. (orig.)

  1. Cleanroom Energy Efficiency Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  2. Energy Data Management Manual for the Wastewater Treatment Sector

    Energy Technology Data Exchange (ETDEWEB)

    Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States); De Fontaine, Andre [Dept. of Energy (DOE), Washington DC (United States)

    2017-12-01

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven by population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.

  3. BC Hydro best practices : energy efficiency and integrated planning

    International Nuclear Information System (INIS)

    Henriques, D.

    2004-01-01

    The key elements to success in energy efficiency include integrated energy planning, a review of conservation potential, pursuing a target, risk sharing between all parties, and long term planning when making investments in demand side management (DSM). The barriers to cost effective energy efficiency investment were also outlined along with the scope of the conservation potential review which included 95 per cent of electricity end use applications in all market sectors including residential, commercial, institutional and industrial. BC Hydro's Power Smart program focuses on energy efficiency and load displacement to meet 35 per cent of the utility's forecasted growth by 2012. The sources of savings within each of the market sectors were identified. Key recommendations regarding energy efficiency and conservation were also presented with reference to financial incentives offered by BC Hydro to consumers to encourage a switch to more efficient lighting systems. 10 figs

  4. Energy efficiency opportunities in Hotels

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available According to the statistics in Egypt (2013, the number of hotels is 1193, about 407 of them have contracted power greater than 500 kW.Air conditioning, lighting, water heating and refrigeration represent the main activities demanding electrical energy in hotel business.The energy consumption per night spend changes a lot, depending on various factors; facilities provided, category of hotel, occupancy , geographical situation, weather conditions, nationality of clients, design and control of the installations.Energy benchmarking is an internal management tool designed to provide ongoing, reliable and verifiable tracking on the hotels performance. The most useful performance indicator (or Energy Efficiency Benchmarking of hotels are: Lighting Power Density (LPD in W (for lighting/m2, and energy intensity (kWh/m2/ y.There are multiple benefits for improving energy in hotel business; reduces the hotel's operating cost, reduces climate change risks and promotes green tourism.Energy efficiency opportunities are low-cost measures and cost- effective investments.   There are many energy saving opportunities for lighting in hotel's guest rooms as well as the more obvious savings in lobbies and exterior lighting areas. Behavior campaigns can yield substantial energy savings, both through the guests and housekeeper behavior. Encouraging housekeepers to use natural light during room cleaning is a simple first step to implement energy saving program.This paper presents the energy efficiency guidelines and energy benchmarking for hotels. Also a case study showing how the energy efficiency program implemented is presented. 

  5. Energy efficiency in the foreground

    International Nuclear Information System (INIS)

    Baettig, I.

    2006-01-01

    In this interview with Eberhard Jochem, professor at the Centre for Energy Policy and Economics at the Federal Institute of Science and Technology (ETH) in Zurich, Switzerland, several energy-relevant topics are discussed. These include high oil prices, possible power shortages and binding commitments in the climate-protection area. The question is asked, how, in consideration of such general conditions, energy use and energy supply should develop in Switzerland. Options for increasing efficiency or the tapping of new energy sources is discussed, as is Switzerland's increasing energy consumption. The '2000 Watt' concept being worked on at the ETH and the activities needed for its realisation are discussed. The effects of this concept on economical and business development are discussed. The potential of renewable forms of energy and the possibility of building combined gas and steam power stations are looked at. Ways of promoting renewable energy and questions concerning the extent of the state intervention in the energy business are considered

  6. Energy conservation in nationalised transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R C

    1980-01-01

    About 60% of high speed diesel is consumed by the road transport industry. The hike in fuel prices calls for urgent measures to conserve diesel. The paper discusses the various measures undertaken to conserve diesel in the nationalized transport sector.

  7. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  8. Energy efficiency in South Africa: A decomposition exercise

    International Nuclear Information System (INIS)

    Inglesi-Lotz, R.; Pouris, A.

    2012-01-01

    Improvement of energy efficiency has been accepted as one of the most cost-effective approaches towards sustainable economic development and reduction of the continuously increasing energy consumption internationally. South Africa, being among the developing countries, is not an exception even though historically low energy prices and the lack of appropriate policies have created an energy intensive economy. This paper examines the factors affecting the trends in energy efficiency in South Africa from 1993 to 2006 and particularly the impact of structural changes and utilisation efficiency of the country's energy intensity. Identifying and understanding the driving forces are necessary ingredients in the development of appropriate policy-making. This paper also provides disaggregation of the energy efficiency trends in the main sectors of the economy. We determine that structural changes of the economy have played an important and negative role in the increasing economy-wide energy efficiency. On the other hand, the energy usage's intensity was a contributing factor to the decreasing trend of energy efficiency. We suggest that differentiated price policies may be required if South Africa is to create an effective energy efficiency policy. -- Highlights: ► Improving energy efficiency can lead to lower energy consumption and emissions. ► A decomposition analysis examines the factors affecting efficiency in South Africa. ► With unchanged economic structure, the energy efficiency would be 0.75 units lower. ► Intensity was a contributing factor to the decreasing trend of energy efficiency.

  9. A new NAMA framework for dispersed energy end-use sectors

    International Nuclear Information System (INIS)

    Cheng, C.-C.

    2010-01-01

    This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two sectors make up the largest portions of energy consumption in developing countries. However, due to multiple barriers and lack of effective polices, energy efficiency in dispersed energy end-use sectors has not been effectively put into practice. The new NAMA framework described in this paper is designed to fulfill the demand for public policies and public sector investment in developing countries and thereby boost private sector investment through project based market mechanisms, such as CDM. The new NAMA framework is designed as a need-based mechanism which effectively considers the conditions of each developing country. The building sector is used as an example to demonstrate how NAMA measures can be registered and implemented. The described new NAMA framework has the ability to interface efficiently with Kyoto Protocol mechanisms and to facilitate a systematic uptake for GHG emission reduction investment projects. This is an essential step to achieve the global climate change mitigation target and support sustainable development in developing countries.

  10. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  11. Green corridor : energy efficiency initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, M.; Strickland, R.; Harding, N. [Windsor Univ., ON (Canada)

    2005-07-01

    This presentation discussed environmental sustainability using alternative energy technologies. It discussed Ecohouse, which is a house designed using conventional and inventive products and techniques to represent an eco-efficient model for living, a more sustainable house, demonstrating sustainable technologies in action and setting a new standard for resource efficiency in Windsor. The presentation provided a building analysis and discussed the following: geothermal heating; distributive power; green roof; net metering; grey water plumbing; solar water heating; passive lighting; energy efficient lighting and geothermal heating and cooling. It also discussed opportunities for innovation, namely: greenhouse; composting toilets; alternative insulation; net metering; solar arrays; hydroponics; and expansion of the house. Also discussed were a nature bridge, an underwater electric kite, and a vertically aerodynamic turbine. The benefits of renewable energy, small hydro power potential, and instream energy generation technology were presented. 9 refs., figs.

  12. Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis

    Science.gov (United States)

    Mensi, Walid; Tiwari, Aviral Kumar; Yoon, Seong-Min

    2017-04-01

    This paper estimates the weak-form efficiency of Islamic stock markets using 10 sectoral stock indices (basic materials, consumer services, consumer goods, energy, financials, health care, industrials, technology, telecommunication, and utilities). The results based on the multifractal detrended fluctuation analysis (MF-DFA) approach show time-varying efficiency for the sectoral stock markets. Moreover, we find that they tend to show high efficiency in the long term but moderate efficiency in the short term, and that these markets become less efficient after the onset of the global financial crisis. These results have several significant implications in terms of asset allocation for investors dealing with Islamic markets.

  13. A Systemic Perspective on Innovation from Energy Efficiency Policy efforts

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    In order to reduce climate change, resource scarcity and other global environmental issues major increases in energy efficiency are necessary throughout our energy system. Despite this daunting outlook and the fact that energy efficiency in most instances makes economic and environmental sense...... efficiency innovation activities where market demand and policy efforts appear to have the most impact. The thesis also goes in depth with a single sector to describe the complexities of innovation processes in energy efficiency and the noticeable role of policy. Overall the doctoral thesis provides...

  14. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  15. Energy conservation in China: Key provincial sectors at two-digit level

    International Nuclear Information System (INIS)

    Liao, Hua; Du, Jian; Wei, Yi-Ming

    2013-01-01

    Highlights: ► We identify the keys for energy conversation across China’s 31 provinces × 65 sectors. ► The results are visualized in map and matrix tables, and easy for use. ► 39 Industrial sectors by province are classified into three categories for conservation. ► There is large energy wasting in the public management sector. ► There are both urban–rural gap and provincial inequality on electricity consumption. - Abstract: In March 2011, China’s central government set a new challenging target of reducing its energy intensity by 16% during 2011–2015, after it had achieved a reduction of 19.1% during 2006–2010. And this new target was assigned to provincial authorities in August 2011. However, China’s provincial energy-economic developments are unbalanced and different provinces have different key sectors for energy conservation. Most previous studies focused on provincial energy efficiency at the aggregate level, or the three-industry level (or one-digit level). However, whether for policy decision or academic research, it is necessary to further subdivide the sectors. In this paper, we use three indicators (Gini Coefficient, energy consumption share and energy intensity) to compare provincial energy conservation potentials at the two-digit sector level. To our knowledge, this paper is the first one to identify the keys for energy conversation across the 31 provinces × 65 sectors. And the results are shown in visualized maps and matrix tables to help identify the key province × sectors for energy conservation easier. This also helps the central and provincial governments to distinguish key sectors when they monitor the energy conservation progress

  16. Role of executive agencies for energy efficiency with a view on activities of Serbian Energy Efficiency Agency

    Directory of Open Access Journals (Sweden)

    Kovačić Bojan J.

    2012-01-01

    Full Text Available Many countries, particularly in Europe, have executive energy efficiency agencies at national, regional and local levels that are organized in different ways. For all of them, it is common that there are existing strategic needs in their countries for enhancement of conditions and measures for rational use of energy and fuels. Serbian Energy Efficiency Agency was established in 2002 within the reform of the energy sector in Serbia and its current status was defined in 2004 by the Energy Law. It contributes to the improvement of social responsibility towards energy in all structures of the state and society, by proposing energy efficiency incentives, promoting importance of energy efficiency, as well as by managing energy efficiency and renewable energy programs and projects.

  17. Renewable and recovery energies for each industry sector

    International Nuclear Information System (INIS)

    Petitot, Pauline

    2018-01-01

    The French agency of environment and energy management (Ademe) has made available to the industrialists, a study about the proper choice of renewable and recovery energies capable to meet the energy and heat needs of their facilities. This article summarises in a table, sector by sector and for each renewable and recovery energy source, the capability of this energy source to supply part or the overall energy needs of some elementary industrial processes. Indication is given about the capability of an energy source to produce electricity as well

  18. Potential Evaluation of Energy Supply System in Grid Power System, Commercial, and Residential Sectors by Minimizing Energy Cost

    Science.gov (United States)

    Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao

    If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.

  19. Learning energy efficiency: experience curves for household appliances and space heating, cooling, and lighting technologies

    NARCIS (Netherlands)

    Weiss, M.; Junginger, H.M.; Patel, M.K.

    2008-01-01

    Improving demand side energy efficiency is an important strategy for establishing a sustainable energy system. Large potentials for energy efficiency improvements exist in the residential and commercial buildings sector. This sector currently accounts for almost 40% of the European Union’s (EU)

  20. The energy sector in Chile: An introductory outlook

    International Nuclear Information System (INIS)

    1991-10-01

    After an introduction on Chilean energy policy, governmental structure in the energy sector, and foreign investment regulations, descriptions and analyses are provided of the main energy sectors in Chile: petroleum, electric power, natural gas, coal, and non-traditional energy sources. The descriptions include a general overview, government policies, current legislation, incentives and restrictions to energy production, organizations that have a bearing on policy design, and the role of the particular sector in the national economy. The analyses outline the current and possible future state of activity in each sector and provide an indication of areas of interest and business opportunities for Canadian investors. A directory is included of public organizations and other entities related to energy. 12 refs, 1 fig., 9 tabs

  1. Contribution to the strategy of energy efficiency

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2003-01-01

    An explanation for the greenhouse effect, i.e.global warming and reasons which contribute to this effect. Greenhouse gasses (GHG) and GWP (Global Warming Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocol and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its resource, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Original)

  2. Acquits communautaire in quality management in the energy sector -Central and Eastern European Countries

    International Nuclear Information System (INIS)

    Ristikj, Julija

    1997-01-01

    Energy is considered as one of the main infrastructure components, and efficient energy sectors are corner stones for the economic growth of the Central and Eastern European Countries on their way towards gaining EU membership. Therefore, energy is considered as one of the main directions of action within the PHARE Programme with trans-European dimensions. Five years ago started the implementation of the PHARE Multi-country Energy Programme, the efforts of which have been oriented to three main strategic axes: energy policy, energy supply, as well as energy efficiency and environment. (author)

  3. Worldwide trends in energy use and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Improvements in energy efficiency over the past three decades have played a key role in limiting global increases in energy use and CO{sub 2} emissions. For IEA countries, energy efficiency gains since 1990 have led to annual energy savings of more than 16 EJ in 2005 and 1.3 Gt of avoided CO{sub 2} emissions. However, the recent rate of efficiency improvement has been much lower than in the past. The good news is that a large potential remains for further energy and CO{sub 2} savings across all sectors. In industry alone, the application of proven technologies and best practices on a global scale could save between 1.9 Gt and 3.2 Gt of CO{sub 2} emissions per year. In public power generation, if all countries produced electricity at current best practice levels, CO{sub 2} savings would be between 1.8 Gt and 2.5 Gt. 40 figs., 5 tabs., 3 annexes.

  4. An application of energy and exergy analysis in residential sector of Malaysia

    International Nuclear Information System (INIS)

    Saidur, R.; Masjuki, H.H.; Jamaluddin, M.Y.

    2007-01-01

    In this paper, the useful concept of energy and exergy utilization is defined, analyzed and applied to the residential sector of Malaysia by taking into account the energy and exergy flows for a period of 8 years from the year 1997 to 2004. The energy and exergy efficiencies are determined for the devices used in this sector and found to be 70% and 28%, respectively. Energy and exergy flow diagrams for the overall efficiencies of Malaysian residential sector are also illustrated in this paper. It is found that the current methodology applied in Saudi Arabia is suitable to analyze energy and exergy use in Malaysian residential sector. It has been found that the exergy efficiency of the Malaysian residential sector appears to be much lower than its corresponding energy efficiency. It has been observed that about 21% of total exergy losses are caused by refrigerator-freezer and 12% of total loss is caused by air conditioner. Washing machine, fan and rice cooker contribute about 11%, 10% and 8% of total exergy losses, respectively

  5. Technical efficiency of Spanish electrical sector: analysis of 1998-2001 period

    International Nuclear Information System (INIS)

    Gutierrez Moya, E.; Arevalo Quijada, M. T.

    2007-01-01

    The aim of this article is to analyse the technical efficiency of the energy Spanish sector in the course of the stage of liberalization (1998-2001). The study uses the non parametric approach of DEA (Data Envelopment Analysis) to derive Malaquist productivity indexes. In the study there is revealed the improvement of productivity of the mentioned companies, as well as the major differentiation between electrical considered companies. (Author) 23 refs

  6. Biomass-based energy carriers in the transportation sector

    International Nuclear Information System (INIS)

    Johansson, Bengt.

    1995-03-01

    The purpose of this report is to study the technical and economic prerequisites to attain reduced carbon dioxide emissions through the use of biomass-based energy carriers in the transportation sector, and to study other environmental impacts resulting from an increased use of biomass-based energy carriers. CO 2 emission reduction per unit arable and forest land used for biomass production (kg CO 2 /ha,year) and costs for CO 2 emission reduction (SEK/kg CO 2 ) are estimated for the substitution of gasoline and diesel with rape methyl ester, biogas from lucerne, ethanol from wheat and ethanol, methanol, hydrogen and electricity from Salix and logging residues. Of the studied energy carriers, those based on Salix provide the largest CO 2 emission reduction. In a medium long perspective, the costs for CO 2 emission reduction seem to be lowest for methanol from Salix and logging residues. The use of fuel cell vehicles, using methanol or hydrogen as energy carriers, can in a longer perspective provide more energy efficient utilization of biomass for transportation than the use of internal combustion engine vehicles. 136 refs, 12 figs, 25 tabs

  7. Energy efficiency in buildings. Yearbook 2016

    International Nuclear Information System (INIS)

    Poeschk, Juergen

    2016-01-01

    Viewpoints, concepts and projects of policy and practice are the main focus of the Yearbook, which has become the standard work of housing and real estate sector in Germany in the 2016th. The energy transition has long been only a electricity transition. ''Building'' has become a topic of increasing concern to the political and public debate - and quite controversial. In this yearbook attempt is made to illuminate the topic of energy efficiency in buildings in its complexity. The more than 30 contributions by renowned specialist authors are divided into the following chapters: Political strategies and positions; studies and concepts; energy research for buildings and districts; models from practice; tenant electricity: concepts and projects, human factor: information - motivation - behavior change. [de

  8. The energy sector changes the face of the world

    International Nuclear Information System (INIS)

    Ludrovsky, P.

    2012-01-01

    Energy systems are becoming more and more complicated every day. The growing number of wind and solar power plants is changing the structure of grids in a fundamental way. However, energy production from fossil fuels still remains of the greatest importance within the energy sector. Old and new energy sources must learn to coexist together. (Authors)

  9. Energy and Water Efficiency on Campus | NREL

    Science.gov (United States)

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  10. Energy Efficient Hydraulic Hybrid Drives

    OpenAIRE

    Rydberg, Karl-Erik

    2009-01-01

    Energy efficiency of propulsion systems for cars, trucks and construction machineries has become one of the most important topics in today’s mobile system design, mainly because of increased fuel costs and new regulations about engine emissions, which is needed to save the environment. To meet the increased requirements on higher efficiency and better functionality, components and systems have been developed over the years. For the last ten years the development of hybrid systems can be divid...

  11. Energy Efficient Drivepower: An Overview.

    Energy Technology Data Exchange (ETDEWEB)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  12. Efficient Use of Energy: as a Life Style

    Directory of Open Access Journals (Sweden)

    Omneya Sabry

    2017-06-01

    Full Text Available Since the Early Eighties of the last Century, the Egyptian Government considered Energy Conservation as one of the main pillars of Energy Planning in Egypt, based on the fact that investing in Energy Efficiency is more cost effective than in constructing new Power Plants.Energy Efficiency (EE Programs financed by International Financing Institutions focused at that time, on Energy Audits in Industrial Buildings, Power Plants, Electricity Transmission and in some other Governmental Buildings. Recommendations for Efficient Use of Energy and reducing energy consumption at those entities were implemented by the Use of Efficient Lamps, Improving Power Factor, Waste Heat Recovery, Thermal Insulation, Efficient Firing in Boilers…. Consequently, High Quality Energy Efficient Products were competing in the market with others not having the same advantage.Although the above mentioned EE Programs included Awareness Campaigns for all sectors but the consumption in Residential Sector remained high and increased more and more ,exceeding even the consumption in Industrial Sector specially that the prices of electricity were highly subsidized.For that reason, more awareness campaigns (Lectures, Brochures, Audio and visual advertisement and more incentives were offered by Ministry of Electricity and Renewable Energy (MoERE to consumers in the Residential Sector. Meanwhile, a Program to reduce gradually subsidies on electricity prices started aiming to push consumers to follow energy efficiency instructions and buy efficient appliances especially while they were suffering from electricity cut for about two years.To prepare for Market Transformation to efficient appliances the Government, issued the Standard Specifications and Labeling for Energy Efficient Appliances (lamps, refrigerators, freezers, washing machines, air conditioners, dish washers and others. Meanwhile, these Standards are supported with Accredited Testing Labs in National Entities (NREA

  13. Energy efficiency program through exchange of air conditioners in residential sector of Manaus city: a concrete experience; Programa de eficiencia energetica atraves da troca de condicionadores de ar no setor residencial de Manaus: uma experiencia concreta

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fabricio Rodrigues; Goncalves, Ana Catarina Lima Chaves; Cartaxo, Elizabeth Ferreira; Gomes, Hugo Miguel Oliveira; Nascimento, Nilton Correa; Inui, Raul Eiji; Guedes, Ricardo Augusto de Morais; Benchaya, Roberto Tavares [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil)

    2004-07-01

    The present review attempts to evaluate the importance of efficient equipment diffusion in reducing energy consumption, based upon the Study-case of an air conditioned exchange program in Manaus city of Amazonas. In spite of the existence, in the actual market, of efficient technology, it has been, yet, badly diffused, mostly due to economical and informative laps. Therefore, once tried to demonstrate the potential benefits, in technical gains, of energy efficiency offered by efficient Air conditioned equipment, through a plan that favors the consumer's participation as an active contributor in the dissemination process of efficient technology, and a following program for efficiency evaluation, beside a tributary evaluation proposal, so that technology becomes accessible to the general population, attempting its benefices. In addition, the environmental benefits of that specific proposal are analyzed, trough the developed recycling program. (author)

  14. The ECVET toolkit customization for the nuclear energy sector

    International Nuclear Information System (INIS)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von

    2015-01-01

    As part of its support to the introduction of ECVET in the nuclear energy sector, the Institute for Energy and Transport (IET) of the Joint Research Centre (JRC), European Commission (EC), through the ECVET Team of the European Human Resources Observatory for the Nuclear energy sector (EHRO-N), developed in the last six years (2009-2014) a sectorial approach and a road map for ECVET implementation in the nuclear energy sector. In order to observe the road map for the ECVET implementation, the toolkit customization for nuclear energy sector is required. This article describes the outcomes of the toolkit customization, based on ECVET approach, for nuclear qualifications design. The process of the toolkit customization took into account the fact that nuclear qualifications are mostly of higher levels (five and above) of the European Qualifications Framework.

  15. The ECVET toolkit customization for the nuclear energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Ceclan, Mihail; Ramos, Cesar Chenel; Estorff, Ulrike von [European Commissi