WorldWideScience

Sample records for secondary structure model

  1. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    Science.gov (United States)

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  2. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  3. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  4. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  5. A semi-supervised learning approach for RNA secondary structure prediction.

    Science.gov (United States)

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A folding algorithm for extended RNA secondary structures.

    Science.gov (United States)

    Höner zu Siederdissen, Christian; Bernhart, Stephan H; Stadler, Peter F; Hofacker, Ivo L

    2011-07-01

    RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/.

  7. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  8. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  9. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  10. Amino acid code of protein secondary structure.

    Science.gov (United States)

    Shestopalov, B V

    2003-01-01

    The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three

  11. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  12. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  13. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    International Nuclear Information System (INIS)

    Glenn, Autumn L.; Bulusu, Kartik V.; Shu Fangjun; Plesniak, Michael W.

    2012-01-01

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T ≈ 0.20–0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  14. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Autumn L.; Bulusu, Kartik V. [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States); Shu Fangjun [Department of Mechanical and Aerospace Engineering, New Mexico State University, MSC 3450, P.O. Box 30001, Las Cruces, NM 88003-8001 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States)

    2012-06-15

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T Almost-Equal-To 0.20-0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  15. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  16. Prediction of RNA secondary structures: from theory to models and real molecules

    International Nuclear Information System (INIS)

    Schuster, Peter

    2006-01-01

    RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA

  17. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  18. Prediction of the Secondary Structure of HIV-1 gp120

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design......The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV...

  19. ncRNA consensus secondary structure derivation using grammar strings.

    Science.gov (United States)

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  20. A method for rapid similarity analysis of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Liu Na

    2006-11-01

    Full Text Available Abstract Background Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures. Results Three sets of real data have been used as input for the example applications. Set I includes the structures from 5S rRNAs. Set II includes the secondary structures from RNase P and RNase MRP. Set III includes the structures from 16S rRNAs. Reasonable phylogenetic trees are derived for these three sets of data by using our method. Moreover, our program runs faster as compared to some existing ones. Conclusion The famous Lempel-Ziv algorithm can efficiently extract the information on repeated patterns encoded in RNA secondary structures and makes our method an alternative to analyze the similarity of RNA secondary structures. This method will also be useful to researchers who are interested in evolutionary analysis.

  1. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  2. Ensemble-based prediction of RNA secondary structures.

    Science.gov (United States)

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    false negative and false positive base pair predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at http://www.cs.ubc.ca/labs/beta/Software/AveRNA.

  3. Mathematical and Biological Modelling of RNA Secondary Structure and Its Effects on Gene Expression

    Directory of Open Access Journals (Sweden)

    T. A. Hughes

    2006-01-01

    Full Text Available Secondary structures within the 5′ untranslated regions of messenger RNAs can have profound effects on the efficiency of translation of their messages and thereby on gene expression. Consequently they can act as important regulatory motifs in both physiological and pathological settings. Current approaches to predicting the secondary structure of these RNA sequences find the structure with the global-minimum free energy. However, since RNA folds progressively from the 5′ end when synthesised or released from the translational machinery, this may not be the most probable structure. We discuss secondary structure prediction based on local-minimisation of free energy with thermodynamic fluctuations as nucleotides are added to the 3′ end and show that these can result in different secondary structures. We also discuss approaches for studying the extent of the translational inhibition specified by structures within the 5′ untranslated region.

  4. Examining the dimensional structure models of secondary traumatic stress based on DSM-5 symptoms.

    Science.gov (United States)

    Mordeno, Imelu G; Go, Geraldine P; Yangson-Serondo, April

    2017-02-01

    Latent factor structure of Secondary Traumatic Stress (STS) has been examined using Diagnostic Statistic Manual-IV (DSM-IV)'s Posttraumatic Stress Disorder (PTSD) nomenclature. With the advent of Diagnostic Statistic Manual-5 (DSM-5), there is an impending need to reexamine STS using DSM-5 symptoms in light of the most updated PTSD models in the literature. The study investigated and determined the best fitted PTSD models using DSM-5 PTSD criteria symptoms. Confirmatory factor analysis (CFA) was conducted to examine model fit using the Secondary Traumatic Stress Scale in 241 registered and practicing Filipino nurses (166 females and 75 males) who worked in the Philippines and gave direct nursing services to patients. Based on multiple fit indices, the results showed the 7-factor hybrid model, comprising of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors has excellent fit to STS. This model asserts that: (1) hyperarousal criterion needs to be divided into anxious and dysphoric arousal factors; (2) symptoms characterizing negative and positive affect need to be separated to two separate factors, and; (3) a new factor would categorize externalized, self-initiated impulse and control-deficit behaviors. Comparison of nested and non-nested models showed Hybrid model to have superior fit over other models. The specificity of the symptom structure of STS based on DSM-5 PTSD criteria suggests having more specific interventions addressing the more elaborate symptom-groupings that would alleviate the condition of nurses exposed to STS on a daily basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Factors that Affect Mathematics-Science (MS) Scores in the Secondary Education Institutional Exam: An Application of Structural Equation Modeling

    Science.gov (United States)

    Yavuz, Mustafa

    2009-01-01

    Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…

  6. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  7. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  8. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    Science.gov (United States)

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    Science.gov (United States)

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  10. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...

  12. Use of secondary structural information and Cα-Cα distance ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-21

    Jun 21, 2007 ... Model evolution; protein modelling; residue contact prediction; secondary structure prediction. Abbreviations used: ... set of sequence data (NR) and calculated conservation index of each ... evaluators (Moult et al 2003) to evaluate these model ... (Siew et al 2000), is a measure aims at identifying the largest.

  13. Quantitative DMS mapping for automated RNA secondary structure inference

    OpenAIRE

    Cordero, Pablo; Kladwang, Wipapat; VanLang, Christopher C.; Das, Rhiju

    2012-01-01

    For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using a pseudo-energy framework developed for 2'-OH acylation (SHAPE) mapping. On six non-coding RNAs with crystallographic models, DMS- guided modeling achieves overall false negative and false discovery rates of 9.5% and 11.6%, comparable or better than SHAPE-guided modeling; and non-parametric bootstrappin...

  14. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Science.gov (United States)

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  15. Computing the partition function for kinetically trapped RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  16. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    Science.gov (United States)

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  18. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    Science.gov (United States)

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  19. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  20. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  1. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  2. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2005-09-01

    Full Text Available Abstract Background A number of methods are now available to perform automatic assignment of periodic secondary structures from atomic coordinates, based on different characteristics of the secondary structures. In general these methods exhibit a broad consensus as to the location of most helix and strand core segments in protein structures. However the termini of the segments are often ill-defined and it is difficult to decide unambiguously which residues at the edge of the segments have to be included. In addition, there is a "twilight zone" where secondary structure segments depart significantly from the idealized models of Pauling and Corey. For these segments, one has to decide whether the observed structural variations are merely distorsions or whether they constitute a break in the secondary structure. Methods To address these problems, we have developed a method for secondary structure assignment, called KAKSI. Assignments made by KAKSI are compared with assignments given by DSSP, STRIDE, XTLSSTR, PSEA and SECSTR, as well as secondary structures found in PDB files, on 4 datasets (X-ray structures with different resolution range, NMR structures. Results A detailed comparison of KAKSI assignments with those of STRIDE and PSEA reveals that KAKSI assigns slightly longer helices and strands than STRIDE in case of one-to-one correspondence between the segments. However, KAKSI tends also to favor the assignment of several short helices when STRIDE and PSEA assign longer, kinked, helices. Helices assigned by KAKSI have geometrical characteristics close to those described in the PDB. They are more linear than helices assigned by other methods. The same tendency to split long segments is observed for strands, although less systematically. We present a number of cases of secondary structure assignments that illustrate this behavior. Conclusion Our method provides valuable assignments which favor the regularity of secondary structure segments.

  3. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  4. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  5. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Chen Chun

    2008-03-01

    Full Text Available Abstract Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1 present a robust and effective way for RNA structural data compression; (2 design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool

  6. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2017-08-29

    Residue-residue contacts are key features for accurate de novo protein structure prediction. For the optimal utilization of these predicted contacts in folding proteins accurately, it is important to study the challenges of reconstructing protein structures using true contacts. Because contact-guided protein modeling approach is valuable for predicting the folds of proteins that do not have structural templates, it is necessary for reconstruction studies to focus on hard-to-predict protein structures. Using a data set consisting of 496 structural domains released in recent CASP experiments and a dataset of 150 representative protein structures, in this work, we discuss three techniques to improve the reconstruction accuracy using true contacts - adding secondary structures, increasing contact distance thresholds, and adding non-contacts. We find that reconstruction using secondary structures and contacts can deliver accuracy higher than using full contact maps. Similarly, we demonstrate that non-contacts can improve reconstruction accuracy not only when the used non-contacts are true but also when they are predicted. On the dataset consisting of 150 proteins, we find that by simply using low ranked predicted contacts as non-contacts and adding them as additional restraints, can increase the reconstruction accuracy by 5% when the reconstructed models are evaluated using TM-score. Our findings suggest that secondary structures are invaluable companions of contacts for accurate reconstruction. Confirming some earlier findings, we also find that larger distance thresholds are useful for folding many protein structures which cannot be folded using the standard definition of contacts. Our findings also suggest that for more accurate reconstruction using predicted contacts it is useful to predict contacts at higher distance thresholds (beyond 8 Å) and predict non-contacts.

  7. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  8. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-04-01

    Full Text Available Abstract Background The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented. Results TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a

  9. Nucleic acid secondary structure prediction and display.

    OpenAIRE

    Stüber, K

    1986-01-01

    A set of programs has been developed for the prediction and display of nucleic acid secondary structures. Information from experimental data can be used to restrict or enforce secondary structural elements. The predictions can be displayed either on normal line printers or on graphic devices like plotters or graphic terminals.

  10. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Science.gov (United States)

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  11. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Directory of Open Access Journals (Sweden)

    Zareh A. Grigoryan

    2015-01-01

    Full Text Available The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed.

  12. DNA secondary structures: stability and function of G-quadruplex structures

    Science.gov (United States)

    Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.

    2013-01-01

    In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257

  13. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    Directory of Open Access Journals (Sweden)

    Shenkar Noa

    2009-08-01

    Full Text Available Abstract Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1 Phlebobranchia + Thaliacea + Aplousobranchia, 2 Appendicularia, and 3 Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models

  14. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  15. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  16. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    Science.gov (United States)

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  17. Modeling of a New Structure of Precision Air Conditioning System Using Secondary Condenser for Rh Regulation

    Directory of Open Access Journals (Sweden)

    Aries Subiantoro

    2012-05-01

    Full Text Available A dynamic mathematical model for a new structure of precision air conditioning (PAC has been developed. The proposed PAC uses an additional secondary condenser for relative humidity regulation compared to a basic refrigeration system. The work mechanism for this system and a vapour-compression cycle process of the system are illustrated using psychrometric chart and pressure-enthalpy diagram. A non-linear system model is derived based on the conservation of mass and energy balance principles and then linearized at steady state operating point for developing a 8th-order state space model suited for multivariable controller design. The quality of linearized model is analyzed in terms of transient response, controllability, observability, and interaction between input-output variables. The developed model is verified through simulation showing its ability for imitating the nonlinear behavior and the interaction of input-output variables.

  18. A new online secondary path modeling method for adaptive active structure vibration control

    International Nuclear Information System (INIS)

    Pu, Yuxue; Zhang, Fang; Jiang, Jinhui

    2014-01-01

    This paper proposes a new variable step size FXLMS algorithm with an auxiliary noise power scheduling strategy for online secondary path modeling. The step size for the secondary path modeling filter and the gain of auxiliary noise are varied in accordance with the parameters available directly. The proposed method has a low computational complexity. Computer simulations show that an active vibration control system with the proposed method gives much better vibration attenuation and modeling accuracy at a faster convergence rate than existing methods. National Instruments’ CompactRIO is used as an embedded processor to control simply supported beam vibration. Experimental results indicate that the vibration of the beam has been effectively attenuated. (papers)

  19. RNA secondary structure image - fRNAdb | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us fRNAdb RNA secondary structure image Data detail Data name RNA secondary structure image DOI... 10.18908/lsdba.nbdc00452-005 Description of data contents RNA secondary structure images - png.zip: RNA secondary structure image...s (PNG) - pdf.zip: RNA secondary structure images (PDF) - thumbnail.zip: Thumbnails of... RNA secondary structure images Data file File name: RNA_secondary_structure_image... File URL: ftp://ftp.biosciencedbc.jp/archive/frnadb/LATEST/RNA_secondary_structure_image File size: 9.6 GB

  20. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. RNAstructure: software for RNA secondary structure prediction and analysis.

    Science.gov (United States)

    Reuter, Jessica S; Mathews, David H

    2010-03-15

    To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.

  2. Evolution of primary and secondary structures in 5S and 5.8S rRNA

    International Nuclear Information System (INIS)

    Curtiss, W.C.

    1986-01-01

    The secondary structure of Bombyx mori 5S rRNA was studied using the sing-strand specific S1 nuclease and the base pair specific cobra venom ribonuclease. The RNA was end-labeled with [ 32 P] at either the 5' or 3' end and sequenced using enzymatic digestion techniques. These enzymatic data coupled with thermodynamic structure prediction were used to generate a secondary structure for 5S rRNA. A computer algorithm has been implemented to aid in the comparison of a large set of homologous RNAs. Eukaryotic 5S rRNA sequences from thirty four diverse species were compared by (1) alignment or the sequences, (2) the positions of substitutions were located with respect to the aligned sequence and secondary structure, and (3) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. Eukaryotic 5S rRNA was found to have significant sequence variation throughout much of the molecule while maintaining a relatively constant secondary structure. A detailed analysis of the sequence and structure variability in each region of the molecule is presented

  3. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.

    Science.gov (United States)

    Hagio, Taichi; Sakuraba, Shun; Iwakiri, Junichi; Mori, Ryota; Asai, Kiyoshi

    2018-02-19

    It is known that functional RNAs often switch their functions by forming different secondary structures. Popular tools for RNA secondary structures prediction, however, predict the single 'best' structures, and do not produce alternative structures. There are bioinformatics tools to predict suboptimal structures, but it is difficult to detect which alternative secondary structures are essential. We proposed a new computational method to detect essential alternative secondary structures from RNA sequences by decomposing the base-pairing probability matrix. The decomposition is calculated by a newly implemented software tool, RintW, which efficiently computes the base-pairing probability distributions over the Hamming distance from arbitrary reference secondary structures. The proposed approach has been demonstrated on ROSE element RNA thermometer sequence and Lysine RNA ribo-switch, showing that the proposed approach captures conformational changes in secondary structures. We have shown that alternative secondary structures are captured by decomposing base-paring probabilities over Hamming distance. Source code is available from http://www.ncRNA.org/RintW .

  4. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  5. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  6. Evolving stochastic context-free grammars for RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Anderson, James WJ; Tataru, Paula Cristina; Stains, Joe

    2012-01-01

    Background Stochastic Context-Free Grammars (SCFGs) were applied successfully to RNA secondary structure prediction in the early 90s, and used in combination with comparative methods in the late 90s. The set of SCFGs potentially useful for RNA secondary structure prediction is very large, but a few...... to structure prediction as has been previously suggested. Results These search techniques were applied to predict RNA secondary structure on a maximal data set and revealed new and interesting grammars, though none are dramatically better than classic grammars. In general, results showed that many grammars...... with quite different structure could have very similar predictive ability. Many ambiguous grammars were found which were at least as effective as the best current unambiguous grammars. Conclusions Overall the method of evolving SCFGs for RNA secondary structure prediction proved effective in finding many...

  7. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  8. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  9. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  10. DCJ-RNA - double cut and join for RNA secondary structures.

    Science.gov (United States)

    Badr, Ghada H; Al-Aqel, Haifa A

    2017-10-16

    Genome rearrangements are essential processes for evolution and are responsible for existing varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the minimum number of inversions that are necessary to transform one genome into another; this allows for genome sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the same functionality. This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well as to report an optimum scenario that can increase the similarity between the two structures. The algorithm calculates the distance between structures and reports a scenario based on the minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be used to measure the distance between the two structures. This can help identify the common functionalities between different species.

  11. Random generation of RNA secondary structures according to native distributions

    Directory of Open Access Journals (Sweden)

    Nebel Markus E

    2011-10-01

    Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with

  12. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  13. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  14. Secondary structural analyses of ITS1 in Paramecium.

    Science.gov (United States)

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  15. RNA secondary structure prediction using soft computing.

    Science.gov (United States)

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  16. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Science.gov (United States)

    Shi, Jieming; Li, Xi; Dong, Min; Graham, Mitchell; Yadav, Nehul; Liang, Chun

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  17. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    Science.gov (United States)

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  18. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    Jieming Shi

    Full Text Available Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  19. Prediction of RNA secondary structure using generalized centroid estimators.

    Science.gov (United States)

    Hamada, Michiaki; Kiryu, Hisanori; Sato, Kengo; Mituyama, Toutai; Asai, Kiyoshi

    2009-02-15

    Recent studies have shown that the methods for predicting secondary structures of RNAs on the basis of posterior decoding of the base-pairing probabilities has an advantage with respect to prediction accuracy over the conventionally utilized minimum free energy methods. However, there is room for improvement in the objective functions presented in previous studies, which are maximized in the posterior decoding with respect to the accuracy measures for secondary structures. We propose novel estimators which improve the accuracy of secondary structure prediction of RNAs. The proposed estimators maximize an objective function which is the weighted sum of the expected number of the true positives and that of the true negatives of the base pairs. The proposed estimators are also improved versions of the ones used in previous works, namely CONTRAfold for secondary structure prediction from a single RNA sequence and McCaskill-MEA for common secondary structure prediction from multiple alignments of RNA sequences. We clarify the relations between the proposed estimators and the estimators presented in previous works, and theoretically show that the previous estimators include additional unnecessary terms in the evaluation measures with respect to the accuracy. Furthermore, computational experiments confirm the theoretical analysis by indicating improvement in the empirical accuracy. The proposed estimators represent extensions of the centroid estimators proposed in Ding et al. and Carvalho and Lawrence, and are applicable to a wide variety of problems in bioinformatics. Supporting information and the CentroidFold software are available online at: http://www.ncrna.org/software/centroidfold/.

  20. Structure elucidation of secondary natural products

    International Nuclear Information System (INIS)

    Seger, C.

    2001-06-01

    The presented thesis deals with the structure elucidation of secondary natural products. Most of the compounds under investigation were terpenes, especially triterpenes, alkaloids and stilbenoids. Besides characterizing a multitude of already known and also new compounds, it was possible to detect and correct wrongly assigned literature data. The methodological aspect of this thesis lies - beside in the utilization of modern 2D NMR spectroscopy - in the evaluation of computer assisted structure elucidation (CASE) techniques in the course of spectroscopy supported structure elucidation processes. (author)

  1. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  2. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup

    DEFF Research Database (Denmark)

    Jin, Emma Yu; Nebel, M. E.

    2016-01-01

    that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More...... sparsification) may reduce the runtime to n2 on average, assuming that nucleotides of distance d form a hydrogen bond (i.e. are paired) with probability (Formula Presented.) for some constants b > 0, c > 1. The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned...... algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming...

  3. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    Science.gov (United States)

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  4. MicroRNA prediction using a fixed-order Markov model based on the secondary structure pattern.

    Directory of Open Access Journals (Sweden)

    Wei Shen

    Full Text Available Predicting miRNAs is an arduous task, due to the diversity of the precursors and complexity of enzyme processes. Although several prediction approaches have reached impressive performances, few of them could achieve a full-function recognition of mature miRNA directly from the candidate hairpins across species. Therefore, researchers continue to seek a more powerful model close to biological recognition to miRNA structure. In this report, we describe a novel miRNA prediction algorithm, known as FOMmiR, using a fixed-order Markov model based on the secondary structural pattern. For a training dataset containing 809 human pre-miRNAs and 6441 human pseudo-miRNA hairpins, the model's parameters were defined and evaluated. The results showed that FOMmiR reached 91% accuracy on the human dataset through 5-fold cross-validation. Moreover, for the independent test datasets, the FOMmiR presented an outstanding prediction in human and other species including vertebrates, Drosophila, worms and viruses, even plants, in contrast to the well-known algorithms and models. Especially, the FOMmiR was not only able to distinguish the miRNA precursors from the hairpins, but also locate the position and strand of the mature miRNA. Therefore, this study provides a new generation of miRNA prediction algorithm, which successfully realizes a full-function recognition of the mature miRNAs directly from the hairpin sequences. And it presents a new understanding of the biological recognition based on the strongest signal's location detected by FOMmiR, which might be closely associated with the enzyme cleavage mechanism during the miRNA maturation.

  5. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  6. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases

    Directory of Open Access Journals (Sweden)

    Sudha Sharma

    2011-01-01

    Full Text Available In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.

  7. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  8. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  9. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  10. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  11. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  12. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  13. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  14. A quantitative analysis of secondary RNA structure using domination based parameters on trees

    Directory of Open Access Journals (Sweden)

    Zou Yue

    2006-03-01

    Full Text Available Abstract Background It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure. Results The statistical analysis shows that the domination based parameters correctly distinguish between the trees that represent native structures and those that are not likely candidates to represent RNA. Some of the trees previously identified as candidate structures are found to be "very" RNA like, while others are not, thereby refining the space of structures likely to be found as representing secondary RNA structure. Conclusion Search algorithms are available that mine nucleotide sequence databases. However, the number of motifs identified can be quite large, making a further search for similar motif computationally difficult. Much of the work in the bioinformatics arena is toward the development of better algorithms to address the computational problem. This work, on the other hand, uses mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the corresponding search space. These

  15. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): implications for structural evolution and phylogenetic reconstruction.

    Science.gov (United States)

    Sun, Ping; Clamp, John C; Xu, Dapeng

    2010-07-01

    Despite extensive previous morphological work, little agreement has been reached about phylogenetic relationships among peritrich ciliates, making it difficult to study the evolution of the group in a phylogenetic framework. In this study, the nucleotide characteristics and secondary structures of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 26 peritrich ciliates in 12 genera were analyzed. Information from secondary structures of ITS1 and ITS2 then was used to perform the first systematic study of ITS regions in peritrich ciliates, including one species of Rhabdostyla for which no sequence has been reported previously. Lengths of ITS1 and ITS2 sequences varied relatively little among taxa studied, but their G+C content was highly variable. General secondary structure models of ITS1 and ITS2 were proposed for peritrich ciliates and their reliability was assessed by compensatory base changes. The secondary structure of ITS1 contains three major helices in peritrich ciliates and deviations from this basic structure were found in all taxa examined. The core structure of peritrich ITS2 includes four helices, with helix III as the longest and containing a motif 5'-MAC versus GUK-3' at its apex as well as a YU-UY mismatch in helix II. In addition, the structural motifs of both ITS secondary structures were identified. Phylogenetic analyses using ITS data were performed by means of Bayesian inference, maximum likelihood and neighbor joining methods. Trees had a consistent branching pattern that included the following features: (1) Rhabdostyla always clustered with members of the family Vorticellidae, instead of members of the family Epistylididae, in which it is now classified on the basis of morphology. (2) The systematically questionable genus Ophrydium closely associated with Carchesium, forming a clearly defined, monophyletic group within the Vorticellidae. This supported the hypothesis derived from previous study based on small subunit rRNA gene sequences

  16. An image processing approach to computing distances between RNA secondary structures dot plots

    Directory of Open Access Journals (Sweden)

    Sapiro Guillermo

    2009-02-01

    Full Text Available Abstract Background Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods. Results We have developed a new metric dubbed 'DoPloCompare', which compares two RNA structures. The method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two diagrams and motivated by image processing, the distance is based on a combination of histogram correlations and a geometrical distance measure. We introduce, describe, and illustrate the procedure by two applications that utilize this metric on RNA sequences. The first application is the RNA design problem, where the goal is to find the nucleotide sequence for a given secondary structure. Examples where our proposed distance measure outperforms others are given. The second application locates peculiar point mutations that induce significant structural alternations relative to the wild type predicted secondary structure. The approach reported in the past to solve this problem was tested on several RNA sequences with known secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on each piece the prediction conveys similarity to the experimental result. Our newly proposed distance measure shows benefit in this problem as well when compared to standard methods used for assessing

  17. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  18. Modelling secondary eclipses of Kepler exoplanets

    Directory of Open Access Journals (Sweden)

    Hambálek Lubomír

    2015-01-01

    Full Text Available We have selected several Kepler objects with potentially the deepest secondary eclipses. By combination of many single phased light-curves (LCs we have produced a smooth LC with a larger SNR and made the secondary eclipses more distinct. This allowed us to measure the depth of primary and secondary minimum with greater accuracy and then to determine stellar and planetary radii by simplex modelling.

  19. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  20. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils. Electronic supplementary information (ESI) available: A molecular model for the peptide studied and the charge chart associated to it. In addition, an AFM image of pH 4 fibrils is presented. See DOI: 10.1039/c4nr05109b

  1. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    Science.gov (United States)

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  2. Relative importance of secondary settling tank models in WWTP simulations

    DEFF Research Database (Denmark)

    Ramin, Elham; Flores-Alsina, Xavier; Sin, Gürkan

    2012-01-01

    Results obtained in a study using the Benchmark Simulation Model No. 1 (BSM1) show that a one-dimensional secondary settling tank (1-D SST) model structure and its parameters are among the most significant sources of uncertainty in wastewater treatment plant (WWTP) simulations [Ramin et al., 2011......]. The sensitivity results consistently indicate that the prediction of sludge production is most sensitive to the variation of the settling parameters. In the present study, we use the Benchmark Simulation Model No. 2 (BSM2), a plant-wide benchmark, that combines the Activated Sludge Model No. 1 (ASM1...

  3. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  4. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  5. A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    Science.gov (United States)

    Al-Khatib, Ra’ed M.; Abdullah, Rosni; Rashid, Nur’Aini Abdul

    2010-01-01

    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods. PMID:20458364

  6. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  7. Nuclear fuel assembly incorporating primary and secondary structural support members

    International Nuclear Information System (INIS)

    Carlson, W.R.; Gjertsen, R.K.; Miller, J.V.

    1987-01-01

    A nuclear fuel assembly, comprising: (a) an upper end structure; (b) a lower end structure; (c) elongated primary structural members extending longitudinally between and rigidly interconnecting the upper and lower end structures, the upper and lower end structures and primary structural members together forming a rigid structural skeleton of the fuel assembly; (d) transverse grids supported on the primary structural members at axially spaced locations therealong between the upper and lower end structures; (e) fuel rods extending through and supported by the grids between the upper and lower end structures so as to extend in generally side-by-side spaced relation to one another and to the primary structural members; and (f) elongated secondary structural members extending longitudinally between but unconnected with the upper and lower end structures, the secondary structural members extending through and rigidly interconnected with the grids to extend in generally side-by-side spaced relation to one another, to the fuel rods and to the primary structural members so as to bolster the stiffness of the structural skeleton of the fuel assembly

  8. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  9. Integrating chemical footprinting data into RNA secondary structure prediction.

    Directory of Open Access Journals (Sweden)

    Kourosh Zarringhalam

    Full Text Available Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension, yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints, which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be 'correct', in as much as the shape data is 'correct'. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.

  10. Global Analysis of RNA Secondary Structure in Two Metazoans

    Directory of Open Access Journals (Sweden)

    Fan Li

    2012-01-01

    Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.

  11. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  12. The Development of a Secondary School Health Assessment Model

    Science.gov (United States)

    Sriring, Srinual; Erawan, Prawit; Sriwarom, Monoon

    2015-01-01

    The objective of this research was to: 1) involved a survey of information relating to secondary school health, 2) involved the construction of a model of health assessment and a handbook for using the model in secondary school, 3) develop an assessment model for secondary school. The research included 3 phases. (1) involved a survey of…

  13. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    Science.gov (United States)

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  14. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  15. Secondary structural entropy in RNA switch (Riboswitch) identification.

    Science.gov (United States)

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there

  16. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  17. Secondary Education in the European Union: Structures, Organisation and Administration.

    Science.gov (United States)

    EURYDICE European Unit, Brussels (Belgium).

    This study examines the existing secondary education structures of the European Union member nations, the organization of education, teacher training, and the way in which secondary education is managed in Europe today. The three European Free Trade Association/European Economic Area (EFTA/EEC) countries (Iceland, Liechtenstein, and Norway) also…

  18. A Reference Database for Circular Dichroism Spectroscopy Covering Fold and Secondary Structure Space

    International Nuclear Information System (INIS)

    Lees, J.; Miles, A.; Wien, F.; Wallace, B.

    2006-01-01

    Circular Dichroism (CD) spectroscopy is a long-established technique for studying protein secondary structures in solution. Empirical analyses of CD data rely on the availability of reference datasets comprised of far-UV CD spectra of proteins whose crystal structures have been determined. This article reports on the creation of a new reference dataset which effectively covers both secondary structure and fold space, and uses the higher information content available in synchrotron radiation circular dichroism (SRCD) spectra to more accurately predict secondary structure than has been possible with existing reference datasets. It also examines the effects of wavelength range, structural redundancy and different means of categorizing secondary structures on the accuracy of the analyses. In addition, it describes a novel use of hierarchical cluster analyses to identify protein relatedness based on spectral properties alone. The databases are shown to be applicable in both conventional CD and SRCD spectroscopic analyses of proteins. Hence, by combining new bioinformatics and biophysical methods, a database has been produced that should have wide applicability as a tool for structural molecular biology

  19. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    Science.gov (United States)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  20. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  1. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  2. RNA secondary structure diagrams for very large molecules: RNAfdl

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.

    2013-01-01

    There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...

  3. THE PECULIARITIES OF NICKNAME STRUCTURE IN THE VICINITY OF VELIUONA: SECONDARY NICKNAMES

    Directory of Open Access Journals (Sweden)

    Ilona Mickienė

    2014-10-01

    Full Text Available The paper analyses 782 nicknames that were recorded at Veliuona vicinity during the project of the Institute of the Lithuanian Language “Modern Research of Geolinguistics in Lithuania: Optimisation of Network of Points and Interactive Spread of Dialectal Information”. The paper aims to identify the characteristic attributes of nickname structure. The analysis of the relations in derivation, i. e., tentatively distinguishing the derivation base and formant is the only way to talk about common word derivation. While researching the nicknames it is difficult to find such a universal criterion in derivation which would enable the distribution of nicknames into the primary and the secondary ones due to the fact that when a nickname and its appellative derivation motivation coincides the confusion arises. Thus, the paper invokes the structural analysis of nicknames to find universal criteria that would enable the distinction of nicknames into the primary and the secondary. The article eliminates the primary nicknames that do not differ from the motivational word, 241 secondary nickname is being researched ant structurally analysed. The structural analysis discloses a proper structure and common words being selected for nickname creation. Structurally analysing the secondary nicknames, the nicknames with suffix, inflection, mixed structure, compound, composite and phrasal nicknames were distinguished. It was determined that in vacinity of Veliuona the nicknames with suffix and inflection are mostly used.

  4. Irradiation effects on secondary structure of protein induced by keV ions

    International Nuclear Information System (INIS)

    Cui, F.Z.; Lin, Y.B.; Zhang, D.M.; Tian, M.B.

    2001-01-01

    Protein secondary structure changes by low-energy ion irradiation are reported for the first time. The selected system is 30 keV N + irradiation on bovine serum albumin (BSA). After irradiation at increasing fluences from 1.0x10 15 to 2.5x10 16 ion/cm 2 , Fourier transform infrared spectra analysis was conducted. It was found that the secondary structures of BSA molecules were very sensitive to ion irradiation. Secondary conformations showed different trends of change during irradiation. With the increase of ion fluence from 0 to 2.5x10 16 ion/cm 2 , the fraction of α-helix and β-turns decreased from 17 to 12%, and from 40 to 31%, respectively, while that of random coil and β-sheet structure increased from 18 to 27%, and from 25 to 30%, respectively. Possible explanations for the secondary conformational changes of protein are proposed. (author)

  5. Visualizing RNA Secondary Structure Base Pair Binding Probabilities using Nested Concave Hulls

    OpenAIRE

    Sansen , Joris; Bourqui , Romain; Thebault , Patricia; Allali , Julien; Auber , David

    2015-01-01

    International audience; The challenge 1 of the BIOVIS 2015 design contest consists in designing an intuitive visual depiction of base pairs binding probabilities for secondary structure of ncRNA. Our representation depicts the potential nucleotide pairs binding using nested concave hulls over the computed MFE ncRNA secondary structure. Thus, it allows to identify regions with a high level of uncertainty in the MFE computation and the structures which seem to match to reality.

  6. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  7. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. FTIR study of secondary structure of bovine serum albumin and ovalbumin

    International Nuclear Information System (INIS)

    Abrosimova, K V; Shulenina, O V; Paston, S V

    2016-01-01

    Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation. (paper)

  9. Protein 8-class secondary structure prediction using conditional neural fields.

    Science.gov (United States)

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Modeling Secondary Neutral Helium in the Heliosphere

    International Nuclear Information System (INIS)

    Müller, Hans-Reinhard; Möbius, Eberhard; Wood, Brian E.

    2016-01-01

    An accurate, analytic heliospheric neutral test-particle code for helium atoms from the interstellar medium (ISM) is coupled to global heliospheric models dominated by hydrogen and protons from the solar wind and the ISM. This coupling enables the forward-calculation of secondary helium neutrals from first principles. Secondaries are produced predominantly in the outer heliosheath, upwind of the heliopause, by charge exchange of helium ions with neutral atoms. The forward model integrates the secondary production terms along neutral trajectories and calculates the combined neutral helium phase space density in the innermost heliosphere where it can be related to in-situ observations. The phase space density of the secondary component is lower than that of primary neutral helium, but its presence can change the analysis of primaries and the ISM, and can yield valuable insight into the characteristics of the plasma in the outer heliosheath. (paper)

  11. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    Science.gov (United States)

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction

  12. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    Directory of Open Access Journals (Sweden)

    Kurgan Lukasz

    2008-10-01

    Full Text Available Abstract Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM values serve as an input to the support vector machine (SVM predictor. Results We show that (1 all four predicted secondary structures are useful; (2 the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3 the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an

  13. Modeling the structure of RNA molecules with small-angle X-ray scattering data.

    Directory of Open Access Journals (Sweden)

    Michal Jan Gajda

    Full Text Available We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA structures, along with a small multimetric benchmark of the proposed method.

  14. Secondary structures of rRNAs from all three domains of life.

    Directory of Open Access Journals (Sweden)

    Anton S Petrov

    Full Text Available Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2° structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU 23S/28S and small subunit (SSU 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery. Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision.

  15. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... connection between Discrete Mathematics and Compu- tational Molecular Biology (Chen et al, 2005; Hofacker et ... in Computational Molecular Biology. An RNA molecule is described by its sequences of bases ... Here, a mathematical definition of secondary structure is given (Stein and Waterman 1978).

  16. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  17. A systematic review on popularity, application and characteristics of protein secondary structure prediction tools.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Tabatabaei-Malazy, Ozra; Sakhteman, Amirhossein; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2018-02-27

    Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple secondary structure prediction (SSP) options is challenging. The current study is an insight onto currently favored methods and tools, within various contexts. A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of 209 studies were finally found eligible to extract data. Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating a SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. This study provides a comprehensive insight about the recent usage of SSP tools which could be helpful for selecting a proper tool's choice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seong-Ho; Chang, Seok-Bue [Yooshin Engineering Corporation, Seoul(Korea); Lee, Sang-Duk [Ajou University, Suwon(Korea)

    2002-06-30

    It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads, and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel. the reasons of the load for secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rock bolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required for the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves for the theoretical solution of a circular tunnel, And also, the application of this proposed model to numerical analysis is verified in order to check the potential for the tunnel with the complex analysis conditions. (author). 8 refs., 2 tabs., 7 figs.

  19. Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk

    Directory of Open Access Journals (Sweden)

    Geoffrey M. Gray

    2016-12-01

    Full Text Available Solid-state NMR and molecular dynamics (MD simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X, which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X segments and provides further support that these regions are disordered and primarily non-β-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X regions of dragline silks, including β-turns, 310-helicies, and coil structures with a negligible population of α-helix observed.

  20. SAAS: Short Amino Acid Sequence - A Promising Protein Secondary Structure Prediction Method of Single Sequence

    Directory of Open Access Journals (Sweden)

    Zhou Yuan Wu

    2013-07-01

    Full Text Available In statistical methods of predicting protein secondary structure, many researchers focus on single amino acid frequencies in α-helices, β-sheets, and so on, or the impact near amino acids on an amino acid forming a secondary structure. But the paper considers a short sequence of amino acids (3, 4, 5 or 6 amino acids as integer, and statistics short sequence's probability forming secondary structure. Also, many researchers select low homologous sequences as statistical database. But this paper select whole PDB database. In this paper we propose a strategy to predict protein secondary structure using simple statistical method. Numerical computation shows that, short amino acids sequence as integer to statistics, which can easy see trend of short sequence forming secondary structure, and it will work well to select large statistical database (whole PDB database without considering homologous, and Q3 accuracy is ca. 74% using this paper proposed simple statistical method, but accuracy of others statistical methods is less than 70%.

  1. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... interesting combinatorial questions (Chen et al., 2005;. Liu, 2006; Schmitt and Waterman 1994; Stein and. Waterman 1978). The research on the enumeration of. RNA secondary structures becomes one of the hot topics in Computational Molecular Biology. An RNA molecule is described by its sequences of.

  2. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    Science.gov (United States)

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  3. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism.

    Science.gov (United States)

    Li, Sha Sha; Li, Bao Qiong; Liu, Jin Jin; Lu, Shao Hua; Zhai, Hong Lin

    2018-04-20

    Circular dichroism (CD) spectroscopy is a widely used technique for the evaluation of protein secondary structures that has a significant impact for the understanding of molecular biology. However, the quantitative analysis of protein secondary structures based on CD spectra is still a hard work due to the serious overlap of the spectra corresponding to different structural motifs. Here, Tchebichef image moment (TM) approach is introduced for the first time, which can effectively extract the chemical features in CD spectra for the quantitative analysis of protein secondary structures. The proposed approach was applied to analyze reference set. and the obtained results were evaluated by the strict statistical parameters such as correlation coefficient, cross-validation correlation coefficient and root mean squared error. Compared with several specialized prediction methods, TM approach provided satisfactory results, especially for turns and unordered structures. Our study indicates that TM approach can be regarded as a feasible tool for the analysis of the secondary structures of proteins based on CD spectra. An available TMs package is provided and can be used directly for secondary structures prediction. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  4. Web-Beagle: a web server for the alignment of RNA secondary structures.

    Science.gov (United States)

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-07-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking.

    Directory of Open Access Journals (Sweden)

    Lei Hua

    Full Text Available RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.

  6. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  7. Modeling secondary accidents identified by traffic shock waves.

    Science.gov (United States)

    Junhua, Wang; Boya, Liu; Lanfang, Zhang; Ragland, David R

    2016-02-01

    The high potential for occurrence and the negative consequences of secondary accidents make them an issue of great concern affecting freeway safety. Using accident records from a three-year period together with California interstate freeway loop data, a dynamic method for more accurate classification based on the traffic shock wave detecting method was used to identify secondary accidents. Spatio-temporal gaps between the primary and secondary accident were proven be fit via a mixture of Weibull and normal distribution. A logistic regression model was developed to investigate major factors contributing to secondary accident occurrence. Traffic shock wave speed and volume at the occurrence of a primary accident were explicitly considered in the model, as a secondary accident is defined as an accident that occurs within the spatio-temporal impact scope of the primary accident. Results show that the shock waves originating in the wake of a primary accident have a more significant impact on the likelihood of a secondary accident occurrence than the effects of traffic volume. Primary accidents with long durations can significantly increase the possibility of secondary accidents. Unsafe speed and weather are other factors contributing to secondary crash occurrence. It is strongly suggested that when police or rescue personnel arrive at the scene of an accident, they should not suddenly block, decrease, or unblock the traffic flow, but instead endeavor to control traffic in a smooth and controlled manner. Also it is important to reduce accident processing time to reduce the risk of secondary accident. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Reflection of the energy structure of a tungsten monocrystal nearsurface area in the secondary electron spectrum

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Smirnov, O.M.; Terekhov, A.N.

    1982-01-01

    Formation of secondary electron energy spectrum during emission from the crystal layer near the surface has been considered, at that layer energy structure can be different from volumetric energy structure. Its thickness depends on the predominant mechanism of electron scattering and is determined by corresponding phenomenological parameters. It is shown that the structure in the secondary electron spectrum appears in the case when energy structure of emitting monocrystal layer can not be described in the approximation of almost free electron gas and, as experimental investigations show, approaches energy zone structure of its volume. It is also show that in the case when the energy structure of the emitting layer is satisfactorily described with the model of almost free electron gas, the SE spectrum is characterized with traditional cascade minimum. Experimental investigation of SE energy distribution was carried out for the W monocrystalline face (110). It was established that distinct structure in the SE spectrum appears only after electrochemical polishing of the specimen surface. It is related to the appearance of ''far'' order in the monocrystal emission layer on initially disturbed tungsten surface during such treatment. Disturbance of tungsten monocrystal surface structure on its oxidation in O 2 atmosphere results in the appearance of the cascade maximum and disappearance of distinct peculiarities in the SE spectrum

  9. General enumeration of RNA secondary structures based on new ...

    African Journals Online (AJOL)

    Crick base pairs between AU and GC. Based on the new representation, this paper also computes the number of various types of constrained secondary structures taking the minimum stack length 1 and minimum size m for each bonding loop as ...

  10. [Changes in the secondary and tertiary structure of serum albumin in interactions with ligands of various structures].

    Science.gov (United States)

    Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N

    1984-01-01

    High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.

  11. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution

    DEFF Research Database (Denmark)

    Lenaers, G; Nielsen, Henrik; Engberg, J

    1988-01-01

    The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast......), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure...

  12. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  13. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  14. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    Science.gov (United States)

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  15. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  16. Probabilistic model for the simulation of secondary electron emission

    Directory of Open Access Journals (Sweden)

    M. A. Furman

    2002-12-01

    Full Text Available We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary-emission yield and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  17. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure.

    Science.gov (United States)

    Curtiss, W C; Vournakis, J N

    1984-01-01

    Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.

  18. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  19. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  20. Classroom: inexpensive models for teaching atomic structure and ...

    African Journals Online (AJOL)

    Classroom: inexpensive models for teaching atomic structure and compounds at junior secondary school level of education. WHK Hordzi, BA Mensah. Abstract. No Abstract. Global Journal of Educational Research Vol. 2(1&2) 2003: 33-40. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL ...

  1. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  2. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  3. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    Science.gov (United States)

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  4. CFD modeling of secondary flows in fuel rod bundles

    International Nuclear Information System (INIS)

    Baglietto, Emilio; Ninokata, Hisashi

    2004-01-01

    An optimized non-linear eddy viscosity model is introduced, for calculations of detailed coolant velocity distribution in a tight lattice fuel bundle. The low Reynolds formulation has been optimized based on DNS data for channel flow. The non-linear stress-strain relationship has been modified in the coefficients to model the flow anisotropy, which causes the formation of turbulence driven secondary flows inside the bundle subchannels. Predictions of the model are first compared to experimental measurements of secondary flows in a triangularly arrayed rod bundle with p/d=1.3. Subsequently wall shear stress and velocity predictions are compared with different experimental data for a rod bundle with p/d=1.17. The model shows to be able to correctly reproduce the scale of the secondary motion, and to accurately reproduce both wall shear stress and velocity distributions inside the rod bundle subchannels. (author)

  5. Landscape and variation of RNA secondary structure across the human transcriptome.

    OpenAIRE

    Wan, Y; Qu, K; Zhang, QC; Flynn, RA; Manor, O; Ouyang, Z; Zhang, J; Spitale, RC; Snyder, MP; Segal, E; Chang, HY

    2014-01-01

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comp...

  6. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    Science.gov (United States)

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  7. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    Directory of Open Access Journals (Sweden)

    Cristina eFenollar Ferrer

    2015-09-01

    Full Text Available Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to either the outside or inside of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (asymmetry of these systems has been successfully used as a bioinformatic tool, called repeat-swap modeling to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that

  8. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  9. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.

  10. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  11. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? – An assessment of model structure uncertainty and its propagation

    DEFF Research Database (Denmark)

    Plósz, Benedek; De Clercq, Jeriffa; Nopens, Ingmar

    2011-01-01

    In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solidliquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge...... of the solids settling behaviour is investigated. It is found that the settler behaviour, simulated by the hyperbolic model, can introduce significant errors into the approximation of the solids retention time and thus solids inventory of the system. We demonstrate that these impacts can potentially cause...

  12. The Structures of the Alternative Conceptions of Preservice Secondary Teachers on Seasonal Changes

    Directory of Open Access Journals (Sweden)

    Junyoung Oh

    2005-03-01

    Full Text Available This study was to understand the components that influence preservice secondary teachers' conceptions about "seasonal changes". We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

  13. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  14. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  15. Models and Materials: Bridging Art and Science in the Secondary Curriculum

    Science.gov (United States)

    Pak, D.; Cavazos, L.

    2006-12-01

    Creating and sustaining student engagement in science is one challenge facing secondary teachers. The visual arts provide an alternative means of communicating scientific concepts to students who may not respond to traditional formats or identify themselves as interested in science. We have initiated a three-year teacher professional development program at U C Santa Barbara focused on bridging art and science in secondary curricula, to engage students underrepresented in science majors, including girls, English language learners and non-traditional learners. The three-year format provides the teams of teachers with the time and resources necessary to create innovative learning experiences for students that will enhance their understanding of both art and science content. Models and Materials brings together ten secondary art and science teachers from six Santa Barbara County schools. Of the five participating science teachers, three teach Earth Science and two teach Life Science. Art and science teachers from each school are teamed and challenged with the task of creating integrated curriculum projects that bring visual art concepts to the science classroom and science concepts to the art classroom. Models and Materials were selected as unifying themes; understanding the concept of models, their development and limitations, is a prominent goal in the California State Science and Art Standards. Similarly, the relationship between composition, structure and properties of materials is important to both art and science learning. The program began with a 2-week institute designed to highlight the natural links between art and science through presentations and activities by both artists and scientists, to inspire teachers to develop new ways to present models in their classrooms, and for the teacher teams to brainstorm ideas for curriculum projects. During the current school year, teachers will begin to integrate science and art and the themes of modeling and materials

  16. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Modeling PWR systems for monitoring primary-to-secondary leakage using tritium tracer

    International Nuclear Information System (INIS)

    Peiffer, D.G.

    1992-01-01

    This paper discusses several techniques available for monitoring primary to secondary leakage, focusing on the advantages and disadvantages of each. A mathematical model of Millstone 2 describes the behavior of tritium activity in the secondary plant water when a leak exists. Real data from Millstone 2 illustrate the accuracy and reliability of the model and use of the model to measure the mass of water in the secondary system

  18. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  19. High cycle fatigue analysis of vortex suppression plate and secondary core support structures

    International Nuclear Information System (INIS)

    Xue Guohong; Li Yuan; Zhao Feiyun; Feng Shaodong; Yu Hao

    2013-01-01

    Background: Reactor internals are important equipment s in the reactor coolant system, its structure design needs high reliability in the entire lifetime, Reactor internals have occurred breakdown and the damage event due to flow induced vibrations in the domestic and foreign nuclear power plants, which make immediate influence on reactor safe operation and economic efficiency. Purpose: In this work, the dynamic response of reactor internals-vortex suppression plate and secondary core support structure (SCSS) under the loading from pump induced vibrations and flow induced vibrations are studied. Methods: Based on the finite element model of SCSS, Spectrum analysis and the harmonious analysis are performed, in order to get the response of the structure under flow induced vibrations. Then, the high fatigue of the structure is assessed according to the ASME B and PV Code. Results: The results indicate that alternate stresses of all the components satisfy the limiting value in the correlative requirements. Conclusions: The structure of SCSS could bear the vibration induced from the flow and the pump, and the method used in this article provides the reference for other reactor internals structure analysis like this. (authors)

  20. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  1. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  2. Shall we upgrade one-dimensional secondary settler models used in WWTP simulators? - An assessment of model structure uncertainty and its propagation.

    Science.gov (United States)

    Plósz, Benedek Gy; De Clercq, Jeriffa; Nopens, Ingmar; Benedetti, Lorenzo; Vanrolleghem, Peter A

    2011-01-01

    In WWTP models, the accurate assessment of solids inventory in bioreactors equipped with solid-liquid separators, mostly described using one-dimensional (1-D) secondary settling tank (SST) models, is the most fundamental requirement of any calibration procedure. Scientific knowledge on characterising particulate organics in wastewater and on bacteria growth is well-established, whereas 1-D SST models and their impact on biomass concentration predictions are still poorly understood. A rigorous assessment of two 1-DSST models is thus presented: one based on hyperbolic (the widely used Takács-model) and one based on parabolic (the more recently presented Plósz-model) partial differential equations. The former model, using numerical approximation to yield realistic behaviour, is currently the most widely used by wastewater treatment process modellers. The latter is a convection-dispersion model that is solved in a numerically sound way. First, the explicit dispersion in the convection-dispersion model and the numerical dispersion for both SST models are calculated. Second, simulation results of effluent suspended solids concentration (XTSS,Eff), sludge recirculation stream (XTSS,RAS) and sludge blanket height (SBH) are used to demonstrate the distinct behaviour of the models. A thorough scenario analysis is carried out using SST feed flow rate, solids concentration, and overflow rate as degrees of freedom, spanning a broad loading spectrum. A comparison between the measurements and the simulation results demonstrates a considerably improved 1-D model realism using the convection-dispersion model in terms of SBH, XTSS,RAS and XTSS,Eff. Third, to assess the propagation of uncertainty derived from settler model structure to the biokinetic model, the impact of the SST model as sub-model in a plant-wide model on the general model performance is evaluated. A long-term simulation of a bulking event is conducted that spans temperature evolution throughout a summer

  3. Instruction in text-structure as a determinant of senior secondary ...

    African Journals Online (AJOL)

    The study determined the effectiveness of instruction in text-structure on achievement of students in English narrative text. The pretest-posttest control group quasi experimental design was adopted for the study. The participants were 120 students in intact classes from four purposively selected senior secondary schools in ...

  4. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Weinberg Zasha

    2011-01-01

    Full Text Available Abstract Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  5. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Science.gov (United States)

    2011-01-01

    Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file. PMID:21205310

  6. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures.

    Science.gov (United States)

    Weinberg, Zasha; Breaker, Ronald R

    2011-01-04

    With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  7. Secondary α-deuterium isotope effects as a probe to the relationship between structure and mechanism of pyrolysis of secondary azoalkanes

    International Nuclear Information System (INIS)

    Grizzle, P.L.

    1975-01-01

    This study was carried out to investigate the mechanism of azoalkane thermolysis and the effect of molecular structure on the potential-energy hypersurface for pyrolysis utilizing secondary α-deuterium isotope effects. Since the magnitude of the α-effect for 1,1'-diphenylazoethane is of singular importance in the interpretation of those for related compounds, it has been redetermined. To investigate the effect of molecular structure on the potential-energy hypersurface for thermolysis, α-effects have been determined for 2,2,2',2'-tetramethyl-1,1'-diphenylazoethane and (2,2-dimethyl-1-phenylpropyl)azomethane; the inability to prepare these compounds by conventional methods necessitated the development of a new method for synthesis of secondary azoalkanes. A convenient synthesis of secondary azo compounds is reported. Secondary α-deuterium isotope effects were obtained for the thermal decomposition of 1,1'-diphenylazoethane (III) and 1,1'-diphenylazoethane-1,1'-d 2 (III-d 2 ). The isotope effect is entirely consistent with a simultaneous one-step thermolysis mechanism. Secondary α-deuterium isotope effects and activation parameters were obtained in the thermolysis of 2,2,2',2'-tetramethyl-1,1'-diphenylazopropane (VIII) and (2,2-dimethyl-1-phenylpropyl)azomethane (IX). The data for VIII is considered in terms of both a one- and two-step thermolysis mechanism. The α-effect and activation energy for VIII are not obviously reconcilable with a one-step mechanism. The α-effects, activation energies, and rates of thermolysis for VIII, IX, and (1-phenylethyl)azomethane are most easily rationalized by a two-step mechanism

  8. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  9. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  10. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    Science.gov (United States)

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in

  11. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  12. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  13. Prediction of guide strand of microRNAs from its sequence and secondary structure

    Directory of Open Access Journals (Sweden)

    Ahmed Firoz

    2009-04-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are produced by the sequential processing of a long hairpin RNA transcript by Drosha and Dicer, an RNase III enzymes, and form transitory small RNA duplexes. One strand of the duplex, which incorporates into RNA-induced silencing complex (RISC and silences the gene expression is called guide strand, or miRNA; while the other strand of duplex is degraded and called the passenger strand, or miRNA*. Predicting the guide strand of miRNA is important for better understanding the RNA interference pathways. Results This paper describes support vector machine (SVM models developed for predicting the guide strands of miRNAs. All models were trained and tested on a dataset consisting of 329 miRNA and 329 miRNA* pairs using five fold cross validation technique. Firstly, models were developed using mono-, di-, and tri-nucleotide composition of miRNA strands and achieved the highest accuracies of 0.588, 0.638 and 0.596 respectively. Secondly, models were developed using split nucleotide composition and achieved maximum accuracies of 0.553, 0.641 and 0.602 for mono-, di-, and tri-nucleotide respectively. Thirdly, models were developed using binary pattern and achieved the highest accuracy of 0.708. Furthermore, when integrating the secondary structure features with binary pattern, an accuracy of 0.719 was seen. Finally, hybrid models were developed by combining various features and achieved maximum accuracy of 0.799 with sensitivity 0.781 and specificity 0.818. Moreover, the performance of this model was tested on an independent dataset that achieved an accuracy of 0.80. In addition, we also compared the performance of our method with various siRNA-designing methods on miRNA and siRNA datasets. Conclusion In this study, first time a method has been developed to predict guide miRNA strands, of miRNA duplex. This study demonstrates that guide and passenger strand of miRNA precursors can be distinguished using their

  14. Changes in secondary structure of poliovirus ribonucleic acid

    International Nuclear Information System (INIS)

    Koza, J.

    1975-01-01

    Infectious single-stranded RNA isolated from mature purified poliovirus was separated into three fractions by means of chromatography on an ''evaporated'' calcium phosphate column. RNA molecules with a higher degree of secondary structure were detected in two of the fractions as a result of the chromatography. These RNA molecules (1) were resistant to hydrolysis by pancreatic ribonuclease A, (2) retained unchanged the original infectivity for actinomycin D-pretreated cells, (3) were resistant to ultraviolet-light inactivation and (4) were partially resistant to formaldehyde inactivation

  15. Significance of uncertainties derived from settling tank model structure and parameters on predicting WWTP performance - A global sensitivity analysis study

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2011-01-01

    Uncertainty derived from one of the process models – such as one-dimensional secondary settling tank (SST) models – can impact the output of the other process models, e.g., biokinetic (ASM1), as well as the integrated wastewater treatment plant (WWTP) models. The model structure and parameter...... and from the last aerobic bioreactor upstream to the SST (Garrett/hydraulic method). For model structure uncertainty, two one-dimensional secondary settling tank (1-D SST) models are assessed, including a first-order model (the widely used Takács-model), in which the feasibility of using measured...... uncertainty of settler models can therefore propagate, and add to the uncertainties in prediction of any plant performance criteria. Here we present an assessment of the relative significance of secondary settling model performance in WWTP simulations. We perform a global sensitivity analysis (GSA) based...

  16. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  17. Effect of Programmed Instruction on Students' Attitude towards Structure of the Atom and the Periodic Table among Kenyan Secondary Schools

    Science.gov (United States)

    Wangila, M. J.; Martin, W.; Ronald, M.

    2015-01-01

    This study examined the effect of Programmed Instruction on students' attitude towards Structure of the Atom and the Periodic Table (SAPT) among mixed (co-educational) secondary schools of Butere district, Kakamega county, Kenya. The quasi-experimental research design was adopted, using the nonrandomized Solomon four-group as a model. The sample…

  18. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  19. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  20. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  1. Developing the Conflicts Management Model for School Administrators of Secondary School under the Office of Secondary Educational Service Area 20

    Directory of Open Access Journals (Sweden)

    Pornpan Ruangrit

    2017-09-01

    Full Text Available This study aimed to 1 investigate the cause of conflict which in the secondary schools under the Secondary School under the Office of Secondary Educational Service Area 20, 2 study the conflict management method which administrators applied in Secondary School under the Office of Secondary Educational Service Area 20, and 3 develop conflict management model for Secondary School under the Office of Secondary Educational Service Area 20. The participants were 115 school administrators (44 school directors and 71 deputy directors which were selected by random sampling technique. The research instruments included a questionnaire, which reliability value was 0.97, and an interview schedule that were administered to the respondents. The data were analyzed by frequency, percentage, mean, and standard deviation. The result of the study showed that: 1. the causes of conflict in Secondary School under the Office of Secondary Educational Service Area 20 in overall was at the high level with the mean of 4.21, the internal conflict was at the high level with the mean of 4.22, and the external conflict was at the high level with the mean of 4.19. 2. Overall, conflict management method used by administrators in Secondary School under the Office of Secondary Educational Service Area 20was at a high level. Considering each aspect, the compromising method was the highest level at 4.48. 3. Developing conflict management model in Secondary School under the Office of Secondary Educational Service Area 20 were the collaboration and making understand method. These should be used for conflict management to achieve the success and to reach the standard which including responsibility, accountability, equality, teamwork, and communication competence.

  2. Models for predicting turnover of residential aged care nurses: a structural equation modelling analysis of secondary data.

    Science.gov (United States)

    Gao, Fengsong; Newcombe, Peter; Tilse, Cheryl; Wilson, Jill; Tuckett, Anthony

    2014-09-01

    Nurse turnover in the residential aged care industry is a pressing issue. Researchers have shown ongoing interest in exploring how the factors that are amendable to change in aged care policy, regulation and funding and in organizational procedures (e.g. job demands, coping resources and psychological health of nurses) impact on turnover. However, the findings are mixed. This study tested two theoretical models of turnover to examine the structural relationships among job demands, coping resources, psychological health and turnover of residential aged care nurses. Although many previous studies operationalized turnover as intention to leave, the present study investigated actual turnover by following up with the same individuals over time, and thus provided more accurate predictive models of turnover behaviour. The sample, 239 Australian residential aged care nurses, came from the Nurses and Midwives e-cohort Study. Job demands, coping resources, and psychological health were measured using standardized instruments. Structural equation modelling was used to test the measurement and structural models. Controlling for a number of workforce and individual characteristics, coping resources (measured by job control, supervisor support, and co-worker support) were negatively and directly associated with turnover. Additionally, the findings supported the Job Demand-Control-Support model in that higher coping resources and lower job demands (indicated by psychological demands, physical demands, and effort) were related to better psychological health (measured by vitality, social functioning, role emotional, and mental health), and higher job demands were related to lower coping resources. Findings suggest that aged care policy makers and service providers might consider increasing coping resources available to nurses and minimizing job demands of care work to reduce turnover and improve nurses' psychological health. Moreover, findings from this Australian study may provide

  3. Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2016-01-01

    This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…

  4. Dynamic changes in the secondary structure of ECE-1 and XCE account for their different substrate specificities

    Directory of Open Access Journals (Sweden)

    Ul-Haq Zaheer

    2012-11-01

    Full Text Available Abstract Background X-converting enzyme (XCE involved in nervous control of respiration, is a member of the M13 family of zinc peptidases, for which no natural substrate has been identified yet. In contrast, it’s well characterized homologue endothelin-converting enzyme-1 (ECE-1 showed broad substrate specificity and acts as endopeptidase as well as dipeptidase. To explore the structural differences between XCE and ECE-1, homology model of XCE was built using the complex structure of ECE-1 with phosphoramidon (pdb-id: 3DWB as template. Phosphoramidon was docked into the binding site of XCE whereas phosphate oxygen of the inhibitor was used as water molecule to design the apo forms of both enzymes. Molecular dynamics simulation of both enzymes was performed to analyze the dynamic nature of their active site residues in the absence and presence of the inhibitor. Results Homology model of XCE explained the role of non-conserved residues of its S2’ subsite. Molecular dynamics (MD simulations identified the flexible transitions of F149/I150, N566/N571, W714/W719, and R145/R723 residues of ECE-1/XCE for the strong binding of the inhibitor. Secondary structure calculations using DSSP method reveals the folding of R145/R723 residue of ECE-1/XCE into β-sheet structure while unfolding of the S2’ subsite residues in aECE-1 and sustained compact folding of that of aXCE. The results evaluated are in good agreement with available experimental data, thus providing detailed molecular models which can explain the structural and specificities differences between both zinc peptidases. Conclusions Secondary structure changes of both enzymes during the simulation time revealed the importance of β-sheet structure of R145/R723 for its binding with the terminal carboxylate group of the inhibitor. Unfolding of the α-helix comprising the S2’ subsite residues in aECE-1 correlate well with its endopeptidase activity while their compact folding in aXCE may

  5. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    Science.gov (United States)

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  6. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  7. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.

    Science.gov (United States)

    Al-Khatib, Ra'ed M; Rashid, Nur'Aini Abdul; Abdullah, Rosni

    2011-08-01

    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.

  8. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  10. Modeling of soluble impurities distribution in the steam generator secondary water

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Kucak, L.; Urban, F.

    1997-01-01

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.)

  11. Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl alcohol) Environment

    KAUST Repository

    Hanczyc, Piotr

    2012-04-24

    We report that short, synthetic, double- as well as single-stranded DNA can be aligned in stretched humid poly(vinyl alcohol) (PVA) matrix, and the secondary structure (nucleobase orientation) can be characterized with linear dichroism (LD) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigated with respect to structural properties in the gel-like polymer environment. The DNA conformation as a function of relative humidity reveals a strong dependence of helical structure of DNA on PVA hydration level, results of relevance for nanotechnical studies of DNA-based supramolecular systems. Also, the PVA gel could provide possibilities to test models for nucleic acid interactions and distribution in cell contexts, including structural stability of genetic material in the cell and PVA-packaging for gene delivery. A method by which duplex oligonucleotides, with sequences designed to provide specific binding sites, become amenable to polarized-light spectroscopy opens up new possibilities for studying structure in DNA complexes with small adduct molecules as well as proteins. © 2012 American Chemical Society.

  12. RNAspa: a shortest path approach for comparative prediction of the secondary structure of ncRNA molecules

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2007-10-01

    Full Text Available Abstract Background In recent years, RNA molecules that are not translated into proteins (ncRNAs have drawn a great deal of attention, as they were shown to be involved in many cellular functions. One of the most important computational problems regarding ncRNA is to predict the secondary structure of a molecule from its sequence. In particular, we attempted to predict the secondary structure for a set of unaligned ncRNA molecules that are taken from the same family, and thus presumably have a similar structure. Results We developed the RNAspa program, which comparatively predicts the secondary structure for a set of ncRNA molecules in linear time in the number of molecules. We observed that in a list of several hundred suboptimal minimal free energy (MFE predictions, as provided by the RNAsubopt program of the Vienna package, it is likely that at least one suggested structure would be similar to the true, correct one. The suboptimal solutions of each molecule are represented as a layer of vertices in a graph. The shortest path in this graph is the basis for structural predictions for the molecule. We also show that RNA secondary structures can be compared very rapidly by a simple string Edit-Distance algorithm with a minimal loss of accuracy. We show that this approach allows us to more deeply explore the suboptimal structure space. Conclusion The algorithm was tested on three datasets which include several ncRNA families taken from the Rfam database. These datasets allowed for comparison of the algorithm with other methods. In these tests, RNAspa performed better than four other programs.

  13. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.

    Science.gov (United States)

    Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2017-04-01

    Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    predictions based on variable ranges of dependencies. These architectures extend recurrent neural networks, introducing non-causal bidirectional dynamics to capture both upstream and downstream information. The prediction algorithm is completed by the use of mixtures of estimators that leverage evolutionary......Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network...

  15. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  16. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  17. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Simo, T [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L; Urban, F [Slovak Technical Univ., Bratislava (Slovakia)

    1998-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  18. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    Science.gov (United States)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  19. Speedminton: Using the Tactical Games Model in Secondary Physical Education

    Science.gov (United States)

    Oh, Hyun-Ju; Bullard, Susan; Hovatter, Rhonda

    2011-01-01

    Teaching and learning of sport and sports-related games dominates the curriculum in most secondary physical education programs in America. For many secondary school students, playing games can be exciting and lead to a lifetime of participation in sport-related activities. Using the Tactical Games Model (TGM) (Mitchell et al., 2006) to teach the…

  20. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  1. [Peculiarities of secondary structure of serum albumin of some representatives of the animal kingdom].

    Science.gov (United States)

    Pekhymenko, G V; Kuchmerovskaia, T M

    2011-01-01

    Methods of infrared (IR) spectroscopy and circular dichroism (CD) are suitable techniques for detection of proteins structural changes. These methods were used for determinating peculiarities of the secondary structure of serum albumins in some representatives of two classes of reptiles: Horsfield's tortoise (Testudo horsfieldi), water snake (Natrix tessellata) and grass snake (Natrix natrix) and birds: domestic goose (Anser anser), domestic chicken (Gallus domesticus), domestic duck (Anas platyrhyncha) and dove colored (Columba livia). An analysis of IR spectra and spectra obtained by the method of CD of serum albumins of both classes representatives revealed that beta-folding structure and alpha-helical sections that form the alpha-conformation play an important role in conformational structure formation of polypeptide chain and also disordered sites of molecules of these proteins. It was observed that certain redistribution depending on animals species exists, in the formation of secondary structure of serum albumins of the investigated representatives of reptiles and birds classes between the content of beta-folding structure, alpha-helical sections and disordered sites in molecules of these proteins.

  2. STUDYING THE SECONDARY STRUCTURE OF ACCESSION NUMBER USING CETD MATRIX

    Directory of Open Access Journals (Sweden)

    Anamika Dutta

    2016-10-01

    Full Text Available This paper, we have tried to analyze about the Secondary Structure of nucleotide sequences of rice. The data have been collected from NCBI (National Centre for Biotechnology Information using Nucleotide as data base. All the programs were developed using R programming language using “sequinr” package. Here, we have used CETD matrix method to study the prediction. The conclusions are drawn accordingly.

  3. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  4. Modeling effects of secondary tidal basins on estuarine morphodynamics

    Science.gov (United States)

    Nnafie, Abdel; Van Oyen, Tomas; De Maerschalck, Bart

    2017-04-01

    Many estuaries are situated in very densely populated areas with high economic activities that often conflict with their ecological values. For centuries, geometry and bathymetry of estuaries have been drastically modified trough engineering works such as embanking, sand extraction, channel deepening, land reclamations, etc. It is generally recognized that these works may increase the tidal range (e.g., Scheldt, Ems, Elbe) and turbidity (e.g., Loire, Ems) in estuaries [cf. Kerner, 2007; Wang et al., 2009; Winterwerp and Wang, 2013; Van Maren et al., 2015b,a]. In recent years, construction of secondary basins (also called retention basins) has gained increasing popularity among coastal managers to reduce tidal range and turbidity [Donner et al., 2012]. Previous studies have shown that location, geometry and number of secondary basins have a significant impact on tidal characteristics and sediment transport [Alebregtse and de Swart, 2014; Roos and Schuttelaars, 2015]. However, knowledge on how these secondary basins affect the morphodynamic development of estuaries on long time scales (order decades to centuries) is still lacking. The specific objectives of this study are twofold. First, to investigate effects of secondary basins on the long-term morphodynamic evolution of estuaries. In particular, effects of the presence of such a basin on the morphodynamic evolution of the main channel in the estuary and the physics underlying channel migration will be examined. For this, the Western Scheldt estuary (situated in the Netherlands) is used as a case study, which used to consist of multiple secondary tidal basins that were located at different positions in the estuary, and which have been gradually closed off between 1800 and 1968. Second, to systematically quantify sensitivity of model results to location, geometry, and to number of secondary basins. To this end, the state-of-the- art numerical model Delft3D is used, which has been successfully applied to

  5. GOTHIC MODEL OF BWR SECONDARY CONTAINMENT DRAWDOWN ANALYSES

    International Nuclear Information System (INIS)

    Hansen, P.N.

    2004-01-01

    This article introduces a GOTHIC version 7.1 model of the Secondary Containment Reactor Building Post LOCA drawdown analysis for a BWR. GOTHIC is an EPRI sponsored thermal hydraulic code. This analysis is required by the Utility to demonstrate an ability to restore and maintain the Secondary Containment Reactor Building negative pressure condition. The technical and regulatory issues associated with this modeling are presented. The analysis includes the affect of wind, elevation and thermal impacts on pressure conditions. The model includes a multiple volume representation which includes the spent fuel pool. In addition, heat sources and sinks are modeled as one dimensional heat conductors. The leakage into the building is modeled to include both laminar as well as turbulent behavior as established by actual plant test data. The GOTHIC code provides components to model heat exchangers used to provide fuel pool cooling as well as area cooling via air coolers. The results of the evaluation are used to demonstrate the time that the Reactor Building is at a pressure that exceeds external conditions. This time period is established with the GOTHIC model based on the worst case pressure conditions on the building. For this time period the Utility must assume the primary containment leakage goes directly to the environment. Once the building pressure is restored below outside conditions the release to the environment can be credited as a filtered release

  6. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  7. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    International Nuclear Information System (INIS)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian; Pattanaik, Marut; Kanakala, Raghunath

    2016-01-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  8. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  9. Fast flexible modeling of RNA structure using internal coordinates.

    Science.gov (United States)

    Flores, Samuel Coulbourn; Sherman, Michael A; Bruns, Christopher M; Eastman, Peter; Altman, Russ Biagio

    2011-01-01

    Modeling the structure and dynamics of large macromolecules remains a critical challenge. Molecular dynamics (MD) simulations are expensive because they model every atom independently, and are difficult to combine with experimentally derived knowledge. Assembly of molecules using fragments from libraries relies on the database of known structures and thus may not work for novel motifs. Coarse-grained modeling methods have yielded good results on large molecules but can suffer from difficulties in creating more detailed full atomic realizations. There is therefore a need for molecular modeling algorithms that remain chemically accurate and economical for large molecules, do not rely on fragment libraries, and can incorporate experimental information. RNABuilder works in the internal coordinate space of dihedral angles and thus has time requirements proportional to the number of moving parts rather than the number of atoms. It provides accurate physics-based response to applied forces, but also allows user-specified forces for incorporating experimental information. A particular strength of RNABuilder is that all Leontis-Westhof basepairs can be specified as primitives by the user to be satisfied during model construction. We apply RNABuilder to predict the structure of an RNA molecule with 160 bases from its secondary structure, as well as experimental information. Our model matches the known structure to 10.2 Angstroms RMSD and has low computational expense.

  10. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  11. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  12. Viral IRES prediction system - a web server for prediction of the IRES secondary structure in silico.

    Directory of Open Access Journals (Sweden)

    Jun-Jie Hong

    Full Text Available The internal ribosomal entry site (IRES functions as cap-independent translation initiation sites in eukaryotic cells. IRES elements have been applied as useful tools for bi-cistronic expression vectors. Current RNA structure prediction programs are unable to predict precisely the potential IRES element. We have designed a viral IRES prediction system (VIPS to perform the IRES secondary structure prediction. In order to obtain better results for the IRES prediction, the VIPS can evaluate and predict for all four different groups of IRESs with a higher accuracy. RNA secondary structure prediction, comparison, and pseudoknot prediction programs were implemented to form the three-stage procedure for the VIPS. The backbone of VIPS includes: the RNAL fold program, aimed to predict local RNA secondary structures by minimum free energy method; the RNA Align program, intended to compare predicted structures; and pknotsRG program, used to calculate the pseudoknot structure. VIPS was evaluated by using UTR database, IRES database and Virus database, and the accuracy rate of VIPS was assessed as 98.53%, 90.80%, 82.36% and 80.41% for IRES groups 1, 2, 3, and 4, respectively. This advance useful search approach for IRES structures will facilitate IRES related studies. The VIPS on-line website service is available at http://140.135.61.250/vips/.

  13. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  14. The ACTIVE conceptual framework as a structural equation model

    Science.gov (United States)

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be

  15. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  16. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide

    Directory of Open Access Journals (Sweden)

    Hajime Yamazaki

    2017-06-01

    Full Text Available Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173 and the Leucine-Rich Amelogenin Peptide (LRAP(+P, an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P stabilize amorphous calcium phosphate (ACP and inhibit hydroxyapatite (HA formation, while non-phosphorylated counterparts (rP172, LRAP(−P guide the growth of ordered bundles of HA crystals. Based on these findings, we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces conformational changes that critically affect its capacity to interact with forming calcium phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform infrared spectroscopy (FTIR to determine the secondary structure of LRAP(−P and LRAP(+P in the absence/presence of calcium and selected mineral phases relevant to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype and (ACP: an enamel crystal precursor phase. Aqueous solutions of LRAP(−P or LRAP(+P were prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution were obtained using attenuated total reflectance, and amide-I peaks were analyzed to provide secondary structure information. Secondary structures of LRAP(+P and LRAP(−P were similarly assessed following incubation with suspensions of HA and pyrophosphate-stabilized ACP. Amide I spectra of LRAP(−P and LRAP(+P were found to be distinct from each other in all cases. Spectra analyses showed that LRAP(−P is comprised mostly of random coil and β-sheet, while LRAP(+P exhibits more β-sheet and α-helix with little random coil. With added Ca, the random coil content increased in LRAP(−P, while LRAP(+P exhibited a decrease in α-helix components. Incubation of LRAP(−P with HA or ACP resulted in comparable increases in β-sheet structure. Notably, however, LRAP(+P secondary structure was more affected by

  17. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  18. STRUCTURAL AND FUNCTIONAL MODEL OF CLOUD ORIENTED LEARNING ENVIRONMENT FOR BACHELORS OF INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Tetiana A. Vakaliuk

    2017-06-01

    Full Text Available The article summarizes the essence of the category "model". There are presented the main types of models used in educational research: structural, functional, structural and functional model as well as basic requirements for building these types of models. The national experience in building models and designing cloud-based learning environment of educational institutions (both higher and secondary is analyzed. It is presented structural and functional model of cloud-based learning environment for Bachelor of Informatics. Also we describe each component of cloud-based learning environment model for bachelors of informatics training: target, managerial, organizational, content and methodical, communication, technological and productive. It is summarized, that COLE should solve all major tasks that relate to higher education institutions.

  19. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  20. Abnormal mineral metabolism and mortality in hemodialysis patients with secondary hyperparathyroidism: evidence from marginal structural models used to adjust for time-dependent confounding.

    Science.gov (United States)

    Fukagawa, Masafumi; Kido, Ryo; Komaba, Hirotaka; Onishi, Yoshihiro; Yamaguchi, Takuhiro; Hasegawa, Takeshi; Kurita, Noriaki; Fukuma, Shingo; Akizawa, Tadao; Fukuhara, Shunichi

    2014-06-01

    Hemodialysis patients with mineral and bone disorders (MBDs) have an abnormally high relative risk of death, but their absolute risk of death is unknown. Further, previous studies have not accounted for possible time-dependent confounding of the association between MBD markers and death due to the effect of markers of MBD on treatments, which subsequently may affect MBD markers. Multicenter, 3-year, prospective, case-cohort study. 8,229 hemodialysis patients with secondary hyperparathyroidism (parathyroid hormone level ≥180 pg/mL and/or receiving vitamin D receptor activators) at 86 facilities in Japan. Serum phosphorus, calcium, and parathyroid hormone levels. All-cause mortality. Marginal structural models were used to compute absolute differences in all-cause mortality associated with different levels of predictors while accounting for time-dependent confounding. The association between phosphorus level and mortality appeared U-shaped, although only higher phosphorus level categories reached statistical significance: compared to those with phosphorus levels of 5.0-5.9 mg/dL (1.61-1.93 mmol/L), patients with the highest (≥9.0 mg/dL [≥2.90 mmol/L]) phosphorus levels had 9.4 excess deaths/100 person-years (rate ratio, 2.79 [95% CI, 1.26-6.15]), whereas no association was found for the lowest phosphorus category (secondary hyperparathyroidism. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  2. THE CUSP/CORE PROBLEM AND THE SECONDARY INFALL MODEL

    International Nuclear Information System (INIS)

    Del Popolo, A.

    2009-01-01

    We study the cusp/core problem using a secondary infall model that takes into account the effect of ordered and random angular momentum, dynamical friction, and baryons adiabatic contraction (AC). The model is applied to structures on galactic scales (normal and dwarfs spiral galaxies) and on clusters of galaxies scales. Our analysis suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of AC eliminating the cusp. The slope of density profile of inner halos flattens with decreasing halo mass and the profile is well approximated by a Burkert's profile. In order to obtain the Navarro-Frenk-White (NFW) profile, starting from the profiles obtained from our model, the magnitude of angular momentum and dynamical friction must be reduced with respect to the values predicted by the model itself. The rotation curves of four lower sideband galaxies from Gentile et al. are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. The time evolution of the density profile of a galaxy of 10 8 -10 9 M sun shows that after a transient steepening, due to the AC, the density profile flattens to α ≅ 0. On cluster scales we observe a similar evolution of the dark matter (DM) density profile but in this case the density profile slope flattens to α ≅ 0.6 for a cluster of ≅10 14 M sun . The total mass profile, differently from that of DM, shows a central cusp well fitted by an NFW model.

  3. 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification

    International Nuclear Information System (INIS)

    Carozzani, T; Digonnet, H; Gandin, Ch-A

    2012-01-01

    A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum–7 wt% silicon alloy

  4. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  5. Modelling secondary instability of co-current a thin gas-sheared film

    Energy Technology Data Exchange (ETDEWEB)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G, E-mail: vozhakov@gmail.com [Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2016-12-15

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  6. Modelling secondary instability of co-current a thin gas-sheared film

    International Nuclear Information System (INIS)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G

    2016-01-01

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  7. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. On infrared spectroscopic analysis of transfer RNA secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, M A; Starikov, E B

    1987-07-14

    Various techniques of IR spectroscopy in the 1550-1750 cm/sup -1/ region employed to analyse the tRNA secondary structure are discussed and a novel improved method is proposed. The main novel features of this method are the approximation of tRNA helical region spectra by catalogue carbonyl absorption bands and approximation of tRNA nonhelical region spectra by those of homopolyribonucleotides. The IR spectra of tRNA/sub yeast//sup phe/ and tRNA/sub E.coli//sup fmet/ in the carbonyl vibration region are explained on the basis of calculated transition moment coupling.

  9. CentroidFold: a web server for RNA secondary structure prediction

    OpenAIRE

    Sato, Kengo; Hamada, Michiaki; Asai, Kiyoshi; Mituyama, Toutai

    2009-01-01

    The CentroidFold web server (http://www.ncrna.org/centroidfold/) is a web application for RNA secondary structure prediction powered by one of the most accurate prediction engine. The server accepts two kinds of sequence data: a single RNA sequence and a multiple alignment of RNA sequences. It responses with a prediction result shown as a popular base-pair notation and a graph representation. PDF version of the graph representation is also available. For a multiple alignment sequence, the ser...

  10. Calculation model for 16N transit time in the secondary side of steam generators

    International Nuclear Information System (INIS)

    Liu Songyu; Xu Jijun; Xu Ming

    1998-01-01

    The 16 N transit time is essential to determine the leak-rate of steam generator tubes leaks with 16 N monitoring system, which is a new technique. A model was developed for calculation 16 N transit time in the secondary side of steam generators. According to the flow characters of secondary side fluid, the transit times divide into four sectors from tube sheet to the sensor on steam line. The model assumes that 16 N is moving as vapor phase in the secondary-side. So the model for vapor velocity distribution in tube bundle is presented in detail. The 16 N transit time calculation results of this model compare with these of EDF on steam generator of Qinshan NPP

  11. The Role of Migration and Single Motherhood in Upper Secondary Education in Mexico

    Science.gov (United States)

    Creighton, Mathew J.; Park, Hyunjoon; Teruel, Graciela M.

    2009-01-01

    We investigated the link between migration, family structure, and the risk of dropping out of upper secondary school in Mexico. Using two waves of the Mexican Family Life Survey, which includes 1,080 upper secondary students, we longitudinally modeled the role of family structure in the subsequent risk of dropping out, focusing on the role of…

  12. Influence of selecting secondary settling tank sub-models on the calibration of WWTP models – A global sensitivity analysis using BSM2

    DEFF Research Database (Denmark)

    Ramin, Elham; Flores Alsina, Xavier; Sin, Gürkan

    2014-01-01

    This study investigates the sensitivity of wastewater treatment plant (WWTP) model performance to the selection of one-dimensional secondary settling tanks (1-D SST) models with first-order and second-order mathematical structures. We performed a global sensitivity analysis (GSA) on the benchmark...... simulation model No.2 with the input uncertainty associated to the biokinetic parameters in the activated sludge model No. 1 (ASM1), a fractionation parameter in the primary clarifier, and the settling parameters in the SST model. Based on the parameter sensitivity rankings obtained in this study......, the settling parameters were found to be as influential as the biokinetic parameters on the uncertainty of WWTP model predictions, particularly for biogas production and treated water quality. However, the sensitivity measures were found to be dependent on the 1-D SST models selected. Accordingly, we suggest...

  13. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides.

    Science.gov (United States)

    Wang, Xiaoguang; Yang, Pei; Mondiot, Frederic; Li, Yaoxin; Miller, Daniel S; Chen, Zhan; Abbott, Nicholas L

    2015-12-07

    We report that assemblies formed by eight oligopeptides at phospholipid-decorated interfaces of thermotropic liquid crystals (LCs) trigger changes in ordering of the LCs that are dependent on the secondary structures of the oligopeptides (as characterized in situ using infrared-visible sum-frequency spectroscopy).

  14. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  15. The analysis of actual and symbolic models of secondary school students in Serbia

    Directory of Open Access Journals (Sweden)

    Stepanović Ivana

    2009-01-01

    Full Text Available This paper deals with role models of secondary school students in Serbia. In the course of adolescence, there is a gradual separation from parental figures, and other persons become role models for behavior. For that reason, secondary school population is of interest when analyzing this phenomenon, particularly bearing in mind that role models influence not only social, but also other aspects of development. We analyzed role models from students' personal (actual models and public life (symbolic models. The main aim was to determine who their actual and symbolic models are, and why secondary school students look up to them. Based on the data on secondary school students' actual models, it is possible to identify who important persons from their milieu are and why they are important to them. The data about the categories in which symbolic models can be divided, as well as about their occurrence, indicate the young people's system of values in these analyses. The sample comprises 2426 students from 26 schools in 9 Serbian towns. Actual and symbolic models were examined in separate questions, where students were asked to name up to three people from their private life or the world of celebrities that they look up to. 53,9% of students named their actual models, the most common being their mothers. Nearly half the examinees (49,3% stated their symbolic models are public figures. Most symbolic models are from the world of show-business. The results show that parental figures remain the models of behavior throughout adolescence. The data about the categories of symbolic models show the young are drawn to the world of entertainment and indicate a weak role of schools as a potential source of models in the fields of science and culture who would promote cognitive values.

  16. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  17. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  18. Secondary structure of bovine albumin as studied by polarization-sensitive multiplex CARS spectroscopy

    NARCIS (Netherlands)

    Voroshilov, A.; Voroshilov, Artemy; Otto, Cornelis; Greve, Jan

    1996-01-01

    The first application of polarization-sensitive multiplex coherent anti-Stokes Raman spectroscopy (MCARS) in the absence of resonance enhancement to the resolution of the secondary structure of a protein in solution is reported. Polarization MCARS spectra of bovine albumin in D2O were obtained in

  19. Secondary structure and phylogeny of Staphylococcus and Micrococcus 5S rRNAs.

    Science.gov (United States)

    Dekio, S; Yamasaki, R; Jidoi, J; Hori, H; Osawa, S

    1984-01-01

    Nucleotide sequences of 5S rRNAs from four bacteria, Staphylococcus aureus Smith (diffuse), Staphylococcus epidermidis ATCC 14990, Micrococcus luteus ATCC 9341 and Micrococcus luteus ATCC 4698, were determined. The secondary structural models of S. aureus and S. epidermidis sequences showed characteristics of the gram-positive bacterial 5S rRNA (116-N type [H. Hori and S. Osawa, Proc. Natl. Acad. Sci. U.S.A. 76:381-385, 1979]). Those of M. luteus ATCC 9341 and M. luteus ATCC 4698 together with that of Streptomyces griseus (A. Simoncsits, Nucleic Acids Res. 8:4111-4124, 1980) showed intermediary characteristics between the gram-positive and gram-negative (120-N type [H. Hori and S. Osawa, 1979]) 5S rRNAs. This and previous studies revealed that there exist at least three major groups of eubacteria having distinct 5S rRNA and belonging to different stems in the 5S rRNA phylogenic tree. PMID:6735981

  20. Unified model of secondary electron cascades in diamond

    International Nuclear Information System (INIS)

    Ziaja, Beata; London, Richard A.; Hajdu, Janos

    2005-01-01

    In this article we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of x-ray photons. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1 and 10 keV. The present article expands our earlier work [B. Ziaja, D. van der Spoel, A. Szoeke, and J. Hajdu, Phys. Rev. B 64, 214104 (2001), Phys. Rev. B 66, 024116 (2002)] by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t≤1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs following the primary impact

  1. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    Science.gov (United States)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  2. The effects of two secondary science teacher education program structures on teachers' habits of mind and action

    Science.gov (United States)

    Bergman, Daniel Jay

    2007-12-01

    This study investigated the effects of the Iowa State University Secondary Science Teacher Education Program (ISU SSTEP) on the educational goals and habits of mind exhibited by its graduates. Ten teachers from ISU SSTEP participated in the study---five from the former program featuring one semester of science teaching methods, five from the current program featuring three semesters of science teaching methods (four for the graduate certification consortium). A naturalistic inquiry research approach included the following methods used with each teacher: three classroom observations, classroom artifact analysis, teacher questionnaires and semi-structured interviews, and questionnaires for students about perceived emphasis of educational goals. Evidence exists that graduates from the current ISU SSTEP format exhibited a closer match to the educational goals promoted, modeled, and advocated by the science teaching methods faculty. Graduates from the current ISU SSTEP also exhibited a closer match to the habits of mind---understanding, action, reflection, action plan for improvement---promoted and modeled by the program. This study has implications for other secondary science teacher education programs, particularly increasing the number of science teaching methods courses; teaching meaningful content of both concepts and skills through a research-based framework; modeling the appropriate teacher behaviors, strategies, habits, and goal promotion by methods instructors; and addressing issues of institutional constraints experienced by future teachers.

  3. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    Science.gov (United States)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  4. Numerical Modelling of Flow and Settling in Secondary Settling Tanks

    DEFF Research Database (Denmark)

    Dahl, Claus Poulsen

    This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....

  5. Upper mantle velocity structure beneath Italy from direct and secondary P-wave teleseismic tomography

    Directory of Open Access Journals (Sweden)

    P. De Gori

    1997-06-01

    Full Text Available High-quality teleseismic data digitally recorded by the National Seismic Network during 1988-1995 have been analysed to tomographically reconstruct the aspherical velocity structure of the upper mantle beneath the Italian region. To improve the quality and the reliability of the tomographic images, both direct (P, PKPdf and secondary (pP,sP,PcP,PP,PKPbc,PKPab travel-time data were used in the inversion. Over 7000 relative residuals were computed with respect to the IASP91 Earth velocity model and inverted using a modified version of the ACH technique. Incorporation of data of secondary phases resulted in a significant improvement of the sampling of the target volume and of the spatial resolution of the heterogeneous zones. The tomographic images show that most of the lateral variations in the velocity field are confined in the first ~250 km of depth. Strong low velocity anomalies are found beneath the Po plain, Tuscany and Eastern Sicily in the depth range between 35 and 85 km. High velocity anomalies dominate the upper mantle beneath the Central-Western Alps, Northern-Central Apennines and Southern Tyrrhenian sea at lithospheric depths between 85 and 150 km. At greater depth, positive anomalies are still observed below the northernmost part of the Apenninic chain and Southern Tyrrhenian sea. Deeper anomalies present in the 3D velocity model computed by inverting only the first arrivals dataset, generally appear less pronounced in the new tomographic reconstructions. We interpret this as the result of the ray sampling improvement on the reduction of the vertical smearing effects.

  6. A contribution to understanding the structure of amphivasal secondary bundles in monocotyledons

    Directory of Open Access Journals (Sweden)

    Joanna Jura-Morawiec

    2014-04-01

    Full Text Available Secondary growth of monocotyledonous plants is connected with the activity of the monocot cambium that accumulates most of the derivatives inner to the cambial cylinder. These derivatives differentiate into (a secondary bundles with the amphivasal arrangement, i.e. xylem composed of tracheids surrounds the phloem cells and (b the parenchymatous secondary conjunctive tissue in which the bundles are embedded. The amphivasal secondary bundles differ in the arrangement of xylem cells as visible on single cross sections through the secondary body of the monocots. Apart from the bundles with typical ring of tracheids also the bundles where tracheids do not quite surround the phloem are present. We aimed to elucidate the cross sectional anatomy of the amphivasal secondary bundles with the use of the serial sectioning method which allowed us to follow very precisely the bundle structure along its length. The studies were carried out with the samples of secondary tissues collected from the stem of Dracaena draco L. growing in the greenhouses of the Polish Academy of Sciences Botanical Garden – CBDC in Powsin and the Adam Mickiewicz University Botanical Garden. The material was fixed in a mixture of glycerol and ethanol (1:1; v/v, dehydrated stepwise with graded ethanol series and finally embedded in epon resin. Afterwards, the material was sectioned with microtome into continuous series of thin (3 μm sections, stained with PAS/toluidine blue and examined under the light microscope. The results, described in details in Jura‑Morawiec & Wiland-Szymańska (2014, revealed novel facts about tracheids arrangement. Each amphivasal bundle is composed of sectors where tracheids form a ring as well as of such where tracheids are separated by vascular parenchyma cells. We hypothesize that strands of vascular parenchyma cells locally separating the tracheids enable radial transport of assimilates from sieve elements of the bundle towards the sink tissues, e

  7. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    Science.gov (United States)

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA

  8. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  9. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  10. Research on Evaluation Model for Secondary Task Driving Safety Based on Driver Eye Movements

    Directory of Open Access Journals (Sweden)

    Lisheng Jin

    2014-01-01

    Full Text Available This study was designed to gain insight into the influence of performing different types of secondary task while driving on driver eye movements and to build a safety evaluation model for secondary task driving. Eighteen young drivers were selected and completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks were analyzed. Based on measures which had significant difference between the baseline and secondary tasks driving conditions, the evaluation index system was built. Method of principal component analysis (PCA was applied to analyze evaluation indexes data in order to obtain the coefficient weights of indexes and build the safety evaluation model. Based on evaluation scores, the driving safety was grouped into five levels (very high, high, average, low, and very low using K-means clustering algorithm. Results showed that secondary task driving severely distracts the driver and the evaluation model built in this study could estimate driving safety effectively under different driving conditions.

  11. Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2008-07-01

    Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.

  12. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  13. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    International Nuclear Information System (INIS)

    Peng, Sydney; Lin, Ji-Yu; Cheng, Ming-Huei; Wu, Chih-Wei; Chu, I-Ming

    2016-01-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  14. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sydney; Lin, Ji-Yu [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Ming-Huei [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Wu, Chih-Wei, E-mail: drwu.jerry@gmail.com [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chu, I-Ming, E-mail: chuiming456@gmail.com [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-12-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  15. Secondary structure of 5S RNA: NMR experiments on RNA molecules partially labeled with Nitrogen-15

    International Nuclear Information System (INIS)

    Gewirth, D.T.; Abo, S.R.; Leontis, N.B.; Moore, P.B.

    1987-01-01

    A method has been found for reassembling fragment 1 of Escherichia coli 5S RNA from mixtures containing strand III (bases 69-87) and the complex consisting of strand II (bases 89-120) and strand IV (bases 1-11). The reassembled molecule is identical with unreconstituted fragment 1. With this technique, fragment 1 molecules have been constructed 15 N-labeled either in strand III or in the strand II-strand IV complex. Spectroscopic data obtained with these partially labeled molecules show that the terminal helix of 5S RNA includes the GU and GC base pairs at positions 9 and 10 which the standard model for 5S secondary structure predicts but that these base pairs are unstable both in the fragment and in native 5S RNA. The data also assign three resonances to the helix V region of the molecule (bases 70-77 and 99-106). None of these resonances has a normal chemical shift even though two of them correspond to AU or GU base pairs in the standard model. The implications of these findings for the authors understanding of the structure of 5S RNA and its complex with ribosomal protein L25 are discussed

  16. Numerical modelling of so-called secondary ultrasonic echoes

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Fellinger, P.; Hofmann, C.

    1994-01-01

    The formation of secondary ultrasonic echoes is discussed for a particularly simple testing situation. This discussion is based upon the intuitive visualization of elastic wave propagation as obtained with the numerical EFIT-Code (Elastodynamic Finite Integration Technique). The resulting travel times for the econdary echoes contain well-defined limits as they originate from the simple model of grazing incidence plane longitudinal wave mode conversion. (orig.) [de

  17. Causal modeling of secondary science students' intentions to enroll in physics

    Science.gov (United States)

    Crawley, Frank E.; Black, Carolyn B.

    The purpose of this study was to explore the utility of the theory of planned behavior model developed by social psychologists for understanding and predicting the behavioral intentions of secondary science students regarding enrolling in physics. In particular, the study used a three-stage causal model to investigate the links from external variables to behavioral, normative, and control beliefs; from beliefs to attitudes, subjective norm, and perceived behavioral control; and from attitudes, subjective norm, and perceived behavioral control to behavioral intentions. The causal modeling method was employed to verify the underlying causes of secondary science students' interest in enrolling physics as predicted in the theory of planned behavior. Data were collected from secondary science students (N = 264) residing in a central Texas city who were enrolled in earth science (8th grade), biology (9th grade), physical science (10th grade), or chemistry (11th grade) courses. Cause-and-effect relationships were analyzed using path analysis to test the direct effects of model variables specified in the theory of planned behavior. Results of this study indicated that students' intention to enroll in a high school physics course was determined by their attitude toward enrollment and their degree of perceived behavioral control. Attitude, subjective norm, and perceived behavioral control were, in turn, formed as a result of specific beliefs that students held about enrolling in physics. Grade level and career goals were found to be instrumental in shaping students' attitude. Immediate family members were identified as major referents in the social support system for enrolling in physics. Course and extracurricular conflicts and the fear of failure were shown to be the primary beliefs obstructing students' perception of control over physics enrollment. Specific recommendations are offered to researchers and practitioners for strengthening secondary school students

  18. Rapid NMR screening of RNA secondary structure and binding

    International Nuclear Information System (INIS)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald

    2015-01-01

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA

  19. Rapid NMR screening of RNA secondary structure and binding

    Energy Technology Data Exchange (ETDEWEB)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA.

  20. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.

    Science.gov (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei

    2018-02-01

    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  1. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  2. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Nobu, Masaki; Hirao, Toshikazu

    2017-09-18

    Controlling helical chirality and creating protein secondary structures in cyclic/acyclic ferrocene-dipeptide bioorganometallic conjugates were achieved by adjusting the conformational flexibility of the dipeptide chains. In systems reported to date, the helical chirality of a conjugate was determined by the absolute configuration of the adjacent amino acid reside. In contrast, it was possible to induce both M- and P-helical chirality, even when the configuration of the adjacent amino acid was the same. It is particularly interesting to note that M-helical chirality was produced in a cyclic ferrocene-dipeptide conjugate composed of the l-Ala-d-Pro-cystamine-d-Pro-l-Ala dipeptide sequence (1), in which a type II β-turn-like secondary structure was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Secondary Special Education. Part I: The "Stepping Stone Model" Designed for Secondary Learning Disabled Students. Part II: Adapting Materials and Curriculum.

    Science.gov (United States)

    Fox, Barbara

    The paper describes the Stepping Stone Model, a model for the remediation and mainstreaming of secondary learning disabled students and the adaptation of curriculum and materials for the model. The Stepping Stone Model is designed to establish the independence of students in the mainstream through content reading. Five areas of concern common to…

  4. Modified Smith-predictor multirate control utilizing secondary process measurements

    Directory of Open Access Journals (Sweden)

    Rolf Ergon

    2007-01-01

    Full Text Available The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic idea is to estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback control loop combined with an outer feedback loop based on the delayed estimation error. The model used may be either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor for systems where also secondary process measurements without time delay are available as a basis for the primary output estimation. The estimator may then be identified also in the common case with primary outputs sampled at a lower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the suggested control structure.

  5. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  6. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-09-01

    In oil reservoir engineering, multi-phase displacement processes are important. This doctoral thesis describes simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a complex, random porous medium and in a single fracture. The study is restricted to two-phase flow in the quasi-static limit in which viscous forces can be neglected. The secondary migration of oil takes place in this regime, however, the discussion is broader in scope. The thesis connects the problem of slow two-phase flow to percolation theory and discusses the mechanisms that control immiscible displacements. A new, modified version of the invasion percolation model is used to simulate an imbibition process in a porous medium and the migration of a cluster of non-wetting fluid through a porous medium saturated with a wetting fluid. The simulations include the secondary migration of oil through porous homogeneous rock. Fluid migration through heterogeneous porous media is simulated qualitatively. Slow displacement of a wetting fluid by a non-wetting fluid in a single rock fracture is simulated by using the standard invasion percolation model. Experiments and simulations are performed to study the fragmentation of invasion percolation-like structures of non-wetting fluid in a porous medium saturated with a wetting fluid. A scenario is studied in which a cluster of non-wettable fluid migrates through a porous medium that is saturated with a wetting fluid, the migration being driven by continuously increasing buoyancy forces. There is a simulation of the secondary migration of oil in both two- and three-dimensional media. 361 refs., 115 figs.

  7. Building alternate protein structures using the elastic network model.

    Science.gov (United States)

    Yang, Qingyi; Sharp, Kim A

    2009-02-15

    We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.

  8. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  9. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M

    2013-04-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.

  10. An Algorithm for Template-Based Prediction of Secondary Structures of Individual RNA Sequences

    Czech Academy of Sciences Publication Activity Database

    Pánek, Josef; Modrák, Martin; Schwarz, Marek

    2017-01-01

    Roč. 8, OCT 10 (2017), s. 1-11, č. článku 147. ISSN 1664-8021 R&D Projects: GA ČR GA15-00885S; GA MŠk(CZ) LM2015047 Institutional support: RVO:61388971 Keywords : RNA * secondary structure * homology Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.789, year: 2016

  11. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  12. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.

    Science.gov (United States)

    Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent

    2003-05-01

    Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.

  13. Landscape and variation of RNA secondary structure across the human transcriptome.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff; Flynn, Ryan A; Manor, Ohad; Ouyang, Zhengqing; Zhang, Jiajing; Spitale, Robert C; Snyder, Michael P; Segal, Eran; Chang, Howard Y

    2014-01-30

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.

  14. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks.

    Science.gov (United States)

    Abusam, A; Keesman, K J

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In activated sludge systems, accurate estimation of the solids in the underflow stream will facilitate the calibration process and can lead to correct estimates of particularly kinetic parameters related to biomass growth. Using principles of compaction and consolidation, as in soil mechanics, a dynamic model of the sludge consolidation processes taking place in the secondary settling tanks is developed and incorporated to the commonly used double exponential settling model. The modified double exponential model is calibrated and validated using data obtained from a full-scale wastewater treatment plant. Good agreement between predicted and measured data confirmed the validity of the modified model.

  15. Class Anxiety in Secondary Education: Exploring Structural Relations with Perceived Control, Engagement, Disaffection, and Performance.

    Science.gov (United States)

    González, Antonio; Faílde Garrido, José María; Rodríguez Castro, Yolanda; Carrera Rodríguez, María Victoria

    2015-09-14

    The aim of this study was to assess the relationships between class-related anxiety with perceived control, teacher-reported behavioral engagement, behavioral disaffection, and academic performance. Participants were 355 compulsory secondary students (9th and 10th grades; Mean age = 15.2 years; SD = 1.8 years). Structural equation models revealed performance was predicted by perceived control, anxiety, disaffection, and engagement. Perceived control predicted anxiety, disaffection, and engagement. Anxiety predicted disaffection and engagement, and partially mediated the effects from control on disaffection (β = -.277, p anxiety and performance was mediated by engagement and disaffection (β = -.295, p Anxiety, engagement, and disaffection mediated the effects of control on performance (β = .352, p < .003; CI = .279, .440). The implications of these results are discussed in the light of current theory and educational interventions.

  16. Understanding Quality of Life in Adults with Spinal Cord Injury Via SCI-Related Needs and Secondary Complications.

    Science.gov (United States)

    Sweet, Shane N; Noreau, Luc; Leblond, Jean; Dumont, Frédéric S

    2014-01-01

    Understanding the factors that can predict greater quality of life (QoL) is important for adults with spinal cord injury (SCI), given that they report lower levels of QoL than the general population. To build a conceptual model linking SCI-related needs, secondary complications, and QoL in adults with SCI. Prior to testing the conceptual model, we aimed to develop and evaluate the factor structure for both SCI-related needs and secondary complications. Individuals with a traumatic SCI (N = 1,137) responded to an online survey measuring 13 SCI-related needs, 13 secondary complications, and the Life Satisfaction Questionnaire to assess QoL. The SCI-related needs and secondary complications were conceptualized into factors, tested with a confirmatory factor analysis, and subsequently evaluated in a structural equation model to predict QoL. The confirmatory factor analysis supported a 2-factor model for SCI related needs, χ(2)(61, N = 1,137) = 250.40, P SCI-related needs (β = -.22 and -.20, P SCI-related needs of individuals with SCI and preventing or managing secondary complications are essential to their QoL.

  17. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  18. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  19. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks

    NARCIS (Netherlands)

    Abusam, A.; Keesman, K.J.

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In

  20. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  1. Dependence of secondary electron emission on the incident angle and the energy of primary electrons bombarding bowl-structured beryllium surfaces

    International Nuclear Information System (INIS)

    Kawata, Jun; Ohya, Kaoru.

    1994-01-01

    A Monte Carlo simulation of the secondary electron emission from beryllium is combined with a model of bowl structure for surface roughness, for analyzing the difference between the electron emissions for normal and oblique incidences. At normal incidence, with increasing the roughness parameter H/W, the primary energy E pm at which the maximum electron yield occurs becomes higher, and at more than the E pm , the decrease in the yield is slower; where H and W are the depth and width of the bowl structure, respectively. The dispersion of incident angle to the microscopic surface causes a small increase in the yield at oblique incidence, whereas the blocking of primary electrons from bombarding the bottom of the structure causes an opposite trend. The strong anisotropy in the polar angular distribution with respect to the azimuthal angle is calculated at oblique incidence. (author)

  2. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1995-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  3. Numerical modeling of secondary side thermohydraulics of horizontal steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Melikhov, V I; Melikhov, O I; Nigmatulin, B I [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)

    1996-12-31

    A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.

  4. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  5. Formulation of probabilistic models of protein structure in atomic detail using the reference ratio method.

    Science.gov (United States)

    Valentin, Jan B; Andreetta, Christian; Boomsma, Wouter; Bottaro, Sandro; Ferkinghoff-Borg, Jesper; Frellsen, Jes; Mardia, Kanti V; Tian, Pengfei; Hamelryck, Thomas

    2014-02-01

    We propose a method to formulate probabilistic models of protein structure in atomic detail, for a given amino acid sequence, based on Bayesian principles, while retaining a close link to physics. We start from two previously developed probabilistic models of protein structure on a local length scale, which concern the dihedral angles in main chain and side chains, respectively. Conceptually, this constitutes a probabilistic and continuous alternative to the use of discrete fragment and rotamer libraries. The local model is combined with a nonlocal model that involves a small number of energy terms according to a physical force field, and some information on the overall secondary structure content. In this initial study we focus on the formulation of the joint model and the evaluation of the use of an energy vector as a descriptor of a protein's nonlocal structure; hence, we derive the parameters of the nonlocal model from the native structure without loss of generality. The local and nonlocal models are combined using the reference ratio method, which is a well-justified probabilistic construction. For evaluation, we use the resulting joint models to predict the structure of four proteins. The results indicate that the proposed method and the probabilistic models show considerable promise for probabilistic protein structure prediction and related applications. Copyright © 2013 Wiley Periodicals, Inc.

  6. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Science.gov (United States)

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  7. Role of secondary instability theory and parabolized stability equations in transition modeling

    Science.gov (United States)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  8. New Comparative Analysis Based on the Secondary Structure of SSU-rRNA Gene Reveals the Evolutionary Trend and the Family-Genus Characters of Mobilida (Ciliophora, Peritrichia).

    Science.gov (United States)

    Zhang, Yong; Zhao, Yuan-Jun; Wang, Qin; Tang, Fa-Hui

    2015-08-01

    In order to reveal the structural evolutionary trend of Mobilida ciliates, twenty-six SSU-rRNA sequences of mobilid species, including seven ones newly sequenced in the present work, were used for comparative phylogenic analysis based on the RNA secondary structure. The research results indicate that all the secondary structures except domains Helix 10, Helix 12, and Helix 37 could be regarded as the criterions in classification between the family Trichodinidae and Urceolariida, and four regions including Helix E10-1, Helix 29, Helix 43, and Helix 45-Helix 46 could be as criterions in classification between the genus Trichodinella and Trichodina in family Trichodinidae. After the analysis of common structural feature within the Mobilida, it was found that the secondary structure of V6 could prove the family Urceolariidae primitive status. This research has further suggested that the genus Trichodina could be divergent earlier than Trichodinella in the family Trichodinidae. In addition, the relationship between the secondary structure and topology of phylogenic tree that the branching order of most clades corresponds with the secondary structure of species within each clade of phylogenetic tree was first uncovered and discussed in the present study.

  9. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  10. Learning Atomic-Molecular Theory in Secondary School: The Role of Meta-Conceptual Awareness and Modelling Skills

    Science.gov (United States)

    Chan, Chi Keung

    The aim of this study was to examine the contribution of students' meta-conceptual awareness and modelling skills to their conceptual change when learning atomic-molecular theory. Instructional materials used in the intervention covered three sub-topics: atomic structure, chemical bonding, and structures and properties. Glynn's (1991) Teaching with Analogy model and Chambliss's (2002) guidelines for constructing scientific texts were used as the frameworks for designing and implementing instructional materials for the intervention. Forty-five Secondary 4 chemistry students from two classes at a secondary school in Hong Kong participated in the study. The two classes were taught by the same teacher. The study consisted of two phases. During Phase I, which lasted for 6 weeks, Class A (n = 13) used the above-mentioned instructional materials to learn the three sub-topics, whereas Class B (n = 32) learned the same sub-topics using traditional textbook materials. To further examine the effects of the intervention, a 2-week switching-replication treatment was implemented in Phase II. Class A used traditional textbook materials for revision whereas Class B used the tailor-made instructional materials. A mixed-methods design was used to assess the effectiveness of the intervention. Based on the student misconceptions documented in the literature, a written test of the three sub-topics was developed. The test comprised 33 two-tier multiple-choice items. The test was administered three times: before Phase I (T1), just after Phase I and before Phase II (T2), and 2 weeks after Phase II (T3). Qualitative data were gathered from semi-structured interviews with five students. Three students from Class A and two students from Class B were interviewed individually after Phase I and Phase II, respectively, to assess students' understanding of the essential theoretical concepts and to assess students' modelling skills. The results of paired-samples t-test showed that there was a

  11. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  12. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  13. Mathematical Modelling in the Junior Secondary Years: An Approach Incorporating Mathematical Technology

    Science.gov (United States)

    Lowe, James; Carter, Merilyn; Cooper, Tom

    2018-01-01

    Mathematical models are conceptual processes that use mathematics to describe, explain, and/or predict the behaviour of complex systems. This article is written for teachers of mathematics in the junior secondary years (including out-of-field teachers of mathematics) who may be unfamiliar with mathematical modelling, to explain the steps involved…

  14. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  15. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    Science.gov (United States)

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  16. Work stress and work-based learning in secondary education : testing the Karasek model

    NARCIS (Netherlands)

    Kwakman, Kitty

    2001-01-01

    In this study the Job Demand-Control model was used to study the quality of working life of Dutch secondary teachers. The Job Demand-Control model of Karasek is a theoretical model in which stress and learning are both considered as dependent variables which are influenced by three different task

  17. Work stress and work based learning in secondary education: Testing the Karasek model

    NARCIS (Netherlands)

    Kwakman, Kitty

    1999-01-01

    In this study the Job Demand-Control model was used to study the quality of working life of Dutch secondary teachers. The Job Demand-Control model of Karasek is a theoretical model in which stress and learning are both considered as dependent variables which are influenced by three different task

  18. Research on safety evaluation model for in-vehicle secondary task driving.

    Science.gov (United States)

    Jin, Lisheng; Xian, Huacai; Niu, Qingning; Bie, Jing

    2015-08-01

    This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  19. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    Science.gov (United States)

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  20. The Hanford Site's Gable Mountain structure: A comparison of the recurrence of design earthquakes based on fault slip rates and a probabilistic exposure model

    International Nuclear Information System (INIS)

    Rohay, A.C.

    1991-01-01

    Gable Mountain is a segment of the Umtanum Ridge-Gable Mountain structural trend, an east-west trending series of anticlines, one of the major geologic structures on the Hanford Site. A probabilistic seismic exposure model indicates that Gable Mountain and two adjacent segments contribute significantly to the seismic hazard at the Hanford Site. Geologic measurements of the uplift of initially horizontal (11-12 Ma) basalt flows indicate that a broad, continuous, primary anticline grew at an average rate of 0.009-0.011 mm/a, and narrow, segmented, secondary anticlines grew at rates of 0.009 mm/a at Gable Butte and 0.018 mm/a at Gable Mountain. The buried Southeast Anticline appears to have a different geometry, consisting of a single, intermediate-width anticline with an estimated growth rate of 0.007 mm/a. The recurrence rate and maximum magnitude of earthquakes for the fault models were used to estimate the fault slip rate for each of the fault models and to determine the implied structural growth rate of the segments. The current model for Gable Mountain-Gable Butte predicts 0.004 mm/a of vertical uplift due to primary faulting and 0.008 mm/a due to secondary faulting. These rates are roughly half the structurally estimated rates for Gable Mountain, but the model does not account for the smaller secondary fold at Gable Butte. The model predicted an uplift rate for the Southeast Anticline of 0.006 mm/a, caused by the low open-quotes fault capabilityclose quotes weighting rather than a different fault geometry. The effects of previous modifications to the fault models are examined and potential future modifications are suggested. For example, the earthquake recurrence relationship used in the current exposure model has a b-value of 1.15, compared to a previous value of 0.85. This increases the implied deformation rates due to secondary fault models, and therefore supports the use of this regionally determined b-value to this fault/fold system

  1. Design and commission of an experimental test rig to apply a full-scale pressure load on composite sandwich panels representative of an aircraft secondary structure

    International Nuclear Information System (INIS)

    Crump, D A; Dulieu-Barton, J M; Savage, J

    2010-01-01

    This paper describes the design of a test rig, which is used to apply a representative pressure load to a full-scale composite sandwich secondary aircraft structure. A generic panel was designed with features to represent those in the composite sandwich secondary aircraft structure. To provide full-field strain data from the panels, the test rig was designed for use with optical measurement techniques such as thermoelastic stress analysis (TSA) and digital image correlation (DIC). TSA requires a cyclic load to be applied to a structure for the measurement of the strain state; therefore, the test rig has been designed to be mounted on a standard servo-hydraulic test machine. As both TSA and DIC require an uninterrupted view of the surface of the test panel, an important consideration in the design is facilitating the optical access for the two techniques. To aid the test rig design a finite element (FE) model was produced. The model provides information on the deflections that must be accommodated by the test rig, and ensures that the stress and strain levels developed in the panel when loaded in the test rig would be sufficient for measurement using TSA and DIC. Finally, initial tests using the test rig have shown it to be capable of achieving the required pressure and maintaining a cyclic load. It was also demonstrated that both TSA and DIC data can be collected from the panels under load, which are used to validate the stress and deflection derived from the FE model

  2. Protein structure modeling and refinement by global optimization in CASP12.

    Science.gov (United States)

    Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2018-03-01

    For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.

  3. Insulin as a model to teach three-dimensional structure of proteins

    Directory of Open Access Journals (Sweden)

    João Batista Teixeira da Rocha

    2018-02-01

    Proteins are the most ubiquitous macromolecules found in the living cells and have innumerous physiological functions. Therefore, it is fundamental to build a solid knowledge about the proteins three dimensional structure to better understand the living state. The hierarchical structure of proteins is usually studied in the undergraduate discipline of Biochemistry. Here we described pedagogical interventions designed to increase the preservice teacher chemistry students’ knowledge about protein structure. The activities were made using alternative and cheap materials to encourage the application of these simple methodologies by the future teachers in the secondary school. From the primary structure of insulin chains, students had to construct a three-dimensional structure of insulin. After the activities, the students highlighted an improvement of their previous knowledge about proteins structure. The construction of a tridimensional model together with other activities seems to be an efficient way to promote the learning about the structure of proteins to undergraduate students. The methodology used was inexpensiveness and simple and it can be used both in the university and in the high-school.

  4. The Study of Role of Transactional Model Constructs in Yazd Teachers of Primary School by Using of Structural Equation Model

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2014-12-01

    Full Text Available Background: By considering, transactional model is one of the most comprehensive model for reduction of stress, this study was determined the role of Transactional Model constructs in Yazd teachers of Primary school by using of Structural Equation Model. Methods: This research was a descriptive- analytical. Categorized approach was applied for sampling. A standard questionnaire and the questionnaire planned based on Transactional Model were applied for data collection. Validity (CVR=0.85 and reliability (α=0.87 of instrument confirmed by experts. SPSS15 and LISREL8.8 software were used for data analysis. Results: In this research 200 Yazd teachers of primary schools (average age of 41.70±5.69 were participated. The results of this study showed the effect of stress on secondary appraisal and primary appraisal was -0.87 and 0.84, respectively. Our results also showed an inverse relationship between perceived stress and secondary appraisal also between primary appraisal and coping effort. Also, the results were confirmed validity and good fitness of model, because of the RMSEA=0.0329 and index χ2/df were less than 3. Conclusion: Since the constructs of this model had a significant effect on the stress, it suggests the policies and plans for improvement of these factors.

  5. Teaching the foundations of quantum mechanics in secondary school: a proposed conceptual structure

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles Fanaro

    2009-03-01

    Full Text Available This paper is part of a doctoral thesis that investigates Basic Quantum Mechanics (QM teaching in high school. A Conceptual Structure of Reference (CSR based on the Path Integral Method of Feynman (1965 was rebuilt and a Proposed Conceptual Structure for Teaching (PCST (Otero, 2006, 2007 the basics of Quantum Mechanics at secondary school was designed, analysed and carried out. This PCST does not follow the historical route and it is complementary to the canonical formalism. The concepts: probability distribution, quantum system, x(t alternative, amplitude of probability, sum of probability amplitude, action, Planck's constant, and classic-quantum transition were rebuilt with the students. Mathematical formalism was avoided by using simulation software assistance. The Proposed Conceptual Structure for Teaching (PCST is described and some results from the test carried out by the class group are discussed. This information allows the analysis of the Conceptual Structure Effectively Reconstructed (CSER to be initiated with the students.

  6. Three dimensional analysis of self-structuring organic thin films using time-of-flight secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mayerhofer, Karl E.; Heier, Jakob; Maniglio, Ylenia; Keller, Beat Andreas, E-mail: beat.keller@empa.ch

    2011-07-01

    Selective sub-micrometer structuring of phase-separating organic semiconductor materials has recently got into focus for providing the opportunity of further improvements in optoelectronic device applications. Here we present a 3D-time-of-flight secondary ion mass spectrometry (3D-TOF-SIMS) depth profiling investigation on spin-coated blends consisting of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and a cationic cyanine dye (1,1'-diethyl-3,3,3',3'-tetramethylcarbocyanine iodide). TOF-SIMS provides the required lateral and depth resolution to resolve material and molecular inhomogeneities and phase separation in the blend. The data are illustrating the three-dimensional arrangement of the substances involved and confirm results of earlier studies using atomic force microscopy, UV-vis spectroscopy and x-ray photoelectron spectroscopy, and which have shown well distinguishable morphological features. The formation of this domain structure has been found to be dependent on the absolute as well as the individual film thickness, in accordance with models based on thin liquid two-layer films. Honey-comb like primary structures with micrometer dimension were found in samples containing small amounts of dye molecules in the deposition solution. In this case a thin dye deposit on PCBM was detected, which is well separated from the dye layer at the substrate. For this type of sample, we discuss an extended model of film formation based on partial depletion of dye molecules during film solidification, resulting in two individual dye layers.

  7. The writing approaches of secondary students.

    Science.gov (United States)

    Lavelle, Ellen; Smith, Jennifer; O'Ryan, Leslie

    2002-09-01

    Research with college students has supported a model of writing approaches that defines the relationship between a writer and writing task along a deep and surface process continuum (Biggs, 1988). Based on that model, Lavelle (1993) developed the Inventory of Processes in College Composition which reflects students' motives and strategies as related to writing outcomes. It is also important to define the approaches of secondary students to better understand writing processes at that level, and development in written composition. This study was designed to define the writing approaches of secondary students by factor analysing students' responses to items regarding writing beliefs and writing strategies, and to compare the secondary approaches to those of college students. A related goal was to explore the relationships of the secondary writing approaches to perceived self-regulatory efficacy for writing (Zimmerman & Bandura, 1994), writing preferences, and writing outcomes. The initial, factor analytic phase involved 398 junior level high school students (11th grade) enrolled in a mandatory language arts class at each of three large Midwestern high schools (USA). Then, 49 junior level students enrolled in two language arts classes participated as subjects in the second phase. Classroom teachers administered the Inventory of Processes in College Composition (Lavelle, 1993), which contained 72 true-or-false items regarding writing beliefs and strategies, during regular class periods. Data were factor analysed and the structure compared to that of college students. In the second phase, the new inventory, Inventory of Processes in Secondary Composition, was administered in conjunction with the Perceived Self-Regulatory Efficacy for Writing Inventory (Zimmerman & Bandura, 1994), and a writing preferences survey. A writing sample and grade in Language Arts classes were obtained and served as outcome variables. The factor structure of secondary writing reflected three

  8. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    Science.gov (United States)

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  9. A model to facilitate collaborative social support for pregnant students in secondary schools

    Directory of Open Access Journals (Sweden)

    Matlala SF

    2017-09-01

    Full Text Available Sogo F Matlala Department of Public Health, University of Limpopo, Sovenga, South Africa Abstract: Pregnancy among secondary school students remains a public health problem and is associated with school dropout as well as poor maternal and child health outcomes. Schools in South Africa no longer expel pregnant students as was the case before 2000. Instead, the government encourages them to remain in class to complete their education, but pregnant students often face stigma, and some drop out of school as a result. To remain in class and access antenatal care, pregnant students require social support from teachers, parents and professional nurses. Unfortunately, teachers, parents and professional nurses support pregnant students on an ad hoc basis, and this calls for a model to facilitate collaborative social support. The purpose of this paper is to present and describe a model to facilitate collaborative social support for pregnant students attending secondary schools in South Africa, using the model description steps of Chinn and Kramer. The model is designed as a tool to enable pregnant students to remain in school, attend antenatal care and in the end, deliver healthy babies. The professional nurse, as a member and leader of the school health team which visits secondary schools to provide a package of school health services, is the agent or facilitator of the model. Keywords: communication, health team, learner pregnancy, maternal and child health, school health services, social network

  10. Modeling of carbonate reservoir variable secondary pore space based on CT images

    Science.gov (United States)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  11. Indepth diagnosis of a secondary clarifier by the application of radiotracer technique and numerical modeling.

    Science.gov (United States)

    Kim, H S; Shin, M S; Jang, D S; Jung, S H

    2006-01-01

    To make an indepth diagnosis of a full-scale rectangular secondary clarifier, an experimental and numerical study has been performed in a wastewater treatment facility. Calculation results by the numerical model with the adoption of the SIMPLE algorithm of Patankar are validated with radiotracer experiments. Emphasis is given to the prediction of residence time distribution (RTD) curves. The predicted RTD profiles are in good agreement with the experimental RTD curves at the upstream and center sections except for the withdrawal zone of the complex effluent weir structure. The simulation results predict successfully the well-known flow characteristics of each stage such as the waterfall phenomenon at the front of the clarifier, the bottom density current and the surface return flow in the settling zone, and the upward flow in the exit zone. The detailed effects of density current are thoroughly investigated in terms of high SS loading and temperature difference between influent and ambient fluid. The program developed in this study shows the high potential to assist in the design and determination of optimal operating conditions to improve effluent quality in a full-scale secondary clarifier.

  12. Secondary Structure Prediction of Protein using Resilient Back Propagation Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jyotshna Dongardive

    2015-12-01

    Full Text Available The paper proposes a neural network based approach to predict secondary structure of protein. It uses Multilayer Feed Forward Network (MLFN with resilient back propagation as the learning algorithm. Point Accepted Mutation (PAM is adopted as the encoding scheme and CB396 data set is used for the training and testing of the network. Overall accuracy of the network has been experimentally calculated with different window sizes for the sliding window scheme and by varying the number of units in the hidden layer. The best results were obtained with eleven as the window size and seven as the number of units in the hidden layer.

  13. The Interplay between Adolescent Needs and Secondary School Structures: Fostering Developmentally Responsive Middle and High School Environments across the Transition

    Science.gov (United States)

    Ellerbrock, Cheryl R.; Kiefer, Sarah M.

    2013-01-01

    Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…

  14. Nuclear fragmentation with secondary decay in the context of conventional percolation model

    International Nuclear Information System (INIS)

    Santiago, A.J.

    1989-09-01

    Mass and energy spectra arising from proton-nucleus collisions at energies between 80 and 350 GeV were studied, using the conventional percolation model coupled with secondary decay of the clusters. (L.C.J.A.)

  15. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Scheid Anika

    2012-07-01

    Full Text Available Abstract Background Over the past years, statistical and Bayesian approaches have become increasingly appreciated to address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic method for the prediction of RNA secondary structures from a single sequence has been studied which is based on generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated (traditional or length-dependent stochastic context-free grammar (SCFG that mirrors the standard thermodynamic model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of the partition function (PF approach to produce statistically representative subsets of the Boltzmann-weighted ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples, where neither of these two competing approaches generally outperforms the other. Results In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be resistant to large errors on the distinct sampling probabilities (compared to the exact ones, then it will be an indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to approximate them. Thus, it might then be possible to decrease the worst

  16. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  17. Primary and Secondary Yield Losses Caused by Pests and Diseases: Assessment and Modeling in Coffee.

    Science.gov (United States)

    Cerda, Rolando; Avelino, Jacques; Gary, Christian; Tixier, Philippe; Lechevallier, Esther; Allinne, Clémentine

    2017-01-01

    The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.

  18. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    Science.gov (United States)

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  19. Travel Time Model for Right-Turning Vehicles of Secondary Street at Unsignalized Intersections

    Directory of Open Access Journals (Sweden)

    Feng Yu-Qin

    2013-01-01

    Full Text Available The travel time of right-turning vehicles on secondary street at unsignalized intersection is discussed in this paper. Under the assumption that the major-street through vehicles’ headway follows Erlang distribution and secondary-street right-turning vehicles’ headway follows Poisson distribution. The right-turning vehicles travel time model is established on the basis of gap theory and M/G/1 queue theory. Comparison is done with the common model based on the assumption that the major-street vehicles’ headway follows Poisson distribution. An intersection is selected to verify each model. The results show that the model established in this paper has stronger applicability, and its most relative error is less than 15%. In addition, the sensitivity analysis has been done. The results show that right-turning flow rate and major-street flow rate have a significant impact on the travel time. Hence, the methodology for travel time of right-turning vehicles at unsignalized intersection proposed in this paper is effective and applicable.

  20. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  1. The Particle/Wave-in-a-Box Model in Dutch Secondary Schools

    Science.gov (United States)

    Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo

    2007-01-01

    The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …

  2. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  3. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  4. A new settling velocity model to describe secondary sedimentation

    DEFF Research Database (Denmark)

    Ramin, Elham; Wágner, Dorottya Sarolta; Yde, Lars

    2014-01-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids...... distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges...... associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM...

  5. Teachers' personal didactical models and obstacles to professional development: Case-studies with secondary experimental science teachers

    Science.gov (United States)

    Wamba Aguado, Ana Maria

    The aim of this thesis has been to elaborate criteria which characterise how teachers teach, as a curriculum component of their professional knowledge and to infer the obstacles which hinder their desired professional development, in such a way that they are considered in the design of proposals for teacher training in secondary education. In addition to this, a further objective was to elaborate and validate data analysis instruments. Case studies were carried out on three natural science secondary teachers with more than ten years' experience, enabling the characterisation of the teachers' science and science teaching conceptions as well as the description of classroom practice. Finally, with the help of these data together with the material used by the teachers, the inference of the teachers' personal didactical models and the obstacles to their professional development were made possible. Instruments for data collection used a questionnaire to facilitate the realisation of a semi-structured interview, video recordings of the classroom intervention of each teacher which correspond to a teaching unit taught over a two-week period and all the written material produced for the unit was collected. For the data analysis a taxonomy of classroom intervention patterns and a progression hypothesis towards desirable professional knowledge were elaborated, from the perspective of a research in the classroom model and according to a system of categories and subcategories which refer to their concepts about scientific knowledge, school knowledge, how to teach and evaluation. With the interview and the questionnaire a profile of exposed conceptions was obtained. The intervention profile was obtained using the classroom recordings; according to the patterns identified and their sequencing, both of which determine the characteristic structures and routines of these teachers. An outcome of these results was the validation of the previously mentioned taxonomy as an instrument of

  6. A Cost-Effectiveness Analysis Model for Evaluating and Planning Secondary Vocational Programs

    Science.gov (United States)

    Kim, Jin Eun

    1977-01-01

    This paper conceptualizes a cost-effectiveness analysis and describes a cost-effectiveness analysis model for secondary vocational programs. It generates three kinds of cost-effectiveness measures: program effectiveness, cost efficiency, and cost-effectiveness and/or performance ratio. (Author)

  7. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  8. Structure of the secondary xylem of Aniba Aubl. species from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Cláudia Viana Urbinati

    2014-09-01

    Full Text Available The aim of this study was to characterize the wood of Aniba species from the Brazilian Amazon, on the basis of specimens in the wood collection of the Herbarium of the Museu Paraense Emílio Goeldi, in the city of Belém, Brazil. The species were found to present a homogeneous structure in the secondary xylem, as defined by the location of oil cells; the presence of tyloses and crystals; and singularities of the radial and axial parenchyma.

  9. GRAPH MODELING OF THE GRAIN PROCESSING ENTERPRISE FOR SECONDARY EXPLOSION ESTIMATIONS

    Directory of Open Access Journals (Sweden)

    A. S. Popov

    2016-08-01

    Full Text Available Mathematical model for the possible development of the primary explosion at the grain processing enterprise is created. It is proved that only instability is possible for the combustion process. This model enables to estimate possibility of the secondary explosion at any object of the enterprise and forms the base for mathematical support of the decision support system for explosion-proof. Such decision support system can be included in the control system of the processing enterprise.

  10. Applied CATIA Secondary Development to Parametric Design of Active Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2016-01-01

    Full Text Available Based on the properties of active magnetic bearing, the electromagnetic parameters and structure parameters are analyzed, parametric design method is introduced to study the structure of active magnetic bearing. Through a program personalization process that is in accordance with active magnetic bearing is established. Personalization process aims to build the parametric model of active magnetic bearings and component library by use of CATIA secondary development. Component library is to build assembly model for a multiple degree of freedom magnetic bearing system. Parametric design is a method that provides the direction for its structural design.

  11. Secondary instability in drift wave turbulence as a mechanism for avalanche and zonal flow formation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Champeaux, S.; Malkov, M.

    2001-01-01

    We report on recent developments in the theory of secondary instability in drift-ITG turbulence. Specifically, we explore secondary instability as a mechanism for avalanche formation. A theory of radially extended streamer cell formation and self-regulation is presented. Aspects of streamer structure and dynamics are used to estimate the variance of the drift-wave induced flux. The relation between streamer cell structures and the avalanche concept is discussed, as are the implications of our results for transport modeling. (author)

  12. Does family structure matter? Comparing the life goals and aspirations of learners in secondary schools

    Directory of Open Access Journals (Sweden)

    Eugene Lee Davids

    2013-01-01

    Full Text Available The aim of this study was to compare the goals and aspirations of learners from single- and two-parent families. The study used a quantitative methodology with a cross-sectional comparative group design. The sample consisted of 853 Grade 11 learners from secondary schools in the Northern, Southern and Metro Central education districts in the Western Cape. The data were collected using the Aspirations Index and a short biographical questionnaire. The results suggest that there was a significant main effect of family structure on certain goals and aspirations of learners in secondary schools. These goals and aspirations included wealth, image, personal growth, relationships, and health. Furthermore, learners in single-parent families placed more emphasis on intrinsic goals.

  13. 'Working with the team': an exploratory study of improved type 2 diabetes management in a new model of integrated primary/secondary care.

    Science.gov (United States)

    Hepworth, Julie; Askew, Deborah; Jackson, Claire; Russell, Anthony

    2013-01-01

    This study aimed to explore how a new model of integrated primary/secondary care for type 2 diabetes management, the Brisbane South Complex Diabetes Service (BSCDS), related to improved diabetes management in a selected group of patients. We used a qualitative research design to obtain detailed accounts from the BSCDS via semi-structured interviews with 10 patients. The interviews were fully transcribed and systematically coded using a form of thematic analysis. Participants' responses were grouped in relation to: (1) Patient-centred care; (2) Effective multiprofessional teamwork; and (3) Empowering patients. The key features of this integrated primary/secondary care model were accessibility and its delivery within a positive health care environment, clear and supportive interpersonal communication between patients and health care providers, and patients seeing themselves as being part of the team-based care. The BSCDS delivered patient-centred care and achieved patient engagement in ways that may have contributed to improved type 2 diabetes management in these participants.

  14. Validation Evidence of the Motivation for Teaching Scale in Secondary Education.

    Science.gov (United States)

    Abós, Ángel; Sevil, Javier; Martín-Albo, José; Aibar, Alberto; García-González, Luis

    2018-04-10

    Grounded in self-determination theory, the aim of this study was to develop a scale with adequate psychometric properties to assess motivation for teaching and to explain some outcomes of secondary education teachers at work. The sample comprised 584 secondary education teachers. Analyses supported the five-factor model (intrinsic motivation, identified regulation, introjected regulation, external regulation and amotivation) and indicated the presence of a continuum of self-determination. Evidence of reliability was provided by Cronbach's alpha, composite reliability and average variance extracted. Multigroup confirmatory factor analyses supported the partial invariance (configural and metric) of the scale in different sub-samples, in terms of gender and type of school. Concurrent validity was analyzed by a structural equation modeling that explained 71% of the work dedication variance and 69% of the boredom at work variance. Work dedication was positively predicted by intrinsic motivation (ß = .56, p amotivation (ß = -.49, p amotivation (ß = .68, p < .001). The Motivation for Teaching Scale in Secondary Education (Spanish acronym EME-ES, Escala de Motivación por la Enseñanza en Educación Secundaria) is discussed as a valid and reliable instrument. This is the first specific scale in the work context of secondary teachers that has integrated the five-factor structure together with their dedication and boredom at work.

  15. Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)

    Science.gov (United States)

    Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu

    2018-04-01

    Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.

  16. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  17. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    Science.gov (United States)

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  18. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  19. A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Pochapsky, Thomas C., E-mail: pochapsk@brandeis.edu; Pochapsky, Susan S.; Ju Tingting [Brandeis University, Department of Chemistry (United States); Hoefler, Chris [Brandeis University, Department of Biochemistry (United States); Liang Jue [Brandeis University, Department of Chemistry (United States)

    2006-02-15

    Acireductone dioxygenase (ARD) from Klebsiella ATCC 8724 is a metalloenzyme that is capable of catalyzing different reactions with the same substrates (acireductone and O{sub 2}) depending upon the metal bound in the active site. A model for the solution structure of the paramagnetic Ni{sup 2+}-containing ARD has been refined using residual dipolar couplings (RDCs) measured in two media. Additional dihedral restraints based on chemical shift (TALOS) were included in the refinement, and backbone structure in the vicinity of the active site was modeled from a crystallographic structure of the mouse homolog of ARD. The incorporation of residual dipolar couplings into the structural refinement alters the relative orientations of several structural features significantly, and improves local secondary structure determination. Comparisons between the solution structures obtained with and without RDCs are made, and structural similarities and differences between mouse and bacterial enzymes are described. Finally, the biological significance of these differences is considered.

  20. A governance model for integrated primary/secondary care for the health-reforming first world - results of a systematic review.

    Science.gov (United States)

    Nicholson, Caroline; Jackson, Claire; Marley, John

    2013-12-20

    Internationally, key health care reform elements rely on improved integration of care between the primary and secondary sectors. The objective of this systematic review is to synthesise the existing published literature on elements of current integrated primary/secondary health care. These elements and how they have supported integrated healthcare governance are presented. A systematic review of peer-reviewed literature from PubMed, MEDLINE, CINAHL, the Cochrane Library, Informit Health Collection, the Primary Health Care Research and Information Service, the Canadian Health Services Research Foundation, European Foundation for Primary Care, European Forum for Primary Care, and Europa Sinapse was undertaken for the years 2006-2012. Relevant websites were also searched for grey literature. Papers were assessed by two assessors according to agreed inclusion criteria which were published in English, between 2006-2012, studies describing an integrated primary/secondary care model, and had reported outcomes in care quality, efficiency and/or satisfaction. Twenty-one studies met the inclusion criteria. All studies evaluated the process of integrated governance and service delivery structures, rather than the effectiveness of services. They included case reports and qualitative data analyses addressing policy change, business issues and issues of clinical integration. A thematic synthesis approach organising data according to themes identified ten elements needed for integrated primary/secondary health care governance across a regional setting including: joint planning; integrated information communication technology; change management; shared clinical priorities; incentives; population focus; measurement - using data as a quality improvement tool; continuing professional development supporting joint working; patient/community engagement; and, innovation. All examples of successful primary/secondary care integration reported in the literature have focused on a combination

  1. Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers

    Science.gov (United States)

    Ritter, Kristy L.

    2010-01-01

    The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…

  2. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Johansen, J. R.; Bowen, M.B.; Martin, M.P.; Sheil, C.A.

    2014-01-01

    Roč. 14, č. 2 (2014), s. 161-178 ISSN 1802-5439 Institutional support: RVO:60077344 Keywords : 16S rRNA secondary structure * cyanobacteria * phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 1.930, year: 2014

  3. Modeling Radiation Effects of Ultrasoft X Rays on the Basis of Amorphous Track Structure.

    Science.gov (United States)

    Buch, Tamara; Scifoni, Emanuele; Krämer, Michael; Durante, Marco; Scholz, Michael; Friedrich, Thomas

    2018-01-01

    There is experimental evidence that ultrasoft X rays (0.1-5 keV) show a higher biological effectiveness than high-energy photons. Similar to high-LET radiation, this is attributed to a rather localized dose distribution associated with a considerably smaller range of secondary electrons, which results in an increasing yield of double-strand breaks (DSBs) and potentially more complex lesions. We previously reported on the application of the Giant LOop Binary LEsion (GLOBLE) model to ultrasoft X rays, in which experimental values of the relative biological effectiveness (RBE) for DSB induction were used to show that this increasing DSB yield was sufficient to explain the enhanced effectiveness in the cell inactivation potential of ultrasoft X rays. Complementary to GLOBLE, we report here on a modeling approach to predict the increased DSB yield of ultrasoft X rays on the basis of amorphous track structure formed by secondary electrons, which was derived from Monte Carlo track structure simulations. This procedure is associated with increased production of single-strand break (SSB) clusters, which are caused by the highly localized energy deposition pattern induced by low-energy photons. From this, the RBE of ultrasoft X rays can be determined and compared to experimental data, showing that the inhomogeneity of the energy deposition pattern represents the key variable to describe the increased biological effectiveness of ultrasoft X rays. Thus, this work demonstrates an extended applicability of the amorphous track structure concept and tests its limits with respect to its predictive power. The employed model mechanism offers a possible explanation for how the cellular response to ultrasoft X rays is directly linked to the energy deposition properties on the nanometric scale.

  4. Improved age-diffusion model for low-energy electron transport in solids. II. Application to secondary emission from aluminum

    International Nuclear Information System (INIS)

    Dubus, A.; Devooght, J.; Dehaes, J.C.

    1987-01-01

    The ''improved age-diffusion'' model for secondary-electron transport is applied to aluminum. Electron cross sections for inelastic collisions with the free-electron gas using the Lindhard dielectric function and for elastic collisions with the randomly distributed ionic cores are used in the calculations. The most important characteristics of backward secondary-electron emission induced by low-energy electrons on polycrystalline Al targets are calculated and compared to experimental results and to Monte Carlo calculations. The model appears to predict the electronic yield, the energy spectra, and the spatial dependence of secondary emission with reasonable accuracy

  5. Designing a Curriculum Model for the Teaching of the Bible in UK Jewish Secondary Schools: A Case Study

    Science.gov (United States)

    Kohn, Eli

    2012-01-01

    This paper describes the process of designing a curriculum model for Bible teaching in UK Jewish secondary schools. This model was designed over the period 2008-2010 by a team of curriculum specialists from the Jewish Curriculum Partnership UK in collaboration with a group of teachers from Jewish secondary schools. The paper first outlines the…

  6. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  7. Effect of Secondary Doping Using Sorbitol on Structure and Transport Properties of PEDOT-PSS Thin Films

    Science.gov (United States)

    Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer

    2017-07-01

    Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in

  8. Event-based model diagnosis of rainfall-runoff model structures

    International Nuclear Information System (INIS)

    Stanzel, P.

    2012-01-01

    The objective of this research is a comparative evaluation of different rainfall-runoff model structures. Comparative model diagnostics facilitate the assessment of strengths and weaknesses of each model. The application of multiple models allows an analysis of simulation uncertainties arising from the selection of model structure, as compared with effects of uncertain parameters and precipitation input. Four different model structures, including conceptual and physically based approaches, are compared. In addition to runoff simulations, results for soil moisture and the runoff components of overland flow, interflow and base flow are analysed. Catchment runoff is simulated satisfactorily by all four model structures and shows only minor differences. Systematic deviations from runoff observations provide insight into model structural deficiencies. While physically based model structures capture some single runoff events better, they do not generally outperform conceptual model structures. Contributions to uncertainty in runoff simulations stemming from the choice of model structure show similar dimensions to those arising from parameter selection and the representation of precipitation input. Variations in precipitation mainly affect the general level and peaks of runoff, while different model structures lead to different simulated runoff dynamics. Large differences between the four analysed models are detected for simulations of soil moisture and, even more pronounced, runoff components. Soil moisture changes are more dynamical in the physically based model structures, which is in better agreement with observations. Streamflow contributions of overland flow are considerably lower in these models than in the more conceptual approaches. Observations of runoff components are rarely made and are not available in this study, but are shown to have high potential for an effective selection of appropriate model structures (author) [de

  9. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  10. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

    Science.gov (United States)

    Sobolewski, Stanley John

    The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second

  11. Modelling of secondary sedimentation under wet-weather and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in wastewater treatment plants (WWTPs). Performance of SSTs influences the solids inventory in the activated sludge unit and consequently impacts the biological treatment efficiency. Moreover, SSTs limit......) tools were developed for the identification and calibration of the settling sub-model in the SST models. The developed CFD tool is a potential tool for the development of a more mechanistic based flow (and design) dependent hydraulic sub-model in the second-order 1-D SST. In this thesis, a rigorous...... comparative evaluation of the first- and second-order SST models in WWTP modelling was performed by means of GSA. In the first GSA study using the Benchmark Simulation Model No. 2 with first- and second-order SST models, the settling parameters were included in the sensitivity analysis. Interestingly...

  12. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    Science.gov (United States)

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  13. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    Science.gov (United States)

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  14. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  15. Performance modeling of a two-tier primary-secondary network with IEEE 802.11 broadcast scheme

    KAUST Repository

    Khabazian, Mehdi

    2011-03-01

    In this paper, we study the performance of a two-tier primary-secondary network based on IEEE 802.11 broadcast scheme. We assume that a number of primary and secondary users coexist in the radio environment and share a single band. To protect the primary users\\' priority, the secondary users are allowed to contend for the channel only if they sense it idle for a certain sensing time. Considering an exponential packet inter-arrival time for the primary network, we model each primary user as an independent M/G/1 queue. Subsequently, we determine the primary users\\' average medium access delay in the presence of secondary users as well as the hybrid network\\'s throughput. Numerical results and discussions show the effects of parameters pertaining to the secondary users, such as as sensing time, packet payload size and population size, on the performance of the primary network. Furthermore, we provide simulation results which confirm the accuracy of the proposed analysis. © 2011 IEEE.

  16. Performance modeling of a two-tier primary-secondary network with IEEE 802.11 broadcast scheme

    KAUST Repository

    Khabazian, Mehdi; Aissa, Sonia; El Kefi, Rania

    2011-01-01

    In this paper, we study the performance of a two-tier primary-secondary network based on IEEE 802.11 broadcast scheme. We assume that a number of primary and secondary users coexist in the radio environment and share a single band. To protect the primary users' priority, the secondary users are allowed to contend for the channel only if they sense it idle for a certain sensing time. Considering an exponential packet inter-arrival time for the primary network, we model each primary user as an independent M/G/1 queue. Subsequently, we determine the primary users' average medium access delay in the presence of secondary users as well as the hybrid network's throughput. Numerical results and discussions show the effects of parameters pertaining to the secondary users, such as as sensing time, packet payload size and population size, on the performance of the primary network. Furthermore, we provide simulation results which confirm the accuracy of the proposed analysis. © 2011 IEEE.

  17. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  18. Secondary production in shallow marine environments

    International Nuclear Information System (INIS)

    Pomeroy, L.R.

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed

  19. A governance model for integrated primary/secondary care for the health-reforming first world – results of a systematic review

    Science.gov (United States)

    2013-01-01

    Background Internationally, key health care reform elements rely on improved integration of care between the primary and secondary sectors. The objective of this systematic review is to synthesise the existing published literature on elements of current integrated primary/secondary health care. These elements and how they have supported integrated healthcare governance are presented. Methods A systematic review of peer-reviewed literature from PubMed, MEDLINE, CINAHL, the Cochrane Library, Informit Health Collection, the Primary Health Care Research and Information Service, the Canadian Health Services Research Foundation, European Foundation for Primary Care, European Forum for Primary Care, and Europa Sinapse was undertaken for the years 2006–2012. Relevant websites were also searched for grey literature. Papers were assessed by two assessors according to agreed inclusion criteria which were published in English, between 2006–2012, studies describing an integrated primary/secondary care model, and had reported outcomes in care quality, efficiency and/or satisfaction. Results Twenty-one studies met the inclusion criteria. All studies evaluated the process of integrated governance and service delivery structures, rather than the effectiveness of services. They included case reports and qualitative data analyses addressing policy change, business issues and issues of clinical integration. A thematic synthesis approach organising data according to themes identified ten elements needed for integrated primary/secondary health care governance across a regional setting including: joint planning; integrated information communication technology; change management; shared clinical priorities; incentives; population focus; measurement – using data as a quality improvement tool; continuing professional development supporting joint working; patient/community engagement; and, innovation. Conclusions All examples of successful primary/secondary care integration reported in

  20. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation crite...

  1. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA: finding the molecular and morphological gap in Caribbean gorgonian corals

    Directory of Open Access Journals (Sweden)

    Sánchez Juan A

    2007-06-01

    Full Text Available Abstract Background Most phylogenetic studies using current methods have focused on primary DNA sequence information. However, RNA secondary structures are particularly useful in systematics because they include characteristics, not found in the primary sequence, that give "morphological" information. Despite the number of recent molecular studies on octocorals, there is no consensus opinion about a region that carries enough phylogenetic resolution to solve intrageneric or close species relationships. Moreover, intrageneric morphological information by itself does not always produce accurate phylogenies; intra-species comparisons can reveal greater differences than intra-generic ones. The search for new phylogenetic approaches, such as by RNA secondary structure analysis, is therefore a priority in octocoral research. Results Initially, twelve predicted RNA secondary structures were reconstructed to provide the basic information for phylogenetic analyses; they accorded with the 6 helicoidal ring model, also present in other groups of corals and eukaryotes. We obtained three similar topologies for nine species of the Caribbean gorgonian genus Eunicea (candelabrum corals with two sister taxa as outgroups (genera Plexaura and Pseudoplexaura on the basis of molecular morphometrics of ITS2 RNA secondary structures only, traditional primary sequence analyses and maximum likelihood, and a Bayesian analysis of the combined data. The latter approach allowed us to include both primary sequence and RNA molecular morphometrics; each data partition was allowed to have a different evolution rate. In addition, each helix was partitioned as if it had evolved at a distinct rate. Plexaura flexuosa was found to group within Eunicea; this was best supported by both the molecular morphometrics and combined analyses. We suggest Eunicea flexuosa (Lamouroux, 1821 comb. nov., and we present a new species description including Scanning Electron Microscopy (SEM images of

  2. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

    Science.gov (United States)

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

  3. The incidence angle influence on the structure of secondary-emission characteristics of single crystals

    International Nuclear Information System (INIS)

    Gasanov, E.R.; Aliyev, B.Z.

    2012-01-01

    Full text : The dependences of Wand MO single crystals in different atom planes have been studied in this work. It is revealed that maximums are added to each dependency and also minimums of first and second degree. This fact is explained by diffraction dynamic theory. It is established that electron diffraction oriented not perpendicularly to crystal surface is the reason of appearance of second order structure on studied secondary-emission characteristics. In the present work being the continuation and development of SEE investigations of high-melting metal single crystals begun earlier by authors, the structure dependence of SEE main characteristics of angle has been studied. This angle has been chosen because as it is mentioned before the bad repeatability in different experiments for it is observed

  4. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  5. Fault detection in IRIS reactor secondary loop using inferential models

    International Nuclear Information System (INIS)

    Perillo, Sergio R.P.; Upadhyaya, Belle R.; Hines, J. Wesley

    2013-01-01

    The development of fault detection algorithms is well-suited for remote deployment of small and medium reactors, such as the IRIS, and the development of new small modular reactors (SMR). However, an extensive number of tests are still to be performed for new engineering aspects and components that are not yet proven technology in the current PWRs, and present some technological challenges for its deployment since many of its features cannot be proven until a prototype plant is built. In this work, an IRIS plant simulation platform was developed using a Simulink® model. The dynamic simulation was utilized in obtaining inferential models that were used to detect faults artificially added to the secondary system simulations. The implementation of data-driven models and the results are discussed. (author)

  6. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient.

    Science.gov (United States)

    Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L

    2012-08-20

    Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters

  7. Salient design features of secondary containment structure of Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rahalkar, B.D.

    1975-01-01

    Design of the secondary containment structure for Narora Atomic Power Project is an improvement over the two earlier structures at of Rajasthan and Kalpakkam wherein Candu-type of reactors are involved. The major improvements envisaged are : to limit the leakage through the double containment envelope to 0.1% of volume of the building per day as against 0.1% per hour achieved for earlier stations; to separate heavy water atmosphere from that of light water for effective heavy water recovery; and better man-rem budgetting by limiting inner containment structure upto boiler room floor level and making boiler room area accessible during normal operation for servicing of light water system equipment. Narora Atomic Power Station is located in the Indo-Gangetic alluvial plains in seismically active zone IV. Comprehensive soil investigation, including dynamic properties of soil is required to be undertaken as the foundation level of the containment structure is 17 M below the ground level. The salient results of this investigation relevant to the foundations as well as type of foundation proposed are presented in brief. Double containment concept similar to that adopted for Kalpakkam station is provided for this station also. However, necessary changes in design to withstand large earthquake forces are required to be made. These design problems are discussed in brief. (author)

  8. Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal

    OpenAIRE

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of appl...

  9. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    Science.gov (United States)

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  10. Observed lesson structure during the first year of secondary education : Exploration of change and link with academic engagement

    NARCIS (Netherlands)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components

  11. MODEL OF METHODS OF FORMING BIOLOGICAL PICTURE OF THE WORLD OF SECONDARY SCHOOL PUPILS

    Directory of Open Access Journals (Sweden)

    Mikhail A. Yakunchev

    2016-12-01

    Full Text Available Introduction: the problem of development of a model of methods of forming the biological picture of the world of pupils as a multicomponent and integrative expression of the complete educational process is considered in the article. It is stated that the results of the study have theoretical and practical importance for effective subject preparation of senior pupils based on acquiring of systematic and generalized knowledge about wildlife. The correspondence of the main idea of the article to the scientific profile of the journal “Integration of Education” determines the choice of the periodical for publication. Materials and Methods: the results of the analysis of materials on modeling of the educational process, on specific models of the formation of a complete comprehension of the scientific picture of the world and its biological component make it possible to suggest a lack of elaboration of the aspect of pedagogical research under study. Therefore, the search for methods to overcome these gaps and to substantiate a particular model, relevant for its practical application by a teacher, is important. The study was based on the use of methods of theoretical level, including the analysis of pedagogical and methodological literature, modeling and generalized expression of the model of forming the biological picture of the world of secondary school senior pupils, which were of higher priority. Results: the use of models of organization of subject preparation of secondary school pupils takes a priority position, as they help to achieve the desired results of training, education and development. The model of methods of forming a biological picture of the world is represented as a theoretical construct in the unity of objective, substantive, procedural, diagnostic and effective blocks. Discussion and Conclusions: in a generalized form the article expresses the model of methods of forming the biological picture of the world of secondary school

  12. [Partially unfolded state of lysozyme with a developed secondary structure in dimethylsulfoxide].

    Science.gov (United States)

    Timchenko, A A; Kirkitadze, M D; Prokhorov, D A; Potekhin, S A; Serdiuk, I N

    1996-06-01

    The conformation of a chicken egg lysozyme molecule (dimensions, stoichiometry of its associates, and the degree of helicity) in DMSO was studied by small-angle neutron scattering, dynamic light scattering, and optical rotatory dispersion in the visible region of the spectrum. At high DMSO concentrations (70%), the protein was shown to exist as a dimer. The monomer molecules in the dimer adopt a partially unfolded conformation, with dimensions substantially greater than those in the native state and a high content of secondary structure (the degree of helicity is close to that of native lysozyme). This approach provides a unique possibility to assess the compactness of molecules in associates, which may be very useful in studying protein self-organization.

  13. Secondary Education in Argentina during the 1990s

    Directory of Open Access Journals (Sweden)

    Jorge M. Gorostiaga

    2003-05-01

    Full Text Available The reform of secondary education has been a fundamental part of national educational policy in Argentina since the beginning of the 1990s. Along with the decentralization of responsibilities to provinces and a new structure of primary and secondary education, changes have affected the areas of curriculum design, teaching methods, teacher training, school management, and information and evaluation systems. This study describes the main policies on secondary education implemented during the last decade, including their objectives and rationales. Focusing on how the reform can be seen to relate to issues of access, quality and equity, the study presents an analysis of its implementation, and discusses some of its effects. We argue that political, economic and technical factors as well as the strategies chosen by the national government resulted in a limited implementation, and we highlight the need for considering more focused reform strategies, alternative models of teacher training, and a more active involvement of teachers.

  14. Effect of secondary structure on the interactions of peptide T4 LYS (11-36) in mixtures of aqueous sodium chloride and 2,2,2,-Trifluoroethanol

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Camille O.; Spiegelberg, Susanne; Prausnitz, John M.; Blanch, Harvey W.

    2001-10-01

    The potential of mean force for protein-protein interactions is key to the development of a statistical-mechanical model for salt-induced protein precipitation and crystallization, and for understanding certain disease states, including cataract formation and {beta}-amyloid pathology in Alzheimer's disease. Fluorescence anisotropy provides a method for quantitative characterization of intermolecular interactions due to reversible association. Monomer-dimer equilibria for the peptide T4 LYS(11-36) were studied by fluorescence anisotropy. This peptide, derived from the {beta}-sheet region of the T4 lysozyme molecule, has the potential to form amyloid fibrils. 2,2,2-trifluoroethanol (TFE) induces a change in peptide secondary structure, and was used in aqueous solutions at concentrations from 0 to 50% (v/v) at 25 and 37 C to examine the role of peptide conformation on peptide-peptide interactions. The association constant for dimerization increased with rising TFE concentration and with falling temperature. The peptide-peptide potential of mean force was computed from these association constants. Circular-dichroism measurements showed that the secondary structure of the peptide plays an important role in these strong attractive interactions due to intermolecular hydrogen-bond formation and hydrophobic interactions.

  15. Transformation of Taiwan's Upper Secondary Education System

    Directory of Open Access Journals (Sweden)

    Hueih-Lirng Laih

    1998-09-01

    Full Text Available This paper explores the policy issues circling around the structural "transition" in upper secondary education implicit in the twenty-year increase in secondary and third-level school enrollment rates in Taiwan. This expansion has taken place within a secondary school system which is rigidly divided into both general, i.e., academic, and vocational tracks and into public and private sectors: the majority of students are enrolled in the private vocational sector which is only loosely articulated with the university sector. These features of the school system are analysed against the background of social and economic developments in Taiwan as well as public opinion. The analysis suggests that the present structures of school must be "reformed" in ways that will result in a more unified secondary system with both greater public funding and better articulation of all school types with the third level. The policy options that circle around the possibility of such reforms in the areas of curriculum, examination structures and second level-third level articulation are discussed and a policy framework for the reform of the Taiwan secondary education sector is outlined.

  16. The development of a model for dealing with secondary traumatic stress in mental health workers in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean D. Iyamuremye

    2015-10-01

    Aim: To develop a comprehensive model to manage the effects of STS in mental health workers operating in Rwanda. Method: An action research project was initiated to develop this model and data for the model was collected through individual interviews with mental health workers (nurses, doctors, psychologists, trauma counsellors and social workers as well as a quantitative tool measuring secondary traumatic stress (Trauma Attachment Belief Scale in these health workers. Results: The Intervention Model to Manage Secondary Traumatic Stress (IMMSTS was synthesised from these findings and includes preventive, evaluative and curative strategies to manage STS in mental health workers in Rwanda at the individual, social and organisational levels. Conclusion: The model will offer mental health professionals an effective framework for addressing the issue of STS.

  17. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  18. Structural model of radiation effects in living cells

    International Nuclear Information System (INIS)

    Neyman, J.; Puri, P.S.

    1976-01-01

    The chance mechanism of cell damage and of repair in the course of irradiation involves two details familiar to biologists that thus far seem to have been overlooked in mathematical treatment. One of these details is that, generally, the passage of a single ''primary'' radiation particle generates a ''cluster'' of secondaries which can produce ''hits'' that damage the living cell. With high linear energy transfer, each cluster contains very many secondary particles. With low linear energy transfer, the number of secondaries per cluster is generally small. The second overlooked detail of the chance mechanism is concerned with what may be called the time scales of radiation damage and of the subsequent repair. The generation of a cluster of secondary particles and the possible hits occur so rapidly that, for all practical purposes, they may be considered as occurring instantly. On the other hand, the subsequent changes in the damaged cells appear to require measurable amounts of time. The constructed stochastic model embodies these details, the clustering of secondary particles and the time scale difference. The results explain certain details of observed phenomena

  19. Large structural modification with conserved conformation: analysis of delta(3)-fused aryl prolines in model beta-turns.

    Science.gov (United States)

    Jeannotte, Guillaume; Lubell, William D

    2004-11-10

    For the first time, the influence of a fused Delta3-arylproline on peptide conformation has been studied by the synthesis and comparison of the conformations of peptides containing proline and pyrrolo-proline, 3 (PyPro). Pyrrolo-proline was demonstrated to be a conservative replacement for Pro in model beta-turns, 4 and 5, as shown by their similar DMSO titration curves, cis/trans-isomer populations, and NOESY spectral data. Pyrrolo-proline may thus be used for studying the structure activity relationships of Pro-containing peptides with minimal modification of secondary structures.

  20. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Welsh, K.M.; Creighton, D.J.; Klinman, J.P.

    1980-01-01

    Solvent and alpha-secondary isotope effects have been measured in the yeast alcohol dehydrogenase reaction, under conditions of a rate-limiting transfer of hydrogen between coenzyme and substrate. Determination of catalytic constants in H20 and D20 as a function of pH(D) has allowed the separation of solvent effects on pKa from kcat. The small effect of D20 on pKa is tentatively assigned to ionization of an active-site ZnOH 2 . The near absence of an isotope effect on kcat in the direction of alcohol oxidation rules out a mechanism involving concerted catalysis by an active-site base of hydride transfer. The near identity of kinetic and equilibrium alpha-secondary isotope effects in the direction of alcohol oxidation implicates a transition-state structure which resembles aldehyde with regard to bond hybridization properties. The result contrasts sharply with previously reported structure - reactivity correlations, which implicate a transition-state structure resembling alcohol with regard to charge properties. The significance of these findings to the mechanism of NAD(P)H-dependent redox reactions is discussed

  1. Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2012-01-01

    Full Text Available FTIR spectroscopy was used to investigate the effects of extremely low frequency (50 Hz electromagnetic field and of microwaves at 900 MHz on the secondary structure of a typical protein, the lysozyme, evaluating the bioprotective effectiveness of trehalose. Lysozyme in D2O solution (60 mg/ml was exposed to 50 Hz frequency electromagnetic field at 180 μT. The FTIR spectra indicated an increase of CH2 group at 1921 and 1853 cm−1 after 3 h of exposure. Such effect was not observed after the addition of trehalose (150 mg/mL at the same exposure conditions. Lysozyme dissolved in D2O at the concentration of 100 mg/mL was exposed up to 4 h to 900 MHz mobile phone microwaves at 25 mA/m. A significant increase in intensity of the amide I vibration band in the secondary structure of the protein was observed after 4 h exposure to microwaves. This effect was inhibited by the presence of trehalose at the concentration of 150 mg/mL. Fourier self-deconvolution spectral analysis of lysozyme in D2O solution after exposure to microwaves revealed an increase in intensity of the conformational components of amide I mode, particularly of β-sheet and turn that can be attributed to disorder and unfolding processes of the protein.

  2. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  3. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    Directory of Open Access Journals (Sweden)

    Barash Danny

    2008-04-01

    Full Text Available Abstract Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3, for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary

  4. Investigating Associations between School Climate and Bullying in Secondary Schools: Multilevel Contextual Effects Modeling

    Science.gov (United States)

    Konishi, Chiaki; Miyazaki, Yasuo; Hymel, Shelley; Waterhouse, Terry

    2017-01-01

    This study examined how student reports of bullying were related to different dimensions of school climate, at both the school and the student levels, using a contextual effects model in a two-level multilevel modeling framework. Participants included 48,874 secondary students (grades 8 to 12; 24,244 girls) from 76 schools in Western Canada.…

  5. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  6. Developing Ecological Models on Carbon and Nitrogen in Secondary Facultative Ponds

    Directory of Open Access Journals (Sweden)

    Aponte-Reyes Alexander

    2014-07-01

    Full Text Available Ecological models formulated for TOC, CO2, NH4+, NO3- and NTK, based in literature reviewed and field work were obtained monitoring three facultative secondary stabilization ponds, FSSP, pilots: conventional pond, CP, baffled pond, BP, and baffled-meshed pond, BMP. Models were sensitive to flow inlet, solar radiation, pH and oxygen content; the sensitive parameters in Carbon Model were KCOT Ba, umax Ba, umax Al, K1OX, VAl, R1DCH4, YBh. The sensitive parameters in the Nitrogen model were KCOT Ba, umax Ba, umax Al, VAl, KOPH, KOPA, r4An. The test t–paired showed a good simulating of Carbon model refers to TOC in FSSP; on the other side, the Nitrogen model showed a good simulating of NH4+. Different topological models modify ecosystem ecology forcing different transformation pathways of Nitrogen; equal transformations of the Carbon BMP topology could be achieved using lower volumes, however, a calibration for a new model would be required. Carbon and Nitrogen models developed could be coupled to hydrodynamics models for better modeling of FSSP.

  7. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  8. Secondary Structural Models (16S rRNA of Polyhydroxyalkanoates Producing Bacillus Species Isolated from Different Rhizospheric Soil: Phylogenetics and Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs producing bacterial isolates are gaining more importance over the world due to the synthesis of a biodegradable polymer which is extremely desirable to substitute synthetic plastics. PHAs are produced by various microorganisms under certain stress conditions. In this study, sixteen bacterial isolates characterized previously by partial 16S rRNA gene sequencing (NCBI Accession No. KF626466 to KF626481 were again stained by Nile red after three years of preservation in order to confirm their ability to accumulate PHAs. Also, phylogenetic analysis carried out in the present investigation evidenced that the bacterial species belonging to genus Bacillus are the dominant flora of the rhizospheric region, with a potentiality of biodegradable polymer (PHAs production. Again, RNA secondary structure prediction hypothesized that there is no direct correlation between RNA folding pattern stability with a rate of PHAs production among the selected isolates of genus Bacillus.

  9. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  10. A new settling velocity model to describe secondary sedimentation.

    Science.gov (United States)

    Ramin, Elham; Wágner, Dorottya S; Yde, Lars; Binning, Philip J; Rasmussen, Michael R; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-12-01

    Secondary settling tanks (SSTs) are the most hydraulically sensitive unit operations in biological wastewater treatment plants. The maximum permissible inflow to the plant depends on the efficiency of SSTs in separating and thickening the activated sludge. The flow conditions and solids distribution in SSTs can be predicted using computational fluid dynamics (CFD) tools. Despite extensive studies on the compression settling behaviour of activated sludge and the development of advanced settling velocity models for use in SST simulations, these models are not often used, due to the challenges associated with their calibration. In this study, we developed a new settling velocity model, including hindered, transient and compression settling, and showed that it can be calibrated to data from a simple, novel settling column experimental set-up using the Bayesian optimization method DREAM(ZS). In addition, correlations between the Herschel-Bulkley rheological model parameters and sludge concentration were identified with data from batch rheological experiments. A 2-D axisymmetric CFD model of a circular SST containing the new settling velocity and rheological model was validated with full-scale measurements. Finally, it was shown that the representation of compression settling in the CFD model can significantly influence the prediction of sludge distribution in the SSTs under dry- and wet-weather flow conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Untereiner, W. A.; Réblová, K.

    2013-01-01

    Roč. 8, č. 5 (2013), e63547 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 Keywords : Cyphelophora * Phialophora * secondary structure Subject RIV: EF - Botanics Impact factor: 3.534, year: 2013

  12. Models for the structure and origin of bipolar nebulae

    International Nuclear Information System (INIS)

    Morris, M.

    1981-01-01

    The appearance of bipolar nebulae-symmetric reflection nebulae centered on evolved, mass-losing stars-can most simply be accounted for in terms of an axisymmetric distribution of outflowing dust in which the dust is concentrated towards an equatorial plane and declines monotonically with latitude above that plane. The symmetrically placed ''horns'' that can be seen radiating out of some bipolar nebulae, notably GL 2688, are a natural consequence of such a dust distribution if, at some latitude, the radial optical depth to starlight falls rapidly below unity. Several models of bipolar nebulae are presented. These structural models for bipolar nebulae lead in turn to an investigation of how such a geometry might arise. Although nonradial pulsation, rotationally forced mass ejection by a single star, and mass loss from a common envelope binary are all considered, the most attractive origin for bipolar nebulae is a binary star system in which the primary is evolving up the red giant branch to the point at which its radius approaches its tidal radius. If this occurs before corotation of the primary with the secondary's orbit can be achieved, then matter from the primary's enveloped can be gravitationally ejected from the system by the secondary, the ejected material being concentrated toward the system's equatorial plane. Numerical models of this phenomenon show that gravitational ejection from an asynchronous binary system easily leads to terminal outflow velocities in the observed range (20--50 km s -1 ), and that the rate of mass loss and the time scale over which the mass ejection takes place are consistent with observations if the particle density in the outer layers of the primary's atmosphere from which the material is extracted is in the range 10 14 --10 15 cm -3 . If this hypothesis is applicable, bipolar nebulae will probably become planetary nebulae, as previously suggested on observational grounds

  13. Capital Structure: Target Adjustment Model and a Mediation Moderation Model with Capital Structure as Mediator

    OpenAIRE

    Abedmajid, Mohammed

    2015-01-01

    This study consists of two models. Model one is conducted to check if there is a target adjustment toward optimal capital structure, in the context of Turkish firm listed on the stock market, over the period 2003-2014. Model 2 captures the interaction between firm size, profitability, market value and capital structure using the moderation mediation model. The results of model 1 have shown that there is a partial adjustment of the capital structure to reach target levels. The results of...

  14. [Effects of target tree tending on community structure and diversity in subtropical natural secondary shrubs].

    Science.gov (United States)

    Zhang, Hui; Zhou, Guo Mo; Bai, Shang Bin; Wang, Yi Xiang; You, Yu Jie; Zhu, Ting Ting; Zhang, Hua Feng

    2017-05-18

    The typical natural secondary shrub community was chosen in Lin'an of Zhejiang Pro-vince to discover its possibility of restoration to arbor forest with three kinds of forest management models being taken, i.e., no care as control, closed forest management and target tree tending. Over four years growth, compared with control, closed forest management significantly increased average DBH and height by 130% and 50%, respectively, while 260% and 110% for target tree tending. In target tree tending plots, larger trees had been emerging with 4.5-8.5 cm diameter class and 4.5-8.5 m height class and formed a new storey of 4 m compared with control. The species biodiversity indexes at shrub layer were significantly increased in closed management plots, and did not decrease in target tree tending plots. Closed forest management did not change the tree species composition, following its previous succession direction. However, target tree tending increased the importance value of target species with the high potential succession direction of mixed coniferous-broadleaved forest. The results revealed that the secondary shrub community with target tree tending achieved more desired goals on DBH and height growth of dominant trees and species composition improvement compared with closed management. If the secondary shrub community could be managed when the operational conditions existed, target tree tending model should be selected to accelerate the restoration of shrub toward arbor forest.

  15. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  16. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  17. Tool for generation of seismic floor response spectra for secondary system design

    International Nuclear Information System (INIS)

    Cardoso, Tarcisio F.; Almeida, Andreia A. Diniz de

    2009-01-01

    The spectral analysis is still a valuable method to the seismic structure design, especially when one focalizes the topics of secondary systems in large industrial installations, as nuclear power plants. Two aspects of this situation add their arguments to recommend the use of this kind of analysis: the random character of the excitation and the multiplicity and the variability of the secondary systems. The first aspect can be managed if one assumes the site seismicity represented by a power spectrum density function of the ground acceleration, and then, by the systematic resolution of a first passage problem, to develop a uniformly probable response spectrum. The second one suggests also a probabilistic approach to the response spectrum in order to be representative all over the extensive group of systems with different characteristics, which can be enrolled in a plant. The present paper proposes a computational tool to achieve in-structure floor response spectra for secondary system design, which includes a probabilistic approach and considers coupling effects between primary and inelastic secondary systems. The analysis is performed in the frequency domain, with SASSI2000 system. A set of auxiliary programs are developed to consider three-dimensional models and their responses to a generic base excitation, acting in 3 orthogonal directions. The ground excitation is transferred to a secondary system SDOF model conveniently attached to the primary system. Then, a uniformly probable coupled response spectrum is obtained using a first passage analysis. In this work, the ExeSASSI program is created to manage SASSI2000 several modules and a set of auxiliary programs created to perform the probabilistic analyses. (author)

  18. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    Directory of Open Access Journals (Sweden)

    Patricia Adame

    2014-04-01

    Full Text Available Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon species, hinders the development of species-specific diameter growth models.Area of study: In these analyses, we grouped 82 species from secondary forests distributed across 93 permanent plots on the island of Puerto Rico.Material and Methods: Species were classified according to regeneration strategy and adult height into six functional groups. This classification allowed us to develop a robust diameter growth model using growth data collected from 1980-1990. We used mixed linear model regression to analyze tree diameter growth as a function of individual tree characteristics, stand structure, functional group and site factors.Main results: The proportion of variance in diameter growth explained by the model was 15.1%, ranging from 7.9 to 21.7%. Diameter at breast height, stem density and functional group were the most important predictors of tree growth in Puerto Rican secondary forest. Site factors such as soil and topography failed to predict diameter growth.Keywords: Caribbean forests; growth model; tropical forest succession; Puerto Rico.

  19. SPIDERMAN: an open-source code to model phase curves and secondary eclipses

    Science.gov (United States)

    Louden, Tom; Kreidberg, Laura

    2018-03-01

    We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimised to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the dataset. As a test case we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model we find that the best fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.

  20. SPIDERMAN: an open-source code to model phase curves and secondary eclipses

    Science.gov (United States)

    Louden, Tom; Kreidberg, Laura

    2018-06-01

    We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimized to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the data set. As a test case, we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two-dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model, we find that the best-fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.

  1. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  2. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  3. Observed Lesson Structure during the First Year of Secondary Education: Exploration of Change and Link with Academic Engagement

    Science.gov (United States)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    2012-01-01

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components are found, that between class and over…

  4. Structure changes, the contribution of sectors, income per capita Indonesia in 1990 – 2014

    Directory of Open Access Journals (Sweden)

    Paulina Harun

    2017-03-01

    Full Text Available Economic development is seen as a process of transition from one phase to another, from simple economic structure (agriculture to the modern economy structure. Economic development is characterized by changes in the structure of the agricultural sector into the modern sector. The changes affect all the matters related thereto. Therefore, a change or transformation of economic activity is referred to as a structural change. This study aims to analyze the structural changes in the national product, and the factors that cause changes in the structure and level of sectoral imbalances as a result of the structural changes. The study was conducted by using the economic sector, divided into four major groups, namely the primary, secondary, utilities and services from 1990 to 2014. Secondary data were collected by the method of sectoral trends, models Chanery Syrquin-Barua, Theil index. The results showed that the sectoral trend has a positive result such as utilities and services sectors, while the primary and secondary sectors tend to be negative. From the model Chenery, Syrquin-Barua shows the per capita income has a positive effect on the primary sector and the utilities, residents have positive effect on the secondary sector, utilities and services. Meanwhile dummy variable has a positive effect on the primary sector, secondary and services. Sectoral inequality occurs in the secondary sector.

  5. On the prediction of turbulent secondary flows

    Science.gov (United States)

    Speziale, C. G.; So, R. M. C.; Younis, B. A.

    1992-01-01

    The prediction of turbulent secondary flows, with Reynolds stress models, in circular pipes and non-circular ducts is reviewed. Turbulence-driven secondary flows in straight non-circular ducts are considered along with turbulent secondary flows in pipes and ducts that arise from curvature or a system rotation. The physical mechanisms that generate these different kinds of secondary flows are outlined and the level of turbulence closure required to properly compute each type is discussed in detail. Illustrative computations of a variety of different secondary flows obtained from two-equation turbulence models and second-order closures are provided to amplify these points.

  6. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  7. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    Science.gov (United States)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  8. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  9. IRSS: a web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico

    Directory of Open Access Journals (Sweden)

    Hong Jun-Jie

    2009-05-01

    Full Text Available Abstract Background Internal ribosomal entry sites (IRESs provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements. Results We designed an IRES search system, named IRSS, to obtain better results for IRES prediction. RNA secondary structure prediction and comparison software programs were implemented to construct our two-stage strategy for the IRSS. Two software programs formed the backbone of IRSS: the RNAL fold program, used to predict local RNA secondary structures by minimum free energy method; and the RNA Align program, used to compare predicted structures. After complete viral genome database search, the IRSS have low error rate and up to 72.3% sensitivity in appropriated parameters. Conclusion IRSS is freely available at this website http://140.135.61.9/ires/. In addition, all source codes, precompiled binaries, examples and documentations are downloadable for local execution. This new search approach for IRES elements will provide a useful research tool on IRES related studies.

  10. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  11. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient

    Directory of Open Access Journals (Sweden)

    Rossetto Maurizio

    2012-08-01

    Full Text Available Abstract Background Four of the five species of Telopea (Proteaceae are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation. Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Results Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR and six chloroplast microsatellites (cpSSR were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM. The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed

  12. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    Science.gov (United States)

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  13. Critical Features of Fragment Libraries for Protein Structure Prediction.

    Science.gov (United States)

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  14. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  15. Current experience and a new modeling on water hammer due to steam condensation in PWR secondary system

    International Nuclear Information System (INIS)

    Kawanishi, K.; Kasahara, J.; Ueno, T.; Suzuta, T.

    1998-01-01

    There have been possibilities to occur water hammer in pipelines of turbine system for nuclear or fossil fuel power plants. According to the NUREG report, approximately 150 events have been reported since 1969, we also have an experience recently. Water hammer occurs due to sudden steam condensation with pressure pulse. This kind of pressure pulses has been made by alternative producing and condensing of steam slug in the pipe and its frequency relates subcooling and pipe structures. This paper presents our current experience on water hammer with some experimental studies. The present experiment has been performed to obtain the data base for evaluating the pressure pulses. The test pipe was horizontal tubes with dead end connected to vertical tube which simulating drain line in PWR secondary system. The main results are shown as follows; Magnitude of pressure pulse depends drain velocity and initial subcooling. Pipe structure effects on the frequency and continual time of water hammer phenomenon. A new modeling for quantitative explanation of the phenomena is also presented

  16. Assessment of structural integrity of Monju steel liner against sodium leakage and combustion. Modeling of thinning process of liner due to corrosion in structural analysis

    International Nuclear Information System (INIS)

    Tsukimori, K.; Kato, T.; Furuhashi, I.; Iwata, K.; Akatsu, M.

    2001-01-01

    The lining structure of LMFBR (Liquid Metal cooled Fast Breeder Reactor) has an important role to prohibit leaking sodium from touching a concrete floor in a sodium leakage incident. JNC (Japan Nuclear Cycle Development Institute) experienced a sodium leakage incident in 1995 in the secondary heat transport system room of the prototype LMFBR MONJU. In this incident, a part of the liner was covered with a certain amount of high temperature leaked sodium and its compounds. Visible but small distortion and thinning of the liner were detected, which were due to heating by sodium fire and chemical corrosion, respectively. To simulate the MONJU incident, JNC conducted a series of sodium leakage tests, in one of which severer corrosion (molten salt type corrosion) than that in the MONJU incident was observed. In order to secure the conservativeness in the integrity assessment of the liner, consideration of a severest corrosion process was demanded. This means that the loss of parts of the structure with time should be considered in the structural analyses. In this study a modeling of thinning process of the liner was developed in order to realize reasonable analysis from the point of view of actual phenomena. The concept of the method is to release the stress of the lost region by using artificial creep and reducing Young's modulus. The necessity of this kind of model and the validity was verified through an application analysis of the liner in the secondary heat transport system room of MONJU. (authors)

  17. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  18. Understanding the general packing rearrangements required for successful template based modeling of protein structure from a CASP experiment.

    Science.gov (United States)

    Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W

    2013-02-01

    As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Hemin and bile pigments are the secondary structure regulators of intrinsically disordered antimicrobial peptides.

    Science.gov (United States)

    Zsila, Ferenc; Juhász, Tünde; Bősze, Szilvia; Horváti, Kata; Beke-Somfai, Tamás

    2018-02-01

    The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two-state, concentration-dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin ditaurate) increase the parallel β-sheet content of the natively unfolded melittin, suggesting the oligomerization of the peptide chains. In contrast, α-helix promoting effect was observed with the also disordered but more cationic CM15. According to fluorescence quenching experiments, the sole Trp residue of melittin is the key player during the binding, in the vicinity of which the first pigment molecule is accommodated presumably making indole-porphyrin π-π stacking interaction. As circular dichroism titration data suggest, cooperative association of additional ligands subsequently occurs, resulting in multimeric complexes with an apparent dissociation constant ranged from 20 to 65 μM. Spectroscopic measurements conducted with the bilirubin catabolite urobilin and stercobilin refer to the requirement of intact dipyrrinone moieties for inducing secondary structure transformations. The binding topography of porphyrin rings on a model parallel β-sheet motif was evaluated by absorption spectroscopy and computational modeling showing a slipped-cofacial binding mode responsible for the red shift and hypochromism of the Soret band. Our results may aid to recognize porphyrin-responsive binding motifs of biologically relevant, intrinsically disordered peptides and proteins, where transient conformations play a vital role in their functions. © 2017 Wiley Periodicals, Inc.

  20. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  1. A station blackout simulation for the Advanced Neutron Source Reactor using the integrated primary and secondary system model

    International Nuclear Information System (INIS)

    Schneider, E.A.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at Oak Ridge National Laboratory. This paper deals with thermal-hydraulic analysis of ANSR's cooling systems during nominal and transient conditions, with the major effort focusing upon the construction and testing of computer models of the reactor's primary, secondary and reflector vessel cooling systems. The code RELAP5 was used to simulate transients, such as loss of coolant accidents and loss of off-site power, as well as to model the behavior of the reactor in steady state. Three stages are involved in constructing and using a RELAP5 model: (1) construction and encoding of the desired model, (2) testing and adjustment of the model until a satisfactory steady state is achieved, and (3) running actual transients using the steady-state results obtained earlier as initial conditions. By use of the ANSR design specifications, a model of the reactor's primary and secondary cooling systems has been constructed to run a transient simulating a loss of off-site power. This incident assumes a pump coastdown in both the primary and secondary loops. The results determine whether the reactor can survive the transition from forced convection to natural circulation

  2. Elements of a unified prognostic model for secondary air contamination by resuspension

    International Nuclear Information System (INIS)

    Besnus, F.; Garger, E.; Gordeev, S.; Hollaender, W.; Kashparov, V.; Martinez-Serrano, J.; Mironov, V.; Nicholson, K.; Tschiersch, J.; Vintersved, I.

    1996-01-01

    Based on results of several joint experimental campaigns and an extensive literature survey, a prognostic model was constructed capable of predicting airborne activity concentrations and size distributions as well as soil surface activity concentrations as a function of time and meteorological conditions. Example scenario calculations show that agricultural practices are of lesser importance to secondary air contamination than dust storms immediately after primary deposition and forest fires

  3. A Teacher Competency Enhancement Model based on the Coaching Processes to Increase Mathematical Reasoning Abilities of Lower-Secondary Students

    Directory of Open Access Journals (Sweden)

    Uaychai Sukanalam

    2017-09-01

    Full Text Available This research study aimed to: 1 investigate problems and needs for the learning management that helps increase capacities of mathematics teachers at the lower-secondary level, 2 develop a teacher competency enhancement model based on the coaching processes to enhance mathematical reasoning abilities of lower-secondary students, 3 find out the educational supervisors’ opinions on the model designed. The samples of the study comprised 212 mathematics teachers at the lower-secondary level from 60 schools under jurisdiction of the Office of Secondary Educational Service Area 27, who were selected through the simple random sampling technique ; and 201 educational supervisors in charge of the mathematics learning strand from 42 educational service areas, who were selected through the purposive sampling technique. This study was conducted in the academic year 2015. The research instruments included: 1 a teacher competency enhancement manual that illustrated the steps and procedures for increasing the teacher’s capacities based on the coaching processes in order to enhance mathematical reasoning abilities of lower-secondary students, 2 a survey on problems and needs for the learning management to enhance capacities of mathematics teachers at the lower-secondary level, 3 A questionnaire concerning the educational supervisor’s opinion on the model designed. The statistics used included percentage, mean, and standard deviation. The study results showed that: 1. According to the study and analysis of basic data, problems and needs, it was found that the needs for increasing capacities of mathematics teachers at the lower-secondary level was overall at the high level. In terms of identifying behaviors as “mathematical competencies”, there were some problems associated with thinking and reasoning abilities of the teachers, and their needs in developing the learning management were at the highest level. To solve such problems, it is suggested that

  4. Molecular and crystal structure of the antibiotic enniatin B, a secondary microbial metabolite

    International Nuclear Information System (INIS)

    Zhukhlistova, N.E.; Tishchenko, G.N.; Tolstykh, I.V.; Zenkova, V.A.

    1999-01-01

    Single crystals of the secondary microbial metabolite C 33 H 57 N 3 O 9 ·1(2/3)H 2 O with the known molecular weight were studied by the method of X-ray diffraction analysis, where a=b=15.102(3) A, c=14.548(3) A, sp. gr.R3, R=0.057. In the course of the structure determination, it was established that the substance is a natural antibiotic, namely, enniatin B. The conformation of its molecule is similar to that of the known synthetic antibiotic. The main difference between the natural and synthesized forms reduces to the different numbers of water molecules and their arrangement in the cavity of the antibiotic molecule

  5. Primary and secondary structural determinants in the receptor binding sequence β-(38-57) from human luteinizing hormone

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Charlesworth, M.C.; Kitzmann, K.; Mason, K.A.; Johnson, L.; Ryan, R.J.

    1988-01-01

    The intercysteine loop sequence 38-57 in the β subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG). Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, the authors have used analogues of hLHβ-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125 I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. Far-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% α-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. These results indicate that the 38-57 sequence is a relatively rigid and structurally autonomous region, not merely a series of residues constrained passively into a loop by a disulfide linkage. It includes segments of ordered structure, probably including both amphipathic helical and turn sequences. Evidence from studies of other hormones suggests that this region may be important to binding and specificity in the glycoprotein hormones as a group

  6. The secondary hardening phenomenon in strain-hardened MP35N alloy

    International Nuclear Information System (INIS)

    Asgari, S.; El-Danaf, E.; Shaji, E.; Kalidindi, S.R.; Doherty, R.D.

    1998-01-01

    Mechanical testing and microscopy techniques were used to investigate the influence of aging on the structure and strengthening of MP35N alloy. It was confirmed that aging the deformed material at 600 C for 4 h provided additional strengthening, here referred to as secondary hardening, in addition to the primary strain hardening. The secondary hardening phenomenon was shown to be distinctly different from typical age hardening processes in that it only occurred in material deformed beyond a certain cold work level. At moderate strains, aging caused a shift in the entire stress-strain curve of the annealed material to higher stresses while at high strains, it produced shear localization and limited work softening. The secondary hardening increment was also found to be grain size dependent. The magnitude of the secondary hardening appeared to be controlled by the flow stress in the strain hardened material. A model is proposed to explain the observations and is supported by direct experimental evidence. The model is based on formation of h.c.p. nuclei through the Suzuki mechanism, that is segregation of solute atoms to stacking faults, on aging the strain hardened material. The h.c.p. precipitates appear to thicken only in the presence of high dislocation density produced by prior cold work

  7. Secondary isotope effects on alpha-cleavage reactions

    International Nuclear Information System (INIS)

    Ingemann, S.; Hammerum, S.

    1980-01-01

    Kinetic deuterium isotope effects on mass spectral reactions have in several instances been utilized to provide structural information and to answer mechanistic questions. Typically, the influence of the deuterium label on the rate of one of a number of competing reactions has been studied. Secondary isotope effects have usually been assumed to be relatively insignificant in comparison with the observed kinetic effects, even though various workers have shown that secondary isotope effects may indeed exert a considerable influence on the rates of competing simple cleavages. Recent studies have provided quantitative data to show that the mere presence of deuterium atoms up to six bonds away may influence the rate of a simple cleavage reaction. In relation to an investigation of rearrangements accompanying simple cleavage reactions, a semi-quantitative measure was needed of the variation of the secondary isotope effect with the number of bonds between the deuterium label and the point of rupture. The influence has therefore been examined of the presence of remote deuterium atoms on a typical simple cleavage reaction, the α-cleavage of aliphatic amines. As a model compound, N-methyldipentylamine was chosen, systematically labelled with deuterium. (author)

  8. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    Science.gov (United States)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution

  9. Structure functions from chiral soliton models

    International Nuclear Information System (INIS)

    Weigel, H.; Reinhardt, H.; Gamberg, L.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data

  10. Rail vehicle dynamic response to a nonlinear physical 'in-service' model of its secondary suspension hydraulic dampers

    Science.gov (United States)

    Wang, W. L.; Zhou, Z. R.; Yu, D. S.; Qin, Q. H.; Iwnicki, S.

    2017-10-01

    A full nonlinear physical 'in-service' model was built for a rail vehicle secondary suspension hydraulic damper with shim-pack-type valves. In the modelling process, a shim pack deflection theory with an equivalent-pressure correction factor was proposed, and a Finite Element Analysis (FEA) approach was applied. Bench test results validated the damper model over its full velocity range and thus also proved that the proposed shim pack deflection theory and the FEA-based parameter identification approach are effective. The validated full damper model was subsequently incorporated into a detailed vehicle dynamics simulation to study how its key in-service parameter variations influence the secondary-suspension-related vehicle system dynamics. The obtained nonlinear physical in-service damper model and the vehicle dynamic response characteristics in this study could be used in the product design optimization and nonlinear optimal specifications of high-speed rail hydraulic dampers.

  11. Principles for enabling deep secondary design

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Hansen, Magnus Rotvit Perlt

    2017-01-01

    design by analyzing two cases where secondary designers fundamentally change functionality, content and technology complexity level. The first case redesigns a decision model for agile development in an insurance company; the second creates a contingency model for choosing project management tools...... and techniques in a hospital. Our analysis of the two cases leads to the identification of four principles of design implementation that primary designers can apply to enable secondary design and four corresponding design implementation principles that secondary designers themselves need to apply....

  12. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  13. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus

    Directory of Open Access Journals (Sweden)

    Wolf Matthias

    2009-12-01

    Full Text Available Abstract Background Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist. This is partly due to difficulties in the alignment of ITS2 sequences in more distant taxa. The present study uses ITS2 secondary structure information to elucidate the phylogeny of a species-rich young radiation of arthropods, the butterfly subgenus Agrodiaetus. One aim is to evaluate the efficiency of ITS2 to resolve the phylogeny of the subgenus in comparison with COI , the most important mitochondrial marker in arthropods. Furthermore, we assess the use of compensatory base changes in ITS2 for the delimitation of species and discuss the prospects of ITS2 as a nuclear marker for barcoding studies. Results In the butterfly family Lycaenidae, ITS2 secondary structure enabled us to successfully align sequences of different subtribes in Polyommatini and produce a Profile Neighbour Joining tree of this tribe, the resolution of which is comparable to phylogenetic trees obtained with COI+COII . The subgenus Agrodiaetus comprises 6 major clades which are in agreement with COI analyses. A dispersal-vicariance analysis (DIVA traced the origin of most Agrodiaetus clades to separate biogeographical areas in the region encompassing Eastern Anatolia, Transcaucasia and Iran. Conclusions With the inclusion of secondary structure information, ITS2 appears to be a suitable nuclear marker to infer the phylogeny of young radiations, as well as more distantly related genera within a diverse arthropod family. Its phylogenetic signal is comparable to the

  14. A Mathematical Model of Complacency in HIV/AIDS Scenario: Sex-Structure Approach

    Directory of Open Access Journals (Sweden)

    Gbolahan BOLARIN

    2012-12-01

    Full Text Available In this study we use sex-structure approach to examine the effect of complacent sexual behaviour (risky sexual activities on the rate of infection of HIV/AIDS in a population. We partitioned the population into two classes (male and female represented by to express our model equation as a set of differential equations. We were able to express the number of AIDS cases (male and female as linear functions that depend on the number of AIDS patient present in the population. We were also able to determine the equilibra states of the model. We found that the Basic Reproduction Number (R0, which is the number of secondary infections due to introduction of infective into the population of both female and male partitions of the population is given as R0=sqrt(R0fRom.

  15. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  16. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  17. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  18. Analyzing the Factorial Structure of the Classroom Assessment Scoring System-Secondary Using a Bayesian Hierarchical Multivariate Ordinal Model

    Science.gov (United States)

    Yuan, Kun; McCaffrey, Daniel F.; Savitsky, Terrance D.

    2013-01-01

    Standardized teaching observation protocols have become increasingly popular in evaluating teaching in recent years. One of such protocols that has gained substantial interest from researchers and practitioners is the Classroom Assessment Scoring System-Secondary (CLASSS). According to the developer, CLASS-S has three domains of teacher-student…

  19. Probabilistic modeling of timber structures

    DEFF Research Database (Denmark)

    Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2007-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...

  20. 3x2 Classroom Goal Structures, Motivational Regulations, Self-Concept, and Affectivity in Secondary School.

    Science.gov (United States)

    Méndez-Giménez, Antonio; Cecchini-Estrada, José-Antonio; Fernández-Río, Javier; Prieto Saborit, José Antonio; Méndez-Alonso, David

    2017-09-20

    The main objective was to analyze relationships and predictive patterns between 3x2 classroom goal structures (CGS), and motivational regulations, dimensions of self-concept, and affectivity in the context of secondary education. A sample of 1,347 secondary school students (56.6% young men, 43.4% young women) from 10 different provinces of Spain agreed to participate (M age = 13.43, SD = 1.05). Hierarchical regression analyses indicated the self-approach CGS was the most adaptive within the spectrum of self-determination, followed by the task-approach CGS. The other-approach CGS had an ambivalent influence on motivation. Task-approach and self-approach CGS predicted academic self-concept (p approach CGS (negatively) predicted family self-concept (p approach and other-approach CGS's (p approach-oriented CGS's (p approach (positively) and self-approach (negatively) CGS (p < .001; p < .05, respectively; R 2 = .028). These results expand the 3x2 achievement goal framework to include environmental factors, and reiterate that teachers should focus on raising levels of self- and task-based goals for students in their classes.

  1. Secondary metabolites of cyanobacteria Nostoc sp.

    Science.gov (United States)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  2. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards.

    Directory of Open Access Journals (Sweden)

    Patrick P Edger

    Full Text Available The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1. Ease of amplification due to high copy number of the gene clusters, 2. Available cost-effective methods and highly conserved primers, 3. Rapidly evolving markers (i.e. variable between closely related species, and 4. The assumption (and/or treatment that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  3. Quality assessment of protein model-structures based on structural and functional similarities.

    Science.gov (United States)

    Konopka, Bogumil M; Nebel, Jean-Christophe; Kotulska, Malgorzata

    2012-09-21

    Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. GOBA--Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best result for two targets of CASP8, and

  4. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods

    International Nuclear Information System (INIS)

    Dousseau, F.; Pezolet, M.

    1990-01-01

    A method for estimating protein secondary structure from infrared spectra has been developed. The infrared spectra of H 2 O solutions of 13 proteins of known crystal structure have been recorded and corrected for the spectral contribution of water in the amide I and II region by using the algorithm of Dousseau et al. This calibration set of proteins has been analyzed by using either a classical least-squares (CLS) method or the partial least-squares (PLS) method. The pure-structure spectra calculated by the classical least-squares method are in good agreement with spectra of poly(L-lysine) in the α-helix, β-sheet, and undefined conformations. The results show that the best agreement between the secondary structure determined by X-ray crystal-lography and that predicted by infrared spectroscopy is obtained when both the amide I and II bands are used to generate the calibration set, when the PLS method is used, and when it is assumed that the secondary structure of proteins is composed of only four types of structure: ordered and disordered α-helices, β-sheet, and undefined conformation. Attempts to include turns in the secondary structure estimation have led to a loss of accuracy. The spectra of the calibration proteins were also recorded in 2 H 2 O solution. After correction for the contribution of the combination band of 2 H 2 O in the amide I' band region, the spectra were analyzed with PLS, but the results were not as good as for the spectra obtained in H 2 O, especially for the α-helical conformation

  5. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals.

    Science.gov (United States)

    Coleman, Annette W; van Oppen, Madeleine J H

    2008-10-01

    This study investigates the ribosomal RNA transcript secondary structure in corals as confirmed by compensatory base changes in Isopora/Acropora species. These species are unique versus all other corals in the absence of a eukaryote-wide conserved structural component, the helix III in internal transcriber spacer (ITS) 2, and their variability in the 5.8S-LSU helix basal to ITS2, a helix with pairings identical among all other scleractinian corals. Furthermore, Isopora/Acropora individuals display at least two, and as many as three, ITS sequence isotypes in their genome which appear to be capable of function. From consideration of the conserved elements in ITS2 and flanking regions, it appears that there are three major groups within the IsoporaAcropora lineage: the Isopora + Acropora "longi" group, the large group including Caribbean Acropora + the Acropora "carib" types plus the bulk of the Indo-Pacific Acropora species, and the remaining enigmatic "pseudo" group found in the Pacific. Interbreeding is possible among Caribbean A. palmata and A. cervicornis and among some species of Indo-Pacific Acropora. Recombinant ITS sequences are obvious among these latter, such that morphology (as represented by species name) does not correlate with common ITS sequence. The combination of characters revealed by RNA secondary structure analyses suggests a recent past/current history of interbreeding among the Indo-Pacific Acropora species and a shared ancestry of some of these with the Caribbean Acropora. The unusual absence of helix III of ITS2 of Isopora/Acropora species may have some causative role in the equally unusual instability in the 5.8S-LSU helix basal to ITS2 of this species complex.

  6. Factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition: Exploratory factor analyses with the 16 primary and secondary subtests.

    Science.gov (United States)

    Canivez, Gary L; Watkins, Marley W; Dombrowski, Stefan C

    2016-08-01

    The factor structure of the 16 Primary and Secondary subtests of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample was examined with exploratory factor analytic methods (EFA) not included in the WISC-V Technical and Interpretive Manual (Wechsler, 2014b). Factor extraction criteria suggested 1 to 4 factors and results favored 4 first-order factors. When this structure was transformed with the Schmid and Leiman (1957) orthogonalization procedure, the hierarchical g-factor accounted for large portions of total and common variance while the 4 first-order factors accounted for small portions of total and common variance; rendering interpretation at the factor index level less appropriate. Although the publisher favored a 5-factor model where the Perceptual Reasoning factor was split into separate Visual Spatial and Fluid Reasoning dimensions, no evidence for 5 factors was found. It was concluded that the WISC-V provides strong measurement of general intelligence and clinical interpretation should be primarily, if not exclusively, at that level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  8. Using the learning management evaluation model for advancing to life skills of lower secondary students in the 21st century

    Science.gov (United States)

    Kansaart, Preecha; Suikraduang, Arun; Panya, Piyatida

    2018-01-01

    The aims of this research study were to develop the Learning Management Evaluation Model (LMEM) for advancing to lower secondary students of their life skills in the 21st century with the Research & Development process technique. The research procedures were administered of four steps that composed of analyze, the synthetic indicator to assess learning to advance to their life skills in the 21st century by the 4-educational experts were interviewed. The LMEM model was developed by the information from the first draft format and the educational experts to check a suitability and feasibility of the draft assessment form with a technical symposium multipath characteristics to find consensus dimensional (Multi-Attribute Consensus Reaching: MACR) by 12 specialists who provided the instruction in the form of Assessment and Evaluation Guide (AEG) was brought to five the number of professionals who ensure the proper coverage, a clear assessment of the manual before using the AEG. The LMEM model was to trial at an experiment with different schools in the Secondary Educational Office Area 26 (Maha Sarakham) whereas taught at the upper secondary educational school with the sample consisted of 7 schools with the purposive sampling was selected. Assessing the LMEM model was evaluated the based on the evaluation criteria of the educational development. The assessor was related to the trial consisted of 35 evaluators. Using the interview form with the rubric score and a five rating scale level was analyzed; the qualitative and quantitative data were used. It has found that: The LMEM evaluation model of learning to advance to life skills of students in the 21st century was a chart structure that ties together of 6 relevant components of the evaluation such as; the purpose of the assessment, the evaluation focused assessment methods, the evaluator, the evaluation technique, and the evaluation criteria. The evaluation targets were to assess the management of learning, the factors

  9. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  10. Chronic kidney disease Markov model comparing paricalcitol to calcitriol for secondary hyperparathyroidism: A US perspective

    NARCIS (Netherlands)

    M.J.C. Nuijten (Mark); D.L. Andress (Dennis); S.E. Marx (Steven); R. Sterz (Raimund)

    2009-01-01

    textabstractObjective: The objective of this study was to determine the cost effectiveness of paricalcitol versus calcitriol for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease in the United States setting. Methods: A Markov process model was developed

  11. Numerical Modelling of Structures with Uncertainties

    Directory of Open Access Journals (Sweden)

    Kahsin Maciej

    2017-04-01

    Full Text Available The nature of environmental interactions, as well as large dimensions and complex structure of marine offshore objects, make designing, building and operation of these objects a great challenge. This is the reason why a vast majority of investment cases of this type include structural analysis, performed using scaled laboratory models and complemented by extended computer simulations. The present paper focuses on FEM modelling of the offshore wind turbine supporting structure. Then problem is studied using the modal analysis, sensitivity analysis, as well as the design of experiment (DOE and response surface model (RSM methods. The results of modal analysis based simulations were used for assessing the quality of the FEM model against the data measured during the experimental modal analysis of the scaled laboratory model for different support conditions. The sensitivity analysis, in turn, has provided opportunities for assessing the effect of individual FEM model parameters on the dynamic response of the examined supporting structure. The DOE and RSM methods allowed to determine the effect of model parameter changes on the supporting structure response.

  12. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    OpenAIRE

    Banzhaf, S.; Schaap, M.; Kraneburg, R.; Manders, A.M.M.; Segers, A.J.; Visschedijk, A.H.J.; Denier van der on, H.A.C.; Kuenen, J.P.P.; van Meijgaard, E.; van Ulft, L.H.; Cofala, J.; Builtjes, P.J.H.

    2015-01-01

    In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA) and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at Europ...

  13. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  14. The adoption of an interdisciplinary instructional model in secondary education

    Science.gov (United States)

    Misicko, Martin W.

    This study describes the experiences of a secondary high school involved in the adoption of an interdisciplinary curriculum. An interdisciplinary curriculum is defined as both the precalculus and physics curriculums taught collaboratively throughout the school year. The students' academic performances were analyzed to gage the success of the interdisciplinary model. The four year study compared students taught precalculus in a traditional discipline-based classroom versus those facilitated in an interdisciplinary precalculus/physics model. It also documents the administrative changes necessary in restructuring a high school to an interdisciplinary team teaching model. All of the students in both pedagogical models received instruction from the same teacher, and were given identical assessment materials. Additionally, the curriculum guidelines and standards of learning were duplicated for both models. The primary difference of the two models focused on the applications of mathematics in the physics curriculum. Prerequisite information was compared in both models to ensure that the students in the study had comparable qualifications prior to the facilitation of the precalculus curriculum. Common trends were analyzed and discussed from the student's performance data. The students enrolled in the interdisciplinary model appeared to outperform the discipline-based students in common evaluative assessments. The themes and outcomes described in this study provide discussion topics for further investigation by other school districts. Further study is necessary to determine whether scheduling changes may have influenced student performances, and to examine whether other content areas may experience similar results.

  15. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  16. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  17. HOMOLOGY MODELING AND FUNCTIONAL CHARACTERIZATION OF THREE-DIMENSIONAL STRUCTURE OF DAHP SYNTHASE FROM BRACHYPODIUM DISTACHYON

    Directory of Open Access Journals (Sweden)

    Aditya Dev

    2013-06-01

    Full Text Available The Shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in microbes and plants but absent in animals. The 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS is the first enzyme of this pathway, which is involved in the condensation of phosphoenolpyruvate (PEP and D-erythrose 4-phosphate (E4P to produce 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP. DAHPS enzymes have been divided into two types, class I and class II, based on their primary amino acid sequence and three dimensional structures. The plant DAHPS belongs to class II and is regulated differently than DAHPS from microorganisms. To understand the structural basis of such differences in DAHPS from plants and its catalytic mechanism, we have used sequence analysis, homology modeling and docking approach to generate the three dimensional models of DAHP synthase from Brachypodium distachyon (Bd-DAHPS complexed with substrate PEP for the first time. The three dimensional models of Bd-DAHPS provides a detailed knowledge of the active site and the important secondary structural regions that play significant roles in the regulatory mechanism and further may be helpful for design of specific inhibitors towards herbicide development.

  18. Learning and teaching ecosystem behaviour in secondary education : Systems thinking and modelling in authentic practices

    NARCIS (Netherlands)

    Westra, R.H.V.

    2008-01-01

    This thesis describes developmental research, aiming at a useful approach for modern secondary ecology education. The research question is: What are the characteristics of a valid, feasible and effective learning and teaching strategy about ecosystem behaviour using modelling and systems thinking in

  19. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  20. Development of the tube bundle structure for fluid-structure interaction analysis model

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong

    2010-02-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  1. Computer modelling the potential benefits of amines in NPP Bohunice secondary circuit

    International Nuclear Information System (INIS)

    Fountain, M.J.; Smiesko, I.

    1998-01-01

    The use of computer modelling of PWR and WWER secondary circuit chemistry was already demonstrated in the past. The model was used to illustrate the technical and economic advantages, compared with ammonia, of using an 'advanced', high basicity, low volatility amines to raise the liquid phase pH(T) in the moisture separator and other areas swept by wet steam. Since the 1995, this technique has been successfully applied to a number of power plants and the computer model has been progressively developed. This paper describes the preliminary results of an ongoing assessment being carried out for the VVER 440 plants at Bohunice. The work for Bohunice is being funded by the 'Know How Fund', a department in the British Government's Foreign and Commonwealth Office. (J.P.N.)

  2. Structure and properties of silver sulfate complexes derived from dipyridyl methylthio ligands with secondary donor site

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui; Liu, Rui-Heng; Li, Ai-Min; Wang, Guo [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); Wan, Chong-Qing, E-mail: wancq@cnu.edu.cn [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); State Key Laboratory of Structural Chemistry in China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2017-06-15

    Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorption ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.

  3. PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    2010-01-01

    Full Text Available Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins as well as noncovalently (protein-carbohydrate complexes is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate complexes as well as preprocessed data of predicted structures. This can be significantly enhanced by tools de novo which can predict carbohydrate-binding sites for proteins in the absence of structure of experimentally known binding site. PROCARB is an open-access database comprising three independently working components, namely, (i Core PROCARB module, consisting of three-dimensional structures of protein-carbohydrate complexes taken from Protein Data Bank (PDB, (ii Homology Models module, consisting of manually developed three-dimensional models of N-linked and O-linked glycoproteins of unknown three-dimensional structure, and (iii CBS-Pred prediction module, consisting of web servers to predict carbohydrate-binding sites using single sequence or server-generated PSSM. Several precomputed structural and functional properties of complexes are also included in the database for quick analysis. In particular, information about function, secondary structure, solvent accessibility, hydrogen bonds and literature reference, and so forth, is included. In addition, each protein in the database is mapped to Uniprot, Pfam, PDB, and so forth.

  4. Modeling and identification in structural dynamics

    OpenAIRE

    Jayakumar, Paramsothy

    1987-01-01

    Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...

  5. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  6. ITS2 sequence-structure phylogeny reveals diverse endophytic Pseudocercospora fungi on poplars.

    Science.gov (United States)

    Yan, Dong-Hui; Gao, Qian; Sun, Xiaoming; Song, Xiaoyu; Li, Hongchang

    2018-04-01

    For matching the new fungal nomenclature to abolish pleomorphic names for a fungus, a genus Pseudocercospora s. str. was suggested to host holomorphic Pseudocercosproa fungi. But the Pseudocercosproa fungi need extra phylogenetic loci to clarify their taxonomy and diversity for their existing and coming species. Internal transcribed spacer 2 (ITS2) secondary structures have been promising in charactering species phylogeny in plants, animals and fungi. In present study, a conserved model of ITS2 secondary structures was confirmed on fungi in Pseudocercospora s. str. genus using RNAshape program. The model has a typical eukaryotic four-helix ITS2 secondary structure. But a single U base occurred in conserved motif of U-U mismatch in Helix 2, and a UG emerged in UGGU motif in Helix 3 to Pseudocercospora fungi. The phylogeny analyses based on the ITS2 sequence-secondary structures with compensatory base change characterizations are able to delimit more species for Pseudocercospora s. str. than phylogenic inferences of traditional multi-loci alignments do. The model was employed to explore the diversity of endophytic Pseudocercospora fungi in poplar trees. The analysis results also showed that endophytic Pseudocercospora fungi were diverse in species and evolved a specific lineage in poplar trees. This work suggested that ITS2 sequence-structures could become as additionally significant loci for species phylogenetic and taxonomic studies on Pseudocerospora fungi, and that Pseudocercospora endophytes could be important roles to Pseudocercospora fungi's evolution and function in ecology.

  7. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  8. Spitzer Secondary Eclipses of HAT-P-13b

    Science.gov (United States)

    Hardy, Ryan A.; Harrington, J.; Hardin, M. R.; Madhusudhan, N.; Cubillos, P.; Blecic, J.; Bakos, G.; Hartman, J. D.

    2013-10-01

    HAT-P-13 b is a transiting hot Jupiter with a slightly eccentric orbit (e = 0.010) inhabiting a two-planet system. The two-planet arrangement provides an opportunity to probe the interior structure of HAT-P-13b. Under equilibrium-tide theory and confirmation that the apsides of planets b and c are in alignment, a measurement of the planet's eccentricity can be related to the planet's tidal Love number k2, which describes the central condensation of the planet's mass and its deformation under tidal effects. A measurement of k2 could constrain interior models of HAT-P-13b. HAT-P-13b's orbit is configured favorably for refinement of the eccentricity by secondary eclipse timing observations, which provide direct measurements of ecosω. In 2010, Spitzer observed two secondary eclipses of HAT-P-13b in the 3.6- and 4.5-μm IRAC bandpasses. We present secondary eclipse times and depths; joint models of the HAT-P-13 system that incorporate transit photometry and radial velocity data; and constraints on the atmospheric chemistry of HAT-P-13b that suggest solar-abundance composition without a thermal inversion. Spitzer is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, which provided support for this work. This work was supported in part by NASA Planetary Atmospheres Grant NNX13AF38G.

  9. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    Science.gov (United States)

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  10. Subcutaneous infection model facilitates treatment assessment of secondary Alveolar echinococcosis in mice.

    Directory of Open Access Journals (Sweden)

    Tatiana Küster

    Full Text Available Alveolar echinococcosis (AE in humans is a parasitic disease characterized by severe damage to the liver and occasionally other organs. AE is caused by infection with the metacestode (larval stage of the fox tapeworm Echinococcus multilocularis, usually infecting small rodents as natural intermediate hosts. Conventionally, human AE is chemotherapeutically treated with mebendazole or albendazole. There is, however still the need for improved chemotherapeutical options. Primary in vivo studies on drugs of interest are commonly performed in small laboratory animals such as mice and Mongolian jirds, and in most cases, a secondary infection model is used, whereby E. multilocularis metacestodes are directly injected into the peritoneal cavity or into the liver. Disadvantages of this methodological approach include risk of injury to organs during the inoculation and, most notably, a limitation in the macroscopic (visible assessment of treatment efficacy. Thus, in order to monitor the efficacy of chemotherapeutical treatment, animals have to be euthanized and the parasite tissue dissected. In the present study, mice were infected with E. multilocularis metacestodes through the subcutaneous route and were then subjected to chemotherapy employing albendazole. Serological responses to infection were comparatively assessed in mice infected by the conventional intraperitoneal route. We demonstrate that the subcutaneous infection model for secondary AE facilitates the assessment of the progress of infection and drug treatment in the live animal.

  11. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  12. The Influence of PZT Actuators Positioning in Active Structural Acoustic Control

    Directory of Open Access Journals (Sweden)

    P. Švec

    2007-01-01

    Full Text Available This paper deals with the effect of secondary actuator positioning in an active structural acoustics control (ASAC experiment. The ASAC approach is based on minimizing the sound radiation from structures to the far field by controlling the structural vibrations. In this article a rectangular steel plate structure was assumed with one secondary actuator attached to it. As a secondary actuator, a specially designed piezoelectric stripe actuator was used. We studied the effect of the position of the actuator on the pattern and on the radiated sound field of the structural vibration, with and without active control. The total radiated power was also measured. The experimental data was confronted with the results obtained by a numerical solution of the mathematical model used. For the solution, the finite element method in the ANSYS software package was used. 

  13. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  14. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    Science.gov (United States)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly

  15. Structural Model of psychological risk and protective factors affecting on quality of life in patients with coronary heart disease: A psychocardiology model

    Directory of Open Access Journals (Sweden)

    Zohreh Khayyam Nekouei

    2014-01-01

    Full Text Available Background: Conducted researches show that psychological factors may have a very important role in the etiology, continuity and consequences of coronary heart diseases. This study has drawn the psychological risk and protective factors and their effects in patients with coronary heart diseases (CHD in a structural model. It aims to determine the structural relations between psychological risk and protective factors with quality of life in patients with coronary heart disease. Materials and Methods: The present cross-sectional and correlational studies were conducted using structural equation modeling. The study sample included 398 patients of coronary heart disease in the university referral Hospital, as well as other city health care centers in Isfahan city. They were selected based on random sampling method. Then, in case, they were executed the following questionnaires: Coping with stressful situations (CISS- 21, life orientation (LOT-10, general self-efficacy (GSE-10, depression, anxiety and stress (DASS-21, perceived stress (PSS-14, multidimensional social support (MSPSS-12, alexithymia (TAS-20, spiritual intelligence (SQ-23 and quality of life (WHOQOL-26. Results: The results showed that protective and risk factors could affect the quality of life in patients with CHD with factor loadings of 0.35 and −0.60, respectively. Moreover, based on the values of the framework of the model such as relative chi-square (CMIN/DF = 3.25, the Comparative Fit Index (CFI = 0.93, the Parsimony Comparative Fit Index (PCFI = 0.68, the Root Mean Square Error of Approximation (RMSEA = 0.07 and details of the model (significance of the relationships it has been confirmed that the psychocardiological structural model of the study is the good fitting model. Conclusion: This study was among the first to research the different psychological risk and protective factors of coronary heart diseases in the form of a structural model. The results of this study have

  16. Coupling crevice chemistry with a corrosion model in laboratory: A first application to the analysis of secondary side corrosion in service

    International Nuclear Information System (INIS)

    Pavageau, E.M.; Vaillant, D.; Dimpre, S.; Bouchacourt, M.; Millet, L.

    2002-01-01

    Secondary side corrosion of tubes in Alloy 600 develops in flow-restricted areas between tubes and tubesheet or tube support plates since pollutants of the secondary water can concentrate under heat flux. So EDF has undertaken an important effort of modeling the degradation (intergranular attack IGA and intergranular stress corrosion cracking IGSCC). Three models of corrosion are available or under development depending on the type of crevice environment that could be deduced from the analysis of secondary water and from pulled tube examinations: the first one in strongly alkaline environments (sodium hydroxide environments), the second one in sulfate environments, sulfate being one of the main species analyzed in water after hideout return, the third one in complex environments that could duplicate the deposits, films and degradation observed on pulled tubes. The crevice chemistry during operation was first evaluated using analyses of secondary water after hideout return and the MULTEQ code. The local chemical conditions were introduced into the corrosion model generated in laboratory and gave results which were compared to field experience. Encouraging results were found with the sodium hydroxide model for some of the old French plant units in the early period of operation. A similar approach is under investigation with the sulfate corrosion model for the entire time of operation and for the other plant units. (authors)

  17. Secondary Control for Voltage Quality Enhancement in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2012-01-01

    In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each of these con......In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each...

  18. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  19. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  20. Secondary recrystallisation in 20 w/o Cr-25 w/o Ni-Nb stabilised stainless steel

    International Nuclear Information System (INIS)

    Healey, T.; Brown, A.F.; Speight, M.V.

    1976-11-01

    The fuel cladding material for the Commercial Advanced Gas Reactor is a fine grain 20 w/o Cr-25 w/o Ni niobium stabilised stainless steel. The grain structure stability of this alloy has been investigated as a function of carbon content over the temperature range 930 - 990 0 C. It is demonstrated that the primary grain structure is susceptible to abnormal growth due to secondary recrystallisation of the initial fine grain structure after a composition and temperature dependent incubation period. The magnitude of the incubation period is analysed on the basis that secondary recrystallisation commences when randomly dispersed niobium carbide particles have coarsened to a critical size. The validity of the analysis is tested by comparing the predictions with experimental observation. The model is subsequently used to evaluate the incubation period for conditions of temperature, composition and microstructure which differ from those defined in the experimental studies. (author)