WorldWideScience

Sample records for secondary structure type

  1. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Science.gov (United States)

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  2. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  3. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Amino acid code of protein secondary structure.

    Science.gov (United States)

    Shestopalov, B V

    2003-01-01

    The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three

  5. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  6. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  7. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  8. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    Science.gov (United States)

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. General enumeration of RNA secondary structures based on new ...

    African Journals Online (AJOL)

    Crick base pairs between AU and GC. Based on the new representation, this paper also computes the number of various types of constrained secondary structures taking the minimum stack length 1 and minimum size m for each bonding loop as ...

  10. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    Science.gov (United States)

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    Science.gov (United States)

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  12. A folding algorithm for extended RNA secondary structures.

    Science.gov (United States)

    Höner zu Siederdissen, Christian; Bernhart, Stephan H; Stadler, Peter F; Hofacker, Ivo L

    2011-07-01

    RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/.

  13. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  14. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Science.gov (United States)

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  15. Computing the partition function for kinetically trapped RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  16. A semi-supervised learning approach for RNA secondary structure prediction.

    Science.gov (United States)

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  18. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  19. An image processing approach to computing distances between RNA secondary structures dot plots

    Directory of Open Access Journals (Sweden)

    Sapiro Guillermo

    2009-02-01

    Full Text Available Abstract Background Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods. Results We have developed a new metric dubbed 'DoPloCompare', which compares two RNA structures. The method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two diagrams and motivated by image processing, the distance is based on a combination of histogram correlations and a geometrical distance measure. We introduce, describe, and illustrate the procedure by two applications that utilize this metric on RNA sequences. The first application is the RNA design problem, where the goal is to find the nucleotide sequence for a given secondary structure. Examples where our proposed distance measure outperforms others are given. The second application locates peculiar point mutations that induce significant structural alternations relative to the wild type predicted secondary structure. The approach reported in the past to solve this problem was tested on several RNA sequences with known secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on each piece the prediction conveys similarity to the experimental result. Our newly proposed distance measure shows benefit in this problem as well when compared to standard methods used for assessing

  20. Computational design of metal-organic frameworks with paddlewheel-type secondary building units

    Science.gov (United States)

    Schwingenschlogl, Udo; Peskov, Maxim V.; Masghouni, Nejib

    We employ the TOPOS package to study 697 coordination polymers containing paddlewheel-type secondary building units. The underlying nets are analyzed and 3 novel nets are chosen as potential topologies for paddlewheel-type metal organic frameworks (MOFs). Dicarboxylate linkers are used to build basic structures for novel isoreticular MOF series, aiming at relatively compact structures with a low number of atoms per unit cell. The structures are optimized using density functional theory. Afterwards the Grand Canonical Monte Carlo approach is employed to generate adsorption isotherms for CO2, CO, and CH4 molecules. We utilize the universal forcefield for simulating the interaction between the molecules and hosting MOF. The diffusion behavior of the molecules inside the MOFs is analyzed by molecular dynamics simulations.

  1. Effect of Family Type on Secondary School Students\\' Performance ...

    African Journals Online (AJOL)

    This study investigated the effect of family type on Secondary School students\\' performance in physics in Ilorin metropolis. The sample comprised one hundred Senior Secondary II students from four schools in Ilorin metropolis. The instrument for the study titled \\"Effect of Family type on Students\\' Performance in Physics ...

  2. Ensemble-based prediction of RNA secondary structures.

    Science.gov (United States)

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between

  3. ncRNA consensus secondary structure derivation using grammar strings.

    Science.gov (United States)

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  4. Nucleic acid secondary structure prediction and display.

    OpenAIRE

    Stüber, K

    1986-01-01

    A set of programs has been developed for the prediction and display of nucleic acid secondary structures. Information from experimental data can be used to restrict or enforce secondary structural elements. The predictions can be displayed either on normal line printers or on graphic devices like plotters or graphic terminals.

  5. DNA secondary structures: stability and function of G-quadruplex structures

    Science.gov (United States)

    Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.

    2013-01-01

    In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257

  6. Web-Beagle: a web server for the alignment of RNA secondary structures.

    Science.gov (United States)

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-07-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Paper-based device for rapid typing of secondary human blood groups.

    Science.gov (United States)

    Li, Miaosi; Then, Whui Lyn; Li, Lizi; Shen, Wei

    2014-01-01

    We report the use of bioactive paper for typing of secondary human blood groups. Our recent work on using bioactive paper for human blood typing has led to the discovery of a new method for identifying haemagglutination of red blood cells. The primary human blood groups, i.e., ABO and RhD groups, have been successfully typed with this method. Clinically, however, many secondary blood groups can also cause fatal blood transfusion accidents, despite the fact that the haemagglutination reactions of secondary blood groups are generally weaker than those of the primary blood groups. We describe the design of a user-friendly sensor for rapid typing of secondary blood groups using bioactive paper. We also present mechanistic insights into interactions between secondary blood group antibodies and red blood cells obtained using confocal microscopy. Haemagglutination patterns under different conditions are revealed for optimization of the assay conditions.

  8. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  9. Prediction of the Secondary Structure of HIV-1 gp120

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design......The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV...

  10. RNA secondary structure image - fRNAdb | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us fRNAdb RNA secondary structure image Data detail Data name RNA secondary structure image DOI... 10.18908/lsdba.nbdc00452-005 Description of data contents RNA secondary structure images - png.zip: RNA secondary structure image...s (PNG) - pdf.zip: RNA secondary structure images (PDF) - thumbnail.zip: Thumbnails of... RNA secondary structure images Data file File name: RNA_secondary_structure_image... File URL: ftp://ftp.biosciencedbc.jp/archive/frnadb/LATEST/RNA_secondary_structure_image File size: 9.6 GB

  11. A method for rapid similarity analysis of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Liu Na

    2006-11-01

    Full Text Available Abstract Background Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures. Results Three sets of real data have been used as input for the example applications. Set I includes the structures from 5S rRNAs. Set II includes the secondary structures from RNase P and RNase MRP. Set III includes the structures from 16S rRNAs. Reasonable phylogenetic trees are derived for these three sets of data by using our method. Moreover, our program runs faster as compared to some existing ones. Conclusion The famous Lempel-Ziv algorithm can efficiently extract the information on repeated patterns encoded in RNA secondary structures and makes our method an alternative to analyze the similarity of RNA secondary structures. This method will also be useful to researchers who are interested in evolutionary analysis.

  12. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    Science.gov (United States)

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  13. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  14. RNAstructure: software for RNA secondary structure prediction and analysis.

    Science.gov (United States)

    Reuter, Jessica S; Mathews, David H

    2010-03-15

    To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.

  15. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  16. Random generation of RNA secondary structures according to native distributions

    Directory of Open Access Journals (Sweden)

    Nebel Markus E

    2011-10-01

    logarithmized probabilities. Conclusion A number of experimental results shows that our random generation method produces realistic output, at least with respect to the appearance of the different structural motifs. The algorithm is available as a webservice at http://wwwagak.cs.uni-kl.de/NonUniRandGen and can be used for generating random secondary structures of any specified RNA type. A link to download an implementation of our method (in Wolfram Mathematica can be found there, too.

  17. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.

    Science.gov (United States)

    Hagio, Taichi; Sakuraba, Shun; Iwakiri, Junichi; Mori, Ryota; Asai, Kiyoshi

    2018-02-19

    It is known that functional RNAs often switch their functions by forming different secondary structures. Popular tools for RNA secondary structures prediction, however, predict the single 'best' structures, and do not produce alternative structures. There are bioinformatics tools to predict suboptimal structures, but it is difficult to detect which alternative secondary structures are essential. We proposed a new computational method to detect essential alternative secondary structures from RNA sequences by decomposing the base-pairing probability matrix. The decomposition is calculated by a newly implemented software tool, RintW, which efficiently computes the base-pairing probability distributions over the Hamming distance from arbitrary reference secondary structures. The proposed approach has been demonstrated on ROSE element RNA thermometer sequence and Lysine RNA ribo-switch, showing that the proposed approach captures conformational changes in secondary structures. We have shown that alternative secondary structures are captured by decomposing base-paring probabilities over Hamming distance. Source code is available from http://www.ncRNA.org/RintW .

  18. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  19. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  20. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  1. Monte-Carlo validation of secondary sodium activation in a pool-type LMFBR

    International Nuclear Information System (INIS)

    Plamiotti, G.; Rado, V.; Salvatores, M.

    1980-09-01

    The secondary sodium activation in a pool-type LMFBR is the main parameter to be accurately evaluated in the shield design. In the present work a complete two dimensional description of the system, including core, shielding and sodium up to Heat Exchangers, is coupled to local Heat Exchanger Monte-Carlo calculations. This refined calculation is used to deduce a simplified method to take into account the coupling of radial propagation in the Heat Exchanger and its finite cylindrical structure

  2. Evolving stochastic context-free grammars for RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Anderson, James WJ; Tataru, Paula Cristina; Stains, Joe

    2012-01-01

    Background Stochastic Context-Free Grammars (SCFGs) were applied successfully to RNA secondary structure prediction in the early 90s, and used in combination with comparative methods in the late 90s. The set of SCFGs potentially useful for RNA secondary structure prediction is very large, but a few...... to structure prediction as has been previously suggested. Results These search techniques were applied to predict RNA secondary structure on a maximal data set and revealed new and interesting grammars, though none are dramatically better than classic grammars. In general, results showed that many grammars...... with quite different structure could have very similar predictive ability. Many ambiguous grammars were found which were at least as effective as the best current unambiguous grammars. Conclusions Overall the method of evolving SCFGs for RNA secondary structure prediction proved effective in finding many...

  3. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  4. Personality Type and Academic Achievement of Secondary School Students

    Science.gov (United States)

    Lawrence, Arul A. S.; Lawrence, John A.

    2014-01-01

    Personality is the man. The successful living of an individual, as a man, depends to a large extent on the academic achievement of that individual, as a student. This article attempts to find out personality type, academic achievement of secondary school students and relationship between them by selecting a sample of 300 secondary school students…

  5. DCJ-RNA - double cut and join for RNA secondary structures.

    Science.gov (United States)

    Badr, Ghada H; Al-Aqel, Haifa A

    2017-10-16

    Genome rearrangements are essential processes for evolution and are responsible for existing varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the minimum number of inversions that are necessary to transform one genome into another; this allows for genome sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the same functionality. This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well as to report an optimum scenario that can increase the similarity between the two structures. The algorithm calculates the distance between structures and reports a scenario based on the minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be used to measure the distance between the two structures. This can help identify the common functionalities between different species.

  6. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  7. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  8. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    Science.gov (United States)

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  9. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  10. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  11. Secondary structural analyses of ITS1 in Paramecium.

    Science.gov (United States)

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  12. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2005-09-01

    Full Text Available Abstract Background A number of methods are now available to perform automatic assignment of periodic secondary structures from atomic coordinates, based on different characteristics of the secondary structures. In general these methods exhibit a broad consensus as to the location of most helix and strand core segments in protein structures. However the termini of the segments are often ill-defined and it is difficult to decide unambiguously which residues at the edge of the segments have to be included. In addition, there is a "twilight zone" where secondary structure segments depart significantly from the idealized models of Pauling and Corey. For these segments, one has to decide whether the observed structural variations are merely distorsions or whether they constitute a break in the secondary structure. Methods To address these problems, we have developed a method for secondary structure assignment, called KAKSI. Assignments made by KAKSI are compared with assignments given by DSSP, STRIDE, XTLSSTR, PSEA and SECSTR, as well as secondary structures found in PDB files, on 4 datasets (X-ray structures with different resolution range, NMR structures. Results A detailed comparison of KAKSI assignments with those of STRIDE and PSEA reveals that KAKSI assigns slightly longer helices and strands than STRIDE in case of one-to-one correspondence between the segments. However, KAKSI tends also to favor the assignment of several short helices when STRIDE and PSEA assign longer, kinked, helices. Helices assigned by KAKSI have geometrical characteristics close to those described in the PDB. They are more linear than helices assigned by other methods. The same tendency to split long segments is observed for strands, although less systematically. We present a number of cases of secondary structure assignments that illustrate this behavior. Conclusion Our method provides valuable assignments which favor the regularity of secondary structure segments.

  13. RNA secondary structure prediction using soft computing.

    Science.gov (United States)

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  14. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Science.gov (United States)

    Shi, Jieming; Li, Xi; Dong, Min; Graham, Mitchell; Yadav, Nehul; Liang, Chun

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  15. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    Science.gov (United States)

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  16. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    Jieming Shi

    Full Text Available Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  17. Prediction of RNA secondary structure using generalized centroid estimators.

    Science.gov (United States)

    Hamada, Michiaki; Kiryu, Hisanori; Sato, Kengo; Mituyama, Toutai; Asai, Kiyoshi

    2009-02-15

    Recent studies have shown that the methods for predicting secondary structures of RNAs on the basis of posterior decoding of the base-pairing probabilities has an advantage with respect to prediction accuracy over the conventionally utilized minimum free energy methods. However, there is room for improvement in the objective functions presented in previous studies, which are maximized in the posterior decoding with respect to the accuracy measures for secondary structures. We propose novel estimators which improve the accuracy of secondary structure prediction of RNAs. The proposed estimators maximize an objective function which is the weighted sum of the expected number of the true positives and that of the true negatives of the base pairs. The proposed estimators are also improved versions of the ones used in previous works, namely CONTRAfold for secondary structure prediction from a single RNA sequence and McCaskill-MEA for common secondary structure prediction from multiple alignments of RNA sequences. We clarify the relations between the proposed estimators and the estimators presented in previous works, and theoretically show that the previous estimators include additional unnecessary terms in the evaluation measures with respect to the accuracy. Furthermore, computational experiments confirm the theoretical analysis by indicating improvement in the empirical accuracy. The proposed estimators represent extensions of the centroid estimators proposed in Ding et al. and Carvalho and Lawrence, and are applicable to a wide variety of problems in bioinformatics. Supporting information and the CentroidFold software are available online at: http://www.ncrna.org/software/centroidfold/.

  18. Structure elucidation of secondary natural products

    International Nuclear Information System (INIS)

    Seger, C.

    2001-06-01

    The presented thesis deals with the structure elucidation of secondary natural products. Most of the compounds under investigation were terpenes, especially triterpenes, alkaloids and stilbenoids. Besides characterizing a multitude of already known and also new compounds, it was possible to detect and correct wrongly assigned literature data. The methodological aspect of this thesis lies - beside in the utilization of modern 2D NMR spectroscopy - in the evaluation of computer assisted structure elucidation (CASE) techniques in the course of spectroscopy supported structure elucidation processes. (author)

  19. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  20. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    Science.gov (United States)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  1. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  2. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases

    Directory of Open Access Journals (Sweden)

    Sudha Sharma

    2011-01-01

    Full Text Available In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.

  3. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    Science.gov (United States)

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in

  4. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  5. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  6. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  7. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  8. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  9. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  10. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  11. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  12. School environment and school type as correlates of secondary ...

    African Journals Online (AJOL)

    Indiscipline among secondary school students has been the topic of most intellectual debates worldwide because it's adverse effects on educational achievement and performance. This research therefore examines the influence of school types and school environment (facilities) on students' disciplinary behavior in some ...

  13. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    Science.gov (United States)

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  15. A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    Science.gov (United States)

    Al-Khatib, Ra’ed M.; Abdullah, Rosni; Rashid, Nur’Aini Abdul

    2010-01-01

    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods. PMID:20458364

  16. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  17. Nuclear fuel assembly incorporating primary and secondary structural support members

    International Nuclear Information System (INIS)

    Carlson, W.R.; Gjertsen, R.K.; Miller, J.V.

    1987-01-01

    A nuclear fuel assembly, comprising: (a) an upper end structure; (b) a lower end structure; (c) elongated primary structural members extending longitudinally between and rigidly interconnecting the upper and lower end structures, the upper and lower end structures and primary structural members together forming a rigid structural skeleton of the fuel assembly; (d) transverse grids supported on the primary structural members at axially spaced locations therealong between the upper and lower end structures; (e) fuel rods extending through and supported by the grids between the upper and lower end structures so as to extend in generally side-by-side spaced relation to one another and to the primary structural members; and (f) elongated secondary structural members extending longitudinally between but unconnected with the upper and lower end structures, the secondary structural members extending through and rigidly interconnected with the grids to extend in generally side-by-side spaced relation to one another, to the fuel rods and to the primary structural members so as to bolster the stiffness of the structural skeleton of the fuel assembly

  18. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  19. Integrating chemical footprinting data into RNA secondary structure prediction.

    Directory of Open Access Journals (Sweden)

    Kourosh Zarringhalam

    Full Text Available Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension, yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints, which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be 'correct', in as much as the shape data is 'correct'. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.

  20. Global Analysis of RNA Secondary Structure in Two Metazoans

    Directory of Open Access Journals (Sweden)

    Fan Li

    2012-01-01

    Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.

  1. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  2. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Chen Chun

    2008-03-01

    Full Text Available Abstract Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1 present a robust and effective way for RNA structural data compression; (2 design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool

  3. Secondary Education in the European Union: Structures, Organisation and Administration.

    Science.gov (United States)

    EURYDICE European Unit, Brussels (Belgium).

    This study examines the existing secondary education structures of the European Union member nations, the organization of education, teacher training, and the way in which secondary education is managed in Europe today. The three European Free Trade Association/European Economic Area (EFTA/EEC) countries (Iceland, Liechtenstein, and Norway) also…

  4. A Reference Database for Circular Dichroism Spectroscopy Covering Fold and Secondary Structure Space

    International Nuclear Information System (INIS)

    Lees, J.; Miles, A.; Wien, F.; Wallace, B.

    2006-01-01

    Circular Dichroism (CD) spectroscopy is a long-established technique for studying protein secondary structures in solution. Empirical analyses of CD data rely on the availability of reference datasets comprised of far-UV CD spectra of proteins whose crystal structures have been determined. This article reports on the creation of a new reference dataset which effectively covers both secondary structure and fold space, and uses the higher information content available in synchrotron radiation circular dichroism (SRCD) spectra to more accurately predict secondary structure than has been possible with existing reference datasets. It also examines the effects of wavelength range, structural redundancy and different means of categorizing secondary structures on the accuracy of the analyses. In addition, it describes a novel use of hierarchical cluster analyses to identify protein relatedness based on spectral properties alone. The databases are shown to be applicable in both conventional CD and SRCD spectroscopic analyses of proteins. Hence, by combining new bioinformatics and biophysical methods, a database has been produced that should have wide applicability as a tool for structural molecular biology

  5. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  6. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  7. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M

    2013-04-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.

  8. Mathematical and Biological Modelling of RNA Secondary Structure and Its Effects on Gene Expression

    Directory of Open Access Journals (Sweden)

    T. A. Hughes

    2006-01-01

    Full Text Available Secondary structures within the 5′ untranslated regions of messenger RNAs can have profound effects on the efficiency of translation of their messages and thereby on gene expression. Consequently they can act as important regulatory motifs in both physiological and pathological settings. Current approaches to predicting the secondary structure of these RNA sequences find the structure with the global-minimum free energy. However, since RNA folds progressively from the 5′ end when synthesised or released from the translational machinery, this may not be the most probable structure. We discuss secondary structure prediction based on local-minimisation of free energy with thermodynamic fluctuations as nucleotides are added to the 3′ end and show that these can result in different secondary structures. We also discuss approaches for studying the extent of the translational inhibition specified by structures within the 5′ untranslated region.

  9. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  10. RNA secondary structure diagrams for very large molecules: RNAfdl

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.

    2013-01-01

    There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...

  11. THE PECULIARITIES OF NICKNAME STRUCTURE IN THE VICINITY OF VELIUONA: SECONDARY NICKNAMES

    Directory of Open Access Journals (Sweden)

    Ilona Mickienė

    2014-10-01

    Full Text Available The paper analyses 782 nicknames that were recorded at Veliuona vicinity during the project of the Institute of the Lithuanian Language “Modern Research of Geolinguistics in Lithuania: Optimisation of Network of Points and Interactive Spread of Dialectal Information”. The paper aims to identify the characteristic attributes of nickname structure. The analysis of the relations in derivation, i. e., tentatively distinguishing the derivation base and formant is the only way to talk about common word derivation. While researching the nicknames it is difficult to find such a universal criterion in derivation which would enable the distribution of nicknames into the primary and the secondary ones due to the fact that when a nickname and its appellative derivation motivation coincides the confusion arises. Thus, the paper invokes the structural analysis of nicknames to find universal criteria that would enable the distinction of nicknames into the primary and the secondary. The article eliminates the primary nicknames that do not differ from the motivational word, 241 secondary nickname is being researched ant structurally analysed. The structural analysis discloses a proper structure and common words being selected for nickname creation. Structurally analysing the secondary nicknames, the nicknames with suffix, inflection, mixed structure, compound, composite and phrasal nicknames were distinguished. It was determined that in vacinity of Veliuona the nicknames with suffix and inflection are mostly used.

  12. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    Science.gov (United States)

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  13. Irradiation effects on secondary structure of protein induced by keV ions

    International Nuclear Information System (INIS)

    Cui, F.Z.; Lin, Y.B.; Zhang, D.M.; Tian, M.B.

    2001-01-01

    Protein secondary structure changes by low-energy ion irradiation are reported for the first time. The selected system is 30 keV N + irradiation on bovine serum albumin (BSA). After irradiation at increasing fluences from 1.0x10 15 to 2.5x10 16 ion/cm 2 , Fourier transform infrared spectra analysis was conducted. It was found that the secondary structures of BSA molecules were very sensitive to ion irradiation. Secondary conformations showed different trends of change during irradiation. With the increase of ion fluence from 0 to 2.5x10 16 ion/cm 2 , the fraction of α-helix and β-turns decreased from 17 to 12%, and from 40 to 31%, respectively, while that of random coil and β-sheet structure increased from 18 to 27%, and from 25 to 30%, respectively. Possible explanations for the secondary conformational changes of protein are proposed. (author)

  14. Visualizing RNA Secondary Structure Base Pair Binding Probabilities using Nested Concave Hulls

    OpenAIRE

    Sansen , Joris; Bourqui , Romain; Thebault , Patricia; Allali , Julien; Auber , David

    2015-01-01

    International audience; The challenge 1 of the BIOVIS 2015 design contest consists in designing an intuitive visual depiction of base pairs binding probabilities for secondary structure of ncRNA. Our representation depicts the potential nucleotide pairs binding using nested concave hulls over the computed MFE ncRNA secondary structure. Thus, it allows to identify regions with a high level of uncertainty in the MFE computation and the structures which seem to match to reality.

  15. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  16. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  17. Salient design features of secondary containment structure of Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rahalkar, B.D.

    1975-01-01

    Design of the secondary containment structure for Narora Atomic Power Project is an improvement over the two earlier structures at of Rajasthan and Kalpakkam wherein Candu-type of reactors are involved. The major improvements envisaged are : to limit the leakage through the double containment envelope to 0.1% of volume of the building per day as against 0.1% per hour achieved for earlier stations; to separate heavy water atmosphere from that of light water for effective heavy water recovery; and better man-rem budgetting by limiting inner containment structure upto boiler room floor level and making boiler room area accessible during normal operation for servicing of light water system equipment. Narora Atomic Power Station is located in the Indo-Gangetic alluvial plains in seismically active zone IV. Comprehensive soil investigation, including dynamic properties of soil is required to be undertaken as the foundation level of the containment structure is 17 M below the ground level. The salient results of this investigation relevant to the foundations as well as type of foundation proposed are presented in brief. Double containment concept similar to that adopted for Kalpakkam station is provided for this station also. However, necessary changes in design to withstand large earthquake forces are required to be made. These design problems are discussed in brief. (author)

  18. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2017-08-29

    Residue-residue contacts are key features for accurate de novo protein structure prediction. For the optimal utilization of these predicted contacts in folding proteins accurately, it is important to study the challenges of reconstructing protein structures using true contacts. Because contact-guided protein modeling approach is valuable for predicting the folds of proteins that do not have structural templates, it is necessary for reconstruction studies to focus on hard-to-predict protein structures. Using a data set consisting of 496 structural domains released in recent CASP experiments and a dataset of 150 representative protein structures, in this work, we discuss three techniques to improve the reconstruction accuracy using true contacts - adding secondary structures, increasing contact distance thresholds, and adding non-contacts. We find that reconstruction using secondary structures and contacts can deliver accuracy higher than using full contact maps. Similarly, we demonstrate that non-contacts can improve reconstruction accuracy not only when the used non-contacts are true but also when they are predicted. On the dataset consisting of 150 proteins, we find that by simply using low ranked predicted contacts as non-contacts and adding them as additional restraints, can increase the reconstruction accuracy by 5% when the reconstructed models are evaluated using TM-score. Our findings suggest that secondary structures are invaluable companions of contacts for accurate reconstruction. Confirming some earlier findings, we also find that larger distance thresholds are useful for folding many protein structures which cannot be folded using the standard definition of contacts. Our findings also suggest that for more accurate reconstruction using predicted contacts it is useful to predict contacts at higher distance thresholds (beyond 8 Å) and predict non-contacts.

  19. FTIR study of secondary structure of bovine serum albumin and ovalbumin

    International Nuclear Information System (INIS)

    Abrosimova, K V; Shulenina, O V; Paston, S V

    2016-01-01

    Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation. (paper)

  20. Secondary structures of rRNAs from all three domains of life.

    Directory of Open Access Journals (Sweden)

    Anton S Petrov

    Full Text Available Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2° structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU 23S/28S and small subunit (SSU 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery. Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision.

  1. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... connection between Discrete Mathematics and Compu- tational Molecular Biology (Chen et al, 2005; Hofacker et ... in Computational Molecular Biology. An RNA molecule is described by its sequences of bases ... Here, a mathematical definition of secondary structure is given (Stein and Waterman 1978).

  2. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-04-01

    Full Text Available Abstract Background The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented. Results TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a

  3. Protein 8-class secondary structure prediction using conditional neural fields.

    Science.gov (United States)

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk

    Directory of Open Access Journals (Sweden)

    Geoffrey M. Gray

    2016-12-01

    Full Text Available Solid-state NMR and molecular dynamics (MD simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X, which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X segments and provides further support that these regions are disordered and primarily non-β-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X regions of dragline silks, including β-turns, 310-helicies, and coil structures with a negligible population of α-helix observed.

  5. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  6. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  7. SAAS: Short Amino Acid Sequence - A Promising Protein Secondary Structure Prediction Method of Single Sequence

    Directory of Open Access Journals (Sweden)

    Zhou Yuan Wu

    2013-07-01

    Full Text Available In statistical methods of predicting protein secondary structure, many researchers focus on single amino acid frequencies in α-helices, β-sheets, and so on, or the impact near amino acids on an amino acid forming a secondary structure. But the paper considers a short sequence of amino acids (3, 4, 5 or 6 amino acids as integer, and statistics short sequence's probability forming secondary structure. Also, many researchers select low homologous sequences as statistical database. But this paper select whole PDB database. In this paper we propose a strategy to predict protein secondary structure using simple statistical method. Numerical computation shows that, short amino acids sequence as integer to statistics, which can easy see trend of short sequence forming secondary structure, and it will work well to select large statistical database (whole PDB database without considering homologous, and Q3 accuracy is ca. 74% using this paper proposed simple statistical method, but accuracy of others statistical methods is less than 70%.

  8. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... interesting combinatorial questions (Chen et al., 2005;. Liu, 2006; Schmitt and Waterman 1994; Stein and. Waterman 1978). The research on the enumeration of. RNA secondary structures becomes one of the hot topics in Computational Molecular Biology. An RNA molecule is described by its sequences of.

  9. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Science.gov (United States)

    2010-07-01

    ... and secondary belt-conveyor drives. 75.1101 Section 75.1101 Mineral Resources MINE SAFETY AND HEALTH... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor... be installed at main and secondary belt-conveyor drives. ...

  10. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    Science.gov (United States)

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  11. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism.

    Science.gov (United States)

    Li, Sha Sha; Li, Bao Qiong; Liu, Jin Jin; Lu, Shao Hua; Zhai, Hong Lin

    2018-04-20

    Circular dichroism (CD) spectroscopy is a widely used technique for the evaluation of protein secondary structures that has a significant impact for the understanding of molecular biology. However, the quantitative analysis of protein secondary structures based on CD spectra is still a hard work due to the serious overlap of the spectra corresponding to different structural motifs. Here, Tchebichef image moment (TM) approach is introduced for the first time, which can effectively extract the chemical features in CD spectra for the quantitative analysis of protein secondary structures. The proposed approach was applied to analyze reference set. and the obtained results were evaluated by the strict statistical parameters such as correlation coefficient, cross-validation correlation coefficient and root mean squared error. Compared with several specialized prediction methods, TM approach provided satisfactory results, especially for turns and unordered structures. Our study indicates that TM approach can be regarded as a feasible tool for the analysis of the secondary structures of proteins based on CD spectra. An available TMs package is provided and can be used directly for secondary structures prediction. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  12. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    Science.gov (United States)

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction

  13. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    Directory of Open Access Journals (Sweden)

    Kurgan Lukasz

    2008-10-01

    Full Text Available Abstract Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM values serve as an input to the support vector machine (SVM predictor. Results We show that (1 all four predicted secondary structures are useful; (2 the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3 the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an

  14. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  15. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  16. [Changes in the secondary and tertiary structure of serum albumin in interactions with ligands of various structures].

    Science.gov (United States)

    Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N

    1984-01-01

    High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.

  17. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  18. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    Science.gov (United States)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  19. Evolution of primary and secondary structures in 5S and 5.8S rRNA

    International Nuclear Information System (INIS)

    Curtiss, W.C.

    1986-01-01

    The secondary structure of Bombyx mori 5S rRNA was studied using the sing-strand specific S1 nuclease and the base pair specific cobra venom ribonuclease. The RNA was end-labeled with [ 32 P] at either the 5' or 3' end and sequenced using enzymatic digestion techniques. These enzymatic data coupled with thermodynamic structure prediction were used to generate a secondary structure for 5S rRNA. A computer algorithm has been implemented to aid in the comparison of a large set of homologous RNAs. Eukaryotic 5S rRNA sequences from thirty four diverse species were compared by (1) alignment or the sequences, (2) the positions of substitutions were located with respect to the aligned sequence and secondary structure, and (3) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. Eukaryotic 5S rRNA was found to have significant sequence variation throughout much of the molecule while maintaining a relatively constant secondary structure. A detailed analysis of the sequence and structure variability in each region of the molecule is presented

  20. Secondary structure and phylogeny of Staphylococcus and Micrococcus 5S rRNAs.

    Science.gov (United States)

    Dekio, S; Yamasaki, R; Jidoi, J; Hori, H; Osawa, S

    1984-01-01

    Nucleotide sequences of 5S rRNAs from four bacteria, Staphylococcus aureus Smith (diffuse), Staphylococcus epidermidis ATCC 14990, Micrococcus luteus ATCC 9341 and Micrococcus luteus ATCC 4698, were determined. The secondary structural models of S. aureus and S. epidermidis sequences showed characteristics of the gram-positive bacterial 5S rRNA (116-N type [H. Hori and S. Osawa, Proc. Natl. Acad. Sci. U.S.A. 76:381-385, 1979]). Those of M. luteus ATCC 9341 and M. luteus ATCC 4698 together with that of Streptomyces griseus (A. Simoncsits, Nucleic Acids Res. 8:4111-4124, 1980) showed intermediary characteristics between the gram-positive and gram-negative (120-N type [H. Hori and S. Osawa, 1979]) 5S rRNAs. This and previous studies revealed that there exist at least three major groups of eubacteria having distinct 5S rRNA and belonging to different stems in the 5S rRNA phylogenic tree. PMID:6735981

  1. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  2. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    Science.gov (United States)

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  3. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    Science.gov (United States)

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  4. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  5. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Science.gov (United States)

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  6. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Directory of Open Access Journals (Sweden)

    Zareh A. Grigoryan

    2015-01-01

    Full Text Available The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed.

  7. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    Directory of Open Access Journals (Sweden)

    Barash Danny

    2008-04-01

    Full Text Available Abstract Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3, for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary

  8. Use of secondary structural information and Cα-Cα distance ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-21

    Jun 21, 2007 ... Model evolution; protein modelling; residue contact prediction; secondary structure prediction. Abbreviations used: ... set of sequence data (NR) and calculated conservation index of each ... evaluators (Moult et al 2003) to evaluate these model ... (Siew et al 2000), is a measure aims at identifying the largest.

  9. Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)

    Science.gov (United States)

    Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu

    2018-04-01

    Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.

  10. Quantitative DMS mapping for automated RNA secondary structure inference

    OpenAIRE

    Cordero, Pablo; Kladwang, Wipapat; VanLang, Christopher C.; Das, Rhiju

    2012-01-01

    For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using a pseudo-energy framework developed for 2'-OH acylation (SHAPE) mapping. On six non-coding RNAs with crystallographic models, DMS- guided modeling achieves overall false negative and false discovery rates of 9.5% and 11.6%, comparable or better than SHAPE-guided modeling; and non-parametric bootstrappin...

  11. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...

  12. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  13. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  14. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  15. Landscape and variation of RNA secondary structure across the human transcriptome.

    OpenAIRE

    Wan, Y; Qu, K; Zhang, QC; Flynn, RA; Manor, O; Ouyang, Z; Zhang, J; Spitale, RC; Snyder, MP; Segal, E; Chang, HY

    2014-01-01

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comp...

  16. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): implications for structural evolution and phylogenetic reconstruction.

    Science.gov (United States)

    Sun, Ping; Clamp, John C; Xu, Dapeng

    2010-07-01

    Despite extensive previous morphological work, little agreement has been reached about phylogenetic relationships among peritrich ciliates, making it difficult to study the evolution of the group in a phylogenetic framework. In this study, the nucleotide characteristics and secondary structures of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 26 peritrich ciliates in 12 genera were analyzed. Information from secondary structures of ITS1 and ITS2 then was used to perform the first systematic study of ITS regions in peritrich ciliates, including one species of Rhabdostyla for which no sequence has been reported previously. Lengths of ITS1 and ITS2 sequences varied relatively little among taxa studied, but their G+C content was highly variable. General secondary structure models of ITS1 and ITS2 were proposed for peritrich ciliates and their reliability was assessed by compensatory base changes. The secondary structure of ITS1 contains three major helices in peritrich ciliates and deviations from this basic structure were found in all taxa examined. The core structure of peritrich ITS2 includes four helices, with helix III as the longest and containing a motif 5'-MAC versus GUK-3' at its apex as well as a YU-UY mismatch in helix II. In addition, the structural motifs of both ITS secondary structures were identified. Phylogenetic analyses using ITS data were performed by means of Bayesian inference, maximum likelihood and neighbor joining methods. Trees had a consistent branching pattern that included the following features: (1) Rhabdostyla always clustered with members of the family Vorticellidae, instead of members of the family Epistylididae, in which it is now classified on the basis of morphology. (2) The systematically questionable genus Ophrydium closely associated with Carchesium, forming a clearly defined, monophyletic group within the Vorticellidae. This supported the hypothesis derived from previous study based on small subunit rRNA gene sequences

  17. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  18. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.

  19. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  20. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  1. Transformation of Taiwan's Upper Secondary Education System

    Directory of Open Access Journals (Sweden)

    Hueih-Lirng Laih

    1998-09-01

    Full Text Available This paper explores the policy issues circling around the structural "transition" in upper secondary education implicit in the twenty-year increase in secondary and third-level school enrollment rates in Taiwan. This expansion has taken place within a secondary school system which is rigidly divided into both general, i.e., academic, and vocational tracks and into public and private sectors: the majority of students are enrolled in the private vocational sector which is only loosely articulated with the university sector. These features of the school system are analysed against the background of social and economic developments in Taiwan as well as public opinion. The analysis suggests that the present structures of school must be "reformed" in ways that will result in a more unified secondary system with both greater public funding and better articulation of all school types with the third level. The policy options that circle around the possibility of such reforms in the areas of curriculum, examination structures and second level-third level articulation are discussed and a policy framework for the reform of the Taiwan secondary education sector is outlined.

  2. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  3. Secondary Vocational Horticulture Programs--An Assessment.

    Science.gov (United States)

    Burnett, Michael F.; Smith, Charles W.

    1983-01-01

    The objectives of the study were to determine characteristics of secondary horticulture teachers, the structure of horticulture departments, funding sources, nature and scope of facilities, types of supervised occupational experience programs in which horticulture students participated, and curriculum characteristics of vocational horticulture…

  4. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  5. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  6. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements.

    Science.gov (United States)

    Rachel, Natalie M; Quaglia, Daniela; Lévesque, Éric; Charette, André B; Pelletier, Joelle N

    2017-11-01

    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling. © 2017 The Protein Society.

  7. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  8. 'Working with the team': an exploratory study of improved type 2 diabetes management in a new model of integrated primary/secondary care.

    Science.gov (United States)

    Hepworth, Julie; Askew, Deborah; Jackson, Claire; Russell, Anthony

    2013-01-01

    This study aimed to explore how a new model of integrated primary/secondary care for type 2 diabetes management, the Brisbane South Complex Diabetes Service (BSCDS), related to improved diabetes management in a selected group of patients. We used a qualitative research design to obtain detailed accounts from the BSCDS via semi-structured interviews with 10 patients. The interviews were fully transcribed and systematically coded using a form of thematic analysis. Participants' responses were grouped in relation to: (1) Patient-centred care; (2) Effective multiprofessional teamwork; and (3) Empowering patients. The key features of this integrated primary/secondary care model were accessibility and its delivery within a positive health care environment, clear and supportive interpersonal communication between patients and health care providers, and patients seeing themselves as being part of the team-based care. The BSCDS delivered patient-centred care and achieved patient engagement in ways that may have contributed to improved type 2 diabetes management in these participants.

  9. Instruction in text-structure as a determinant of senior secondary ...

    African Journals Online (AJOL)

    The study determined the effectiveness of instruction in text-structure on achievement of students in English narrative text. The pretest-posttest control group quasi experimental design was adopted for the study. The participants were 120 students in intact classes from four purposively selected senior secondary schools in ...

  10. The assignment of elementary school pupils to secondary school types: A correlational study.

    NARCIS (Netherlands)

    Groeneboom, P.; Hoogstraten, J.; Mellenbergh, G.J.; van Santen, J.P.

    1978-01-01

    Examined relationships between personality, intelligence, and achievement measures and the allocation to 1 of 6 secondary school types; Ss were 135 6th graders. Results of discriminant analyses indicated that personality scores predicted only a small portion of pupil assignment, whereas achievement

  11. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  12. Secondary α-deuterium isotope effects as a probe to the relationship between structure and mechanism of pyrolysis of secondary azoalkanes

    International Nuclear Information System (INIS)

    Grizzle, P.L.

    1975-01-01

    This study was carried out to investigate the mechanism of azoalkane thermolysis and the effect of molecular structure on the potential-energy hypersurface for pyrolysis utilizing secondary α-deuterium isotope effects. Since the magnitude of the α-effect for 1,1'-diphenylazoethane is of singular importance in the interpretation of those for related compounds, it has been redetermined. To investigate the effect of molecular structure on the potential-energy hypersurface for thermolysis, α-effects have been determined for 2,2,2',2'-tetramethyl-1,1'-diphenylazoethane and (2,2-dimethyl-1-phenylpropyl)azomethane; the inability to prepare these compounds by conventional methods necessitated the development of a new method for synthesis of secondary azoalkanes. A convenient synthesis of secondary azo compounds is reported. Secondary α-deuterium isotope effects were obtained for the thermal decomposition of 1,1'-diphenylazoethane (III) and 1,1'-diphenylazoethane-1,1'-d 2 (III-d 2 ). The isotope effect is entirely consistent with a simultaneous one-step thermolysis mechanism. Secondary α-deuterium isotope effects and activation parameters were obtained in the thermolysis of 2,2,2',2'-tetramethyl-1,1'-diphenylazopropane (VIII) and (2,2-dimethyl-1-phenylpropyl)azomethane (IX). The data for VIII is considered in terms of both a one- and two-step thermolysis mechanism. The α-effect and activation energy for VIII are not obviously reconcilable with a one-step mechanism. The α-effects, activation energies, and rates of thermolysis for VIII, IX, and (1-phenylethyl)azomethane are most easily rationalized by a two-step mechanism

  13. Prediction of RNA secondary structures: from theory to models and real molecules

    International Nuclear Information System (INIS)

    Schuster, Peter

    2006-01-01

    RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA

  14. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  15. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  16. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  17. Isolation and structural elucidation of secondary metabolites from plants of the family Flacourtiaceae and Asclepiadaceae, and evaluation of biological activity of the sesquiterpene lactones and the diterpenes of Casearia sp

    International Nuclear Information System (INIS)

    Binns Quiros, Franklin

    2012-01-01

    A phytochemical study was realized of the plants Casearia aculeata, Casearia nitida and Asclepias verticillata, using experiments of nuclear magnetic resonance (NMR) of one and two dimensions. Ten secondary metabolites are isolated from C. aculeata and C. nitida. Three of the secondary metabolites have presented a structure known: a diterpene type kaurane: ent-kaurenic acid, a diterpene type pimarane: oxide of 3β-hydroximanoil and a steroid: 4-stigmastene-3-ona. Seven remaining compounds have corresponded to diterpene type clerodane of novel structure. Eight glycosides of poly oxidized pregnanes of novel structure are isolated from A. verticillata. In vitro tests of cytotoxicity and induction of caspase-3 are performed on leukemia cells type Jurkat T. These tests were performed at fifteen sesquiterpene lactones and at four diterpenes. The tests developed have had the purpose to describe structure-activity relationships that can be linked with the capacity to inhibit the factor NF-κB (sesquiterpene lactones) described in the literature and with the known mechanism of action induction of apoptosis in diterpenes type clerodane. A clear relationship between the capacity (high, intermediate or low) to inhibit the factor NF-κB and the capacity to induce to the caspase-3 has remained without observation in the sesquiterpene lactones. Some structural comparisons related with the cytotoxic capacity and the induction of the caspase-3 have been described for the series of LSs with carbon structure of pseudoguianolides. Diterpenes with carbon structure of diterpenes type clerodane have had greater cytotoxic activity with respect to without carbon structure. Diterpenes type clerodane isolated from the family Flacourtiaceae have been cytotoxics, their capacity to induce to the caspase-3 has remained without be nearby to induction realized by the actinomycin D (pure inducer of the caspase-3). (author) [es

  18. Changes in secondary structure of poliovirus ribonucleic acid

    International Nuclear Information System (INIS)

    Koza, J.

    1975-01-01

    Infectious single-stranded RNA isolated from mature purified poliovirus was separated into three fractions by means of chromatography on an ''evaporated'' calcium phosphate column. RNA molecules with a higher degree of secondary structure were detected in two of the fractions as a result of the chromatography. These RNA molecules (1) were resistant to hydrolysis by pancreatic ribonuclease A, (2) retained unchanged the original infectivity for actinomycin D-pretreated cells, (3) were resistant to ultraviolet-light inactivation and (4) were partially resistant to formaldehyde inactivation

  19. Fourier transform infrared microspectroscopic analysis of the effects of cereal type and variety within a type of grain on structural makeup in relation to rumen degradation kinetics.

    Science.gov (United States)

    Walker, Amanda M; Yu, Peiqiang; Christensen, Colleen R; Christensen, David A; McKinnon, John J

    2009-08-12

    The objectives of this study were to use Fourier transform infrared microspectroscopy (FTIRM) to determine structural makeup (features) of cereal grain endosperm tissue and to reveal and identify differences in protein and carbohydrate structural makeup between different cereal types (corn vs barley) and between different varieties within a grain (barley CDC Bold, CDC Dolly, Harrington, and Valier). Another objective was to investigate how these structural features relate to rumen degradation kinetics. The items assessed included (1) structural differences in protein amide I to nonstructural carbohydrate (NSC, starch) intensity and ratio within cellular dimensions; (2) molecular structural differences in the secondary structure profile of protein, alpha-helix, beta-sheet, and their ratio; (3) structural differences in NSC to amide I ratio profile. From the results, it was observed that (1) comparison between grain types [corn (cv. Pioneer 39P78) vs barley (cv. Harrington)] showed significant differences in structural makeup in terms of NSC, amide I to NSC ratio, and rumen degradation kinetics (degradation ratio, effective degradability of dry matter, protein and NSC) (P makeup in terms of amide I, NSC, amide I to NSC ratio, alpha-helix and beta-sheet protein structures, and rumen degradation kinetics (effective degradability of dry matter, protein, and NSC) (P makeup differences between cereal types and between different varieties within a type of grain could be revealed. These structural makeup differences were related to the rate and extent of rumen degradation.

  20. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  1. The relationship between type of secondary education and subject choice with technically oriented aptitudes for automotive operators

    Directory of Open Access Journals (Sweden)

    Juliet I. Puchert

    2017-10-01

    Full Text Available Orientation: The central theme of this study attends to the role of secondary education in relation to two broad categories of specific aptitudes (psychomotor and spatial abilities. Utilising type of secondary education (incorporating subject choice could be a crucial selection mechanism for high-volume, entry-level technical positions. Research purpose: The objective of this research was to investigate whether the type of secondary education (incorporating subject choice could be used as a proxy for psychomotor (dexterity and coordination and/or spatial (ability to mentally assemble representations and spatial perception 2-D and 3-D aptitudes in the selection of operators for an automotive plant in South Africa. Motivation for the study: The motivation for this study arose from the evident gap in academic literature as well as the selection needs of the automotive industry. Research design, approach and method: A quantitative approach with a cross-sectional research design was used with a convenience sample (n = 1566 of work-seeking applicants for automotive operator positions in South Africa. These applicants completed a biographical questionnaire and five sub-tests from the Trade Aptitude Test Battery. The Chi-square test was used to determine the association between form of Grade 12 qualification and selected technical aptitudes. Main findings: Statistically and practically significant relationships were found between type of secondary education (incorporating subject choice, eye–hand coordination and spatial visualisation. Broad performance levels in the five aptitude instruments employed in this study were significantly associated with the type of matriculation certificate held by applicants. Specifically, types of secondary education that included mathematics and/or science as subjects were associated with higher levels of performance in the five specific aptitudes. Practical/managerial implications: The type of secondary education

  2. Botulinum neurotoxin type A injections for vaginismus secondary to vulvar vestibulitis syndrome.

    Science.gov (United States)

    Bertolasi, Laura; Frasson, Emma; Cappelletti, Jee Yun; Vicentini, Silvana; Bordignon, Monia; Graziottin, Alessandra

    2009-11-01

    To investigate whether botulinum neurotoxin type A improves vaginismus and study its efficacy with repeated treatments. Outpatients were referred because standard cognitive-behavioral and medical treatment for vaginismus and vulvar vestibular syndrome failed. From this group, we prospectively recruited consecutive women (n=39) whose diagnostic electromyogram (EMG) recordings from the levator ani muscle showed hyperactivity at rest and reduced inhibition during straining. These women were followed for a mean (+/-standard deviation) of 105 (+/-50) weeks. Recruited patients underwent repeated cycles of botulinum neurotoxin type A injected into the levator ani under EMG guidance and EMG monitoring thereafter. At enrollment and 4 weeks after each cycle, women were asked about sexual intercourse; underwent EMG evaluation and examinations to grade vaginal resistance according to Lamont; and completed a visual analog scale (VAS) for pain, the Female Sexual Function Index Scale, a quality-of-life questionnaire (Short-Form 12 Health Survey), and bowel and bladder symptom assessment. At 4 weeks after the first botulinum neurotoxin type A cycle, the primary outcome measures (the possibility of having sexual intercourse, and levator ani EMG hyperactivity) both improved, as did the secondary outcomes, Lamont scores, VAS, Female Sexual Function Index Scales, Short-Form 12 Health Survey, and bowel-bladder symptoms. These benefits persisted through later cycles. When follow-up ended, 63.2% of the patients completely recovered from vaginismus and vulvar vestibular syndrome, 15.4% still needed reinjections (censored), and 15.4% had dropped out. Botulinum neurotoxin type A is an effective treatment option for vaginismus secondary to vulvar vestibular syndrome refractory to standard cognitive-behavioral and medical management. After patients received botulinum neurotoxin type A, their sexual activity improved and reinjections provided sustained benefits. III.

  3. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    International Nuclear Information System (INIS)

    Glenn, Autumn L.; Bulusu, Kartik V.; Shu Fangjun; Plesniak, Michael W.

    2012-01-01

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T ≈ 0.20–0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  4. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Autumn L.; Bulusu, Kartik V. [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States); Shu Fangjun [Department of Mechanical and Aerospace Engineering, New Mexico State University, MSC 3450, P.O. Box 30001, Las Cruces, NM 88003-8001 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States)

    2012-06-15

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T Almost-Equal-To 0.20-0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  5. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  6. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.

    Science.gov (United States)

    Al-Khatib, Ra'ed M; Rashid, Nur'Aini Abdul; Abdullah, Rosni

    2011-08-01

    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.

  7. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  8. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  9. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  10. RNAspa: a shortest path approach for comparative prediction of the secondary structure of ncRNA molecules

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2007-10-01

    Full Text Available Abstract Background In recent years, RNA molecules that are not translated into proteins (ncRNAs have drawn a great deal of attention, as they were shown to be involved in many cellular functions. One of the most important computational problems regarding ncRNA is to predict the secondary structure of a molecule from its sequence. In particular, we attempted to predict the secondary structure for a set of unaligned ncRNA molecules that are taken from the same family, and thus presumably have a similar structure. Results We developed the RNAspa program, which comparatively predicts the secondary structure for a set of ncRNA molecules in linear time in the number of molecules. We observed that in a list of several hundred suboptimal minimal free energy (MFE predictions, as provided by the RNAsubopt program of the Vienna package, it is likely that at least one suggested structure would be similar to the true, correct one. The suboptimal solutions of each molecule are represented as a layer of vertices in a graph. The shortest path in this graph is the basis for structural predictions for the molecule. We also show that RNA secondary structures can be compared very rapidly by a simple string Edit-Distance algorithm with a minimal loss of accuracy. We show that this approach allows us to more deeply explore the suboptimal structure space. Conclusion The algorithm was tested on three datasets which include several ncRNA families taken from the Rfam database. These datasets allowed for comparison of the algorithm with other methods. In these tests, RNAspa performed better than four other programs.

  11. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    predictions based on variable ranges of dependencies. These architectures extend recurrent neural networks, introducing non-causal bidirectional dynamics to capture both upstream and downstream information. The prediction algorithm is completed by the use of mixtures of estimators that leverage evolutionary......Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network...

  12. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  13. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    Science.gov (United States)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  14. [Peculiarities of secondary structure of serum albumin of some representatives of the animal kingdom].

    Science.gov (United States)

    Pekhymenko, G V; Kuchmerovskaia, T M

    2011-01-01

    Methods of infrared (IR) spectroscopy and circular dichroism (CD) are suitable techniques for detection of proteins structural changes. These methods were used for determinating peculiarities of the secondary structure of serum albumins in some representatives of two classes of reptiles: Horsfield's tortoise (Testudo horsfieldi), water snake (Natrix tessellata) and grass snake (Natrix natrix) and birds: domestic goose (Anser anser), domestic chicken (Gallus domesticus), domestic duck (Anas platyrhyncha) and dove colored (Columba livia). An analysis of IR spectra and spectra obtained by the method of CD of serum albumins of both classes representatives revealed that beta-folding structure and alpha-helical sections that form the alpha-conformation play an important role in conformational structure formation of polypeptide chain and also disordered sites of molecules of these proteins. It was observed that certain redistribution depending on animals species exists, in the formation of secondary structure of serum albumins of the investigated representatives of reptiles and birds classes between the content of beta-folding structure, alpha-helical sections and disordered sites in molecules of these proteins.

  15. STUDYING THE SECONDARY STRUCTURE OF ACCESSION NUMBER USING CETD MATRIX

    Directory of Open Access Journals (Sweden)

    Anamika Dutta

    2016-10-01

    Full Text Available This paper, we have tried to analyze about the Secondary Structure of nucleotide sequences of rice. The data have been collected from NCBI (National Centre for Biotechnology Information using Nucleotide as data base. All the programs were developed using R programming language using “sequinr” package. Here, we have used CETD matrix method to study the prediction. The conclusions are drawn accordingly.

  16. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  17. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  18. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    Science.gov (United States)

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  19. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  20. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    Science.gov (United States)

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  1. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  2. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  3. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods

    International Nuclear Information System (INIS)

    Dousseau, F.; Pezolet, M.

    1990-01-01

    A method for estimating protein secondary structure from infrared spectra has been developed. The infrared spectra of H 2 O solutions of 13 proteins of known crystal structure have been recorded and corrected for the spectral contribution of water in the amide I and II region by using the algorithm of Dousseau et al. This calibration set of proteins has been analyzed by using either a classical least-squares (CLS) method or the partial least-squares (PLS) method. The pure-structure spectra calculated by the classical least-squares method are in good agreement with spectra of poly(L-lysine) in the α-helix, β-sheet, and undefined conformations. The results show that the best agreement between the secondary structure determined by X-ray crystal-lography and that predicted by infrared spectroscopy is obtained when both the amide I and II bands are used to generate the calibration set, when the PLS method is used, and when it is assumed that the secondary structure of proteins is composed of only four types of structure: ordered and disordered α-helices, β-sheet, and undefined conformation. Attempts to include turns in the secondary structure estimation have led to a loss of accuracy. The spectra of the calibration proteins were also recorded in 2 H 2 O solution. After correction for the contribution of the combination band of 2 H 2 O in the amide I' band region, the spectra were analyzed with PLS, but the results were not as good as for the spectra obtained in H 2 O, especially for the α-helical conformation

  4. A quantitative analysis of secondary RNA structure using domination based parameters on trees

    Directory of Open Access Journals (Sweden)

    Zou Yue

    2006-03-01

    Full Text Available Abstract Background It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure. Results The statistical analysis shows that the domination based parameters correctly distinguish between the trees that represent native structures and those that are not likely candidates to represent RNA. Some of the trees previously identified as candidate structures are found to be "very" RNA like, while others are not, thereby refining the space of structures likely to be found as representing secondary RNA structure. Conclusion Search algorithms are available that mine nucleotide sequence databases. However, the number of motifs identified can be quite large, making a further search for similar motif computationally difficult. Much of the work in the bioinformatics arena is toward the development of better algorithms to address the computational problem. This work, on the other hand, uses mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the corresponding search space. These

  5. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  6. Viral IRES prediction system - a web server for prediction of the IRES secondary structure in silico.

    Directory of Open Access Journals (Sweden)

    Jun-Jie Hong

    Full Text Available The internal ribosomal entry site (IRES functions as cap-independent translation initiation sites in eukaryotic cells. IRES elements have been applied as useful tools for bi-cistronic expression vectors. Current RNA structure prediction programs are unable to predict precisely the potential IRES element. We have designed a viral IRES prediction system (VIPS to perform the IRES secondary structure prediction. In order to obtain better results for the IRES prediction, the VIPS can evaluate and predict for all four different groups of IRESs with a higher accuracy. RNA secondary structure prediction, comparison, and pseudoknot prediction programs were implemented to form the three-stage procedure for the VIPS. The backbone of VIPS includes: the RNAL fold program, aimed to predict local RNA secondary structures by minimum free energy method; the RNA Align program, intended to compare predicted structures; and pknotsRG program, used to calculate the pseudoknot structure. VIPS was evaluated by using UTR database, IRES database and Virus database, and the accuracy rate of VIPS was assessed as 98.53%, 90.80%, 82.36% and 80.41% for IRES groups 1, 2, 3, and 4, respectively. This advance useful search approach for IRES structures will facilitate IRES related studies. The VIPS on-line website service is available at http://140.135.61.250/vips/.

  7. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  8. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide

    Directory of Open Access Journals (Sweden)

    Hajime Yamazaki

    2017-06-01

    Full Text Available Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173 and the Leucine-Rich Amelogenin Peptide (LRAP(+P, an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P stabilize amorphous calcium phosphate (ACP and inhibit hydroxyapatite (HA formation, while non-phosphorylated counterparts (rP172, LRAP(−P guide the growth of ordered bundles of HA crystals. Based on these findings, we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces conformational changes that critically affect its capacity to interact with forming calcium phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform infrared spectroscopy (FTIR to determine the secondary structure of LRAP(−P and LRAP(+P in the absence/presence of calcium and selected mineral phases relevant to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype and (ACP: an enamel crystal precursor phase. Aqueous solutions of LRAP(−P or LRAP(+P were prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution were obtained using attenuated total reflectance, and amide-I peaks were analyzed to provide secondary structure information. Secondary structures of LRAP(+P and LRAP(−P were similarly assessed following incubation with suspensions of HA and pyrophosphate-stabilized ACP. Amide I spectra of LRAP(−P and LRAP(+P were found to be distinct from each other in all cases. Spectra analyses showed that LRAP(−P is comprised mostly of random coil and β-sheet, while LRAP(+P exhibits more β-sheet and α-helix with little random coil. With added Ca, the random coil content increased in LRAP(−P, while LRAP(+P exhibited a decrease in α-helix components. Incubation of LRAP(−P with HA or ACP resulted in comparable increases in β-sheet structure. Notably, however, LRAP(+P secondary structure was more affected by

  9. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  10. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals.

    Science.gov (United States)

    Coleman, Annette W; van Oppen, Madeleine J H

    2008-10-01

    This study investigates the ribosomal RNA transcript secondary structure in corals as confirmed by compensatory base changes in Isopora/Acropora species. These species are unique versus all other corals in the absence of a eukaryote-wide conserved structural component, the helix III in internal transcriber spacer (ITS) 2, and their variability in the 5.8S-LSU helix basal to ITS2, a helix with pairings identical among all other scleractinian corals. Furthermore, Isopora/Acropora individuals display at least two, and as many as three, ITS sequence isotypes in their genome which appear to be capable of function. From consideration of the conserved elements in ITS2 and flanking regions, it appears that there are three major groups within the IsoporaAcropora lineage: the Isopora + Acropora "longi" group, the large group including Caribbean Acropora + the Acropora "carib" types plus the bulk of the Indo-Pacific Acropora species, and the remaining enigmatic "pseudo" group found in the Pacific. Interbreeding is possible among Caribbean A. palmata and A. cervicornis and among some species of Indo-Pacific Acropora. Recombinant ITS sequences are obvious among these latter, such that morphology (as represented by species name) does not correlate with common ITS sequence. The combination of characters revealed by RNA secondary structure analyses suggests a recent past/current history of interbreeding among the Indo-Pacific Acropora species and a shared ancestry of some of these with the Caribbean Acropora. The unusual absence of helix III of ITS2 of Isopora/Acropora species may have some causative role in the equally unusual instability in the 5.8S-LSU helix basal to ITS2 of this species complex.

  11. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer

    Science.gov (United States)

    Hart, Phil A; Bellin, Melena D; Andersen, Dana K; Bradley, David; Cruz-Monserrate, Zobeida; Forsmark, Christopher E; Goodarzi, Mark O; Habtezion, Aida; Korc, Murray; Kudva, Yogish C; Pandol, Stephen J; Yadav, Dhiraj; Chari, Suresh T

    2017-01-01

    Diabetes mellitus is a group of diseases defined by persistent hyperglycaemia. Type 2 diabetes, the most prevalent form, is characterised initially by impaired insulin sensitivity and subsequently by an inadequate compensatory insulin response. Diabetes can also develop as a direct consequence of other diseases, including diseases of the exocrine pancreas. Historically, diabetes due to diseases of the exocrine pancreas was described as pancreatogenic or pancreatogenous diabetes mellitus, but recent literature refers to it as type 3c diabetes. It is important to note that type 3c diabetes is not a single entity; it occurs because of a variety of exocrine pancreatic diseases with varying mechanisms of hyperglycaemia. The most commonly identified causes of type 3c diabetes are chronic pancreatitis, pancreatic ductal adenocarcinoma, haemochromatosis, cystic fibrosis, and previous pancreatic surgery. In this Review, we discuss the epidemiology, pathogenesis, and clinical relevance of type 3c diabetes secondary to chronic pancreatitis and pancreatic ductal adenocarcinoma, and highlight several important knowledge gaps. PMID:28404095

  12. An efficient algorithm for planar drawing of RNA structures with pseudoknots of any type.

    Science.gov (United States)

    Byun, Yanga; Han, Kyungsook

    2016-06-01

    An RNA pseudoknot is a tertiary structural element in which bases of a loop pair with complementary bases are outside the loop. A drawing of RNA secondary structures is a tree, but a drawing of RNA pseudoknots is a graph that has an inner cycle within a pseudoknot and possibly outer cycles formed between the pseudoknot and other structural elements. Visualizing a large-scale RNA structure with pseudoknots as a planar drawing is challenging because a planar drawing of an RNA structure requires both pseudoknots and an entire structure enclosing the pseudoknots to be embedded into a plane without overlapping or crossing. This paper presents an efficient heuristic algorithm for visualizing a pseudoknotted RNA structure as a planar drawing. The algorithm consists of several parts for finding crossing stems and page mapping the stems, for the layout of stem-loops and pseudoknots, and for overlap detection between structural elements and resolving it. Unlike previous algorithms, our algorithm generates a planar drawing for a large RNA structure with pseudoknots of any type and provides a bracket view of the structure. It generates a compact and aesthetic structure graph for a large pseudoknotted RNA structure in O([Formula: see text]) time, where n is the number of stems of the RNA structure.

  13. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  14. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  15. Roentgenological structural types of the unaltered breast

    International Nuclear Information System (INIS)

    Kolganova, I.P.; Zal'tsman, I.N.

    1981-01-01

    The authors present a roentgenoanatomical analysis of normal breast specimens and mammograms of 324 healthy women aged 31 to 60. Four roentgenological structural types of the unaltered breast have been singled out: linear-reticular, lamellar-cellular, large focal, and a single polygonal shadow. These structural types were detected in age groups from 31 to 40, from 41 to 50, and from 51 to 60 with various frequency. Each type corresponds to a certain morphological and functional state of the breast. The frequency of the 2nd and 4th types decreases and of the 1st type increases with advancing age [ru

  16. Roentgenological structural types of the unaltered breast

    Energy Technology Data Exchange (ETDEWEB)

    Kolganova, I P; Zal' tsman, I N [Akademiya Meditsinskikh Nauk RSFSR, Moscow. Pervyj Moskovskij Meditsinskij Inst.

    1981-11-01

    The authors present a roentgenoanatomical analysis of normal breast specimens and mammograms of 324 healthy women aged 31 to 60. Four roentgenological structural types of the unaltered breast have been singled out: linear-reticular, lamellar-cellular, large focal, and a single polygonal shadow. These structural types were detected in age groups from 31 to 40, from 41 to 50, and from 51 to 60 with various frequency. Each type corresponds to a certain morphological and functional state of the breast. The frequency of the 2nd and 4th types decreases and of the 1st type increases with advancing age.

  17. Buckling of Ship Structures

    CERN Document Server

    Shama, Mohamed

    2013-01-01

    Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures.  The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...

  18. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  19. Secondary structural entropy in RNA switch (Riboswitch) identification.

    Science.gov (United States)

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there

  20. On infrared spectroscopic analysis of transfer RNA secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, M A; Starikov, E B

    1987-07-14

    Various techniques of IR spectroscopy in the 1550-1750 cm/sup -1/ region employed to analyse the tRNA secondary structure are discussed and a novel improved method is proposed. The main novel features of this method are the approximation of tRNA helical region spectra by catalogue carbonyl absorption bands and approximation of tRNA nonhelical region spectra by those of homopolyribonucleotides. The IR spectra of tRNA/sub yeast//sup phe/ and tRNA/sub E.coli//sup fmet/ in the carbonyl vibration region are explained on the basis of calculated transition moment coupling.

  1. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  2. CentroidFold: a web server for RNA secondary structure prediction

    OpenAIRE

    Sato, Kengo; Hamada, Michiaki; Asai, Kiyoshi; Mituyama, Toutai

    2009-01-01

    The CentroidFold web server (http://www.ncrna.org/centroidfold/) is a web application for RNA secondary structure prediction powered by one of the most accurate prediction engine. The server accepts two kinds of sequence data: a single RNA sequence and a multiple alignment of RNA sequences. It responses with a prediction result shown as a popular base-pair notation and a graph representation. PDF version of the graph representation is also available. For a multiple alignment sequence, the ser...

  3. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Hart, Phil A; Bellin, Melena D; Andersen, Dana K; Bradley, David; Cruz-Monserrate, Zobeida; Forsmark, Christopher E; Goodarzi, Mark O; Habtezion, Aida; Korc, Murray; Kudva, Yogish C; Pandol, Stephen J; Yadav, Dhiraj; Chari, Suresh T

    2016-11-01

    Diabetes mellitus is a group of diseases defined by persistent hyperglycaemia. Type 2 diabetes, the most prevalent form, is characterised initially by impaired insulin sensitivity and subsequently by an inadequate compensatory insulin response. Diabetes can also develop as a direct consequence of other diseases, including diseases of the exocrine pancreas. Historically, diabetes due to diseases of the exocrine pancreas was described as pancreatogenic or pancreatogenous diabetes mellitus, but recent literature refers to it as type 3c diabetes. It is important to note that type 3c diabetes is not a single entity; it occurs because of a variety of exocrine pancreatic diseases with varying mechanisms of hyperglycaemia. The most commonly identified causes of type 3c diabetes are chronic pancreatitis, pancreatic ductal adenocarcinoma, haemochromatosis, cystic fibrosis, and previous pancreatic surgery. In this Review, we discuss the epidemiology, pathogenesis, and clinical relevance of type 3c diabetes secondary to chronic pancreatitis and pancreatic ductal adenocarcinoma, and highlight several important knowledge gaps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type

    International Nuclear Information System (INIS)

    Maltsev, A Ya

    2005-01-01

    We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system

  5. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides.

    Science.gov (United States)

    Wang, Xiaoguang; Yang, Pei; Mondiot, Frederic; Li, Yaoxin; Miller, Daniel S; Chen, Zhan; Abbott, Nicholas L

    2015-12-07

    We report that assemblies formed by eight oligopeptides at phospholipid-decorated interfaces of thermotropic liquid crystals (LCs) trigger changes in ordering of the LCs that are dependent on the secondary structures of the oligopeptides (as characterized in situ using infrared-visible sum-frequency spectroscopy).

  6. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  7. Characteristics of transformer-type superconducting fault current limiter depending on reclosing in changing the number of turns of secondary winding

    International Nuclear Information System (INIS)

    Choi, S.G.; Choi, H.S.; Cho, Y.S.; Park, H.M.; Jung, B.I.; Ha, K.H.

    2011-01-01

    The amount of consumed power is increasing with industrial development and rapidly increasing population. In accidents due to increased power consumption, the fault current sharply increases. Superconducting fault current limiters (SFCL) are studied widely to limit such fault currents. In this study, the characteristics of a transformer-type SFCL are analyzed depending on reclosing in changing the number of secondary winding turns. For experiment conditions, the turn ratio of the primary and secondary windings of a transformer-type SFCL was set to 4:2 and 4:4. The voltage was incremented by 80 V from 120 V for the experiment. The circuit breaker was operated with two open times of CO-0.17 s -CO-0.17 s -CO seconds (C; closed, O; open), respectively. Comparing the result for the experiment conditions with the case of the turn ratios of the primary and secondary windings at 4:4 and 4:2, the fault current was limited effectively in 4:2 than in 4:4 for the fault current limit ratios. With respect to the result of recovery characteristics, it was examined that the superconducting unit recovered faster when the turn ratio of the primary and secondary windings was 4:2 than 4:4. Comparing the amount of consumed power related to the recovery characteristics of the superconducting element, it was examined that the recovery time was faster in less power consumption for the superconducting unit. As such, since a transformer-type SFCL depending on reclosing in changing the number of turns of the secondary winding controls the turn ratio of the secondary winding to control fault current limiting and recovery characteristics, it can normally operate.

  8. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    International Nuclear Information System (INIS)

    Allen, C. Leigh; Gulick, Andrew M.

    2014-01-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins

  9. Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. Leigh; Gulick, Andrew M., E-mail: gulick@hwi.buffalo.edu [University at Buffalo, Buffalo, NY 14203 (United States)

    2014-06-01

    The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented. Microorganisms produce a variety of natural products via secondary metabolic biosynthetic pathways. Two of these types of synthetic systems, the nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), use large modular enzymes containing multiple catalytic domains in a single protein. These multidomain enzymes use an integrated carrier protein domain to transport the growing, covalently bound natural product to the neighboring catalytic domains for each step in the synthesis. Interestingly, some PKS and NRPS clusters contain free-standing domains that interact intermolecularly with other proteins. Being expressed outside the architecture of a multi-domain protein, these so-called type II proteins present challenges to understand the precise role they play. Additional structures of individual and multi-domain components of the NRPS enzymes will therefore provide a better understanding of the features that govern the domain interactions in these interesting enzyme systems. The high-resolution crystal structure of a free-standing carrier protein from Acinetobacter baumannii that belongs to a larger NRPS-containing operon, encoded by the ABBFA-003406–ABBFA-003399 genes of A. baumannii strain AB307-0294, that has been implicated in A. baumannii motility, quorum sensing and biofilm formation, is presented here. Comparison with the closest structural homologs of other carrier proteins identifies the requirements for a conserved glycine residue and additional important sequence and structural requirements within the regions that interact with partner proteins.

  10. Secondary structure of bovine albumin as studied by polarization-sensitive multiplex CARS spectroscopy

    NARCIS (Netherlands)

    Voroshilov, A.; Voroshilov, Artemy; Otto, Cornelis; Greve, Jan

    1996-01-01

    The first application of polarization-sensitive multiplex coherent anti-Stokes Raman spectroscopy (MCARS) in the absence of resonance enhancement to the resolution of the secondary structure of a protein in solution is reported. Polarization MCARS spectra of bovine albumin in D2O were obtained in

  11. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Diabetes mellitus in Tropical Chronic Pancreatitis Is Not Just a Secondary Type of Diabetes

    OpenAIRE

    Rossi, L.; Parvin, S.; Hassan, Z.; Hildebrand, P.; Keller, U.; Ali, L.; Beglinger, C.; Azad Khan, A. K.; Whitcomb, David C.; Gyr, N.

    2004-01-01

    AIMS: In chronic calcific pancreatitis of the tropics, etiology and relationship to developing diabetes mellitus are unknown. Some consider these cases a straightforward secondary type of diabetes, while others suggest selective beta-cell impairment. Testing pancreatic function, we investigated whether selective beta-cell impairment triggers diabetes associated with tropical pancreatitis. METHODS: At a Bangladeshi research institute, 8 chronic tropical pancreatitis and no diabetes mellitus su...

  13. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  14. Prospective randomized study for optimal insulin therapy in type 2 diabetic patients with secondary failure

    Directory of Open Access Journals (Sweden)

    Tojo Katsuyoshi

    2008-05-01

    Full Text Available Abstract Background The large clinical trials proved that Basal-Bolus (BB insulin therapy was effective in the prevention of diabetic complications and their progression. However, BB therapy needs multiple insulin injections per a day. In this regard, a biphasic insulin analogue needs only twice-daily injections, and is able to correct postprandial hyperglycemia. Therefore it may achieve the blood glucose control as same as that of BB therapy and prevent the diabetic complications including macroangiopathy. Methods In PROBE (Prospective, Randomized, Open, Blinded-Endpoint design, forty-two type 2 diabetic patients (male: 73.8%, median(inter quartile range age: 64.5(56.8~71.0years with secondary failure of sulfonylurea (SU were randomly assigned to BB therapy with a thrice-daily insulin aspart and once-daily basal insulin (BB group or to conventional therapy with a twice-daily biphasic insulin analogue (30 Mix group, and were followed up for 6 months to compare changes in HbA1c, daily glycemic profile, intima-media thickness (IMT of carotid artery, adiponectin levels, amounts of insulin used, and QOL between the two groups. Results After 6 months, HbA1c was significantly reduced in both groups compared to baseline (30 Mix; 9.3(8.1~11.3 → 7.4(6.9~8.7%, p Conclusion Both BB and 30 mix group produced comparable reductions in HbA1c in type 2 diabetic patients with secondary failure. There was no significant change in IMT as an indicator of early atherosclerotic changes between the two groups. The basal-bolus insulin therapy may not be necessarily needed if the type 2 diabetic patients have become secondary failure. Trial registration Current Controlled Trials number, NCT00348231

  15. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    Science.gov (United States)

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  16. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    Science.gov (United States)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  17. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems*

    Science.gov (United States)

    Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric

    2012-01-01

    The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492

  18. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  19. Interspecies radioimmunoassay for the major structural proteins of primate type-D retroviruses

    International Nuclear Information System (INIS)

    Colcher, D.; Teramoto, Y.A.; Schlom, J.

    1977-01-01

    A competition radioimmunoassay has been developed in which type-D retroviruses from three primate species compete. The assay utilizes the major structural protein (36,000 daltons) of the endogenous squirrel monkey retrovirus and antisera directed against the major structural protein (27,000 daltons) of the Mason-Pfizer monkey virus isolated from rhesus monkeys. Purified preparations of both viruses grown in heterologous cells, as well as extracts of heterologous cells infected with squirrel monkey retrovirus or Mason-Pfizer monkey virus, compete completely in the assay. Addition of an endogenous virus of the langur monkey also results in complete blocking. No blocking in the assay is observed with type-C baboon viruses, woolly monkey virus, and gibbon virus. Various other type-C and type-B viruses also showed no reactivity. An interspecies assay has thus been developed that recognizes the type-D retroviruses from both Old World monkey (rhesus and langur) and New World monkey (squirrel) species

  20. A contribution to understanding the structure of amphivasal secondary bundles in monocotyledons

    Directory of Open Access Journals (Sweden)

    Joanna Jura-Morawiec

    2014-04-01

    Full Text Available Secondary growth of monocotyledonous plants is connected with the activity of the monocot cambium that accumulates most of the derivatives inner to the cambial cylinder. These derivatives differentiate into (a secondary bundles with the amphivasal arrangement, i.e. xylem composed of tracheids surrounds the phloem cells and (b the parenchymatous secondary conjunctive tissue in which the bundles are embedded. The amphivasal secondary bundles differ in the arrangement of xylem cells as visible on single cross sections through the secondary body of the monocots. Apart from the bundles with typical ring of tracheids also the bundles where tracheids do not quite surround the phloem are present. We aimed to elucidate the cross sectional anatomy of the amphivasal secondary bundles with the use of the serial sectioning method which allowed us to follow very precisely the bundle structure along its length. The studies were carried out with the samples of secondary tissues collected from the stem of Dracaena draco L. growing in the greenhouses of the Polish Academy of Sciences Botanical Garden – CBDC in Powsin and the Adam Mickiewicz University Botanical Garden. The material was fixed in a mixture of glycerol and ethanol (1:1; v/v, dehydrated stepwise with graded ethanol series and finally embedded in epon resin. Afterwards, the material was sectioned with microtome into continuous series of thin (3 μm sections, stained with PAS/toluidine blue and examined under the light microscope. The results, described in details in Jura‑Morawiec & Wiland-Szymańska (2014, revealed novel facts about tracheids arrangement. Each amphivasal bundle is composed of sectors where tracheids form a ring as well as of such where tracheids are separated by vascular parenchyma cells. We hypothesize that strands of vascular parenchyma cells locally separating the tracheids enable radial transport of assimilates from sieve elements of the bundle towards the sink tissues, e

  1. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    Science.gov (United States)

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA

  2. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking.

    Directory of Open Access Journals (Sweden)

    Lei Hua

    Full Text Available RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.

  3. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  4. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  5. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  6. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  7. Reflection of the energy structure of a tungsten monocrystal nearsurface area in the secondary electron spectrum

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Smirnov, O.M.; Terekhov, A.N.

    1982-01-01

    Formation of secondary electron energy spectrum during emission from the crystal layer near the surface has been considered, at that layer energy structure can be different from volumetric energy structure. Its thickness depends on the predominant mechanism of electron scattering and is determined by corresponding phenomenological parameters. It is shown that the structure in the secondary electron spectrum appears in the case when energy structure of emitting monocrystal layer can not be described in the approximation of almost free electron gas and, as experimental investigations show, approaches energy zone structure of its volume. It is also show that in the case when the energy structure of the emitting layer is satisfactorily described with the model of almost free electron gas, the SE spectrum is characterized with traditional cascade minimum. Experimental investigation of SE energy distribution was carried out for the W monocrystalline face (110). It was established that distinct structure in the SE spectrum appears only after electrochemical polishing of the specimen surface. It is related to the appearance of ''far'' order in the monocrystal emission layer on initially disturbed tungsten surface during such treatment. Disturbance of tungsten monocrystal surface structure on its oxidation in O 2 atmosphere results in the appearance of the cascade maximum and disappearance of distinct peculiarities in the SE spectrum

  8. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    International Nuclear Information System (INIS)

    Peng, Sydney; Lin, Ji-Yu; Cheng, Ming-Huei; Wu, Chih-Wei; Chu, I-Ming

    2016-01-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  9. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sydney; Lin, Ji-Yu [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Ming-Huei [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Wu, Chih-Wei, E-mail: drwu.jerry@gmail.com [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chu, I-Ming, E-mail: chuiming456@gmail.com [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-12-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  10. Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Horiuchi, Hisashi; Kimura, Masaaki

    2006-01-01

    We have studied the coexistence of cluster structure and mean-field-type structure in 20Ne and 40Ca using Antisymmetrized Molecular Dynamics (AMD) + Generator Coordinate Method (GCM). By energy variation with new constraint for clustering, we calculate cluster structure wave function. Superposing cluster structure wave functions and mean-field-type structure wave function, we found that 8Be-12C, α-36Ar and 12C-28Si cluster structure are important components of K π = 0 3 + band of 20Ne, that of normal deformed band of 40Ca and that of super deformed band of 40Ca, respectively

  11. Niemann-Pick disease, type B with TRAP-positive storage cells and secondary sea blue histiocytosis

    Directory of Open Access Journals (Sweden)

    R. Saxena

    2009-09-01

    Full Text Available We present 2 cases of Niemann Pick disease, type B with secondary sea-blue histiocytosis. Strikingly, in both cases the Pick cells were positive for tartrate resistant acid phosphatase, a finding hitherto described only in Gaucher cells. This report highlights the importance of this finding as a potential cytochemical diagnostic pitfall in the diagnosis of Niemann Pick disease.

  12. Rapid NMR screening of RNA secondary structure and binding

    International Nuclear Information System (INIS)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald

    2015-01-01

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA

  13. Rapid NMR screening of RNA secondary structure and binding

    Energy Technology Data Exchange (ETDEWEB)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA.

  14. Cross-sectional and longitudinal associations of screen time and physical activity with school performance at different types of secondary school.

    Science.gov (United States)

    Poulain, Tanja; Peschel, Thomas; Vogel, Mandy; Jurkutat, Anne; Kiess, Wieland

    2018-04-27

    Previous studies have already reported associations of media consumption and/or physical activity with school achievement. However, longitudinal studies investigating independent effects of physical activity and media consumption on school performance are sparse. The present study fills this research gap and, furthermore, assesses relationships of the type of secondary school with media consumption and physical activity. The consumption of screen-based media (TV/video, game console, PC/internet, and mobile phone) and leisure physical activity (organized and non-organized) of 10 - to 17-year old adolescents participating in the LIFE Child study in Germany were related to their school grades in two major school subjects (Mathematics and German) and in Physical Education. In addition to a cross-sectional analysis at baseline (N = 850), a longitudinal analysis (N = 512) investigated the independent effects of these activities on the school grades achieved 12 months later. All associations were adjusted for age, gender, socio-economic status, year of data assessment, body-mass-index, and school grades at baseline. A further analysis investigated differences in the consumption of screen-based media and physical activity as a function of the type of secondary school (highest vs. lower secondary school). Adolescents of lower secondary schools reported a significantly higher consumption of TV/video and game consoles than adolescents attending the highest secondary school. Independently of the type of school, a better school performance in Mathematics was predicted by a lower consumption of computers/internet, and a better performance in Physical Education was predicted by a lower consumption of TV/video and a higher frequency of non-organized physical activity. However, the association between non-organized physical activity and subsequent grades in Physical Education was significant in girls only. The present results suggest that media consumption has a negative effect on

  15. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  16. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Nobu, Masaki; Hirao, Toshikazu

    2017-09-18

    Controlling helical chirality and creating protein secondary structures in cyclic/acyclic ferrocene-dipeptide bioorganometallic conjugates were achieved by adjusting the conformational flexibility of the dipeptide chains. In systems reported to date, the helical chirality of a conjugate was determined by the absolute configuration of the adjacent amino acid reside. In contrast, it was possible to induce both M- and P-helical chirality, even when the configuration of the adjacent amino acid was the same. It is particularly interesting to note that M-helical chirality was produced in a cyclic ferrocene-dipeptide conjugate composed of the l-Ala-d-Pro-cystamine-d-Pro-l-Ala dipeptide sequence (1), in which a type II β-turn-like secondary structure was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  18. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  19. Secondary typing of Mycobacterium tuberculosis isolates with matching IS6110 fingerprints from different geographic regions of the United States.

    Science.gov (United States)

    Yang, Z H; Bates, J H; Eisenach, K D; Cave, M D

    2001-05-01

    Fifty-nine isolates of Mycobacterium tuberculosis obtained from different states in the United States and representing 25 interstate clusters were investigated. These clusters were identified by computer-assisted analysis of DNA fingerprints submitted during 1996 and 1997 by different laboratories participating in the CDC National Genotyping and Surveillance Network. Isolates were fingerprinted with the IS6110 right-hand probe (IS6110-3'), the IS6110 left-hand probe (IS6110-5'), and the probe pTBN12, containing the polymorphic GC-rich sequence (PGRS). Spoligotyping based on the polymorphism in the 36-bp direct-repeat locus was also performed. As a control, 43 M. tuberculosis isolates in 17 clusters obtained from patients in Arkansas during the study period were analyzed. Of the 25 interstate clusters, 19 were confirmed as correctly clustered when all the isolates were analyzed on the same gel using the IS6110-3' probe. Of the 19 true IS6110-3' clusters, 10 (53%) were subdivided by one or more secondary typing methods. Clustering of the control group was virtually identical by all methods. Of the three different secondary typing methods, spoligotyping was the least discriminating. IS6110-5' fingerprinting was as discriminating as PGRS fingerprinting. The data indicate that the IS6110-5' probe not only is a useful secondary typing method but also probably would prove to be a more useful primary typing method for a genotyping network which involves isolates from different geographic regions.

  20. Management of uncommon secondary trigeminal neuralgia related to a rare Arnold Chiari type I malformation

    Directory of Open Access Journals (Sweden)

    Zafar Ali Khan

    2017-12-01

    Full Text Available Background Trigeminal neuralgia (TN may sometimes present secondary to an intra-cranial cause. Arnold Chiari Malformation (ACM is downward herniation of the cerebellar tonsils through the foramen magnum that may be a cause of TN like pain in very rare cases. Aims The aim of this brief report is to suggest the proper management of uncommon secondary trigeminal neuralgia related to a rare Arnold Chiari type I malformation. Methods A male patient presented electric shock like stabbing pain on the right side of the face for more than ten years. The symptoms were typical of trigeminal neuralgia except that there was loss of corneal reflex on the right side and the patient also complained of gait & sleep disturbances. Complex and multilevel diagnosis was made. Results A multiplanar imaging through brain acquiring T1/T2W1 revealed ACM Type I Malformation with caudal displacement of cerebellar tonsils through foramen magnum. Conclusion Dental surgeons and oral and Maxillofacial Surgeons should exclude intra-cranial causes by Magnetic Resonance Imaging(MRI in patients of TN presenting with loss of corneal reflex, gait and sleep disturbances due to night time pain episodes.

  1. An Algorithm for Template-Based Prediction of Secondary Structures of Individual RNA Sequences

    Czech Academy of Sciences Publication Activity Database

    Pánek, Josef; Modrák, Martin; Schwarz, Marek

    2017-01-01

    Roč. 8, OCT 10 (2017), s. 1-11, č. článku 147. ISSN 1664-8021 R&D Projects: GA ČR GA15-00885S; GA MŠk(CZ) LM2015047 Institutional support: RVO:61388971 Keywords : RNA * secondary structure * homology Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.789, year: 2016

  2. The Gd14Ag51 structure type and its relation to some complex amalgam structures

    International Nuclear Information System (INIS)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin

    2015-01-01

    Highlights: • The Gd 14 Ag 51 structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd 14 Ag 51 shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE 14 Ag 51 structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd 14 Ag 51 structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd 14 Ag 51 ). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE 14 Ag 51 structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd 14 Ag 51 structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd 14 Ag 51 structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd 14 Ag 51 , the parent compound of this structure family

  3. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.

    Science.gov (United States)

    Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent

    2003-05-01

    Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.

  4. Secondary reconstruction of maxillofacial trauma.

    Science.gov (United States)

    Castro-Núñez, Jaime; Van Sickels, Joseph E

    2017-08-01

    Craniomaxillofacial trauma is one of the most complex clinical conditions in contemporary maxillofacial surgery. Vital structures and possible functional and esthetic sequelae are important considerations following this type of trauma and intervention. Despite the best efforts of the primary surgery, there are a group of patients that will have poor outcomes requiring secondary reconstruction to restore form and function. The purpose of this study is to review current concepts on secondary reconstruction to the maxillofacial complex. The evaluation of a posttraumatic patient for a secondary reconstruction must include an assessment of the different subunits of the upper face, middle face, and lower face. Virtual surgical planning and surgical guides represent the most important innovations in secondary reconstruction over the past few years. Intraoperative navigational surgery/computed-assisted navigation is used in complex cases. Facial asymmetry can be corrected or significantly improved by segmentation of the computerized tomography dataset and mirroring of the unaffected side by means of virtual surgical planning. Navigational surgery/computed-assisted navigation allows for a more precise surgical correction when secondary reconstruction involves the replacement of extensive anatomical areas. The use of technology can result in custom-made replacements and prebent plates, which are more stable and resistant to fracture because of metal fatigue. Careful perioperative evaluation is the key to positive outcomes of secondary reconstruction after trauma. The advent of technological tools has played a capital role in helping the surgical team perform a given treatment plan in a more precise and predictable manner.

  5. Landscape and variation of RNA secondary structure across the human transcriptome.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff; Flynn, Ryan A; Manor, Ohad; Ouyang, Zhengqing; Zhang, Jiajing; Spitale, Robert C; Snyder, Michael P; Segal, Eran; Chang, Howard Y

    2014-01-30

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.

  6. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  7. Langevin dynamics for ramified structures

    Science.gov (United States)

    Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel

    2017-06-01

    We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.

  8. Simulation of the dynamic behaviour of the secondary circuit of a WWER-440 type nuclear power plant Pt. 1

    International Nuclear Information System (INIS)

    Gacs, A.; Janosy, J.S.; Kiss, Zs.

    1987-07-01

    This report describes the simulation model of the secondary circuit of a WWER-440 type nuclear power plant. The goal of this modelling is to simulate normal and small abnormal transients in a Basic Principles Simulator. The earlier reports describing the dynamic simulation of primary circuit of a WWER-440 nuclear power plant are KFKI--1983-127 and KFKI--1985-08. At present the controllers of the secondary circuit are not simulated. Finally, some simulation results are presented. (author)

  9. Secondary ordering in ternary alloy CuMnPt6

    International Nuclear Information System (INIS)

    Takahashi, Miwako; Das, Ananda Kumar; Nakamura, Reo; Ohshima, Ken-ichi; Iwasaki, Hiroshi; Shishido, Toetsu

    2006-01-01

    Using the pulsed-neutron diffraction technique, we performed in situ measurements of structural ordering in the ternary alloy CuMnPt 6 . The diffraction patterns at various temperatures give a direct observation of a double-step ordering: disorder to Cu 3 Au type order as an ordering within the fundamental face-centered cubic lattice to subdivide the lattice into two sublattices formed by face-centered sites (first sublattice) and corner sites (second sublattice) at 968degC; and Cu 3 Au type order to ABC 6 type order as an ordering within the second to subdivide the lattice further into two sublattices formed by alternating (111) planes at 746degC. The order parameters for the ABC 6 type structure experimentally estimated by the method of static concentration waves indicate that the primary ordering developed almost completely, but the secondary ordering remained incomplete. (author)

  10. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  11. Application of Nano-Structured Coatings for Mitigation of Flow-Accelerated Corrosion in Secondary Pipe Systems of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Huh, Jae Hoon; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Flow-accelerated corrosion (FAC) is a complex corrosion process combined with mechanical reaction with fluid. There were lots of research to mitigate FAC such as controlling temperature or water chemistry but in this research, we adopt active coating techniques especially nano-particle reinforced coatings. One of the general characteristics of FAC and its mitigation is that surface friction due to surface morphology makes a significant effect on FAC. Therefore to form a uniform coating layers, nano-particles including TiO2, SiC, Fe-Cr-W and Graphene were utilized. Those materials are known as greatly improve the corrosion resistance of substrates such as carbon steels but their effects on mitigation of FAC are not revealed clearly. Therefore in this research, the FAC resistive performance of nano-structured coatings were tested by electrochemical impedance spectroscopy (EIS) in room temperature 15 wt% sulfuric acid. As the flow-accelerated corrosion inhibitors in secondary piping system of nuclear power plants, various kinds of nano-structured coatings were prepared and tested in room-temperature electrochemical cells. SHS7740 with two types of Densifiers, electroless nickel plating with TiO2 are prepared. Electropolarization curves shows the outstanding corrosion mitigation performance of SHS7740 but EIS results shows the promising potential of Ni-P and Ni-P-TiO2 electroless nickel plating. For future work, high-temperature electrochemical analysis system will be constructed and in secondary water chemistry will be simulated.

  12. Relation between secondary doping and phase separation in PEDOT:PSS films

    Energy Technology Data Exchange (ETDEWEB)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia); Cigan, Marek [Institute of Chemistry, Faculty of Natural Science, Comenius University, Mlynska dolina CH-2, Ilkovicova 6, Bratislava 84215 (Slovakia); Weis, Martin, E-mail: martin.weis@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia)

    2017-02-15

    Highlights: • Surface morphology of highly conductive polymer was investigated. • Phase separation due to secondary doping is an origin of conductivity enhancement. • Phase separation is not dependent on secondary dopant type. - Abstract: Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  13. Microcapsule-Type Self-Healing Protective Coating for Cementitious Composites with Secondary Crack Preventing Ability.

    Science.gov (United States)

    Kim, Dong-Min; Yu, Hwan-Chul; Yang, Hye-In; Cho, Yu-Jin; Lee, Kwang-Myong; Chung, Chan-Moon

    2017-01-26

    A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.

  14. Microcapsule-Type Self-Healing Protective Coating for Cementitious Composites with Secondary Crack Preventing Ability

    Directory of Open Access Journals (Sweden)

    Dong-Min Kim

    2017-01-01

    Full Text Available A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP/dibutyltin dilaurate (DD healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR spectroscopy, optical microscopy, and scanning electron microscopy (SEM. The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.

  15. Specific features of the flow structure in a reactive type turbine stage

    Science.gov (United States)

    Chernikov, V. A.; Semakina, E. Yu.

    2017-04-01

    The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and

  16. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  17. Impacts of MnZn doping on the structural and magnetic properties of M-type SrCaLa hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yujie; Shao, Juxiang; Wang, Fanhou; Huang, Duohui [Yibin University, Computational Physics Key Laboratory of Sichuan Province, School of Physics and Electronic Engineering, Yibin (China); Liu, Xiansong [Anhui University, Engineering Technology Research Center of Magnetic Materials, Anhui Province, School of Physics and Materials Science, Hefei (China)

    2017-05-15

    M-type hexaferrites with chemical compositions of Sr{sub 0.5}Ca{sub 0.2}La{sub 0.3}Fe{sub 12.0-2x} (MnZn){sub x} O{sub 19} (0.0 ≤ x ≤ 0.5) were synthesized by the traditional ceramic method. The crystal structure of M-type hexaferrite samples was examined by X-ray diffraction. The structural analyses reveal that all samples are in single M-type hexagonal phase and no secondary phase is present. A physical property measurement system-vibrating sample magnetometer was used to measure the magnetic properties of M-type hexaferrite samples. The saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and coercivity (H{sub c}) were calculated from magnetic hysteresis loops. M{sub s} first increases with MnZn content (x) from 0.0 to 0.1, and then decreases with MnZn content (x) from 0.1 to 0.5. While, M{sub r} decreases with MnZn content (x) from 0.0 to 0.2, and then increases with MnZn content (x) from 0.2 to 0.5. H{sub c} first decreases with MnZn content (x) from 0.0 to 0.2, and then increase with MnZn content (x) from 0.2 to 0.5. (orig.)

  18. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  19. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  20. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  1. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    Science.gov (United States)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  2. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  3. A systematic review on popularity, application and characteristics of protein secondary structure prediction tools.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Tabatabaei-Malazy, Ozra; Sakhteman, Amirhossein; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2018-02-27

    Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple secondary structure prediction (SSP) options is challenging. The current study is an insight onto currently favored methods and tools, within various contexts. A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of 209 studies were finally found eligible to extract data. Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating a SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. This study provides a comprehensive insight about the recent usage of SSP tools which could be helpful for selecting a proper tool's choice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Secondary IgG responses to type III pneumococcal polysaccharide. II. Different cellular requirements for induction and elicitation.

    Science.gov (United States)

    Braley-Mullen, H

    1976-04-01

    Mice primed with a thymus- (T) dependent form of Type III pneumococcal polysaccharide (S3), i.e., S3 coupled to erythrocytes (S3-RBC) produce S3-specific IgG antibody after secondary challenge with either S3 or S3-RBC. The production of IgG antibody by mice challenged with S3 was shown to be T independent since secondary responses were enhanced when mice were treated with anti-lymphocyte serum (ALS) at the time of secondary challenge with S3 and T-depleted spleen cells responded as well as unfractionated spleen cells to S3 in an adoptive transfer system. Secondary S3-specific IgG responses in mice challenged with S3-RBC were shown to be T dependent by the same criteria. The results obtained by using S3 as the antigen indicate that IgG-producing B cells (B lambda cells) can recognize and respond to antigen in the absence of helper T cells. On the other hand, T cells were required for the induction of S3-specific memory B lambda cells since mice depleted of T cells by treatment with ALS at the time of priming with S3-RBC failed to produce S3-specific IgG antibody after secondary challenge with either S3-specific IgG antibody after secondary chall-nge with either S3 or S3rbc. Since RBC-specific memory cells were induced in T-deprived mice the results suggest that T cell regulation of IgG antibody production may vary for different antigens.

  5. New Comparative Analysis Based on the Secondary Structure of SSU-rRNA Gene Reveals the Evolutionary Trend and the Family-Genus Characters of Mobilida (Ciliophora, Peritrichia).

    Science.gov (United States)

    Zhang, Yong; Zhao, Yuan-Jun; Wang, Qin; Tang, Fa-Hui

    2015-08-01

    In order to reveal the structural evolutionary trend of Mobilida ciliates, twenty-six SSU-rRNA sequences of mobilid species, including seven ones newly sequenced in the present work, were used for comparative phylogenic analysis based on the RNA secondary structure. The research results indicate that all the secondary structures except domains Helix 10, Helix 12, and Helix 37 could be regarded as the criterions in classification between the family Trichodinidae and Urceolariida, and four regions including Helix E10-1, Helix 29, Helix 43, and Helix 45-Helix 46 could be as criterions in classification between the genus Trichodinella and Trichodina in family Trichodinidae. After the analysis of common structural feature within the Mobilida, it was found that the secondary structure of V6 could prove the family Urceolariidae primitive status. This research has further suggested that the genus Trichodina could be divergent earlier than Trichodinella in the family Trichodinidae. In addition, the relationship between the secondary structure and topology of phylogenic tree that the branching order of most clades corresponds with the secondary structure of species within each clade of phylogenetic tree was first uncovered and discussed in the present study.

  6. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  7. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  8. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina eFenollar Ferrer

    2015-09-01

    Full Text Available Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to either the outside or inside of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (asymmetry of these systems has been successfully used as a bioinformatic tool, called repeat-swap modeling to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that

  9. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases.

    Science.gov (United States)

    Lohman, Jeremy R; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  10. Structural and evolutionary relationships of "AT-less" type I polyketide synthase ketosynthases

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Jeremy; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne E.; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, B G

    2015-10-13

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.

  11. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers.

    Science.gov (United States)

    Li, Huan; Li, Shang; Tang, Wei; Yang, Yang; Zhao, Jianfu; Xia, Siqing; Zhang, Weixian; Wang, Hong

    2018-06-01

    Secondary water supply systems (SWSSs) refer to the in-building infrastructures (e.g., water storage tanks) used to supply water pressure beyond the main distribution systems. The purpose of this study was to investigate the influence of SWSSs on microbial community structure and the occurrence of opportunistic pathogens, the latter of which are an emerging public health concern. Higher numbers of bacterial 16S rRNA genes, Legionella and mycobacterial gene markers were found in public building taps served by SWSSs relative to the mains, regardless of the flushing practice (P water retention time, warm temperature and loss of disinfectant residuals promoted microbial growth and colonization of potential pathogens in SWSSs. Varied levels of microbial community shifts were found in different types of SWSSs during water transportation from the distribution main to taps, highlighting the critical role of SWSSs in shaping the drinking water microbiota. Overall, the results provided insight to factors that might aid in controlling pathogen proliferation in real-world water systems using SWSSs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  13. Integrated Analysis Seismic Inversion and Rockphysics for Determining Secondary Porosity Distribution of Carbonate Reservoir at “FR” Field

    Science.gov (United States)

    Rosid, M. S.; Augusta, F. F.; Haidar, M. W.

    2018-05-01

    In general, carbonate secondary pore structure is very complex due to the significant diagenesis process. Therefore, the determination of carbonate secondary pore types is an important factor which is related to study of production. This paper mainly deals not only to figure out the secondary pores types, but also to predict the distribution of the secondary pore types of carbonate reservoir. We apply Differential Effective Medium (DEM) for analyzing pore types of carbonate rocks. The input parameter of DEM inclusion model is fraction of porosity and the output parameters are bulk moduli and shear moduli as a function of porosity, which is used as input parameter for creating Vp and Vs modelling. We also apply seismic post-stack inversion technique that is used to map the pore type distribution from 3D seismic data. Afterward, we create porosity cube which is better to use geostatistical method due to the complexity of carbonate reservoir. Thus, the results of this study might show the secondary porosity distribution of carbonate reservoir at “FR” field. In this case, North – Northwest of study area are dominated by interparticle pores and crack pores. Hence, that area has highest permeability that hydrocarbon can be more accumulated.

  14. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  15. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    Science.gov (United States)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  16. Structuring diabetes care in general practices: many improvements, remaining challenges.

    LENUS (Irish Health Repository)

    Jennings, S

    2009-08-07

    BACKGROUND: For people with type 2 diabetes to enjoy improved longevity and quality of life, care needs to be organised in a systematic way. AIM: To test if processes and intermediate outcomes for patients with type 2 diabetes changed with the move to structured care in general practice shared with secondary care. METHODS: An audit of process and intermediate outcomes for patients with type 2 diabetes before and after the change to structured care in 10 Dublin general practices shared with secondary care four years on. RESULTS: Structured diabetes care in general practice has led to more dedicated clinics improved processes of care and increased access to multidisciplinary expertise. Improvement in blood pressure control, the use of aspirin and the use of lipid lowering agents indicate a significant decrease in absolute risk of vascular events for this population. CONCLUSIONS: Structured care in general practice improves intermediate outcomes for people with type 2 diabetes. Further improvements need to be made to reach international targets.

  17. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo

    2016-02-08

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  18. Organosilane with gemini-type structure as the mesoporogen for synthesis of hierarchical porous ZSM-5 zeolite

    KAUST Repository

    Zhu, Haibo; Abou-Hamad, Edy; Chen, Yin; Saih, Youssef; Liu, Weibing; Basset, Jean-Marie; Samal, Akshaya Kumar

    2016-01-01

    A new kind of organosilane (1,6-bis (diethyl(3-trimethoxysilylpropyl)ammonium) hexane bromide) with a gemini-type structure was prepared and used as a mesoporogen for the synthesis of hierarchical porous ZSM-5 zeolite. There are two quaternary ammonium centers along with double hydrolysable -RSi(OMe)3 fragments in the organosilane, which results in a strong interaction between this mesoporogen and silica-alumina gel. The organosilane can be easily incorporated into ZSM-5 zeolite structure during the crystallization process, and it was finally removed by calcination leading to secondary pores in ZSM-5. The synthesized ZSM-5 has been systematically studied by XRD, nitrogen adsorption, SEM, TEM, TG and solid-state one-dimensional (1D) and two-dimensional (2D) NMR, which reveals information on its detailed structure. It has a hierarchical porosity system, which combines the intrinsic micropores coming from the crystalline structure and irregular mesopores created by the organosilane template. Moreover, the mesoposity including pore size and volume within ZSM-5 can be systematically tuned by changing the organosilane/TEOS ratios, which confirms this organosilane has high flexibility of using as template for the synthesis of hierarchical porous zeolite.

  19. Function-related Secondary User Needs and Secondary Data

    African Journals Online (AJOL)

    Riette Ruthven

    basis of both a critical analysis of the theory and an examination of selected data types .... (2) "Secondary needs related to the user's linguistic and subject-specific ... understand the Afrikaans word skepe needs to know that skepe is the plural.

  20. Prediction of beta-turns and beta-turn types by a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN).

    Science.gov (United States)

    Kirschner, Andreas; Frishman, Dmitrij

    2008-10-01

    Prediction of beta-turns from amino acid sequences has long been recognized as an important problem in structural bioinformatics due to their frequent occurrence as well as their structural and functional significance. Because various structural features of proteins are intercorrelated, secondary structure information has been often employed as an additional input for machine learning algorithms while predicting beta-turns. Here we present a novel bidirectional Elman-type recurrent neural network with multiple output layers (MOLEBRNN) capable of predicting multiple mutually dependent structural motifs and demonstrate its efficiency in recognizing three aspects of protein structure: beta-turns, beta-turn types, and secondary structure. The advantage of our method compared to other predictors is that it does not require any external input except for sequence profiles because interdependencies between different structural features are taken into account implicitly during the learning process. In a sevenfold cross-validation experiment on a standard test dataset our method exhibits the total prediction accuracy of 77.9% and the Mathew's Correlation Coefficient of 0.45, the highest performance reported so far. It also outperforms other known methods in delineating individual turn types. We demonstrate how simultaneous prediction of multiple targets influences prediction performance on single targets. The MOLEBRNN presented here is a generic method applicable in a variety of research fields where multiple mutually depending target classes need to be predicted. http://webclu.bio.wzw.tum.de/predator-web/.

  1. Teaching the foundations of quantum mechanics in secondary school: a proposed conceptual structure

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles Fanaro

    2009-03-01

    Full Text Available This paper is part of a doctoral thesis that investigates Basic Quantum Mechanics (QM teaching in high school. A Conceptual Structure of Reference (CSR based on the Path Integral Method of Feynman (1965 was rebuilt and a Proposed Conceptual Structure for Teaching (PCST (Otero, 2006, 2007 the basics of Quantum Mechanics at secondary school was designed, analysed and carried out. This PCST does not follow the historical route and it is complementary to the canonical formalism. The concepts: probability distribution, quantum system, x(t alternative, amplitude of probability, sum of probability amplitude, action, Planck's constant, and classic-quantum transition were rebuilt with the students. Mathematical formalism was avoided by using simulation software assistance. The Proposed Conceptual Structure for Teaching (PCST is described and some results from the test carried out by the class group are discussed. This information allows the analysis of the Conceptual Structure Effectively Reconstructed (CSER to be initiated with the students.

  2. Simulation of the dynamic behaviour of the secondary circuit of a WWER-440 type nuclear power plant Pt. 2

    International Nuclear Information System (INIS)

    Doorenbos, J.; Gacs, A.; Kiss, Zs.

    1987-12-01

    This report describes the dynamic simulation models of the most important controllers of the secondary circuit of a WWER-440 type nuclear power plant, i.e., the hydraulic turbine controller and the level controls of the condenser hotwell and that of the feedwater tank. Simulation results are also presented. (For dynamic simulation models of the primary circuit of WWER-440 type reactors see Reports KFKI--1983-127 and KFKI--1985-08.) (author) 15 figs

  3. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  4. An Owen-type value for games with two-level communication structures

    NARCIS (Netherlands)

    van den Brink, René; Khmelnitskaya, Anna Borisovna; van der Laan, Gerard

    We introduce an Owen-type value for games with two-level communication structure, which is a structure where the players are partitioned into a coalition structure such that there exists restricted communication between as well as within the a priori unions of the coalition structure. Both types of

  5. Secondary Structure Prediction of Protein using Resilient Back Propagation Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jyotshna Dongardive

    2015-12-01

    Full Text Available The paper proposes a neural network based approach to predict secondary structure of protein. It uses Multilayer Feed Forward Network (MLFN with resilient back propagation as the learning algorithm. Point Accepted Mutation (PAM is adopted as the encoding scheme and CB396 data set is used for the training and testing of the network. Overall accuracy of the network has been experimentally calculated with different window sizes for the sliding window scheme and by varying the number of units in the hidden layer. The best results were obtained with eleven as the window size and seven as the number of units in the hidden layer.

  6. The Interplay between Adolescent Needs and Secondary School Structures: Fostering Developmentally Responsive Middle and High School Environments across the Transition

    Science.gov (United States)

    Ellerbrock, Cheryl R.; Kiefer, Sarah M.

    2013-01-01

    Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…

  7. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  8. High cycle fatigue analysis of vortex suppression plate and secondary core support structures

    International Nuclear Information System (INIS)

    Xue Guohong; Li Yuan; Zhao Feiyun; Feng Shaodong; Yu Hao

    2013-01-01

    Background: Reactor internals are important equipment s in the reactor coolant system, its structure design needs high reliability in the entire lifetime, Reactor internals have occurred breakdown and the damage event due to flow induced vibrations in the domestic and foreign nuclear power plants, which make immediate influence on reactor safe operation and economic efficiency. Purpose: In this work, the dynamic response of reactor internals-vortex suppression plate and secondary core support structure (SCSS) under the loading from pump induced vibrations and flow induced vibrations are studied. Methods: Based on the finite element model of SCSS, Spectrum analysis and the harmonious analysis are performed, in order to get the response of the structure under flow induced vibrations. Then, the high fatigue of the structure is assessed according to the ASME B and PV Code. Results: The results indicate that alternate stresses of all the components satisfy the limiting value in the correlative requirements. Conclusions: The structure of SCSS could bear the vibration induced from the flow and the pump, and the method used in this article provides the reference for other reactor internals structure analysis like this. (authors)

  9. Stochastic Fatigue Analysis of Jacket Type Offshore Structures

    DEFF Research Database (Denmark)

    Sigurdsson, Gudfinnur

    In this paper, a stochastic reliability assessment for jacket type offshore structures subjected to wave loads in deep water environments is outlined. In the reliability assessment, structural and loading uncertainties are taken into account by means of some stochastic variables. To estimate stat...... statistical measures of structural stress variations the modal spectral analysis method is applied....

  10. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  11. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  12. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    Science.gov (United States)

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  13. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution

    DEFF Research Database (Denmark)

    Lenaers, G; Nielsen, Henrik; Engberg, J

    1988-01-01

    The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast......), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure...

  14. The Structures of the Alternative Conceptions of Preservice Secondary Teachers on Seasonal Changes

    Directory of Open Access Journals (Sweden)

    Junyoung Oh

    2005-03-01

    Full Text Available This study was to understand the components that influence preservice secondary teachers' conceptions about "seasonal changes". We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

  15. Structure of the secondary xylem of Aniba Aubl. species from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Cláudia Viana Urbinati

    2014-09-01

    Full Text Available The aim of this study was to characterize the wood of Aniba species from the Brazilian Amazon, on the basis of specimens in the wood collection of the Herbarium of the Museu Paraense Emílio Goeldi, in the city of Belém, Brazil. The species were found to present a homogeneous structure in the secondary xylem, as defined by the location of oil cells; the presence of tyloses and crystals; and singularities of the radial and axial parenchyma.

  16. Forecasting cracked collectors on anticlinal type structures at late stage of exploration in oil and gas area

    Science.gov (United States)

    Hasanov, M. A.; Aleksandrov, B. L.; Eljayev, A. S.; Ezirbaev, T. B.; Gatsaeva, S. S.

    2017-10-01

    The possibility of using complex information on morphological parameters of structures, block porosity and the reservoir pressure gradient over previously explored deposits for the development of a multidimensional equation for estimating secondary porosity is considered. This is examined by the example of reservoirs with secondary (fractured) porosity of the Upper Cretaceous carbonate deposits of the Tersko-Sunzhenskaya oil and gas bearing region of the Ciscaucasia. The use of this equation makes it possible to predict the magnitude of the secondary porosity on the anticlinal structures, which are newly discovered by seismic methods at a later stage of exploration in the relevant oil and gas region, as a quantitative criterion that predicts the presence of a trap.

  17. Factors that Affect Mathematics-Science (MS) Scores in the Secondary Education Institutional Exam: An Application of Structural Equation Modeling

    Science.gov (United States)

    Yavuz, Mustafa

    2009-01-01

    Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…

  18. Subaortic (Type 6 Muscular Band—Innocent Bystander or Pathologic Structure?

    Directory of Open Access Journals (Sweden)

    J Ker

    2010-08-01

    Full Text Available Intraventricular tendons are structures that was identified more than a hundred years ago. It has been suggested that they represent intracavitary radiations of the bundle of His and that they may be an isolated finding or be associated with structural cardiac abnormalities. Loukas et al divided these structures into five categories and recently a sixth type have been added. Various physiological disturbances have been observed due to the sixth type of tendon, such as ST segment elevation and right bundle branch block. It has been noted that this peculiar structure appears too thick to be called a tendon, thus the term band. This retrospective analysis analyzed the incidence of the thick, subaortic (type 6 muscular band in a cardiovascular clinic.

  19. Three dimensional analysis of self-structuring organic thin films using time-of-flight secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mayerhofer, Karl E.; Heier, Jakob; Maniglio, Ylenia; Keller, Beat Andreas, E-mail: beat.keller@empa.ch

    2011-07-01

    Selective sub-micrometer structuring of phase-separating organic semiconductor materials has recently got into focus for providing the opportunity of further improvements in optoelectronic device applications. Here we present a 3D-time-of-flight secondary ion mass spectrometry (3D-TOF-SIMS) depth profiling investigation on spin-coated blends consisting of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and a cationic cyanine dye (1,1'-diethyl-3,3,3',3'-tetramethylcarbocyanine iodide). TOF-SIMS provides the required lateral and depth resolution to resolve material and molecular inhomogeneities and phase separation in the blend. The data are illustrating the three-dimensional arrangement of the substances involved and confirm results of earlier studies using atomic force microscopy, UV-vis spectroscopy and x-ray photoelectron spectroscopy, and which have shown well distinguishable morphological features. The formation of this domain structure has been found to be dependent on the absolute as well as the individual film thickness, in accordance with models based on thin liquid two-layer films. Honey-comb like primary structures with micrometer dimension were found in samples containing small amounts of dye molecules in the deposition solution. In this case a thin dye deposit on PCBM was detected, which is well separated from the dye layer at the substrate. For this type of sample, we discuss an extended model of film formation based on partial depletion of dye molecules during film solidification, resulting in two individual dye layers.

  20. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  1. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  2. Does family structure matter? Comparing the life goals and aspirations of learners in secondary schools

    Directory of Open Access Journals (Sweden)

    Eugene Lee Davids

    2013-01-01

    Full Text Available The aim of this study was to compare the goals and aspirations of learners from single- and two-parent families. The study used a quantitative methodology with a cross-sectional comparative group design. The sample consisted of 853 Grade 11 learners from secondary schools in the Northern, Southern and Metro Central education districts in the Western Cape. The data were collected using the Aspirations Index and a short biographical questionnaire. The results suggest that there was a significant main effect of family structure on certain goals and aspirations of learners in secondary schools. These goals and aspirations included wealth, image, personal growth, relationships, and health. Furthermore, learners in single-parent families placed more emphasis on intrinsic goals.

  3. Calculation methods and algorithms development of dynamic loadings on NPP secondary circuit equipment at shock and pulse actions

    International Nuclear Information System (INIS)

    Kuznetsov, D.V.; Kormilitsyn, V.M.; Proskuryakov, K.N.

    2010-01-01

    Calculation results of acoustic parameters fluctuations in low-pressure regenerative heating system of NPP with WWER-1000 type reactor were presented. The spectral structure of acoustic fluctuations was shown to depend on configuration of secondary circuit equipment, its geometrical sizes and operation mode. Estimations of natural oscillations frequencies of working medium pressure in the secondary circuit equipment were resulted. The developed calculation methods and algorithms are intended for revealing and prevention of initiation conditions of vibrations resonances in elements of the secondary circuit equipment with acoustic oscillations in working medium, both under operating conditions and in the design stage of the second circuit of NPP with WWER-1000 type reactor. Analysis of pass-band dependence on operation mode was carried out to solve the given problem [ru

  4. Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

    Science.gov (United States)

    Lohman, Jeremy R.; Ma, Ming; Osipiuk, Jerzy; Nocek, Boguslaw; Kim, Youngchang; Chang, Changsoo; Cuff, Marianne; Mack, Jamey; Bigelow, Lance; Li, Hui; Endres, Michael; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-01-01

    Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs. PMID:26420866

  5. Development, characteristics and comparative structural analysis of tensegrity type cable domes

    Directory of Open Access Journals (Sweden)

    Nenadović Aleksandra

    2010-01-01

    Full Text Available Tensegrity type cable domes are three-dimensional structural configurations, prestressed inside the perimeter compression ring, in which the continuous tension throughout the roof structure is made by continuous tension cables and discontinuous compression struts. These kinds of structures can be formed like spatially triangulated networks or like networks nontriangulated in space. This paper examines some effects of network geometry on the behaviour and structural efficiency of tensegrity type cable domes. In this paper the roof cover is considered non-interactive with the supporting structure, unlike rigidly clad tensegrity type cable domes. Since the main bearing elements of tensegrity type cable domes are prestressed cables, they show non-linear load deformation and rely upon geometric stiffness. A geometrically non-linear analysis of non-triangulated and triangulated structures for different load conditions was conducted employing a computer program based on the perturbation theory. The incrementally-iterative procedure, with an approximation of the stiffness matrix by combining the elastic and geometric stiffness matrix, allows detection of structural instabilities.

  6. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    Science.gov (United States)

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  7. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    Science.gov (United States)

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  8. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  9. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Johansen, J. R.; Bowen, M.B.; Martin, M.P.; Sheil, C.A.

    2014-01-01

    Roč. 14, č. 2 (2014), s. 161-178 ISSN 1802-5439 Institutional support: RVO:60077344 Keywords : 16S rRNA secondary structure * cyanobacteria * phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 1.930, year: 2014

  10. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  11. Effect of Secondary Doping Using Sorbitol on Structure and Transport Properties of PEDOT-PSS Thin Films

    Science.gov (United States)

    Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer

    2017-07-01

    Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in

  12. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli

    International Nuclear Information System (INIS)

    Zhang Weici; Xiao Weihua; Wei Haiming; Zhang Jian; Tian Zhigang

    2006-01-01

    Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon α (huIFN-α) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-α showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli

  13. Prediction of the location and type of beta-turns in proteins using neural networks.

    OpenAIRE

    Shepherd, A. J.; Gorse, D.; Thornton, J. M.

    1999-01-01

    A neural network has been used to predict both the location and the type of beta-turns in a set of 300 nonhomologous protein domains. A substantial improvement in prediction accuracy compared with previous methods has been achieved by incorporating secondary structure information in the input data. The total percentage of residues correctly classified as beta-turn or not-beta-turn is around 75% with predicted secondary structure information. More significantly, the method gives a Matthews cor...

  14. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  15. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    International Nuclear Information System (INIS)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian; Pattanaik, Marut; Kanakala, Raghunath

    2016-01-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  16. A Review of Influence of Various Types of Structural Bracing to the Structural Performance of Buildings

    Science.gov (United States)

    Razak, S. M.; Kong, T. C.; Zainol, N. Z.; Adnan, A.; Azimi, M.

    2018-03-01

    Excessive lateral drift can contribute significantly towards crack formation, leading to structural damage. The structural damage will in turn reduce the capacity of the structure and weaken it from the intended design capacity. Generally, lateral drift is more pronounced in higher and longer structure, such as high rise buildings and bridges. A typical method employed to control lateral drift is structural bracing, which works by increasing stiffness and stability of structure. This paper reviews the influence of various types of structural bracing to structural performance of buildings. The history of structural bracing is visited and the differences between numerous structural bracing in term of suitability to different types of buildings and loading, mechanisms, technical details, advantages and limitations, and the overall effect on the structural behaviour and performance are dissected. Proper and efficient structural bracing is pertinent for each high rise building as this will lead towards safer, sustainable and more economical buildings, which are cheaper to maintain throughout the life of the buildings in the future.

  17. Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure

    International Nuclear Information System (INIS)

    Eliziario Nunes, Sayonara; Wang, Chun-Hai; So, Karwei; Evans, John S.O.; Evans, Ivana Radosavljević

    2015-01-01

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn 2 VO 6 , known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn 2 VO 6 adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO 4 tetrahedra, ZnO 6 octahedra and VO 4 tetrahedra, and Bi 2 O 12 dimers. It is the only known member of the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn 2 VO 6 , calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn 2 VO 6 , a new structure type in the BiM 2 AO 6 (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM 2 AO 6 (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation

  18. Cooling joint width and secondary mineral infilling characteristics in four Grande Ronde Basalt flows at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Lindberg, J.W.

    1988-09-01

    Widths were measured and percentages of secondary mineral infilling types were estimated 3194 cooling joints in basalt core of the Rocky Coulee, Cohassett, McCoy Canyon, and Umtanum basalt flows. The core was from core holes RRL-2, RRL-6, RRL-14, and DC-16 on the Hanford Site in Washington State. Joint width was characterized by determining the frequency distribution in each of 16 flow/core hole combination samples (4 flows by 4 core holes = 16 samples) and comparing the distributions between intraflow structures, between basalt flows, and between core holes. Joint infilling was characterized by determining the percentage of joints with each secondary mineral type present and then comparing flows and comparing intraflow instructures. Basalt flows, intraflow structures, and core holes cannot be differentiated consistently on the basis of joint width. There is only one population of widths that can be characterized by a log-normal distribution, an arithmetic mean of 0. 23 mm(9.0E-04in.), and a standard deviation of 0.49 mm (1.9E-03in.). Clay is the predominant infilling type followed by silica and zeolite. For example, 98.1% of the randomly selected joints from the Cohassett flow are filled predominately with clay, 6.5% have zeolite predominating, and 4.0% have silica predominating. Only 19(0.6%) of the 3194 joints measured have observable void space. Basalt flows and intraflow structures cannot be differentiated on the basis joint infilling types, except for the Umtanum entablature. Joint width and infilling types are correlated, and secondary minerals fill basalt cooling joints in a particular sequence

  19. Validation Evidence of the Motivation for Teaching Scale in Secondary Education.

    Science.gov (United States)

    Abós, Ángel; Sevil, Javier; Martín-Albo, José; Aibar, Alberto; García-González, Luis

    2018-04-10

    Grounded in self-determination theory, the aim of this study was to develop a scale with adequate psychometric properties to assess motivation for teaching and to explain some outcomes of secondary education teachers at work. The sample comprised 584 secondary education teachers. Analyses supported the five-factor model (intrinsic motivation, identified regulation, introjected regulation, external regulation and amotivation) and indicated the presence of a continuum of self-determination. Evidence of reliability was provided by Cronbach's alpha, composite reliability and average variance extracted. Multigroup confirmatory factor analyses supported the partial invariance (configural and metric) of the scale in different sub-samples, in terms of gender and type of school. Concurrent validity was analyzed by a structural equation modeling that explained 71% of the work dedication variance and 69% of the boredom at work variance. Work dedication was positively predicted by intrinsic motivation (ß = .56, p amotivation (ß = -.49, p amotivation (ß = .68, p < .001). The Motivation for Teaching Scale in Secondary Education (Spanish acronym EME-ES, Escala de Motivación por la Enseñanza en Educación Secundaria) is discussed as a valid and reliable instrument. This is the first specific scale in the work context of secondary teachers that has integrated the five-factor structure together with their dedication and boredom at work.

  20. Structural assessments of plate type support system for APR1400 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tung; Namgung, Ihn, E-mail: inamgung@kings.ac.kr

    2017-04-01

    Highlights: • This paper investigates plate-type support structure for the reactor vessel of the APR 1400. • The tall column supports of APR1400 reactor challenges in seismic and severe accident events. • A plate-type support of reactor vessel was proposed and evaluated based on ASME code. • The plate-type support was assessed to show its higher rigidity than column-type. - Abstract: This paper investigates an alternative form of support structure for the reactor vessel of the APR 1400. The current reactor vessel adopts a four-column support arrangement locating on the cold legs of the vessel. Although having been successfully designed, the tall column structure challenges in seismic events. In addition, for the mitigation of severe accident consequences, the columns inhibit ex-vessel coolant flow, hence the elimination of the support columns proposes extra safety advantages. A plate-type support was proposed and evaluated for the adequacy of meeting the structural stiffness by Finite Element Analysis (FEA) approach. ASME Boiler and Pressure Vessel Code was used to verify the design. The results, which cover thermal and static structural analysis, show stresses are within allowable limits in accordance with the design code. Even the heat conduction area is increased for the plate-type of support system, the results showed that the thermal stresses are within allowable limits. A comparison of natural frequencies and mode shapes for column support and plate-type support were presented as well which showed higher fundamental frequencies for the plate-type support system resulting in greater rigidity of the support system. From the outcome of this research, the plate-type support is proven to be an alternative to current APR column type support design.

  1. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  2. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    Science.gov (United States)

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  3. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    Science.gov (United States)

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  4. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    Science.gov (United States)

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  5. Secondary production in shallow marine environments

    International Nuclear Information System (INIS)

    Pomeroy, L.R.

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed

  6. Importance of secondary damage in downer cows.

    Science.gov (United States)

    Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F

    2016-05-01

    To investigate the relative importance in downer cows of the primary cause of recumbency in comparison with secondary complications. Downer dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of the 218 cows was determined and secondary damage, status on day 7 and final outcome were recorded. Some type of secondary damage was found in 183/218 (84%) cows, of which 173/218 (79%) had damage deemed to be clinically important. By day 7, 52 (24%) had recovered and 69 (32%) eventually recovered. Of the 149 (68%) cows that were euthanased or died, 23 (15%) were deemed to have been lost solely from the primary cause, 107 (72%) from secondary damage and 19 (13%) from a combination of both. There was no difference in recovery among the five broad groups of causes of primary recumbency. Secondary damage was very common and presented in a large variety of ways, with many cows having multiple types of secondary damage concurrently. For most cows the secondary damage was more important than the initial primary damage in determining their fate. © 2016 Australian Veterinary Association.

  7. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation crite...

  8. The incidence angle influence on the structure of secondary-emission characteristics of single crystals

    International Nuclear Information System (INIS)

    Gasanov, E.R.; Aliyev, B.Z.

    2012-01-01

    Full text : The dependences of Wand MO single crystals in different atom planes have been studied in this work. It is revealed that maximums are added to each dependency and also minimums of first and second degree. This fact is explained by diffraction dynamic theory. It is established that electron diffraction oriented not perpendicularly to crystal surface is the reason of appearance of second order structure on studied secondary-emission characteristics. In the present work being the continuation and development of SEE investigations of high-melting metal single crystals begun earlier by authors, the structure dependence of SEE main characteristics of angle has been studied. This angle has been chosen because as it is mentioned before the bad repeatability in different experiments for it is observed

  9. Molecular basis of processing-induced changes in protein structure in relation to intestinal digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.

    Science.gov (United States)

    Yu, Gloria Qingyu; Warkentin, Tom; Niu, Zhiyuan; Khan, Nazir A; Yu, Peiqiang

    2015-12-05

    The objectives of this study were (1) to quantify the protein inherent molecular structural features of green cotyledon (CDC Striker) and yellow cotyledon (CDC Meadow) pea (Pisum sativum L.) seeds using molecular spectroscopic technique (FT/IR-ATR); (2) measure the denaturation of protein molecular makeup in the two types of pea during dry roasting (120°C for 60 min), autoclaving (120°C for 60 min) or microwaving (for 5 min); and (3) correlate the heat-induced changes in protein molecular makeup to the corresponding changes in protein digestibility determined using modified three-step in vitro procedure. Compared with yellow-type, the green-type peas had higher (Pprotein content. Compared with yellow-type, the green-type peas had lower (Pprotein secondary structure makeup. All processing applications increased α-helix:β-sheet ratio, with the largest (Pprotein within the green (r=-0. 86) and yellow (r=0.81) pea-types. However, across the pea types the correlation was not significant. Principal component and hierarchical cluster analyses on the entire spectral data from the amide region (ca. 1727-1480 cm(-1)) were able to visualize and discriminate the structural difference between pea varieties and processing treatments. This study shows that the molecular spectroscopy can be used as a rapid tool to screen the protein value of raw and heat-treated peas. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  11. Secondary metabolites of Cynodon dactylon as an antagonist to angiotensin II type1 receptor: Novel in silico drug targeting approach for diabetic retinopathy

    Science.gov (United States)

    Jananie, R. K.; Priya, V.; Vijayalakshmi, K.

    2012-01-01

    Objectives: To study the ability of the secondary metabolites of Cynodon dactylon to serve as an antagonist to angiotensin II type 1 receptor (AT1); activation of this receptor plays a vital role in diabetic retinopathy (DR). Materials and Methods: In silico methods are mainly harnessed to reduce time, cost and risk associated with drug discovery. Twenty-four compounds were identified as the secondary metabolites of hydroalcoholic extract of C. dactylon using the GCMS technique. These were considered as the ligands or inhibitors that would serve as an antagonist to the AT1. The ACD/Chemsketch tool was used to generate 3D structures of the ligands. A molecular file format converter tool was used to convert the generated data to the PDB format (Protein Data Bank) and was used for docking studies. The AT1 structure was retrieved from the Swissprot data base and PDB and visualized using the Rasmol tool. Domain analysis was carried from the Pfam data base; following this, the active site of the target protein was identified using a Q-site finder tool. The ability of the ligands to bind with the active site of AT1 was studied using the Autodocking tool. The docking results were analyzed using the WebLab viewer tool. Results: Sixteen ligands showed effective binding with the target protein; diazoprogesteron, didodecyl phthalate, and 9,12-octadecadienoyl chloride (z,z) may be considered as compounds that could be used to bind with the active site sequence of AT1. Conclusions: The present study shows that the metabolites of C. dactylon could serve as a natural antagonist to AT1 that could be used to treat diabetic retinopathy. PMID:22368412

  12. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, ......Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu...

  13. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    Directory of Open Access Journals (Sweden)

    Rafal Pietruszka

    2014-02-01

    Full Text Available Selected properties of photovoltaic (PV structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100 are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

  14. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    Science.gov (United States)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  15. Observed lesson structure during the first year of secondary education : Exploration of change and link with academic engagement

    NARCIS (Netherlands)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components

  16. Power and type I error results for a bias-correction approach recently shown to provide accurate odds ratios of genetic variants for the secondary phenotypes associated with primary diseases.

    Science.gov (United States)

    Wang, Jian; Shete, Sanjay

    2011-11-01

    We recently proposed a bias correction approach to evaluate accurate estimation of the odds ratio (OR) of genetic variants associated with a secondary phenotype, in which the secondary phenotype is associated with the primary disease, based on the original case-control data collected for the purpose of studying the primary disease. As reported in this communication, we further investigated the type I error probabilities and powers of the proposed approach, and compared the results to those obtained from logistic regression analysis (with or without adjustment for the primary disease status). We performed a simulation study based on a frequency-matching case-control study with respect to the secondary phenotype of interest. We examined the empirical distribution of the natural logarithm of the corrected OR obtained from the bias correction approach and found it to be normally distributed under the null hypothesis. On the basis of the simulation study results, we found that the logistic regression approaches that adjust or do not adjust for the primary disease status had low power for detecting secondary phenotype associated variants and highly inflated type I error probabilities, whereas our approach was more powerful for identifying the SNP-secondary phenotype associations and had better-controlled type I error probabilities. © 2011 Wiley Periodicals, Inc.

  17. [Partially unfolded state of lysozyme with a developed secondary structure in dimethylsulfoxide].

    Science.gov (United States)

    Timchenko, A A; Kirkitadze, M D; Prokhorov, D A; Potekhin, S A; Serdiuk, I N

    1996-06-01

    The conformation of a chicken egg lysozyme molecule (dimensions, stoichiometry of its associates, and the degree of helicity) in DMSO was studied by small-angle neutron scattering, dynamic light scattering, and optical rotatory dispersion in the visible region of the spectrum. At high DMSO concentrations (70%), the protein was shown to exist as a dimer. The monomer molecules in the dimer adopt a partially unfolded conformation, with dimensions substantially greater than those in the native state and a high content of secondary structure (the degree of helicity is close to that of native lysozyme). This approach provides a unique possibility to assess the compactness of molecules in associates, which may be very useful in studying protein self-organization.

  18. SeMPI: a genome-based secondary metabolite prediction and identification web server.

    Science.gov (United States)

    Zierep, Paul F; Padilla, Natàlia; Yonchev, Dimitar G; Telukunta, Kiran K; Klementz, Dennis; Günther, Stefan

    2017-07-03

    The secondary metabolism of bacteria, fungi and plants yields a vast number of bioactive substances. The constantly increasing amount of published genomic data provides the opportunity for an efficient identification of gene clusters by genome mining. Conversely, for many natural products with resolved structures, the encoding gene clusters have not been identified yet. Even though genome mining tools have become significantly more efficient in the identification of biosynthetic gene clusters, structural elucidation of the actual secondary metabolite is still challenging, especially due to as yet unpredictable post-modifications. Here, we introduce SeMPI, a web server providing a prediction and identification pipeline for natural products synthesized by polyketide synthases of type I modular. In order to limit the possible structures of PKS products and to include putative tailoring reactions, a structural comparison with annotated natural products was introduced. Furthermore, a benchmark was designed based on 40 gene clusters with annotated PKS products. The web server of the pipeline (SeMPI) is freely available at: http://www.pharmaceutical-bioinformatics.de/sempi. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available SMLS (Sitobion miscanthi L type symbiont is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.

  20. X-ray structure of a soluble Rieske-type ferredoxin from Mus musculus

    International Nuclear Information System (INIS)

    Levin, Elena J.; Elsen, Nathaniel L.; Seder, Kory D.; McCoy, Jason G.; Fox, Brian G.; Phillips Jr, George N.

    2008-01-01

    The X-ray crystal structure of a soluble Rieske ferredoxin from M. musculus was solved at 2.07 Å resolution, revealing an iron–sulfur cluster-binding domain with similar architecture to the Rieske-type domains of bacterial aromatic dioxygenases. The ferredoxin was also shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases. The 2.07 Å resolution X-ray crystal structure of a soluble Rieske-type ferredoxin from Mus musculus encoded by the gene Mm.266515 is reported. Although they are present as covalent domains in eukaryotic membrane oxidase complexes, soluble Rieske-type ferredoxins have not previously been observed in eukaryotes. The overall structure of the mouse Rieske-type ferredoxin is typical of this class of iron–sulfur proteins and consists of a larger partial β-barrel domain and a smaller domain containing Cys57, His59, Cys80 and His83 that binds the [2Fe–2S] cluster. The S atoms of the cluster are hydrogen-bonded by six backbone amide N atoms in a pattern typical of membrane-bound high-potential eukaryotic respiratory Rieske ferredoxins. However, phylogenetic analysis suggested that the mouse Rieske-type ferredoxin was more closely related to bacterial Rieske-type ferredoxins. Correspondingly, the structure revealed an extended loop most similar to that seen in Rieske-type ferredoxin subunits of bacterial aromatic dioxygenases, including the positioning of an aromatic side chain (Tyr85) between this loop and the [2Fe–2S] cluster. The mouse Rieske-type ferredoxin was shown to be capable of accepting electrons from both eukaryotic and prokaryotic oxidoreductases, although it was unable to serve as an electron donor for a bacterial monooxygenase complex. The human homolog of mouse Rieske-type ferredoxin was also cloned and purified. It behaved identically to mouse Rieske-type ferredoxin in all biochemical characterizations but did not crystallize. Based on its high sequence identity, the structure of the

  1. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  2. PROVIDING SERVICEABILITY OF STRUCTURAL BEARING TYPES FOR ROADWAY BRIDGES

    Directory of Open Access Journals (Sweden)

    R. I. Polyuga

    2010-03-01

    Full Text Available In the article the description of structural bearing types for roadway bridges and their classification is given. Special attention is paid to effective bearings with elastomeric materials – rubber, pot, spherical ones. Characteristic defects of structural bearings and demands of serviceability are noticed.

  3. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    International Nuclear Information System (INIS)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin; Xiong, Wei; Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying; Liu, Hongrong; Huang, Xiaojun; Ji, Gang; Sun, Fei; Zheng, Congyi; Zhu, Ping

    2014-01-01

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process

  4. Cryo-EM structures of two bovine adenovirus type 3 intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Xiong, Wei [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Sun, Wei; Yang, Chongwen; Zhang, Kai; Wang, Ying [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Hongrong [College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081 (China); Huang, Xiaojun; Ji, Gang; Sun, Fei [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Zheng, Congyi, E-mail: cctcc202@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072 (China); Zhu, Ping, E-mail: zhup@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-02-15

    Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.

  5. Relationship Structures and Semantic Type Assignments of the UMLS Enriched Semantic Network

    Science.gov (United States)

    Zhang, Li; Halper, Michael; Perl, Yehoshua; Geller, James; Cimino, James J.

    2005-01-01

    Objective: The Enriched Semantic Network (ESN) was introduced as an extension of the Unified Medical Language System (UMLS) Semantic Network (SN). Its multiple subsumption configuration and concomitant multiple inheritance make the ESN's relationship structures and semantic type assignments different from those of the SN. A technique for deriving the relationship structures of the ESN's semantic types and an automated technique for deriving the ESN's semantic type assignments from those of the SN are presented. Design: The technique to derive the ESN's relationship structures finds all newly inherited relationships in the ESN. All such relationships are audited for semantic validity, and the blocking mechanism is used to block invalid relationships. The mapping technique to derive the ESN's semantic type assignments uses current SN semantic type assignments and preserves nonredundant categorizations, while preventing new redundant categorizations. Results: Among the 426 newly inherited relationships, 326 are deemed valid. Seven blockings are applied to avoid inheritance of the 100 invalid relationships. Sixteen semantic types have different relationship structures in the ESN as compared to those in the SN. The mapping of semantic type assignments from the SN to the ESN avoids the generation of 26,950 redundant categorizations. The resulting ESN contains 138 semantic types, 149 IS-A links, 7,303 relationships, and 1,013,876 semantic type assignments. Conclusion: The ESN's multiple inheritance provides more complete relationship structures than in the SN. The ESN's semantic type assignments avoid the existing redundant categorizations appearing in the SN and prevent new ones that might arise due to multiple parents. Compared to the SN, the ESN provides a more accurate unifying semantic abstraction of the UMLS Metathesaurus. PMID:16049233

  6. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  7. Structure of a fibronectin type III-like module from Clostridium thermocellum

    International Nuclear Information System (INIS)

    Alahuhta, Markus; Xu, Qi; Brunecky, Roman; Adney, William S.; Ding, Shi-You; Himmel, Michael E.; Lunin, Vladimir V.

    2010-01-01

    The 1.6 Å resolution structure of a fibronectin type III-like module from Clostridium thermocellum with two molecules in the asymmetric unit is reported. The 1.6 Å resolution structure of a fibronectin type III-like module from Clostridium thermocellum with two molecules in the asymmetric unit is reported. The crystals used for data collection belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 35.43, b = 45.73, c = 107.72 Å, and the structure was refined to an R factor of 0.166. Structural comparisons found over 800 similar structures in the Protein Data Bank. The broad range of different proteins or protein domains with high structural similarity makes it especially demanding to classify these proteins. Previous studies of fibronectin type III-like modules have indicated that they might function as ligand-binding modules, as a compact form of peptide linkers or spacers between other domains, as cellulose-disrupting modules or as proteins that help large enzyme complexes remain soluble

  8. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    Science.gov (United States)

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  9. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Welsh, K.M.; Creighton, D.J.; Klinman, J.P.

    1980-01-01

    Solvent and alpha-secondary isotope effects have been measured in the yeast alcohol dehydrogenase reaction, under conditions of a rate-limiting transfer of hydrogen between coenzyme and substrate. Determination of catalytic constants in H20 and D20 as a function of pH(D) has allowed the separation of solvent effects on pKa from kcat. The small effect of D20 on pKa is tentatively assigned to ionization of an active-site ZnOH 2 . The near absence of an isotope effect on kcat in the direction of alcohol oxidation rules out a mechanism involving concerted catalysis by an active-site base of hydride transfer. The near identity of kinetic and equilibrium alpha-secondary isotope effects in the direction of alcohol oxidation implicates a transition-state structure which resembles aldehyde with regard to bond hybridization properties. The result contrasts sharply with previously reported structure - reactivity correlations, which implicate a transition-state structure resembling alcohol with regard to charge properties. The significance of these findings to the mechanism of NAD(P)H-dependent redox reactions is discussed

  10. Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2012-01-01

    Full Text Available FTIR spectroscopy was used to investigate the effects of extremely low frequency (50 Hz electromagnetic field and of microwaves at 900 MHz on the secondary structure of a typical protein, the lysozyme, evaluating the bioprotective effectiveness of trehalose. Lysozyme in D2O solution (60 mg/ml was exposed to 50 Hz frequency electromagnetic field at 180 μT. The FTIR spectra indicated an increase of CH2 group at 1921 and 1853 cm−1 after 3 h of exposure. Such effect was not observed after the addition of trehalose (150 mg/mL at the same exposure conditions. Lysozyme dissolved in D2O at the concentration of 100 mg/mL was exposed up to 4 h to 900 MHz mobile phone microwaves at 25 mA/m. A significant increase in intensity of the amide I vibration band in the secondary structure of the protein was observed after 4 h exposure to microwaves. This effect was inhibited by the presence of trehalose at the concentration of 150 mg/mL. Fourier self-deconvolution spectral analysis of lysozyme in D2O solution after exposure to microwaves revealed an increase in intensity of the conformational components of amide I mode, particularly of β-sheet and turn that can be attributed to disorder and unfolding processes of the protein.

  11. Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl alcohol) Environment

    KAUST Repository

    Hanczyc, Piotr

    2012-04-24

    We report that short, synthetic, double- as well as single-stranded DNA can be aligned in stretched humid poly(vinyl alcohol) (PVA) matrix, and the secondary structure (nucleobase orientation) can be characterized with linear dichroism (LD) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigated with respect to structural properties in the gel-like polymer environment. The DNA conformation as a function of relative humidity reveals a strong dependence of helical structure of DNA on PVA hydration level, results of relevance for nanotechnical studies of DNA-based supramolecular systems. Also, the PVA gel could provide possibilities to test models for nucleic acid interactions and distribution in cell contexts, including structural stability of genetic material in the cell and PVA-packaging for gene delivery. A method by which duplex oligonucleotides, with sequences designed to provide specific binding sites, become amenable to polarized-light spectroscopy opens up new possibilities for studying structure in DNA complexes with small adduct molecules as well as proteins. © 2012 American Chemical Society.

  12. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  13. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure.

    Science.gov (United States)

    Curtiss, W C; Vournakis, J N

    1984-01-01

    Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.

  14. Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Untereiner, W. A.; Réblová, K.

    2013-01-01

    Roč. 8, č. 5 (2013), e63547 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 Keywords : Cyphelophora * Phialophora * secondary structure Subject RIV: EF - Botanics Impact factor: 3.534, year: 2013

  15. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  16. Experimental tests on ratchet of structural elements diagrams for primary tension and secondary twist

    International Nuclear Information System (INIS)

    Lebey, J.; Roche, R.L.; Cousseran, P.

    1980-05-01

    Design by analysis of pressure vessels is not complete without an appraisal of failure by progressive distortion or stress ratchet. Ratchet tests under constant axial stress associated with cyclic torsion deformation have been carried out on 304 L and 316 L thin tubular specimens, at room temperature. Results are given in the form of iso-deformation curves ranging from 0.1% to 2.5%, in the field definite by the primary and secondary stress intensities (Bree's diagram type). The use of an effective primary stress is proposed, as a practical way, to assess the elongation due to the ratchet effect

  17. High-pressure U3O8 with the fluorite-type structure

    International Nuclear Information System (INIS)

    Zhang, F.X.; Lang, M.; Wang, J.W.; Li, W.X.; Sun, K.; Prakapenka, V.; Ewing, R.C.

    2014-01-01

    A new high-pressure phase of U 3 O 8 , which has a fluorite-type structure, forms at pressures greater than ∼8.1 GPa that was confirmed by in situ x-ray diffraction (XRD) measurements. The fluorite-type U 3 O 8 is stable at pressures at least up to ∼40 GPa and temperatures to 1700 K, and quenchable to ambient conditions. Based on the XRD analysis, there is a huge volume collapse (>20%) for U 3 O 8 during the phase transition and the quenched high-pressure phase is 28% denser than the initial orthorhombic phase at ambient conditions. The high-pressure phase has a very low compressibility comparing with the starting orthorhombic phase. - Graphical abstract: α-U 3 O 8 is in a layered structure with orthorhombic symmetry, at high pressures, it transformed to a fluorite-type cubic structure. There are a lot of defects in the cubic structure, and it is a new kind of hyperstoichiometric uranium oxide, which is stable at ambient conditions. - Highlights: • A new fluorite-type high-pressure phase was found in hyperstoichometric UO 2 +x (x∼0.8). • The new high-pressure structure is quenchable to ambient conditions. • Pressure driven phase transition in orthorhombic U 3 O 8 was first found

  18. Observed Lesson Structure during the First Year of Secondary Education: Exploration of Change and Link with Academic Engagement

    Science.gov (United States)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    2012-01-01

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components are found, that between class and over…

  19. Changes in the internal structure of the human crystalline lens with diabetes mellitus type 1 and type 2

    NARCIS (Netherlands)

    Wiemer, N.G.M.; Dubbelman, M.; Hermans, E.A.; Ringens, P.J.; Polak, B.C.P.

    2008-01-01

    Purpose: To investigate the effect of diabetes mellitus (DM) type 1 and type 2 on the internal structure of the lens. Design: Observational cross-sectional study. Participants and Controls: One hundred seven patients with DM type 1, 106 patients with DM type 2, and 75 healthy control subjects.

  20. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    Science.gov (United States)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  1. Problems Encountered by Religious Vocational Secondary School and Other Secondary School Students in Physical Education and Sports Activities

    Science.gov (United States)

    Bar, Mustafa; Yaman, Menzure Sibel; Hergüner, Gülten

    2016-01-01

    The study aimed to determine problems encountered by Religious Vocational Secondary School and other Secondary School students in physical education and sports activities and to compare these problems according to school type and gender. A questionnaire named "Problems encountered in attending to physical education and sports activities"…

  2. IRSS: a web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico

    Directory of Open Access Journals (Sweden)

    Hong Jun-Jie

    2009-05-01

    Full Text Available Abstract Background Internal ribosomal entry sites (IRESs provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements. Results We designed an IRES search system, named IRSS, to obtain better results for IRES prediction. RNA secondary structure prediction and comparison software programs were implemented to construct our two-stage strategy for the IRSS. Two software programs formed the backbone of IRSS: the RNAL fold program, used to predict local RNA secondary structures by minimum free energy method; and the RNA Align program, used to compare predicted structures. After complete viral genome database search, the IRSS have low error rate and up to 72.3% sensitivity in appropriated parameters. Conclusion IRSS is freely available at this website http://140.135.61.9/ires/. In addition, all source codes, precompiled binaries, examples and documentations are downloadable for local execution. This new search approach for IRES elements will provide a useful research tool on IRES related studies.

  3. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  4. Co-linear spin configurations in corundum-type structures

    International Nuclear Information System (INIS)

    Bertaut, F.

    1961-01-01

    The colinear magnetic configurations possible in corundum-type structures (α-Fe 2 O 3 ; Cr 2 O 3 ) are solutions of a matrices problem. Their regions of stability are bounded by inequality relationships between exchange integrals. (author) [fr

  5. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    Science.gov (United States)

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  6. Soil structure interactions of eastern U.S. type earthquakes

    International Nuclear Information System (INIS)

    Chang Chen; Serhan, S.

    1991-01-01

    Two types of earthquakes have occurred in the eastern US in the past. One of them was the infrequent major events such as the 1811-1812 New Madrid Earthquakes, or the 1886 Charleston Earthquake. The other type was the frequent shallow earthquakes with high frequency, short duration and high accelerations. Two eastern US nuclear power plants, V.C Summer and Perry, went through extensive licensing effort to obtain fuel load licenses after this type of earthquake was recorded on sites and exceeded the design bases beyond 10 hertz region. This paper discusses the soil-structure interactions of the latter type of earthquakes

  7. Type III radio bursts in a flaming structure

    International Nuclear Information System (INIS)

    Karlicky, M.; Tlamicha, A.

    1977-01-01

    An interpretation is presented of the burst of 3.7.1974. The slowly drifting, fine structure in this type III burst is evidence of the existence of very fast, spatially extensive processes in the corona. The concept is presented of a rapidly varying, magnetohydrodynamically unstable, flaming structure of the magnetic field and, using this model, the intensities were computed of the magnetic field at certain altitudes and at two moments differing by 1.4 s. (author)

  8. The common structural architecture of Shigella flexneri and Salmonella typhimurium type three secretion needles.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Demers

    2013-03-01

    Full Text Available The Type Three Secretion System (T3SS, or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long β-hairpin (Q51-Q64 and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11, an α-helix (L12-A38, a loop (E39-P44 and a C-terminal α-helix (Q45-R83. Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their

  9. Examining the dimensional structure models of secondary traumatic stress based on DSM-5 symptoms.

    Science.gov (United States)

    Mordeno, Imelu G; Go, Geraldine P; Yangson-Serondo, April

    2017-02-01

    Latent factor structure of Secondary Traumatic Stress (STS) has been examined using Diagnostic Statistic Manual-IV (DSM-IV)'s Posttraumatic Stress Disorder (PTSD) nomenclature. With the advent of Diagnostic Statistic Manual-5 (DSM-5), there is an impending need to reexamine STS using DSM-5 symptoms in light of the most updated PTSD models in the literature. The study investigated and determined the best fitted PTSD models using DSM-5 PTSD criteria symptoms. Confirmatory factor analysis (CFA) was conducted to examine model fit using the Secondary Traumatic Stress Scale in 241 registered and practicing Filipino nurses (166 females and 75 males) who worked in the Philippines and gave direct nursing services to patients. Based on multiple fit indices, the results showed the 7-factor hybrid model, comprising of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors has excellent fit to STS. This model asserts that: (1) hyperarousal criterion needs to be divided into anxious and dysphoric arousal factors; (2) symptoms characterizing negative and positive affect need to be separated to two separate factors, and; (3) a new factor would categorize externalized, self-initiated impulse and control-deficit behaviors. Comparison of nested and non-nested models showed Hybrid model to have superior fit over other models. The specificity of the symptom structure of STS based on DSM-5 PTSD criteria suggests having more specific interventions addressing the more elaborate symptom-groupings that would alleviate the condition of nurses exposed to STS on a daily basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hydrocephalus secondary to subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Koga, Nobunori; Nakamura, Saburo; Kushi, Hidehiko; Yamamoto, Takamitsu; Tsubokawa, Takashi; Moriyasu, Nobuo

    1982-01-01

    The relationship between the extension and severity of subarachnoid hemorrhage, as demonstrated by computed tomography (CT), and hydrocephalus secondary to subarachnoid hemorrhage was studied. In 94 cases with subarachnoid hemorrhage, as analyzed by CT scan performed within 7 days after onset, high-density areas in the subarachnoid space were recognized in 61 cases (64%) and secondary hydrocephalus occurred in 22 cases (23%). 17 cases died within 2 weeks, before the occurrence of the hydrocephalus. The CT findings of subarachnoid hemorrhage was classified into 5 types, according to its severity and extension; especially the degree of high density in the basal cistern and/or cisterns around the brain stem was remarked. Secondary hydrocephalus after subarachnoid hemorrhage was observed in 90% of the cases; they had a density higher than a CT number of 60 in the basal cistern and/or cisterns around the brain stem (Type V). The mean interval between the onset of subarachnoid hemorrhage and the appearance of hydrocephalus was 20.6 days. We conclude that a significantly high density of extravasated blood in the subarachnoid space, especially in the basal cistern and/or the cisterns around the brain stem, can be predictive of secondary hydrocephalus after subarachnoid hemorrhage. (author)

  11. Crystal structure of clathrates of Hofmann dma-type

    International Nuclear Information System (INIS)

    NIshikiori, Sh.; Ivamoto, T.

    1999-01-01

    Seven new clathrates Cd(DMA) 2 Ni(CN) 4 ·xG (x=1, G=aniline, 2,3-xylidine, 2,4-xylidine, 2,5-xylidine, 2,6-xylidine, 3,5-xylidine, and x=2, G=2,4,6-trimethylaniline) of Hofmann type are synthesized by amine substitution for dimethylamine (DMA). On the base of x-ray diffraction data it is shown that geometry of guest molecule in cage-like hollow determines the structure of the host and crystal structure of clathrates. Two-dimension metallocomplex of the host of studied clathrates is characterized by elastic folded structure appearing as a result of angular deformation of bond between Cd atoms and host cyanide bridge. Guest molecule orientation is fixed by hydrogen bond. Structural elasticity of the host complex directs to differences in crystal structure of clathrates formed and to considerable variety of incorporated guests [ru

  12. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins

    Directory of Open Access Journals (Sweden)

    Xiaoyao Yang

    2017-07-01

    Full Text Available Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A chymotrypsin-like 2A, (B Parechovirus-like 2A, (C hepatitis-A-virus-like 2A, (D Aphthovirus-like 2A, and (E 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.

  13. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  14. Evaluation of soil-structure interaction for structures subjected to earthquake loading with different types of foundation

    Directory of Open Access Journals (Sweden)

    Elwi Mohammed

    2018-01-01

    Full Text Available However though the structures are supported on soil, most of the designers do not consider the soil structure interaction and its subsequent effect on structure during an earthquake. Different soil properties can affect seismic waves as they pass through a soil layer. When a structure is subjected to an earthquake excitation, it interacts the foundation and soil, and thus changes the motion of the ground. It means that the movement of the whole ground structure system is influenced by type of soil as well as by the type of structure. Tall buildings are supposed to be of engineered construction in sense that they might have been analyzed and designed to meet the provision of relevant codes of practice and building bye-laws. IS 1893: 2002 “Criteria for Earthquake Resistant Design of Structures” gives response spectrum for different types of soil such as hard, medium and soft. An attempt has been made in this paper to study the effect of Soil-structure interaction on multi storeyed buildings with various foundation systems. Also to study the response of buildings subjected to seismic forces with Rigid and Flexible foundations. Multi storeyed buildings with fixed and flexible support subjected to seismic forces were analyzed under different soil conditions like hard, medium and soft. The buildings were analyzed by Response spectrum method using software SAP2000. The response of building frames such as Lateral deflection, Story drift, Base shear, Axial force and Column moment values for all building frames were presented in this paper.

  15. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  16. Molecular and crystal structure of the antibiotic enniatin B, a secondary microbial metabolite

    International Nuclear Information System (INIS)

    Zhukhlistova, N.E.; Tishchenko, G.N.; Tolstykh, I.V.; Zenkova, V.A.

    1999-01-01

    Single crystals of the secondary microbial metabolite C 33 H 57 N 3 O 9 ·1(2/3)H 2 O with the known molecular weight were studied by the method of X-ray diffraction analysis, where a=b=15.102(3) A, c=14.548(3) A, sp. gr.R3, R=0.057. In the course of the structure determination, it was established that the substance is a natural antibiotic, namely, enniatin B. The conformation of its molecule is similar to that of the known synthetic antibiotic. The main difference between the natural and synthesized forms reduces to the different numbers of water molecules and their arrangement in the cavity of the antibiotic molecule

  17. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    International Nuclear Information System (INIS)

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-01-01

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M ☉ and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  18. Primary and secondary structural determinants in the receptor binding sequence β-(38-57) from human luteinizing hormone

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Charlesworth, M.C.; Kitzmann, K.; Mason, K.A.; Johnson, L.; Ryan, R.J.

    1988-01-01

    The intercysteine loop sequence 38-57 in the β subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG). Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, the authors have used analogues of hLHβ-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125 I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. Far-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% α-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. These results indicate that the 38-57 sequence is a relatively rigid and structurally autonomous region, not merely a series of residues constrained passively into a loop by a disulfide linkage. It includes segments of ordered structure, probably including both amphipathic helical and turn sequences. Evidence from studies of other hormones suggests that this region may be important to binding and specificity in the glycoprotein hormones as a group

  19. Educational activities of secondary school students in Serbia: A time-diary analysis

    Directory of Open Access Journals (Sweden)

    Pešić Jelena

    2013-01-01

    Full Text Available The aim of this study was to determine the time allocation of various educational activities within the structure of a typical day of Serbian secondary school students, and whether there were significant differences in this respect depending on their socio-demographic characteristics. The 24-hour time diary method was applied: the subjects described chronologically, at half-hourly intervals, their activities in one weekday an done weekend day. The research was conducted on a sample of 922 secondary school students, Structured by region, age and type of school. The analysis revealed that on weekdays students spent about 5 hours in school. In work activities outside school they spent almost 2 hours, out of which the largest part in learning (81 minutes, and significantly less in housework (23 minutes and economically productive work (7 minutes. From a total of5 hours and22 minutes of free time, only 5 minutes were devoted to organized extracurricular activities. Significant differences were obtained with regard to students’ gender, type of school, and level of parents’ education. When these results are compared with the data from other countries, it is shown that secondary school students in Serbia, compared to the U.S., spend more time in learning, and significantly less in economically productive work and house­work, much like the youth in European countries. A very low proportion of extracurricular activities shows that school learning is almost the only context of developing educational competencies. The implications of these findings are discussed from the perspective of positive youth development. [Projekat Ministarstva nauke Republike Srbije: Identifikacija, merenje i razvoj kognitivnih i emocionalnih kompetencija važnih društvu orijentisanom na evropske integracije

  20. Effect of flame-tube head structure on combustion chamber performance

    Science.gov (United States)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  1. refractive errors among secondary school students in Isuikwuato

    African Journals Online (AJOL)

    Eyamba

    STUDENTS IN ISUIKWUATO LOCAL GOVERNMENT AREA OF ... the prevalence and types of refractive errors among secondary school students ... KEYWORDS: Refractive error, Secondary School students, ametropia, .... interviews of the teachers as regards the general performance of those students with obvious visual.

  2. The Cryoelectron Microscopy Structure of the Type 1 Chaperone-Usher Pilus Rod.

    Science.gov (United States)

    Hospenthal, Manuela K; Zyla, Dawid; Costa, Tiago R D; Redzej, Adam; Giese, Christoph; Lillington, James; Glockshuber, Rudi; Waksman, Gabriel

    2017-12-05

    Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus

    Directory of Open Access Journals (Sweden)

    Wolf Matthias

    2009-12-01

    Full Text Available Abstract Background Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist. This is partly due to difficulties in the alignment of ITS2 sequences in more distant taxa. The present study uses ITS2 secondary structure information to elucidate the phylogeny of a species-rich young radiation of arthropods, the butterfly subgenus Agrodiaetus. One aim is to evaluate the efficiency of ITS2 to resolve the phylogeny of the subgenus in comparison with COI , the most important mitochondrial marker in arthropods. Furthermore, we assess the use of compensatory base changes in ITS2 for the delimitation of species and discuss the prospects of ITS2 as a nuclear marker for barcoding studies. Results In the butterfly family Lycaenidae, ITS2 secondary structure enabled us to successfully align sequences of different subtribes in Polyommatini and produce a Profile Neighbour Joining tree of this tribe, the resolution of which is comparable to phylogenetic trees obtained with COI+COII . The subgenus Agrodiaetus comprises 6 major clades which are in agreement with COI analyses. A dispersal-vicariance analysis (DIVA traced the origin of most Agrodiaetus clades to separate biogeographical areas in the region encompassing Eastern Anatolia, Transcaucasia and Iran. Conclusions With the inclusion of secondary structure information, ITS2 appears to be a suitable nuclear marker to infer the phylogeny of young radiations, as well as more distantly related genera within a diverse arthropod family. Its phylogenetic signal is comparable to the

  4. Structure of V-type ATPase from Clostridium fervidus by electron microscopy

    NARCIS (Netherlands)

    Boekema, EJ; Ubbink-Kok, T; Lolkema, JS; Brisson, A; Konings, WN

    F-type and V-type ATPases couple synthesis or hydrolysis of ATP to the translocation of H+ or Na+ across biological membranes and have similarities in structure and mechanism. In both types of enzymes three main parts can be distinguished: headpiece, membrane-bound piece and stalk region. We report

  5. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario Nunes, Sayonara [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP (Brazil); Wang, Chun-Hai; So, Karwei; Evans, John S.O. [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Evans, Ivana Radosavljević, E-mail: ivana.radosavljevic@durham.ac.uk [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.

  6. Post accelerator of the IH type structure

    International Nuclear Information System (INIS)

    Chen Ming

    2002-01-01

    The principle, structure, adjustment of the gap voltage, beam dynamic, RF system and the bunchers of the post-accelerator with Interdigital-H type structure, which was developed by the author and Technical University Munich in four years, is described. The energy of ions with mass of three was increased from 340 keV to 1.74 MeV, when resonant frequency of 84.2 MHz and input RF power of 3 kW. The effective shunt impedance reached to 408 MΩ/m. The commissioning was succeeded with H 3 + ion beams. The output energy of H 3 + ion beams reached the design value. The two harmonic double drift buncher used by the IH structure bunches the beam to the bunches with the width of 360 ps. Then the acceptance of the IH structure is increased to 240 degree. Its shunt impedance is three times higher than former single gap bunchers used by TUM and the length of the buncher system is one fifth of former one only because the use of λ/4 coaxial cavities with double gaps

  7. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  8. Extraordinary electronic properties in uncommon structure types

    Science.gov (United States)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  9. F-Type Lectins: A Highly Diversified Family of Fucose-Binding Proteins with a Unique Sequence Motif and Structural Fold, Involved in Self/Non-Self-Recognition

    Directory of Open Access Journals (Sweden)

    Gerardo R. Vasta

    2017-11-01

    Full Text Available The F-type lectin (FTL family is one of the most recent to be identified and structurally characterized. Members of the FTL family are characterized by a fucose recognition domain [F-type lectin domain (FTLD] that displays a novel jellyroll fold (“F-type” fold and unique carbohydrate- and calcium-binding sequence motifs. This novel lectin family comprises widely distributed proteins exhibiting single, double, or greater multiples of the FTLD, either tandemly arrayed or combined with other structurally and functionally distinct domains, yielding lectin subunits of pleiotropic properties even within a single species. Furthermore, the extraordinary variability of FTL sequences (isoforms that are expressed in a single individual has revealed genetic mechanisms of diversification in ligand recognition that are unique to FTLs. Functions of FTLs in self/non-self-recognition include innate immunity, fertilization, microbial adhesion, and pathogenesis, among others. In addition, although the F-type fold is distinctive for FTLs, a structure-based search revealed apparently unrelated proteins with minor sequence similarity to FTLs that displayed the FTLD fold. In general, the phylogenetic analysis of FTLD sequences from viruses to mammals reveals clades that are consistent with the currently accepted taxonomy of extant species. However, the surprisingly discontinuous distribution of FTLDs within each taxonomic category suggests not only an extensive structural/functional diversification of the FTLs along evolutionary lineages but also that this intriguing lectin family has been subject to frequent gene duplication, secondary loss, lateral transfer, and functional co-option.

  10. 3x2 Classroom Goal Structures, Motivational Regulations, Self-Concept, and Affectivity in Secondary School.

    Science.gov (United States)

    Méndez-Giménez, Antonio; Cecchini-Estrada, José-Antonio; Fernández-Río, Javier; Prieto Saborit, José Antonio; Méndez-Alonso, David

    2017-09-20

    The main objective was to analyze relationships and predictive patterns between 3x2 classroom goal structures (CGS), and motivational regulations, dimensions of self-concept, and affectivity in the context of secondary education. A sample of 1,347 secondary school students (56.6% young men, 43.4% young women) from 10 different provinces of Spain agreed to participate (M age = 13.43, SD = 1.05). Hierarchical regression analyses indicated the self-approach CGS was the most adaptive within the spectrum of self-determination, followed by the task-approach CGS. The other-approach CGS had an ambivalent influence on motivation. Task-approach and self-approach CGS predicted academic self-concept (p approach CGS (negatively) predicted family self-concept (p approach and other-approach CGS's (p approach-oriented CGS's (p approach (positively) and self-approach (negatively) CGS (p < .001; p < .05, respectively; R 2 = .028). These results expand the 3x2 achievement goal framework to include environmental factors, and reiterate that teachers should focus on raising levels of self- and task-based goals for students in their classes.

  11. Secondary metabolites of cyanobacteria Nostoc sp.

    Science.gov (United States)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  12. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)

  13. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  14. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards.

    Directory of Open Access Journals (Sweden)

    Patrick P Edger

    Full Text Available The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1. Ease of amplification due to high copy number of the gene clusters, 2. Available cost-effective methods and highly conserved primers, 3. Rapidly evolving markers (i.e. variable between closely related species, and 4. The assumption (and/or treatment that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  15. Quantitative analysis of retinopathy in type 2 diabetes: identification of prognostic parameters for developing visual loss secondary to diabetic maculopathy

    DEFF Research Database (Denmark)

    Hove, Marianne Nørgaard; Kristensen, Jette Kolding; Lauritzen, Torsten

    2004-01-01

    Purpose: To describe whether quantitative assessment of early changes in the morphology of retinopathy lesions can predict development of vision-threatening diabetic maculopathy. Methods: We used a nested case-control study, and we studied 11 type 2 diabetes patients who had developed visual loss...... secondary to diabetic maculopathy. For each diabetes patient, we also studied three matched control patients who had been followed for a comparable period of time without developing visual loss. Fundus photographs describing the early development of retinopathy were digitized and subjected to a full manual...... from the fovea and the optic disc. Results: In patients who developed visual loss secondary to diabetic maculopathy there was significant early progression in the total area and number of haemorrhages and exudates. The haemorrhages had progressed in all retinal areas except the area around the optic...

  16. Interactions between perceived uncertainty types in service dyads

    DEFF Research Database (Denmark)

    Kreye, Melanie

    2018-01-01

    to avoid business failure. A conceptual framework of four uncertainty types is investigated: environmental, technological, organisational, and relational uncertainty. We present insights from four empirical cases of service dyads collected via multiple sources of evidence including 54 semi-structured...... interviews, observations, and secondary data. The cases show seven interaction paths with direct knock-on effects between two uncertainty types and indirect knock-on effects between three or four uncertainty types. The findings suggest a causal chain from environmental, technological, organisational......, to relational uncertainty. This research contributes to the servitization literature by (i) con-firming the existence of uncertainty types, (ii) providing an in-depth characterisation of technological uncertainty, and (iii) showing the interaction paths between four uncertainty types in the form of a causal...

  17. Urinary calcium to creatinine ratio: a potential marker of secondary hyperparathyroidism in patients with vitamin D-dependent rickets type 1A.

    Science.gov (United States)

    Miyai, Kentaro; Onishi, Toshikazu; Kashimada, Kenichi; Hasegawa, Yukihiro

    2015-01-01

    Patients with vitamin D-dependent rickets type 1A (VDDR1A) are usually treated with alfacalcidol, an analog of vitamin D. Around puberty, an increased dose of alfacalcidol is recommended for these patients to avoid hypocalcemia and secondary hyperparathyroidism. However, no indicators of secondary hyperparathyroidism except for PTH are presently known. The aim of this study is to evaluate whether urinary calcium to creatinine ratio (U-Ca/Cr) is useful as a biomarker of secondary hyperparathyroidism in VDDR1A patients in order to determine the proper dose of alfacalcidol. Two brothers with VDDR1A were recruited who had null mutations of CYP27B1 which encodes 1-alpha-hydroxylase of vitamin D. We investigated the relationship between U-Ca/Cr and intact-PTH around puberty when the brothers showed hypocalcemia with secondary hyperparathyroidism. The results were compared to those of five patients with vitamin D deficiency (VDD). As a result, high intact-PTH levels were observed when U-Ca/Cr decreased to less than 0.1 (mg/mg) in both VDDR1A brothers. This relationship was also observed in the VDD patients. However, it is necessary to take into account body calcium status, either in depletion or in excess, to accurately evaluate the relationship between U-Ca/Cr and secondary hyperparathyroidism. First, low U-Ca/Cr was detected in situations with calcium depletion without hyperparathyroidism in the VDDR1A patients. Second, high U-Ca/Cr with hyperparathyroidism could be detected theoretically in a condition of excess calcium supply. In conclusion, a U-Ca/Cr ratio of less than 0.1 (mg/mg) in VDDR1A patients is useful to accurately evaluate calcium depletion and secondary hyperparathyroidism.

  18. Secondary Rayleigh-Taylor Instabilities in the Reconnection Exhaust Jet: A Mechanism for Supra-Arcade Downflows in the Solar Corona

    Science.gov (United States)

    Guo, L.; Bhattacharjee, A.; Huang, Y. M.; Innes, D.

    2014-12-01

    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright, upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism for formation of SADs remains an open issue. Using high-Lundquist-number three-dimensional resistive MHD simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, intertwined with high-density structures that appear to be spike-like. Using SDO/AIA images, we highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with siumlations suggest that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes. Although the plasma conditions are vastly different, analogous phenomena also occur in the Earth's magnetotail during reconnection.

  19. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.

    Science.gov (United States)

    Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S

    2018-02-06

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  1. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  2. The indentification of Jueluotage V-type structure in Xinjiang and its orderness

    International Nuclear Information System (INIS)

    Fang Maolong; Sun Wenpeng; Cai Wenbo; Xu Daoyi

    2005-01-01

    Based on the interpretation of satellite image and field checking in Jueluotage area, Xinjiang, it is thought that the sublatitudinal arc fault zones have been formed since Mesozoic through the evolution of the NWW-trending and NEE-trending faults occurring in pre-Mesozoic time. These three sets of faults comprise the Jueluotage 'V-type structure' formed by the NW-trending structural stress field and drastically activated since Neocene. The Jueluotage V-type structure is expressed in time as an ordered process, and in space as an ordered arrangement and an ordered evolution direction, and characterizes the Information Ordered Series (IOS) of the evolution process of fault structure. (authors)

  3. Attitude of secondary school students towards guidance and ...

    African Journals Online (AJOL)

    The Study investigated the attitude of secondary students towards guidance and counselling services. Descriptive research design of the survey type was used. Three hypotheses were formulated to guide the study. A total of 400 secondary school students were selected from ten (10) schools through stratified random ...

  4. Antibiotics for secondary prevention of coronary heart disease

    DEFF Research Database (Denmark)

    Sethi, Naqash J.; Safi, Sanam; Korang, Steven Kwasi

    2017-01-01

    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the beneficial and harmful effects of antibiotics for the secondary prevention of coronary heart disease. As a secondary objective, we plan to assess the effects of individual types of antibiotics...

  5. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  6. Molecular organization of the 5S rDNA gene type II in elasmobranchs.

    Science.gov (United States)

    Castro, Sergio I; Hleap, Jose S; Cárdenas, Heiber; Blouin, Christian

    2016-01-01

    The 5S rDNA gene is a non-coding RNA that can be found in 2 copies (type I and type II) in bony and cartilaginous fish. Previous studies have pointed out that type II gene is a paralog derived from type I. We analyzed the molecular organization of 5S rDNA type II in elasmobranchs. Although the structure of the 5S rDNA is supposed to be highly conserved, our results show that the secondary structure in this group possesses some variability and is different than the consensus secondary structure. One of these differences in Selachii is an internal loop at nucleotides 7 and 112. These mutations observed in the transcribed region suggest an independent origin of the gene among Batoids and Selachii. All promoters were highly conserved with the exception of BoxA, possibly due to its affinity to polymerase III. This latter enzyme recognizes a dT4 sequence as stop signal, however in Rajiformes this signal was doubled in length to dT8. This could be an adaptation toward a higher efficiency in the termination process. Our results suggest that there is no TATA box in elasmobranchs in the NTS region. We also provide some evidence suggesting that the complexity of the microsatellites present in the NTS region play an important role in the 5S rRNA gene since it is significantly correlated with the length of the NTS.

  7. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  8. Dynamic changes in the secondary structure of ECE-1 and XCE account for their different substrate specificities

    Directory of Open Access Journals (Sweden)

    Ul-Haq Zaheer

    2012-11-01

    Full Text Available Abstract Background X-converting enzyme (XCE involved in nervous control of respiration, is a member of the M13 family of zinc peptidases, for which no natural substrate has been identified yet. In contrast, it’s well characterized homologue endothelin-converting enzyme-1 (ECE-1 showed broad substrate specificity and acts as endopeptidase as well as dipeptidase. To explore the structural differences between XCE and ECE-1, homology model of XCE was built using the complex structure of ECE-1 with phosphoramidon (pdb-id: 3DWB as template. Phosphoramidon was docked into the binding site of XCE whereas phosphate oxygen of the inhibitor was used as water molecule to design the apo forms of both enzymes. Molecular dynamics simulation of both enzymes was performed to analyze the dynamic nature of their active site residues in the absence and presence of the inhibitor. Results Homology model of XCE explained the role of non-conserved residues of its S2’ subsite. Molecular dynamics (MD simulations identified the flexible transitions of F149/I150, N566/N571, W714/W719, and R145/R723 residues of ECE-1/XCE for the strong binding of the inhibitor. Secondary structure calculations using DSSP method reveals the folding of R145/R723 residue of ECE-1/XCE into β-sheet structure while unfolding of the S2’ subsite residues in aECE-1 and sustained compact folding of that of aXCE. The results evaluated are in good agreement with available experimental data, thus providing detailed molecular models which can explain the structural and specificities differences between both zinc peptidases. Conclusions Secondary structure changes of both enzymes during the simulation time revealed the importance of β-sheet structure of R145/R723 for its binding with the terminal carboxylate group of the inhibitor. Unfolding of the α-helix comprising the S2’ subsite residues in aECE-1 correlate well with its endopeptidase activity while their compact folding in aXCE may

  9. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  10. Filamentary structures of the cosmic web and the nonlinear Schroedinger type equation

    International Nuclear Information System (INIS)

    Tigrak, E; Weygaert, R van de; Jones, B J T

    2011-01-01

    We show that the filamentary type structures of the cosmic web can be modeled as solitonic waves by solving the reaction diffusion system which is the hydrodynamical analogous of the nonlinear Schroedinger type equation. We find the analytical solution of this system by applying the Hirota direct method which produces the dissipative soliton solutions to formulate the dynamical evolution of the nonlinear structure formation.

  11. Seismic verification methods for structures and equipment of VVER-type and RBMK-type NPPs (summary of experiences)

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    The main verification methods for structures and equipment of already existing VVER-type and RBMK-type NPPs are briefly described. The following aspects are discussed: fundamental seismic safety assessment principles for VVER/RBMK-type NPPs (seismic safety assessment procedure, typical work plan for seismic safety assessment of existing NPPs, SMA (HCLPF) calculations, modified GIP (GIP-VVER) procedure, similarity of VVER/RBMK equipment to that included in the SQUG databases and seismic interactions

  12. Reverse engineering of wörner type drilling machine structure.

    Science.gov (United States)

    Wibowo, A.; Belly, I.; llhamsyah, R.; Indrawanto; Yuwana, Y.

    2018-03-01

    A product design needs to be modified based on the conditions of production facilities and existing resource capabilities without reducing the functional aspects of the product itself. This paper describes the reverse engineering process of the main structure of the wörner type drilling machine to obtain a machine structure design that can be made by resources with limited ability by using simple processes. Some structural, functional and the work mechanism analyzes have been performed to understand the function and role of each basic components. The process of dismantling of the drilling machine and measuring each of the basic components was performed to obtain sets of the geometry and size data of each component. The geometric model of each structure components and the machine assembly were built to facilitate the simulation process and machine performance analysis that refers to ISO standard of drilling machine. The tolerance stackup analysis also performed to determine the type and value of geometrical and dimensional tolerances, which could affect the ease of the components to be manufactured and assembled

  13. Characteristics of the magnetic flux-offset type FCL by switching component

    International Nuclear Information System (INIS)

    Jung, Byung Ik; Choi, Hyo Sang

    2016-01-01

    The study of superconducting fault current limiter (SFCL) is continuously being studied as a countermeasure for reducing fault-current in the power system. When the fault occurred in the power system, the fault-current was limited by the generated impedance of SFCLs. The operational characteristics of the flux-offset type SFCL according to turn ratios between the primary and the secondary winding of a reactor were compared in this study. We connected the secondary core to a superconductor and a SCR switch in series in the suggested structure. The fault current in the primary and the secondary winding of the reactor and the voltage of the superconductor on the secondary were measured and compared. The results showed that the fault current in the load line was the lowest and the voltage applied at both ends of the superconductor was also low when the secondary winding of the reactor had lower turn ratio than the primary. It was confirmed based on these results that the turn ratio of the secondary winding of the reactor must be designed to be lower than that of the primary winding to reduce the burden of the superconductor and to lower the fault current. Also, the suggested structure could increase the duration of the limited current by limiting the continuous current after the first half cycle from the fault with the fault current limiter

  14. New types of organizational structures of accounting departments and their development

    OpenAIRE

    Шигун, Марія Михайлівна

    2015-01-01

    Development directions of new types of organizational structures of accounting departments, emergence of which has been caused by present-day conditions of keeping economics relationships, have been researched, as well as peculiarity of complex hierarchical and adaptive structures has been disclosed.

  15. Select early type IA endoleaks after endovascular aneurysm repair will resolve without secondary intervention.

    Science.gov (United States)

    O'Donnell, Thomas F X; Corey, Michael R; Deery, Sarah E; Tsougranis, Gregory; Maruthi, Rohit; Clouse, W Darrin; Cambria, Richard P; Conrad, Mark F

    2018-01-01

    ). Both an increase in aneurysm sac size and failure of the endoleak to resolve by case end were independent predictors of a need for reintervention (growth: OR, 8.3; 95% CI, 2.2-31.6; P IA endoleak was not independently associated with an increase in sac size on surveillance imaging (P = .28). Aneurysm rupture secondary to persistent type IA endoleak is rare, and most will resolve within 1 year. Extensive neck calcification is the only independent predictor of persistent type IA endoleak, and an increase in sac size warrants reintervention. These data suggest that select early persistent type IA endoleaks can be safely observed. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. IEA-R1 primary and secondary coolant piping systems coupled stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A.; Mattar Neto, Miguel

    2013-01-01

    The aim of this work is to perform the stress analysis of a coupled primary and secondary piping system of the IEA-R1 based on tridimensional model, taking into account the as built conditions. The nuclear research reactor IEA-R1 is a pool type reactor projected by Babcox-Willcox, which is operated by IPEN since 1957. The operation to 5 MW power limit was only possible after the conduction of life management and modernization programs in the last two decades. In these programs the components of the coolant systems, which are responsible for the water circulation into the reactor core to remove the heat generated inside it, were almost totally refurbished. The changes in the primary and secondary systems, mainly the replacement of pump and heat-exchanger, implied in piping layout modifications, and, therefore, the stress condition of the piping systems had to be reanalyzed. In this paper the structural stress assessment of the coupled primary and secondary piping systems is presented and the final results are discussed. (author)

  17. Structure and properties of silver sulfate complexes derived from dipyridyl methylthio ligands with secondary donor site

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui; Liu, Rui-Heng; Li, Ai-Min; Wang, Guo [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); Wan, Chong-Qing, E-mail: wancq@cnu.edu.cn [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); State Key Laboratory of Structural Chemistry in China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2017-06-15

    Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorption ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.

  18. A Low Cost Structurally Optimized Design for Diverse Filter Types

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  19. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  20. Secondary Power Resources of the Fuel and Energy Complex in Ukraine

    Directory of Open Access Journals (Sweden)

    Shkrabets F.P.

    2016-04-01

    Full Text Available This article describes the types of secondary energy resources that occur during or as a result of mining or of technological processes at metallurgical, coke and chemical enterprises. The research of opportunities to use them directly at industrial enterprises, in case when an energy resource or the energy generated “is not a commodity” was carried out. To generate electricity from secondary sources, the use of diesel power plants and gas–turbine facilities was offered. The values ​​of investments in the construction of thermal power plants (TPP based on different types of secondary energy resources were calculated. Tentative capacities of power plants, which utilize the energy of secondary sources were also computed. The figures used for assessing the release and use of secondary energy resources were given. The necessity of using secondary sources of energy to reduce harmful effects on the environment was emphasized.

  1. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    Directory of Open Access Journals (Sweden)

    Shenkar Noa

    2009-08-01

    Full Text Available Abstract Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1 Phlebobranchia + Thaliacea + Aplousobranchia, 2 Appendicularia, and 3 Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models

  2. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  3. Effect of Programmed Instruction on Students' Attitude towards Structure of the Atom and the Periodic Table among Kenyan Secondary Schools

    Science.gov (United States)

    Wangila, M. J.; Martin, W.; Ronald, M.

    2015-01-01

    This study examined the effect of Programmed Instruction on students' attitude towards Structure of the Atom and the Periodic Table (SAPT) among mixed (co-educational) secondary schools of Butere district, Kakamega county, Kenya. The quasi-experimental research design was adopted, using the nonrandomized Solomon four-group as a model. The sample…

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  5. Robust structural optimization using Gauss-type quadrature formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  6. Robust structural optimization using Gauss-type quadrature formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chen, Shikui; Chen, Wei [Northwestern University, Illinois (United States)

    2009-07-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  7. Robust Structural Optimization Using Gauss-type Quadrature Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-08-15

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  8. Robust Structural Optimization Using Gauss-type Quadrature Formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty

  9. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    Science.gov (United States)

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  10. Hemorrhagic pleural effusion secondary to an unusual type III hiatal hernia in a 4-year-old great dane.

    Science.gov (United States)

    Gordon, Lena C; Friend, Edward J; Hamilton, Michael H

    2010-01-01

    An unusual case of combined axial and paraesophageal (type III) hiatal hernia (HH) in a 4-year-old Great Dane is reported. The main presenting complaint was dyspnea, and no history of trauma was present. A tentative diagnosis of HH with secondary pleural effusion was made based on clinical signs and radiographic findings. Exploratory celiotomy revealed herniation of the gastric cardia, fundus, and body through the esophageal hiatus and an adjacent, distinct defect in the diaphragm. Rupture of the short gastric vessels lead to the formation of a hemorrhagic pleural effusion that impaired ventilation. The esophageal hiatus was surgically reduced in size, and the second defect was closed with nonabsorbable sutures. Esophagopexy and tube gastropexy procedures were also performed. The dog was clinically normal 9 months postoperatively. This type of HH is not currently defined within the traditional classification system and to the authors' knowledge has not been previously reported.

  11. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Weinberg Zasha

    2011-01-01

    Full Text Available Abstract Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  12. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Science.gov (United States)

    2011-01-01

    Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file. PMID:21205310

  13. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures.

    Science.gov (United States)

    Weinberg, Zasha; Breaker, Ronald R

    2011-01-04

    With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  14. Secondary Control for Voltage Quality Enhancement in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2012-01-01

    In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each of these con......In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each...

  15. Crystal structure of calcioburbankite and the characteristic features of the burbankite structure type

    International Nuclear Information System (INIS)

    Belovitskaya, Yu.V.; Pekov, I.V.; Gobechiya, E.R.; Kabalov, Yu.K.; Subbotin, V.V.

    2001-01-01

    The crystal structure of calcioburbankite (Na,Ca) 3 (Ca,RE,Sr,Ba) 3 (CO 3 ) 5 found in carbonatites from Vuoriyarvi (North Kareliya) was solved by the Rietveld method. The experimental data were collected on an ADP-2 diffractometer (λCuK α radiation; Ni filter; 16.00 deg. 1 + α 2 ) reflections was 455). All the calculations were performed within the sp. gr. P6 3 mc; a = 10.4974(1) A, c = 6.4309(1) A, V = 613.72(1) A 3 ; R wp = 2.49%. The structure was refined with the use of the anisotropic thermal parameters for the (Na,Ca) and (Sr,Ba,Ce) cations. The comparison of the crystal structures of all of the known hexagonal representatives of the burbankite family demonstrates that the burbankite structure type (sp. gr. P6 3 mc) is stable, irrespectively of the occupancy of the ten-vertex polyhedra predominantly with Ca, Sr, or Ba cations and the occupancies of the positions in the eight-vertex polyhedra

  16. Subband structure comparison between n- and p- type double delta-doped Ga As quantum wells

    International Nuclear Information System (INIS)

    Rodriguez V, I.; Gaggero S, L.M.

    2004-01-01

    We compute the electron level structure (n-type) and the hole subband structure (p-type) of double -doped GaAs (DDD) quantum wells, considering exchange effects. The Thomas-Fermi (TF), and Thomas-Fermi-Dirac (TFD) approximations have been applied in order to describe the bending of the conduction and valence band, respectively. The electron and the hole subband structure study indicates that exchange effects are more important in p-type DDD quantum wells than in n-type DDD Also our results agree with the experimental data available. (Author) 33 refs., 2 tabs., 5 figs

  17. Cs+ ion source for secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Bentz, B.L.; Weiss, H.; Liebl, H.

    1981-12-01

    Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)

  18. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    Science.gov (United States)

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A paradoxical presentation of rickets and secondary osteomyelitis of the jaw in Type II autosomal dominant osteopetrosis: Rare case reports.

    Science.gov (United States)

    Jayachandran, S; Kumar, M Suresh

    2016-01-01

    Osteopetrosis is a rare genetic bone disorder arising due to a defect in the differentiation or function of osteoclast which results in a generalized increase in bone mass. Osteomyelitis is one of the most common complications because of decreased bone marrow function and compromised blood supply. Radiologist plays a vital role in diagnosing osteopetrosis. Here, we present two cases of autosomal dominant osteopetrosis Type II (ADO II) with secondary osteomyelitis changes which were reported to our department. One of these two cases presented with secondary osteomyelitis in both maxilla and mandible and features of rickets, which is very rarely seen in ADO II. To the best of our knowledge, the presentation of rickets with ADO is the first of its kind to be reported. In this paper, we describe the clinical and radiological features leading to the diagnosis of ADO in these two patients. Further, a review of the literature regarding ADO is discussed.

  20. Secondary data sources for health services research in urologic oncology.

    Science.gov (United States)

    Cole, Alexander P; Friedlander, David F; Trinh, Quoc-Dien

    2018-04-01

    Though secondary data analyses of large datasets may reduce logistical and financial barriers required to perform significant and innovative work, such research requires specialized skills in data handling and statistical techniques as well as thorough and detailed knowledge of the data sources being used. To provide an overview of several common types of secondary data, focusing on strengths, weaknesses and examples of how these data may be used for health services research. Secondary data comprise a broad and heterogeneous category. This review covers several large categories of such data with examples of their use and discussions about their strengths and weaknesses. Sources include administrative data, claims-based datasets, electronic health records health surveys, patient or disease or both registries, quality improvement initiatives, as well as data from existing trials. Linkages of different types of data may expand the scope of questions answerable using secondary data analysis. Specific strengths and weaknesses of each type of dataset are discussed along with examples from the recent urologic literature. Choice of the appropriate data source should be tailored to the specific research question as well as the research resources and expertise available. Appropriate decisions about which data to use are the foundation for valid, high-impact research using secondary data. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.

    Science.gov (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei

    2018-02-01

    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  2. A Study of Occupational Stress and Organizational Climate of Higher Secondary Teachers

    Science.gov (United States)

    Benedicta, A. Sneha

    2014-01-01

    This study mainly aims to describe the occupational stress and organizational climate of higher secondary teachers with regard to gender, locality, family type, experience and type of management. Simple random sampling technique was adopted for the selection of sample. The data is collected from 200 higher secondary teachers from government and…

  3. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    Science.gov (United States)

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  4. Life prediction of simple structures subject to cyclic primary and secondary loading resulting in creep and platicity

    International Nuclear Information System (INIS)

    Otter, N.R.; Jones, R.T.

    1979-01-01

    High temperature reactors are subject to cyclic mechanical and thermal loadings resulting from start up and shut down operations. The design must therefore guard against structural failure resulting from excessive deformation and creep-fatigue damage. Before any simplified inelastic analysis techniques can be applied, their validity needs to be examined under situations representative of the reactor. For this to be carried out it is necessary to determine the behaviour of components, initially geometrically simple, subject to loadings, cyclic primary and secondary in nature, which result in creep and plasticity. Beam-like structures have been investigated on a finite element basis with the aim of determining how cyclic plasticity, creep enhancement and plastic ratchetting vary in relationship with modified shakedown criteria, magnitude of loading and hold time. (orig.)

  5. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

  6. Walking away from type 2 diabetes: trial protocol of a cluster randomised controlled trial evaluating a structured education programme in those at high risk of developing type 2 diabetes.

    Science.gov (United States)

    Yates, Thomas; Davies, Melanie J; Henson, Joe; Troughton, Jacqui; Edwardson, Charlotte; Gray, Laura J; Khunti, Kamlesh

    2012-05-29

    The prevention of type 2 diabetes is a recognised health care priority globally. Within the United Kingdom, there is a lack of research investigating optimal methods of translating diabetes prevention programmes, based on the promotion of a healthy lifestyle, into routine primary care. This study aims to establish the behavioural and clinical effectiveness of a structured educational programme designed to target perceptions and knowledge of diabetes risk and promote a healthily lifestyle, particularly increased walking activity, in a multi-ethnic population at a high risk of developing type 2 diabetes. Cluster randomised controlled trial undertaken at the level of primary care practices. Follow-up will be conducted at 12, 24 and 36 months. The primary outcome is change in objectively measured ambulatory activity. Secondary outcomes include progression to type 2 diabetes, biochemical variables (including fasting glucose, 2-h glucose, HbA1c and lipids), anthropometric variables, quality of life and depression. 10 primary care practices will be recruited to the study (5 intervention, 5 control). Within each practice, individuals at high risk of impaired glucose regulation will be identified using an automated version of the Leicester Risk Assessment tool. Individuals scoring within the 90th percentile in each practice will be invited to take part in the study. Practices will be assigned to either the control group (advice leaflet) or the intervention group, in which participants will be invited to attend a 3 hour structured educational programme designed to promote physical activity and a healthy lifestyle. Participants in the intervention practices will also be invited to attend annual group-based maintenance workshops and will receive telephone contact halfway between annual sessions. The study will run from 2010-2014. This study will provide new evidence surrounding the long-term effectiveness of a diabetes prevention programme run within routine primary care in

  7. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    Science.gov (United States)

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  8. An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    胡志强; 刘毅; 王晋

    2016-01-01

    An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.

  9. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    Halvoník Jaroslav

    2018-03-01

    Full Text Available Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s in a critical cross-section(s or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS.

  10. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Science.gov (United States)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  11. The 1974 Type I supernova in NGC 4414

    International Nuclear Information System (INIS)

    Patchett, B.; Wood, R.

    1976-01-01

    Spectra of Miss Burgat's supernova in NGC 4414 were taken with the Isaac Newton 2.5-m reflector during 1974 April and May. The spectra cover the period from just before maximum light to 20 days post-maximum, and show many features typical of Type I supernovae. In addition secondary features in the spectrum indicate the presence of thin shell or filamentary structure. A photographic light curve and direct plate are presented. (author)

  12. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging.

    Science.gov (United States)

    Pijlman, Gorben P; Kondratieva, Natasha; Khromykh, Alexander A

    2006-11-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

  13. A Study of the Types of Organizational Structure in Venezuelan University Institutes

    Directory of Open Access Journals (Sweden)

    Rafael Antonio Pertuz Belloso

    2013-12-01

    Full Text Available This study aimed at identifying the type of organizational structure of Venezuelan university institutes. It is a field investigation of a descriptive nature with a non-experimental transactional field design. We worked with a population sample consisting of a director, assistant directors, academic assistant directors and eighty-eight teachers from technological institutes in Cabimas and Maracaibo in Venezuela. A survey, in the form of a questionnaire, was used as the data collection technique, which included 24 items, validated by 5 experts, with Cronbach Alpha reliability of 0.93. The data analysis technique utilized was the percentage frequency distribution. The results indicated the coexistence of bureaucratic structural typologies; departmental and simple. An implementation of a structural migration strategy to the implementation of a matrix-type structure is recommended.

  14. Operation results of the secondary circuits of the French PWR type power plant park

    International Nuclear Information System (INIS)

    Mercier, J.P.

    1984-01-01

    Global results of performances realized since 1981 by the French PWR 900 MW power plants (installed power, availability, casual or planned shutdowns); analysis of the behaviour (casual unavailability) comparing together the performances of the different components in the secondary circuit; behaviour of the principal materials of the secondary circuit and their weight in the unavailabilities of the whole French nuclear park [fr

  15. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    International Nuclear Information System (INIS)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.; Hemantha Kumar, G.; Kunishima, Naoki; Lokanath, N.K.

    2014-01-01

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III H PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III H and such PGDHs structures having this type are reported for the first time

  16. Left ventricular structure and function in black normotensive type 2 ...

    African Journals Online (AJOL)

    Keywords: Black normotensive patients, left ventricular function, type 2 DM. Résumé ... sickle cell disease and structural heart disease were excluded ... Pulmonary venous flow (PVF) velocity ... had abnormal ECG pattern compared with 30%.

  17. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...... is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two...... in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4....

  20. The Current State Of Secondary Resource Usage In Ukraine

    OpenAIRE

    Julia Makovetska

    2011-01-01

    The state and the perspectives of the development of secondary resource usage in Ukraine have been analyzed in the article. The level of the main types recyclable materials as paper and cardboard, glass, plastics, waste tires are considered. Priority directions of development of the secondary resources usage have been defined.

  1. A comparison of private and public secondary school biology ...

    African Journals Online (AJOL)

    This paper compares external motivation and job satisfaction in private and public secondary schools biology teachers in Education District IV of Lagos state. The sample for the study consists of 120 Biology teachers selected from ten private and ten public secondary schools. A 20-items Likert type questionnaire was ...

  2. Simulation of fatigue damagesin secondary truss of crane

    Directory of Open Access Journals (Sweden)

    Eremin Konstantin Ivanovich

    2014-02-01

    Full Text Available Basing on the damaging statistics obtained during the on-site inspections of industrial multi-span building structures with under-crane secondary trusses which have continuous lower plinth, we simulated the scenario of the most likely damage development of under-crane secondary trusses.The first scenario is the development of cracks along the total cross section of plinth. In the process of calculations we defined a real deformation scheme of plinth of under-crane secondary trusses with damage and its stress condition.The second scenario is the destruction of a support or support mounting unit to the lower plinth of under-crane secondary trusses. The destruction of this kind can occur as a result of a crack in a support or as a result of destruction of high-strength fasteners of a support to plinth. We discovered that a system with such damage is geometrically unchanged; there is no possibility of sudden destruction of both the under-crane secondary trusses and the entire building frame.The third scenario is the upper plinth separation from one of the walls of lower plinth of under-crane secondary trusses.The scenario is developed to define the viability of under-crane secondary trusses as a result of cracks in the area of wall junction with the upper shelf of lower plinth, their further development and the appearance of discrete cracks developing into a backbone along the entire span length of under-crane secondary trusses.Based on the calculations of the stress strain state of under-crane secondary trusses with damages in the emergency nature in a separate span of the lower plinth and a truss member, we estimated the viability of structure. The analysis of viability limits makes it possible to find the measures of collapse preventing and avoid possible victims.

  3. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  4. Discriminating the reaction types of plant type III polyketide synthases.

    Science.gov (United States)

    Shimizu, Yugo; Ogata, Hiroyuki; Goto, Susumu

    2017-07-01

    Functional prediction of paralogs is challenging in bioinformatics because of rapid functional diversification after gene duplication events combined with parallel acquisitions of similar functions by different paralogs. Plant type III polyketide synthases (PKSs), producing various secondary metabolites, represent a paralogous family that has undergone gene duplication and functional alteration. Currently, there is no computational method available for the functional prediction of type III PKSs. We developed a plant type III PKS reaction predictor, pPAP, based on the recently proposed classification of type III PKSs. pPAP combines two kinds of similarity measures: one calculated by profile hidden Markov models (pHMMs) built from functionally and structurally important partial sequence regions, and the other based on mutual information between residue positions. pPAP targets PKSs acting on ring-type starter substrates, and classifies their functions into four reaction types. The pHMM approach discriminated two reaction types with high accuracy (97.5%, 39/40), but its accuracy decreased when discriminating three reaction types (87.8%, 43/49). When combined with a correlation-based approach, all 49 PKSs were correctly discriminated, and pPAP was still highly accurate (91.4%, 64/70) even after adding other reaction types. These results suggest pPAP, which is based on linear discriminant analyses of similarity measures, is effective for plant type III PKS function prediction. pPAP is freely available at ftp://ftp.genome.jp/pub/tools/ppap/. goto@kuicr.kyoto-u.ac.jp. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  6. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  7. The research of structural features of astralens - nanodimensional carbon particles of fulleroid type

    International Nuclear Information System (INIS)

    Ponomarev, A.N.; Nikitin, V.A.; Rybalko, V.V.

    2006-01-01

    The article is focused on the research of structural features of astralens - nanodimensional carbonic particles of fulleroid type. Astralens are perspective nanomodificators of properties of materials of different types. The potentials os astralens as modificators depend on their characteristic structural features, and in the first place, on the distribution of nanoparticles by sizes. The typical dimensions of astralens are determined to be within the range of 15-75 nm [ru

  8. Brain Type or Sex Differences? A structural equation model of the relation between brain type, sex, and motivation to learn science

    Science.gov (United States)

    Zeyer, Albert; Bölsterli, Katrin; Brovelli, Dorothee; Odermatt, Freia

    2012-03-01

    Sex is considered to be one of the most significant factors influencing attitudes towards science. However, the so-called brain type approach from cognitive science suggests that the difference in motivation to learn science does not primarily differentiate the girls from the boys, but rather the so-called systemisers from the empathizers. The present study investigates this hypothesis by using structural equation modelling on a sex-stratified sample of 500 male and female students of secondary II level. The results show, that the motivation to learn science is directly influenced by the systemizing quotient SQ, but not by sex. The impact of sex on the motivation to learn science, measured by five key concepts, only works indirectly, namely through the influence of sex on the SQ. The empathizing quotient (EQ) has no impact on the motivation to learn science. The SQ explains between 13 and 23 percent of the variation of the five key constructs. In female students, the impact of the SQ is very similar for all key concepts. In male students, it is highest for self-efficacy and lowest for assessment anxiety. The motivation to learn science is significantly larger for male students in all involved SMQ key concepts, but the difference is small. The interpretation of these findings and conclusions for science teaching and further research are discussed.

  9. Patterns of left ventricular remodeling among patients with essential and secondary hypertension.

    Science.gov (United States)

    Radulescu, Dan; Stoicescu, Laurentiu; Buzdugan, Elena; Donca, Valer

    2013-12-01

    High blood pressure causes left ventricular hypertrophy, which is a negative prognostic factor among hypertensive patients. To assess left ventricular geometric remodeling patterns in patients with essential hypertension or with hypertension secondary to parenchymal renal disease. We analyzed data from echocardiograms performed in 250 patients with essential hypertension (150 females) and 100 patients with secondary hypertension (60 females). The interventricular septum and the left ventricular posterior wall thickness were measured in the parasternal long-axis. Left ventricular mass was calculated using the Devereaux formula. The most common remodeling type in females and males with essential hypertension were eccentric and concentric left ventricular hypertrophy (cLVH), respectively. Among patients with secondary arterial hypertension, cLVH was most commonly observed in both genders. The prevalence of left ventricular hypertrophy was higher among patients with secondary hypertension. The left ventricular mass index and the relative left ventricular wall thickness were higher in males and also in the secondary hypertension group. Age, blood pressure values and the duration of hypertension, influenced remodeling patterns. We documented a higher prevalence of LVH among patients with secondary hypertension. The type of ventricular remodeling depends on gender, age, type of hypertension, blood pressure values and the duration of hypertension.

  10. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn P.; Buch-Pedersen, Morten Jeppe; Morth, J. Preben

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H1-ATPase (the proton pump) in plants and fungi1......-3, and Na1,K1-ATPase (the sodium-potassium pump) in animals4. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis5.The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na1,K1-ATPase and Ca21......- ATPase are type II6. Electron microscopy has revealed the overall shape of proton pumps7, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define...

  11. In and out of the cation pumps: P-type ATPase structure revisited

    DEFF Research Database (Denmark)

    Bublitz, Maike; Poulsen, Hanne; Morth, Jens Preben

    2010-01-01

    Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated....... The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now...

  12. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    Science.gov (United States)

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  13. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.

    Science.gov (United States)

    Rigon, Francesca; Stach, Thomas; Caicci, Federico; Gasparini, Fabio; Burighel, Paolo; Manni, Lucia

    2013-06-04

    Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in

  14. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  15. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  16. Dowel-type fastener connections in timber structures subjected to short-term loading

    DEFF Research Database (Denmark)

    Lauritzen Jensen, J.

    Design of dowel-type fastener connections in framed timber structures usually involves a two-step analysis: determination of the distribution of the sectional forces, and design of the eccentrically loaded connections. This report presents an integrated model for design of framed timber structures...

  17. Structural and Thermal Safety Analysis Report for the Type B Radioactive Waste Transport Package

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Seo, K. S.; Lee, J. C.; Bang, K. S

    2007-09-15

    We carried out structural safety evaluation for the type B radioactive waste transport package. Requirements for type B packages according to the related regulations such as IAEA Safety Standard Series No. TS-R-1, Korea Most Act. 2001-23 and US 10 CFR Part 71 were evaluated. General requirements for packages such as those for a lifting attachment, a tie-down attachment and pressure condition were considered. For the type B radioactive waste transport package, the structural, thermal and containment analyses were carried out under the normal transport conditions. Also the safety analysis were conducted under the accidental transport conditions. The 9 m drop test, 1 m puncture test, fire test and water immersion test under the accidental transport conditions were consecutively done. The type B radioactive waste transport packages were maintained the structural and thermal integrities.

  18. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    Science.gov (United States)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p  0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  19. Classification of methods and equipment recovery secondary waters

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2017-01-01

    Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a

  20. Possible pressurized thermal shock events during large primary to secondary leakage. The Hungarian AGNES project and PRISE accident scenarios in VVER-440/V213 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perneczky, L. [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1997-12-31

    Nuclear power plants of WWER-440/213-type have several special features. Consequently, the transient behaviour of such a reactor system should be different from the behaviour of the PWRs of western design. The opening of the steam generator (SG) collector cover, as a specific primary to secondary circuit leakage (PRISE) occurring in WWER-type reactors happened first time in Rovno NPP Unit I on January 22, 1982. Similar accident was studied in the framework of IAEA project RER/9/004 in 1987-88 using the RELAP4/mod6 code. The Hungarian AGNES (Advanced General and New Evaluation of Safety) project was performed in the period 1991-94 with the aim to reassess the safety of the Paks NPP using state-of-the-art techniques. The project comprised three type of analyses for the primary to secondary circuit leakages: Design Basis Accident (DBA) analyses, Pressurized Thermal Shock (PTS) study and deterministic analyses for Probabilistic Safety Analysis (PSA). Major part of the thermohydraulic analyses has been performed by the RELAP5/mod2.5/V251 code version with two input models. 32 refs.

  1. Possible pressurized thermal shock events during large primary to secondary leakage. The Hungarian AGNES project and PRISE accident scenarios in VVER-440/V213 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perneczky, L [KFKI Atomic Energy Research Inst., Budabest (Hungary)

    1998-12-31

    Nuclear power plants of WWER-440/213-type have several special features. Consequently, the transient behaviour of such a reactor system should be different from the behaviour of the PWRs of western design. The opening of the steam generator (SG) collector cover, as a specific primary to secondary circuit leakage (PRISE) occurring in WWER-type reactors happened first time in Rovno NPP Unit I on January 22, 1982. Similar accident was studied in the framework of IAEA project RER/9/004 in 1987-88 using the RELAP4/mod6 code. The Hungarian AGNES (Advanced General and New Evaluation of Safety) project was performed in the period 1991-94 with the aim to reassess the safety of the Paks NPP using state-of-the-art techniques. The project comprised three type of analyses for the primary to secondary circuit leakages: Design Basis Accident (DBA) analyses, Pressurized Thermal Shock (PTS) study and deterministic analyses for Probabilistic Safety Analysis (PSA). Major part of the thermohydraulic analyses has been performed by the RELAP5/mod2.5/V251 code version with two input models. 32 refs.

  2. Feasibility Study on Nano-structured Coatings to Mitigate Flow-accelerated Corrosion in Secondary System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghyun; Kim, Jeong Won; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan (Korea, Republic of)

    2015-05-15

    There have been many efforts to mitigate FAC through the adoption of the advanced and modified water chemistries such as optimized dissolved oxygen (DO) concentration and temperature. However, these mitigation techniques pose certain challenges relating to the compatibility of new water chemistries with the steam generator, the thermal efficiency of the secondary side, etc. In this context, nano-particle reinforced electroless nickel plating (NP ENP) could help solve the FAC issues in secondary pipe systems. This does not require modification of water chemistry or structural materials, and hence, its application is reasonable and time-saving compared to previous FAC mitigation techniques. The main parameters of FAC are known as electrochemical reaction at the interface, dissolution of magnetite and ferrous ions due to concentration gradient between carbon steels and water and wear due to a fast-flowing fluid. High-temperature corrosion characteristics of the both coatings have potential as FAC barrier for carbon steel. Feasibility study will be carried out with FAC simulation experiments.

  3. Psychometric properties of the Questionnaire for Secondary Traumatization

    Directory of Open Access Journals (Sweden)

    Katharina Weitkamp

    2014-01-01

    Full Text Available Background: During the past several years, there has been a growing interest in the negative effects that providing therapy may have on therapists. Of special interest is a phenomenon called secondary traumatization, which can arise while working with traumatized clients. To develop a simple screening tool for secondary traumatization, a quantitative assessment instrument was constructed using a data-driven approach based on qualitative interviews with affected trauma therapists as well as experienced supervisors in trauma therapy. Objective: The aim of the current study was to analyze the psychometric properties of the newly developed Questionnaire for Secondary Traumatization (FST acute and lifetime version and to determine the most appropriate scoring procedure. Method: To this end, three independent samples of psychotherapists (n=371, trauma therapists in training (n=80, and refugee counselors (n=197 filled out an online questionnaire battery. Data structure was analyzed using factor analyses, cluster analyses, and reliability analyses. Results: Factor analyses yielded a six-factor structure for both the acute and the lifetime version with only a small number of items loading on differing factors. Cluster analyses suggested a single scale structure of the questionnaire. The FST total score showed good internal consistencies across all three samples, while internal consistency of the six extracted factors was mixed. Conclusion: With the FST, a reliable screening instrument for acute and lifetime secondary traumatization is now available which is free of charge and yields a sum score for quick evaluation. The six-factor structure needs to be verified with confirmatory factor analyses.

  4. Community structure, life histories and secondary production of stoneflies in two small mountain streams with different degree of forest cover

    Directory of Open Access Journals (Sweden)

    Pavel Beracko

    2015-10-01

    Full Text Available Our study examines community structure and nymphal biology (life cycles and secondary production of stoneflies in two adjacent mountain streams with different degree of forest cover in the Prosiečanka River Basin (Chočské Vrchy Mts., West Carpathians. One of the streams has non-forested catchment, converted to meadows and pastures, while the other one has catchment with 60% covered by spruce forest. Differences in forest cover and in thermal regime of the streams were reflected by the difference of stonefly communities at their structural and functional level. Species Nemoura cinerea and Leuctra aurita created stonefly assemblage in non-forested stream, whereas Nemoura cinerea also occurred in naturally forested stream together with species Leuctra armata, Leuctra nigra, Leuctra prima, Siphonoperla neglecta and Arcynopteryx dichroa. All examined species had maximally annual life cycle and in eudominant species Nemoura cinerea one month shift was found in nymphal hatching and adult emergence between streams. Total secondary production of stoneflies in undisturbed stream (126.46 mg DW m-2 y-1 was more than two times higher than the production in non-forested stream (47.39 mg DW m-2 y-1. 

  5. Structural and functional salivary disorders in type 2 diabetic patients.

    Science.gov (United States)

    Carda, Carmen; Mosquera-Lloreda, Nezly; Salom, Lucas; Gomez de Ferraris, Maria Elsa; Peydró, Amando

    2006-07-01

    Diabetes mellitus type 2 is the most common metabolic disorder and it causes an important morbimortality. The structural modifications in the parotid gland (sialosis) had already been described in these patients and could result in variations in the salivary composition, as well as an increase in periodontal and dental pathology. To compare the biochemical findings in the saliva and to correlate these biochemical disturbances with the morphologic findings previously described. Clinical information were gathered about 33 patients, 17 had type 2 diabetes. Samples of whole saliva were obtained for biochemical analysis and serum samples to determine metabolic control. In the diabetics saliva we found urea and total proteins increased and reduced levels of microalbumina. Salivary glucose was only augmented in patients with poor metabolic control. Clinical symptoms of xerostomia were present in 76,4% and dental and periodontal disease in 100%. The parotid gland was characterised by the presence of small acini, lipid intracytoplasmic droplets, as well as adipose stroma infiltration. The acinar cytoqueratins expression was heterogeneous and very positive in the hyperplasic ducts. These biochemical disorders in the saliva of the type 2 diabetic patients would be related with the structural changes previously observed in parotid glands.

  6. Management of primary-to-secondary leaks at Loviisa nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohnsen, B.; Jaenkaelae, K. [IVO International Ltd, Vantaa (Finland)

    1995-12-31

    The Loviisa Nuclear power plant consisting of two VVER-440 type press water reactor units has been in commercial operation since the late 1970`s. Specific features for VVER-440 reactors are six primary loops with horizontal steam generators and main gate valves. The structure of the horizontal steam generators construction may cause a large primary to secondary leak in case of a break in the cover of the primary collector. An accident where two primary collector covers opened totally and two covers opened partly took place in Rovno, Ukraine January 1982. Primary to secondary leaks are one of the main contributors to the core melt frequency in VVER reactors according to the Loviisa 1 Probabilistic Safety Assessment. The high core damage contribution has set requirements for the development of effective means to cope with all sizes of primary to secondary leaks in the steam generator. A concept for all leak sizes has been developed for Loviisa 1 and 2. The solution includes four main areas which are a new steam generator leakage monitoring system based on nitrogen-16 measurement, an upgraded pressurizer spray system, an increased emergency cooling water reserve and an automated isolation of the defected steam generator.

  7. Management of primary-to-secondary leaks at Loviisa nuclear power plant

    International Nuclear Information System (INIS)

    Mohnsen, B.; Jaenkaelae, K.

    1995-01-01

    The Loviisa Nuclear power plant consisting of two VVER-440 type press water reactor units has been in commercial operation since the late 1970's. Specific features for VVER-440 reactors are six primary loops with horizontal steam generators and main gate valves. The structure of the horizontal steam generators construction may cause a large primary to secondary leak in case of a break in the cover of the primary collector. An accident where two primary collector covers opened totally and two covers opened partly took place in Rovno, Ukraine January 1982. Primary to secondary leaks are one of the main contributors to the core melt frequency in VVER reactors according to the Loviisa 1 Probabilistic Safety Assessment. The high core damage contribution has set requirements for the development of effective means to cope with all sizes of primary to secondary leaks in the steam generator. A concept for all leak sizes has been developed for Loviisa 1 and 2. The solution includes four main areas which are a new steam generator leakage monitoring system based on nitrogen-16 measurement, an upgraded pressurizer spray system, an increased emergency cooling water reserve and an automated isolation of the defected steam generator

  8. Management of primary-to-secondary leaks at Loviisa nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mohnsen, B; Jaenkaelae, K [IVO International Ltd, Vantaa (Finland)

    1996-12-31

    The Loviisa Nuclear power plant consisting of two VVER-440 type press water reactor units has been in commercial operation since the late 1970`s. Specific features for VVER-440 reactors are six primary loops with horizontal steam generators and main gate valves. The structure of the horizontal steam generators construction may cause a large primary to secondary leak in case of a break in the cover of the primary collector. An accident where two primary collector covers opened totally and two covers opened partly took place in Rovno, Ukraine January 1982. Primary to secondary leaks are one of the main contributors to the core melt frequency in VVER reactors according to the Loviisa 1 Probabilistic Safety Assessment. The high core damage contribution has set requirements for the development of effective means to cope with all sizes of primary to secondary leaks in the steam generator. A concept for all leak sizes has been developed for Loviisa 1 and 2. The solution includes four main areas which are a new steam generator leakage monitoring system based on nitrogen-16 measurement, an upgraded pressurizer spray system, an increased emergency cooling water reserve and an automated isolation of the defected steam generator.

  9. The Types of Argument Structure Used by Hillary Clinton in the CNN Democratic Presidential Debate

    Directory of Open Access Journals (Sweden)

    Anggie Angeline

    2009-01-01

    Full Text Available This qualitative research was conducted to examine the types of argument structure by Hillary Clinton in part one of the CNN Democratic Presidential Debate since Hillary, who had a great deal of experiences in political parties, was supposed to be able to construct convincing arguments that had good argument structures. The theories used to analyze were Bierman and Assali’s (1996, King’s (n.d. and Stanlick’s (2003. The findings showed that there were five types of argument structure used: serial, linked, convergent, divergent, and hybrid argument structures. The linked argument structure was the argument structure used the most frequently in Hillary’s utterances in the debate, while the divergent was the least one. Thus, it could be concluded that Hillary’s speech in the Presidential Debate was quite interesting since she could combine all the five types of argument structure, though the frequency of using them was not the same and it seems that linked argument structure was the most effective strategy for her in arguing about the politic, economy, and social issues.

  10. Structure of a Kunitz-type potato cathepsin D inhibitor

    Czech Academy of Sciences Publication Activity Database

    Guo, J.; Erskine, P. T.; Coker, A. R.; Wood, S. P.; Cooper, J. B.; Mareš, Michael; Baudyš, Miroslav

    2015-01-01

    Roč. 192, č. 3 (2015), s. 554-560 ISSN 1047-8477 R&D Projects: GA ČR GA15-18929S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : potato cathepsin D inhibitor * Kunitz-type protease inhibitor * protein X-ray structure * reactive-site loop * docking Subject RIV: CE - Biochemistry Impact factor: 2.570, year: 2015

  11. Clinical significance of combined measurement of serum sex hormones in secondary amenorrhea

    International Nuclear Information System (INIS)

    Chen Boxun; Chen Yue; Gan Xilun

    2004-01-01

    Objective: To study the clinical significance of changes of levels of serum sex hormones in the diagnosis of the types of secondary amenorrhea. Methods: Serum sex hormones levels were measured with chemiluminescence in 100 patients with secondary amenorrhea and 42 controls. The serum hormones determined were: estradiol (E 2 )-, progesterone (PROG), follicle stimulating hormone (FSH)-, luteinizing hormone (LH), prolactin (PRL), testosterone (TSTO). Results: Patients with secondary amenorrhea had significantly higher levels of serum FSH, LH and PRL ( P 2 (P<0.05) than those in the controls. Serum levels of PROG and TSTO were about the same in the patients and controls. Conclusion: Determination of serum hormones levels with chemiluminescence is clinically useful for diagnosis of the types of secondary amenorrhea. (authors)

  12. Study of thin insulating films using secondary ion emission

    International Nuclear Information System (INIS)

    Hilleret, Noel

    1973-01-01

    Secondary ion emission from insulating films was investigated using a CASTAING-SLODZIAN ion analyzer. Various different aspects of the problem were studied: charge flow across a silica film; the mobilization of sodium during ion bombardment; consequences of the introduction of oxygen on the emission of secondary ions from some solids; determination of the various characteristics of secondary ion emission from silica, silicon nitride and silicon. An example of measurements made using this type of operation is presented: profiles (concentration as a function of depth) of boron introduced by diffusion or implantation in thin films of silica on silicon or silicon nitride. Such measurements have applications in microelectronics. The same method of operation was extended to other types of insulating film, and in particular, to the metallurgical study of passivation films formed on the surface of stainless steels. (author) [fr

  13. Equipment for secondary water distribution in heat exchanger, especially saturated steam generator for nuclear power plants and heat plants

    Energy Technology Data Exchange (ETDEWEB)

    Riman, J; Manek, O; Rybnicek, J

    1979-09-15

    A special structure consisting of a system of channels and a distribution plate with ports in-built above the tube-plate of a vertical-type steam generator prevents secondary water vaporization in the space above the tube-plate and thus also salt and sludge sedimentation which causes increased corrosion of heat transfer tubes. The size of the distribution plate ports is variable in the radial direction. The distribution plate is divided by means of the system of channels into at least two parts. The middle section of each part is of the through-flow type.

  14. the influence of cartoons as instructional medium on secondary ...

    African Journals Online (AJOL)

    Global Journal

    This study examined the influence of cartoon strips as instructional medium on the academic performance of secondary school students in Cross River State. The instrument used was a structured. Achievement Test in Fine Arts (SATFA). The sample used consisted of 46 Junior Secondary School two students. SATFA was ...

  15. The Efficiency of Managing School Records by Secondary School ...

    African Journals Online (AJOL)

    This study examined the efficiency of management of school records by secondary school principals in Delta state, Nigeria. As a descriptive survey, the study population comprised all the 602 public secondary school principals in the state. A structured questionnaire was used to gather data which was subsequently ...

  16. The influence of cartoons as instructional medium on secondary ...

    African Journals Online (AJOL)

    This study examined the influence of cartoon strips as instructional medium on the academic performance of secondary school students in Cross River State. The instrument used was a structured Achievement Test in Fine Arts (SATFA). The sample used consisted of 46 Junior Secondary School two students. SATFA was ...

  17. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  18. Determination of a new structure type in the Sc–Fe–Ge–Sn system

    International Nuclear Information System (INIS)

    Brgoch, Jakoah; Ran, Sheng; Thimmaiah, Srinivasa; Canfield, Paul C.; Miller, Gordon J.

    2013-01-01

    Highlights: ► A new structure type with the composition Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) . ► Crystallizes in the space group Immm (No. 71, oI144). ► Sample obtained using a reactive Sn flux. ► Electronic structure calculations indicate polar intermetallic bonding network. - Abstract: A new structure type has been discovered in the system Sc–Fe–Ge–Sn by employing Sn as a flux medium. According to single crystal X-ray diffraction, the new structure has a composition of Sc 4 Fe 5 Ge 6.10(3) Sn 1.47(2) and crystallizes in the space group Immm (No. 71, oI144) with lattice parameters of a = 5.230(1) Å, b = 13.467(3) Å, and c = 30.003(6) Å. The structure is composed of square anti-prismatic clusters that are condensed into zig-zag chains along the [0 1 0] direction. These chains are further condensed through a split Sn/Ge position, forming a three-dimensional network. Magnetization measurements indicate an antiferromagnetic phase transition near 240 K. Electronic structure calculations identified the most favorable bonding network in this new system. Using crystal orbital Hamilton population (COHP) curves and their integrated values (ICOHP), a polar intermetallic bonding network involving Sc–Ge as well as Fe–Sn and Fe–Ge contacts can be assigned to this new structure type.

  19. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I

    2000-01-01

    Structure model type and trabecular thickness are important characteristics in describing cancellous bone architecture. It has been qualitatively observed that a radical change of trabeculae from plate-like to rod-like occurs in aging, bone remodeling, and osteoporosis. Thickness of trabeculae has...... traditionally been measured using model-based histomorphometric methods on two-dimensional (2-D) sections. However, no quantitative study has been published based on three-dimensional (3-D) methods on the age-related changes in structure model type and trabecular thickness for human peripheral (tibial......, structure model type and trabecular thickness were quantified by means of novel 3-D methods. Structure model type was assessed by calculating the structure model index (SMI). The SMI was quantified based on a differential analysis of the triangulated bone surface of a structure. This technique allows...

  20. Modular metal chalcogenide chemistry: secondary building blocks as a basis of the silicate-type framework structure of CsLiU(PS_4)_2

    International Nuclear Information System (INIS)

    Neuhausen, Christine; Rocker, Frank; Tremel, Wolfgang

    2012-01-01

    The novel uranium thiophosphate CsLiU(PS_4)_2 has been synthesized by reacting uranium metal, Cs_2S, Li_2S, S, and P_2S_5 at 700 C in an evacuated silica tube. The crystal structure was determined by single-crystal X-ray diffraction techniques. CsLiU(PS_4)_2 crystallizes in the rhombohedral space group R anti 3c (a = 15.2797(7) Aa; c = 28.778(2) Aa, V = 5818.7(5) Aa"3, Z = 18). The structure of CsLiU(PS_4)_2 is a unique three-dimensional U(PS_4)_2"2"- framework with large tunnels with an approximate diameter of 6.6 Aa running parallel to the crystallographic c axis. The tunnels are filled with Cs"+ cations. The smaller Li"+ cations are located at tetrahedral sites at the periphery of the channels. In the structure of CsLiU(PS_4)_2 the uranium atoms are coordinated by thiophosphate groups in a pseudotetrahedral fashion, and the PS_4 groups act as linear connectors. Topologically, CsLiU(PS_4)_2 may be regarded a chalcogenide analogue of silicate frameworks, with the uranium atoms and PS_4 groups replacing silicon and oxygen atoms. Alternatively, CsLiU(PS_4)_2 may be viewed as a coordination polymer, which is formed in salt melts by the solid state equivalent of the ''self-assembly'' reactions in solution. Magnetic susceptibility measurements indicated Curie-Weiss-type behavior between 4 K and 300 K. The μ_e_f_f of 2.83 μ_B at 300 K is in agreement with an f"2 configuration of U"4"+. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)