WorldWideScience

Sample records for secondary stem development

  1. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... growth (stem apical growth, stem length, and apical growth of stem plus leaves), in some cases even with opposite responses. Thus caution should be taken when estimating the impact of the environment on shrub growth from apical growth only. Integration of our data set with the (very limited) previously...

  2. Are Haemopoietic Stem Cells Precursor Cells in Secondary Disease?

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, J. L. [Central Institute of Haematology and Blood Transfusion, Moscow, USSR (Russian Federation)

    1969-07-15

    The paper gives data on acute secondary disease developing in supra-lethally irradiated dogs and monkeys after transplantation of allogenic bone marrow. On the basis of the experimental data obtained, the author discusses the question whether haemopoietic stem cells play a role as first links in the histogenesis of the lymphoid elements responsible for acute secondary disease. (author)

  3. Integrated STEM in secondary education: A case study

    International Nuclear Information System (INIS)

    De Meester, Jolien; Dehaene, Wim; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet

    2015-01-01

    Despite many opportunities to study STEM (Science, Technology, Engineering and Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils’ interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school’s teachers and a STEM education research group of the University of Leuven. To examine the pupils’ attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils’ interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils’ understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.

  4. Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae).

    Science.gov (United States)

    Fisher, Jack B; Blanco, Mario A

    2014-04-01

    Some of the most striking stem shapes occur in species of Bauhinia (Fabaceae) known as monkey ladder vines. Their mature stems are flattened and develop regular undulations. Although stems have variant (anomalous) secondary growth, the mechanism causing the undulations is unknown. We measured stem segments over time (20 mo), described stem development using light microscopy, and correlated the changes in stem shape with anatomy. Growing stems are initially straight and bear tendrils on short axillary branches. The inner secondary xylem has narrow vessels and lignified fibers. As stems age, they become flattened and increasingly undulated with the production of two lobes of outer secondary xylem (OX) with wide vessels and only gelatinous fibers (G-fibers). Similar G-fibers are present in the secondary phloem and the cortical sclerified layer. In transverse sections, the concave side of each undulation has a greater area and quantity of G-fibers than the opposite convex side. Some older stems are not undulated and have less lobing of OX. Undulation causes a shortening of the stem segments: up to 28% of the original length. Uneven distribution of G-fibers produces tensions that are involved in the protracted development of undulations. While young extending shoots attach by lateral branch tendrils, older stems may maintain their position in the canopy using undulations and persistent branch bases as gripping devices. Flattened and undulated stems with G-fibers produce flexible woody stems.

  5. STEM Outreach Activities: An Approach to Teachers' Professional Development

    Science.gov (United States)

    Aslam, Farzana; Adefila, Arinola; Bagiya, Yamuna

    2018-01-01

    STEM outreach programmes in secondary schools are mediated by STEM teachers who are responsible for organising, implementing and evaluating the activities with a view to promoting STEM subjects. However, research investigating teachers' STEM roles and professional development through participation in outreach activities is limited. This paper…

  6. The Development of the STEM Career Interest Survey (STEM-CIS)

    Science.gov (United States)

    Kier, Meredith W.; Blanchard, Margaret R.; Osborne, Jason W.; Albert, Jennifer L.

    2014-06-01

    Internationally, efforts to increase student interest in science, technology, engineering, and mathematics (STEM) careers have been on the rise. It is often the goal of such efforts that increased interest in STEM careers should stimulate economic growth and enhance innovation. Scientific and educational organizations recommend that efforts to interest students in STEM majors and careers begin at the middle school level, a time when students are developing their own interests and recognizing their academic strengths. These factors have led scholars to call for instruments that effectively measure interest in STEM classes and careers, particularly for middle school students. In response, we leveraged the social cognitive career theory to develop a survey with subscales in science, technology, engineering, and mathematics. In this manuscript, we detail the six stages of development of the STEM Career Interest Survey. To investigate the instrument's reliability and psychometric properties, we administered this 44-item survey to over 1,000 middle school students (grades 6-8) who primarily were in rural, high-poverty districts in the southeastern USA. Confirmatory factor analyses indicate that the STEM-CIS is a strong, single factor instrument and also has four strong, discipline-specific subscales, which allow for the science, technology, engineering, and mathematics subscales to be administered separately or in combination. This instrument should prove helpful in research, evaluation, and professional development to measure STEM career interest in secondary level students.

  7. The cost of myrmecophytism: insights from allometry of stem secondary growth.

    Science.gov (United States)

    Blatrix, Rumsaïs; Renard, Delphine; Djieto-Lordon, Champlain; McKey, Doyle

    2012-10-01

    Plant defence traits against herbivores incur production costs that are usually difficult to measure. However, estimating these costs is a prerequisite for characterizing the plant defence strategy as a whole. Myrmecophytes are plants that provide symbiotic ants with specialized nesting cavities, called domatia, in exchange for protection against herbivores. In the particular case of stem domatia, production of extra wood seems to be the only associated cost, making this indirect defence trait a particularly suitable model for estimating the cost of defence. Measurements were made of growth pattern and cumulative production cost of domatia over secondary growth in the myrmecophyte Leonardoxa africana subsp. africana, whose internodes display both a solid basal segment and a hollow distal part (the domatium), thus allowing paired comparison of investment in wood. Previous studies showed that 'overconstruction' of the hollow part of internodes during primary growth is needed for mechanical support. In this study, it is shown that the relationship between the woody cross-sectional area of the solid and hollow parts of internodes is negatively allometric at the beginning of secondary growth and nearly isometric later on. Thus, in hollow stems, the first phase of slow secondary growth compensates for the 'overconstruction' of the ring of wood during primary growth. Moreover, the cumulative production cost of a domatium (estimated as the additional volume of wood required for a hollow stem compared with a solid one) is very high at the beginning of secondary growth and then quickly tends to zero. Making domatia incurs high costs early in ontogeny, costs that are then amortized later in development of stems and of individual plants. Characterizing ontogenetic variation of the net cost of this peculiar defence mechanism will help us build more accurate theoretical models of resource allocation in myrmecophytes.

  8. Design Steps for Physic STEM Education Learning in Secondary School

    Science.gov (United States)

    Teevasuthonsakul, C.; Yuvanatheeme, V.; Sriput, V.; Suwandecha, S.

    2017-09-01

    This study aimed to develop the process of STEM Education activity design used in Physics subjects in the Thai secondary schools. The researchers have conducted the study by reviewing the literature and related works, interviewing Physics experts, designing and revising the process accordingly, and experimenting the designed process in actual classrooms. This brought about the five-step process of STEM Education activity design which Physics teachers applied to their actual teaching context. The results from the after-class evaluation revealed that the students’ satisfaction level toward Physics subject and critical thinking skill was found higher statistically significant at p technology, and engineering design process as the foundation when creating case study of problems and solutions.

  9. The evolution of development of vascular cambia and secondary growth

    Science.gov (United States)

    Andrew Groover; Rachel Spicer

    2010-01-01

    Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...

  10. Examination of factors predicting secondary students' interest in tertiary STEM education

    Science.gov (United States)

    Chachashvili-Bolotin, Svetlana; Milner-Bolotin, Marina; Lissitsa, Sabina

    2016-02-01

    Based on the Social Cognitive Career Theory (SCCT), the study aims to investigate factors that predict students' interest in pursuing science, technology, engineering, and mathematics (STEM) fields in tertiary education both in general and in relation to their gender and socio-economic background. The results of the analysis of survey responses of 2458 secondary public school students in the fifth-largest Israeli city indicate that STEM learning experience positively associates with students' interest in pursuing STEM fields in tertiary education as opposed to non-STEM fields. Moreover, studying advanced science courses at the secondary school level decreases (but does not eliminate) the gender gap and eliminates the effect of family background on students' interest in pursuing STEM fields in the future. Findings regarding outcome expectations and self-efficacy beliefs only partially support the SCCT model. Outcome expectations and self-efficacy beliefs positively correlate with students' entering tertiary education but did not differentiate between their interests in the fields of study.

  11. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from .... the First strand cDNA synthesis kit (Fermentas, Pittsburgh,. USA). .... ing height of the rooted cutting, girth of the stem, leaf area.

  12. Perceptions of STEM-based outreach activities in secondary education

    NARCIS (Netherlands)

    Vennix, J.; den Brok, P.J.; Taconis, R.

    2017-01-01

    We investigated and compared the learning environment perceptions of students, teachers and guides who participated in Science, Technology, Engineering and Mathematics (STEM)-based outreach activities in secondary education. In outreach activities, schools and teachers work together with companies

  13. Development and validation of science, technology, engineering and mathematics (STEM) based instructional material

    Science.gov (United States)

    Gustiani, Ineu; Widodo, Ari; Suwarma, Irma Rahma

    2017-05-01

    This study is intended to examine the development and validation of simple machines instructional material that developed based on Science, Technology, Engineering and Mathematics (STEM) framework that provides guidance to help students learn and practice for real life and enable individuals to use knowledge and skills they need to be an informed citizen. Sample of this study consist of one class of 8th grader at a junior secondary school in Bandung, Indonesia. To measure student learning, a pre-test and post-test were given before and after implementation of the STEM based instructional material. In addition, a questionnaire of readability was given to examine the clarity and difficulty level of each page of instructional material. A questionnaire of students' response towards instructional material given to students and teachers at the end of instructional material reading session to measure layout aspects, content aspects and utility aspects of instructional material for being used in the junior secondary school classroom setting. The results show that readability aspect and students' response towards STEM based instructional material of STEM based instructional material is categorized as very high. Pretest and posttest responses revealed that students retained significant amounts information upon completion of the STEM instructional material. Student overall learning gain is 0.67 which is categorized as moderate. In summary, STEM based instructional material that was developed is valid enough to be used as educational materials necessary for conducting effective STEM education.

  14. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  15. Digital Game-Based Learning to Encourage Secondary Students to Purse STEM Related Careers Using Arecibo Observatory

    Science.gov (United States)

    Ortiz-Correa, Z. M.; Lautenbach, J.; Franco-Diaz, E.; Raizada, S.; Ghosh, T.; Rivera-Valentín, E.; Ortiz, A.

    2017-12-01

    This project was developed to encourage secondary students to pursue STEM related careers through exposure to the interdisciplinary nature of the Arecibo Observatory (AO) in Puerto Rico. The idea for this project was initiated due to the NSF-funded Research Experience for Teachers (RET) Summer Program. The AO RET summer program allows teaching faculty from public schools to collaborate with scientist on their ongoing research or instrument development projects at the AO for five weeks. Subsequently, the research is disseminated among secondary students through several workshops and hands-on activities. Through the workshops and hands-on activities underrepresented secondary students will learn about the research conducted at the AO to study Earth's upper atmosphere, asteroids and other Solar System bodies, as well as stars and galaxies beyond. Afterwards, students will develop virtual worlds simulating the different AO facilities (Lidar Laboratory, Radio Telescope, Planetary Radar System, HF Facility, Visitor Center, among others) and showing their functions using digital game-based learning.

  16. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    Science.gov (United States)

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  17. Career Motivation of Secondary Students in STEM: A Cross-Cultural Study between Korea and Indonesia

    Science.gov (United States)

    Shin, Sein; Rachmatullah, Arif; Roshayanti, Fenny; Ha, Minsu; Lee, Jun-Ki

    2018-01-01

    The purpose of this study was to understand the career motivation of secondary students in science, technology, engineering, and mathematics (STEM) by comparing Korean and Indonesian students. Effects of gender and educational level on students' STEM career motivation were also examined. To test for differences, we used Rasch analysis, 3-way…

  18. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment....

  19. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization...

  20. Interactive physics apparatus: influence on interest of secondary school students in pursuing a career path in science, technology, engineering and mathematics (STEM)

    Science.gov (United States)

    Lubrica, Joel V.; Abiasen, Jovalson T.; Dolipas, Bretel B.; Ramos, Jennifer Lyn S.

    2017-01-01

    In this article, we present results of our endeavours as physics educators to facilitate and support pedagogical change and development in the educational system of a developing country, the Philippines. We have discovered that the interaction of junior high school (years 7-10) students with physics apparatus can influence students’ interest in pursuing a career in science, technology, engineering and mathematics (STEM). This assertion stems from self-reports of students who gave their views immediately after their exposure to interactive apparatus in their own school, outside of their usual lessons. Participants claimed that their interest in following a STEM career path was ‘greatly increased’ due to their exposure to these apparatus. This was true even for students who were intending to take a non-STEM career path. Thus, we recommend that, in settings that have constraints involving access to practical equipment, ways to introduce school level interactive physics apparatus to secondary school students be conducted in order to attract more students towards STEM courses. Possibly, policies encouraging this type of exposure should also be formulated.

  1. STEM Education through the Perspectives of Secondary Schools Teachers and School Administrators in Turkey

    Science.gov (United States)

    Çevik, Mustafa; Özgünay, Esma

    2018-01-01

    The aim of this study is to explore the views of science, mathematics and information technologies teachers working in secondary schools and administrators of the schools, in which these teachers are working, regarding STEM. This research is based on a survey model in which quantitative data tools were used to directly obtain the opinions of…

  2. Role model and prototype matching: Upper-secondary school students’ meetings with tertiary STEM students

    Directory of Open Access Journals (Sweden)

    Eva Lykkegaard

    2016-04-01

    Full Text Available Previous research has found that young people’s prototypes of science students and scientists affect their inclination to choose tertiary STEM programs (Science, Technology, Engineering and Mathematics. Consequently, many recruitment initiatives include role models to challenge these prototypes. The present study followed 15 STEM-oriented upper-secondary school students from university-distant backgrounds during and after their participation in an 18-months long university-based recruitment and outreach project involving tertiary STEM students as role models. The analysis focusses on how the students’ meetings with the role models affected their thoughts concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype images and situation-specific conceptions of role models. Furthermore, the study underlined the positive effect of prolonged role-model contact, the importance of using several role models and that traditional school subjects catered more resistant prototype images than unfamiliar ones did.

  3. Acquired von Willebrand Syndrome Associated to Secondary IgM MGUS Emerging after Autologous Stem Cell Transplantation for AL Amyloidosis.

    Science.gov (United States)

    Qamar, Hina; Lee, Adrienne; Valentine, Karen; Skeith, Leslie; Jimenez-Zepeda, Victor H

    2017-01-01

    Acquired von Willebrand syndrome (AVWS) is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT). Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT.

  4. Acquired von Willebrand Syndrome associated to secondary IgM MGUS emerging after Autologous Stem Cell Transplantation for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Victor H Jimenez-Zepeda

    2017-05-01

    Full Text Available Acquired von Willebrand syndrome (AVWS is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT. Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT.

  5. Stomach development, stem cells and disease

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  6. Development of Integrative STEM Curriculum: A Multiple Case Study of Multi-Disciplinary Teams in Two Pennsylvania High Schools

    Science.gov (United States)

    Rider-Bertrand, Joey H.

    At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the experiences of two multi-disciplinary teams of secondary teachers from Pennsylvania who developed and implemented integrative STEM curriculum. Four teachers from a rural high school and four teachers from a suburban high school participated in the study. A document review of integrative STEM curriculum and semi-structured interviews were conducted to learn about the curriculum development process and teachers' perceptions regarding conditions that support or hinder success. Individual and cross-case analyses were performed to establish findings and themes. Although the individual case themes varied slightly, the cross-case themes and assertions that emerged provided highly sought after guidance to practitioners and added to the limited body of research on integrative STEM education. This study found that current curriculum models do not fit integrative STEM curriculum, the development process is fluid, and substantial administrative support and resources are necessary to develop, implement, and sustain integrative STEM education programs. The results offered implications for all educators, as well as two examples of how teachers navigated the terrain of integrative STEM curriculum.

  7. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose. © 2015 Wiley Periodicals, Inc.

  8. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  9. STEM Learning through Engineering Design: Impact on Middle Secondary Students' Interest towards STEM

    Science.gov (United States)

    Shahali, Edy Hafizan Mohd; Halim, Lilia; Rasul, Mohamad Sattar; Osman, Kamisah; Zulkifeli, Mohd Afendi

    2017-01-01

    The purpose of this study was to identify students' changes of (i) interest toward STEM subjects and (ii) interest to pursuing STEM career after participating in non-formal integrated STEM education programme. The programme exposed students with integrated STEM education through project based learning involving the application of five phases…

  10. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    Science.gov (United States)

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  11. Development of New Technologies for Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Xibo Ma

    2012-01-01

    Full Text Available Since the 1960s, the stem cells have been extensively studied including embryonic stem cells, neural stem cells, bone marrow hematopoietic stem cells, and mesenchymal stem cells. In the recent years, several stem cells have been initially used in the treatment of diseases, such as in bone marrow transplant. At the same time, isolation and culture experimental technologies for stem cell research have been widely developed in recent years. In addition, molecular imaging technologies including optical molecular imaging, positron emission tomography, single-photon emission computed tomography, and computed tomography have been developed rapidly in recent the 10 years and have also been used in the research on disease mechanism and evaluation of treatment of disease related with stem cells. This paper will focus on recent typical isolation, culture, and observation techniques of stem cells followed by a concise introduction. Finally, the current challenges and the future applications of the new technologies in stem cells are given according to the understanding of the authors, and the paper is then concluded.

  12. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fan; Williams, Brad J.; Thangella, Padmavathi A. V.; Ladak, Adam; Schepmoes, Athena A.; Olivos, Hernando J.; Zhao, Kangmei; Callister, Stephen J.; Bartley, Laura E.

    2017-07-13

    Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic and metabolite analyses of the rice elongating internode. Along eight segments of the second rice internode (internode II) at booting stage, cellulose, lignin, and xylose increase as a percentage of cell wall material from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested peptides of size-fractionated proteins extracted from this internode at booting reveals 2547proteins with at least two unique peptides. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of the internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including an LRR-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of internode proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS of hot methanol-extracted secondary metabolites from internode II at four stages (elongation, early mature, mature and post mature) indicates that secondary metabolites in stems are distinct from those of roots and leaves, and differ during stem maturation. This work fills a void of knowledge of proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes during internode development, toward improving grass agronomic properties.

  13. Assessing STEM content learning: using the Arctic's changing climate to develop 21st century learner

    Science.gov (United States)

    Henderson, G. R.; Durkin, S.; Moran, A.

    2016-12-01

    In recent years the U.S. federal government has called for an increased focus on science, technology, engineering, and mathematics (STEM) in the educational system to ensure that there will be sufficient technical expertise to meet the needs of business and industry. As a direct result of this STEM emphasis, the number of outreach activities aimed at actively engaging these students in STEM learning has surged. Such activities, frequently in the form of summer camps led by university faculty, have targeted primary and secondary school students with the goal of growing student interest in STEM majors and STEM careers. This study assesses short-term content learning using a climate module that highlights rapidly changing Arctic climate conditions to illustrate concepts of radiative energy balance and climate feedback. Hands-on measurement of short and longwave radiation using simple instrumentation is used to demonstrate concepts that are then related back to the "big picture" Arctic issue. Pre and post module questionnaires were used to assess content learning, as this learning type has been identified as the basis for STEM literacy and the vehicle by which 21st century learning skills are usually developed. In this instance, students applied subject knowledge they gained by taking radiation measurements to better understand the real-world problem of climate change.

  14. STEM Graduates and Secondary School Curriculum: Does Early Exposure to Science Matter? CEP Discussion Paper No. 1443

    Science.gov (United States)

    De Philippis, Marta

    2016-01-01

    Increasing the number of Science, Technology, Engineering and Math (STEM) university graduates is considered a key element for long-term productivity and competitiveness in the global economy. Still, little is known about what actually drives and shapes students' choices. This paper focusses on secondary school students at the very top of the…

  15. The successful implementation of STEM initiatives in lower income schools

    Science.gov (United States)

    Bakshi, Leena

    The purpose of this study was to examine the leadership strategies utilized by superintendents, district administrators and school principals and the impact of these identified strategies on implementing STEM initiatives specifically for lower-income students. This study set out to determine (a) What role does district leadership play in the implementation of STEM initiatives in lower income secondary schools; (b) What internal systems of accountability exist in successful lower income secondary schools' STEM programs; (c) What leadership strategies are used to implement STEM curriculum initiatives; (d) How do school and district leadership support staff in order to achieve student engagement in STEM Initiative curriculum. This study used a mixed-methods approach to determine the impact of leadership strategies utilized by superintendents, district administrators and school principals on implementing STEM initiatives. Quantitative data analyzed survey questionnaires to determine the degree of correlation between the school districts that have demonstrated the successful implementation of STEM initiatives at the school and district levels. Qualitative data was collected using highly structured participant interviews and purposeful sampling of four district superintendents, one district-level administrator and five school leaders to capture the key strategies in implementing STEM initiatives in lower income secondary schools. Through the process of triangulation, the results of the study revealed that superintendents and principals should consider the characteristics of effective STEM initiatives that have shown a considerable degree of correlation with positive outcomes for lower income students. These included the leadership strategies of personnel's making decisions about the district's and school's instructional direction and an emphasis on the conceptual development of scientific principles using the Next Generation Science Standards coupled with the Common Core

  16. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  17. High School STEM Teachers' Perceptions of the Work Environment

    Science.gov (United States)

    Pedersen, Daphne E.; West, Robert R.

    2017-01-01

    How do secondary STEM teachers perceive the environments in which they teach? To what degree is STEM teaching at the secondary level situated in a gendered workplace organization? Using data from the 1999-2000 Schools and Staffing Survey, we examined how men and women who were full-time secondary school teachers in STEM fields (N = 5,617)…

  18. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  19. Measuring post-secondary stem majors' engagement in sustainability: The creation, assessment, and validation of an instrument for sustainability curricula evaluation

    Science.gov (United States)

    Little, David L., II

    Ongoing changes in values, pedagogy, and curriculum concerning sustainability education necessitate that strong curricular elements are identified in sustainability education. However, quantitative research in sustainability education is largely undeveloped or relies on outdated instruments. In part, this is because no widespread quantitative instrument for measuring related educational outcomes has been developed for the field, though their development is pivotal for future efforts in sustainability education related to STEM majors. This research study details the creation, evaluation, and validation of an instrument -- the STEM Sustainability Engagement Instrument (STEMSEI) -- designed to measure sustainability engagement in post-secondary STEM majors. The study was conducted in three phases, using qualitative methods in phase 1, a concurrent mixed methods design in phase 2, and a sequential mixed methods design in phase 3. The STEMSEI was able to successfully predict statistically significant differences in the sample (n= 1017) that were predicted by prior research in environmental education. The STEMSEI also revealed statistically significant differences between STEM majors' sustainability engagement with a large effect size (.203 ≤ eta2 ≤ .211). As hypothesized, statistically significant differences were found on the environmental scales across gender and present religion. With respect to gender, self-perceived measures of emotional engagement with environmental sustainability was higher with females while males had higher measures in cognitive engagement with respect to knowing information related to environmental sustainability. With respect to present religion, self-perceived measures of general engagement and emotional engagement in environmental sustainability were higher for non-Christians as compared to Christians. On the economic scales, statistically significant differences were found across gender. Specifically, measures of males' self

  20. Evolutionary insights into postembryonic development of adult intestinal stem cells

    Directory of Open Access Journals (Sweden)

    Ishizuya-Oka Atsuko

    2011-11-01

    Full Text Available Abstract In the adult vertebrate intestine, multi-potent stem cells continuously generate all of the epithelial cells throughout the adulthood. While it has long been known that the frog intestine is formed via the development of adult intestinal stem cells during thyroid hormone (TH-dependent metamorphosis, the basic structure of the adult intestine is formed by birth in mammals and it is unclear if the subsequent maturation of the intestine involves any changes in the intestinal stem cells. Two recent papers showing that B lymphocyte-induced maturation protein 1 (Blimp1 regulates postnatal epithelial stem cell reprogramming during mouse intestinal maturation support the model that adult intestinal stem cells are developed during postembryonic development in mammals, in a TH-dependent process similar to intestinal remodeling during amphibian metamorphosis. Since the formation of the adult intestine in both mammals and amphibians is closely associated with the adaptation from aquatic to terrestrial life during the peak of endogenous TH levels, the molecular mechanisms by which the adult stem cells are developed are likely evolutionally conserved.

  1. Relationships Among Teacher Preparedness and Instructional Approaches to Secondary Student Achievement in STEM: A Secondary Analysis of TIMSS Data

    Science.gov (United States)

    Miller-Ricks, Karen A.

    Educational reform efforts in Science, Technology, Engineering, Math (STEM) place emphasis on teachers as conduits for student achievement. The purpose of this study was to use TIMSS 2011 data to examine relationships between Science-Technology-Society (STS) instructional practices (student-centered instruction established to promote learning through real-world applications) teacher preparedness, and student achievement and identify variations of achievement between and among eighth-grade science and math classes. The research was framed by both Harper's Anti-Deficit Achievement Theory and Bronfenbrenner's Ecological Systems Theory (BEST). 501 U.S. schools contributed to the TIMSS 2011 data from both the teacher questionnaires and student booklets. Chi-Square, Spearman Correlation, and 2-level hierarchical linear modeling (HLM) were used to analyze data about teachers' preparedness to teach science and math, frequency of using STS instructional practices, and student achievement. The chi-square null hypothesis for math teachers was rejected, providing the assumption that there was an association between the frequency of using STS instruction in math and teacher preparedness. However, the chi-square null hypothesis for science teachers failed to be rejected, providing the assumption that there was no significant association between the frequency of using STS instruction in science and science teacher preparedness. The Spearman Correlation revealed statistically positively significant differences between STS instruction and science achievement, as well as between teacher preparedness and science achievement. The HLM results suggested that 33% of the variance of mathematics achievement was at the individual level and 66% was at the group level. The results for science teachers suggested that 54% of the variance of science achievement was at the individual level and 46% of the variance was at the group level. The data findings support the conclusion that secondary STEM

  2. Developing design-based STEM education learning activities to enhance students' creative thinking

    Science.gov (United States)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  3. Toward Development of Pluripotent Porcine Stem Cells by Road Mapping Early Embryonic Development

    DEFF Research Database (Denmark)

    Petkov, Stoyan; Freude, Kristine; Mashayekhi-Nezamabadi, Kaveh

    2017-01-01

    The lack in production of bona fide porcine pluripotent stem cells has definitely been hampered by a lack of research into porcine embryo development. Embryonic development in mammals is the extraordinary transition of a single-celled fertilized zygote into a complex fetus, which occurs...... in the uterus of the maternal adult during the early stages of gestation. Biomedical pig models could serve as genetic backgrounds for establishment of embryonic stem cells (ESCs) or other pluripotent stem cells (such as iPSC), which may be used to model and study diseases in vitro. This chapter provides...... insight into the current knowledge of pluripotent states in the developing pig embryo and the current status in establishment of bona fide porcine ESC (pESC) and piPSCs. It reflects the potential causes underlying the difficulty in establishing pluripotent stem cells and reviews recent data on global...

  4. Documentation on the development of the Swiss TIMES Electricity Model (STEM-E)

    International Nuclear Information System (INIS)

    Kannan, R.; Turton, H.

    2011-10-01

    This comprehensive report by the Paul Scherrer Institute PSI in Switzerland documents the development of the Swiss TIMES Electricity Model (STEM-E). This is a flexible model which explicitly depicts plausible pathways for the development of the Swiss electricity sector, while dealing with inter-temporal variations in demand and supply. TIMES is quoted as having the capability to portray the entire energy system from resource supply, through fuel processing, representation of infrastructures, conversion to secondary energy carriers, end-use technologies and energy service demands at end-use sectors. The background of the model's development and a reference energy system are described. Also, electricity end-use sectors and generating systems are examined, including hydropower, nuclear power, thermal generation and renewables. Environmental factors and the calibration of the model are discussed, as is the application of the model. The document is completed with an outlook, references and six appendices

  5. Hematopoietic stem cell transplantation in children and young adults with secondary myelodysplastic syndrome and acute myelogenous leukemia after aplastic anemia.

    Science.gov (United States)

    Yoshimi, Ayami; Strahm, Brigitte; Baumann, Irith; Furlan, Ingrid; Schwarz, Stephan; Teigler-Schlegel, Andrea; Walther, Joachim-Ulrich; Schlegelberger, Brigitte; Göhring, Gudrun; Nöllke, Peter; Führer, Monika; Niemeyer, Charlotte M

    2014-03-01

    Secondary myelodysplastic syndrome and acute myelogenous leukemia (sMDS/sAML) are the most serious secondary events occurring after immunosuppressive therapy in patients with aplastic anemia. Here we evaluate the outcome of hematopoietic stem cell transplantation (HSCT) in 17 children and young adults with sMDS/sAML after childhood aplastic anemia. The median interval between the diagnosis of aplastic anemia and the development of sMDS/sAML was 2.9 years (range, 1.2 to 13.0 years). At a median age of 13.1 years (range, 4.4 to 26.7 years), patients underwent HSCT with bone marrow (n = 6) or peripheral blood stem cell (n = 11) grafts from HLA-matched sibling donors (n = 2), mismatched family donors (n = 2), or unrelated donors (n = 13). Monosomy 7 was detected in 13 patients. The preparative regimen consisted of busulfan, cyclophosphamide, and melphalan in 11 patients and other agents in 6 patients. All patients achieved neutrophil engraftment. The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 47%, and that of chronic GVHD was 70%. Relapse occurred in 1 patient. The major cause of death was transplant-related complication (n = 9). Overall survival and event-free survival at 5 years after HSCT were both 41%. In summary, this study indicates that HSCT is a curative therapy for some patients with sMDS/sAML after aplastic anemia. Future efforts should focus on reducing transplantation-related mortality. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  7. Examining Thai high school students' developing STEM projects

    Science.gov (United States)

    Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.

  8. Choices and Changes: Eccles' Expectancy-Value Model and Upper-Secondary School Students' Longitudinal Reflections about Their Choice of a STEM Education

    Science.gov (United States)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school…

  9. Theory of Economic Development (Secondary Stage)

    OpenAIRE

    Mashkoor, Aasim; Ahmed, Ovais

    2015-01-01

    This is a secondary stage of theory of economic development. This research study is covering the secondary phase of development which rules the tactical plans of the main strategy. In this stage, the social and economical demands varies from country to country and we have developed the theory according to the Pakistani economic conditions. It requires great a lot of technical and strategic analysis to chose the accurate plans accordingly.

  10. Impacts of Professional Development in Integrated STEM Education on Teacher Self-Efficacy, Outcome Expectancy, and Stem Career Awareness

    Science.gov (United States)

    Knowles, J. Geoff

    This research analyzed the effects of teacher professional development and lesson implementation in integrated Science, Technology, Engineering, and Math (STEM) on: 1.) Teacher self-efficacy and their confidence to teach specific STEM subjects; 2.) Teaching outcome expectancy beliefs concerning the impact of actions by teachers on student learning; and 3.) Teacher awareness of STEM careers. High school science and technology education teachers participating in the Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS) project experimental group attended a ten-day summer professional development institute designed to educate teachers in using an integrated STEM education model to implement integrated STEM lessons. The research design utilized a quasi-experimental nonequivalent comparison group design that incorporated an experimental group and an untreated comparison group with both pretest, posttest, and delayed posttest assessments on non-randomized participants. Teacher self-efficacy has been identified as a key factor in effective teaching and student learning, and teacher awareness of STEM careers impacts students as they consider career choices. The T-STEM Survey for teachers was given for the pretest and posttest assessments to measure attitudes and beliefs toward the specific constructs of this study. Significant effects of the TRAILS professional development were found in the teacher group (experimental or comparison) and teacher subject (technology or science) in pretest and posttest scores using cumulative link models for the constructs of teacher self-efficacy and beliefs to teach STEM subjects, teacher outcome expectancy beliefs, and teacher awareness of STEM careers. Effect sizes ranged from small to large varying by construct and assessment time. Highly significant p-values and effect sizes revealed impacts on science teachers were greater when teacher subject groups were analyzed separately.

  11. Preparing STEM Teachers for Integration of NGSS: A Summer Workshop Development

    Directory of Open Access Journals (Sweden)

    Gonca Altuger-Genc

    2015-11-01

    Full Text Available The increasing emphasis on Science, Technology, Engineering and Mathematics (STEM education in United States and across the world created the demand for STEM education to start as early as elementary school. Especially in the past decade, the demand for middle schools and high schools to increase the involvement of the STEM components in their curriculum has been on the rise.  The Next Generation Science Standards (NGSS(http://www.nextgenscience.org/ are testimonial to this demand and need.  With the fast-pace the NGSS are being adopted by different states, the expectations from science, engineering, and technology teachers to develop and design their courses to reflect the new standards and meet the updated goals increased.  To support teachers with the necessary resources and training, a Summer STEM training program and a set of STEM training modules have been developed by a 4-year accredited State College.   This paper provides an overview of the STEM initiatives and a step-by-step approach of the design and development of the STEM modules to train K-12 teachers.

  12. STEM professional development: What's going on from the presenters' and participants' perspectives?

    Science.gov (United States)

    Williams, Randi

    This study was designed to explore elementary STEM professional development viewed from the presenters' and participants' perspectives. Numerous committees and educational organizations recommend investing in STEM professional development at the local, state, and national level. This investment must begin with research that inquires how STEM professional development is structured and what is needed for teacher and student success. Since there is a recent STEM education push in schools, elementary teachers need effective professional development in order to gain the necessary content, skills, confidence, and pedagogy required for those changing demands. This qualitative study embraced. Yin's case study methodology by observing short-duration STEM professional development for elementary teachers within a large metropolitan school system and an educational professional development agency. The study discussed the analysis and findings in the context of Bandura's sources of efficacy and Desimone's critical features of professional development. Data were gathered form professional development observations, presenter interviews, and participant interviews. The research questions for this study included: (a) based on Desimone's (2009) framework for professional development, what does content focused, active learning, coherence, duration, and collective participation look like in initial STEM professional development for elementary teachers? (b) are Bandura's (1997) four sources of self- efficacy: mastery experiences, vicarious experiences, social persuasion, and affective states evidenced within the short duration professional development? and (c) how do these two frameworks align between presenter and participant thoughts and actions? This study uncovered additional sources of efficacy are present in short-duration STEM professional development. These found sources include coherence, content, and active learning delivered in a definitive order. The findings of this study

  13. Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness.

    Science.gov (United States)

    Sierra-de-Grado, Rosario; Pando, Valentín; Martínez-Zurimendi, Pablo; Peñalvo, Alejandro; Báscones, Esther; Moulia, Bruno

    2008-06-01

    Stem straightness is an important selection trait in Pinus pinaster Ait. breeding programs. Despite the stability of stem straightness rankings in provenance trials, the efficiency of breeding programs based on a quantitative index of stem straightness remains low. An alternative approach is to analyze biomechanical processes that underlie stem form. The rationale for this selection method is that genetic differences in the biomechanical processes that maintain stem straightness in young plants will continue to control stem form throughout the life of the tree. We analyzed the components contributing most to genetic differences among provenances in stem straightening processes by kinetic analysis and with a biomechanical model defining the interactions between the variables involved (Fournier's model). This framework was tested on three P. pinaster provenances differing in adult stem straightness and growth. One-year-old plants were tilted at 45 degrees, and individual stem positions and sizes were recorded weekly for 5 months. We measured the radial extension of reaction wood and the anatomical features of wood cells in serial stem cross sections. The integral effect of reaction wood on stem leaning was computed with Fournier's model. Responses driven by both primary and secondary growth were involved in the stem straightening process, but secondary-growth-driven responses accounted for most differences among provenances. Plants from the straight-stemmed provenance showed a greater capacity for stem straightening than plants from the sinuous provenances mainly because of (1) more efficient reaction wood (higher maturation strains) and (2) more pronounced secondary-growth-driven autotropic decurving. These two process-based traits are thus good candidates for early selection of stem straightness, but additional tests on a greater number of genotypes over a longer period are required.

  14. Development of Ash Dieback in South-Eastern Germany and the Increasing Occurrence of Secondary Pathogens

    Directory of Open Access Journals (Sweden)

    Heike D. Lenz

    2016-02-01

    Full Text Available Since its first identification in Poland in 2006, the ascomycete Hymenoscyphus fraxineus has caused massive dieback of Fraxinus excelsior in the countries of eastern, northern and central Europe. This work shows the development, expansion, and severity of the disease in south-eastern Germany for a period of four years, starting in 2010. Differences between habitats, as well as age classes have been captured. The presence and the amount of potentially resistant trees were proven over the years, to determine how high the resistance level might be. Typical disease symptoms are the wilting of leaves, necrotic lesions in the bark and reddish discolorations of branches and stems. In addition, stem necroses also appear by infection with species of Armillaria. Therefore, special attention has been given to Armillaria species in affected ash stands but also to other secondary pathogens, like ash bark beetles. It is shown that breeding galleries of Hylesinus fraxini are only found in trees that have recently died and thus Hylesinus fraxini is still acting as a secondary opportunistic pathogen. In contrast, Armillaria spp. can be considered as serious pathogens of weakened ash trees. In different ash stands, typical symptoms of infection can be found. A relationship between stem base necrotic lesions and vitality was examined. It is shown that necrotic lesions severely contribute to accelerating the mortality of ash trees. In addition to the high infection pressure by H. fraxineus, the high inoculum of Armillaria in the soil facilitates further infections and, thus, likewise endangers the survival of potentially resistant trees. In the following years, forest conversion and seed harvest in affected ash stands will have to be urgently considered to avoid tree gaps on a large scale. Furthermore, infection assays of potentially resistant trees with ensuing breeding programmes should be initially started for the conservation of this ecologically and

  15. Tissues development in stems of Aristolochia clematitis L. in the point of view of multicellular complexes formation

    Directory of Open Access Journals (Sweden)

    Zofia Puławska

    2014-01-01

    Full Text Available After cytokinesis the cells do not separate but remain within the wall of the mother cell. After a series of divisions a multicellular complex arises. In the stems of Aristolochia clematitis procambium is closer related to protoxylem than to protophloem, and metaphloem is closer related to metaxylem than to protophloem. Since protophloem has a closer common origin with fibre primordia than with the remaining tissues, it cannot be decided unequivocally what is the origin of the fibres or when procambium differentiates. The common origin of the primary vascular tissues is visible in the pattern of the multicellular complexes, whereas the common origin of the secondary vascular tissue developing in the underground several-year-old parts of the stem can be traced in the arrangement of the single radial tiers. Some characteristics of symplastic growth are discussed.

  16. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  17. Stem cells: a model for screening, discovery and development of drugs

    Directory of Open Access Journals (Sweden)

    Kitambi SS

    2011-09-01

    Full Text Available Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.Keywords: therapeutics, stem cells, cancer stem cells, screening models, drug development, high throughput screening

  18. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  19. Hydrocephalus secondary to subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Koga, Nobunori; Nakamura, Saburo; Kushi, Hidehiko; Yamamoto, Takamitsu; Tsubokawa, Takashi; Moriyasu, Nobuo

    1982-01-01

    The relationship between the extension and severity of subarachnoid hemorrhage, as demonstrated by computed tomography (CT), and hydrocephalus secondary to subarachnoid hemorrhage was studied. In 94 cases with subarachnoid hemorrhage, as analyzed by CT scan performed within 7 days after onset, high-density areas in the subarachnoid space were recognized in 61 cases (64%) and secondary hydrocephalus occurred in 22 cases (23%). 17 cases died within 2 weeks, before the occurrence of the hydrocephalus. The CT findings of subarachnoid hemorrhage was classified into 5 types, according to its severity and extension; especially the degree of high density in the basal cistern and/or cisterns around the brain stem was remarked. Secondary hydrocephalus after subarachnoid hemorrhage was observed in 90% of the cases; they had a density higher than a CT number of 60 in the basal cistern and/or cisterns around the brain stem (Type V). The mean interval between the onset of subarachnoid hemorrhage and the appearance of hydrocephalus was 20.6 days. We conclude that a significantly high density of extravasated blood in the subarachnoid space, especially in the basal cistern and/or the cisterns around the brain stem, can be predictive of secondary hydrocephalus after subarachnoid hemorrhage. (author)

  20. [Secondary thrombotic microangiopathies].

    Science.gov (United States)

    Coppo, P

    2017-11-01

    Thrombotic microangiopathies (TMA) are termed secondary when associated to a specific context favouring their occurrence. They encompass mainly TMA associated with pregnancy, allogeneic hematopoietic stem cell transplantation, cancer, drugs, or HIV infection. Secondary TMA represent a heterogeneous group of diseases which clinical presentation largely depends on the associated context. It is therefore mandatory to recognize these conditions since they have a significant impact in TMA management and prognosis. A successful management still represents a challenge in secondary TMA. Significant progresses have been made in the understanding of pregnancy-associated TMA, allowing an improvement of prognosis; on the opposite, other forms of secondary TMA such as hematopoietic stem cell transplantation-associated TMA or TMA associated with chemotherapy remain of dismal prognosis. A better understanding of pathophysiology in these forms of TMA, in association with a more empirical approach through the use of new therapeutic agents that can also help in the understanding on new mechanisms a posteriori, should improve their prognosis. The preliminary encouraging results reported with complement blockers in this field could represent a convincing example. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Secondary metabolites from Tetracera potatoria stem bark with anti-mycobacterial activity.

    Science.gov (United States)

    Fomogne-Fodjo, M C Y; Ndinteh, D T; Olivier, D K; Kempgens, P; van Vuuren, S; Krause, R W M

    2017-01-04

    Tetracera potatoria Afzel. Exg. Don (Dilleniaceae) is a medicinal plant used traditionally in Africa for the treatment of tuberculosis related ailments and respiratory infections. The antibacterial activity of the medium polar extracts of T. potatoria leaves and stem bark was recently reported against Mycobacterium smegmatis (MIC 25µg/mL) and M. aurum (65µg/mL), two fast-growing Mycobacterium strains used as model micro-organisms for the more pathogenic strain Mycobacterium tuberculosis (Fomogne-Fodjo et al., 2014). The aim of this study was consequently to isolate the compounds possibly contributing to this activity, and which may therefore be promising precursors to be used for the development of novel anti-TB drugs. T. potatoria medium polar extract [MeOH/DCM (1:1, v/v)] was fractionated sequentially with petroleum ether to which EtOAC and MeOH were gradually added to increase the polarity. The examination of T. potatoria extract and its fractions was guided by bioassays for anti-mycobacterial activity against M. smegmatis (ATCC 23246) and M. aurum (NCTC 10437) using the minimum inhibitory concentration (MIC) method. All the isolated compounds were structurally elucidated using spectroscopic techniques and evaluated for their anti-mycobacterial activity. Two novel secondary metabolites (1, 2) named tetraceranoate and N-hydroxy imidate-tetracerane, together with five known compounds [β-stigmasterol (3), stigmast-5-en-3β-yl acetate (4), betulinic acid (5), betulin (6) and lupeol (7)] were isolated and identified. Tetraceranoate exhibited the best activity against M. smegmatis with a minimum inhibitory concentration (MIC) of 7.8µg/mL, while β-stigmasterol, betulinic acid and betulin showed appreciable anti-mycobacterial activity against both strains (MIC 15µg/mL). Seven compounds were isolated from the medium polar extract [MeOH/DCM (1:1, v/v)] of T. potatoria stem bark. Only tetraceranoate one of the isolated compounds showed antibacterial activity against

  2. On faculty development of STEM inclusive teaching practices.

    Science.gov (United States)

    Dewsbury, Bryan M

    2017-10-02

    Faculty development of inclusive teaching practices has become more common in response to significant differences in STEM student retention between underrepresented minorities in the USA and students from other ethnic groups. Approaches to solve this have shifted from focusing on student deficits to changing campus culture, including the mindsets of instructors who teach STEM courses. In this article, I argue that based on the literature informing the conceptual frameworks used for faculty development in inclusive teaching, faculty developers should reframe the message of their workshops to focus participants more on the scope of the journey, and shift the direction of overall efforts some to redevelop pedagogical training at the graduate and postdoc levels. Informed by historical as well as recent theories on the role of higher education to society, I highlight the areas of the literature that can effectively inform our current approaches to inclusion. I also briefly review the reasons why this approach is needed, and include suggestions for new faculty development approaches for long-term sustainable change in STEM inclusive education at the postsecondary level. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Regenerative toxicology: the role of stem cells in the development of chronic toxicities.

    Science.gov (United States)

    Canovas-Jorda, David; Louisse, Jochem; Pistollato, Francesca; Zagoura, Dimitra; Bremer, Susanne

    2014-01-01

    Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not received great attention so far, despite growing evidence indicating the relationship of stem cell damage to adverse effects later in life. However, testing this in vitro is a scientific/technical challenge in particular due to the complex interplay of factors existing under physiological conditions. Current major research programs in stem cell toxicity are not aiming to demonstrate that stem cells can be targeted by toxicants. Therefore, this knowledge gap needs to be addressed in additional research activities developing technical solutions and defining appropriate experimental designs. The current review describes selected examples of the role of stem cells in the development of long-term toxicities in the brain, heart or liver and in the development of cancer. The presented examples illustrate the need to analyze the contribution of stem cells to chronic toxicity in order to make a final conclusion whether stem cell toxicities are an underestimated risk in mechanism-based safety assessments. This requires the development of predictive in vitro models allowing the assessment of adverse effects to stem cells on chronic toxicity and carcinogenicity.

  4. Development of successive cambia and wood structure in stem of Rivea hypocriteriformis (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Rajput Kishore S.

    2016-07-01

    Full Text Available This study examined the formation of successive rings of cambia in Rivea hypocriteriformis Choisy (Convolvulaceae. The mature stem is composed of four to five rings of xylem alternating with phloem. Successive cambia originate as smaller and larger segments; union and anastomosing of small cambial segments often leads to the formation of discontinuous rings. In the initial stage of growth, several vascular bundles interconnect to form the first ring of vascular cambium. The cambium remains functional for one complete season and becomes dormant during summer; a new ring of cambium is completed prior to the subsequent monsoon season and sprouting of new leaves. Successive cambia are initiated from the pericyclic parenchyma situated three to four cell layers outside of the protophloem. Functionally, all the successive cambia are bidirectional and produce secondary xylem centripetally and phloem centrifugally. The secondary xylem is diffuse-porous, with indistinct growth rings and consisting of wide fibriform vessels, fibre tracheids, and axial and ray parenchyma cells. The xylem rays are uni- to multiseriate and heterocellular. The multiseriate rays contain lignified marginal ray cells and thin-walled, unlignified central cells. The central ray cells also show accumulations of starch and druses. Discrete strands of intraxylary phloem occur at the periphery of the pith, and additional intraxylary phloem develops from adjacent cells as secondary growth progresses. Earlier-formed phloem shows heavy accumulation of callose, followed by its compaction. The development of successive cambia is correlated with extension growth and with the phenology of the plant.

  5. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    Science.gov (United States)

    Hardrict-Ewing, Gloria

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction into dynamic learning environments. The STEM Education Scholars (STEMES) is a Learning Community of Practice, housed in the College of Education, at a mid-sized mid-western public research university. The program of study focused on designing a professional development program for future Pre-K12 teachers. The iSTEM 2017 conference presented by the STEMES Community of Practice sought to inform pre-service teachers of STEM pedagogy, and focused on innovative classroom resources, hands-on learning and increasing content confidence when incorporating STEM into classroom instruction. iSTEM 2017 was held in February, 2017, and offered twenty refereed presentations and workshop sessions, a keynote address, and a closing session to over 200 pre-service teachers. Conference participants chose sessions, participated in game-like experiences and shared their learning with each other as well as with conference organizers. Results from participant self-reported surveys were analyzed to measure the impact of the conference on improving participants' confidence in teaching STEM topics, and their attitudes about the instructional methods. These results were added to the conference proceedings, which also contain documentation of each iSTEM 2017 session. Findings suggest that the iSTEM 2017 conference had an overall positive impact on participants' familiarity with STEM education, their belief in the importance of STEM education, and their confidence to integrate STEM education into future instructional practices.

  6. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Science.gov (United States)

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  7. Analysis of a STEM Education Professional Development Conference for Pre-Service Educators

    Science.gov (United States)

    Hardrict-Ewing, Gloria

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) disciplines are attracting increased attention in education. The iSTEM 2017 conference was a professional development program designed to acquaint pre-service teachers with interdisciplinary, research-based STEM instructional strategies that can transform traditional classroom instruction…

  8. Kidney stem cells in development, regeneration and cancer.

    Science.gov (United States)

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors. Copyright © 2014. Published by Elsevier Ltd.

  9. The Problem about Technology in STEM Education: Some Findings from Action Research on the Professional Development & Integrated STEM Lessons in Informal Fields

    Directory of Open Access Journals (Sweden)

    Tomoki Saito

    2015-04-01

    Full Text Available Since 2013, the authors’ Japanese team in the Department of Science Education at Shizuoka University has held trials of STEM Education in informal fields as participatory action research (e.g., Science museum in Shizuoka, Lifelong Learning Center in Fujieda City, and STEM Summer camp for the preparation for implementing STEM education in public schools and for proposing science education reform in a Japanese context. Problems in preparing STEM lessons include numerous new instructional materials and programs and emerging specialized schools. In addition, while most of these initiatives address one or more of the STEM subjects separately, there are increasing calls for emphasizing connections between and among the subjects (Honey, Pearson and Schweingruber, 2014. Unfamiliar problems for Japanese teachers are, What is Engineering? What is Design? and How can they be implemented in lessons? While gathering STEM learning materials to implement in their STEM Summer Camp, the authors noticed a pattern with which to develop a STEM lesson and developed a template “T-SM-E” in reference to prior STEM studies. After the STEM Summer Camp, the authors introduced the model in the pre-service teacher preparation program. As a result, the authors received suggestions about how teachers can develop integrated STEM lessons, how undergraduate (UG teachers can implement it in their lessons, and how teachers can assess student learning in their STEM lessons. From standard based student assessments and reflections written by the UG teachers, the authors found that it was difficult for the UG teachers to include technology in their lessons, and their assessment also indicated that the students did not show performance proficiency in technology. The authors discuss this existing problem in the Japanese education system.

  10. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla

    Directory of Open Access Journals (Sweden)

    Huiyan Guo

    2015-09-01

    Full Text Available Gibberellin (GA is a key signal molecule inducing differentiation of tracheary elements, fibers, and xylogenesis. However the molecular mechanisms underlying the effect of GA on xylem elongation and secondary wall development in tree species remain to be determined. In this study, Betula platyphylla (birch seeds were treated with 300 ppm GA3 and/or 300 ppm paclobutrazol (PAC, seed germination was recorded, and transverse sections of hypocotyls were stained with toluidine blue; the two-month-old seedlings were treated with 50 μM GA3 and/or 50 μM PAC, transverse sections of seedling stems were stained using phloroglucinol–HCl, and secondary wall biosynthesis related genes expression was analyzed by real-time quantitative PCR. Results indicated that germination percentage, energy and time of seeds, hypocotyl height and seedling fresh weight were enhanced by GA3, and reduced by PAC; the xylem development was wider in GA3-treated plants than in the control; the expression of NAC and MYB transcription factors, CESA, PAL, and GA oxidase was up-regulated during GA3 treatment, suggesting their role in GA3-induced xylem development in the birch. Our results suggest that GA3 induces the expression of secondary wall biosynthesis related genes to trigger xylogenesis in the birch plants.

  11. Design-based online teacher professional development to introduce integration of STEM in Pakistan

    Science.gov (United States)

    Anwar, Tasneem

    In today's global society where innovations spread rapidly, the escalating focus on science, technology, engineering and mathematics (STEM) has quickly intensified in the United States, East Asia and much of Western Europe. Our ever-changing, increasingly global society faces many multidisciplinary problems, and many of the solutions require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts. Thus, there is a critical need to explore the integration of STEM subjects in international education contexts. This dissertation study examined the exploration of integration of STEM in the unique context of Pakistan. This study used three-phase design-based methodological framework derived from McKenney and Reeves (2012) to explore the development of a STEM focused online teacher professional development (oTPD-STEM) and to identify the design features that facilitate teacher learning. The oTPD-STEM program was designed to facilitate eight Pakistani elementary school teachers' exploration of the new idea of STEM integration through both practical and theoretical considerations. This design-based study employed inductive analysis (Strauss and Corbin, 1998) to analyze multiple data sources of interviews, STEM perception responses, reflective learning team conversations, pre-post surveys and artifacts produced in oTPD-STEM. Findings of this study are presented as: (1) design-based decisions for oTPD-STEM, and (2) evolution in understanding of STEM by sharing participant teachers' STEM model for Pakistani context. This study advocates for the potential of school-wide oTPD for interdisciplinary collaboration through support for learner-centered practices.

  12. A Development Dilemma for Secondary Vocational Education: Instrumentalist Tendencies in Human Resource Development

    Science.gov (United States)

    Wang, Dong

    2013-01-01

    Human resource development is one of the theories guiding China's development of secondary vocational education. Secondary vocational education has always played a role in human resource training and development from the nation's founding to the present. In Chinese society today, however, there is a clear instrumentalist tendency in secondary…

  13. Stem cells: a model for screening, discovery and development of drugs.

    Science.gov (United States)

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.

  14. The biochemistry of hematopoietic stem cell development.

    Science.gov (United States)

    Kaimakis, P; Crisan, M; Dzierzak, E

    2013-02-01

    The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short window of developmental time. In mammalian embryos, hematopoietic progenitor and HSC generation occurs within several extra- and intraembryonic microenvironments, most notably from 'hemogenic' endothelial cells lining the major vasculature. HSCs are made through a remarkable transdifferentiation of endothelial cells to a hematopoietic fate that is long-lived and self-renewable. Recent studies are beginning to provide an understanding of the biochemical signaling pathways and transcription factors/complexes that promote their generation. The focus of this review is on the biochemistry behind the generation of these potent long-lived self-renewing stem cells of the blood system. Both the intrinsic (master transcription factors) and extrinsic regulators (morphogens and growth factors) that affect the generation, maintenance and expansion of HSCs in the embryo will be discussed. The generation of HSCs is a stepwise process involving many developmental signaling pathways, morphogens and cytokines. Pivotal hematopoietic transcription factors are required for their generation. Interestingly, whereas these factors are necessary for HSC generation, their expression in adult bone marrow HSCs is oftentimes not required. Thus, the biochemistry and molecular regulation of HSC development in the embryo are overlapping, but differ significantly from the regulation of HSCs in the adult. HSC numbers for clinical use are limiting, and despite much research into the molecular basis of HSC regulation in the adult bone marrow, no panel of growth factors, interleukins and/or morphogens has been found to sufficiently increase the number of these important stem cells. An understanding of the biochemistry of HSC

  15. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  16. Secondary Education Development Plan (SEDP) and the provision ...

    African Journals Online (AJOL)

    This article examines the status of school library service provision after the establishment of the Secondary Education Development Plan (SEDP) in Sumbawanga Municipality, Tanzania. Data were collected through questionnaires, interviews and observation from four secondary schools. Findings show that the surveyed ...

  17. Digital Badges for STEM Learning in Secondary Contexts: A Mixed Methods Study

    Science.gov (United States)

    Elkordy, Angela

    The deficit in STEM skills is a matter of concern for national economies and a major focus for educational policy makers. The development of Information and Communications Technologies (ICT) has resulted in a rapidly changing workforce of global scale. In addition, ICT have fostered the growth of digital and mobile technologies which have been the learning context, formal and informal, for a generation of youth. The purpose of this study was to design an intervention based upon a competency-based, digitally-mediated, learning intervention: digital badges for learning STEM habits of mind and practices. Designed purposefully, digital badge learning trajectories and criteria can be flexible tools for scaffolding, measuring, and communicating the acquisition of knowledge, skills, or competencies. One of the most often discussed attributes of digital badges, is the ability of badges to motivate learners. However, the research base to support this claim is in its infancy; there is little empirical evidence. A skills-based digital badge intervention was designed to demonstrate mastery learning in key, age-appropriate, STEM competencies aligned with Next Generation Science Standards (NGSS) and other educational standards. A mixed methods approach was used to study the impact of a digital badge intervention in the sample middle and high school population. Among the findings were statistically significant measures which substantiate that in this student population, the digital badges increased perceived competence and motivated learners to persist at task.

  18. An Analysis of Secondary Integrated STEM Lesson Plans: Common Characteristics, Learning Expectations and the Impact from the Teacher's Definition of I-STEM

    Science.gov (United States)

    Hayward, Jacob B.

    This qualitative study investigated teachers' understanding of their definition of I-STEM (Integrated STEM education), how those understandings manifested into lessons and associated lesson artifacts, how they assessed students in such lessons, and what factors or rationales supported their ability to conduct or not conduct I-STEM lessons. A survey was sent to the members of four professional organizations representing I-STEM disciplines to solicit their participation in this project. Ten teachers ranging from grades 9-12 participated in this study. Of those who responded, six teachers identified with National Science Teachers Association (NSTA), three teachers selected International Technology and Engineering Education Association (ITEEA), and one teacher claimed International STEM Education Association (ISEA). No teachers identified with National Council of Teachers of Mathematics. In addition to surveys, data were collected using interviews, email responses, and a review of lesson artifacts. Three distinct factors emerged from this study. First, there was a lack of consistency among I-STEM disciplines, then, assessments of students was predominately focused on soft-skills, and finally, several participants shared three characteristics that seemed to define experiences for conducting what they believed were I-STEM lessons. Additionally teachers emphasized factors effecting implementation of I-STEM describing rationales enabling participants' to implement I-STEM lessons. Responses provided insight and revealed how teachers understood I-STEM definition, how they interpreted integration of the disciplines, and "why" they conducted I-STEM lessons. The majority of participants implemented I-STEM in the absence of an official school/district definition. Assessments provided interesting results in this study. The majority of participants identified expected outcomes or products based on their I-STEM definition and in their responses. However, the rubrics submitted

  19. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  20. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  1. Measuring the utility of the Science, Technology, Engineering, Mathematics (STEM) Academy Measurement Tool in assessing the development of K-8 STEM academies as professional learning communities

    Science.gov (United States)

    Irish, Teresa J.

    The aim of this study was to provide insights addressing national concerns in Science, Technology, Engineering, and Mathematics (STEM) education by examining how a set of six perimeter urban K-12 schools were transformed into STEM-focused professional learning communities (PLC). The concept of a STEM Academy as a STEM-focused PLC emphasizes the development of a STEM culture where professional discourse and teaching are focused on STEM learning. The STEM Academies examined used the STEM Academy Measurement Tool and Rubric (Tool) as a catalyst for discussion and change. This Tool was developed with input from stakeholders and used for school-wide initiatives, teacher professional development and K-12 student engagement to improve STEM teaching and learning. Two primary goals of this study were to assess the levels of awareness and use of the tool by all stakeholders involved in the project and to determine how the Tool assisted in the development and advancement of these schools as STEM PLCs. Data from the STEM Academy Participant Survey was analyzed to determine stakeholders' perceptions of the Tool in terms of (i) how aware stakeholders were of the Tool, (ii) whether they participated in the use of the Tool, (iii) how the characteristics of PLCs were perceived in their schools, and finally (iv) how the awareness of the Tool influenced teachers' perceptions of the presence of PLC characteristics. Findings indicate that school faculty were aware of the Tool on a number of different levels and evidence exists that the use of the Tool assisted in the development of STEM Academies, however impact varied from school to school. Implications of this study suggest that the survey should be used for a longer period of time to gain more in-depth knowledge on teachers' perceptions of the Tool as a catalyst across time. Additional findings indicate that the process for using the Tool should be ongoing and involve the stakeholders to have the greatest impact on school culture

  2. The Development of a Secondary School Health Assessment Model

    Science.gov (United States)

    Sriring, Srinual; Erawan, Prawit; Sriwarom, Monoon

    2015-01-01

    The objective of this research was to: 1) involved a survey of information relating to secondary school health, 2) involved the construction of a model of health assessment and a handbook for using the model in secondary school, 3) develop an assessment model for secondary school. The research included 3 phases. (1) involved a survey of…

  3. Pathways in STEM: Factors affecting the retention and attrition of talented men and women from the STEM pipeline

    Science.gov (United States)

    Heilbronner, Nancy N.

    Many men and women who are talented in science, technology, engineering, and/or mathematics (STEM) choose not to pursue undergraduate majors or careers in these fields. To develop talents in STEM, educators must understand the factors that contribute to an individual's retention in STEM domains, as well as the factors that act as barriers to success, such as the role that gender plays in the underrepresentation of women in certain STEM fields (e.g., computer science and engineering) and changes in recent decades in the process of selecting STEM majors and careers. The purpose of this study was to explore the influences that guide decisions related to the selection of majors and occupations during high school, post-secondary education, and early careers. Survey methodology was used to explore the perceptions of 360 Science Talent Search (STS) semifinalists and finalists during the years 1987-1989 and 1997-1999, and quantitative procedures were used to analyze the data. A majority (74.2%) of STS participants majored in a STEM field in college, and most (68.6%) currently work in a STEM field. A greater percentage of men selected computer science, engineering, physics, and mathematics majors, and a greater percentage of women selected biological science and chemistry. Belief in one's ability to achieve in STEM was a predictor of STEM majors in college and STEM concentrations in graduate school, but differences were found between men's and women's self-efficacy in STEM during high school and in college, as women had lower self-efficacy. Sex was a predictor of STEM majors in college, but perceived quality of academic courses was not. STEM majors also reported more satisfaction with their STEM courses in high school and college than non-STEM majors. In a departure from the results of previous research, the reasons that men and women selected occupations were similar, as were the reasons they chose to leave or not to enter STEM. The most frequently cited reason for

  4. Impact of secondary metabolites and related enzymes in flax ...

    African Journals Online (AJOL)

    Changes in various physiological defenses including secondary metabolites, proline, total soluble protein and antioxidant enzymes were investigated in leaves and stems of 18 flax lines either resistant or susceptible to powdery mildew. The results showed that the total alkaloids content in flax stems was significantly ...

  5. STEM employment in the new economy: A labor market segmentation approach

    Science.gov (United States)

    Torres-Olave, Blanca M.

    The present study examined the extent to which the U.S. STEM labor market is stratified in terms of quality of employment. Through a series of cluster analyses and Chi-square tests on data drawn from the 2008 Survey of Income Program Participation (SIPP), the study found evidence of segmentation in the highly-skilled STEM and non-STEM samples, which included workers with a subbaccalaureate diploma or above. The cluster analyses show a pattern consistent with Labor Market Segmentation theory: Higher wages are associated with other primary employment characteristics, including health insurance and pension benefits, as well as full-time employment. In turn, lower wages showed a tendency to cluster with secondary employment characteristics, such as part-time employment, multiple employment, and restricted access to health insurance and pension benefits. The findings also suggest that women have a higher likelihood of being employed in STEM jobs with secondary characteristics. The findings reveal a far more variegated employment landscape than is usually presented in national reports of the STEM workforce. There is evidence that, while STEM employment may be more resilient than non-STEM employment to labor restructuring trends in the new economy, the former is far from immune to secondary labor characteristics. There is a need for ongoing dialogue between STEM education (at all levels), employers, policymakers, and other stakeholders to truly understand not only the barriers to equity in employment relations, but also the mechanisms that create and maintain segmentation and how they may impact women, underrepresented minorities, and the foreign-born.

  6. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  7. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    Directory of Open Access Journals (Sweden)

    Ellen B. Van Oosten

    2017-12-01

    Full Text Available Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  8. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    Science.gov (United States)

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  9. SECONDARY METABOLITE FROM ENDOPHYTIC FUNGI Aspergillus niger OF THE STEM BARK OF KANDIS GAJAH (Garcinia griffithii

    Directory of Open Access Journals (Sweden)

    Elfita Elfita

    2012-06-01

    Full Text Available Garcinia griffithii are known as kandis gajah including the Garcinia genus. This plant has been traditionally used by local communities Sarasah Bonta, Lembah Arau, West Sumatra, to treat various diseases including gout. Aspergillus niger was isolated from the tissues of the stem bark of Garcinia griffithii. The fungi strain was identified base on colony and cell morphology characteristic. Aspergillus niger cultured in media 5L Potatos Dextose Broth (PDB for 8 weeks and filtered. Media that already contains secondary metabolites are partitioned using ethyl acetate solvent in 5 L (twice, followed by evaporation. Furthermore, the extract is separated by chromatographic techniques to obtain a pure compound of white crystal. The molecular structures of isolated compounds are determined by spectroscopic methods including IR, 1H-NMR, 13C-NMR, HMQC, HMBC, and COSY. The compound was determined as phenolic (1.

  10. Kenya's Constituency Development Fund, Free Secondary Education Policy, and Access to Secondary Education

    Science.gov (United States)

    Nzuki, Charles Kyalo

    2018-01-01

    The effects of the Constituency Development Fund (CDF) and the Free Secondary Education Policy (FSEP) on access to secondary school education in Kenya's Yatta sub-county have not been adequately explored in available public policy literature. Hence, this qualitative multiple-case study was designed to understand the effects of the 2 policies on…

  11. Oral epithelial stem cells – implications in normal development and cancer metastasis

    Science.gov (United States)

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  12. A case study investigation of practices and beliefs of teachers at a STEM-focused elementary school

    Science.gov (United States)

    Martin, Billy J.

    Proponents of STEM education have highlighted the need for increasing STEM skills among students. To address this need, there have been recommendations to create new STEM-focused schools, a majority of which are to be STEM-focused elementary and middle schools. However, STEM school research remains focused on outcomes at the secondary and postsecondary level, with little attention being given to knowing more about the role that elementary education plays in STEM outcomes. Case study design was used to investigate teachers at one STEM-focused elementary school to identify the practices and beliefs reported as important in STEM teaching and learning. Using survey and in-depth interviews, it was found that designation as a STEM-focused school promotes the use of more inquiry-oriented teaching practices and facilitates the use of strategies for developing confidence and competence in STEM among staff and students. The information uncovered in this study could provide leaders of any organization desiring to become a STEM-focused institution information about specific beliefs and practices that have the greatest potential to support changes in teaching.

  13. Overcoming the response plateau in multiple myeloma: a novel bortezomib-based strategy for secondary induction and high-yield CD34+ stem cell mobilization.

    Science.gov (United States)

    Niesvizky, Ruben; Mark, Tomer M; Ward, Maureen; Jayabalan, David S; Pearse, Roger N; Manco, Megan; Stern, Jessica; Christos, Paul J; Mathews, Lena; Shore, Tsiporah B; Zafar, Faiza; Pekle, Karen; Xiang, Zhaoying; Ely, Scott; Skerret, Donna; Chen-Kiang, Selina; Coleman, Morton; Lane, Maureen E

    2013-03-15

    This phase II study evaluated bortezomib-based secondary induction and stem cell mobilization in 38 transplant-eligible patients with myeloma who had an incomplete and stalled response to, or had relapsed after, previous immunomodulatory drug-based induction. Patients received up to six 21-day cycles of bortezomib plus dexamethasone, with added liposomal doxorubicin for patients not achieving partial response or better by cycle 2 or very good partial response or better (≥VGPR) by cycle 4 (DoVeD), followed by bortezomib, high-dose cyclophosphamide, and filgrastim mobilization. Gene expression/signaling pathway analyses were conducted in purified CD34+ cells after bortezomib-based mobilization and compared against patients who received only filgrastim ± cyclophosphamide. Plasma samples were similarly analyzed for quantification of associated protein markers. The response rate to DoVeD relative to the pre-DoVeD baseline was 61%, including 39% ≥ VGPR. Deeper responses were achieved in 10 of 27 patients who received bortezomib-based mobilization; postmobilization response rate was 96%, including 48% ≥ VGPR, relative to the pre-DoVeD baseline. Median CD34+ cell yield was 23.2 × 10(6) cells/kg (median of 1 apheresis session). After a median follow-up of 46.6 months, median progression-free survival was 47.1 months from DoVeD initiation; 5-year overall survival rate was 76.4%. Grade ≥ 3 adverse events included thrombocytopenia (13%), hand-foot syndrome (11%), peripheral neuropathy (8%), and neutropenia (5%). Bortezomib-based mobilization was associated with modulated expression of genes involved in stem cell migration. Bortezomib-based secondary induction and mobilization could represent an alternative strategy for elimination of tumor burden in immunomodulatory drug-resistant patients that does not impact stem cell yield.

  14. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    Directory of Open Access Journals (Sweden)

    Junping Lv

    2017-01-01

    Full Text Available Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA.

  15. History of a secondary side inspection tooling development

    International Nuclear Information System (INIS)

    Harris, W.

    2012-01-01

    This presentation provides a brief history (1980 to present day) of steam generator secondary side tooling requirements, tooling development, tooling available today and how and where this tooling has been implemented for steam generator secondary side inspections. History of Tooling Development discussion covers the relatively short time period from when the SGSS tooling was required and why as well the associated challenges with development through present day; Available Tooling discussion covers the actual tooling available today, locations in the steam generator where the tooling is used and how the tooling works; Implementation discussion covers where in the world this tooling has been deployed as well the benefits the tooling has provided. (author)

  16. Contribution of Romanian Secondary Sector to Regional Development

    Directory of Open Access Journals (Sweden)

    Cristina ALPOPI

    2016-06-01

    Full Text Available In this paper, we shows the contribution of the secondary sector (industry and construction on the economic development of the regions, functional areas and the urban system in Romania. The development of economic activities of production is conditioned by certain geophysical, demographical, social and cultural characteristics. Considering that economic restructuring and privatization of industry put their mark on the evolution of the Romanian economy in recent years, it is absolutely necessary to take into account the influence of the secondary sector activities - industry and construction, to establish the development measures of romanian regions. One more reason is that the most industrialized cities prior 1990, dependent on a single branch of industry, losing the markets for these industries, recorded high unemployment, which in terms of social, equates to a high degree of poverty. Territorial development of the secondary sector shows large differences mainly due to natural barriers, level of accessibility to natural resources and public services of general interest. These gaps deep more economic and social problems existing in the territory. In the secondary sector, Romania follows closely the provisions of European Union policy, in order to develop a national competitive market, integrated into the European internal market. An example: in the industrial branch, employment share is approximately equal to the european average level. In terms of productivity, in Romania, in the context of a very low level of this indicator, its value is high in the industrial sector (especially in the manufacturing sector the specific productivity is above the national average. It is estimated that after 2014, the improvement of Romania's macroeconomic stability could generate rapid growth in the secondary sector. In Romania, industrial sector faces with problems such: the high level of resources not identified, poor promotion on domestic and foreign market

  17. Chromatin Repressive Complexes in Stem Cells, Development, and Cancer

    DEFF Research Database (Denmark)

    Laugesen, Anne; Helin, Kristian

    2014-01-01

    The chromatin environment is essential for the correct specification and preservation of cell identity through modulation and maintenance of transcription patterns. Many chromatin regulators are required for development, stem cell maintenance, and differentiation. Here, we review the roles...

  18. Motivating Children to Develop Their Science, Technology, Engineering, and Mathematics (STEM) Talent

    Science.gov (United States)

    Andersen, Lori

    2013-01-01

    Motivation in mathematics and science appears to be more important to STEM occupational choice than ability. Using the expectancy value model, parents may be able to recognize potential barriers to children's selection of a STEM occupation and take actions to help facilitate talent development. These are especially important for parents of…

  19. Good, now keep going: challenging the status quo in STEM pipeline and access programs

    Science.gov (United States)

    Wiseman, Dawn; Herrmann, Randy

    2018-03-01

    This contribution engages in conversation with McMahon, Griese, and Kenyon (this issue) to consider how the SURE program they describe represents a pragmatic approach to addressing the issue of underrepresentation of Indigenous people in STEM post-secondary programs. We explore how such programs are generally positioned and how they might be positioned differently to challenge the status quo within Western post-secondary institutions. The challenge arises from moving beyond the immediate pragmatics of addressing an identifiable issue framed as a problem to considering how post-secondary institutions and people developing access recruitment programs might begin unlearning colonialism.

  20. STEM development: A study of 6th--12th grade girls' interest and confidence in mathematics and science

    Science.gov (United States)

    Heaverlo, Carol Ann

    Researchers, policymakers, business, and industry have indicated that the United States will experience a shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this shortage, one of which includes increasing the representation of girls and women in the STEM fields. In order to increase the representation of women in the STEM fields, it is important to understand the developmental factors that impact girls' interest and confidence in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). This study identifies factors that impact girls' interest and confidence in mathematics and science, defined as girls' STEM development. Using Bronfenbrenner's (2005) bioecological model of human development, several factors were hypothesized as having an impact on girls' STEM development; specifically, the macrosystems of region of residence and race/ethnicity, and the microsystems of extracurricular STEM activities, family STEM influence, and math/science teacher influence. Hierarchical regression analysis results indicated that extracurricular STEM involvement and math teacher influence were statistically significant predictors for 6--12th grade girls' interest and confidence in mathematics. Furthermore, hierarchical regression analysis results indicated that the only significant predictor for 6--12th grade girls' interest and confidence in science was science teacher influence. This study provides new knowledge about the factors that impact girls' STEM development. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of 6--12th grade girls.

  1. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    OpenAIRE

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-01-01

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induce...

  2. Stem cell technology for drug discovery and development.

    Science.gov (United States)

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The development of hyperhydric tissue on the stems of Sambucus nigra L.

    Directory of Open Access Journals (Sweden)

    Jadwiga A. Tarkowska

    2014-01-01

    Full Text Available Hyperhydric intumescences on the stems of Sambucus nigra arise in places where the stem lenticels are immersed in water. The hyperhydric tissue develops through the transformation of the multilayered phelloderm, the parenchyma of the cortex. endodermis and pericycle. The phellogen loses its meristematic properties and is either incorporated into the developing hyperhydric tissue or crushed. The succesive stages of hyperhydric changes which depend on the intense growth of cells and on the ability to devide acquired by them are presented.

  4. Disruptive innovation, labor markets, and Big Valley STEM School: network analysis in STEM education

    Science.gov (United States)

    Ellison, Scott; Allen, Ben

    2018-03-01

    A defining characteristic of contemporary trends in global education policy is the promotion of STEM learning in the primary, secondary, and tertiary sectors of education as a means to generate innovation and prosperity in the economy. Intertwined with common sensical assumptions about future labor markets and the transformative potential of technology in education, STEM has become a hegemonic discourse informing policy formation and educational practice. In Gramscian terms, the struggle over STEM as a discursive practice, between proponents of instrumental learning of marketable economic skills and those of education towards humanistic goals, reveals insights about the ideological characteristics of the push for STEM learning. This article explores the power dynamics behind the push for STEM learning as an ideological discourse propagated by global networks of elite policy actors and enacted by non-elite policy actors at the school level. The findings point toward a disjuncture between the discourse of elite policy actors in the US, the realities of STEM labor markets, and the actualization of this policy discourse into classroom practice. The implications of this study indicate that analyses of vertical power relations in network governance in STEM education should attend to the semiotics, materiality, and mutability of networked spaces.

  5. Quantitative Variation of Flavonoids and Diterpenes in Leaves and Stems of Cistus ladanifer L. at Different Ages

    Directory of Open Access Journals (Sweden)

    Cristina Valares Masa

    2016-02-01

    Full Text Available The compounds derived from secondary metabolism in plants perform a variety of ecological functions, providing the plant with resistance to biotic and abiotic factors. The basal levels of these metabolites for each organ, tissue or cell type depend on the development stage of the plant and they may be modified as a response to biotic and/or abiotic stress. As a consequence, the resistance state of a plant may vary in space and time. The secondary metabolites of Cistus ladanifer have been quantified in leaves and stems throughout autumn, winter, spring and summer, and at different ages of the plant. This study shows that there are significant differences between young leaves, mature leaves and stems, and between individuals of different ages. Young leaves show significantly greater synthesis of flavonoids and diterpenes than mature leaves and stems, with a clear seasonal variation, and the differences between leaves at different growth stages and stems is maintained during the quantified seasons. With respect to age, specimens under one year of age secreted significantly lower amounts of compounds. The variation in the composition of secondary metabolites between different parts of the plant, the season and the variations in age may determine the interactions of Cistus ladanifer with the biotic and abiotic factors to which it is exposed.

  6. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    Science.gov (United States)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  7. Refractive Secondary Solar Concentrator Being Designed and Developed

    Science.gov (United States)

    Macosko, Robert P.; Donovan, Richard M.

    1998-01-01

    As the need for achieving super high temperatures (2000 K and above) in solar heat receivers has developed so has the need for secondary concentrators. These concentrators refocus the already highly concentrated solar energy provided by a primary solar collector, thereby significantly reducing the light entrance aperture of the heat receiver and the resulting infrared radiation heat loss from the receiver cavity. Although a significant amount of research and development has been done on nonimaging hollow reflective concentrators, there has been no other research or development to date on solid, single crystal, refractive concentrators that can operate at temperatures above 2000 K. The NASA Lewis Research Center recently initiated the development of single-crystal, optically clear, refractive secondary concentrators that, combined with a flux extractor, offer a number of significant advantages over the more conventional, hollow, reflective concentrators at elevated temperatures. Such concentrators could potentially provide higher throughput (efficiency), require no special cooling device, block heat receiver material boiloff from the receiver cavity, provide for flux tailoring in the cavity via the extractor, and potentially reduce infrared heat loss via an infrared block coating.The many technical challenges of designing and fabricating high-temperature refractive secondary concentrators and flux extractors include identifying optical materials that can survive the environment (high-temperature, vacuum and/or hydrogen atmosphere), developing coatings for enhanced optical and thermal performance, and developing crystal joining techniques and hardware that can survive launch loads.

  8. Global regulatory developments for clinical stem cell research: diversification and challenges to collaborations.

    Science.gov (United States)

    Rosemann, Achim; Bortz, Gabriela; Vasen, Federico; Sleeboom-Faulkner, Margaret

    2016-10-01

    In this article, we explore regulatory developments in stem cell medicine in seven jurisdictions: Japan, China, India, Argentina, Brazil, the USA and the EU. We will show that the research methods, ethical standards and approval procedures for the market use of clinical stem cell interventions are undergoing an important process of global diversification. We will discuss the implications of this process for international harmonization and the conduct of multicountry clinical research collaborations. It will become clear that the increasing heterogeneity of research standards and regulations in the stem cell field presents a significant challenge to international clinical trial partnerships, especially with countries that diverge from the regulatory models that have been developed in the USA and the EU.

  9. Hypertranscription in development, stem cells, and regeneration

    Science.gov (United States)

    Percharde, Michelle; Bulut-Karslioglu, Aydan; Ramalho-Santos, Miguel

    2016-01-01

    SUMMARY Cells can globally up-regulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years, but it has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration and cell competition. We review the history, methods for analysis, underlying mechanisms and biological significance of hypertranscription. PMID:27989554

  10. Regenerative toxicology: the role of stem cells in the development of chronic toxicities

    NARCIS (Netherlands)

    Canovas-Jorda, D.; Louisse, J.; Pistollato, F.; Zagoura, D.; Bremer, S.

    2014-01-01

    Introduction: Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not

  11. Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules

    Science.gov (United States)

    Etheredge, Jessica; Moody, Dana; Cooper, Ashley

    2014-01-01

    This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…

  12. Alignment of Hands-On STEM Engagement Activities with Positive STEM Dispositions in Secondary School Students

    Science.gov (United States)

    Christensen, Rhonda; Knezek, Gerald; Tyler-Wood, Tandra

    2015-01-01

    This study examines positive dispositions reported by middle school and high school students participating in programs that feature STEM-related activities. Middle school students participating in school-to-home hands-on energy monitoring activities are compared to middle school and high school students in a different project taking part in…

  13. Association of subcutaneous testosterone pellet therapy with developing secondary polycythemia

    Science.gov (United States)

    Rotker, Katherine Lang; Alavian, Michael; Nelson, Bethany; Baird, Grayson L; Miner, Martin M; Sigman, Mark; Hwang, Kathleen

    2018-01-01

    A variety of methods for testosterone replacement therapy (TRT) exist, and the major potential risks of TRT have been well established. The risk of developing polycythemia secondary to exogenous testosterone (T) has been reported to range from 0.4% to 40%. Implantable T pellets have been used since 1972, and secondary polycythemia has been reported to be as low as 0.4% with this administration modality. However, our experience has suggested a higher rate. We conducted an institutional review board-approved, single-institution, retrospective chart review (2009–2013) to determine the rate of secondary polycythemia in 228 men treated with subcutaneously implanted testosterone pellets. Kaplan–Meyer failure curves were used to estimate time until the development of polycythemia (hematocrit >50%). The mean number of pellets administered was 12 (range: 6–16). The mean follow-up was 566 days. The median time to development of polycythemia whereby 50% of patients developed polycythemia was 50 months. The estimated rate of polycythemia at 6 months was 10.4%, 12 months was 17.3%, and 24 months was 30.2%. We concluded that the incidence of secondary polycythemia while on T pellet therapy may be higher than previously established. PMID:29205178

  14. Private sector participation in secondary education in Nigeria: Implications for national development

    Directory of Open Access Journals (Sweden)

    Uyi Kizito Ehigiamusoe

    2012-12-01

    Full Text Available The study examines private sector participation in secondary education in Nigeria and its implications for national development. The population consisted all the providers and recipients of private secondary education in the Federal Capital Territory (FCT. Simple random sampling was used to select 200 providers and recipients of private secondary education across the six Area Councils in the FCT. An instrument designated Private Sector Participation in Secondary Education (PSPSE was used to collect data. The data were analysed using Chi-Square method to test for the acceptance or rejection of the study hypotheses. The findings revealed that the academic performance of students in private secondary schools is better than the academic performance of students in public secondary schools. The study further revealed that private secondary schools have better infrastructure than public secondary schools in Nigeria, but private secondary schools contribute less to the development of human resources than public schools in Nigeria. Recommendations are proffered to make private secondary education more viable and responsive to the needs of the society.

  15. Secondary standard dosimetry laboratories: Development and trends

    International Nuclear Information System (INIS)

    1985-08-01

    This publication describes the work of the IAEA and the WHO in the establishment of a network of Secondary Standard Dosimetry Laboratories. Membership in the SSDL network has now risen to about 50 laboratories, of which 36 are in developing countries

  16. Antigenic variation of TprK facilitates development of secondary syphilis.

    Science.gov (United States)

    Reid, Tara B; Molini, Barbara J; Fernandez, Mark C; Lukehart, Sheila A

    2014-12-01

    Although primary syphilis lesions heal spontaneously, the infection is chronic, with subsequent clinical stages. Healing of the primary chancre occurs as antibodies against outer membrane antigens facilitate opsonophagocytosis of the bacteria by activated macrophages. TprK is an outer membrane protein that undergoes antigenic variation at 7 variable regions, and variants are selected by immune pressure. We hypothesized that individual TprK variants escape immune clearance and seed new disseminated lesions to cause secondary syphilis. As in human syphilis, infected rabbits may develop disseminated secondary skin lesions. This study explores the nature of secondary syphilis, specifically, the contribution of antigenic variation to the development of secondary lesions. Our data from the rabbit model show that the odds of secondary lesions containing predominately TprK variant treponemes is 3.3 times higher than the odds of finding TprK variants in disseminated primary lesions (odds ratio [OR] = 3.3 [95% confidence interval {CI}, 0.98 to 11.0]; P = 0.055) and that 96% of TprK variant secondary lesions are likely seeded by single treponemes. Analysis of antibody responses demonstrates significantly higher antibody titers to tprK variable region sequences found in the inoculum compared to reactivity to tprK variant sequences found in newly arising secondary lesions. This suggests that tprK variants escape the initial immune response raised against the V regions expressed in the inoculum. These data further support a role for TprK in immune evasion and suggest that the ability of TprK variants to persist despite a robust immune response is instrumental in the development of later stages of syphilis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  18. Confronting Color-Blind STEM Talent Development: Toward a Contextual Model for Black Student STEM Identity

    Science.gov (United States)

    Collins, Kristina Henry

    2018-01-01

    What is Black student's science, technology, engineering, and mathematics (STEM) identity? The author addresses this question through a synthesis of the literature that includes studies that explore Black student identity. Background information regarding STEM achievement and persistence followed by empirical studies that explore STEM attitudes…

  19. Dissociating word stem completion and cued recall as a function of divided attention at retrieval.

    Science.gov (United States)

    Clarke, A J Benjamin; Butler, Laurie T

    2008-10-01

    The aim of this study was to investigate the widely held, but largely untested, view that implicit memory (repetition priming) reflects an automatic form of retrieval. Specifically, in Experiment 1 we explored whether a secondary task (syllable monitoring), performed during retrieval, would disrupt performance on explicit (cued recall) and implicit (stem completion) memory tasks equally. Surprisingly, despite substantial memory and secondary costs to cued recall when performed with a syllable-monitoring task, the same manipulation had no effect on stem completion priming or on secondary task performance. In Experiment 2 we demonstrated that even when using a particularly demanding version of the stem completion task that incurred secondary task costs, the corresponding disruption to implicit memory performance was minimal. Collectively, the results are consistent with the view that implicit memory retrieval requires little or no processing capacity and is not seemingly susceptible to the effects of dividing attention at retrieval.

  20. Disruptive Innovation, Labor Markets, and Big Valley STEM School: Network Analysis in STEM Education

    Science.gov (United States)

    Ellison, Scott; Allen, Ben

    2018-01-01

    A defining characteristic of contemporary trends in global education policy is the promotion of STEM learning in the primary, secondary, and tertiary sectors of education as a means to generate innovation and prosperity in the economy. Intertwined with common sensical assumptions about future labor markets and the transformative potential of…

  1. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  2. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  3. Сhlorenchyma in stem of succulent plants from the genus Euphorbia L. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    S.О. Kalashnyk

    2015-05-01

    Full Text Available The necessity of photosynthesis execution by stems causes the structural and functional changes in plants. The stems of majority of succulent plants of the genus Euphorbia L. are covered only with the epidermis for a long time. In plants of some species the palisade parenchyma can appear which can be considered as a secondary or consequential tool to perform photosynthesis function by their stems. The anatomical structure of green annual stems of 23 Euphorbia species was examined. For 12 of them the palisade parenchyma has been established. The palisade parenchyma in the stem differs from such in the leaf by cells form and size as well as cells arrangement. The presence or absence of palisade parenchyma in the primary cortex indicates the level of specialization of stem tissues to perform the assimilation function. As the degree of development of palisade parenchyma depends on the amount of solar radiation, the presence and number of palisade parenchyma does not directly confirm the adaptation to the growth in conditions of a certain degree of aridity. Its appearance is could be caused also by growth under high insolation. Undoubtedly, appearance of palisade parenchyma in the stems of stem-succulent plants is correlated with reduction of leaves and probably is consequence of this.

  4. Analyzing the attributes of Indiana's STEM schools

    Science.gov (United States)

    Eltz, Jeremy

    "Primary and secondary schools do not seem able to produce enough students with the interest, motivation, knowledge, and skills they will need to compete and prosper in the emerging world" (National Academy of Sciences [NAS], 2007a, p. 94). This quote indicated that there are changing expectations for today's students which have ultimately led to new models of education, such as charters, online and blended programs, career and technical centers, and for the purposes of this research, STEM schools. STEM education as defined in this study is a non-traditional model of teaching and learning intended to "equip them [students] with critical thinking, problem solving, creative and collaborative skills, and ultimately establishes connections between the school, work place, community and the global economy" (Science Foundation Arizona, 2014, p. 1). Focusing on science, technology, engineering, and math (STEM) education is believed by many educational stakeholders to be the solution for the deficits many students hold as they move on to college and careers. The National Governors Association (NGA; 2011) believes that building STEM skills in the nation's students will lead to the ability to compete globally with a new workforce that has the capacity to innovate and will in turn spur economic growth. In order to accomplish the STEM model of education, a group of educators and business leaders from Indiana developed a comprehensive plan for STEM education as an option for schools to use in order to close this gap. This plan has been promoted by the Indiana Department of Education (IDOE, 2014a) with the goal of increasing STEM schools throughout Indiana. To determine what Indiana's elementary STEM schools are doing, this study analyzed two of the elementary schools that were certified STEM by the IDOE. This qualitative case study described the findings and themes from two elementary STEM schools. Specifically, the research looked at the vital components to accomplish STEM

  5. A Study of The Influence of Advising on Underrepresented Minority Undergraduate Student Persistence in STEM

    Science.gov (United States)

    Weir, Michael J.

    In the United States, undergraduate underrepresented minority (URM) students tend to change out of declared majors in science, technology, engineering and math (STEM) disciplines at a rate of nearly sixty percent prior to earning a post secondary degree. This phenomenon contributes to a general concern that the United States is not producing enough STEM trained skilled workers to meet future employment needs of industry and government. Although there has been research developed to examine how to increase the numbers of URM students enrolling in STEM programs at higher education institutions, retention of these students remains critical. One area of increasing focus for researchers is to understand how multiple factors impact the college experience of URM students and how those factors may contribute to the student decision to persist in earning a STEM disciple degree. This research study is a phenomenological mixed method study that examines how students experience the phenomenon of advising and the influence of the advising experience of undergraduate URM students on their likelihood of persisting in STEM at a northeast US technology oriented post secondary institution. Persistence, from the perspective of the student, is driven by cognitive psychological attributes such as confidence, motivation and self-efficacy. Utilizing a Social Cognitive theoretical framework, this study examines how three distinct undergraduate URM student populations enrolled in; an Academic Services Program, Honors College, and the general undergraduate population at this institution experience advising and how their experiences may influence their propensity to persist in earning a STEM oriented degree.

  6. Developing the Conflicts Management Model for School Administrators of Secondary School under the Office of Secondary Educational Service Area 20

    Directory of Open Access Journals (Sweden)

    Pornpan Ruangrit

    2017-09-01

    Full Text Available This study aimed to 1 investigate the cause of conflict which in the secondary schools under the Secondary School under the Office of Secondary Educational Service Area 20, 2 study the conflict management method which administrators applied in Secondary School under the Office of Secondary Educational Service Area 20, and 3 develop conflict management model for Secondary School under the Office of Secondary Educational Service Area 20. The participants were 115 school administrators (44 school directors and 71 deputy directors which were selected by random sampling technique. The research instruments included a questionnaire, which reliability value was 0.97, and an interview schedule that were administered to the respondents. The data were analyzed by frequency, percentage, mean, and standard deviation. The result of the study showed that: 1. the causes of conflict in Secondary School under the Office of Secondary Educational Service Area 20 in overall was at the high level with the mean of 4.21, the internal conflict was at the high level with the mean of 4.22, and the external conflict was at the high level with the mean of 4.19. 2. Overall, conflict management method used by administrators in Secondary School under the Office of Secondary Educational Service Area 20was at a high level. Considering each aspect, the compromising method was the highest level at 4.48. 3. Developing conflict management model in Secondary School under the Office of Secondary Educational Service Area 20 were the collaboration and making understand method. These should be used for conflict management to achieve the success and to reach the standard which including responsibility, accountability, equality, teamwork, and communication competence.

  7. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Casanova, Bonaventura; Jarque, Isidro; Gascón, Francisco; Hernández-Boluda, Juan Carlos; Pérez-Miralles, Francisco; de la Rubia, Javier; Alcalá, Carmen; Sanz, Jaime; Mallada, Javier; Cervelló, Angeles; Navarré, Arantxa; Carcelén-Gadea, María; Boscá, Isabel; Gil-Perotin, Sara; Solano, Carlos; Sanz, Miguel Angel; Coret, Francisco

    2017-07-01

    The main objective of our work is to describe the long-term results of myeloablative autologous hematopoietic stem cell transplant (AHSCT) in multiple sclerosis patients. Patients that failed to conventional therapies for multiple sclerosis (MS) underwent an approved protocol for AHSCT, which consisted of peripheral blood stem cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF), followed by a conditioning regimen of BCNU, Etoposide, Ara-C, Melphalan IV, plus Rabbit Thymoglobulin. Thirty-eight MS patients have been transplanted since 1999. Thirty-one patients have been followed for more than 2 years (mean 8.4 years). There were 22 relapsing-remitting multiple sclerosis (RRMS) patients and 9 secondary progressive multiple sclerosis (SPMS) patients. No death related to AHSCT. A total of 10 patients (32.3%) had at least one relapse during post-AHSCT evolution, 6 patients in the RRMS group (27.2%) and 4 in the SPMS group (44.4%). After AHSCT, 7 patients (22.6%) experienced progression of disability, all within SP form. By contrast, no patients with RRMS experienced worsening of disability after a median follow-up of 5.4 years, 60% of them showed a sustained reduction in disability (SRD), defined as the improvement of 1.0 point in the expanded disability status scale (EDSS) sustains for 6 months (0.5 in cases of EDSS ≥ 5.5). The only clinical variable that predicted a poor response to AHSCT was a high EDSS in the year before transplant. AHSCT using the BEAM-ATG scheme is safe and efficacious to control the aggressive forms of RRMS.

  8. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  9. Developing Non-Formal Education Competences as a Complement of Formal Education for STEM Lecturers

    Science.gov (United States)

    Terrazas-Marín, Roy Alonso

    2018-01-01

    This paper focuses on a current practice piece on professional development for university lecturers, transformative learning, dialogism and STEM (Science, Technology, Engineering and Mathematics) education. Its main goals are to identify the key characteristics that allow STEM educators to experiment with the usage of non-formal education…

  10. Stem Cell Pathology.

    Science.gov (United States)

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  11. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.

    Science.gov (United States)

    Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng

    2018-04-20

    During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  12. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  13. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    Science.gov (United States)

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  14. How do STEM-interested students pursue multiple interests in their higher educational choice?

    Science.gov (United States)

    Vulperhorst, Jonne Pieter; Wessels, Koen Rens; Bakker, Arthur; Akkerman, Sanne Floor

    2018-05-01

    Interest in science, technology, engineering and mathematics (STEM) has lately received attention in research due to a gap between the number of STEM students and the needs of the labour market. As interest seems to be one of the most important factors in deciding what to study, we focus in the present study on how STEM-interested students weigh multiple interests in making educational choices. A questionnaire with both open-ended and closed-ended items was administered to 91 STEM-interested students enrolled in a STEM programme of a Dutch University for secondary school students. Results indicate that students find it important that a study programme allows them to pursue multiple interests. Some students pursued multiple interests by choosing to enrol in two programmes at the same time. Most students chose one programme that enabled them to combine multiple interests. Combinations of pursued interests were dependent on the disciplinary range of interests of students. Students who were interested in diverse domains combined interests in an educational programme across academic and non-academic domains, whilst students who were mainly interested in STEM combined only STEM-focused interests. Together these findings stress the importance of taking a multiple interest perspective on interest development and educational choice.

  15. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    OpenAIRE

    Otsu, Masahiro; Nakayama, Takashi; Inoue, Nobuo

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate...

  16. In Vitro Modeling of Human Germ Cell Development Using Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuncheng Zhao

    2018-02-01

    Full Text Available Summary: Due to differences across species, the mechanisms of cell fate decisions determined in mice cannot be readily extrapolated to humans. In this study, we developed a feeder- and xeno-free culture protocol that efficiently induced human pluripotent stem cells (iPSCs into PLZF+/GPR125+/CD90+ spermatogonium-like cells (SLCs. These SLCs were enriched with key genes in germ cell development such as MVH, DAZL, GFRα1, NANOS3, and DMRT1. In addition, a small fraction of SLCs went through meiosis in vitro to develop into haploid cells. We further demonstrated that this chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Taken together, we established a powerful experimental platform to investigate human germ cell development and pathology related to male infertility. : In this article, Wang and colleagues established a feeder- and xeno-free system to robustly induce human pluripotent stem cells (PSCs into spermatogonia-like cells. This chemically defined induction protocol faithfully recapitulated the features of compromised germ cell development of PSCs with NANOS3 deficiency or iPSC lines established from patients with non-obstructive azoospermia. Keywords: pluripotent stem cells, spermatogonia, infertility, non-obstructive azoospermia

  17. Development of a geoscience education book with schoolchildren from low STEM engagement areas

    Science.gov (United States)

    Boyd, Alex; McAuliffe, Fergus

    2017-04-01

    Crucial career-related concepts and attitudes are first formed in childhood though different phases: Fantasy (age 4-10 years), Interest (age (age 11-12 years) and Capacity (age 13-14 years). Parents are major influencers in high school subject choice and ultimately career choice. Despite bring aware of the importance of STEM, 68% of Irish parents feel uninformed with regards to advising on career choices for their children. In response to this, the Science Apprentice is a series of children's books, showcasing the importance of STEM in today's society. Developed by University College Dublin, and circulated with an Irish national newspaper, this series was directed at children in elementary school (7-12 year olds) and was written to inform the first conceptions of STEM career pathways through dynamic visuals, intriguing stories and creative expressions of knowledge that relates to STEM literacy. Furthermore, the Science Apprentice series was created to offer parents a level of confidence and understanding in STEM and STEM career opportunities. Despite outreach efforts by many geoscience academics and institutions, applied geoscience remains somewhat invisible in society, with most members of the public lacking any firm familiarity with the bedrock on which they live or the resources that it holds. Here we present an overview of the Science Apprentice book series, with particular emphasis on the Energy and Resources book edition. This edition was developed in conjunction with geoscientists from the Irish Centre for Research in Applied Geoscience (iCRAG), and covered a wide range of applied geoscience topics, such as renewable and non-renewable energy sources, raw materials, engineering and the career paths of young researchers working in the geosciences. A key target audience for this book was families in low STEM engagement areas and low internet broadband connectivity areas. In this presentation we will outline how the book was developed by working with schools

  18. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  19. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, Richland, WA (United States); Mahoney, J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-04-01

    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  20. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.

    Science.gov (United States)

    Ménard, Léa; McKey, Doyle; Mühlen, Gilda S; Clair, Bruno; Rowe, Nick P

    2013-01-01

    Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah) and varying in growth form (shrub or liana). Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify "large-scale" trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, "finer-scale" developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical perturbation. We

  1. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.

    Directory of Open Access Journals (Sweden)

    Léa Ménard

    Full Text Available Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah and varying in growth form (shrub or liana. Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify "large-scale" trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, "finer-scale" developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical

  2. A drug target that stimulates development of healthy stem cells

    Science.gov (United States)

    Scientists have overcome a major impediment to the development of effective stem cell therapies by studying mice that lack CD47, a protein found on the surface of both healthy and cancer cells. They discovered that cells obtained from the lungs of CD47-de

  3. Nonlinear Development and Secondary Instability of Traveling Crossflow Vortices

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian; Chang, Chau-Lyan

    2014-01-01

    Transition research under NASA's Aeronautical Sciences Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so as to enable "sufficiently" accurate transition prediction and practical transition control for future vehicle concepts. This paper builds upon prior effort targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration relevant to subsonic aircraft with laminar flow technology. Specifically, transition via secondary instability of traveling crossflow modes is investigated as an alternate scenario for transition. Results show that, for the parameter range investigated herein, secondary instability of traveling crossflow modes becomes insignificant in relation to the secondary instability of the stationary modes when the relative initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by approximately two orders of magnitudes or more. Linear growth predictions based on the secondary instability theory are found to agree well with those based on PSE and DNS, with the most significant discrepancies being limited to spatial regions of relatively weak secondary growth, i.e., regions where the primary disturbance amplitudes are smaller in comparison to its peak amplitude. Nonlinear effects on secondary instability evolution is also investigated and found to be initially stabilizing, prior to breakdown.

  4. Teacher Characteristics and School-Based Professional Development in Inclusive STEM-focused High Schools: A Cross-case Analysis

    Science.gov (United States)

    Spillane, Nancy Kay

    Within successful Inclusive Science, Technology, Engineering, and Mathematics (STEM)-focused High Schools (ISHSs), it is not only the students who are learning. Teachers, with diverse backgrounds, training, and experience, share and develop their knowledge through rich, embedded professional development to continuously shape their craft, improve their teaching, and support student success. This study of four exemplars of ISHSs (identified by experts in STEM education as highly successful in preparing students underrepresented in STEM for STEM majors in college and future STEM careers) provides a rich description of the relationships among the characteristics of STEM teachers, their professional development, and the school cultures that allow teachers to develop professionally and serve the needs of students. By providing a framework for the development of teaching staffs in ISHSs and contributing to the better understanding of STEM teaching in any school, this study offers valuable insight, implications, and information for states and school districts as they begin planning improvements to STEM education programs. A thorough examination of an existing data set that included site visits to four ISHSs along with pre- and post-visit data, provided the resource for this multiple case study with cross-case analysis of the teachers and their teacher professional development experiences. Administrators in these ISHSs had the autonomy to hire teachers with strong content backgrounds, philosophical alignment with the school missions, and a willingness to work collaboratively toward achieving the schools' goals. Ongoing teacher professional development began before school started and continued throughout the school day and year through intense and sustained, formal and informal, active learning experiences. Flexible professional development systems varied, but aligned with targeted school reforms and teacher and student needs. Importantly, collaborative teacher learning

  5. Functional Recovery Secondary to Neural Stem/Progenitor Cells Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury

    DEFF Research Database (Denmark)

    Tashiro, Syoichi; Nishimura, Soraya; Iwai, Hiroki

    are chiefly developed to improve the effect of regenerative therapy for this refractory state, physical training also have attracted the attention as a desirable candidate to combine with cell transplantation. Recently, we have reported that the addition of treadmill training enhances the effect of NS...... in the combined therapy group. Further investigation revealed that NS/PC transplantation improved spinal conductivity and central pattern generator activity, and that training promoted the appropriate inhibitory motor control including spasticity. The combined therapy enhanced these independent effects of each......Rapid progress in stem cell medicine is being realized in neural regeneration also in spinal cord injury (SCI). Researchers have reported remarkable functional recovery with various cell sources including induced Pluripotent Stem cell derived neural stem/progenitor cells (NS/PCs), especially...

  6. Another “M” for STEM? Moral Considerations for Advancing STEM Literacy

    Directory of Open Access Journals (Sweden)

    Sami Kahn

    2015-10-01

    Full Text Available Although workforce readiness is often cited as the primary rationale for STEM education, a broader view of scientific literacy, one that envisions students as members of an informed citizenry able to reason thoughtfully and ethically through increasingly complex STEM issues, seems warranted. To that end, this position paper advances the argument that STEM, particularly with the incorporation of engineering in the Next Generation Science Standards (U.S., must serve as a context for moral development by expanding student argumentation and discourse to include the moral and ethical consequences of STEM decision making. In addition, STEM is positioned as an ideal domain for inclusivity, capable of advancing a more just and equitable society through broader engagement and participation. To illustrate how these visions might be realized in the classroom, the author transforms a typical STEM lesson into a “moral” STEM lesson through the incorporation of two curricular frameworks, Socioscientific Issues (SSI and Universal Design for Learning (UDL. The purpose of this exercise is to demonstrate the manner in which STEM content and practices can be preserved and enhanced while widening curricular objectives to include the development of an informed, reflective, and inclusive STEM-literate citizenry.

  7. Analysis of phytochemical variations in dioecious Tinospora cordifolia stems using HPLC/QTOF MS/MS and UPLC/QqQLIT -MS/MS.

    Science.gov (United States)

    Bajpai, Vikas; Singh, Awantika; Chandra, Preeti; Negi, M P S; Kumar, Nikhil; Kumar, Brijesh

    2016-01-01

    The stem of dioecious Tinospora cordifolia (Menispermaceae) is a commonly used traditional Ayurvedic medicine in India having several therapeutic properties. To develop and validate LC-MS methods for the identification and simultaneous quantitation of various secondary metabolites and to study metabolomic variations in the stem of male and female plants. Ethanolic extract of stems were analysed by HPLC/ESI-QTOF-MS/MS for rapid screening of bioactive phytochemicals. High resolution MS and MS/MS in positive ESI mode were used for structural investigation of secondary metabolites. An UPLC/ESI-QqQ(LIT) -MS/MS method in MRM mode was developed and validated for the simultaneous quantitation of five bioactive alkaloids. Identification and characterisation of 36 metabolites including alkaloids, sesquiterpenes and phytoecdysteroids were performed using LC-MS and MS/MS techniques. The bioactive alkaloids such as jatrorrhizine, magnoflorine, isocorydine, palmatine and tetrahydropalmatine were successfully quantified in male and female plants. The mean abundances of magnoflorine jatrorrhizine, and oblongine were significantly (P Phytochemicals in the stem of male and female Tinospora cordifolia showed significant qualitative and quantitative variations. LC-MS and MS/MS methods can be used to differentiate between male and female plants based on their chemical profiles and quantities of the marker bioactive alkaloids. This chemical composition difference was also evident during vegetative stage when there were no male and female flowers. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Relational Reasoning in STEM Domains: A Foundation for Academic Development

    Science.gov (United States)

    Alexander, Patricia A.

    2017-01-01

    What is relational reasoning? Why is it critical to consider the role of relational reasoning in students learning and development in science, technology, engineering, and mathematics (STEM)? Moreover, how do the particular contributions populating this special issue address the pressing societal needs and offer guidance to researchers and…

  9. Immunologically related lectins from stems and roots of developing seedlings of Cucurbita ficifolia: purification and some properties of root and stem lectins

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Hemagglutinating activity has been found in acetate extracts from roots and stems of squash seedlings (Cucurbita ficifolia. The hemaglutinating activity changes during seeds germination and seedling development. Dot blot and Western blot techniques have shown that proteins from these vegetative tissues cross-reacted with antibodies raised against endogenous cotyledons lectin CLBa and Con A.Lectins were isolated from stems and roots of 6-day old seedlings by precipitation with ethanol, affinity chromatography on Con A-Sepharose, gel filtration on Bio-gel P100 and separated by electrophoresis on polyacrylamide gel. Three purified lectins (RLA1, RLA2, RLA3 were obtained from roots and four from stems (SLA1, SLA2, SLA3, SLA4. The purified lectins from roots and stems agglutinated all human red blood cells, but sheep erythrocytes were most sensitive to agglutination. The hemagglutination of the root lectins RLA2 and RLA3 was inhibited by a very low concentration of arabinose, while RLA1, of xylose and Ga1NAc. Arabinose and Xylose were also found to be the most effective inhibitors of all stem lectins.

  10. Pollution! Find a STEM solution!

    Science.gov (United States)

    Takač, Danijela; Moćan, Marina

    2016-04-01

    Primary and secondary school Pantovčak is an innovative school in downtown Zagreb, Croatia. The school is involved in many projects concerning STEM education. Pollution! Find a STEM solution! is a two year long cross-curricular project that grew out of identified need to develop STEM and ICT skills more. Pisa results make evident that students' knowledge is poor and motivation for math and similar subjects is low. Implying priorities of European Commission, like e-learning, raises motivation and also develops basic skills and improves knowledge in science, math, physic, ICT. Main objectives are to increase students' interest in STEM education and careers and introduce them to all available new trends in technology, engineering and science in their region by visiting clean technology industries and strengthening links with them, to introduce some future digital jobs and prepare students for rapid technological changes by integrating ICT into classroom practice more, to highlight the importance of global environmental issues and improve the knowledge in the areas of sustainable development and renewable energy, to develop collaborative partnership between schools and the wider community in formal, non-formal and informal learning, to support multilingualism by publishing Open Educational Resources in 8 different languages and to strengthen the professional profile of the teaching profession. The project brings together 231 teachers and 2729 students from five different European countries in learning to think globally and work on activities that contribute to the community's well-being. There are altogether 33 activities, divided in 4 categories. STEM activities are focused on students building the devices for measuring air, light and noise pollution in their school and homes. They use the scientific method to analyze the data and compare the results with their peers to find a solution. Eskills, digital literacy and digital jobs are focused on introducing career

  11. Pursuit of STEM: Factors shaping degree completion for African American females in STEM

    Science.gov (United States)

    Wilkins, Ashlee N.

    The primary purpose of the study was to examine secondary data from the Cooperative Institutional Research Program (CIRP) Freshman and College Senior Surveys to investigate factors shaping degree aspirations for African American female undergraduates partaking in science, technology, engineering, and mathematics (STEM) majors. Hierarchical multiple regression was used to analyze the data and identify relationships between independent variables in relation to the dependent variable. The findings of the study reveal four key variables that were predictive of degree completion for African American females in STEM. Father's education, SAT composite, highest degree planned, and self-perception were positive predictors for females; while independent variable overall sense of community among students remained a negative predictor. Lastly implications for education and recommendations for future research were discussed.

  12. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    Science.gov (United States)

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  13. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

    Directory of Open Access Journals (Sweden)

    Emily J Lodge

    2016-03-01

    Full Text Available The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

  14. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells.

    Science.gov (United States)

    Wang, Xin; Low, Xinyi Casuarine; Hou, Weixin; Abdullah, Lissa Nurrul; Toh, Tan Boon; Mohd Abdul Rashid, Masturah; Ho, Dean; Chow, Edward Kai-Hua

    2014-12-23

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.

  15. Cranial Paget's disease - clinical case of symptomatic secondary basilar impression

    International Nuclear Information System (INIS)

    Gagov, E.; Gabrovsky, N.; Gabrovsky, S.

    2010-01-01

    A clinical case of 52 years old woman with history of periodic headaches for many years. The headache became more intensive and constant during the last 4-6 months. Instability by walking and stagger occurred as well as weakness in all 4 extremities, difficult swallowing and speech changes. Bulbar, quadripyramidal and archicerebellar symptoms were in hand. Pagets disease was ascertained engaging the skull with secondary basilar impression and compression of the cerebellum and the brain-stem leading to the above described clinical signs. Decompressive median suboccipital craniectomy was performed with laminectomy of C1. Occipital squama was thickened and highly vascularized.. Secondary basilar impression could occur in cranial Pagets disease with clinical symptoms resulting from the compression of the cerebellum and the brain-stem

  16. The CIRTL Network: A Professional Development Network for Future STEM Faculty

    Science.gov (United States)

    Herbert, B. E.

    2011-12-01

    The Center for the Integration of Research, Teaching, and Learning (CIRTL) is an NSF Center for Learning and Teaching in higher education using the professional development of graduate students and post-doctoral scholars as the leverage point to develop a national STEM faculty committed to implementing and advancing effective teaching practices for diverse student audiences as part of successful professional careers. The goal of CIRTL is to improve the STEM learning of all students at every college and university, and thereby to increase the diversity in STEM fields and the STEM literacy of the nation. The CIRTL network seeks to support change at a number of levels to support its goals: individual, classroom, institutional, and national. To bring about change, which is never easy, the CIRTL network has developed a conceptual model or change model that is thought to support the program objectives. Three central concepts, Teaching-as-Research, Learning Communities, and Learning-through-Diversity, underlie the design of all CIRTL activities. STEM faculty use research methods to systematically and reflectively improve learning outcomes. This work is done within a community of shared learning and discovery, and explicitly recognizes that effective teaching capitalizes on the rich array of experiences, backgrounds, and skills among the students and instructors to enhance the learning of all. This model is being refined and tested through a networked-design experiment, where the model is tested in diverse settings. Established in fall 2006, the CIRTL Network comprises the University of Colorado at Boulder (CU), Howard University, Michigan State University, Texas A&M University, Vanderbilt University, and the University of Wisconsin-Madison. The diversity of these institutions is by design: private/public; large/moderate size; majority-/minority-serving; geographic location. This talk will describe the theoretical constructs and efficacy of Teaching-as Research as a

  17. Characteristics of Exemplary Science, Technology, Engineering, and Math (STEM)-Related Experiential Learning Opportunities

    Science.gov (United States)

    Simmons, Jamie Munn

    Experiential opportunities at the secondary level give students the "intimate and necessary relation between the processes of actual experience and education" (Dewey, 1938, p. 19- 20). Career and Technical Education classes (CTE) and co-curricular experiences, one type of experiential learning, underpin and cultivate student curiosity and often channel interests into STEM-related post-secondary disciplines and career choices. There is little existent research on the characteristics of exemplary experiential learning opportunities and the impact on stakeholders. This study is intended to identify the qualities and characteristics of an exemplary secondary experience through the lived experiences of the stakeholders; students, STEM-related teachers, and CTE/STEM Administrators. A qualitative research design was used to examine characteristics and implications for students of four STEM-related programs throughout Virginia. Conclusions from the study include fundamental principles for providing exemplary experiential STEM-related learning opportunities. These principles include: providing hands-on, real world learning opportunities for students, providing learning opportunities that will enhance student ownership in their learning, providing unique and comprehensive career exploration opportunities for students, providing a schedule for teachers that will give them time to plan, deliver, and manage exemplary experiential learning opportunities, providing continual teacher and administrator in-service training relative to planning and implementing exemplary experiential learning opportunities, investing appropriate funds for providing exemplary experiential learning opportunities. Establishing and maintaining active partnerships with business/industry and colleges/universities, and maintaining active advisory communities, providing appropriate staff to support the provision of exemplary experiential learning opportunities is needed. The need for adequate funding

  18. Post secondary project-based learning in science, technology, engineering and mathematics

    Directory of Open Access Journals (Sweden)

    Rachel A Ralph

    2016-03-01

    Full Text Available Project-based learning (PjBL - to distinguish from problem-based learning - PBL has become a recurrent practice in K-12 classroom environments. As PjBL has become prominent in K-12 classrooms, it has also surfaced in post-secondary institutions.  The purpose of this paper is to examine the research that has studied a variety of science, technology, engineering and mathematic subjects using PjBL in post-secondary classrooms. Eleven articles (including qualitative, quantitative and mixed methods were included.  The format includes: an introduction and background (which defines PjBL and STEM, research methods, quality appraisal used, results, and a discussion, future research and a conclusion.  Two tables and two figures are included. In this paper, theoretical backgrounds and key terms were identified, followed by a literature review discussing four themes: content knowledge, interdisciplinary skills, collaboration and skill development for future education and careers.  Results suggested that there is a positive connection between content knowledge learning and PjBL in collaborative settings.  Additionally, some negative perceptions arose regarding teamwork situations.  Interdisciplinary skills were achieved, but quite limited in post-secondary classrooms.  PjBL and STEM were perceived to be important for future education and careers.  Future research needs to be completed and institutional curriculum changes informed by the results of this research need to occur to further explore interdisciplinary courses and the use of PjBL.

  19. Hematopoietic (stem) cell development — how divergent are the roads taken?

    NARCIS (Netherlands)

    M.-L. Kauts (Mari-Liis); C.S. Vink (Chris); E.A. Dzierzak (Elaine)

    2016-01-01

    textabstractThe development of the hematopoietic system during early embryonic stages occurs in spatially and temporally distinct waves. Hematopoietic stem cells (HSC), the most potent and self-renewing cells of this system, are produced in the final ‘definitive’ wave of hematopoietic cell

  20. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells

    NARCIS (Netherlands)

    Ma, Ming San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn; Balasubramaniyan, Veerakumar; Kuijer, Roelof; Vissink, Arjan; Copray, Sjef; Raghoebar, Gerry

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and

  1. The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy

    Science.gov (United States)

    Tati, T.; Firman, H.; Riandi, R.

    2017-09-01

    STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.

  2. Autologous hematopoietic stem cell transplantation in combination with immunoablative protocol in secondary progressive multiple sclerosis: A 10-year follow-up of the first transplanted patient

    Directory of Open Access Journals (Sweden)

    Obradović Dragana

    2016-01-01

    Full Text Available Introduction. Multiple sclerosis (MS is an immunemediated disease of the central nervous system that affects young individuals and leads to severe disability. High dose immunoablation followed by autologous hemopoietic stem cell transplantation (AHSCT has been considered in the last 15 years as potentialy effective therapeutic approach for agressive MS. The most recent long-time follow-up results suggest that AHSCT is not only effective for highly aggressive MS, but for relapsing-remitting MS as well, providing long-term remission, or maybe even cure. We presented a 10- year follow-up of the first MS patient being treated by immunoablation therapy and AHSCT. Case report. A 27-year-old male experienced the first symptoms - intermitent numbness and paresthesia of arms and legs of what was treated for two years by psychiatrist as anxiety disorder. After he developed severe paraparesis he was admitted to the Neurology Clinic and diagnosed with MS. Our patient developed aggressive MS with frequent relapses, rapid disability progression and transition to secondary progressive form 6 years after MS onset [the Expanded Disability Status Scale (EDSS 7.0 Ambulation Index (AI 7]. AHSCT was performed, cyclophosphamide was used for hemopoietic stem cell mobilization and the BEAM protocol was used as conditionig regimen. No major adverse events followed the AHSCT. Neurological impairment improved, EDSS 6.5, AI 6 and during a 10-year followup remained unchanged. Brain MRI follow-up showed the absence of gadolinium enhancing lesions and a mild progression of brain atrophy. Conclusion. The patient with rapidly evolving, aggressive, noninflammatory MS initialy improved and remained stable, without disability progression for 10 years, after AHSCT. This kind of treatment should be considered in aggressive MS, or in disease modifying treatment nonresponsive MS patients, since appropriately timed AHSCT treatment may not only prevent disability progression but reduce

  3. Phytochemical screening and antibacterial evaluation of stem bark ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... Mallotus philippinensis var. Tomentosus is a medicinal plant, which was tested against Escherichia coli,. Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Bacillus subtilis. Phytochemi- cal screening of the stem bark of M. philippinensis indicates the presence of secondary ...

  4. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  5. Persistence among Minority STEM Majors: A Phenomenological Study

    Science.gov (United States)

    Williams-Watson, Stacey

    The United States needs to increase the number of science, technology, engineering, and math (STEM) graduates to remain competitive in the global market and maintain national security. Minority students, specifically African-American and Hispanic, are underrepresented in STEM fields. As the minority population continues to grow it is essential that higher education institutions improve minority students' persistence in STEM education. This study examined the problem of minority students' lack of persistence in STEM programs. The purpose of this qualitative transcendental phenomenological study was to describe the lived experiences that minority students perceived as contributing to their persistence in STEM. The central research question was: What are the lived experiences of minority STEM students that have contributed to their persistence in a STEM program? The sub-questions were: a) What led participants to majors in STEM?; b) What contributed to students' success and persistence in STEM?; and c) What advice do students have to offer? The researcher interviewed 12 minority STEM students and uncovered 10 themes that described the lived experiences of minority students' persistence in STEM programs. The themes were 1) Childhood experiences and interests; 2) Positive educational experiences in secondary school; 3) Self- motivation; 4) Positive experiences with professors; 5) Family encouragement and values; 6) Lack of minorities; 7) Lack of educational preparation; 8) The need for financial assistance; 9) Clubs and organizations; and 10) Friends within the major. The significance of these findings is the potential to produce changes in curricula, programs, and retention methods that may improve the persistence of minority students in STEM programs.

  6. Generation of Functional Thymic Epithelium from Human Embryonic Stem Cells that Supports Host T Cell Development

    OpenAIRE

    Parent, Audrey V.; Russ, Holger A.; Khan, Imran S.; LaFlam, Taylor N.; Metzger, Todd C.; Anderson, Mark S.; Hebrok, Matthias

    2013-01-01

    Inducing immune tolerance to prevent rejection is a key step toward successful engraftment of stem-cell-derived tissue in a clinical setting. Using human pluripotent stem cells to generate thymic epithelial cells (TECs) capable of supporting T cell development represents a promising approach to reach this goal; however, progress toward generating functional TECs has been limited. Here, we describe a robust in vitro method to direct differentiation of human embryonic stem cells (hESCs) into th...

  7. Engaging learners in STEM education

    Directory of Open Access Journals (Sweden)

    Joseph Krajcik

    2017-04-01

    Full Text Available In this manuscript we focus on how to develop STEM learning environments, and how STEM can be implemented in K-12 schools. We focus on the following question: “How can we support students in building a deep, integrated knowledge of STEM so that they have the practical knowledge and problem solving skills necessary to live in and improve the world?” We also discuss criteria for evaluating STEM learning environments and the challenges teachers face in implementing STEM. We define STEM as the integration of science, engineering, technology, and mathematics to focus on solving pressing individual and societal problems. Engaging students in STEM also means engaging learners in the design process. Design is integral to student thinking in the STEM world. The design process is very non-linear and iterative in its nature but requires clearly articulating and identifying the design problem, researching what is known about the problem, generating potential solutions, developing prototype designs (artifacts that demonstrate solutions, and sharing and receiving feedback. With the integration of design, STEM education has the potential to support students in learning big ideas in science and engineering, as well as important scientific and engineering practices, and support students in developing important motivational outcomes such as ownership, agency and efficacy. Moreover, students who engage in STEM learning environments will also develop 21st century capabilities such as problem solving, communication, and collaboration skills.

  8. Learning from our global competitors: A comparative analysis of science, technology, engineering and mathematics (STEM) education pipelines in the United States, Mainland China and Taiwan

    Science.gov (United States)

    Chow, Christina M.

    Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field where students in the U.S. will ultimately be competing for jobs with not only local, but also international, peers. Thus, the ability to understand and learn from our global competitors, starting with the examination of innovative education systems and best practice strategies, is tantamount to the economic development, and ultimate survival, of the U.S. as a whole. The purpose of this study was to investigate the current state of science, technology, engineering and mathematics (STEM) education and workforce pipelines in the U.S., China, and Taiwan. Two broad research questions examined STEM workforce production in terms of a) structural differences in primary and secondary school systems, including analysis of minimum high school graduation requirements and assessments as well as b) organizational differences in tertiary education and trends in STEM undergraduate and graduate degrees awarded in each region of interest. While each of the systems studied had their relative strengths and weaknesses, each of the Asian economies studied had valuable insights that can be categorized broadly in terms of STEM capacity, STEM interest and a greater understanding of global prospects that led to heightened STEM awareness. In China and Taiwan, STEM capacity was built via both traditional and vocational school systems. Focused and structured curriculum during the primary and early secondary school years built solid mathematics and science skills that translated into higher performance on international assessments and competitions. Differentiated secondary school options, including vocational high school and technical colleges and

  9. Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells.

    Science.gov (United States)

    Veltri, Anthony; Lang, Christopher; Lien, Wen-Hui

    2018-01-01

    Mammalian skin and its appendages constitute the integumentary system forming a barrier between the organism and its environment. During development, skin epidermal cells divide rapidly and stratify into a multilayered epithelium, as well as invaginate downward in the underlying mesenchyme to form hair follicles (HFs). In postnatal skin, the interfollicular epidermal (IFE) cells continuously proliferate and differentiate while HFs undergo cycles of regeneration. Epidermal regeneration is fueled by epidermal stem cells (SCs) located in the basal layer of the IFE and the outer layer of the bulge in the HF. Epidermal development and SC behavior are mainly regulated by various extrinsic cues, among which Wnt-dependent signaling pathways play crucial roles. This review not only summarizes the current knowledge of Wnt signaling pathways in the regulation of skin development and governance of SCs during tissue homeostasis, but also discusses the potential crosstalk of Wnt signaling with other pathways involved in these processes. Stem Cells 2018;36:22-35. © 2017 AlphaMed Press.

  10. The Importance of MS PHD'S and SEEDS Mentoring and Professional Development Programs in the Retenion of Underrepresented Minorities in STEM Fields

    Science.gov (United States)

    Strickland, J.; Johnson, A.; Williamson Whitney, V.; Ricciardi, L.

    2012-12-01

    According to a recent study by the National Academy of Sciences, underrepresented minority (URM) participation in STEM disciplines represents approximately one third of the URM population in the U.S. Thus, the proportion of URM in STEM disciplines would need to triple in order to reflect the demographic makeup in the U.S. Individual programs targeting the recruitment and retention of URM students in STEM have demonstrated that principles of mentoring, community building, networking, and professional skill development are crucial in encouraging URM students to remain in STEM disciplines thereby reducing this disparity in representation. However, to paraphrase an old African proverb, "it takes a village to nurture and develop a URM student entering into the STEM community." Through programs such as the Institute for Broadening Participation's Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development Program in Earth system science and the Ecological Society of America's Strategies for Ecology Education, Diversity and Sustainability (SEEDS), URM students are successfully identifying and benefitting from meaningful opportunities to develop the professional skills and strategies needed to achieve their academic and career goals. Both programs share a philosophy of professional development, reciprocal mentoring, field trips, internships, employment, research partnerships, collaborations, fellowships, scholarships, grants, and professional meeting travel awards to support URM student retention in STEM. Both programs share a mission to bring more diversity and inclusivity into STEM fields. Both programs share a history of success at facilitating the preparation and advancement of URM students. This success has been documented with the multitude of URM students that have matriculated through the programs and are now actively engaged in the pursuit of advanced degrees in STEM or entering the STEM workforce. Anonymous surveys from

  11. "It's worth our time": a model of culturally and linguistically supportive professional development for K-12 STEM educators

    Science.gov (United States)

    Charity Hudley, Anne H.; Mallinson, Christine

    2017-09-01

    Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural and linguistic competence and to disseminate information about how educators view the relevance of language, communication, and culture to STEM teaching and learning. We describe the design and facilitation of our model of culturally and linguistically responsive professional development, grounded in theories of multicultural education and culturally supportive teaching, through professional development workshops to 60 K-12 STEM educators from schools in Maryland and Virginia that serve African American students. Participants noted that culturally and linguistically responsive approaches had yet to permeate their K-12 STEM settings, which they identified as a critical challenge to effectively teaching and engaging African-American students. Based on pre-surveys, workshops were tailored to participants' stated needs for information on literacy (e.g., disciplinary literacies and discipline-specific jargon), cultural conflict and mismatch (e.g., student-teacher miscommunication), and linguistic bias in student assessment (e.g., test design). Educators shared feedback via post-workshop surveys, and a subset of 28 participants completed in-depth interviews and a focus group. Results indicate the need for further implementation of professional development such as ours that address linguistic and cultural issues, tailored for K-12 STEM educators. Although participants in this study enumerated several challenges to meeting this need, they also identified opportunities for collaborative solutions that draw upon teacher expertise and are integrated with curricula across content areas.

  12. Radiological study of the calcanean ossification secondary nucleus development

    International Nuclear Information System (INIS)

    Carvalho Filho, Guaracy.

    1994-01-01

    This work describes the normal aspects of the calcanean ossification secondary nucleus radiological development, the appearing time, his form, localization, fragmentation and evolution of area, from a sample of normal individuals. (author). 14 refs., 16 figs., 8 tabs

  13. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  14. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  15. Myeloproliferative neoplasm stem cells.

    Science.gov (United States)

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2 , CALR , or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC. © 2017 by The American Society of Hematology.

  16. Opinions of Secondary School Science and Mathematics Teachers on STEM Education

    Science.gov (United States)

    Yildirim, Bekir; Türk, Cumhur

    2018-01-01

    In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…

  17. New developments in seismic analysis of primary and secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.

    1984-01-01

    Primary and secondary systems often must be analyzed using decoupled models. This paper presents recent advances made at NCSU in the seismic analysis of these systems. Algorithms are presented by which coupled mode shapes and frequencies can be evaluated without performing a new eigenvalue solution, given the mode shapes and frequencies of the decoupled models. Simple and accurate equations are presented to predict changes in frequencies and responses. With the coupled mode shapes and frequencies, one can obtain any primary or secondary response directly from the input spectrum. Alternatively, one can develop instructure spectra at various locations in the primary system accounting for the primary-secondary system interaction. Correlation between the support motions is also generated. Equations are presented for evaluating complex mode shapes and frequencies of coupled systems when due to unequal damping values of primary and secondary systems, the coupled system becomes nonproportionally damped. Recent progress, in case of tuned systems is also reported

  18. [Thinking of study on secondary development of major traditional Chinese medicine varieties based on system theory].

    Science.gov (United States)

    Cheng, Xu-Dong; Jia, Xiao-Bin; Feng, Liang; Jiang, Jun

    2013-12-01

    The secondary development of traditional Chinese medicines (TCMs) is an important content of TCM modernization process, as well as an important path for developing new TCM drugs. Under the guidance of the system theory, in response to the lack of the overall guideline and practical methods for the secondary development of TCMs at present, we introduced the overall thought of the secondary development of major TCM varieties, as well as the roles and contents of clinical research, pharmacology and pharmaceutics in the process of the secondary development of major TCM varieties, so as to provide systematic strategies and methods for the development of major TCM varieties.

  19. Leaf and stem morphoanatomy of Petiveria alliacea.

    Science.gov (United States)

    Duarte, M R; Lopes, J F

    2005-12-01

    Petiveria alliacea is a perennial herb native to the Amazonian region and used in traditional medicine for different purposes, such as diuretic, antispasmodic and anti-inflammatory. The morphoanatomical characterization of the leaf and stem was carried out, in order to contribute to the medicinal plant identification. The plant material was fixed, freehand sectioned and stained either with toluidine blue or astra blue and basic fuchsine. Microchemical tests were also applied. The leaf is simple, alternate and elliptic. The blade exhibits paracytic stomata on the abaxial side, non-glandular trichomes and dorsiventral mesophyll. The midrib is biconvex and the petiole is plain-convex, both traversed by collateral vascular bundles adjoined with sclerenchymatic caps. The stem, in incipient secondary growth, presents epidermis, angular collenchyma, starch sheath and collateral vascular organization. Several prisms of calcium oxalate are seen in the leaf and stem.

  20. Radiation education for secondary school level in Asia-application of Japanese experiences and future mission

    International Nuclear Information System (INIS)

    Iimoto, Takeshi; Kakefu, Tomohisa; Takahashi, Itaru; Takaki, Rieko

    2015-01-01

    A mission on the development of nuclear science and technology education program for secondary school students in the Asia-Pacific Ocean area by the IAEA (2012 - 2015 years) is in progress. Attractive educational programs covering fields of science, technology, engineering and mathematics (STEM) have been developed. Selected pilot countries (the Philippines, Malaysia, Indonesia, UAE) use the programs and education tools as their trial under their own circumstances. Background and trends of this activity, Japanese support to the activity, and its future scope are introduced. (author)

  1. The promises of stem cells: stem cell therapy for movement disorders.

    Science.gov (United States)

    Mochizuki, Hideki; Choong, Chi-Jing; Yasuda, Toru

    2014-01-01

    Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying movement disorders including Parkinson's disease, multiple system atrophy and Huntington's disease remain more or less elusive. Treatments to halt these disease progressions are currently unavailable. With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular mechanisms that govern how they develop and work would provide us many fundamental insights into human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source of replacement cells for damaged neurons in movement disorders. While stem cells show potential for regenerative medicine, their use as tools for research and drug testing is thought to have more immediate impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery for these movement disorders. Particular attention should also be given to the involvement of neural stem cells in adult neurogenesis so as to encourage its development as a therapeutic option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. When nano meets stem: the impact of nanotechnology in stem cell biology.

    Science.gov (United States)

    Kaur, Savneet; Singhal, Barkha

    2012-01-01

    Nanotechnology and biomedical treatments using stem cells are among the latest conduits of biotechnological research. Even more recently, scientists have begun finding ways to mate these two specialties of science. The advent of nanotechnology has paved the way for an explicit understanding of stem cell therapy in vivo and by recapitulation of such in vivo environments in the culture, this technology seems to accommodate a great potential in providing new vistas to stem cell research. Nanotechnology carries in its wake, the development of highly stable, efficient and specific gene delivery systems for both in vitro and in vivo genetic engineering of stem cells, use of nanoscale systems (such as microarrays) for investigation of gene expression in stem cells, creation of dynamic three-dimensional nano-environments for in vitro and in vivo maintenance and differentiation of stem cells and development of extremely sensitive in vivo detection systems to gain insights into the mechanisms of stem cell differentiation and apoptosis in different disease models. The present review presents an overview of the current applications and future prospects for the use of nanotechnology in stem cell biology. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  4. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  5. Stem cell metabolism in tissue development and aging

    Science.gov (United States)

    Shyh-Chang, Ng; Daley, George Q.; Cantley, Lewis C.

    2013-01-01

    Recent advances in metabolomics and computational analysis have deepened our appreciation for the role of specific metabolic pathways in dictating cell fate. Once thought to be a mere consequence of the state of a cell, metabolism is now known to play a pivotal role in dictating whether a cell proliferates, differentiates or remains quiescent. Here, we review recent studies of metabolism in stem cells that have revealed a shift in the balance between glycolysis, mitochondrial oxidative phosphorylation and oxidative stress during the maturation of adult stem cells, and during the reprogramming of somatic cells to pluripotency. These insights promise to inform strategies for the directed differentiation of stem cells and to offer the potential for novel metabolic or pharmacological therapies to enhance regeneration and the treatment of degenerative disease. PMID:23715547

  6. Science dual enrollment: An examination of high school students' post-secondary aspirations

    Science.gov (United States)

    Berry, Chelsia

    The purpose of this study was to determine if participation in science dual enrollment courses influenced African American high school students' post-secondary aspirations that will lead to college attendance. The investigation examined the relationship between African American students' learning experiences and how their self-efficacy and outcome expectations impact their goal setting. The goal was to determine the impact of the following variables on African American students' plan to pursue a bachelor's or advanced degree: (a) STEM exposure, (b) Algebra 1 achievement, (c) level of science class, and (d) receiving science college credit for dual enrollment course. The social cognitive career theory framed this body of research to explore how career and academic interests mature, are developed, and are translated into action. Science dual enrollment participation is a strategy for addressing the lack of African American presence in the STEM fields. The causal comparative ex post facto research design was used in this quantitative study. The researcher performed the Kruskal-Wallis non-parametric analysis of variance and Pearson's chi-square tests to analyze secondary data from the High School Longitudinal Study first follow-up student questionnaire. The results indicate that STEM exposure and early success in Algebra 1 have a statistically significant impact on African American students' ambition to pursue a bachelor's or advanced degree. According to the Pearson's chi-square and independent sample Kruskal-Wallis analyses, level of students' science class and receiving college credit for dual enrollment do not significantly influence African American students' postsecondary aspirations.

  7. DEVELOPMENT PERSPECTIVES OF SECURITIES SECONDARY MARKET IN REPUBLIC OF MOLDOVA

    Directory of Open Access Journals (Sweden)

    Chetraru Aliona

    2012-07-01

    Full Text Available It’s an urgent necessity to determine the specific problems of the securities market in Republic of Moldova, in the context of policies and strategies of accession to the European and International activity standards, performance and quality, along with the implication and effects of the international financial crisis. Identification of the influence factors with negative on the secondary market will enable the formulation of recommendations, proposals, improvement and refreshing techniques for the capital market as a whole. The analysis of the secondary market indicators allowed concluding on a high degree of uncertainty and predictability of its evolution. Legislative and regulatory issues on the securities secondary market activity of professional participants, admit the interpretation duality of provisions concerned. National Commission of Financial Market activity as a mega-regulator of the financial market, although involving a increased complexity of activities concerning supervision, control and regulation of the financial (non-banking sector, do not enjoy great efficiency in terms of stabilization and promotion of the financial sector. The appearance of a stock institution as an alternative to the existing one, after 20 years of experience of the latter, theoretically opens new market opportunities, although in practical terms, at this moment of time, the market participants are reserved and undecided on the future development trend of the secondary market. The study is based on statistical data contained in annual reports of the National Financial Market Commission and published on the official website of JSC „Stock Exchange of Moldova”, analysis of legislative and regulatory provisions and international practices. The statistics cover the whole period of operation of the secondary market in Republic of Moldova, that is from 1995 to 2012, as much as the stock market segment and the counter. The research methodology

  8. Sensitization predicts asthma development among wheezing toddlers in secondary healthcare.

    Science.gov (United States)

    Boersma, Nienke A; Meijneke, Ruud W H; Kelder, Johannes C; van der Ent, Cornelis K; Balemans, Walter A F

    2017-06-01

    Some wheezing toddlers develop asthma later in childhood. Sensitization is known to predict asthma in birth cohorts. However, its predictive value in secondary healthcare is uncertain. This study examines the predictive value of sensitization to inhalant allergens among wheezing toddlers in secondary healthcare for the development of asthma at school age (≥6 years). Preschool children (1-3 years) who presented with wheezing in secondary healthcare were screened on asthma at school age with the International Study of Asthma and Allergies in Childhood questionnaire. The positive and negative predictive value (PPV and NPV) of specific IgE to inhalant allergens (cut-off concentration 0.35 kU/L) and several non-invasive variables from a child's history (such as hospitalization, eczema, and parental atopy) were calculated. The additional predictive value of sensitization when combined with non-invasive predictors was examined in multivariate analysis and by ROC curves. Of 116 included children, 63% developed asthma at school age. Sensitization to inhalant allergens was a strong asthma predictor. The odds ratio (OR), PPV and NPV were 7.4%, 86%, and 55%, respectively. Eczema (OR 3.4) and hospital admission (OR 2.6) were significant non-invasive determinants. Adding sensitization to these non-invasive predictors in multivariate analysis resulted in a significantly better asthma prediction. The area under the ROC curve increased from 0.70 with only non-invasive predictors to 0.79 after adding sensitization. Sensitization to inhalant allergens is a strong predictor of school age asthma in secondary healthcare and has added predictive value when combined with non-invasive determinants. Pediatr Pulmonol. 2017;52:729-736. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development.

    Science.gov (United States)

    Weissman, Irving L

    2015-07-21

    It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.

  10. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    Science.gov (United States)

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  11. Place Based STEM: Leveraging Local Resources to Engage K-12 Teachers in Teaching Integrated STEM and for Addressing the Local STEM Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Louis Nadelson; Anne Louise Seifert; Meagan McKinney

    2014-06-01

    Business, industry, parks, nature settings, government infrastructure, and people, can be invaluable resources for connecting STEM curriculum within context which results in conditions ideal for promoting purposeful learning of authentic STEM content. Thus, community-based STEM resources offer ideal context for teaching STEM content. A benefit of focusing teacher attention on these contextual, content aligned resources is that they are in every community; making place-based STEM education a possibility, regardless of the location of STEM teaching and learning. Further, associating STEM teaching and learning with local resources addresses workforce development and the STEM pipeline by exposing students to STEM careers and applications in their local communities. The desire to align STEM teaching and learning with local STEM related resources guided the design of our week-long integrated STEM K-12 teacher professional development (PD) program, i-STEM. We have completed four years of our i-STEM PD program and have made place-based STEM a major emphasis of our curriculum. This report focuses on the data collected in the fourth year of our program. Our week-long i-STEM PD served over 425 educators last summer (2013), providing them with in depth theme-based integrated STEM short courses which were limited to an average of 15 participants and whole group plenary sessions focused around placed based integrated STEM, inquiry, engineering design, standards and practices of Common Core and 21st Century skills. This state wide PD was distributed in five Idaho community colleges and took place over two weeks. The STEM short courses included topics on engineering for sustainability, using engineering to spark interest in STEM, municipal water systems, health, agriculture, food safety, mining, forestry, energy, and others. Integral to these short courses were field trips designed to connect the K-12 educators to the resources in their local communities that could be leveraged

  12. Fibroblast growth factor receptor signaling is essential for normal mammary gland development and stem cell function.

    Science.gov (United States)

    Pond, Adam C; Bin, Xue; Batts, Torey; Roarty, Kevin; Hilsenbeck, Susan; Rosen, Jeffrey M

    2013-01-01

    Fibroblast growth factor (FGF) signaling plays an important role in embryonic stem cells and adult tissue homeostasis, but the function of FGFs in mammary gland stem cells is less well defined. Both FGFR1 and FGFR2 are expressed in basal and luminal mammary epithelial cells (MECs), suggesting that together they might play a role in mammary gland development and stem cell dynamics. Previous studies have demonstrated that the deletion of FGFR2 resulted only in transient developmental defects in branching morphogenesis. Using a conditional deletion strategy, we investigated the consequences of FGFR1 deletion alone and then the simultaneous deletion of both FGFR1 and FGFR2 in the mammary epithelium. FGFR1 deletion using a keratin 14 promoter-driven Cre-recombinase resulted in an early, yet transient delay in development. However, no reduction in functional outgrowth potential was observed following limiting dilution transplantation analysis. In contrast, a significant reduction in outgrowth potential was observed upon the deletion of both FGFR1 and FGFR2 in MECs using adenovirus-Cre. Additionally, using a fluorescent reporter mouse model to monitor Cre-mediated recombination, we observed a competitive disadvantage following transplantation of both FGFR1/R2-null MECs, most prominently in the basal epithelial cells. This correlated with the complete loss of the mammary stem cell repopulating population in the FGFR1/R2-attenuated epithelium. FGFR1/R2-null MECs were partially rescued in chimeric outgrowths containing wild-type MECs, suggesting the potential importance of paracrine mechanisms involved in the maintenance of the basal epithelial stem cells. These studies document the requirement for functional FGFR signaling in mammary stem cells during development. Copyright © 2012 AlphaMed Press.

  13. Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Lingyu Li

    2011-03-01

    Full Text Available Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.

  14. Choices and Changes: Eccles’ Expectancy-Value Model and Upper-Secondary School Students’ Longitudinal Reflections about their Choice of a STEM Education

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    During the past 30 years, Eccles’ comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students...... in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model......, and that significant changes in the students’ reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EVMBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students’ dynamical educational choice processes where students...

  15. Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Pilehvar-Soltanahmadi, Younes; Alizadeh, Effat; Ebrahimi-Kalan, Abbas; Mortazavi, Yousef; Zarghami, Nosratollah

    2017-12-01

    Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In the present study, a polymeric nanofibrous scaffold was developed based on the polycaprolactone/Collagen (PCL/Coll) containing Emu oil as a bioactive material to induce the proliferation of ASCs, while simultaneously preserving the stemness property of those cells. Fabrication of the electrospun Emu oil-loaded PCL/Coll nanofibers was confirmed by using FE-SEM, FTIR, and tensile test. ASCs were seeded on two types of nanofibers (PCL/Coll and Emu oil-loaded PCL/Coll) and their proliferation, cell cycle progression, and stemness gene expressions were evaluated using MTT, propidium iodide staining, and qPCR during 14 days, respectively. The results indicated that ASCs displayed improved adhesion capacity with the higher rates of bioactivity and proliferation on the Emu oil-loaded nanofibers than the other groups. The proliferation capacity of ASCs on Emu oil-loaded PCL/Coll nanofibers was further confirmed by the cell cycle progression analysis. It was also found that Emu oil-loaded nanofibers significantly up-regulated the expression of stemness markers including sox-2, nanog, oct4, klf4, and c-Myc. The results demonstrated that the nanofibers containing Emu oil can reinforce the cell adhesion and enhance ASCs proliferation while preserving their stemness; therefore, using scaffolds containing natural products may have a great potential to enhance the in vitro expansion capacity of ASCs in the field of stem cell therapy and regenerative medicine.

  16. Implementing the Teaching/Learning of Oral Skills in Secondary Education in Aragón: Gauging Teachers' Attitudes, Beliefs and Expectations

    Science.gov (United States)

    Plo, Ramón; Hornero, Ana; Mur-Dueñas, Pilar

    2014-01-01

    Curent national curicula, the Common European Framework of Reference for Languages, and EFL materials highlight the importance of the students' development of oral skils. This study stems from a cros-sectional survey of the teaching of oral skils in Secondary Education in a Spanish local context (Aragón) caried out in 2012 on both teachers and…

  17. Natural Hypolignification Is Associated with Extensive Oligolignol Accumulation in Flax Stems1[C][W

    Science.gov (United States)

    Huis, Rudy; Morreel, Kris; Fliniaux, Ophélie; Lucau-Danila, Anca; Fénart, Stéphane; Grec, Sébastien; Neutelings, Godfrey; Chabbert, Brigitte; Mesnard, François; Boerjan, Wout; Hawkins, Simon

    2012-01-01

    Flax (Linum usitatissimum) stems contain cells showing contrasting cell wall structure: lignified in inner stem xylem tissue and hypolignified in outer stem bast fibers. We hypothesized that stem hypolignification should be associated with extensive phenolic accumulation and used metabolomics and transcriptomics to characterize these two tissues. 1H nuclear magnetic resonance clearly distinguished inner and outer stem tissues and identified different primary and secondary metabolites, including coniferin and p-coumaryl alcohol glucoside. Ultrahigh-performance liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry aromatic profiling (lignomics) identified 81 phenolic compounds, of which 65 were identified, to our knowledge, for the first time in flax and 11 for the first time in higher plants. Both aglycone forms and glycosides of monolignols, lignin oligomers, and (neo)lignans were identified in both inner and outer stem tissues, with a preponderance of glycosides in the hypolignified outer stem, indicating the existence of a complex monolignol metabolism. The presence of coniferin-containing secondary metabolites suggested that coniferyl alcohol, in addition to being used in lignin and (neo)lignan formation, was also utilized in a third, partially uncharacterized metabolic pathway. Hypolignification of bast fibers in outer stem tissues was correlated with the low transcript abundance of monolignol biosynthetic genes, laccase genes, and certain peroxidase genes, suggesting that flax hypolignification is transcriptionally regulated. Transcripts of the key lignan genes Pinoresinol-Lariciresinol Reductase and Phenylcoumaran Benzylic Ether Reductase were also highly abundant in flax inner stem tissues. Expression profiling allowed the identification of NAC (NAM, ATAF1/2, CUC2) and MYB transcription factors that are likely involved in regulating both monolignol production and polymerization as well as (neo)lignan production. PMID:22331411

  18. Constituents of the Stems of Arbutus unedo.

    Science.gov (United States)

    Karikas, G A; Euerby, M R; Waigh, R D

    1987-04-01

    The dried stems of ARBUTUS UNEDO have been investigated for secondary metabolites. In addition to the previously reported lupeol, ursolic acid, monotropein, unedoside, and stilbericoside, the iridoids geniposide ( 2) and monotropein methyl ester ( 1) have been isolated for the first time from this source. Betulinic acid ( 4) has also been isolated for the first time from this plant.

  19. Recruitment of Early STEM Majors into Possible Secondary Science Teaching Careers: The Role of Science Education Summer Internships

    Science.gov (United States)

    Borgerding, Lisa A.

    2015-01-01

    A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…

  20. Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context

    Science.gov (United States)

    Myers, J. D.; Lyford, M. E.; Mayes, R. L.

    2010-12-01

    Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and

  1. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-06-01

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  3. Stucture and development of the secondary lead capacity

    Energy Technology Data Exchange (ETDEWEB)

    Baack, T [Metallgesellschaft A.G., Frankfurt am Main (Germany, F.R.)

    1978-05-01

    Lead is considered to be one of the 'finite' raw materials, but in the form it is normally used, it can almost be infinitely recycled. Lead wastes and lead scrap are in a way secondary sources which continuously regenerate. The regeneration power of lead has a leading position among non-precious metals. The reasons behind the capability to regenerate lead and future developments are discussed.

  4. Developing relationships between environmental variables and stem elongation in chrysanthemum

    International Nuclear Information System (INIS)

    Jacobson, B.M.; Willits, D.H.

    1998-01-01

    The main objective of this research was to model the relationships between the environmental variables and stem elongation in chrysanthemum with the end-goal of producing a model appropriate for use in the dynamic control of a greenhouse environment. The plants used were Dendranthema grandiflora cv. 'Spice'. The model developed uses Richards' growth equation (Richards, 1969) as its base. Adaptations were made to Richards' growth equation to explicitly include the effects of day and night temperature, daily PPF (photosynthetic photon flux), end-of-day red to far-red ratio, and position of the internode on the stem on internode elongation. The model fit the observed final length data reasonably well (R2 = 0.89). Sensitivity analyses indicated that increasing day temperature had a positive effect on internode length while increasing night temperature had a negative effect, with night temperature having a considerably larger effect than the effect of day temperature. The analyses suggests that both high and low end-of-day red to far-red ratios will produce increased lengths and that increasing daily PPF will produce decreased lengths. The analyses also suggests that internodes which develop later on the plant will generally have larger lengths as reflected by the measured data

  5. Acute lymphoblastic leukemia with multiple cytogenetic abnormalities secondary to treatment of Ewing's sarcoma

    International Nuclear Information System (INIS)

    Al-Homaidhi, A.M.; Patterson, B.; Rubin, S.; Lipton, J.H.

    1999-01-01

    We report the case of a 22-year-old man with Ewing's sarcoma who attained a complete remission (CR) after combination radiotherapy and chemotherapy. Secondary acute lymphoblastic leukemia with multiple cytogenetic abnormalities involving chromosome 5 and 7 developed 16 years later. The patient underwent induction chemotherapy and entered a CR. Peripheral blood stem cell transplantation from a matched sibling was performed successfully and he is in complete remission of both ALL and Ewing's sarcoma. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. "It's Worth Our Time": A Model of Culturally and Linguistically Supportive Professional Development for K-12 STEM Educators

    Science.gov (United States)

    Hudley, Anne H. Charity; Mallinson, Christine

    2017-01-01

    Professional development on issues of language and culture is often separate from professional development on issues related to STEM education, resulting in linguistic and cultural gaps in K-12 STEM pedagogy and practice. To address this issue, we have designed a model of professional development in which we work with educators to build cultural…

  7. Induction of quadrangular shapes to stems of Guadua angustifolia Kunth for the business development in the rural communities of Ecuadorian Amazon

    Directory of Open Access Journals (Sweden)

    Karina Carrera-Sánchez

    2015-03-01

    Full Text Available Local development at indigenous communities from Ecuadorian Amazonía, may develop their potentialities and improve families’ incomes. In sector San José, cantón Mera, province Pastaza (Ecuador, the induction of square shape in G. angustifolia stems was studied using an adjustable metallic mold during three time intervals (15, 30 and 45 days. Square shape in stems of G. angustifolia was observed once metallic mold was used in shoots proliferation stage with 50 cm of height. It was obtained a 60.93 % of perimeter of stem with plane surface and six induced nodes. Metallic molds affected in approximately 55% the elongation of induced nodes, limiting stems normal length. By means of the induction of square shape in stems of G. angustifolia, members from farmer’s communities may develop agricultural production and commercialization to generate micro-enterprising and improve their life quality

  8. Exploring Student Persistence in STEM Programs: A Motivational Model

    Science.gov (United States)

    Simon, Rebecca A.; Aulls, Mark W.; Dedic, Helena; Hubbard, Kyle; Hall, Nathan C.

    2015-01-01

    To address continually decreasing enrollment and rising attrition in post-secondary STEM degree (science, technology, engineering, and mathematics) programs, particularly for women, the present study examines the utility of motivation and emotion variables to account for persistence and achievement in science in male and female students…

  9. Stem Photosynthesis of Twig and Its Contribution to New Organ Development in Cutting Seedlings of Salix Matsudana Koidz.

    Directory of Open Access Journals (Sweden)

    Junxiang Liu

    2018-04-01

    Full Text Available The objective of this study was to illustrate the photosynthetic characteristics of current twigs of Salix matsudana Koidz., and clarify the effect of stem photosynthesis on the new organ development in cutting seedlings. Excised twigs were taken as the experimental samples. The response of the stem photosynthesis rate to increasing light intensity and the effective photochemical efficiency of the cross section of the twig were determined. Then, twigs were used as cuttings and exposed to 0, 20, and 100 μmol m−2 s−1 light intensities, respectively, to achieve distinctive stem photosynthetic rates. After 14 days of treatment, stem water and non-structural carbohydrate (NSC content, as well as the biomass and carbon isotopic composition, of new organs in the cutting seedlings under different light treatments were examined. The results showed that the gross photosynthetic rate significantly increased within 400 μmol m−2 s−1 of light intensity, and the maximum rate was approximately 1.27 μmol m−2 s−1. The effective photochemical efficiency of the PSⅡ of the cortex was significantly higher than the inner tissues in the cross section of the twig. When twig cuttings were exposed to different light intensities, stem water and starch content, as well as bud and root biomass, were significantly higher in the cutting seedling subjected to 100 μmol m−2 s−1 than the case treated in darkness; however, the bud δ13C trend was the opposite. Stem photosynthesis played a positive role in the maintenance of stem water and starch supply for the cutting seedlings, and 13C depleted assimilates produced by stem photosynthesis contributed to bud biomass, revealing that stem photosynthesis promotes organ development in cutting seedlings of Salix matsudana.

  10. Up to 10-year follow-up of the Symax stem in THA

    DEFF Research Database (Denmark)

    Edwards, Nina M; Varnum, Claus; Kjærsgaard-Andersen, Per

    2018-01-01

    INTRODUCTION: The design of the cementless Symax-HA femoral stem is based on geometrical analysis of human femoral anatomy to optimise the fit within the femur. The stem combines an anatomical proximal section enabling a metaphyseal anchorage with a straight distal section. This results in an imp......INTRODUCTION: The design of the cementless Symax-HA femoral stem is based on geometrical analysis of human femoral anatomy to optimise the fit within the femur. The stem combines an anatomical proximal section enabling a metaphyseal anchorage with a straight distal section. This results...... with results from a single centre, Vejle Hospital. From the Danish Hip Arthroplasty Registry, we identified all THAs operated with the Symax stem. The primary outcome was revision. The secondary outcomes were aseptic loosening, periprosthetic fracture, and all other causes for revision. RESULTS: In total, 1...

  11. Stem loop sequences specific to transposable element IS605 are found linked to lipoprotein genes in Borrelia plasmids.

    Directory of Open Access Journals (Sweden)

    Nicholas Delihas

    Full Text Available BACKGROUND: Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS: In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60, however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE: Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in

  12. Characterization of primary and secondary metabolites of leaf and ...

    African Journals Online (AJOL)

    This study evaluates the primary and secondary metabolite profiles of Eurycoma longifolia Jack (EL) stems and leaves to determine whether it can be utilized for therapeutic purposes as the roots. A total of six types of extracts were tested. The extracts showed high content of glycosaponins, polysaccharides, proteins and ...

  13. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Integrative STEM Education Defined

    OpenAIRE

    Sanders, Mark E.

    2015-01-01

    “My work with integrative STEM education began in 1990 with the NSF-funded Technology, Science, Mathematics Integration Project… By 2008, I was convinced “STEM Education” was (and always would be) a hopelessly ambiguous phrase, and therefore felt we absolutely needed to rename our “STEM Education” graduate program and develop a tight operational definition of the central idea underlying our program, in hopes of preventing the sort of hopeless ambiguity that ruined the term “STEM education” fr...

  15. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  16. How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom

    Science.gov (United States)

    Milgram, Donna

    2011-01-01

    Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…

  17. Strategic Future Directions for Developing STEM Education in Higher Education in Egypt as a Driver of Innovation Economy

    Science.gov (United States)

    Ahmed, Hanaa Ouda Khadri

    2016-01-01

    STEM (Science, Technology, Engineering and Mathematics) education has been achieving growing international attention. As the world economy is becoming more diversified and dependent on innovation, Science, Technology, Engineering, and Math (STEM) skills and expertise are progressively more needed for competition and development. Egyptian students…

  18. Personal Development in Secondary Education: The Irish Transition Year

    Science.gov (United States)

    Clerkin, Aidan

    2012-01-01

    Secondary education in Ireland includes an optional Transition Year (TY) between the junior and senior examination cycles, when students are typically about 15 years old. Transition Year is an innovative programme, unique to Irish education, which is intended as a non-academic year devoted to personal and social development in the absence of…

  19. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections.

    Science.gov (United States)

    van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Frencken, Jos F; Scicluna, Brendon P; Klein Klouwenberg, Peter M C; Zwinderman, Aeilko H; Lutter, Rene; Horn, Janneke; Schultz, Marcus J; Bonten, Marc M J; Cremer, Olaf L; van der Poll, Tom

    2017-08-15

    Sepsis can be complicated by secondary infections. We explored the possibility that patients with sepsis developing a secondary infection while in the intensive care unit (ICU) display sustained inflammatory, vascular, and procoagulant responses. To compare systemic proinflammatory host responses in patients with sepsis who acquire a new infection with those who do not. Consecutive patients with sepsis with a length of ICU stay greater than 48 hours were prospectively analyzed for the development of ICU-acquired infections. Twenty host response biomarkers reflective of key pathways implicated in sepsis pathogenesis were measured during the first 4 days after ICU admission and at the day of an ICU-acquired infection or noninfectious complication. Of 1,237 admissions for sepsis (1,089 patients), 178 (14.4%) admissions were complicated by ICU-acquired infections (at Day 10 [6-13], median with interquartile range). Patients who developed a secondary infection showed higher disease severity scores and higher mortality up to 1 year than those who did not. Analyses of biomarkers in patients who later went on to develop secondary infections revealed a more dysregulated host response during the first 4 days after admission, as reflected by enhanced inflammation, stronger endothelial cell activation, a more disturbed vascular integrity, and evidence for enhanced coagulation activation. Host response reactions were similar at the time of ICU-acquired infectious or noninfectious complications. Patients with sepsis who developed an ICU-acquired infection showed a more dysregulated proinflammatory and vascular host response during the first 4 days of ICU admission than those who did not develop a secondary infection.

  20. Preliminary pharmacognostic screening of Achyranthes coynei stem

    Directory of Open Access Journals (Sweden)

    Vinayak Upadhya

    2015-01-01

    Full Text Available Achyranthes coynei is a rare, endemic perennial shrub reported from Karnataka and Maharashtra states of India. The plant is used to treat various disorders by folk healers and was proven to have antimicrobial and antioxidant properties. The present study was undertaken to evaluate microscopic and macroscopic characters of A. coynei stem, along with its physicochemical parameters. ProgRes ® CapturePro and Microsoft Excel were used for statistical analysis. Perennial, shrubby nature and woody stem were the distinguishing morphological characters observed. Transverse section (TS illustrated quadrangular outline of the stem and showed the presence of two types of trichomes on the thick-walled epidermis. TS also showed number of rosette calcium oxalates crystals; prismatic and microsphenoid crystals; conjoint, collateral open secondary vascular bundles; and two amphixylic medullary bundles in the pith. Ash and extractive values, micro and macro elements and nutritive factors were estimated in the present study. The presence of alkaloids, saponins and triterpenoids were observed in preliminary phytochemical screening. High-performance thin layer chromatographic analysis yielded different bands and also indicated the presence of oleanolic acid. The studied parameters for A. coynei stem will be useful for identification and authentication of the plant material.

  1. Preliminary pharmacognostic screening of Achyranthes coynei stem.

    Science.gov (United States)

    Upadhya, Vinayak; Ankad, Gireesh M; Pai, Sandeep R; Hegde, Shruti V; Hegde, Harsha V

    2015-01-01

    Achyranthes coynei is a rare, endemic perennial shrub reported from Karnataka and Maharashtra states of India. The plant is used to treat various disorders by folk healers and was proven to have antimicrobial and antioxidant properties. The present study was undertaken to evaluate microscopic and macroscopic characters of A. coynei stem, along with its physicochemical parameters. ProgRes(®) CapturePro and Microsoft Excel were used for statistical analysis. Perennial, shrubby nature and woody stem were the distinguishing morphological characters observed. Transverse section (TS) illustrated quadrangular outline of the stem and showed the presence of two types of trichomes on the thick-walled epidermis. TS also showed number of rosette calcium oxalates crystals; prismatic and microsphenoid crystals; conjoint, collateral open secondary vascular bundles; and two amphixylic medullary bundles in the pith. Ash and extractive values, micro and macro elements and nutritive factors were estimated in the present study. The presence of alkaloids, saponins and triterpenoids were observed in preliminary phytochemical screening. High-performance thin layer chromatographic analysis yielded different bands and also indicated the presence of oleanolic acid. The studied parameters for A. coynei stem will be useful for identification and authentication of the plant material.

  2. Development of an encapsulated stem cell-based therapy for diabetes.

    Science.gov (United States)

    Tomei, Alice Anna; Villa, Chiara; Ricordi, Camillo

    2015-01-01

    Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.

  3. Sensitization predicts asthma development among wheezing toddlers in secondary healthcare

    NARCIS (Netherlands)

    Boersma, Nienke A.; Meijneke, Ruud W.H.; Kelder, Johannes C.; van der Ent, Cornelis K.; Balemans, Walter A.F.

    2017-01-01

    Introduction: Some wheezing toddlers develop asthma later in childhood. Sensitization is known to predict asthma in birth cohorts. However, its predictive value in secondary healthcare is uncertain. Aim: This study examines the predictive value of sensitization to inhalant allergens among wheezing

  4. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development.

    Science.gov (United States)

    Okada, Morihiro; Shi, Yun-Bo

    2018-01-01

    The gene ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI encode zinc-finger proteins that have been recognized as important oncogenes in various types of cancer. In contrast to the established role of EVI and MDS/EVI in cancer development, their potential function during vertebrate postembryonic development, especially in organ-specific adult stem cells, is unclear. Amphibian metamorphosis is strikingly similar to postembryonic development around birth in mammals, with both processes taking place when plasma thyroid hormone (T3) levels are high. Using the T3-dependent metamorphosis in Xenopus tropicalis as a model, we show here that high levels of EVI and MDS/EVI are expressed in the intestine at the climax of metamorphosis and are induced by T3. By using the transcription activator-like effector nuclease gene editing technology, we have knocked out both EVI and MDS/EVI and have shown that EVI and MDS/EVI are not essential for embryogenesis and premetamorphosis in X. tropicalis On the other hand, knocking out EVI and MDS/EVI causes severe retardation in the growth and development of the tadpoles during metamorphosis and leads to tadpole lethality at the climax of metamorphosis. Furthermore, the homozygous-knockout animals have reduced adult intestinal epithelial stem cell proliferation at the end of metamorphosis (for the few that survive through metamorphosis) or during T3-induced metamorphosis. These findings reveal a novel role of EVI and/or MDS/EVI in regulating the formation and/or proliferation of adult intestinal adult stem cells during postembryonic development in vertebrates.-Okada, M., Shi, Y.-B. EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. © FASEB.

  5. Development and aging of a brain neural stem cell niche.

    Science.gov (United States)

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    Science.gov (United States)

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  8. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  9. Toward a Framework for Multicultural STEM-Focused Career Interventions

    Science.gov (United States)

    Byars-Winston, Angela

    2015-01-01

    Numerous federal and national commissions have called for policies, funds, and initiatives aimed at expanding the nation's science, technology, engineering, and mathematics (STEM) workforce and education investments to create a significantly larger, more diverse talent pool of individuals who pursue technical careers. Career development professionals are poised to contribute to the equity discourse about broadening STEM participation. However, few are aware of STEM-related career development matters, career opportunities and pathways, or strategies for promoting STEM pursuits. The author summarizes STEM education and workforce trends and articulates an equity imperative for broadening and diversifying STEM participation. The author then offers a multicultural STEM-focused career development framework to encourage career development professionals' knowledge and awareness of STEM education and careers and delineates considerations for practice aimed at increasing the attainment and achievement of diverse groups in STEM fields. PMID:25750480

  10. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.

    Science.gov (United States)

    Woessner, David W; Lim, Carol S

    2013-01-07

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.

  11. The Curative Activity of Isolated Fraction from Spathodea campanulata Beauv Stem Bark on Rat’s Exposed to Benzopyrene

    Directory of Open Access Journals (Sweden)

    Masruri Masruri

    2014-11-01

    Full Text Available This paper reports a screening results of the secondary metabolites composed in Spathodea campanulata Beauv stem bark, evaluate inhibiting activity of malondialdehyde (MDA on rat’s cancer model exposed with benzopyrene, and the histology of its lung. The secondary metabolite of the stem bark fraction consisted of alkaloids, flavonoids-phenolic, terpenoid and steroid compounds. The isolated fraction contained of these metabolites significantly indicate bioactivity by reducting of malondialdehyde (MDA level, and also histology appearance of the lung tissue prepared from the benzopyrene-exposed rat indicated a curative activity.

  12. Ethnically diverse pluripotent stem cells for drug development.

    Science.gov (United States)

    Fakunle, Eyitayo S; Loring, Jeanne F

    2012-12-01

    Genetic variation is an identified factor underlying drug efficacy and toxicity, and adverse drug reactions, such as liver toxicity, are the primary reasons for post-marketing drug failure. Genetic predisposition to toxicity might be detected early in the drug development pipeline by introducing cell-based assays that reflect the genetic and ethnic variation of the expected treatment population. One challenge for this approach is obtaining a collection of suitable cell lines derived from ethnically diverse populations. Induced pluripotent stem cells (iPSCs) seem ideal for this purpose. They can be obtained from any individual, can be differentiated into multiple relevant cell types, and their self-renewal capability makes it possible to generate large quantities of quality-controlled cell types. Here, we discuss the benefits and challenges of using iPSCs to introduce genetic diversity into the drug development process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An Investigation of the Perception of Professional Development among Mississippi's Secondary Welding Teachers

    Science.gov (United States)

    Ferguson, Douglas Forrest

    2012-01-01

    This research study originated as a result of a paucity of information available regarding how secondary welding teachers in Mississippi perceive the value of professional development they have received within the previous two years. The purpose of this study was to examine the perceptions of Mississippi's secondary welding teachers regarding how…

  14. The development of a model for dealing with secondary traumatic ...

    African Journals Online (AJOL)

    Introduction: Mental health workers who listen to stories of fear, pain and distress of traumatised clients may develop deleterious emotional, cognitive and physical consequences (Cairns, 2007). This phenomenon has been called secondary traumatic stress (STS) (Perez, Jones, Englert, & Sachau, 2010). Rwanda is ...

  15. Role of H1 linker histones in mammalian development and stem cell differentiation.

    Science.gov (United States)

    Pan, Chenyi; Fan, Yuhong

    2016-03-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Catalysts of Women's Talent Development in STEM: A Systematic Review

    Science.gov (United States)

    Mullet, Dianna R.; Rinn, Anne N.; Kettler, Todd

    2017-01-01

    Numbers of women in the physical sciences, mathematics, and engineering are growing, yet women are still far outnumbered by men at upper levels of those fields. The purpose of the study is to review the literature on academic women who develop exceptional talent in science, technology, engineering, and mathematics (STEM). Data sources included 18…

  17. Citizenship development of adolescents during the lower grades of secondary education.

    Science.gov (United States)

    Geboers, Ellen; Geijsel, Femke; Admiraal, Wilfried; Jorgensen, Terrence; ten Dam, Geert

    2015-12-01

    The present study focuses on the development of citizenship competences of Dutch adolescents, including the political and social aspects as part of adolescents' daily lives. We followed 5070 adolescents aged 12-16 years across a three-year period in lower secondary education. The variance on school and student level was estimated and a three-level mixed-effects regression model was fit to analyze differences in citizenship development. The results indeed show development of citizenship competences during secondary school, but the observed patterns were not always positive. Students generally showed an increase in their citizenship knowledge, but a decline in their societal interest, prosocial ability and reflective thinking. Differences between groups of students could be explained by both schools and student characteristics. Especially girls and minority students developed the most citizenship competences. Understanding these differences is important for schools to improve their practices in ways that support the development of citizenship competences of various groups of students. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  18. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    Science.gov (United States)

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  19. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    Directory of Open Access Journals (Sweden)

    Patricia Adame

    2014-04-01

    Full Text Available Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon species, hinders the development of species-specific diameter growth models.Area of study: In these analyses, we grouped 82 species from secondary forests distributed across 93 permanent plots on the island of Puerto Rico.Material and Methods: Species were classified according to regeneration strategy and adult height into six functional groups. This classification allowed us to develop a robust diameter growth model using growth data collected from 1980-1990. We used mixed linear model regression to analyze tree diameter growth as a function of individual tree characteristics, stand structure, functional group and site factors.Main results: The proportion of variance in diameter growth explained by the model was 15.1%, ranging from 7.9 to 21.7%. Diameter at breast height, stem density and functional group were the most important predictors of tree growth in Puerto Rican secondary forest. Site factors such as soil and topography failed to predict diameter growth.Keywords: Caribbean forests; growth model; tropical forest succession; Puerto Rico.

  20. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A Low Cost Mechatronics Device for STEM Education

    Science.gov (United States)

    Himes, Larry Eugene, Jr.

    All of the low-cost STEM education devices currently available are limited in function which limits learning. The motivation was to design and develop a device that will intrigue post-secondary students to learn STEM education concepts in a hands-on manner. The device needed to be open source so as to lower the cost to make it available to more students. And, making it feature rich was important for use with multiple projects the students may encounter or build themselves as they grow. The device has provided visual and physical feedback to students making the device more intriguing to use. Using the open-source C compiler reduced cost for students to use the device and taught them how to use an industry standard programming language. Students enjoyed the WAV file rendering for sound effects and LED lighting effects from the device. Most interviewees were intrigued by the device for use in their training facilities and classrooms. There are a couple of multi-axis controllers available but none with position feedback. Ethernet or Bluetooth interfacing was mentioned as a future feature and it was encouraged by nearly all who were interviewed.

  2. Mathematical Modelling at Secondary School: The MACSI-Clongowes Wood College Experience

    Science.gov (United States)

    Charpin, J. P. F.; O'Hara, S.; Mackey, D.

    2013-01-01

    In Ireland, to encourage the study of STEM (science, technology, engineering and mathematics) subjects and particularly mathematics, the Mathematics Applications Consortium for Science and Industry (MACSI) and Clongowes Wood College (County Kildare, Ireland) organized a mathematical modelling workshop for senior cycle secondary school students.…

  3. [Guidelines for diagnosis and treatment of secondary iron overload in patients with congenital anemia].

    Science.gov (United States)

    Cario, H; Grosse, R; Janssen, G; Jarisch, A; Meerpohl, J; Strauss, G

    2010-11-01

    In Germany and Central Europe, congenital disorders leading to secondary hemochromatosis are rare. The majority of these patients are treated in peripheral medical institutions. As a consequence, the experience of each institution in the treatment of secondary hemochromatosis in patients with congenital anemia is limited. Recent developments concerning new chelating agents, their combination for intensified chelation and new possibilities to diagnose and monitor iron overload have important consequences for the management of patients with secondary hemochromatosis and increase its complexity enormously. Therefore, the development of a guideline for rational and efficient diagnostics and treatment was necessary. The new guideline was developed within a formal consensus process and finally approved by a consensus conference with participants from both the pediatric and adult German hematology societies (GPOH and DGHO). Apart from general information and recommendations, the guideline contains 9 consensus statements on diagnostics (iron status, siderotic complications, chelator side-effects), the start of chelation, indications for intensified chelation, iron elimination in specific disorders, and iron elimination after stem cell transplantation. Here, these consensus statements are presented and discussed in detail. For the complete text of the guideline, please visit the AWMF homepage at http://www.leitlinien.net . © Georg Thieme Verlag KG Stuttgart · New York.

  4. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    Science.gov (United States)

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  5. Reduced integrity of the uncinate fasciculus and cingulum in depression: A stem-by-stem analysis.

    Science.gov (United States)

    Bhatia, Kartik D; Henderson, Luke A; Hsu, Eugene; Yim, Mark

    2018-04-07

    The subgenual cingulate gyrus (Brodmann's Area 25: BA25) is hypermetabolic in depression and has been targeted successfully with deep brain stimulation. Two of the white matter tracts that play a role in treatment response are the uncinate fasciculus (UF) and the cingulum bundle. The UF has three prefrontal stems, the most medial of which extends from BA25 (which deals with mood regulation) and the most lateral of which extends from the dorso-lateral prefrontal cortex (concerned with executive function). The cingulum bundle has numerous fibers connecting the lobes of the cerebrum, with the longest fibers extending from BA25 to the amygdala. We hypothesize that there is reduced integrity in the UF, specific to the medial prefrontal stems, as well as in the subgenual and amygdaloid fibers of the cingulum bundle. Our secondary hypothesis is that these changes are present from the early stages of depression. Compare the white matter integrity of stems of the UF and components of the cingulum bundle in first-onset depressed, recurrent/chronic depressed, and non-depressed control subjects. Depressed patients (n = 103, first-onset = 57, chronic = 46) and non-depressed control subjects (n = 74) underwent MRI with 32-directional DTI sequences. The uncinate fasciculi and cingulum bundles were seeded, and the fractional anisotropy (FA) measured in each of the three prefrontal stems and the body of the UF, as well as the subgenual, body, and amygdaloid fiber components of the cingulum bundle. FA measurements were compared between groups using ANOVA testing with post-hoc Tukey analysis. There were significant reductions in FA in the subgenual and polar stems of the UF bilaterally, as well as the subgenual and amygdaloid fibers of the cingulum bundle, in depressed patients compared with controls (p lateral UF stem or the main body of the cingulum. No significant difference was demonstrated in any of the tracts between first-onset and chronic depression patients

  6. Stem cells in pharmaceutical biotechnology.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  7. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  8. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    Science.gov (United States)

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  9. The developing cancer stem-cell model: clinical challenges and opportunities

    NARCIS (Netherlands)

    Vermeulen, Louis; de Sousa E Melo, Felipe; Richel, Dick J.; Medema, Jan Paul

    2012-01-01

    During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population

  10. Disappearance of diffuse calcinosis following autologous stem cell transplantation in a child with autoimmune disease.

    Science.gov (United States)

    Elhasid, R; Rowe, J M; Berkowitz, D; Ben-Arush, M; Bar-Shalom, R; Brik, R

    2004-06-01

    A 12-year-old girl presented with arthritis, myalgia, anemia and positive ANA. Subsequently, she developed recurrent episodes of pulmonary hemorrhage, thrombocytopenia, CNS abnormalities, skin ulcers and diffuse calcinosis. This was followed by secondary antiphospholipid syndrome. Despite vigorous immunosuppression, the patient became bedridden. A peripheral blood stem cell autograft was offered when she developed pulmonary hypertension and digital ischemia at the age of 16 years. The post-transplantation course was uneventful. Liquefaction of calcinosis nodules with improvement of mobility occurred gradually. She is now 24 months post-transplant with no sign of disease activity and total disappearance of calcinosis nodules.

  11. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    Science.gov (United States)

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  12. Development of a novel method for amniotic fluid stem cell storage.

    Science.gov (United States)

    Zavatti, Manuela; Beretti, Francesca; Casciaro, Francesca; Comitini, Giuseppina; Franchi, Fabrizia; Barbieri, Veronica; Bertoni, Laura; De Pol, Anto; La Sala, Giovanni B; Maraldi, Tullia

    2017-08-01

    Current procedures for collection of human amniotic fluid stem cells (hAFSCs) indicate that cells cultured in a flask for 2 weeks can then be used for research. However, hAFSCs can be retrieved directly from a small amount of amniotic fluid that can be obtained at the time of diagnostic amniocentesis. The aim of this study was to determine whether direct freezing of amniotic fluid cells is able to maintain or improve the potential of a sub-population of stem cells. We compared the potential of the hAFSCs regarding timing of freezing, cells obtained directly from amniotic fluid aspiration (D samples) and cells cultured in a flask before freezing (C samples). Colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, senescence, apoptosis and differentiation potential of C and D samples were compared. hAFSCs isolated from D samples expressed mesenchymal stem cells markers until later passages, had a good proliferation rate and exhibited differentiation capacity similar to hAFSCs of C samples. Interestingly, direct freezing induced a higher concentration of cells positive for pluripotency stem cell markers, without teratoma formation in vivo. This study suggests that minimal processing may be adequate for the banking of amniotic fluid cells, avoiding in vitro passages before the storage and exposure to high oxygen concentration, which affect stem cell properties. This technique might be a cost-effective and reasonable approach to the process of Good Manufacturing Process accreditation for stem-cell banks. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  14. Who Is Teaching Science in Our High Schools? Exploring Factors Influencing Pre-Service Secondary Science Teachers' Decisions to Pursue Teaching as a Career

    Science.gov (United States)

    McDonald, Christine V.

    2017-01-01

    A central objective of recent government reports focused on the important role of education in preparing a skilled and dynamic science, technology, engineering and mathematics (STEM) workforce, with effective teaching in secondary STEM classrooms reliant on the engagement and retention of high-quality STEM teachers (Office of the Chief Scientist,…

  15. Preparing STEM Teachers for Integration of NGSS: a Summer Workshop Development

    OpenAIRE

    Altuger-Genc, Gonca; Issapour, Marjaneh

    2015-01-01

    The increasing emphasis on Science, Technology, Engineering and Mathematics (STEM) education in United States and across the world created the demand for STEM education to start as early as elementary school. Especially in the past decade, the demand for middle schools and high schools to increase the involvement of the STEM components in their curriculum has been on the rise.  The Next Generation Science Standards (NGSS)(http://www.nextgenscience.org/) are testimonial to this demand and need...

  16. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  17. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  18. Regenerating medicine related to the stem-cells and its mechanisms of action from adults cells

    International Nuclear Information System (INIS)

    Hernandez Ramirez, Porfirio

    2009-01-01

    Regenerating medicine is a branch of Medicine very developed in past years. Advances in this field have been closely linked with the new knowledge achieved on stem-cells and its ability to become in cells of different tissues. This type of medicine is based on the behaviors adopted by organism to substitute those damaged cells by the healthy ones by different processes in specific tissues. Therapeutic measures used may include the stem-cell transplantation, the use of soluble molecules, genic therapy and tissues engineering. Nowadays, the more used method is the adult stem-cells. However, is not well known the mechanisms by which the transplanted cells could to improve or to promote the tissue regeneration. To explain these mechanisms some hypotheses has been proposed including the cellular trans-differentiation, cells fusion, and the effects secondaries to cells release by cells of different soluble molecules with specific actions; in addition to the autocrine and paracrine effects that may have these soluble factors, it is suggested too the existence of a telecrine action. It is probable that more than one of these mechanisms be executed

  19. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  20. Characterization and biological depectinization of hemp fibers originating from different stem sections

    DEFF Research Database (Denmark)

    Liu, Ming; Fernando, Dinesh; Meyer, Anne S.

    2015-01-01

    The wide variation of mechanical properties of natural fibers limits their applications in matrix compos-ites. The aim of this study is to evaluate the properties of hemp fibers from different stem sections (top,middle and bottom) and to assess fungal retting pretreatment of hemp from different...... stem sections withthe white rot fungi Phlebia radiata Cel 26 and Ceriporiopsis subvermispora. For the untreated hemp fibers,no apparent difference in tensile behavior for fiber bundles from different stem sections was observed,and more than 90% tested samples demonstrated plastic flow behavior. Fiber...... strength and stiffness werehighest for the fibers from the top and middle stem sections. These properties were related to the compositional make up and morphological properties of hemp fibers, notably the secondary fiber cell contents.In fungal retting, there was a strong dependence of depectinization...

  1. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    Science.gov (United States)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  2. The ethanolic extract of ashitaba stem (Angelica keskei [Miq.] Koidz as future antituberculosis

    Directory of Open Access Journals (Sweden)

    Sri Agung Fitri Kusuma

    2018-01-01

    Full Text Available Considering the easy contagion of tuberculosis (TB disease spread and the emergence of multidrug-resistant TB, which directly impacts the failure of therapeutic goals and mortality rates increasing, TB disease control remains to be the main concern of continuous health development effort. Therefore, the discovery of new TB drug is needed. This research assessed the new natural anti-TB drug from the ethanolic extract of Angelica keiskei stem obtained from Lombok, Indonesia. The objectives of this study were to evaluate the sensitivity of Mycobacterium tuberculosis (Mtb H37Rv strain to A. keiskei stem extract and to determine its minimum inhibitory concentration (MIC. The extraction methods of A. keiskei stem were done using a maceration method. In addition to phytochemical screening and water content analysis using standard method, the phytochemical parameters were analyzed by thin-layer chromatography. Ethanolic extract of A. keiskei stem was assayed for their Mtb inhibitory activity using the proportion method. The phytochemical analysis result showed that the secondary metabolites contain in the extract were flavonoid, polyphenol, tannin, monoterpenoid and sesquiterpen, quinon, and saponin. The anti-TB test result showed the active activity of ethanolic extract of A. keiskei against Mtb H37Rv strain with MIC ranging from 6% to 8% w/v. In conclusion, ethanolic extract of A. keiskei is a prospective natural anti-TB for the future.

  3. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  4. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.

    Science.gov (United States)

    Zhao, Jiagang; Sun, Woong; Cho, Hyo Min; Ouyang, Hong; Li, Wenlin; Lin, Ying; Do, Jiun; Zhang, Liangfang; Ding, Sheng; Liu, Yizhi; Lu, Paul; Zhang, Kang

    2013-01-04

    Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.

  5. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development

    Directory of Open Access Journals (Sweden)

    Mekayla A. Storer

    2018-05-01

    Full Text Available Summary: Circulating systemic factors can regulate adult neural stem cell (NSC biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6, since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. : In this report, Storer and colleagues demonstrate that the circulating cytokine IL-6, which is elevated in humans in different pathological situations, can perturb neural stem cell biology after birth. They show that IL-6 signaling is essential for self-renewal and maintenance of post-natal and adult NSCs in the murine forebrain under normal homeostatic conditions. Keywords: interleukin-6, neural stem cell, adult neurogenesis, CNS cytokines, postnatal brain development, stem cell depletion, neural stem cell niche, circulating stem cell factors, olfactory bulb

  6. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    Science.gov (United States)

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  7. The Effect of School Culture on the Management of Professional Development in Secondary Schools in Malaysia

    Science.gov (United States)

    Rauf, Parwazalam Abdul; Ali, Syed Kamaruzaman Syed; Aluwi, Aliza; Noor, Nor Afizah Mohd

    2014-01-01

    This study explores the influence of school culture on the management of professional development in secondary schools in Malaysia. It illustrates how school culture influences the school professional development management. The instrument used in this study is a self-administered questionnaire involving 515 secondary school teachers. The results…

  8. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to

  9. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  10. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  11. Global Collaborative STEM Education

    Science.gov (United States)

    Meabh Kelly, Susan; Smith, Walter

    2016-04-01

    Global Collaborative STEM Education, as the name suggests, simultaneously supports two sets of knowledge and skills. The first set is STEM -- science, technology, engineering and math. The other set of content knowledge and skills is that of global collaboration. Successful global partnerships require awareness of one's own culture, the biases embedded within that culture, as well as developing awareness of the collaborators' culture. Workforce skills fostered include open-mindedness, perseverance when faced with obstacles, and resourceful use of technological "bridges" to facilitate and sustain communication. In respect for the 2016 GIFT Workshop focus, Global Collaborative STEM Education projects dedicated to astronomy research will be presented. The projects represent different benchmarks within the Global Collaborative STEM Education continuum, culminating in an astronomy research experience that fully reflects how the global STEM workforce collaborates. To facilitate wider engagement in Global Collaborative STEM Education, project summaries, classroom resources and contact information for established international collaborative astronomy research projects will be disseminated.

  12. An Informal Science Education Program's Impact on STEM Major and STEM Career Outcomes

    Science.gov (United States)

    Habig, Bobby; Gupta, Preeti; Levine, Brian; Adams, Jennifer

    2018-04-01

    While there is extensive evidence that STEM careers can be important pathways for augmenting social mobility and for increasing individual prestige, many youth perceive a STEM trajectory as an unattractive option. In the USA, women and members of historically marginalized racial and ethnic groups continue to be underrepresented across STEM disciplines. One vehicle for generating and sustaining interest in STEM is providing youth long-term access to informal science education (ISE) institutions. Here, we incorporate triangulation methods, collecting and synthesizing both qualitative and quantitative data, to examine how participation in a longitudinal ISE out-of-school time (OST) program facilitated by the American Museum of Natural History (AMNH) impacted the STEM trajectories of 66 alumni. Findings revealed that 83.2% of alumni engaged in a STEM major, and 63.1% in a STEM career, the majority whom were females and/or members of historically underrepresented racial and ethnic groups. Based on interviews with a purposeful sample of 21 AMNH alumni, we identified four program design principles that contributed to persistence in STEM: (1) affording multiple opportunities to become practitioners of science; (2) providing exposure to and repeated experiences with STEM professionals such as scientists, educators, and graduate students to build social networks; (3) furnishing opportunities for participants to develop shared science identities with like-minded individuals; and (4) offering exposure to and preparation for a variety of STEM majors and STEM careers so that youth can engage in discovering possible selves. These findings support our central thesis that long-term engagement in ISE OST programs fosters persistence in STEM.

  13. Northeast Tennessee Educators' Perception of STEM Education Implementation

    Science.gov (United States)

    Turner, Kristin Beard

    2013-01-01

    A quantitative nonexperimental survey study was developed to investigate Northeast Tennessee K-8 educators' perceptions of STEM education. This study was an examination of current perceptions of STEM education. Perceived need, current implementation practices, access to STEM resources, definition of STEM, and the current condition of STEM in…

  14. The biochemistry of hematopoietic stem cell development

    NARCIS (Netherlands)

    P. Kaimakis (Polynikis); M. Crisan (Mihaela); E.A. Dzierzak (Elaine)

    2013-01-01

    textabstractBackground: The cornerstone of the adult hematopoietic system and clinical treatments for blood-related disease is the cohort of hematopoietic stem cells (HSC) that is harbored in the adult bone marrow microenvironment. Interestingly, this cohort of HSCs is generated only during a short

  15. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  16. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  17. Output of continuous directed selection aimed at short stem development in Winter Rye (Secale cereale L.

    Directory of Open Access Journals (Sweden)

    В. В. Скорик

    2013-05-01

    Full Text Available The article provides progress report on the barley of F3к-10029/Saratovske 4 height decreasing throughout 1974 to 2012 by way of selecting plants of the shortest stem. 38 years of selecting the shortest stem genotypes cut down plant height by 5,7 times at the background of dominant Hl gene expression. Average plant height during 38 breeding cycles was descending by 2,69 cm, but this was not an even trend. New creative donor for ultimate short stem characteristic, Gnome 3, has been developed, with Hl-3Hl-3alleles designation. Relative impact on the efficacy of minus-selection by the plant height of the selection differential (38,00% and inheritance coefficient in its narrow sense (14,56% is established. Efficiency of the selection is realized with the decrease of winter rye height plants by 72,08% as expected by the relative breeding forecast. Analyzes is completed for 11 genetic and statistical clusters of average utilitarian characteristics of Gnome 3 ultra short stem rye over the period from 1974 to 2012.

  18. Acute lymphoblastic leukemia with multiple cytogenetic abnormalities secondary to treatment of Ewing's sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homaidhi, A.M. [Department of Medicine, Princess Margaret Hospital and The University of Toronto, 610 University Ave, Rm. 4-429, Toronto, Ont. M5G 2M9 (Canada); Patterson, B. [Department of Pathology, Princess Margaret Hospital and The University of Toronto, 610 University Ave, Rm. 4-429, Toronto, Ont. M5G 2M9 (Canada); Rubin, S. [Moncton Hospital, Moncton, New Brunswick (Canada); Lipton, J.H. [Department of Medicine, Princess Margaret Hospital and The University of Toronto, 610 University Ave, Rm. 4-429, Toronto, Ont. M5G 2M9 (Canada)

    1999-06-01

    We report the case of a 22-year-old man with Ewing's sarcoma who attained a complete remission (CR) after combination radiotherapy and chemotherapy. Secondary acute lymphoblastic leukemia with multiple cytogenetic abnormalities involving chromosome 5 and 7 developed 16 years later. The patient underwent induction chemotherapy and entered a CR. Peripheral blood stem cell transplantation from a matched sibling was performed successfully and he is in complete remission of both ALL and Ewing's sarcoma. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Pluripotent stem cells with normal or reduced self renewal survive lethal irradiation

    International Nuclear Information System (INIS)

    Brecher, G.; Neben, S.; Yee, M.; Bullis, J.; Cronkite, E.P.

    1988-01-01

    Transfusion with 10,000 or 20,000 marrow cells resulted in 30+ days survival of 15%-50% of mice exposed to an Ld90 or LD100 or radiation. The use of congenic mice with alloenzyme markers permitted the identification of host and donor cells in the peripheral blood of transfused animals. Donor cells were present initially in all hosts. Between 55% and 92% of the animals became 100% host type by 12-24 weeks after transfusion in three separate experiments. To explore whether the temporary repopulation by donor cells was due to short-lived stem cells, the marrows of several primary hosts were transfused into secondary, lethally irradiated hosts. Some of the retransplanted primary donor and host cells persisted only temporarily. It is suggested that some of the donor stem cells in both the primary and secondary hosts had an intrinsically shortened life span

  20. Factors influencing flower bud formation on the pear tree cultivar 'Doyenne du Cornice'. II. Influence of growth inhibition on the anatomical structure of the stem

    Directory of Open Access Journals (Sweden)

    Franciszka Jaumień

    2013-12-01

    Full Text Available Differentiation of the particular tissues in shoots inhibited in growth by chlormequat occurs differently than in vigorously growing ones. After the end of elongation growth, in the subapical part of shoots sprayed with chlormequat the cortex extends and secondary xylem develops less intensively, this leading to an increased participation of parenchymatous tissue in the stem.

  1. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  2. Autophagy in Stem Cell Biology: A Perspective on Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Xihang Chen

    2018-01-01

    Full Text Available Autophagy is a highly conserved cellular process that degrades modified, surplus, or harmful cytoplasmic components by sequestering them in autophagosomes which then fuses with the lysosome for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis, as well as for remodeling during normal development. Impairment of this process has been implicated in various diseases, in the pathogenic response to bacterial and viral infections, and in aging. Pluripotent stem cells, with their ability to self-replicate and to give rise to any specialized cell type, are very valuable resources for cell-based medical therapies and open a number of promising avenues for studying human development and disease. It has been suggested that autophagy is vital for the maintenance of cellular homeostasis in stem cells, and subsequently more in-depth knowledge about the regulation of autophagy in stem cell biology has been acquired recently. In this review, we describe the most significant advances in the understanding of autophagy regulation in hematopoietic and mesenchymal stem cells, as well as in induced pluripotent stem cells. In particular, we highlight the roles of various autophagy activities in the regulation of self-renewal and differentiation of these stem cells.

  3. Interactions of Phytophthora capsici with Resistant and Susceptible Pepper Roots and Stems.

    Science.gov (United States)

    Dunn, Amara R; Smart, Christine D

    2015-10-01

    Using host resistance is an important strategy for managing pepper root and crown rot caused by Phytophthora capsici. An isolate of P. capsici constitutively expressing a gene for green fluorescent protein was used to investigate pathogen interactions with roots, crowns, and stems of Phytophthora-susceptible bell pepper 'Red Knight', Phytophthora-resistant bell pepper 'Paladin', and Phytophthora-resistant landrace Criollos de Morelos 334 (CM-334). In this study, the same number of zoospores attached to and germinated on roots of all cultivars 30 and 120 min postinoculation (pi), respectively. At 3 days pi, significantly more secondary roots had necrotic lesions on Red Knight than on Paladin and CM-334 plants. By 4 days pi, necrotic lesions had formed on the taproot of Red Knight but not Paladin or CM-334 plants. Although hyphae were visible in the crowns and stems of all Red Knight plants observed at 4 days pi, hyphae were observed in crowns of only a few Paladin and in no CM-334 plants, and never in stems of either resistant cultivar at 4 days pi. These results improve our understanding of how P. capsici infects plants and may contribute to the use of resistant pepper cultivars for disease management and the development of new cultivars.

  4. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Peter W.; Hosper, Nynke A. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Ploeg, Emily M. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Goethem, Marc-Jan van [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI-Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Chiu, Roland K. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P., E-mail: r.p.coppes@umcg.nl [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-05-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  5. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    International Nuclear Information System (INIS)

    Nagle, Peter W.; Hosper, Nynke A.; Ploeg, Emily M.; Goethem, Marc-Jan van; Brandenburg, Sytze; Langendijk, Johannes A.; Chiu, Roland K.; Coppes, Robert P.

    2016-01-01

    Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. Methods and Materials: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. Results: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.

  6. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  7. Neural crest stem cell population in craniomaxillofacial development and tissue repair

    Directory of Open Access Journals (Sweden)

    M La Noce

    2014-10-01

    Full Text Available Neural crest cells, delaminating from the neural tube during migration, undergo an epithelial-mesenchymal transition and differentiate into several cell types strongly reinforcing the mesoderm of the craniofacial body area – giving rise to bone, cartilage and other tissues and cells of this human body area. Recent studies on craniomaxillofacial neural crest-derived cells have provided evidence for the tremendous plasticity of these cells. Actually, neural crest cells can respond and adapt to the environment in which they migrate and the cranial mesoderm plays an important role toward patterning the identity of the migrating neural crest cells. In our experience, neural crest-derived stem cells, such as dental pulp stem cells, can actively proliferate, repair bone and give rise to other tissues and cytotypes, including blood vessels, smooth muscle, adipocytes and melanocytes, highlighting that their use in tissue engineering is successful. In this review, we provide an overview of the main pathways involved in neural crest formation, delamination, migration and differentiation; and, in particular, we concentrate our attention on the translatability of the latest scientific progress. Here we try to suggest new ideas and strategies that are needed to fully develop the clinical use of these cells. This effort should involve both researchers/clinicians and improvements in good manufacturing practice procedures. It is important to address studies towards clinical application or take into consideration that studies must have an effective therapeutic prospect for humans. New approaches and ideas must be concentrated also toward stem cell recruitment and activation within the human body, overcoming the classical grafting.

  8. Increasing College Students' Interest and Engagement in STEM: A Comparison of Strategies for Challenging STEM Stereotypes

    Science.gov (United States)

    Shin, Jiyun Elizabeth L.

    Increasing science, technology, engineering, and mathematics (STEM) graduates has become an important part of the education agenda in the U.S. in recent years. Stereotypes about STEM (i.e., belief that STEM abilities are innate, and that European American men are best suited for STEM) have been identified as one of the critical factors that may contribute to low recruitment and retention of STEM students. Drawing from the literatures on biological essentialism and role models, this study compared different strategies for challenging STEM stereotypes among undergraduate students in STEM and non-STEM fields. STEM stereotypes were challenged directly with research articles that provided non-biological explanations for STEM success and interest (a strategy used in the essentialism research) and indirectly with biographies of successful STEM role models who are underrepresented in their field and who succeeded through hard work (a strategy used in the role model research). Contrary to the predictions, exposure to the role model biographies, research articles, or combination of both did not have statistically significant effects on participants' reported STEM interest and academic intentions. Possible explanations for the lack of significant findings as well as suggestions for developing effective interventions to promote STEM engagement among students are discussed.

  9. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  10. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    Directory of Open Access Journals (Sweden)

    Binghua Xue

    Full Text Available Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  11. Captain R. Rubber Ducky: A STEM- Driven Project in Aquatic Robotics

    Science.gov (United States)

    Sheikh, Muntaha; Fulbright, Mark; Hademenos, George

    2011-12-01

    Project-based learning is a research-based instructional tool that has proven to be effective in all secondary curricular disciplines, particularly in the areas of science, technology, engineering, and mathematics (STEM).1-5 A project is an applied activity, often hands-on, where the students are challenged to successfully address a problem. In many STEM projects, the problem is solved by designing, constructing, and operating a device to accomplish tasks inherent to the solution of the problem. Project-based learning exemplifies the core values of the scientific process, including peer discussion and collaboration, problem-solving skills, modeling, testing, data analysis, and forming conclusions.

  12. STEM Leadership Qualification: Tomorrow's Leaders Today

    Science.gov (United States)

    Williams, Chris

    2009-01-01

    This article features the Science, Technology, Engineering and Mathematics (STEM) Leadership Qualification programme, developed by the Centre for Science Education (CSE) at Sheffield Hallam University in collaboration with Edexcel, which sets out to develop leadership skills and capabilities through contexts in STEM. With six units to complete…

  13. Muslim Youth Experiences in Quebec Secondary Schools: Race, Racialization, and the 'Dangerous Muslim Man'

    Directory of Open Access Journals (Sweden)

    Naved Bakali

    2016-10-01

    Full Text Available This article examines the experiences of Muslim men who had attended the secondary schools in Quebec in the post-9/11 context. Employing a critical ethnographic approach stemming from institutional ethnography, this study presents biases/racism these men had experienced in their secondary schools in the aftermath of the 9/11 terror attacks and throughout the period of the War on Terror, and the possible causes for this treatment.

  14. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  15. STEM-based workbook: Enhancing students' STEM competencies on lever system

    Science.gov (United States)

    Sejati, Binar Kasih; Firman, Harry; Kaniawati, Ida

    2017-05-01

    Twenty-first century is a century of technology, a rapid development of scientific studies and technology make them relied heavily on each other. This research investigated about the effect of STEM-based workbook in enhancing students' STEM competencies in terms of knowledge understanding, problem solving skill, innovative abilities, and responsibility. The workbook was tried on 24 students that applied engineering design processes together with mathematics and science knowledge to design and create an egg cracker. The result showed that the implementation of STEM-based workbook on lever system in human body is effective to improve students' STEM competencies, it can be proven by students' result on their knowledge understanding improvement which can be seen from normalized gain () score is 0.41 and categorized as medium improvement, students' problem solving skill is also improving where it obtained a medium improvement with normalized gain as much as 0.45. Innovative abilities also encountered an the improvement, the workbook analysis obtained a higher score which means students can be more innovative after finishing their workbook. Last, students' responsibility is keep improving day by day, students' effort gain the highest score it means that the students become more responsible after implementation of STEM-based workbook. All of the results are supported with the response of students towards STEM-based workbook implementation which showed positive response in all indicators.

  16. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  17. Secondary chondrocyte-derived Ihh stimulates proliferation of periosteal cells during chick development.

    Science.gov (United States)

    Buxton, Paul G; Hall, Brian; Archer, Charles W; Francis-West, Philippa

    2003-10-01

    The development of the skull is characterised by its dependence upon epigenetic influences. One of the most important of these is secondary chondrogenesis, which occurs following ossification within certain membrane bone periostea, as a result of biomechanical articulation. We have studied the genesis, character and function of the secondary chondrocytes of the quadratojugal of the chick between embryonic days 11 and 14. Analysis of gene expression revealed that secondary chondrocytes formed coincident with Sox9 upregulation from a precursor population expressing Cbfa1/Runx2: a reversal of the normal sequence. Such secondary chondrocytes rapidly acquired a phenotype that is a compound of prehypertrophic and hypertrophic chondrocytes, exited from the cell cycle and upregulated Ihh. Pulse and pulse/chase experiments with BrdU confirmed the germinal region as the highly proliferative source of the secondary chondrocytes, which formed by division of chondrocyte-committed precursors. By blocking Hh signalling in explant cultures we show that the enhanced proliferation of the germinal region surrounding the secondary chondrocytes derives from this Ihh source. Additionally, in vitro studies on membrane bone periosteal cells (non-germinal region) demonstrated that these cells can also respond to Ihh, and do so both by enhanced proliferation and precocious osteogenesis. Despite the pro-osteogenic effects of Ihh on periosteal cell differentiation, mechanical articulation of the quadratojugal/quadrate joint in explant culture revealed a negative role for articulation in the regulation of osteocalcin by germinal region descendants. Thus, the mechanical stimulus that is the spur to secondary chondrocyte formation appears able to override the osteogenic influence of Ihh on the periosteum, but does not interfere with the cell cycle-promoting component of Hh signalling.

  18. Review: the development of neural stem cell biology and technology in regenerative medicine

    OpenAIRE

    Shanmuganathan, Divyanjali; Sivakumaran, Nivethika

    2018-01-01

    In the middle of the last century, it has been known that neural stem cells (NSCs) play a key role in regenerative medicine to cure the neurodegenerative disease. This review article covers about the introduction to neural stem cell biology and the isolation, differentiation and transplantation methods/techniques of neural stem cells. The neural stem cells can be transplanted into the human brain in the future to replace the damaged and dead neurons. The highly limited access to embryonic ste...

  19. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  20. Changes in epiphyte communities as the shrub, Acer circinatum, develops and ages

    Science.gov (United States)

    Ruchty, A.M.; Rosso, A.L.

    2001-01-01

    The Pacific Northwest tall shrub Acer circinatum (vine maple) can host diverse and abundant epiphyte communities. A chronosequence approach revealed that these communities gradually shift in composition as the shrub progresses through its life cycle. Different epiphytic life forms occupy different spatial and temporal niches on shrub stems. These life forms generally shift upwards along the shrub stem as the stem ages and develops, in accordance with the similar gradient hypothesis. We postulate the following sequence of events. An initial wave of colonization occurs as new substrate is laid down. Over time, superior competitors gradually engulf and overgrow competitively inferior primary colonizers. Concurrently, shrub stem microclimate changes as shrub stems grow, age, and layer, causing the processes of competition and colonization to shift in favor of different epiphytic life forms during different life stages of the shrub stem. We define four separate shrub stem life stages: life classes 1a??4 describe, respectively, young upright a??whipsa??; vigorous, upright, mature stems; declining stems beginning to bend towards the forest floor; and horizontal, decadent stems. As space on the shrub stem is filled through growth and colonization, interspecific competition intensifies. Successful competitors persist and spread, while poor competitors are increasingly restricted to the stem tips, where interspecific competition is less intense. In these forests, Usnea, green-algal foliose lichens, and moss tufts excel as the primary colonizers and become common on the outer portions of shrub stems over time, as long as the overstory is not too dense. Moss mats are also good primary colonizers, but excel as secondary colonizers, often coming to dominate decadent shrub stems. Although all life forms can be primary colonizers, the remaining forms (cyanolichens, liverworts, and Antitrichia curtipendula) are effective secondary colonizers. Liverworts are also effective

  1. DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells

    NARCIS (Netherlands)

    Roost, Matthias S; Slieker, Roderick C; Bialecka, Monika; van Iperen, Liesbeth; Gomes Fernandes, Maria M; He, Nannan; Suchiman, H Eka D; Szuhai, Karoly; Carlotti, Françoise; de Koning, Eelco J P; Mummery, Christine L; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2017-01-01

    Determining cell identity and maturation status of differentiated pluripotent stem cells (PSCs) requires knowledge of the transcriptional and epigenetic trajectory of organs during development. Here, we generate a transcriptional and DNA methylation atlas covering 21 organs during human fetal

  2. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-01-01

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  3. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  4. Detection of siRNA Mediated Target mRNA Cleavage Activities in Human Cells by a Novel Stem-Loop Array RT-PCR Analysis

    Science.gov (United States)

    2016-09-07

    sequences of the target mRNA, and a double stranded stem at the 5′ end that forms a stem -loop to function as a forceps to stabilize the secondary...E-mjournal homepage: www.elsevier.com/locate/bbrepDetection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem -loop...challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem -loop array reverse

  5. Regulation of auxin on secondary cell wall cellulose biosynthesis in developing cotton fibers

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) fibers are unicellular trichomes that differentiate from epidermal cells of developing cotton ovules. Mature fibers exhibit thickened secondary walls composed of nearly pure cellulose. Cotton fiber development is divided into four overlapping phases, 1) initiation sta...

  6. Role model and prototype matching: Upper-secondary school students’ meetings with tertiary STEM students

    DEFF Research Database (Denmark)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-01-01

    concerning STEM students and attending university. The regular self-to-prototype matching process was shown in real-life role-models meetings to be extended to a more complex three-way matching process between students’ self-perceptions, prototype images and situation-specific conceptions of role models...

  7. Stem cells and the evolving notion of cellular identity

    OpenAIRE

    Daley, George Q.

    2015-01-01

    Stem cells are but one class of the myriad types of cells within an organism. With potential to self-renew and capacity to differentiate, stem cells play essential roles at multiple stages of development. In the early embryo, pluripotent stem cells represent progenitors for all tissues while later in development, tissue-restricted stem cells give rise to cells with highly specialized functions. As best understood in the blood, skin and gut, stem cells are the seeds that sustain tissue homeost...

  8. InsightSTEM Campus Ambassadors: Welcoming, Including, and Supporting All in STEM Careers Worldwide

    Science.gov (United States)

    Noel-Storr, J.

    2016-12-01

    Definitions of genders and, races, ethnicities, abilities and sexualities tend to exist on a binary scale (e.g. male/female, black/white) both for inclusiveness and evaluation of programs. This has the potential to be a schism for individuals who are choosing to enter STEM fields when if their self-identity does not fit this these predefined multi-polar templates. At InsightSTEM, in our Campus Ambassadors program (which has over 290 grassroots members in over 25 countries) we have been striving to nullify this effect... For example, on our application, we choose to not ask for any demographic data, in any spectrum, because those data make no sense on a global stage. We question that if race, gender, sexuality and ethnicity are all on a spectrum: is any program devoted to a particular group appropriate? Instead we deliver professional development to students worldwide to train them to become aware and inclusive STEM educators, involving everyone in their programs no matter what their background. We will present the ways we work with our Campus Ambassadors to create programs that, rather than focusing on particular groups, are truly inclusive, in developing their skills and empowering them to create inclusive programs worldwide for all. InsightSTEM Campus Ambassadors: Welcoming, Including, and & Supporting All in STEM Careers Worldwide

  9. Stem Cell Lineages: Between Cell and Organism

    Directory of Open Access Journals (Sweden)

    Melinda Bonnie Fagan

    2017-01-01

    Full Text Available Ontologies of living things are increasingly grounded on the concepts and practices of current life science. Biological development is a process, undergone by living things, which begins with a single cell and (in an important class of cases ends with formation of a multicellular organism. The process of development is thus prima facie central for ideas about biological individuality and organismality. However, recent accounts of these concepts do not engage developmental biology. This paper aims to fill the gap, proposing the lineage view of stem cells as an ontological framework for conceptualizing organismal development. This account is grounded on experimental practices of stem cell research, with emphasis on new techniques for generating biological organization in vitro. On the lineage view, a stem cell is the starting point of a cell lineage with a specific organismal source, time-interval of existence, and ‘tree topology’ of branch-points linking the stem to developmental termini. The concept of ‘enkapsis’ accommodates the cell-organism relation within the lineage view; this hierarchical notion is further explicated by considering the methods and results of stem cell experiments. Results of this examination include a (partial characterization of stem cells’ developmental versatility, and the context-dependence of developmental processes involving stem cells.

  10. Bioprinting for stem cell research

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  11. Stem cells for tooth engineering

    Directory of Open Access Journals (Sweden)

    G Bluteau

    2008-07-01

    Full Text Available Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come.

  12. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  13. Organizational Learning to Implementation: Development of Post-Secondary Online Degree Programs

    Science.gov (United States)

    Davis, Kirk Alan

    2011-01-01

    The purpose of this study was to analyze organizational learning and the facilitating factors and critical elements for development of post-secondary distance education and online degree programs at three universities in Hawaii: University of Hawaii at Hilo (public), Hawaii Pacific University and Chaminade University (both private). The researcher…

  14. Strategic Planning and Values in Secondary School

    Directory of Open Access Journals (Sweden)

    Damjana Gruden

    2012-06-01

    Full Text Available RQ: Which factors have a decisive influence on a school’s strategic development?Purpose: The purpose of this research is the improvement of school development and the goal of this research study was to prepare a draft for strategic planning.Method: Qualitative method is used in the first phase of the research study. An annual interview was conducted with secondary technical and vocational school teaching staff. In the second phase of this research study, a survey with one question was distributed to the teaching staff. The question on the survey referred to teachersvalues that stemmed from the interviews. The directed question was on the values that that should be emphasized in assisting the school to prepare a strategic development plan.Results: The results of this research study showed that strategic development of the school is based on values and activities that provide for quality education,professional and practical knowledge, strengthen and develop interpersonal relations and provide good connections between schools, craftsmen, and the economy.Organization: By defining the school’s priorities, it will become easier for the staff to prepare the school’s development strategy and action plans for individual tasks.Society: Awareness and developing values through activities at school provides support to adolescents and young adults in developing their life style. Values lead the behavior of individuals and consequently,are very important for society.Originality: Through the research study the school obtained thebasic values that will be used in drafting a development plan. This will be the first such document for the school. Up until now planning has been performed only in terms of short-term planning within the annual work plan.Limitations: The survey was conducted among the staff of one vocational and technical secondary school. Further research would be required to include parents and students and to start introducing evaluation and

  15. The stem factor challenge

    International Nuclear Information System (INIS)

    Russell, M.J.; Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1994-01-01

    One of the most important challenges that still needs to be met in the effort to understand the operation of motor-operated, rising-stem valves is the ability to determine stem factor throughout the valve's load range. The stem factor represents the conversion of operator torque to stem thrust. Determining the stem factor is important because some motor-operated valves (MOVs) cannot be tested in the plant at design basis conditions. The ability of these valves to perform their design basis function (typically, to operate against specified flow and pressure loads) must be ensured by analytical methods or by extrapolating from the results of tests conducted at lower loads. Because the stem factor tends to vary in response to friction and lubrication phenomena that occur during loading and wedging, analytical methods and extrapolation methods have been difficult to develop and implement. Early investigations into variability in the stem factor tended to look only at the tip of the iceberg; they focused on what was happening at torque switch trip, which usually occurs at full wedging. In most stems, the stem factor is better (lower) in the wedging transient than before wedging, so working with torque switch trip data alone led many early researchers to false conclusions about the relationship between stem factor and load. However, research at the Idaho National Engineering Laboratory (INEL) has taken a closer look at what happens during the running portion of the closing stroke along with the wedging portion. This shift in focus is important, because functional failure of a valve typically consists of a failure to isolate flow, not a failure to achieve full wedging. Thus, the stem factor that must be determined for a valve's design basis closing requirements is the one that corresponds with the running load before wedging

  16. The retention of first-generation college students in STEM: An extension of Tinto's longitudinal model

    Science.gov (United States)

    Uche, Ada Rosemary

    In the current technologically advanced global economy, the role of human capital and education cannot be over-emphasized. Since almost all great inventions in the world have a scientific or technological foundation, having a skilled workforce is imperative for any nation's economic growth. Currently, large segments of the United States' population are underrepresented in the attainment of science, technology, engineering, and math (STEM) degrees, and in the STEM professions. Scholars, educators, policy-makers, and employers are concerned about the decline in student enrollment and graduation from STEM disciplines. This trend is especially problematic for first-generation college students. This study uses both quantitative and qualitative methods to assess the factors that predict the retention of first-generation college students in the STEM majors. It employs Tinto's longitudinal model (1993) as a conceptual framework to predict STEM retention for first-generation college students. The analysis uses the Beginning Post-secondary Students study (BPS 04/09) data and Roots of STEM qualitative data to investigate the role of first-generation status in STEM major retention. Results indicate that upper levels of achievement in high school math have a significant effect on first-generation status in STEM outcomes.

  17. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  18. Nonclinical safety strategies for stem cell therapies

    International Nuclear Information System (INIS)

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-01-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  19. Development of iPS (induced pluripotent stem cells) using natural product from extract of fish oocyte to provide stem cell for regenerative therapy

    Science.gov (United States)

    Meilany, Sofy; Firdausiyah, Qonitha S.; Naroeni, Aroem

    2017-02-01

    In this study, we developed a method to induce pluripotency of adult cells (fibroblast) into stem cells using a natural product, extract of fish oocyte, by comparing the extract concentration, 1 mg/ml and 2 mg/ml. The analyses were done by measuring the Nanog gene expression in cells using qPCR and detecting fibroblast marker anti H2-KK. The results revealed existence of a colony of stem cells in the cell that was induced with 2mg/ml concentration of oocytes. Nanoggene expression was analyzed by qPCR and the results showed expression of Nanog gene compared to the control. Analysis of result of fibroblast using Tali Cytometer and anti H2KK antibody showed loss of expression of Anti H2KK meaning there was transformation from fibroblast type cell to pluripotent cell type.

  20. Organizing Organoids: Stem Cells Branch Out.

    Science.gov (United States)

    Davies, Jamie A

    2017-12-07

    In this issue of Cell Stem Cell, Taguchi and Nishinakamura (2017) describe a carefully optimized method for making a branch-competent ureteric bud, a tissue fundamental to kidney development, from mouse embryonic stem cells and human induced pluripotent stem cells. The work illuminates embryology and has important implications for making more realistic kidney organoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Prophylactic defibrotide in allogeneic stem cell transplantation: minimal morbidity and zero mortality from veno-occlusive disease.

    Science.gov (United States)

    Dignan, F; Gujral, D; Ethell, M; Evans, S; Treleaven, J; Morgan, G; Potter, M

    2007-07-01

    Veno-occlusive disease (VOD) is a common and high-risk complication of allogeneic stem cell transplantation (SCT). Defibrotide has recently been used successfully to treat the disorder. We report on 58 patients who received defibrotide prophylaxis without concurrent heparin. No patients fulfilled the Baltimore criteria for VOD or died of the condition within 100 days of SCT. None of this group developed haemorrhagic complications secondary to defibrotide. These observations suggest that prophylaxis with defibrotide alone may reduce the incidence of VOD post-SCT although a randomised controlled trial is warranted to further evaluate its role.

  2. Staff development and secondary science teachers: Factors that affect voluntary participation

    Science.gov (United States)

    Corley, Theresa Roebuck

    2000-10-01

    A researcher-designed survey assessed the perceptions of Alabama secondary science public school teachers toward the need for staff development and toward certain staff development strategies and programs. Factors that encouraged or discouraged attendance at voluntary staff development programs and opinions regarding effective and ineffective features of programs were identified. Data were analyzed using descriptive techniques. Percentages and frequencies were noted. Average rankings were computed for the staff development techniques considered most and least effective and for the preferred designs of future staff development offerings. Chi squares were computed to respond to each of the 4 research hypotheses. Narrative discussions and tables were utilized to report the data and provide clarification. This study related demographic information to the research hypotheses. Analysis of the research hypotheses revealed that experienced teachers agree more strongly about the features of staff development programs that they consider effective and about the factors that may affect participation in staff development programs. Analysis of the research questions revealed that secondary science teachers in Alabama agree that staff development is a personal responsibility but that the school systems are responsible for providing staff development opportunities. Teachers believe that staff development is needed annually in both science content and teaching strategies and favor lengthening the school year for staff development. Teachers identified interest level, graduate credit, ability to implement material, scheduling factors, and the reputation of the organizer as the most important factors in determining participation in voluntary staff development programs. Hands-on workshops were identified as the most effective type of voluntary staff development and teachers requested that future staff development experiences include hands-on workshops, networking, curriculum

  3. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP

  4. Severe encephalopathy after high-dose chemotherapy with autologous stem cell support for brain tumours

    NARCIS (Netherlands)

    van den Berkmortel, F.; Gidding, C.; de Kanter, M.; Punt, C. J. A.

    2006-01-01

    Recurrent medulloblastoma carries a poor prognosis. Long-term survival has been obtained with high-dose chemotherapy with autologous stem cell transplantation and secondary irradiation. A 21-year-old woman with recurrent medulloblastoma after previous chemotherapy and radiotherapy is presented. The

  5. Developing Quality Strategic Plan in Secondary Schools for Successful School Improvement

    Science.gov (United States)

    Chukwumah, Fides Okwukweka

    2015-01-01

    The study examined the extent to which development of quality strategic plans for Anambra State secondary schools' improvement had been done by schools. The research design used was a descriptive survey. Respondents comprised 217 principals. There was no sampling since all the principals were used. Data were collected using "Schools'…

  6. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  7. Analysis of the influence of a metha-type metaphysical stem on biomechanical parameters.

    Science.gov (United States)

    Pozowski, Andrzej; Ścigała, Krzysztof; Kierzek, Andrzej; Paprocka-Borowicz, Małgorzata; Kuciel-Lewandowska, Jadwiga

    2013-01-01

    The full postoperative loading of the limb is possible if patients are properly selected and qualified for hip arthroplasty and the requirements as to the proper position of the metaphysial stem are met. The lack of precision, and patient qualification which does not satisfy the fixed criteria may result in stem setting inconsistent with the assumptions. An analysis based on the finite element method (FEM) will enable one to find out how to plan the magnitude of operated joint loading on the basis of the position of the stem in the postoperative radiograph. By analyzing the distribution of bone tissue deformations one can identify the zones where the spongy bone is overloaded and determine the strain level in comparison with the one determined for a model of the bone with the stem in proper position. On the basis of the results obtained one can estimate the range of loads for the operated limb, which will not result in the loss of the stem's primary stability prior to obtaining secondary stability through osteointegration. Moreover, an analysis of the formation of bone structures around the stem showed that the incorrect setting of a Metha-type stem may lead to the initiation of loosening.

  8. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    Science.gov (United States)

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  9. How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?

    Science.gov (United States)

    Forjan, Matej; Grubelnik, Vladimir

    2015-01-01

    Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…

  10. Development Framework for Agro-Based Industries in Secondary Cities of Sindh Province, Pakistan: SWOT Analysis of Ten-Year Perspective and Medium-Term Development Framework Plans

    Directory of Open Access Journals (Sweden)

    Saima Kalwar

    2018-04-01

    Full Text Available The study intended to explore planning strategies gaps in ten-year perspective and medium-term development framework plans for agro-based industrial development in secondary cities of Sindh Province, Pakistan. Document review and key informant interviews survey techniques were used for data collection. A total of 30 interviews were conducted from agro-based officials. The SWOT analysis technique was applied for data analysis. The results revealed the weaknesses of high priority for textile and sugar industries, lack of planning strategies for agro-based development in secondary cities, dependency on federal government for development funds and absence of finances to implement plans. The threats were unavailability of strategic agro-based infrastructure facilities in secondary cities, centralized planning system, cross border threats such as the war in Afghanistan and migration of Afghan refugees, weak law and order situation and diversion of development budget for defense activities. The study suggests decentralization of powers and robust planning strategies in the development plans to strengthen secondary cities of Sindh Province economically.

  11. Gender and family influences on Spanish students' aspirations and values in stem fields

    Science.gov (United States)

    Sáinz, Milagros; Müller, Jörg

    2018-01-01

    Drawing on expectancy-value theory, this study examines gender and family influences on students' career aspirations and attached values. 796 secondary Spanish students (M age = 16 years old, S.D. = 0.81) participated. 53% were boys. The results show that boys and students with mothers who have completed intermediate level education were more interested in science, technology, engineering and mathematics (STEM) architecture and technology. Girls and students with highly educated mothers born in Spain were more likely to aspire to STEM health and experimental studies. Furthermore, boys and students planning to pursue STEM-technology studies attached higher extrinsic values to these studies. On the contrary, girls and participants with interest in experimental and health studies attached less extrinsic values to these studies. Moreover, students with highly educated mothers and interested in STEM architecture and technology reported higher extrinsic values. Understanding the interaction of gender and family factors shaping adolescents' career aspirations in STEM fields seems to be crucial to designing significant and effective school and family grounded interventions.

  12. Development of the Fibulin-3 protein therapeutics of non small cell lung cancer stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kugchan; Jung, Il Lae; Kim, Seo Yeon; Choi, Su Im; Lee, Jae Ha

    2013-09-15

    This study focuses on developing an efficient bioprocess for large-scale production of fibulin-3 using Chinese Hamster Ovary cell expression system and evaluating its therapeutic potential for the treatment of cancer. The specific aims are as follows: Isolation and establishment of CSCs using FACS based on cell surface markers and high ALDH1 activity. Identification and characterization of lung cancer stem cells that acquire features of CSC upon exposure to ionizing radiation. Evaluation of the fibulin-3 effects on the stem traits and signaling pathways required for the generation and maintenance of CSCs. In vivo validation of fivulin-3 for tumor prognosis and therapeutic efficacy against lung cancer using animal model.

  13. The Learning and Educational Capital of Male and Female Students in STEM Magnet Schools and in Extracurricular STEM Programs: A Study in High-Achiever-Track Secondary Schools in Germany

    Science.gov (United States)

    Stoeger, Heidrun; Greindl, Teresa; Kuhlmann, Johanna; Balestrini, Daniel Patrick

    2017-01-01

    Magnet schools focused on science, technology, engineering, and mathematics (STEM) as well as extracurricular programs in STEM support talented students and help increase their participation rates in those domains. We examined whether and the extent to which the learning and educational capital of male and female students (N = 801) enrolled in…

  14. Mesenchymal dental stem cells in regenerative dentistry.

    Science.gov (United States)

    Rodríguez-Lozano, Francisco-Javier; Insausti, Carmen-Luisa; Iniesta, Francisca; Blanquer, Miguel; Ramírez, María-del-Carmen; Meseguer, Luis; Meseguer-Henarejos, Ana-Belén; Marín, Noemí; Martínez, Salvador; Moraleda, José-María

    2012-11-01

    In the last decade, tissue engineering is a field that has been suffering an enormous expansion in the regenerative medicine and dentistry. The use of cells as mesenchymal dental stem cells of easy access for dentist and oral surgeon, immunosuppressive properties, high proliferation and capacity to differentiate into odontoblasts, cementoblasts, osteoblasts and other cells implicated in the teeth, suppose a good perspective of future in the clinical dentistry. However, is necessary advance in the known of growth factors and signalling molecules implicated in tooth development and regeneration of different structures of teeth. Furthermore, these cells need a fabulous scaffold that facility their integration, differentiation, matrix synthesis and promote multiple specific interactions between cells. In this review, we give a brief description of tooth development and anatomy, definition and classification of stem cells, with special attention of mesenchymal stem cells, commonly used in the cellular therapy for their trasdifferentiation ability, non ethical problems and acceptable results in preliminary clinical trials. In terms of tissue engineering, we provide an overview of different types of mesenchymal stem cells that have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs), and stem cells from apical papilla (SCAPs), growth factors implicated in regeneration teeth and types of scaffolds for dental tissue regeneration.

  15. Pathways in STEM: Factors Affecting the Retention and Attrition of Talented Men and Women from the STEM Pipeline

    Science.gov (United States)

    Heilbronner, Nancy N.

    2009-01-01

    Many men and women who are talented in science, technology, engineering, and/or mathematics (STEM) choose not to pursue undergraduate majors or careers in these fields. To develop talents in STEM, educators must understand the factors that contribute to an individual's retention in STEM domains, as well as the factors that act as barriers to…

  16. Regulation of Floral Stem Cell Termination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Toshiro eIto

    2015-02-01

    Full Text Available In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network.

  17. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Hao Yumei; He Xin; Song Naling

    2013-01-01

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  18. Teachers' Values Related to Sustainable Development in Polish and Latvian Secondary Schools

    Science.gov (United States)

    Switala, Eugeniusz

    2015-01-01

    The aim of the paper is to present the results of the research on highlighting values related to sustainable development in Poland and Latvia by secondary school teachers and to compare two models by the use of action research. The research is presented as a process of identifying values mainly from the point of view of social development which is…

  19. Practical Secondary Education: Planning for Cost-Effectiveness in Less Developed Countries.

    Science.gov (United States)

    Chisman, Dennis

    Public pressure for expansion of secondary and higher education has forced governments of several developing countries to urgently seek ways to meet this demand. Many of these countries have been hard hit by debt and high world interest rates. At their 1984 conference, Commonwealth Ministers of Education requested the Secretariat to examine ways…

  20. Characterizing cross-professional collaboration in research and development projects in secondary education

    NARCIS (Netherlands)

    Schenke, W.; van Driel, J.H.; Geijsel, F.P.; Sligte, H.W.; Volman, M.L.L.

    2016-01-01

    Collaboration between practitioners and researchers can increasingly be observed in research and development (R&D) projects in secondary schools. This article presents an analysis of cross-professional collaboration between teachers, school leaders and educational researchers and/or advisers as part

  1. Development of a diagnostic expert system for secondary water chemistry

    International Nuclear Information System (INIS)

    Suganuma, S.; Ishikawa, S.; Kato, A.; Yamauchi, S.; Hattori, T.; Yoshikawa, T.; Miyamoto, S.

    1990-01-01

    Water chemistry control for the secondary side of the PWR plants is one of the most important tasks for maintaining the reliability of plant equipment and for extending the operating life of the plant. Water chemistry control should be maintained according to the plant chemist' considered judgement which is based on continual experienced observation. Mitsubishi Heavy Industries (MHI) has been developing a comprehensive data management and diagnosis system, which continuously observes the secondary water chemistry data with on-line monitors, immediately diagnosing causes whenever any symptoms of abnormality are detected and does the necessary data management, in order to support plant staff to controll water chemistry. This system has the following three basic functions: data management, diagnosis and simulation. This paper presents the outline of the total system, and then describes in detail the procedure of diagnosis, the structure of the knowledge and its validation process

  2. STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities

    Science.gov (United States)

    Adhana Teklr, Kelali

    2015-08-01

    Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will

  3. A Study of Strengthening Secondary Mathematics Teachers' Knowledge of Statistics and Probability via Professional Development

    Science.gov (United States)

    DeVaul, Lina

    2017-01-01

    A professional development program (PSPD) was implemented to improve in-service secondary mathematics teachers' content knowledge, pedagogical knowledge, and self-efficacy in teaching secondary school statistics and probability. Participants generated a teaching resource website at the conclusion of the PSPD program. Participants' content…

  4. Carbon Policy and Technical Change: Market Structure, Increasing Returns, and Secondary Benefits. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peretto, P.; Smith, V. K.

    2001-11-19

    An economic evaluation of the impact of policies intended to control emissions of CO{sub 2} and other ''greenhouse gases'' (GHGS) depends on the net costs of these controls and their distribution throughout the production sectors of developed and developing economics. The answers derived from appraisals of these net costs, in turn, stem from what is assumed about the timing of the controls, the pace of technological change, and any short-term secondary benefits from their control. There have only been a few serious attempts to estimate the economic benefits from the policies associated with such long run outcomes. All of the approaches to date have made fairly strong assumptions or relied on contingent valuation estimates of hypothetical situations.

  5. Exploration of Successful Secondary Principals' Professional Development Experiences Framed within Transformational Leadership Theory

    Science.gov (United States)

    Minix-Wilkins, Roxanne M.

    2015-01-01

    The purpose of this phenomenological study was to explore the professional development experiences of successful secondary principals framed within the practices of the transformational leadership theory. At this stage in the research, professional development will be generally defined as all of the types of training that the administrator…

  6. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    Science.gov (United States)

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  7. DEVELOPMENT OF TEACHER COMP ETENCES IN CREATING POWERFUL LEARNING ENVIRONMENTS IN VOCATIONAL SECONDARY EDUCATION

    Directory of Open Access Journals (Sweden)

    Inge PLACKLÉ

    2010-01-01

    Full Text Available Background: At the end of Vocational Secondary Education students should be able to solve authentic problems individually and in group. Powerful learning environments could enforce these learning processes. Research question: “Which critical desirable design principles can we define to create a powerful learning environment in Secondary Vocational Education ? Method: We combine different perspectives of teachers, students and researchers to build a shared model of learning environments, which will be perceived as more powerful by all stakeholders. Based on literature we selected design principles followed by organizing focus groups with teacher educators and teachers to further adapt these principles. Preliminary results: We determined eight design pr inciples: Authenticity learning environment, differentiation, adapted evaluation, self-directed learning, problem solving, teamwork, shared responsibility design learning environment and (labour identity develop ment. Each principle has been further clarified in indicators. This study is part of a larger research project in developing teacher competences in creating powe rful learning enviro nments in Vocational Secondary Education.

  8. STEM Students' Social Agency and Views on Working for Social Change: Are STEM Disciplines Developing Socially and Civically Responsible Students?

    Science.gov (United States)

    Garibay, Juan C.

    2015-01-01

    Utilizing a national sample of over 6,100 undergraduates, drawn from the Cooperative Institutional Research Program's (CIRP) Freshman Survey and College Senior Survey, this study investigates differences between STEM and non-STEM students at the end of college on the values they place on helping to create a more equitable society. Findings show…

  9. Advances of reporter gene imaging monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Pei Zhijun; Zhang Yongxue

    2010-01-01

    Stem cell transplantation in the treatment of various tissue damage or degenerative diseases are research hotspots both at home and abroad. However, ignorance of the homing, differentiation and functional expression of the stem cell in vivo influence the further development of stem cell therapy. As an important component of molecular imaging technology, reporter gene imaging dynamically monitors the change of stem cell in vivo via monitoring the expression of transfected reporter gene. This paper briefly describes the latest research progress and the future development trend of the monitoring of reporter gene imaging in stem cell therapy in vivo. (authors)

  10. Stem cell research in pakistan; past, present and future.

    Science.gov (United States)

    Zahra, Sayeda Anum; Muzavir, Sayed Raheel; Ashraf, Sadia; Ahmad, Aftab

    2015-05-01

    Stem cells have proved to have great therapeutic potential as stem cell treatment is replacing traditional ways of treatment in different disorders like cancer, aplastic anemia, stroke, heart disorders. The developed and developing countries are investing differently in this area of research so research output and clinical translation of research greatly vary among developed and developing countries. Present study was done to investigate the current status of stem cells research in Pakistan and ways to improve it. Many advanced countries (USA, UK and Canada etc.) are investing heavily in stem cell research and treatment. Different developing countries like Iran, Turkey and India are also following the developed countries and investing a lot in stem cells research. Pakistan is also making efforts in establishing this field to get desired benefits but unfortunately the progress is at very low pace. If Government plays an active role along with private sector, stem cell research in Pakistan can be boosted up. The numbers of publications from Pakistan are very less compared to developed and neighboring countries and Pakistan also has very less number of institutes working in this area of research. Stem cells research is at its initial stages in Pakistan and there is great need to bring Government, academia and industry together so they could make serious efforts to promote research in this very important field. This will help millions of patients suffering from incurable disorders and will also reduce economic loss.

  11. Development and Characterization of a Brain Endothelial Cell Phenotype using Human Induced Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Holst, Bjørn

    for experiments the following day. The model was monitored by measuring the trans-endothelial electrical resistance (TEER). RA had an inductive effect on the model, shown by an elevation in barrier tightness which correlated with the presence of tight junction proteins, shown by confocal microscopy images which...... be used to investigate drug transport in vitro, and screen candidates for permeation properties. One recent approach is to develop in vitro models of the BBB using human induced pluripotent stem cells (hIPSCs) as described by Stebbins et al. (2015).The aim of the present study was to investigate whether...... the published protocols were generically applicable and thus to develop and characterize in vitro models of the BBB using hIPSCs from different sources. Two stem cell lines, Bioni010-C and WTSli024-A, were seeded and maintained on Matrigel in mTesR1 media. Cells were then seeded as single cells at different...

  12. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  13. The Future of STEM Curriculum and Instructional Design: A Research and Development Agenda for Learning Designers. Report of a Workshop Series

    Science.gov (United States)

    Center for the Study of Mathematics Curriculum, 2012

    2012-01-01

    In 2009-10 a series of Workshops was organized to focus on STEM (science, technology, engineering, and mathematics) learning design for young students and adolescents. The objective was to provide visionary leadership to the education community by: (a) identifying and analyzing the needs and opportunities for future STEM curriculum development and…

  14. A Balanced Approach to Building STEM College and Career Readiness in High School: Combining STEM Intervention and Enrichment Programs

    Science.gov (United States)

    Rakich, Sladjana S.; Tran, Vinh

    2016-01-01

    Often STEM schools and STEM enrichment programs attract primarily high achieving students or those with strong motivation or interest. However, to ensure that more students pursue interest in STEM, steps must be taken to provide access for all students. For a balanced and integrated career development focus, schools must provide learning…

  15. Medical image of the week: healthcare-associated pneumonia secondary to aspiration

    Directory of Open Access Journals (Sweden)

    Nissim L

    2015-07-01

    Full Text Available A 57 year-old bedbound paraplegic man developed a worsening productive cough after being hospitalized for several days. He was brought to the radiology suite for a CT scan of the chest, revealing a soft tissue density within his right main-stem bronchus, with volume loss of his right lung (Figure 1. Bronchoscopy was performed, yielding a 2 cm piece of broccoli, successfully removed with forceps (Figure 2. Culture from the bronchial aspirate was positive for Pseudomonas aeruginosa. The patient’s respiratory status dramatically improved after removal of the foreign body and commencement of pathogen-directed antibiotics. This study illustrates a dramatic example of healthcare-associated pneumonia (HCAP secondary to aspiration, as described by the American Thoracic Society / Infectious Diseases Society of America (1.

  16. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    Science.gov (United States)

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  17. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.

    Science.gov (United States)

    Luo, Lu; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2015-09-21

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d(-1)) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important

  18. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells

    International Nuclear Information System (INIS)

    Luo, Lu; Buckley, Conor T; Kelly, Daniel J; Thorpe, Stephen D

    2015-01-01

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d −1 ) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important

  19. The influence of approximal restoration extension on the development of secondary caries.

    NARCIS (Netherlands)

    Kuper, N.K.; Opdam, N.J.M.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.

    2012-01-01

    OBJECTIVES: To evaluate whether occlusoproximal restorations with cervical margins apical to the cemento-enamel junction (CEJ) are more prone to failure than restorations with margins coronal to the CEJ, in particular failure due to secondary caries. METHODS: A method was developed for scoring

  20. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  1. Conversion of adult endothelium to immunocompetent haematopoietic stem cells.

    Science.gov (United States)

    Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin

    2017-05-25

    Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.

  2. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  3. Assessing the impact of Native American elders as co-educators for university students in STEM

    Science.gov (United States)

    Alkholy, Sarah Omar

    Introduction: Minorities are underrepresented in the science, technology, engineering, and mathematics (STEM) workforce, post-secondary STEM education, and show high academic attrition rates. Academic performance and retention improve when culturally relevant support is provided. The interface of Western Science and Indigenous Science provides an opportunity for bridging this divide. This three parts project is an example of Community-based participatory research (CBPR) that aims to support academic institutions that serve minority students in STEM, and implement educational components (pedagogy) to serve the needs of the underserved community. Method: Part 1: was a cross-sectional used a survey given to participants designed to assess prevalence of natural health products use by students, and to determine how students learn about NHPs. Part 2: was a longitudinal survey pilot study based upon an online STEM course offer at four universities to determine the differences between U.S. vs. Canadian and minority vs. non-minority university students regarding their perceptions of traditional Elders as STEM co-educators, interest in STEM, and science identity by using a pre-and post- course survey. Part 3: was a longitudinal quasi-experiment based upon an online STEM course offered at four universities show what Indigenous science claims regarding: Elders are viewed as valuable STEM co-educators; Elders increase student interest in STEM; students exposed to Indigenous science improve their identity as a scientist; students exposed to Indigenous Science/Elders show improved learning outcomes. Result: We found that Native/Aboriginal students learn information about natural health products from traditional Elders significantly more so than non-Native/Aboriginal students. There were no statistically significant results from the pilot study. Findings from the quasi-experiment show that students taught with Indigenous science Elder co-educators have significantly greater

  4. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  5. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  6. Advances of reporter gene monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Zhou Xiang; Yin Hongyan; Zhang Yifan

    2010-01-01

    Stem cell therapy research has made great progress, demonstrating a broad application prospects. However, stem cell therapy as a new disease treatment, there are still many problems to be solved. Reporter gene imaging is a rapid development in recent years, a non-invasive, sensitive method of monitoring of stem cells, in particular radionuclide reporter gene imaging has high sensitivity and specificity of the advantages of strong and can carry out imaging of deep tissue and repeat imaging, is a tracer in vivo conditions, the most promising stem cell transplantation technique, showing good prospects for development. (authors)

  7. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    Science.gov (United States)

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  8. Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development.

    Science.gov (United States)

    Chung, Il-Hyuk; Yamaza, Takayoshi; Zhao, Hu; Choung, Pill-Hoon; Shi, Songtao; Chai, Yang

    2009-04-01

    The vertebrate neural crest is a multipotent cell population that gives rise to a variety of different cell types. We have discovered that postmigratory cranial neural crest cells (CNCCs) maintain mesenchymal stem cell characteristics and show potential utility for the regeneration of craniofacial structures. We are able to induce the osteogenic differentiation of postmigratory CNCCs, and this differentiation is regulated by bone morphogenetic protein (BMP) and transforming growth factor-beta signaling pathways. After transplantation into a host animal, postmigratory CNCCs form bone matrix. CNCC-formed bones are distinct from bones regenerated by bone marrow mesenchymal stem cells. In addition, CNCCs support tooth germ survival via BMP signaling in our CNCC-tooth germ cotransplantation system. Thus, we conclude that postmigratory CNCCs preserve stem cell features, contribute to craniofacial bone formation, and play a fundamental role in supporting tooth organ development. These findings reveal a novel function for postmigratory CNCCs in organ development, and demonstrate the utility of these CNCCs in regenerating craniofacial structures.

  9. Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells.

    Science.gov (United States)

    Developing predictions of in vivo developmental toxicity of ToxCast chemicals using mouse embryonic stem cells S. Hunter, M. Rosen, M. Hoopes, H. Nichols, S. Jeffay, K. Chandler1, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Labor...

  10. Stem and leaf anatomy of Plectranthus neochilus Schltr., Lamiaceae

    Directory of Open Access Journals (Sweden)

    Márcia do Rocio Duarte

    Full Text Available Plectranthus neochilus Schltr. is an aromatic herb named " boldo" or " boldo-gambá" and employed for treating hepatic insufficiency and dyspepsia in folk medicine. This paper has investigated its stem and leaf anatomy, in order to contribute for the medicinal plant identification. The botanical material was prepared according to standard microtechniques. The stem has quadrangular transection and, in secondary growth at the level analyzed, shows uniseriate epidermis and numerous trichomes. The glandular ones are capitate and peltate. The former has short unicellular or long multicellular stalk and uni- or bicellular head. The latter presents short stalk and eight-celled ovoid head. The non-glandular trichomes are multicellular, uniseriate and coated with granular cuticle. It is observed angular collenchyma, cambia forming phloem outward and xylem inward, and perivascular fiber caps next to the phloem. The blade has uniseriate epidermis coated with striate cuticle, diacytic stomata on both surfaces, numerous trichomes similar to the stem ones, and homogeneous mesophyll. The midrib shows one or two collateral bundles and the petiole has many of them distributed as an open arc.

  11. Place-based Pedagogy and Culturally Responsive Assessment in Hawai`i: Transforming Curriculum Development and Assessment by Intersecting Hawaiian and Western STEM

    Science.gov (United States)

    Chinn, P. W. U.

    2016-12-01

    Context/Purpose: The Hawaiian Islands span 1500 miles. Age, size, altitude and isolation produced diverse topographies, weather patterns, and unique ecosystems. Around 500 C.E. Polynesians arrived and developed sustainable social ecosystems, ahupua`a, extending from mountain-top to reef. Place-based ecological knowledge was key to personal identity and resource management that sustained 700,000 people at western contact. But Native Hawaiian students are persistently underrepresented in science. This two-year mixed methods study asks if professional development (PD) can transform teaching in ways that support K12 Native Hawaiian students' engagement and learning in STEM. Methods: Place-based PD informed by theories of structure and agency (Sewell, 1992) and cultural funds of knowledge (Moll, Amanti, Neff, & Gonzalez, 1992) explicitly intersected Hawaiian and western STEM knowledge and practices. NGSS and Nā Hopena A`o, general learner outcomes that reflect Hawaiian culture and values provided teachers with new schemas for designing curriculum and assessment through the lens of culture and place. Data sources include surveys, teacher and student documents, photographs. Results: Teachers' lessons on invasive species, water, soils, Hawaiian STEM, and sustainability and student work showed they learned key Hawaiian terms, understood the impact of invasive species on native plants and animals, felt stronger senses of responsibility, belonging, and place, and preferred outdoor learning. Survey results of 21 4th graders showed Native Hawaiian students (n=6) were more interested in taking STEM and Hawaiian culture/language courses, more concerned about invasive species and culturally important plant and animals, but less able to connect school and family activities than non-Hawaiian peers (n=15). Teacher agency is seen in their interest in collaborating across schools to develop ahupua`a based K12 STEM curricula. Interpretation and Conclusion: Findings suggest PD

  12. Of Microenvironments and Mammary Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  13. Therapeutic potential of adult stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Keith, W. Nicol

    2006-01-01

    is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple...... lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem...... cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest...

  14. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  15. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells.

    Directory of Open Access Journals (Sweden)

    Yulan Qing

    Full Text Available Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs, creating a preleukemic stem cell (PLSC. Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC. Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM, but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment.

  16. Developing Leadership Capacity in English Secondary Schools and Universities: Global Positioning and Local Mediation

    Science.gov (United States)

    Wallace, Mike; Deem, Rosemary; O'Reilly, Dermot; Tomlinson, Michael

    2011-01-01

    Government responses to globalisation include developing educational leaders as reformers for workforce competitiveness in the knowledge economy. Qualitative research tracked interventions involving national leadership development bodies to acculturate leaders in secondary schools and universities. Acculturating leaders as reformers was mediated…

  17. Long bone histology of the stem salamander Kokartus honorarius (Amphibia: Caudata) from the Middle Jurassic of Kyrgyzstan.

    Science.gov (United States)

    Skutschas, Pavel; Stein, Koen

    2015-04-01

    Kokartus honorarius from the Middle Jurassic (Bathonian) of Kyrgyzstan is one of the oldest salamanders in the fossil record, characterized by a mixture of plesiomorphic morphological features and characters shared with crown-group salamanders. Here we present a detailed histological analysis of its long bones. The analysis of a growth series demonstrates a significant histological maturation during ontogeny, expressed by the progressive appearance of longitudinally oriented primary vascular canals, primary osteons, growth marks, remodelling features in primary bone tissues, as well as progressive resorption of the calcified cartilage, formation of endochondral bone and development of cartilaginous to bony trabeculae in the epiphyses. Apart from the presence of secondary osteons, the long bone histology of Kokartus is very similar to that of miniaturized temnospondyls, other Jurassic stem salamanders, miniaturized seymouriamorphs and modern crown-group salamanders. We propose that the presence of secondary osteons in Kokartus honorarius is a plesiomorphic feature, and the loss of secondary osteons in the long bones of crown-group salamanders as well as in those of miniaturized temnospondyls is the result of miniaturization processes. Hitherto, all stem salamander long bong histology (Kokartus, Marmorerpeton and 'salamander A') has been generally described as having paedomorphic features (i.e. the presence of Katschenko's Line and a layer of calcified cartilage), these taxa were thus most likely neotenic forms. The absence of clear lines of arrested growth and annuli in long bones of Kokartus honorarius suggests that the animals lived in an environment with stable local conditions. © 2015 Anatomical Society.

  18. Gastric cancer stem cells: A novel therapeutic target

    Science.gov (United States)

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  19. Challenging gender roles through STEM education in Nepal

    Science.gov (United States)

    Wallenius, Todd J.

    Science, Technology, Engineering, Mathematics (STEM) education programs are currently being introduced and expanded across "developing" nations. STEM programs often conflict with hegemonic gender norms, for example by targeting girls and women in male dominated societies. However, given the cultural complexity of STEM for girls, implementing educators are rarely asked their point of view on programs from abroad. This study explored the perceptions of educators in Nepal who participated in the Girls Get STEM Skills (GGSS) program, a program funded through the U.S. Department of State for 2015/2016. The 8-month program reached 254 girls across three government schools and included the donation of 30 laptops. In August, 2016, the researcher conducted one-on-one interviews and focus groups with 18 participants at GGSS school sites in Pokhara, Nepal. Qualitative data was gathered on educators' perceptions of teacher roles, Nepal as a developing nation, gender imbalance in STEM, and the GGSS curriculum. The study argues that educators viewed educational topics through the lens of bikas, the Nepali word for development. This suggests that the principal impact of STEM programs--as part of larger development initiatives--may be the creation and reinforcement of new social meanings rather than the tangible impacts of the projects themselves.

  20. STEM Education

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  1. Effects of Inflorescence Stem Structure and Cell Wall Components on the Mechanical Strength of Inflorescence Stem in Herbaceous Peony

    Directory of Open Access Journals (Sweden)

    Qingping Geng

    2012-04-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.

  2. Beyond Knowledge and Skills: Rethinking the Development of Professional Identity during the STEM Doctorate

    Science.gov (United States)

    Hancock, Sally; Walsh, Elaine

    2016-01-01

    The science, technology, engineering, mathematics (STEM) doctorate is the established entry qualification for a scientific research career. However, contemporary STEM doctoral graduates assume increasingly diverse professional paths, with many forging non-academic careers. Using the UK as an example, the authors suggest that the STEM PhD fails to…

  3. The stem cell state in plant development and in response to stress

    Directory of Open Access Journals (Sweden)

    Gideon eGrafi

    2011-10-01

    Full Text Available Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants (with reference to animals and the plastic nature of plant somatic cells (often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from reentry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.

  4. Inspiring Climate Education Excellence(ICEE): Developing Elearning professional development modules - secondary science teachers

    Science.gov (United States)

    Kellagher, E.; Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Cires Education Outreach

    2011-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop content knowledge and knowledge of effective teaching strategies in climate education among secondary science teachers. ICEE resources are aligned with the Essential Principles of Climate Science. Building upon a needs assessment and face to face workshop, ICEE resources include iTunesU videos, an ICEE 101 resource site with videos and peer-reviewed learning activities, and a moderated online forum. Self-directed modules and an online course are being developed around concepts and topics in which teachers express the most interest and need for instruction. ICEE resources include attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and are informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign.

  5. Secondary glaucoma in CAPN5-associated neovascular inflammatory vitreoretinopathy

    Directory of Open Access Journals (Sweden)

    Cham A

    2016-06-01

    Full Text Available Abdourahman Cham,1,2 Mayank Bansal,3 Himanshu K Banda,4 Young Kwon,1 Paul S Tlucek,1 Alexander G Bassuk,5 Stephen H Tsang,6,7 Warren M Sobol,8 James C Folk,1 Steven Yeh,4 Vinit B Mahajan1,2 1Department of Ophthalmology and Visual Sciences, 2Omics Laboratory, University of Iowa, Iowa City, IA, USA; 3Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India; 4Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, 5Department of Pediatrics, University of Iowa, Iowa City, IA, 6Barbara and Donald Jonas Laboratory of Stem Cells and Regenerative Medicine and Bernard and Shirlee Brown Glaucoma Laboratory, Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 7Edward S Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, 8Retina Physicians & Surgeons, Inc., Dayton, OH, USA Objective: The objective of this study was to review the treatment outcomes of patients with secondary glaucoma in cases of autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV, a hereditary autoimmune uveitis due to mutations in CAPN5. Patients and methods: A retrospective, observational case series was assembled from ADNIV patients with secondary glaucoma. The main outcome measures were intraocular pressure (IOP, visual acuity, use of antiglaucoma medications, ocular surgeries, and adverse outcomes. Perimetry and optic disk optical coherence tomography (OCT were also analyzed. Results: Nine eyes of five ADNIV patients with secondary glaucoma were reviewed. Each received a fluocinolone acetonide (FA implant for the management of posterior uveitis. Following implantation, no eyes developed neovascular glaucoma. Five eyes (in patients 1, 2, and 5 required Ahmed glaucoma valve surgery for the management of steroid-responsive glaucoma. Patient 2 also developed angle closure with iris bombe and underwent laser

  6. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  7. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  8. Stem cells: a model for screening, discovery and development of drugs

    OpenAIRE

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    Satish Srinivas Kitambi1, Gayathri Chandrasekar21Department of Medical Biochemistry and Biophysics; 2Department of Biosciences, Karolinska Institutet, Stockholm, SwedenAbstract: The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficac...

  9. Title: The Impact of 2006-2012 CReSIS Summer Research Programs that Influence Student's Choice of a STEM Related Major in College Authors: Dr. Darnell Johnson Djohnson@mail.ecsu.edu Elizabeth City State University, Elizabeth City, North Carolina 27909 Dr. Linda Hayden Haydenl@mindspring.com Elizabeth City State University, Elizabeth City, North Carolina, 27909

    Science.gov (United States)

    Johnson, D.

    2013-12-01

    Abstract: Researchers, policymakers, business, and industry have indicated that the United States will experience a future shortage of professionals in the Science, Technology, Engineering, and Mathematics (STEM) fields. Several strategies have been suggested to address this impending shortage, one of which includes increasing the representation of females and minorities in the STEM fields. In order to increase the representation of underrepresented students in the STEM fields, it is important to understand the motivational factors that impact underrepresented students' interest in STEM academics and extracurricular programs. Research indicates that greater confidence leads to greater interest and vice versa (Denissen et al., 2007). In this paper, the mathematics research team examined the role of practical research experience during the summer for talented minority secondary students studying in STEM fields. An undergraduate research mathematics team focused on the link between summer research and the choice of an undergraduate discipline. A Chi Square Statistical Test was used to examine Likert Scale results on the attitude of students participating in the 2006-2012 Center for Remote Sensing of Ice Sheets (CReSIS) Summer Research Programs for secondary students. This research was performed at Elizabeth City State University located in northeastern North Carolina about the factors that impact underrepresented students' choices of STEM related majors in college. Results can be used to inform and guide educators, administrators, and policy makers in developing programs and policy that support and encourage the STEM development of underrepresented students. Index Terms: Science, Technology, Engineering, and Mathematics (STEM), Underrepresented students

  10. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  11. Ethical Issues in Stem Cell Research

    OpenAIRE

    Lo, Bernard; Parham, Lindsay

    2009-01-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson’s disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramm...

  12. Stem Cell Therapies in Orthopaedic Trauma

    OpenAIRE

    Marcucio, Ralph S.; Nauth, Aaron; Giannoudis, Peter V.; Bahney, Chelsea; Piuzzi, Nicolas S.; Muschler, George; Miclau, Theodore

    2015-01-01

    Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and...

  13. Developing a Peace and Conflict Resolution Curriculum for Quaker Secondary Schools in Kenya

    Science.gov (United States)

    Hockett, Eloise

    2012-01-01

    In 2008-2009, a team of educators from George Fox University, in collaboration with a committee of teachers and administrators from selected Quaker secondary schools in western Kenya, developed the first draft of a peace and conflict resolution curriculum for Kenyan form one (ninth grade) students. This case study offers a model for developing a…

  14. Development and Assessment of Memorial Sloan Kettering Cancer Center’s Surgical Secondary Events Grading System

    Science.gov (United States)

    Strong, Vivian E.; Selby, Luke V.; Sovel, Mindy; Disa, Joseph J.; Hoskins, William; DeMatteo, Ronald; Scardino, Peter; Jaques, David P.

    2015-01-01

    Background Studying surgical secondary events is an evolving effort with no current established system for database design, standard reporting, or definitions. Using the Clavien-Dindo classification as a guide, in 2001 we developed a Surgical Secondary Events database based on grade of event and required intervention to begin prospectively recording and analyzing all surgical secondary events (SSE). Study Design Events are prospectively entered into the database by attending surgeons, house staff, and research staff. In 2008 we performed a blinded external audit of 1,498 operations that were randomly selected to examine the quality and reliability of the data. Results 1,498 of 4,284 operations during the 3rd quarter of 2008 were audited. 79% (N=1,180) of the operations did not have a secondary event while 21% (N=318) of operations had an identified event. 91% (1,365) of operations were correctly entered into the SSE database. 97% (129/133) of missed secondary events were Grades I and II. Three Grade III (2%) and one Grade IV (1%) secondary event were missed. There were no missed Grade 5 secondary events. Conclusion Grade III – IV events are more accurately collected than Grade I – II events. Robust and accurate secondary events data can be collected by clinicians and research staff and these data can safely be used for quality improvement projects and research. PMID:25319579

  15. Development of Questionnaire on Emotional Labor among Primary and Secondary School Teachers

    Science.gov (United States)

    Liu, Yanling; Zhang, Dajun

    2015-01-01

    In this study, based on the analysis of existing definitions of emotional labor, operational definition of teachers' emotional labor is given and questionnaire on emotional labor among primary and secondary school teachers is developed. Research results: exploratory factor analysis shows that teacher's emotional labor involves three dimensions…

  16. Developing and Presenting a Teaching Persona: The Tensions of Secondary Preservice Teachers

    Science.gov (United States)

    Davis, Janine S.

    2012-01-01

    This qualitative, multiple case study investigated the ways that three preservice secondary teachers developed, presented, and considered their teaching personae. Data for each participant consisted of three interviews, field observations of both teaching and non-teaching, data collection of lessons and class documents, and four journal…

  17. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  18. The Stem Cell Hypothesis of Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2010-04-01

    Full Text Available BACKGROUND: There is probably no single way to age. Indeed, so far there is no single accepted explanation or mechanisms of aging (although more than 300 theories have been proposed. There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic aging of stem cells or rather to the impairment of stem cell function in the aged tissue environment. CONTENT: Recent data suggest that we age, in part, because our self-renewing stem cells grow old as a result of heritable intrinsic events, such as DNA damage, as well as extrinsic forces, such as changes in their supporting niches. Mechanisms that suppress the development of cancer, such as senescence and apoptosis, which rely on telomere shortening and the activities of p53 and p16INK4a may also induce an unwanted consequence: a decline in the replicative function of certain stem cells types with advancing age. This decrease regenerative capacity appears to pointing to the stem cell hypothesis of aging. SUMMARY: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies. KEYWORDS: stem cells, senescence, telomere, DNA damage, epigenetic, aging.

  19. Stem cell bioprocessing: fundamentals and principles.

    Science.gov (United States)

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-06

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  20. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College Teaching Self-efficacy.

    Science.gov (United States)

    Connolly, Mark R; Lee, You-Geon; Savoy, Julia N

    2018-01-01

    To help prepare future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities are offering teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of TD programs on early-career STEM scholars' sense of self-efficacy as postsecondary teachers. In 2011, a survey questionnaire was administered to 2156 people who in 2009 were doctoral students in STEM departments at three U.S. research universities; 1445 responded (67%). Regression analysis revealed positive relationships between TD participation and participants' college teaching self-efficacy and positive interaction effects for women. These findings may be used to improve the quality and quantity of TD offerings and help them gain wider acceptance. © 2018 M. R. Connolly et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    Directory of Open Access Journals (Sweden)

    Babak Nami

    2017-04-01

    Full Text Available HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs. HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2, which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.

  2. Turning the STEM Tide: An Approach for Mentoring Young Women on How to Thrive in STEM Careers

    Science.gov (United States)

    2014-08-01

    belonging for women STEM majors in the college domain; understanding the climate/culture of the STEM college/ workplace and defining strategies to achieve...a “sense of fit” to enable confidence and satisfaction; understanding the stereotypes and biases toward women in STEM; and seeking/developing...avid slalom water skier. This speaker, a 35ish Caucasian women , told how she fell victim to the stereotype that “girls are not as good at math as

  3. Secondary myeloid neoplasms: bone marrow cytogenetic and histological features may be relevant to prognosis

    Directory of Open Access Journals (Sweden)

    Roberta Sandra da Silva Tanizawa

    Full Text Available Abstract Background: Secondary myeloid neoplasms comprise a group of diseases arising after chemotherapy, radiation, immunosuppressive therapy or from aplastic anemia. Few studies have addressed prognostic factors in these neoplasms. Method: Forty-two patients diagnosed from 1987 to 2008 with secondary myeloid neoplasms were retrospectively evaluated concerning clinical, biochemical, peripheral blood, bone marrow aspirate, biopsy, and immunohistochemistry and cytogenetic features at diagnosis as prognostic factors. The International Prognostic Scoring System was applied. Statistical analysis employed the Kaplan–Meier method, log-rank and Fisher's exact test. Results: Twenty-three patients (54.8% were male and the median age was 53.5 years (range: 4–88 years at diagnosis of secondary myeloid neoplasms. Previous diseases included hematologic malignancies, solid tumors, aplastic anemia, autoimmune diseases and conditions requiring solid organ transplantations. One third of patients (33% were submitted to chemotherapy alone, 2% to radiotherapy, 26% to both modalities and 28% to immunosuppressive agents. Five patients (11.9% had undergone autologous hematopoietic stem cell transplantation. The median latency between the primary disease and secondary myeloid neoplasms was 85 months (range: 23–221 months. Eight patients were submitted to allogeneic hematopoietic stem cell transplantation to treat secondary myeloid neoplasms. Important changes in bone marrow were detected mainly by biopsy, immunohistochemistry and cytogenetics. The presence of clusters of CD117+ cells and p53+ cells were associated with low survival. p53 was associated to a higher risk according to the International Prognostic Scoring System. High prevalence of clonal abnormalities (84.3% and thrombocytopenia (78.6% were independent factors for poor survival. Conclusion: This study demonstrated that cytogenetics, bone marrow biopsy and immunohistochemistry are very important

  4. The developing cancer stem-cell model: clinical challenges and opportunities.

    Science.gov (United States)

    Vermeulen, Louis; de Sousa e Melo, Felipe; Richel, Dick J; Medema, Jan Paul

    2012-02-01

    During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Imaging of Human Hepatic Stem Cells In Vivo

    International Nuclear Information System (INIS)

    Hsu, E.W.

    2006-01-01

    human stem cells integrated into foreign host tissues. Stem cell labeling for PET was accomplished by utilizing a Lenti Viral Vector to modify the stem cells DNA such that the cells either: (1) have overexpression of thymidine kinase (TK) for FHBG (F18) labeling, or (2) expression of green fluorescent protein (GFP) for fluorescence imaging. In vitro controls were utilized for both TK and GFP. In vitro TK labeled cells were imaged after the cells were exposed to varying amounts of FHBG (and F18 construct). For petri dish cultures, it was determined that 10 (micro)Ci was an adequate amount to visualize stem cell labeling activities. FHBG labeling using 1mCi showed nonspecific labeling to the petri dish walls and bottom surfaces. For in vivo monitoring of stem cells that were previously transplanted into SCID/nod mice--with a mouse weight of ∼30g, it was determined that 100uCi within a 0.3ml bolus was adequate for stem cell labeling and monitoring for up to 14 hours. The FHBG label was tail vein injected in the mice to generate contrast image labeling of the transplanted stem cells. At the end study, a concurrent Phospher imaging technique was accomplished on excised tissues, to include lung, kidney, liver, and spleen. This technique is used as a secondary confirmation of FHBG activity within specific tissues, and contrasted against PET imaging analysis

  6. "NeuroStem Chip": a novel highly specialized tool to study neural differentiation pathways in human stem cells

    Directory of Open Access Journals (Sweden)

    Li Jia-Yi

    2007-02-01

    Full Text Available Abstract Background Human stem cells are viewed as a possible source of neurons for a cell-based therapy of neurodegenerative disorders, such as Parkinson's disease. Several protocols that generate different types of neurons from human stem cells (hSCs have been developed. Nevertheless, the cellular mechanisms that underlie the development of neurons in vitro as they are subjected to the specific differentiation protocols are often poorly understood. Results We have designed a focused DNA (oligonucleotide-based large-scale microarray platform (named "NeuroStem Chip" and used it to study gene expression patterns in hSCs as they differentiate into neurons. We have selected genes that are relevant to cells (i being stem cells, (ii becoming neurons, and (iii being neurons. The NeuroStem Chip has over 1,300 pre-selected gene targets and multiple controls spotted in quadruplicates (~46,000 spots total. In this study, we present the NeuroStem Chip in detail and describe the special advantages it offers to the fields of experimental neurology and stem cell biology. To illustrate the utility of NeuroStem Chip platform, we have characterized an undifferentiated population of pluripotent human embryonic stem cells (hESCs, cell line SA02. In addition, we have performed a comparative gene expression analysis of those cells versus a heterogeneous population of hESC-derived cells committed towards neuronal/dopaminergic differentiation pathway by co-culturing with PA6 stromal cells for 16 days and containing a few tyrosine hydroxylase-positive dopaminergic neurons. Conclusion We characterized the gene expression profiles of undifferentiated and dopaminergic lineage-committed hESC-derived cells using a highly focused custom microarray platform (NeuroStem Chip that can become an important research tool in human stem cell biology. We propose that the areas of application for NeuroStem microarray platform could be the following: (i characterization of the

  7. Investigation progress of imaging techniques monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Wu Jun; An Rui

    2006-01-01

    Recently stem cell therapy has showed potential clinical application in diabetes mellitus, cardiovascular diseases, malignant tumor and trauma. Efficient techniques of non-invasively monitoring stem cell transplants will accelerate the development of stem cell therapies. This paper briefly reviews the clinical practice of stem cell, in addition, makes a review of monitoring methods including magnetic resonance and radionuclide imaging which have been used in stem cell therapy. (authors)

  8. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    Science.gov (United States)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  9. Conflicts in Developing an Elementary STEM Magnet School

    Science.gov (United States)

    Sikma, Lynn; Osborne, Margery

    2014-01-01

    Elementary schools in the United States have been the terrain of a highly politicized push for improved reading and mathematics attainment, as well as calls for increased importance to be given to science, technology, engineering, and mathematics (STEM). With priorities placed on basic skills, however, instructional time in subjects such as…

  10. Characterizing Cross-Professional Collaboration in Research and Development Projects in Secondary Education

    Science.gov (United States)

    Schenke, Wouter; van Driel, Jan H.; Geijsel, Femke P.; Sligte, Henk W.; Volman, Monique L. L.

    2016-01-01

    Collaboration between practitioners and researchers can increasingly be observed in research and development (R&D) projects in secondary schools. This article presents an analysis of cross-professional collaboration between teachers, school leaders and educational researchers and/or advisers as part of R&D projects in terms of three…

  11. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

    Science.gov (United States)

    Salmasi, Shima; Kalaskar, Deepak M; Yoon, Wai-Weng; Blunn, Gordon W; Seifalian, Alexander M

    2015-03-26

    Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.

  12. Stem cells: limitations and opportunities in Peru

    OpenAIRE

    Amiel-Pérez, José; Laboratorio de Cultivos Celulares, Universidad Científica del Sur. Lima, Perú.; Casado, Fanny; Stem Cell and Cancer Research Institute, McMaster University. Hamilton, Canadá.

    2015-01-01

    Stem cells are defined as rare cells that are characterized by asymmetric division, a process known as self-renewal, and the potential to differentiate into more than one type of terminally differentiated cell. There is a diversity of stem cells including embryonic stem cells, which exist only during the first stages of human development, and many adult stem cells depending on the specific tissues from where they derive or the ones derived from mesenchymal or stromal tissues. On the other han...

  13. Characteristics of Lifelong Science Learners: An Investigation of STEM Hobbyists

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.

    2018-01-01

    STEM hobbies are free-choice activities through which participating individuals may develop sophisticated STEM knowledge and expertise. To date, research into STEM hobbies and hobbyists has examined hobby groups by subject area. Missing from this body of work is research that examines the development and participation in different types of hobbies…

  14. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  16. Electron-beam-induced-current and active secondary-electron voltage-contrast with aberration-corrected electron probes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myung-Geun, E-mail: mghan@bnl.gov [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Garlow, Joseph A. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Materials Science and Engineering Department, Stony Brook University, Stony Brook, NY 11794 (United States); Marshall, Matthew S.J.; Tiano, Amanda L. [Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Wong, Stanislaus S. [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, NY 11974 (United States); Cheong, Sang-Wook [Department of Physics and Astronomy, Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ 08854 (United States); Walker, Frederick J.; Ahn, Charles H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06520 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520 (United States); Zhu, Yimei [Condensed Matter Physics & Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2017-05-15

    Highlights: • Electron-beam-induced-current (EBIC) and active secondary-electron voltage-contrast (SE-VC) are demonstrated in STEM mode combined with in situ electrical biasing in a TEM. • Electrostatic potential maps in ferroelectric thin films, multiferroic nanowires, and single crystals obtained by off-axis electron holography were compared with EBIC and SE-VC data. • Simultaneous EBIC and active SE-VC performed with atomic resolution STEM are demonstrated. - Abstract: The ability to map out electrostatic potentials in materials is critical for the development and the design of nanoscale electronic and spintronic devices in modern industry. Electron holography has been an important tool for revealing electric and magnetic field distributions in microelectronics and magnetic-based memory devices, however, its utility is hindered by several practical constraints, such as charging artifacts and limitations in sensitivity and in field of view. In this article, we report electron-beam-induced-current (EBIC) and secondary-electron voltage-contrast (SE-VC) with an aberration-corrected electron probe in a transmission electron microscope (TEM), as complementary techniques to electron holography, to measure electric fields and surface potentials, respectively. These two techniques were applied to ferroelectric thin films, multiferroic nanowires, and single crystals. Electrostatic potential maps obtained by off-axis electron holography were compared with EBIC and SE-VC to show that these techniques can be used as a complementary approach to validate quantitative results obtained from electron holography analysis.

  17. Development of an automated system for CANDU secondary coolant circuit chemistry control

    International Nuclear Information System (INIS)

    Dean, J.R.; Stewart, R.B.

    1978-04-01

    This report is a summary of work done to develop a means for automated control of the secondary coolant chemistry of CANDU 600 MW(e) power reactors using on-line analyzers and a minicomputer. The development work was carried out in cooperation with Saskatchewan Power Corporation at Estevan. Results and conclusions of the program are included, as are recommendations for a prototype installation in a domestic CANDU 600 MW steam generator. (author)

  18. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  19. Projets de developpement de curriculum niveau secondaire (Secondary Level Curriculum Development Projects).

    Science.gov (United States)

    Martin, Anne L.

    Two Australian language curriculum development projects are discussed: the Australian Language Levels (ALL) Project and the National Assessment Framework for Languages at Senior Secondary Level (NAFLSSL). While distinct, both projects are closely linked. Each project was launched in 1985 in a favorable climate and in response to cost, enrollment,…

  20. Policy and Curriculum Development in Greece. the Case of Secondary School Curriculum

    Science.gov (United States)

    Ifanti, Amalia A.

    2007-01-01

    This paper examines the politics and values of the secondary school curriculum in Greece and attempts to find out the influences of cultural tradition and centralized control on curriculum development. In particular, it studies the decision-making process and the politics of educational control, employing some theoretical elements from centralist…

  1. Dental pulp stem cells in regenerative dentistry.

    Science.gov (United States)

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  2. Stem cell self-renewal in intestinal crypt

    International Nuclear Information System (INIS)

    Simons, Benjamin D.; Clevers, Hans

    2011-01-01

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  3. Empowering Effective STEM Role Models to Promote STEM Equity in Local Communities

    Science.gov (United States)

    Harte, T.; Taylor, J.

    2017-12-01

    Empowering Effective STEM Role Models, a three-hour training developed and successfully implemented by NASA Langley Research Center's Science Directorate, is an effort to encourage STEM professionals to serve as role models within their community. The training is designed to help participants reflect on their identity as a role model and provide research-based strategies to effectively engage youth, particularly girls, in STEM (science, technology, engineering, and mathematics). Research shows that even though girls and boys do not demonstrate a significant difference in their ability to be successful in mathematics and science, there is a significant difference in their confidence level when participating in STEM subject matter and pursuing STEM careers. The Langley training model prepares professionals to disrupt this pattern and take on the habits and skills of effective role models. The training model is based on other successful models and resources for role modeling in STEM including SciGirls; the National Girls Collaborative; and publications by the American Association of University Women and the National Academies. It includes a significant reflection component, and participants walk through situation-based scenarios to practice a focused suite of research-based strategies. These strategies can be implemented in a variety of situations and adapted to the needs of groups that are underrepresented in STEM fields. Underpinning the training and the discussions is the fostering of a growth mindset and promoting perseverance. "The Power of Yet" becomes a means whereby role models encourage students to believe in themselves, working toward reaching their goals and dreams in the area of STEM. To provide additional support, NASA Langley role model trainers are available to work with a champion at other organizations to facilitate the training. This champion helps recruit participants, seeks leadership buy-in, and helps provide valuable insights for needs and

  4. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  5. The effect of video interviews with STEM professionals on STEM-subject attitude and STEM-career interest of middle school students in conservative Protestant Christian schools

    Science.gov (United States)

    Alsup, Philip R.

    Inspiring learners toward career options available in STEM fields (Science, Technology, Engineering, and Mathematics) is important not only for economic development but also for maintaining creative thinking and innovation. Limited amounts of research in STEM education have focused on the population of students enrolled in religious and parochial schools, and given the historic conflict between religion and science, this sector of American education is worthy of examination. The purpose of this quantitative study is to extend Gottfredson's (1981) Theory of Circumscription and Compromise as it relates to occupational aspirations. Bem's (1981) Gender Schema Theory is examined as it relates to the role of gender in career expectations, and Crenshaw's (1989) Intersectionality Theory is included as it pertains to religion as a group identifier. Six professionals in STEM career fields were video recorded while being interviewed about their skills and education as well as positive and negative aspects of their jobs. The interviews were compiled into a 25-minute video for the purpose of increasing understanding of STEM careers among middle school viewers. The research questions asked whether middle school students from conservative, Protestant Christian schools in a Midwest region increased in STEM-subject attitude and STEM-career interest as a result of viewing the video and whether gender interacted with exposure to the video. A quasi-experimental, nonequivalent control groups, pretest/posttest factorial design was employed to evaluate data collected from the STEM Semantic Survey. A Two-Way ANCOVA revealed no significant differences in dependent variables from pretest to posttest. Implications of the findings are examined and recommendations for future research are made. Descriptors: STEM career interest, STEM attitude, STEM gender disparity, Occupational aspirations, Conservative Protestant education.

  6. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    Directory of Open Access Journals (Sweden)

    Hilary Jane Anderson

    2016-05-01

    Full Text Available Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson.1@research.gla.ac.ukKeywords: mesenchymal stem cells, bioengineering, materials synthesis, nanotopography, stimuli responsive material□AbstractThe materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behaviour. This is important as the ability to ‘engineer’ complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate.

  7. Connecting practice-based research and school development. Cross-professional collaboration in secondary education

    NARCIS (Netherlands)

    Schenke, W.

    2015-01-01

    Research and development (R&D) projects can increasingly be observed in secondary schools in the Netherlands. In such projects, cross-professional collaboration of school leaders and teachers with researchers, advisers, and supervisors is encouraged. These professionals have the purpose to stimulate

  8. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  9. Study choice and career development in STEM fields: an overview and integration of the research

    NARCIS (Netherlands)

    van Tuijl, Cathy; Walma van der Molen, Julie Henriëtte

    2015-01-01

    Although science, technology, engineering and mathematics (STEM) study paths and STEM work fields may be relatively difficult and therefore not appropriate for everyone, too many children prematurely exclude STEM-related study and work options, based on negative images of the field or negative

  10. Stem Cell-Based Neuroprotective and Neurorestorative Strategies

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hung

    2010-05-01

    Full Text Available Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS, reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.

  11. Engineering for Sustainable Energy Education within Suburban, Urban and Developing Secondary Schools

    Science.gov (United States)

    Kaikai, Moijue; Baker, Erin

    2016-01-01

    It is crucial that the younger generation be included in the conversation of sustainable development, given the urgent need of a global transition to cleaner energy solutions. Sustainable energy engineering (SEE) taught as early as secondary school can not only increase the number of students that will potentially study engineering to solve global…

  12. Renewable Microgrid STEM Education & Colonias Outreach Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energy sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.

  13. Heterogeneity of breast cancer stem cells as evidenced with Notch-dependent and Notch-independent populations

    International Nuclear Information System (INIS)

    Wong, Nelson K Y; Fuller, Megan; Sung, Sandy; Wong, Fred; Karsan, Aly

    2012-01-01

    Studies have suggested the potential importance of Notch signaling to the cancer stem cell population in some tumors, but it is not known whether all cells in the cancer stem cell fraction require Notch activity. To address this issue, we blocked Notch activity in MCF-7 cells by expressing a dominant-negative MAML-GFP (dnMAML) construct, which inhibits signaling through all Notch receptors, and quantified the effect on tumor-initiating activity. Inhibition of Notch signaling reduced primary tumor sphere formation and side population. Functional quantification of tumor-initiating cell numbers in vivo showed a significant decrease, but not a complete abrogation, of these cells in dnMAML-expressing cells. Interestingly, when assessed in secondary assays in vitro or in vivo, there was no difference in tumor-initiating activity between the dnMAML-expressing cells and control cells. The fact that a subpopulation of dnMAML-expressing cells was capable of forming primary and secondary tumors indicates that there are Notch-independent tumor-initiating cells in the breast cancer cell line MCF-7. Our findings thus provide direct evidence for a heterogeneous cancer stem cell pool, which will require combination therapies against multiple oncogenic pathways to eliminate the tumor-initiating cell population

  14. Potential feasibility of dental stem cells for regenerative therapies: stem cell transplantation and whole-tooth engineering.

    Science.gov (United States)

    Nakahara, Taka

    2011-07-01

    Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.

  15. Stem Cell Therapy: An emerging science

    International Nuclear Information System (INIS)

    Khan, Muhammad M.

    2007-01-01

    The research on stem cells is advancing knowledge about the development of an organism from a single cell and to how healthy cells replace damaged cells in adult organisms. Stem cell therapy is emerging rapidly nowadays as a technical tool for tissue repair and replacement. The purpose of this review to provide a framework of understanding for the challenges behind translating fundamental stem cell biology and its potential use into clinical therapies, also to give an overview on stem cell research to the scientists of Saudi Arabia in general. English language MEDLINE publications from 1980 through January 2007 for experimental, observational and clinical studies having relation with stem cells with different diseases were reviewed. Approximately 85 publications were reviewed based on the relevance, strength and quality of design and methods, 36 publications were selected for inclusion. Stem cells reside in a specific area of each tissue where they may remain undivided for several years until they are activated by disease or tissue injury. The embryonic stem cells are typically derived from four or five days old embryos and they are pluripotent. The adult tissues reported to contain stem cells brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin and liver. The promise of stem cell therapies is an exciting one, but significant technical hurdles remain that will only be overcome through years of intensive research. (author)

  16. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College Teaching Self-Efficacy

    Science.gov (United States)

    Connolly, Mark R.; Lee, You-Geon; Savoy, Julia N.

    2018-01-01

    To help prepare future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities are offering teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of TD programs on early-career STEM…

  17. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Stem cells for brain repair in neonatal hypoxia-ischemia.

    Science.gov (United States)

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  19. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Developing Middle School Students' Interests in STEM via Summer Learning Experiences: See Blue STEM Camp

    Science.gov (United States)

    Mohr-Schroeder, Margaret J.; Jackson, Christa; Miller, Maranda; Walcott, Bruce; Little, David L.; Speler, Lydia; Schooler, William; Schroeder, D. Craig

    2014-01-01

    It is a well-known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year,…

  1. Large Scale Production of Stem Cells and Their Derivatives

    Science.gov (United States)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  2. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  3. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  4. Studying secondary growth and bast fiber development: the hemp hypocotyl peeks behind the wall

    Directory of Open Access Journals (Sweden)

    Marc Behr

    2016-11-01

    Full Text Available Cannabis sativa L. is an annual herbaceous crop grown for the production of long extraxylary fibers, the bast fibers, rich in cellulose and used both in the textile and biocomposite sectors. Despite being herbaceous, hemp undergoes secondary growth and this is well exemplified by the hypocotyl. The hypocotyl was already shown to be a suitable model to study secondary growth in other herbaceous species, namely Arabidopsis thaliana and it shows an important practical advantage, i.e. elongation and radial thickening are temporally separated. This study focuses on the mechanisms marking the transition from primary to secondary growth in the hemp hypocotyl by analysing the suite of events accompanying vascular tissue and bast fiber development. Transcriptomics, imaging and quantification of phytohormones were carried out on four representative developmental stages (i.e. 6-9-15-20 days after sowing to provide a comprehensive overview of the events associated with primary and secondary growth in hemp. This multidisciplinary approach provides cell wall-related snapshots of the growing hemp hypocotyl and identifies marker genes associated with the young (expansins, β-galactosidases and transcription factors involved in light-related processes and the older hypocotyl (secondary cell wall biosynthetic genes and transcription factors.

  5. Sitting with the scientists: a collaborative approach to STEM content development

    Science.gov (United States)

    Mattson, Barbara

    2018-01-01

    For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.

  6. Translating stem cell therapies: the role of companion animals in regenerative medicine

    OpenAIRE

    Volk, Susan W.; Theoret, Christine

    2013-01-01

    Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell r...

  7. Extramedullary hematopoiesis (EMH) in laboratory animals: offering an insight into stem cell research.

    Science.gov (United States)

    Chiu, Shao-Chih; Liu, Hua-Hsing; Chen, Chia-Ling; Chen, Pin-Ru; Liu, Ming-Chao; Lin, Shinn-Zong; Chang, Ko-Tung

    2015-01-01

    Extramedullary hematopoiesis (EMH) is a pathological process secondary to underlying bone marrow (BM) insufficiency in adults. It is characterized by the emergence of multipotent hematopoietic progenitors scattered around the affected tissue, most likely in the spleen, liver, and lymph node, etc. EMH in patients frequently receives less medical attention and is neglected unless a compressive or obstructive hematopoietic mass appears to endanger the patient's life. However, on a biological basis, EMH reflects the alteration of relationships among hematopoietic stem and progenitor cells (HSPCs) and their original and new microenvironments. The ability of hematopoietic stem cells (HSCs) to mobilize from the bone marrow and to accommodate and function in extramedullary tissues is rather complicated and far from our current understanding. Fortunately, many reports from the studies of drugs and genetics using animals have incidentally found EMH to be involved. Thereby, the molecular basis of EMH could further be elucidated from those animals after cross-comparison. A deeper understanding of the extramedullary hematopoietic niche could help expand stem cells in vitro and establish a better treatment in patients for stem cell transplantation.

  8. Disseminated Nocardia cyriacigeorgia causing pancreatitis in a haploidentical stem cell transplant recipient

    Directory of Open Access Journals (Sweden)

    Jason Chen

    2017-01-01

    Full Text Available We report the first published case of acute pancreatitis secondary to disseminated nocardiosis in a hematopoietic stem cell transplant (HSCT recipient on chronic immunosuppression for graft-versus-host disease (GVHD. Nocardiosis in the HSCT population is relatively rare, and has not yet been described in haploidentical HSCT recipients. Our patient is a 28-year-old male with a history of haploidentical HSCT and GVHD of the skin and lung who was admitted to the hospital with acute pancreatitis. The workup for the etiology of his pancreatitis was initially unrevealing. He subsequently developed worsening sepsis and respiratory failure despite broad spectrum antimicrobials. After multiple bronchoscopies and pancreatic fluid sampling, he was found to have disseminated nocardiosis with Nocardia cyriacigeorgia.

  9. Adult Stem Cells and Diseases of Aging

    Directory of Open Access Journals (Sweden)

    Lisa B. Boyette

    2014-01-01

    Full Text Available Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.

  10. Time to Reconsider Stem Cell Induction Strategies

    Directory of Open Access Journals (Sweden)

    Hans-Werner Denker

    2012-12-01

    Full Text Available Recent developments in stem cell research suggest that it may be time to reconsider the current focus of stem cell induction strategies. During the previous five years, approximately, the induction of pluripotency in somatic cells, i.e., the generation of so-called ‘induced pluripotent stem cells’ (iPSCs, has become the focus of ongoing research in many stem cell laboratories, because this technology promises to overcome limitations (both technical and ethical seen in the production and use of embryonic stem cells (ESCs. A rapidly increasing number of publications suggest, however, that it is now possible to choose instead other, alternative ways of generating stem and progenitor cells bypassing pluripotency. These new strategies may offer important advantages with respect to ethics, as well as to safety considerations. The present communication discusses why these strategies may provide possibilities for an escape from the dilemma presented by pluripotent stem cells (self-organization potential, cloning by tetraploid complementation, patenting problems and tumor formation risk.

  11. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    Science.gov (United States)

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  12. [Tricostantin A inhibits self-renewal of breast cancer stem cells in vitro].

    Science.gov (United States)

    Peng, Li; Li, Fu-Xi; Shao, Wen-Feng; Xiong, Jing-Bo

    2013-10-01

    To investigate the effect of tricostantin A (TSA) on self-renewal of breast cancer stem cells and explore the mechanisms. Breast cancer cell lines MDA-MB-468, MDA-MB-231, MCF-7 and SKBR3 were cultured in suspension and treated with different concentrations of TSA for 7 days, using 0.1% DMSO as the control. Secondary mammosphere formation efficiency and percentage of CD44(+)/CD24(-) sub-population in the primary mammospheres were used to evaluate the effects of TSA on self-renewal of breast cancer stem cells. The breast cancer stem cell surface marker CD44(+)/CD24(-) and the percentage of apoptosis in the primary mammospheres were assayed using flow cytometry. The mRNA expressions of Nanog, Sox2 and Oct4 in the primary mammospheres were assayed with quantitative PCR. TSA at both 100 and 500 nmol/L, but not at 10 nmol/L, partially inhibited the self-renewal of breast cancer stem cells from the 4 cell lines. TSA at 500 nmol/L induced cell apoptosis in the primary mammospheres. TSA down-regulated the mRNA expression of Nanog and Sox2 in the primary mammospheres. TSA can partially inhibit the self-renewal of breast cancer stem cells through a mechanism involving the down-regulation of Nanog and Sox2 expression, indicating the value of combined treatments with low-dose TSA and other anticancer drugs to achieve maximum inhibition of breast cancer stem cell self-renewal. The core transcriptional factor of embryonic stem cells Nanog and Sox2 can be potential targets of anticancer therapy.

  13. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Science.gov (United States)

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-01-01

    Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652

  14. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  15. Barriers To Successful Implementation of STEM Education

    Directory of Open Access Journals (Sweden)

    James A. Ejiwale

    2013-05-01

    Full Text Available The implementation of STEM education in schools across the globe is to prepare the future workforce with strong scientific and mathematical backgrounds to enhance skills development across STEM disciplines. However, for STEM education to achieve its goals and objectives, addressing the barriers to STEM education should start by fixing the problems at the elementary, junior and senior high school levels; the grassroots and potential feeders to colleges and universities. Since many nations including the United States of America is in dire need of the workforce with adequate preparation in science and mathematics to help address the nation’s economy that is in shambles, the barriers to its successful implementation should be identified and addressed. In this paper, (a the definition of STEM education and (b some barriers to successful implementation of STEM education are discussed and elaborated.

  16. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  17. A bit of both science and economics: a non-traditional STEM identity narrative

    Science.gov (United States)

    Mark, Sheron L.

    2017-10-01

    Black males, as one non-dominant population, remain underrepresented and less successful in science, technology, engineering, and mathematics (STEM). Researchers focused on non-dominant populations are advised against generalizations and to examine cultural intersections (i.e. race, ethnicity, gender, and more) and also to explore cases of success, in addition to cases of under-achievement and underrepresentation. This study has focused on one African American male, Randy, who expressed high-achieving STEM career goals in computer science and engineering. Furthermore, recognizing that culture and identity development underlie STEM engagement and persistence, this long-term case study focused on how Randy developed a STEM identity during the course of the study and the implications of that process for his STEM career exploration. Étienne Wenger's (1999) communities-of-practice (CoP) was employed as a theoretical framework and, in doing so, (1) the informal STEM program in which Randy participated was characterized as a STEM-for-social-justice CoP and (2) Randy participated in ways that consistently utilized an "economics" lens from beyond the boundaries of the CoP. In doing so, Randy functioned as a broker within the CoP and developed a non-traditional STEM identity-in-practice which integrated STEM, "economics", and community engagement. Randy's STEM identity-in-practice is discussed in terms of the contextual factors that support scientific identity development (Hazari et al. in J Res Sci Teach 47:978-1003, 2010), the importance of recognizing and supporting the development of holistic and non-traditional STEM identities, especially for diverse populations in STEM, and the implications of this new understanding of Randy's STEM identity for his long-term STEM career exploration.

  18. Choices and changes: Eccles' Expectancy-Value model and upper-secondary school students' longitudinal reflections about their choice of a STEM education

    Science.gov (United States)

    Lykkegaard, Eva; Ulriksen, Lars

    2016-03-01

    During the past 30 years, Eccles' comprehensive social-psychological Expectancy-Value Model of Motivated Behavioural Choices (EV-MBC model) has been proven suitable for studying educational choices related to Science, Technology, Engineering and/or Mathematics (STEM). The reflections of 15 students in their last year in upper-secondary school concerning their choice of tertiary education were examined using quantitative EV-MBC surveys and repeated qualitative interviews. This article presents the analyses of three cases in detail. The analytical focus was whether the factors indicated in the EV-MBC model could be used to detect significant changes in the students' educational choice processes. An important finding was that the quantitative EV-MBC surveys and the qualitative interviews gave quite different results concerning the students' considerations about the choice of tertiary education, and that significant changes in the students' reflections were not captured by the factors of the EV-MBC model. This questions the validity of the EV-MBC surveys. Moreover, the quantitative factors from the EV-MBC model did not sufficiently explain students' dynamical educational choice processes where students in parallel considered several different potential educational trajectories. We therefore call for further studies of the EV-MBC model's use in describing longitudinal choice processes and especially in investigating significant changes.

  19. Determinants of Adolescents' Career Development Competencies in Junior Secondary Schools of South Korea

    Science.gov (United States)

    Park, Joo-Ho; Rojewski, Jay W.; Lee, In Heok

    2018-01-01

    More attention is needed on the career development of adolescents, specifically disadvantaged students deemed at risk of school failure. We investigated the determinants on career development competencies of 9th graders in secondary school in South Korea. The data in this study included 394 principals, 6635 students, and the students' parents. Our…

  20. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    Science.gov (United States)

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed. © 2010 Blackwell Publishing Ltd.

  1. STEM Education-An Exploration of Its Impact on Female Academic Success in High School

    Science.gov (United States)

    Ybarra, Michael E.

    The 21st century presents many new career opportunities and choices for women today. However, over the past decade, there has been a growing concern that there will not be enough students trained in Science, Technology, Engineering, and Math (STEM) to fill jobs in the United States. Current research reveals that there will be a need for highly skilled workers in the STEM industries, along with the opportunities to earn higher wages. With these opportunities ahead, it is paramount that secondary schools prepare not only their male students, but also their female students for these lucrative STEM careers. The purpose of this study was to investigate to what degree female high school students enrolled in a STEM academy, and who may play sports, experience academic differences in college preparatory math and science courses, and in the math and science portions of the California Standards Test. Academic differences shall be defined as differences in grade point averages. A comparison will be made of female students who take similar classes and play sports, but who are not enrolled in a STEM academy program. This comparison will then incorporate a quantitative non-experimental research design, along with a chi-square test.

  2. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  3. Stem cells and respiratory diseases

    International Nuclear Information System (INIS)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2008-01-01

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  4. Developing an Implementation Guideline to International Standard School for Schools under Secondary Educational Service Area Office 25

    Directory of Open Access Journals (Sweden)

    Worawut Poltree

    2017-09-01

    Full Text Available The objectives of developing an implementation guideline to international standard school for schools under secondary educational service area office 25 were ; 1 to study present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25 and 2 to develop an implementation guideline to international standard school for schools under secondary educational service area office 25. There were 68 samples ; administrators, deputy administrators, head of quality management systems, and academic teachers by purposive sampling. The tools used to collect the data were the five level scale questionnaire and structured interviews. Data were analyzed using mean, standard deviation, and descriptive analysis. The researcher set the research by 2 phase. The first phase educated present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25. The research was assessed feasibility of developing an implementation guideline to international standard school for schools under secondary educational service area office 25 by 5 experts. The research results were: 1. The present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25 found that the overall present were at the high level and each one was at the high level. The overall problem were at the low and each one was at the moderate 2 aspects ; The leadership and the focus on personnel. Then it was at the low level. 2. Developing an implementation guideline to international standard school for schools under secondary educational service area office 25 found that 1 the leadership had set with the vision, values, performance of the school’s senior leadership, including good governance of the school, implementation of the ethics law, and responsibility for the community, 2 strategic

  5. The Stem Cell Club: a model for unrelated stem cell donor recruitment.

    Science.gov (United States)

    Fingrut, Warren; Parmar, Simran; Cuperfain, Ari; Rikhraj, Kiran; Charman, Erin; Ptak, Emilie; Kahlon, Manjot; Graham, Alice; Luong, Susan; Wang, Yongjun George; Yu, Janice; Arora, Neha; Suppiah, Roopa; Li, Edward W; Lee, Anna; Welsh, Christopher; Benzaquen, Menachem; Thatcher, Alicia; Baharmand, Iman; Ladd, Aedan; Petraszko, Tanya; Allan, David; Messner, Hans

    2017-12-01

    Patients with blood, immune, or metabolic diseases may require a stem cell transplant as part of their treatment. However, 70% of patients do not have a suitable human leukocyte antigen match in their family, and need an unrelated donor. Individuals can register as potential donors at stem cell drives, where they provide consent and a tissue sample for human leukocyte antigen typing. The ideal donors are young, male, and from a diversity of ethnic backgrounds. However, in Canada, non-Caucasian males ages 17 to 35 years represent only 8.8% of listed donors. The Stem Cell Club is a non-profit organization founded in 2011 in Canada that aims to augment recruitment of the most needed donors. The initiative published a recruitment toolkit online (www.stemcellclub.ca). Currently, there are 12 chapters at universities across Canada. To date, the Stem Cell Club has recruited 6585 potential registrants, representing 1.63% of donors on Canada's donor-database. Of the recruited registrants, 58.3% were male; 60.3% of males self-reported as non-Caucasian, and 78.5% were ages 17 to 25 years. From 2015 to 2016, the initiative recruited 13.7% of all ethnically diverse males ages 17 to 35 years listed in Canada's donor database. Data from this initiative demonstrate sustainability and performance on key indicators of stem cell drive quality. The Stem Cell Club has developed a capacity to recruit 2600 donors annually, with the majority being males with a high degree of ethnic diversity. The initiative enhances the quality of Canada's unrelated donor-database, improving the chances that patients in need of an unrelated donor will find a match for transplant. The Stem Cell Club is a model relevant to recruitment organizations around the world. © 2017 AABB.

  6. STEM learning on electricity using arduino-phet based experiment to improve 8th grade students’ STEM literacy

    Science.gov (United States)

    Prima, E. C.; Oktaviani, T. D.; Sholihin, H.

    2018-05-01

    Technology is the application of scientific knowledge for practical purposes, especially in industry. One way to support the development of the technology is by integrating the use of technology and build the technology with the learning process in the form of STEM (science, technology, engineering, mathematics) Learning approach. Applying STEM Learning could improve Students’ STEM Literacy. The learning approach is applied in every aspect of Learning including the application of STEM Learning in the lesson plan and worksheet. The method used in this research is weak experimental method. One group class (N=15) is taken and learn using STEM Learning approach. The topic choosen is the electricity topic which is separated into electrical circuit and parameters. The learning process is separated into 3 meetings. 15 Students are given a STEM Literacy test item before and after the lesson. The result of the normalized gain shows there are improvement in students’ STEM Literacy by 0.16 categorieed as low improvement. The most higher improvement is the students’ technology literacy, because students learn using the same technology in every meeting. This factor influences students’ technology literacy so the result is higher than another.

  7. Function-related secondary user needs and secondary data? a crit ...

    African Journals Online (AJOL)

    The aim of this article is to contribute to the development of the modern theory of lexicographical functions by offering a critical examination of the following concepts associated with it: primary needs, primary data, secondary needs, secondary data, function-related needs, and function-related data. By way of introduction, ...

  8. Young, southern women's perceptions of STEM careers: Examining science, technology, engineering & mathematics as a gendered construct

    Science.gov (United States)

    Quinton, Jessica Elizabeth

    Career interests develop over a lifetime and tend to solidify during late adolescence and early adulthood (Lent, Brown, and Hackett, 2002). The primary purpose of the present qualitative study, which is framed in Feminist Standpoint Theory (Haraway, 1988; Harding, 2007; Naples, 2007; Richardson, 2007), is to understand how eighth-grade, young women in a suburban, public, southern, middle school the South Carolina County School District (CCSD) (pseudonym) perceive their accessibility to Science, Technology, Engineering, and Mathematics (STEM) courses and careers. The secondary purpose is to understand these young women's "perceptions and unconscious beliefs about gender in science and mathematics" and how their "perceptions and unconscious beliefs about gender" in the STEM fields may impact the careers that these young women may choose in the future (American Association of University Women, 2010, 9). Within the present study, the perceptions of young women who identified as "Interested in Science," "Somewhat Interested in Science" and "Uninterested in Science" were identified. STEM courses and careers are a major emphasis in education today. Increasing the numbers of Americans who pursue STEM careers is a government priority, as these careers will strengthen the economy (AAUW 2010). The present study reveals how young women who are highly motivated, talented students perceive STEM courses and careers and how they are influenced by their experiences, gendered messages, and knowledge of STEM careers. To analyze the data, four of Saldana's (2010) dramaturgical codes were utilized including: 1. OBJectives, or motives; 2. CONflicts the participants faced; 3. TACtics to dealing with obstacles; and 4. ATTitudes toward the setting, others, and the conflict. The InVivo Codes allowed the participants stories to emerge through the set of dramaturgical codes that allowed for viewing the girls' experience sin different ways that added depth to their stories. The young women in

  9. Future Primary Teachers’ Beliefs, Understandings and Intentions to Teach STEM

    Directory of Open Access Journals (Sweden)

    Premnadh M. Kurup

    2017-08-01

    Full Text Available The development of integrated skills and knowledge in science, technology, engineering, and mathematics (STEM are necessary in order to deal with challenging complex situations and should be developed from primary school. It is expected that early experiences can influence and foster a deep and ongoing interest in STEM. In order to provide these early experiences in their future classrooms, preservice teachers need subject matter knowledge, pedagogical content knowledge and expertise to innovate and deal with STEM in their own future classrooms This research focused on the beliefs and understandings preservice primary teachers (n=119 have about teaching and to what extent they are prepared to teach STEM subjects in primary schools. A questionnaire based on the position paper on STEM issued by the Australian Office of the Chief Scientist (Prinsley & Johnston, 2015 and guided by the theory of reasoned action was used as the basis of this study. The data was analysed qualitatively and quantitatively. The results suggest the preservice teachers in this study believed there should be STEM in the curriculum, but they were not confident in their ability to teach STEM without more professional preparation and development.

  10. Heritable factors for radiation-induced osteosarcoma and the role of Rb1 in telomere maintenance in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Rosemann, M.; Gonzalez-Vasconcellos, I.; Atkinson, M. J.

    2013-01-01

    Full text: Secondary tumors following a pediatric radiotherapy become an ever growing concern, a side effect of the improved therapeutic success leading to extended life span of the patients. Osteosarcoma (OS) and other soft-tissue sarcomas arise over proportionally frequent in the radiation field of former radiooncology patients. In an effort to map and identify inherited factors that govern individual susceptibility for these secondary, therapy associated tumors, we developed a mouse model that after injection of 227 thorium develops high numbers of OS and facilitates whole genome mapping of genetic variants that modify risk. We could identify genetic risk factors on 5 different chromosomes, that by independent segregation in the germline can interact in an additive manner and in combination alter the individual risk more than 3 fold. Using additional in-vitro studies and mouse knockout technology we could confirm that the responsible gene on the principal susceptibility locus is Rb1. Mice with a bone-specific Rb1+/- status exhibits increased bone tumor risk following irradiation. We have shown recently that the Rb1 tumor suppressor gene does not only regulates the cell cycle kinetics of mammalian cells, but that in normal osteoblasts is also crucial to protect telomeres from extensive erosion. An Rb1+/- deficiency therefore exhibit accelerated telomeric loss and, following ionising irradiation an excess of chromosomal defects. In the majority of secondary RT associated human OS, Rb1 was affected by allelic loss, whereas spontaneous human OS with no known radiation etiology show only 15%-20% Rb1 losses. It is assumed that the target cells for malignant transformation leading to OS are not the differentiating osteoblasts, but rather the long-term repopulating and pluripotent mesenchymal stem cells (MSC). These normal tissue stem cells are assumed to maintain a high degree of genome stability throughout the entire life span of an organism. One of the key factors

  11. Encouraging Creativity in a STEM Classroom

    Directory of Open Access Journals (Sweden)

    David L. Byrum

    2015-01-01

    Full Text Available The Thailand Ministry of Education’s “Institute for the Promotion of Teaching Science and Technology” (IPST uses the following as its working definition of STEM: “STEM education integrates science, engineering, technology and mathematics focusing on the application of knowledge to real-life problem solving and development of new products or procedures benefiting daily living and livelihood. STEM education infuses the engineering process into the existing science, mathematics and technology curricula to enable utilization of the knowledge to solve actual problems and aid future occupational undertakings.”

  12. Study Choice and Career Development in STEM Fields: An Overview and Integration of the Research

    Science.gov (United States)

    van Tuijl, Cathy; van der Molen, Juliette H.

    2016-01-01

    Although science, technology, engineering and mathematics (STEM) study paths and STEM work fields may be relatively difficult and therefore not appropriate for everyone, too many children prematurely exclude STEM-related study and work options, based on negative images of the field or negative ability beliefs. In the present article, we provide an…

  13. Metformin: An Emerging New Therapeutic Option for Targeting Cancer Stem Cells and Metastasis

    Directory of Open Access Journals (Sweden)

    Ramandeep Rattan

    2012-01-01

    Full Text Available Metastasis is an intricate process by which a small number of cancer cells from the primary tumor site undergo numerous alterations, which enables them to form secondary tumors at another and often multiple sites in the host. Transition of a cancer cell from epithelial to mesenchymal phenotype is thought to be the first step in the progression of metastasis. Recently, the recognition of cancer stem cells has added to the perplexity in understanding metastasis, as studies suggest cancer stem cells to be the originators of metastasis. All current and investigative drugs have been unable to prevent or reverse metastasis, as a result of which most metastatic cancers are incurable. A potential drug that can be considered is metformin, an oral hypoglycemic drug. In this review we discuss the potential of metformin in targeting both epithelial to mesenchymal transition and cancer stem cells in combating cancer metastases.

  14. Some applications of nanotechnologies in stem cells research

    International Nuclear Information System (INIS)

    Belicchi, M.; Cancedda, R.; Cedola, A.; Fiori, F.; Gavina, M.; Giuliani, A.; Komlev, V.S.; Lagomarsino, S.; Mastrogiacomo, M.; Renghini, C.; Rustichelli, F.

    2009-01-01

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  15. Some applications of nanotechnologies in stem cells research

    Energy Technology Data Exchange (ETDEWEB)

    Belicchi, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Cancedda, R. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Cedola, A. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Fiori, F. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Gavina, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Giuliani, A. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); CNISM - Matec (Ancona) (Italy); Komlev, V.S. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya 48, 119361 Moscow (Russian Federation); Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Renghini, C. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Rustichelli, F., E-mail: f.rustichelli@univpm.i [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy)

    2009-12-15

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  16. Mid-term migration analysis of a femoral short-stem prosthesis: a five-year EBRA-FCA-study.

    Science.gov (United States)

    Freitag, Tobias; Fuchs, Michael; Woelfle-Roos, Julia V; Reichel, Heiko; Bieger, Ralf

    2018-05-01

    The objective of this study was to evaluate the mid-term migration pattern of a femoral short stem. Implant migration of 73 femoral short-stems was assessed by Ein-Bild-Roentgen-Analysis Femoral-Component-Analysis (EBRA-FCA) 5 years after surgery. Migration pattern of the whole group was analysed and compared to the migration pattern of implants "at risk" with a subsidence of more than 1.5 mm 2 years postoperative. Mean axial subsidence was 1.1 mm (-5.0 mm to 1.5 mm) after 60 months. There was a statistical significant axial migration until 2 years postoperative with settling thereafter. 2 years after surgery 18 of 73 Implants were classified "at risk." Nevertheless, all stems showed secondary stabilisation in the following period with no implant failure neither in the group of implants with early stabilisation nor the group with extensive early onset migration. In summary, even in the group of stems with more pronounced early subsidence, delayed settling occurred in all cases. The determination of a threshold of critical early femoral short stem subsidence is necessary because of the differing migration pattern described in this study with delayed settling of the Fitmore stem 2 years postoperatively compared to early settling within the first postoperative year described for conventional stems.

  17. STEM-21CS Module: Fostering 21st Century Skills through Integrated STEM

    Directory of Open Access Journals (Sweden)

    Norhaqikah Mohamad Khalil

    2017-07-01

    Full Text Available Malaysia calls for a society that is highly knowledgeable in the field of Science, Technology, Engineering, and Mathematics (STEM and equipped with 21st century skills to provide professional workforce that can compete globally. The application of a STEM interdisciplinary approach and teaching and learning (T&L strategies such as problem-based and inquiry-based learning are proposed in development of the STEM-21CS Module in order to foster 21st century skills in the existing science curricula. A majority of real-world issues today are interdisciplinary in which they require students to comprehend the need to integrate multiple disciplines to solve them. STEM-21CS Module allows students to master scientific knowledge and subsequently master other disciplinary skills. It is aimed at improving students’ abilities to enrich their knowledge through hands-on and minds-on activities. The field of engineering requires the knowledge of product design and inventive problem solving skills. The integration of information technology in T&L is recommended in meeting the current needs of the Net Generation. Besides that, mathematics plays a vital role in providing computational tools, especially in analysing data. The STEM-21CS Module is expected to nurture 21st century skills such as digital era literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values among Malaysian students.

  18. STEM Faculty as Learners in Pedagogical Reform and the Role of Research Articles as Professional Development Opportunities

    Science.gov (United States)

    Mulnix, Amy B.

    2016-01-01

    Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice.…

  19. Effect of Out-of-School Time STEM Education Programs: Implications for Policy

    Science.gov (United States)

    Talbot, Harry A.

    Today's world requires greater STEM knowledge for employment and understanding of emerging issues. A predicted 3 million jobs will be created in STEM-related fields but the percentage of earned STEM-related degrees is diminishing. A lack of progress in STEM education for American students is most pronounced among females who make up 48% of the workforce and 24% of STEM employees. A lack of STEM interest among students is compounded by limited time in the school day for STEM topics, lack of teacher confidence in teaching STEM, and a lack of professional development. This study examines the impact of Out-of-School-Time (OST) programs on knowledge acquisition and attitudes toward STEM topics by gender. Program content was delivered by undergraduate pre-teacher candidates and undergraduate STEM majors, using a structured, hands-on engineering program developed for the National Aeronautics and Space Administration (NASA). Monthly professional development was provided to OST staff by NASA content specialists and instructors from Fresno State University. A repeated-measures design analyzed group differences across three points in time: prior to the start of instruction (pretest), immediately following the end of instruction (posttest), and 60 days following (post posttest). A within-group comparison measured posttest and post-post-test changes for each gender. Program students included in the study participated for at least 12 of the 24 program hours offered and completed all three assessments. The findings showed that STEM knowledge acquisition advanced at similar levels for both genders. These results were consistent with the existing research. Findings related to attitudes toward STEM topics showed that female students did not change over time but males students' interest lessened over time. These findings did not support the current research in this area. Recommendations for practice include developing programs that focus on gender differentiated learning styles

  20. Characteristics and Effects of a Statewide STEM Program

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Weld

    2015-10-01

    Full Text Available A comprehensive statewide STEM (science, technology, engineering, mathematics reform initiative enters its fifth year in the U.S. state of Iowa. A significant proportion of the state’s pre K-12 students and teachers participate in one or more of the twenty programs offered, ranging from classroom curricular innovations to teacher professional development, and from community STEM festivals to career exploration events. An external, inter-university evaluation consortium measures annual progress of the initiative through the Iowa STEM Monitoring Project. Results show citizens to be increasingly aware of and supporting of STEM education; students to be increasingly interested in STEM as well as outperforming nonparticipating peers on state math and science tests; and teachers more confident and knowledgeable in teaching STEM. Iowa’s STEM initiative has garnered national acclaim though challenges remain with regard to expanding the participation of learners of diversity, as well as ensuring the long-term sustainability of the programs and structures that define Iowa’s statewide STEM initiative.

  1. Features of transfusion therapy in patients undergoing hematopoietic stem cell transplantation. Review of the literature

    Directory of Open Access Journals (Sweden)

    D. N. Balashov

    2014-07-01

    Full Text Available The indications for transfusion of blood components support after stem cell transplantation (SCT usually do not differ form other clinical situations, but the rules for such therapy have a number of features. One of them is the possibility of inconsistence of AB0 group between donor and recipient of hematopoietic stem cells, which is not only fraught with the development of various alloimmune complications, but also fundamentally changes the standards for the selection of blood components for transfusion. A major problem after HSCT is a secondary immunodeficiency, which is important to consider for ensuring prevention of transfusion-transmitted infections (eg, CMV, as well as to carry out activities aimed for the prevention of transfusion- associated graft-versus-host disease. HSCT is a medical technology today, the effectiveness of which is often dependent on the accuracy and integrity of its implementation. So, serious attitude to various supportive therapy, including transfusions of blood components is an important component which determines the success of the treatment.

  2. Features of transfusion therapy in patients undergoing hematopoietic stem cell transplantation. Review of the literature

    Directory of Open Access Journals (Sweden)

    D. N. Balashov

    2013-01-01

    Full Text Available The indications for transfusion of blood components support after stem cell transplantation (SCT usually do not differ form other clinical situations, but the rules for such therapy have a number of features. One of them is the possibility of inconsistence of AB0 group between donor and recipient of hematopoietic stem cells, which is not only fraught with the development of various alloimmune complications, but also fundamentally changes the standards for the selection of blood components for transfusion. A major problem after HSCT is a secondary immunodeficiency, which is important to consider for ensuring prevention of transfusion-transmitted infections (eg, CMV, as well as to carry out activities aimed for the prevention of transfusion- associated graft-versus-host disease. HSCT is a medical technology today, the effectiveness of which is often dependent on the accuracy and integrity of its implementation. So, serious attitude to various supportive therapy, including transfusions of blood components is an important component which determines the success of the treatment.

  3. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  4. Development of fountain detectors for spectroscopy of secondary electron in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Agemura, Toshihide [University of Tsukuba (Japan); Iwai, Hideo [National Institute for Materials Science, Tsukuba (Japan); Sekiguchi, Takashi [University of Tsukuba (Japan); National Institute for Materials Science, Tsukuba (Japan)

    2017-07-15

    To image the variation of surface potential in semiconductors, energy selective secondary electron detector, named fountain detector (FD), was developed. Two types of grids, planar and spherical, were designed and the superiority of latter was demonstrated. The p-n junction of 4H-SiC was observed using spherical FD and the image was much clear than that using conventional detector. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Brault

    2016-08-01

    Full Text Available The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV, can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4. We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV.

  6. Development and Simulation of Increased Generation on a Secondary Circuit of a Microgrid

    Science.gov (United States)

    Reyes, Karina

    As fossil fuels are depleted and their environmental impacts remain, other sources of energy must be considered to generate power. Renewable sources, for example, are emerging to play a major role in this regard. In parallel, electric vehicle (EV) charging is evolving as a major load demand. To meet reliability and resiliency goals demanded by the electricity market, interest in microgrids are growing as a distributed energy resource (DER). In this thesis, the effects of intermittent renewable power generation and random EV charging on secondary microgrid circuits are analyzed in the presence of a controllable battery in order to characterize and better understand the dynamics associated with intermittent power production and random load demands in the context of the microgrid paradigm. For two reasons, a secondary circuit on the University of California, Irvine (UCI) Microgrid serves as the case study. First, the secondary circuit (UC-9) is heavily loaded and an integral component of a highly characterized and metered microgrid. Second, a unique "next-generation" distributed energy resource has been deployed at the end of the circuit that integrates photovoltaic power generation, battery storage, and EV charging. In order to analyze this system and evaluate the impact of the DER on the secondary circuit, a model was developed to provide a real-time load flow analysis. The research develops a power management system applicable to similarly integrated systems. The model is verified by metered data obtained from a network of high resolution electric meters and estimated load data for the buildings that have unknown demand. An increase in voltage is observed when the amount of photovoltaic power generation is increased. To mitigate this effect, a constant power factor is set. Should the real power change dramatically, the reactive power is changed to mitigate voltage fluctuations.

  7. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  8. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  9. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  10. A Preliminary Study of Banana Stem Juice as a Plant-Based Coagulant for Treatment of Spent Coolant Wastewater

    Directory of Open Access Journals (Sweden)

    Habsah Alwi

    2013-01-01

    Full Text Available The effectiveness of banana stem juice as a natural coagulant for treatment of spent coolant wastewater was investigated . Three main parameters were studied, namely, chemical oxygen demand (COD, suspended solids (SSs, and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of spent coolant wastewater pH as well as banana stem juice dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages by banana stem juice were 80.1%, 88.6%, and 98.5%, respectively, observed for effluent at pH 7 using 90 mL dosage. The inulin concentration in the banana stem was examined to be 1.22016 mg/mL. It could be concluded that banana stem juice showed tremendous potential as a natural coagulant for water treatment purposes and could be applied in the pretreatment stage of Malaysian spent coolant wastewater prior to secondary treatment.

  11. Stem Cells: Taking a Closer Look at the Advancements and Hurdles of Stem Cell Research in Australia

    Science.gov (United States)

    Sanderson, Aimee

    2008-01-01

    The technology surrounding stem cells generates great excitement amongst scientists, media and the community. For science teachers, this means not only embracing and keeping track of the rapid growth and ongoing development in this field but also tackling the ethical and legislative issues surrounding the topic. So what are stem cells, what is all…

  12. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  13. STEM Education Programs

    Science.gov (United States)

    & Development (LDRD) National Security Education Center (NSEC) Office of Science Programs Richard P Databases National Security Education Center (NSEC) Center for Nonlinear Studies Engineering Institute Scholarships STEM Education Programs Teachers (K-12) Students (K-12) Higher Education Regional Education

  14. Stem cells and bone: a historical perspective.

    Science.gov (United States)

    Bianco, Paolo

    2015-01-01

    Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone". Copyright © 2014. Published by Elsevier Inc.

  15. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  16. Characterization Of Bovine Adipose-Derived Stem Cells

    OpenAIRE

    Daniel Cebo

    2017-01-01

    Bovine adipose-derived stem cells were obtained from the subcutaneous abdominal adipose tissue. The cells were cultured by the modified tissue-explants method developed in our laboratory and then analyzed using optical microscopy and flow cytometry. These cells were able to replicate in our cell culture conditions. cell Flow cytometry showed that bovine adipose-derived stem cells expressed mesenchymal stem cell markers CD73 and CD90. Meanwhile haematopoietic markers CD45 and CD34 are absent f...

  17. Laminins and cancer stem cells: Partners in crime?

    Science.gov (United States)

    Qin, Yan; Rodin, Sergey; Simonson, Oscar E; Hollande, Frédéric

    2017-08-01

    As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  19. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    Science.gov (United States)

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  20. Bulk enrichment of transplantable hemopoietic stem cell subsets from lipopolysaccharide-stimulated murine spleen

    International Nuclear Information System (INIS)

    Ploemacher, R.E.; Brons, R.H.; Leenen, P.J.

    1987-01-01

    Counterflow centrifugal elutriation (CCE) in combination with density flotation centrifugation and fluorescence-activated cell sorting on wheat-germ agglutinin-FITC(WGA)-binding cells within the light-scatter ''blast window'' were used consecutively to enrich pluripotent hemopoietic stem cells (HSC) in bulk from lipopolysaccharide-stimulated mouse spleen. The medium-to-strong WGA + ve fraction contained 3.10(6) cells isolated from 3-4 X 10(9) spleen cells, with an average of 126% day-12 CFU-S and 65% day-8 CFU-S as calculated on the basis of their seeding fraction, suggesting that virtually all cells represented in vivo macroscopic colony formers. In view of the large differences reported elsewhere between stem cell subsets differing in reconstitutive capacity and secondary stem cell generation ability, we also studied various isolated cell fractions with respect to spleen colony formation, radioprotective ability, and spleen- and marrow- repopulating ability. Day-8 and day-12 CFU-S copurified when isolated by CCE. Cells from a fraction with high affinity for WGA were most highly enriched for their radioprotective ability (RPA) and their ability to repopulate the cellularity of the spleen and femur of irradiated recipients. This fraction contained virtually pure day-12 CFU-S. However, the ability to generate secondary day-12 CFU-S and CFU-GM in irradiated organs was enriched most in the medium WGA + ve cell fraction. MRA and SRA, according to the latter criteria, could therefore be partly separated from day-12 CFU-S and RPA on the basis of affinity for WGA. The data strongly suggest that at least part of all day-12 CFU-S have a high potential to proliferate and differentiate into mature progeny, but a relatively low self-renewal ability, and may therefore not be representative of the genuine stem cell