WorldWideScience

Sample records for secondary standard dosimetry laboratories

  1. Secondary standard dosimetry laboratory (SSDL)

    International Nuclear Information System (INIS)

    Md Saion bin Salikin.

    1983-01-01

    A secondary Standard Dosimetry Laboratory has been established in the Tun Ismail Research Centre, Malaysia as a national laboratory for reference and standardization purposes in the field of radiation dosimetry. This article gives brief accounts on the general information, development of the facility, programmes to be carried out as well as other information on the relevant aspects of the secondary standard dosimetry laboratory. (author)

  2. Secondary standard dosimetry laboratories: Development and trends

    International Nuclear Information System (INIS)

    1985-08-01

    This publication describes the work of the IAEA and the WHO in the establishment of a network of Secondary Standard Dosimetry Laboratories. Membership in the SSDL network has now risen to about 50 laboratories, of which 36 are in developing countries

  3. Secondary standard dosimetry laboratory at INFLPR

    Energy Technology Data Exchange (ETDEWEB)

    Scarlat, F.; Minea, R.; Scarisoreanu, A.; Badita, E.; Sima, E.; Dumitrascu, M.; Stancu, E.; Vancea, C., E-mail: scarlat.f@gmail.com [National Institute for Laser, Plasma and Radiation Physics - INFLPR, Bucharest (Romania)

    2011-07-01

    National Institute for Laser, Plasma and Radiation Physics (INFLPR) has constructed a High Energy Secondary Standard Dosimetry Laboratory SSDL-STARDOOR - for performing dosimetric calibrations according to ISO IEC SR/EN 17025:2005 standards. This is outfitted with UNIDOS Secondary Standard Dosimeter from PTW (Freiburg Physikalisch-Technische Werksttaten) calibrated at the PTB-Braunschweig (German Federal Institute of Physics and Metrology). A radiation beam of the quality of Q used by our laboratory as calibration source are provided by INFLPR 7 MeV electron beam linear accelerator mounted in our facility. (author)

  4. Secondary standard dosimetry laboratory at the Boris Kidric Institute

    International Nuclear Information System (INIS)

    Kovacevic, M.; Velickovic, D.; Vukcevic, M.

    1989-01-01

    Essential data about Secondary Standard Dosimetry Laboratory at the Boris Kidric Institute are stated in this paper. The description of the laboratory is given and the possibilities of X, gamma and neutron dose measurements, as well as the basic equipment (author)

  5. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  6. The Secondary Standard Dosimetry Laboratories (SSDL) story

    International Nuclear Information System (INIS)

    Eisenlohr, H.H.

    2000-01-01

    In 1976, the International Atomic Energy Agency and the World Health Organization formally concluded a Working Arrangement aiming at setting up a world-wide Network of SSDLs under the auspices of the two organizations. It appears that the loose term Working Arrangement was used for this joint undertaking as both IAEA and WHO did not wish to signal, at that time, a deep involvement in the project. Moreover, the two organizations pursued different routes in implementing the project. In consequence, it took many years before the programme received adequate technical and financial support. Thus, after years of reluctance, the project was considered important enough to be included into the IAEA's Technical Assistance programme. It then began to thrive though, in the course of time, WHO's initial financial support declined. Now (1999), the SSDL Network comprises 76 laboratories around the world. It is guided by a joint IAEA/WHO Secretariat which, in turn, is advised by an SSDL Scientific Committee. It is supported by 5 Collaborating Organizations and enjoys full national and international recognition. Most of the people who initiated, promoted and directed the establishment of SSDLs and the Network have by now retired from their positions in national or international institutions. Some of the early enthusiasts are no longer alive, and the names of many of them were never associated with the project, because staff of, and consultants to, international organizations are expected to work in anonymity

  7. Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2008-05-01

    The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is

  8. SSDL newsletter. No. 25[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-10-01

    In April 1976 the IAEA and the WHO concluded a Working Arrangement concerning the establishment and operation of a network of Secondary Standard Dosimetry Laboratories, based on a relationship agreement between the two organizations of 1959. This Working Arrangement was the outcome of rather lengthy consultations on the subject which rooted in recommendations of an experts' meeting on SSDL Activities, held in Rio de Janeiro 1974, and which put the bulk of responsibility for running the network on WHO. In particular, it was agreed then that WHO would provide the secretariat for the Network and be responsible for the SSDL Advisory Group of experts, the terms of reference of which were laid down in a separate document. After about ten years of operation of the SSDL Network it was felt that revision of the Working Arrangement should be considered, taking care of the actual involvement of the two organizations in the project and providing a more fairly balanced share of responsibilities between the IAEA and WHO secretaries of the Network. The new Arrangement was drafted during 1985 and signed by the two Directors General in October/November 1985. Upon recommendation of an SSDL Advisory Group which met in November 1984 the Directors General of IAEA and WHO appointed 6 scientists as members of a standing SSDL Scientific Committee. The appointment is for a period of three years. In its terms of reference the functions of this Committee are defined as follows: to provide technical advice to the Directors General of the IAEA and WHO regarding the programme of work of the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories; to assist the Network Secretariat with scientific advice and to regularly review the work undertaken by members of the SSDL Network; to make recommendations on the techniques for carrying out intercomparisons between SSDLs; to advise and make recommendations on the techniques for establishing and maintaining traceability to the Primary Standard

  9. Guidelines for Member States concerning radiation measurement standards and Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    In the early nineteen-sixties an acute need developed for higher dosimetric accuracy in radiation therapy, particularly in developing countries. This need led to the establishment of a number of dosimetry laboratories around the world, specializing in the calibration of radiation therapy dosimeters. In order to co-ordinate the provision of guidance and assistance to such laboratories, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) set up a Network of Secondary Standard Dosimetry Laboratories (SSDLs) under their joint aegis, as described in the IAEA booklet 'SSDLs: Development and Trends' (1985). This publication includes detailed criteria for the establishment of these laboratories. The present guidelines deal with the functions and status of SSDLs, in particular with the need for recognition and support by the competent national authorities. (author)

  10. SSDL newsletter. No. 45[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The first article of this issue of the SSDL Newsletter is about intercomparison of air kerma and absorbed dose to water calibration factors between the SSDLs of Norway and Cuba. The intercomparison covered Co-60 gamma rays (for air kerma and absorbed dose to water) and x-ray beams (air kerma at medium and low energy). The results are presented in this article. The Secretariat of the IAEA/WHO SSDL Network encourages this type of exercise between the SSDLs as it reinforces confidence in the measurement system. The IAEA also provides intercomparison services to its Network members, using ionization chambers. Although the service is presently limited to Co-60 gamma rays, it will soon be expanded to cover x-ray beams. For this purpose, a consultants' meeting will be held soon in Vienna to advise the IAEA on the methodology to be adopted. The second article is a report by the SSDL of Iran on the design, construction and calibration of plane parallel ionization chambers. This article presents the design characteristics of the chambers and the results of their calibration as well as dose determination of electron beams by air kerma based and absorbed dose to water based dosimetry procedures using these chambers. The third article is a report of a Nordic dosimetry meeting (Oslo, 19 January 2001) on the implementation of the new international Code of Practice based on absorbed dose to water standards (TRS-398). This report summarizes the main discussions and conclusions of the meeting. The editor wishes to draw the attention of the readers to the recommendations adopted in section 3 of the report. In addition, the Secretariat of the Network would appreciate receiving reports or minutes of meetings organized by SSDLs and hospitals on the implementation of TRS-398. The last article is a report of a consultants' meeting, held at the IAEA Headquarters in May 2001, on the calibration of well type ionization chambers for High Dose Rate {sup 192}Ir quality. The conclusions and

  11. SSDL newsletter. No. 27[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This issue of the newsletter presents a report of the third meeting of the SSDL Scientific Committee. Articles on ''Absorbed dose determination in photon and electron beams'' and ''Comparison of absorbed dose determinations using the IAEA dosimetry protocol and the ferrous sulphate dosimeter'' are the major topics covered.

  12. Report of the Intercomparison program by thermoluminescent dosimetry for Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    Papadopulos, Susana

    2000-01-01

    In this report the results of an intercomparison program within a research coordinated program are presented. This is a third phase of the study that consisted in to evaluate the implementation of the new ICRU quantities for individual monitoring by the SSDLs, their capabilities to perform irradiations in different angles and the interpretation of the standard ISO 4370-3. This phase as well the first one was coordinated by Argentina through the Autoridad Regulatoria Nuclear that verified the performance of the participant laboratories. The SSDL of Argentina calibrated the dosimetric system to be used, and sent a set of tld dosimeters for irradiation at the SSDL or dosimetry laboratories of nine countries of latin america

  13. SSDL newsletter. No. 29[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-04-01

    The IAEA/WHO Network of SSDLs was established 14 years ago, mainly through the efforts by H. Eisenlohr (IAEA) and W. Seelentag (WHO). They were the two first ''joint scientific secretaries'' of the network. They built up the structure that in retrospect must be considered as very successful. Of course, also a number of other persons, both within and outside the two UN organizations, contributed very much to the establishment of the network. The application fields for dose determinations are very much changing. For instance, in the 70's most of the radiotherapy was carried out with Co-60 units. Today about 5 times more linear accelerators are installed than Co-60 units. Dose calibrations are therefore needed for high energy x-ray and electron beams also in many developing countries. Furthermore, a higher accuracy is generally required. In diagnostic radiology, many new techniques have been introduced which necessitate output checks to reduce patient and personnel doses. In some countries, sterilizing or food processing plants have been taken into use and need dose calibrations. It is, therefore, reasonable that the SSDLs will have an increasing and changing role. In the present issue we have tried to analyse the status of the present network. This analysis shows that most of the SSDLs are very successful in their task. This is obvious from an analysis of the dose intercomparison results. A few SSDLs need to improve. It could of course be expected that the quality of the work should differ among 61 laboratories. Many of the SSDLs have today got extended responsibilities in new areas and the future development of the work will certainly be of great interest to follow.

  14. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  15. The IAEA/WHO network of Secondary Standard Dosimetry Laboratories. SSDL network charter

    International Nuclear Information System (INIS)

    1999-04-01

    In 1976, the International Atomic Energy Agency (IAEA) together with the World Health Organization (WHO) established a Network of Secondary Standard Dosimetry Laboratories (SSDLs), known as the IAEA/WHO SSDL Network. This Network, through SSDLs designated by Member States, provides a direct linkage of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM), and the dissemination of S.I. quantities and units through the proper calibration of field instruments by the SSDLs. The Network has proved to be of value in improving national capabilities for instrument calibration and the awareness of better accuracy and traceability. Fifty-eight countries have nominated SSDLs for membership in the Network. Unfortunately, some of these SSDLs do not yet function as full members, perhaps because of some uncertainty as to their obligations concerning the Network. Consequently, the Scientific Committee which advises the Network Secretariat has recommended that a Charter be drawn up explaining the privileges, rights and duties of members in the Network which would strengthen their links to the international measurement system. In addition to the duties of members in the Network and the benefits that full members can receive, the Charter also describes how the Network functions and the scope of the work of the SSDLs. In producing this Charter, the advisory group has drawn heavily on the IAEA publication 'Secondary Standard Dosimetry Laboratories: Development and Trends' (1985) which summarizes the origin, development, status and prospects of the IAEA/WHO SSDL Network. The various appendices are effectively up-dates of different parts of this earlier publication, and the original drafting and reviewing bodies are given due recognition. The revisions take into account the experience the Agency has gained in coordinating the activities of the Network for more than 20 years

  16. The IAEA/WHO network of Secondary Standard Dosimetry Laboratories. SSDL network charter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    In 1976, the International Atomic Energy Agency (IAEA) together with the World Health Organization (WHO) established a Network of Secondary Standard Dosimetry Laboratories (SSDLs), known as the IAEA/WHO SSDL Network. This Network, through SSDLs designated by Member States, provides a direct linkage of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM), and the dissemination of S.I. quantities and units through the proper calibration of field instruments by the SSDLs. The Network has proved to be of value in improving national capabilities for instrument calibration and the awareness of better accuracy and traceability. Fifty-eight countries have nominated SSDLs for membership in the Network. Unfortunately, some of these SSDLs do not yet function as full members, perhaps because of some uncertainty as to their obligations concerning the Network. Consequently, the Scientific Committee which advises the Network Secretariat has recommended that a Charter be drawn up explaining the privileges, rights and duties of members in the Network which would strengthen their links to the international measurement system. In addition to the duties of members in the Network and the benefits that full members can receive, the Charter also describes how the Network functions and the scope of the work of the SSDLs. In producing this Charter, the advisory group has drawn heavily on the IAEA publication 'Secondary Standard Dosimetry Laboratories: Development and Trends' (1985) which summarizes the origin, development, status and prospects of the IAEA/WHO SSDL Network. The various appendices are effectively up-dates of different parts of this earlier publication, and the original drafting and reviewing bodies are given due recognition. The revisions take into account the experience the Agency has gained in coordinating the activities of the Network for more than 20 years.

  17. Secondary standard dosimetry laboratory at the Ruder Boskovic Institute, Zagreb, Croatia

    International Nuclear Information System (INIS)

    Vekic, B.; Ban, R.; Saveta, M.

    2006-01-01

    The Secondary Standard Dosimetry Laboratory at the Ruder Boskovic Institute, Zagreb, Croatia, was installed during the several last years. The installation of this Laboratory was strongly supported by the International Atomic Energy Agency (IAEA) through the Technical Cooperation Project (C.R.O. 1/004/; Establishing Calibration Services). Inside the country this Technical Cooperation Project was supported by the State Office for Standardization and Metrology, State Office for Radiation Protection and the Ministry of Health of the Republic of Croatia. The Secondary Standard Dosimetry Laboratory at the Ruder Boskovic Institute, Zagreb, Croatia was installed in two calibration rooms. The both of these calibration rooms are 9.6 meters long and 6 meters wide. In the both of these calibration rooms the proper air conditioning was installed. The walls of the both calibration rooms are thick enough (1 meter of concrete) and the entrance doors are protected by Pb to protect any radiation hazard in control rooms, in neighbouring rooms and in environment. In the first calibration room, placed in the basement, two sealed sources share the same calibration bench (produced by Hopewell Designs, Inc., USA) between them which is 6 meters long. On one side is Co -60 source of the 30 TBq activity (December 2004) for the calibration of radiotherapy ionizing chambers and the other equipment in the field of high dose rate range. On the other side is irradiation unit consists of 2 sealed sources for radiation protection purposes: (1) Cs-137 source, activity of 740 MBq (February 2004) and (2) Co- 60 source, activity of 185 MBq (February 2004). For this second source three attenuators are provided that give a nominal attenuation of *10, *100 and *1000. In the second calibration room placed just above the first one the X -ray unit (gift from P.T.B., Germany, I.S.O.V.O.L.T. 420, 40 -300 kV, 1-20 mA) is placed. In front of this are: (1.) Aperture Wheel Assembly designed to modify the beam

  18. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories

    International Nuclear Information System (INIS)

    2004-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  19. Evaluation of uncertainties in X radiation metrologic chain in the Secondary Standard Dosimetry Laboratory/IRD-Brazilian CNEN

    International Nuclear Information System (INIS)

    Fonseca Coelho, B.C. da.

    1987-01-01

    The equipment to measure ionizing radiation used in medicine needs appropriate technical qualifications to comply with their purposes and regular calibrations to assure the correct evaluation of associated quantities. By legal requirements, the annual calibration of users' dosemeters is to be done in a Secondary Standard Dosimetry Laboratory (SSDL), andthe SSDL'S standard dosemeters are refered to a Primary Standard Dosimetry (PSDL), establishing a rigourous metrological network. The SSDL network. The SSDL needs to maintain, regularly, a quality control program for short and Long term stability of standard dosemeters. The purpose of the work was to determine the uncertainties associated to technical procedures of X-rays calibration at the SSDL/IRD/IRD. To evaluate the influence of the nine main parameters that can give origin to uncertainties, specific procedures and methods are established, according to international requirements and recomendations. The methods are based on the comparison of the behaviour of the users' dosemeters, with a standard dosemeter in the many measuring conditions set up for the secondary standard used as a reference. The total uncertainty obtained was 1,81% usig a conservative procedure, to protect the users and patients. When needed to transfer the calibration factor and their uncertainty, the procedure used was to determine the uncertainty under the worsst possible operating conditions of the equipment, to obtain a superestimated value. This represents an excellent result for an SDDL of IAEA Network. (autor) [pt

  20. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  1. The IAEA/WHO Network of SSDLs. Short history, activity and future trends[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Hans; Zsdanszky, Kalman [International Atomic Energy Agency, Dosimtery Section, Vienna (Austria)

    1990-04-01

    In 1968 at an IAEA meeting in Caracas, Venezuela, the dosimetric requirements of radiotherapy centres were discussed. At that time many radiotherapy departments in developing countries did not have a dosimeter. Even those that had a dosimeter were seldom able to send it to a Primary Standard Dosimetry Laboratory (PSDL) for proper calibration. The establishment of regional dosimeter calibration laboratories was recommended by the participating experts including representatives of WHO. There was general consent that it was not necessary to establish in every country a PSDL, which would need a very qualified staff and sophisticated equipment. Instead, the establishment of Secondary Standard Dosimetry Laboratories (SSDLs) was found to be an adequate solution to the problem. The new idea of SSDLs and their role within the international metrology system was thoroughly discussed at a joint IAEA/WHO meeting in Rio de Janeiro (scientific secretaries: H.H. Eisenlohr, IAEA and W. Seelentag, WHO) in December 1974. Considering the fact that an SSDL cannot work in isolation the experts recommended the setting up of an international Network of SSDLs under the auspices of the IAEA and WHO. The statutes of the IAEA/WHO Network of SSDLs were laid down in a Working Arrangement between the IAEA and WHO in April 1976. Later in 1976 the two Directors General of the IAEA and WHO formally announced by circular letters to their respective member states the establishment of the IAEA/WHO Network of SSDL. The Criteria for the Establishment of a Secondary Standard Dosimetry Laboratory were formulated by an Advisory Group and were attached to these letters. At that time there existed already 8 laboratories, which had been designated by WHO during the period 1968-1976 as regional reference centres for dosimetry. Another SSDL had been set up in Rio de Janeiro in collaboration between the Brazilian Government, the Government of the Federal Republic of Germany, and the IAEA. As a consequence of the

  2. Radiation dosimetry and standards at the austrian dosimetry laboratory

    International Nuclear Information System (INIS)

    Leitner, A.

    1984-10-01

    The Austrian Dosimetry Laboratory, established and operated in cooperation between the Austrian Research Center Seibersdorf and the Federal Office of Metrology and Surveying (Bundesamt and Eich- und Vermessungswesen) maintains the national primary standards for radiation dosimetry. Furthermore its tasks include routine calibration of dosemeters and dosimetric research. The irradiation facilities of the laboratory comprise three X-ray machines covering the voltage range from 5 kV to 420 kV constant potential, a 60 Co teletherapy unit, a circular exposure system for routine batch calibration of personnel dosemeters with four gamma ray sources ( 60 Co and 137 Cs) and a reference source system with six gamma ray sources ( 60 Co and 137 Cs). In addition a set of calibrated beta ray sources are provided ( 147 Pm, 204 Tl and 90 Sr). The dosimetric equipment consists of three free-air parallelplate ionization chambers serving as primary standards of exposure for the X-ray energy region, graphite cavity chambers with measured volume as primary standards for the gamma radiation of 137 Cs and 60 Co as well as different secondary standard ionization chambers covering the dose rate range from the natural background level up to the level of modern therapy accelerators. In addition for high energy photon and electron radiation a graphite calorimeter is provided as primary standard of absorbed dose. The principle experimental set-ups for the practical use of the standards are presented and the procedures for the calibration of the different types of dosemeters are described. (Author)

  3. Implementation of ISO guide 25 in a medical dosimetry secondary standards calibration laboratory

    International Nuclear Information System (INIS)

    DeWerd, L.A.

    1995-01-01

    Currently, there is a great deal of discussion among industry and government agencies about ISO 9000 accreditation. U.S. manufacturers with ISO 9000 accreditation are regarded more favorably by European countries. The principles behind the ISO 9000 accreditation are based on the Total Quality Management (TQM) principles that are being implemented in many U.S. industries. This paper will deal only with the calibration issue. There is a difference in the areas covered by ISO 9000 and ISO Guide 25 documents. ISO 9000, in particular ISO 9001 - ISO 9003, cover the open-quotes calibrationclose quotes of inspection, measuring and test equipment. This equipment is basically used for open-quotes factory calibrationsclose quotes to determine that equipment is performing within manufacturer specifications. ISO Guide 25 is specifically for open-quotes calibration and testing laboratories,close quotes generally laboratories that have painstaking procedures to reduce uncertainties and establish high accuracy of the transfer of calibration. The experience of the University of Wisconsin Accredited Dosimetry Calibration Laboratory in conforming to ISO Guide 25 will be outlined. The entire laboratory staff must become familiar with the process and an individual with direct authority must become the one to maintain the quality of equipment and calibrations in the role of open-quotes quality-assurance manager.close quotes

  4. The GSF secondary standard dosimetry laboratory for photon and beta radiation

    International Nuclear Information System (INIS)

    Eckerl, H.; Nahrstedt, U.

    1986-03-01

    A brief outline of the laboratory's tasks and a detailed description of its layout and equipment is given. The laboratory contains a Co-60 irradiation unit, a Cs-137 irradiation unit, a panoramic irradiation unit for different nuclide sources, a 160- and 420 kV X-ray unit, a beta-irradiation unit and a measuring and control room. The calibration laboratory is equipped with reference and field dosemeters. (DG)

  5. Arrangement between the International Atomic Energy Agency and the World Health Organization concerning the establishment and operation of a network of Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO), recognizing that they have been co-operating in the operation of a network of Secondary Standard Dosimetry Laboratories (the Network), established pursuant to a Working Arrangement, dated 5 April 1976; and desiring to continue this co-operation in accordance with Article V of the relationship agreement concluded by IAEA and WHO in 1959; hereby enter a new arrangement to guide their work in operating the Network and providing assistance, when needed, to individual Secondary Standard Dosimetry Laboratories (SSDLs). The purpose of this Arrangement is to set forth responsibilities of IAEA and WHO in the operation and support of the Network and to establish criteria for SSDLs

  6. The role of Polish Secondary Standard Dosimetry Laboratory in view of the requirements of the EC Directive 97/43 EURATOM

    International Nuclear Information System (INIS)

    Gwiazdowska, B.; Bulski, W.

    2004-01-01

    The aim of this paper is to present the history and experience of the Polish SSDL (Secondary Standard Dosimetry Laboratory). It also presents the propositions in the domain of quality assurance in radiotherapy in Poland, as fulfilling the requirements of the Directive 97/43 EURATOM on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, which is obligatory for the countries of the European Union. It has been pointed out that there are, among other provisions, two concepts concerning the quality assurance in application of radiation in medicine, mentioned by the Directive, a) inspection and b) clinical audit, which should be implemented by the Member States. In the process of establishing and implementing the Directive confusion may appear as to the difference between the two concepts of external audits. The role of the SSDLs in carrying out external dosimetry audits is presented. The history of the establishment of the Polish SSDL (Secondary Standard Dosimetry Laboratory) and its inclusion into the international network of laboratories coordinated by the International Atomic Energy Agency and the World Health Organization is presented as well as the resulting advantages, obligations and perspectives for further activities. The main activities of the Polish have been presented, namely maintaining a data-base on the radiotherapy infrastructure in Poland, preparation of recommendations on dosimetry procedures and quality control, calibration of dosimeters, external postal quality audits of dosimetry, etc. These activities are illustrated with the results from the period 1991-2003. Based on the solutions and results presented in this paper, the authors conclude that the Ministry of Health should grant the Polish SSDL with a suitable legal status for carrying out external audits nationwide, especially since, according to the Directive 97/43, clinical audits in radiotherapy have to include dosimetry audits. (author)

  7. Secondary standard dosimetry system with automatic dose/rate calculation

    International Nuclear Information System (INIS)

    Duftschmid, K.E.; Bernhart, J.; Stehno, G.; Klosch, W.

    1980-01-01

    A versatile and automated secondary standard instrument has been designed for quick and accurate dose/rate measurement in a wide range of radiation intensity and quality (between 1 μR and 100 kR; 0.2 nC/kg - 20C/kg) for protection and therapy level dosimetry. The system is based on a series of secondary standard ionization chambers connected to a precision digital current integrator with microprocessor circuitry for data evaluation and control. Input of measurement parameters and calibration factors stored in an exchangeable memory chip provide computation of dose/rate values in the desired units. The ionization chambers provide excellent long-term stability and energy response and can be used with internal check sources to test validity of calibration. The system is a useful tool particularly for daily measurements in a secondary standard dosimetry laboratory or radiation therapy center. (H.K.)

  8. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico

    International Nuclear Information System (INIS)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B.

    2004-01-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of c linical dosemeters . In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the dosimetry of the

  9. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals

    International Nuclear Information System (INIS)

    2002-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of 192 Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis after

  10. Standards in radiation protection at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Czap, L.; Pernicka, F.; Matscheko, G.; Andreo, P.

    1999-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the Agency is making every necessary effort to insure that SSDLs measurements in radiation protection are traceable to Primary Standards. The IAEA provides traceable calibrations of ionization chambers in terms of air kerma at radiation protection levels and ambient dose equivalent calibrations. SSDLs are encouraged to use the calibrations available from the Agency to provide traceability for their radiation protection measurements. Measurements on diagnostic X ray generators have become increasingly important in radiation protection and some SSDLs are involved in such measurements. The IAEA has proper radiation sources available to provide traceable calibrations to the SSDLs in this field, including an X ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory will be described. (author)

  11. Report of the third meeting of the SSDL Scientific Committee (SSC). Vienna, 19-23 September 1988[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    The SSDL Scientific Committee (SSC) was appointed in 1985 by the Director General of the IAEA, in consultation with and the concurrence of the Director General of the WHO. As indicated in its Terms of Reference, the main objective of the SSC is to advise the Directors General of the IAEA and WHO regarding the programme of work of the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs). The first meeting of the SSC was held in May 1986 and the recommendations were reported in IAEA SSDL Newsletter No. 25, October 1986. The second meeting of the SSC was held in June 1987 and the recommendations were reported in the SSDL Newsletter No. 26, October 1987. Discussions and recommendations of this meeting are covered in this report.

  12. The mutual recognition arrangement and primary standard dosimetry laboratory comparisons

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.

    2002-01-01

    the measurement capabilities of each NMI in the KCDB maintained by the BIPM. This database is available on the web at http://www.bipm.org/kcdb. The degrees of equivalence of each NMI holding national standards for a given quantity are determined from the key comparisons. These are entered into Appendix B of the MRA that is maintained as part of the KCDB. (Note that Appendix A is the list of signatories to the MRA). The results of the comparisons are analysed and presented in two ways. A graph is used to present the degree of equivalence of each NMI with the key comparison reference value (KCRV) and, secondly, a matrix is used to show the inter-laboratory degrees of equivalence taking inter-laboratory correlations into account. A CIPM key comparison is executed either by a Consultative Committee of the CIPM, such as the Consultative Committee for Ionizing Radiation (CCRI), or by the BIPM and leads to a KCRV. In certain fields, such as ionizing radiation, the BIPM maintains international standards against which NMIs (for example, the primary standards dosimetry laboratories, PSDLs that are affiliated members of the IAEA/WHO Network of SSDLs) can compare their primary standards. These comparisons may be made at any mutually convenient time and these comparisons are identified as 'BIPM ongoing key comparisons'. However, although there are over 110 comparisons listed in the field of ionizing radiation, more than 77 of these comparisons are activity comparisons (rather than dosimetry comparisons) for the many different radionuclides, that are measured using the International Reference System (SIR). The BIPM currently operates four ongoing key comparisons for ionizing radiation dosimetry. These include dosimetry comparisons for air kerma in low- and medium-energy x-ray beams and for air kerma and absorbed dose to water in 60 Co gamma radiation. The comparison result is expressed as a ratio of the NMI value for the quantity to the BIPM value and the report of the comparison

  13. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    International Nuclear Information System (INIS)

    Czap, L.; Andreo, P.; Matscheko, G.

    1998-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  14. Standards for radiation protection and diagnostic radiology at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Pernicka, F.; Andreo, P.; Meghzifene, A.; Czap, L.; Girzikowsky, R.

    1999-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. The IAEA dosimetry programme is focused into services provided to Member States through the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs), to radiotherapy centres and radiation processing facilities. Radiation protection quantities defined by ICRU and ICRP are used to relate the risk due to exposure to ionizing radiation to a single quantity, irrespective of the type of radiation, which takes into account the human body as a receptor. Two types of quantities, limiting and operational, can be related to basic physical quantities which are defined without need for considering specific aspects of radiation protection, e.g. air kerma for photons and fluence for neutrons. The use of a dosimeter for measurements in radiation protection requires a calibration in terms of a physical quantity together with a conversion from physical into protection quantities by means of a factor or a coefficient

  15. Scientific committee of the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories. Report of the ninth meeting of the SSDL scientific committee, IAEA, Vienna, 13-17 November 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The report of the eighth meeting (held in Oct. 1998) of the Scientific Committee (SSC) of the IAEA/WHO network of Secondary Standard Dosimetry Laboratories (SSDL) was published in the SSDL Newsletter No. 40, January 1999. The ninth meeting was held in Vienna at Agency Headquarters from 13 to 17 November 2000. Opening remarks were made by Mr. S. Groth, Director, Division of Human Health (NAHU), Mr. H. Oestensen (WHO), Co-Secretary of the IAEA/WHO SSDL Network, and Mr. Ahmed Meghzifene, acting Section Head, Dosimetry and Medical Radiation Physics (DMRP). The Agency's DMRP sub-programme provides traceable radiation standards to the majority of developing countries over a wide range of energies and dose levels. External-beam radiation therapy and radiation processing (high dose) have a long history and robust links to international standards. Recently the DMRP has developed projects providing robust links for calibration of mammography X-ray beams, brachytherapy sources, and personnel monitoring programmes at the participating SSDLs. Efforts by the Agency and the WHO over the past 5 years have made significant improvements in the return rate and turn-around time in the postal TLD programme, effectively increasing the availability of Agency standards. Two other high-priority items promulgated by the DMRP are: (i) follow-up of quality audit measurements which fall outside the established action levels, and (ii) transfer of postal TLD programmes to national programmes and establishing and maintaining links between these programmes and the DMRP. The SSC still considers both of these as high priority items, commends the DMRP on their efforts, and encourages them to continue to develop activities in these areas. The SSC wishes to emphasize that radiation dosimetry is a necessary adjunct to many programmes that utilize ionizing radiation at various dose levels. The SSC commends the Agency for their continued support for the programmes sponsored through the Dosimetry and

  16. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  17. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    International Nuclear Information System (INIS)

    Shanta, A.; Andreo, P.

    1996-01-01

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137 Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137 Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  18. ABACC laboratories quality assurance through Secondary Standards Exchange Program

    International Nuclear Information System (INIS)

    Guidicini, Olga Mafra; Thompson, Jay; Soriano, Michael

    2003-01-01

    In September 1999, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the New Brunswick Laboratory (NBL) of the U.S. Department of Energy, started a new cooperative activity with, among other objectives, the production and characterization of a traceable uranium secondary standard and the performance of the Third Round Robin for ABACC's laboratory network. Brazil and Argentina have fabricated UO 2 pellets for use as a secondary standard. Samples from the two batches were sent to NBL for the determination of the reference values for both uranium concentration (%U) and isotopic composition for each batch. ABACC and NBL then organized the Third ABACC Round Robin for Brazilian and Argentine laboratories that are part of the ABACC network. The laboratories comprising the network can be used to analyze real samples collected during the ABACC inspections. The Brazilian and Argentine pellets were distributed to all the laboratories together with the protocol to be followed for the uranium concentration analysis, the forms for reporting the measurement results, and natural UO 2 pellets (CETAMA OU1) to be used as reference material. For the laboratories with capability of measuring isotopics, NBL reference material CRM 125-A was provided. Several laboratories from each country provided results. As soon as the measurement results were sent to the organizers, they were statistically evaluated by NBL. During a meeting held at ABACC headquarters with the participation of NBL representatives, the ABACC technical support officer, and representatives of all the participant laboratories, the results were discussed and compared with the reference values. All the laboratories had the occasion, in an open discussion, to explain and show the difficulties and problems they faced during the exercise. ABACC had the opportunity not only to judge the quality of the measurements these laboratories performed, but also to determine

  19. Air kerma standardization for diagnostic radiology in a secondary standard laboratory

    International Nuclear Information System (INIS)

    Ramos, Manoel M.O.; Peixoto, J. Guilherme P.; Lopes, Ricardo T.

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Brazilian Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. The objective of this work was to implement the standardization of the air kerma for the unatenuated qualities (RQR) of IEC 61267 in the National Laboratory of Metrology of the Ionizing Radiations (LNMRI) of the Institute of Radiation Protection and Dosimetry (IRD). Technical procedures were developed together with uncertainty budget. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. (author)

  20. Calibration of photon and beta ray sources used in brachytherapy. Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories; Calibracion de fuentes de fotones y rayos beta usadas en braquiterapia. Guia de procedimiento estandarizados en Laboratorios Secundarios de Calibracion Dosimetrica (LSCD) y en hospitales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    It has generally been recognized that international harmonization in radiotherapy dosimetry is essential. Consequently, the IAEA has given much effort to this, for example by publishing a number of reports in the Technical Reports Series (TRS) for external beam dosimetry, most notably TRS-277 and more recently TRS-398. Both of these reports describe in detail the steps to be taken for absorbed dose determination in water and they are often referred to as 'dosimetry protocols'. Similar to TRS-277, it is expected that TRS-398 will be adopted or used as a model by a large number of countries as their national protocol. In 1996, the IAEA established a calibration service for low dose rate (LDR) 137 Cs brachytherapy sources, which is the most widely used source for treatment of gynecological cancer. To further enhance harmonization in brachytherapy dosimetry, the IAEA published in 1999 IAEA-TECDOC-1079 entitled 'Calibration of Brachytherapy Sources. Guidelines on Standardized Procedures for the Calibration of Brachytherapy Sources at Secondary Standard Dosimetry Laboratories (SSDLs) and Hospitals'. The report was well received and was distributed in a large number of copies to the members of the IAEA/WHO network of SSDLs and to medical physicists working with brachytherapy. The present report is an update of the aforementioned TECDOC. Whereas TECDOC-1079 described methods for calibrating brachytherapy sources with photon energies at or above those of {sup 192}Ir, the current report has a wider scope in that it deals with standardization of calibration of all the most commonly used brachytherapy sources, including both photon and beta emitting sources. The latter sources have been in use for a few decades already, but their calibration methods have been unclear. Methods are also described for calibrating sources used in the rapidly growing field of cardiovascular angioplasty. In this application, irradiation of the vessel wall is done in an attempt to prevent restenosis

  1. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  2. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  3. Dosimetry through the Secondary Laboratory of Dosimetric Calibration of Mexico; Dosimetria a traves del Laboratorio Secundario de Calibracion Dosimetrica de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tovar M, V.M.; Alvarez R, J.T.; Medina O, V.P.; Vergara M, F.; Anaya M, R.; Cejudo A, J.; Salinas L, B. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    In the beginnings of the sixty years an urgent necessity is presented mainly in the developing countries, of improving in important form the accuracy in the dosimetry of external faces in therapy of radiations (radiotherapy centers), mainly in the calibration of ''clinical dosemeters''. In 1976 the International Atomic Energy Agency, (IAEA), and the World Health Organization, (WHO), they carried out a mutual agreement with regard to the establishment and operation of a net of Secondary Patron Laboratories of Dosimetry, (LSCD). The necessity to establish measure patterns in the field of the dosimetry of the ionizing radiations, is necessary, to have an accuracy but high in the dosimetry of the radiation beams in therapy which is highly dependent of the dose given to the tumor of those patient with cancer. Similar levels of accuracy are required in protection measures to the radiation with an acceptable smaller accuracy, however, when the personal dosemeters are used to determine the doses received by the individuals under work conditions, such mensurations in therapy of radiations and radiological protection will have traceability through a chain of comparisons to primary or national patterns. The traceability is necessary to assure the accuracy and acceptability of the dosimetric measures, as well as, the legal and economic implications. The traceability is also necessary in the dosimetry of high dose like in the sterilization of different products. The main function of the LSCD is to provide a service in metrology of ionizing radiations, maintaining the secondary or national patterns, which have a traceability to the International System of measures, which is based for if same in the comparison of patterns in the Primary Laboratories of Dosimetry (LPD) under the auspice of the International Office of Weights and Measure (BIPM). The secondary and national patterns in the LSCD constitute in Mexico, the national patterns of the magnitudes in the

  4. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago

    International Nuclear Information System (INIS)

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-01-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  5. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  6. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    Science.gov (United States)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  7. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  8. Performance testing of UK personal dosimetry laboratories

    CERN Document Server

    Marshall, T O

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it...

  9. Performance testing of UK personal dosimetry laboratories

    International Nuclear Information System (INIS)

    Marshall, T.O.

    1985-01-01

    The proposed Ionising Radiations Regulations will require all UK personal dosimetry laboratories that monitor classified personnel to be approved for personal dosimetry by the Health and Safety Executive. It is suggested that these approvals should be based on general and supplementary criteria published by the British Calibration Service (BCS) for laboratory approval for the provision of personal dosimetry services. These criteria specify certain qualitative requirements and also indicate the need for regular tests of performance to be carried out to ensure constancy of dosimetric standards. This report concerns the latter. The status of the BCS criteria is discussed and the need for additional documents to cover new techniques and some modifications to existing documents is indicated. A means is described by which the technical performance of laboratories, concerned with personal monitoring for external radiations, can be assessed, both initially and ongoing. The costs to establish the scheme and operate it are also estimated. (author)

  10. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  11. Dose intercomparison studies for standardization of high-dose dosimetry in Viet Nam

    International Nuclear Information System (INIS)

    Mai Hoang Hoa; Duong Nguyen Dinh; Kojima, T.

    1999-01-01

    The Irradiation Center of the Vietnam Atomic Energy Commission (IC-VAEC) is planning to establish a traceability system for high-dose dosimetry and to provide high-dose standards as a secondary standard dosimetry laboratory (SSDL) level in Vietnam. For countries which do not have a standard dosimetry laboratory, the participation in the International Dose Assurance Service (IDAS) operated by the International Atomic Energy Agency (IAEA) is the most common means to verify own dosimetry performance with a certain uncertainty. This is, however, only one-direction dose intercomparison with evaluation by IAEA including unknown parameter at participant laboratories. The SSDL level laboratory should have traceability as well as compatibility, ability to evaluate uncertainties of its own dosimetry performance by itself In the present paper, we reviewed our dosimetry performance through two-way dose intercomparison studies and self-evaluation of uncertainty in our dosimetry procedure. The performance of silver dichromate dosimeter as reference transfer dosimeter in IC-VAEC was studied through two-way blind dose intercomparison experiments between the IC-VAEC and JAERI. As another channel of dose intercomparison with IAEA, alanine dosimeters issued by IDAS were simultaneously irradiated with the IC-VAEC dichromate dosimeters at IC-VAEC and analyzed by IAEA. Dose intercomparison between IC-VAEC and JAERI results into a good agreement (better than ±2.5%), and IDAS results also show similar agreement within ±3.0%. The uncertainty was self-estimated on the basis of the JAERI alanine dosimetry, and a preliminary value of about 1.86% at a 68% confidence level is established. The results from these intercomparisons and our estimation of the uncertainty are consistent. We hope that our experience is valuable to other countries which do not have dosimetry standard laboratories and/or are planning to establish them. (author)

  12. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    Segura, T.M.; Prud'homme-Lalonde, L.; Thorleifson, E.; Lachapelle, S.; Mullins, D.; Qutob, S.; Wilkinson, D.

    2005-07-01

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  13. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T M; Prud' homme-Lalonde, L [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S; Mullins, D [JERA Consulting (Canada); Qutob, S [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  14. Automation at NRCN Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Abraham, A.; Arad, I.; Mesing, M.; Levinson, S.; Weinstein, M.; Pelled, O.; Broida, A.; German, U.

    2014-01-01

    Running a dosimetric service based on TLD technology such as at the Nuclear Research Centre Negev (NRCN) requires a large group of workers to carry out simple mechanical actions such as opening and closing TLD badges, placing and removal of TLD cards from the badges and operating the TLD reader. These actions can be automated to free human resources for other assignments and to improve the quality assurance. At NRCN a project was undertaken to design and build a robotic system based on a manipulator arm. The design was based on the experience achieved with an earlier prototype (1,2). The system stores the TLD badges in special designed boxes, which are transported and stored in computer defined bins. The robotic arm loads and unloads TLD cards to the badges, and loads/unloads the cards to a magazine for the TLD reader. At the Nuclear Research Center Negev (NRCN) each badge is assigned to a specific worker and bears a sticker containing the worker's personal details, also in a machine readable form (barcode). In order to establish a proper QA check, a barcode reader records the information on the badge and on the TLD card placed in this badge and checks their compatibility with the information contained in the main database. Besides the TLD cards loading/unloading station, there is a contamination check station, a cards cleaning station and a UV irradiation box used to reduce the history dependent residual dose. The system was installed at the NRCN dosimetry laboratory It was successfully tested for several hundreds of cycles and will become operational in the first quarter of 2014. As far as we know, there is no similar product available for automatic handling in a TLD laboratory

  15. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  16. Quality control of secondary standards and calibration systems, therapy level, of National Laboratory of Metrology from Ionizing Radiations (LNMRI)

    International Nuclear Information System (INIS)

    Cecatti, E.R.; Freitas, L.C. de

    1992-01-01

    The results of quality control program of secondary standards, therapy level, and the calibration system of clinical dosemeters were analysed from 1984, when a change in the laboratory installation occurred and new standards were obtained. The national and the international intercomparisons were emphasised. The results for graphite wall chambers were compared, observing a maximum variation of about 0,6%. In the case of Delrin (TK01) wall chambers, the maximum variation was 1,7%. The results of post intercomparisons with thermoluminescent dosemeters have presented derivations lesser than 1%, securing the standards consistence at LNMRI with the international metrological system. (C.G.C.)

  17. Quality control at the Regional Centre of Nuclear Sciences chemical dosimetry laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne L.B. de; Melo, Roberto T. de; Silva, Danubia B. da; Pedroza, Eryka H.; Rodrigues, Kelia R.G.; Cunha, Manuela S. da; Figueiredo, Marcela D.C. de [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Oliveira, Aristides, E-mail: vlsouza@cnen.gov.b, E-mail: rtmelo@cnen.gov.b [Hospital de Cancer de Pernambuco, Recife, PE (Brazil)

    2011-07-01

    Standards for accreditation of laboratories as in ISO 9001 in section: 4.11 require inspection, measuring and equipment testing; likewise, IEC 17025: 2005 in section: 5.5.2 requires the equipment to be calibrated or verified before being put into use. In our laboratory, quality control is often accomplished by standards set done by the laboratory scientists themselves; however, at present, Hellma secondary calibration standards (4026 - Holmium oxide - Filters: F0, F2, F3, F4 and filter didymium - F7) have been used in order to verify if errors in the laboratory have been close to the 1-2% margin. Control graphs were made by using the results of synthetically prepared standards and standardized spectral calibration certificates. The set of secondary calibration standards permits to check the accuracy of the spectrophotometers used in research for both the absorbance in the visible spectrum (at 440, 465, 546, 590 and 635 nm wavelengths) and for the wavelengths (270, 280, 300, 320 nm) of the ultraviolet light. Filters (F0, F2, F3, F4 and F7) are stable and do not suffer the influence of temperature (the influence is negligible), the F0 filter was being used as a blank. The purpose is to verify whether the spectrometer needs adjustments, an important procedure to check absorbance stability, baseline flatness, slit width accuracy and stray radiation. The calibration tests are performed annually in our laboratory and recalibration of Hellma secondary standards is recommended every two years. The results show that the Chemical Dosimetry Laboratory in CRCN has a calibrated spectrophotometer and their synthetic standards for Fricke dosimetry could be used as an alternative method for testing the proficiency and competence of calibration laboratories in accordance with the regulations and standards. (author)

  18. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    International Nuclear Information System (INIS)

    2002-01-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in 60 Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and satisfies

  19. International symposium on standards and codes of practice in medical radiation dosimetry. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The development of radiation measurement standards by National Metrology Institutes (NMIs) and their dissemination to Secondary Standard Dosimetry Laboratories (SSDLs), cancer therapy centres and hospitals represent essential aspects of the radiation dosimetry measurement chain. Although the demands for accuracy in radiotherapy initiated the establishment of such measurement chains, similar traceable dosimetry procedures have been implemented, or are being developed, in other areas of radiation medicine (e.g. diagnostic radiology and nuclear medicine), in radiation protection and in industrial applications of radiation. In the past few years the development of primary standards of absorbed dose to water in {sup 60}Co for radiotherapy dosimetry has made direct calibrations in terms of absorbed dose to water available in many countries for the first time. Some laboratories have extended the development of these standards to high energy photon and electron beams and to low and medium energy x-ray beams. Other countries, however, still base their dosimetry for radiotherapy on air kerma standards. Dosimetry for conventional external beam radiotherapy was probably the field where standardized procedures adopted by medical physicists at hospitals were developed first. Those were related to exposure and air kerma standards. The recent development of Codes of Practice (or protocols) based on the concept of absorbed dose to water has led to changes in calibration procedures at hospitals. The International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water (TRS 398) was sponsored by the International Atomic Energy Agency (IAEA), World Health Organization (WHO), Pan-American Health Organization (PAHO) and the European Society for Therapeutic Radiology and Oncology (ESTRO) and is expected to be adopted in many countries worldwide. It provides recommendations for the dosimetry of all types of beams (except neutrons) used in external radiotherapy and

  20. Establishing working standards of chromosome aberrations analysis for biological dosimetry

    International Nuclear Information System (INIS)

    Bui Thi Kim Luyen; Tran Que; Pham Ngoc Duy; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2015-01-01

    Biological dosimetry is an dose assessment method using specify bio markers of radiation. IAEA (International Atomic Energy Agency) and ISO (International Organization for Standardization) defined that dicentric chromosome is specify for radiation, it is a gold standard for biodosimetry. Along with the documents published by IAEA, WHO, ISO and OECD, our results of study on the chromosome aberrations induced by radiation were organized systematically in nine standards that dealing with chromosome aberration test and micronucleus test in human peripheral blood lymphocytes in vitro. This standard addresses: the reference dose-effect for dose estimation, the minimum detection levels, cell culture, slide preparation, scoring procedure for chromosome aberrations use for biodosimetry, the criteria for converting aberration frequency into absorbed dose, reporting of results. Following these standards, the automatic analysis devices were calibrated for improving biological dosimetry method. This standard will be used to acquire and maintain accreditation of the Biological Dosimetry laboratory in Nuclear Research Institute. (author)

  1. Research Laboratory of Mixed Radiation Dosimetry

    International Nuclear Information System (INIS)

    2002-01-01

    determined as a product H = D·Q of the absorbed dose, D, and radiation quality factor, Q, both determined by the recombination chamber. The chambers can be used for determination of dose equivalents of any external radiation, therefore also in neutron and neutron-gamma fields. REFERENCE NEUTRON FIELDS Standard neutron fields, traceable to primary standard laboratory (NPL, Great Britain) were established at the Institute of Atomic Energy almost ten years ago. The fields are formed by calibrated sources of 252 Cf and 241 Am-Be. Additionally, spherical filters made of iron or paraffin can be used for modification of the neutron spectrum and gamma component of absorbed dose. The fields are used mostly for research work but they also serve as only one in Poland facility suitable for calibration of neutron dose meters used in radiation protection. Maintenance of the fields includes some periodic measurements of the dosimetric parameters, improvements of the measuring methods and international intercomparisons. RESEARCH ON INTERNAL DOSIMETRY - Two research projects were carried out in 2001-evaluation of the data on intake of radiocesium after the Chernobyl accident and research on calibration of thyroid counter with regard to depth of thyroid gland. The second of the projects can be applied not only for radiation protection but also for improvement of measurements of iodine uptake in thyroid after diagnostic administration of 131 I. (author)

  2. Establishment of qualities mammography according to the standard IEC-61267 in the laboratory of metrology of ionizing radiation of the National Center of Dosimetry and enlargement of the accreditation by ENAC

    International Nuclear Information System (INIS)

    Roig Petit, F.; Mestre de Juan, V.; Alabau Albors, J.; Palma Copete, J.; Ruiz Rodriguez, J. C.; Pons Mocholi, S.

    2013-01-01

    The extension of the accreditation of the laboratory of the National Center Dosimetry (No. 58/LC10.036) by the national accreditation entity (ENAC), according to the ISO 17025 standard [2], for the standard qualities of mammography by the IEC 61267 comes to meet part of the needs that demand our health care environment in terms of radiation measuring instruments calibration. This work intends to publicize this enlargement commenting on the different phases of the process to get the accreditation. (Author)

  3. Organisation of a laboratory of photographic dosimetry

    International Nuclear Information System (INIS)

    Soudain, Georges

    1961-01-01

    After a recall of the main properties of photographic dosimetry, the author describes the principle of this method, and comments the issue of chromatic sensitivity of photographic emulsions. He discusses the calibration process for gamma radiation, X rays, and thermal neutrons. He describes how fast neutron dosimetry is performed. In the next part, he describes the organisation of the photometry laboratory which has to prepare and distribute dosimeters, to collect and exploit them, and to prepare a publication of results. These different missions and tasks are described

  4. External dosimetry by Thermoluminescent Dosimetry Laboratory - IPEN/CNEN - Brazil

    International Nuclear Information System (INIS)

    Manzoli, Jose Eduardo; Carvalho, Ricardo Nunes

    2001-01-01

    The Thermoluminescence Dosimetry Laboratory, LDT - IPEN/CNEN - Brazil, executes around six thousand TLD readings monthly. It is responsible for the dose evaluation and registration and for all the manufacture process of preparation and sending the dosemeters which are used by IPEN itself, hospitals, industries, town halls, universities, etc. Although prepared to read many kinds of materials, actually the LDT reads only CaSO 4 :Dy detector chips. Chips, heating molds, plastic packaging and almost every material or instrument are made right here at IPEN. The readings are performed in a Bicron Harshaw TLD model 5500, but an old model 2000-AB is ready to be used if necessary. In this work it is presented some features of this important service realized to the IPEN workers and to the community. (author)

  5. Dosimetry requirements derived from the sterilization standards

    DEFF Research Database (Denmark)

    Miller, A.

    1998-01-01

    The main standards for radiation sterilization, ISO 11137 and EN 552, rest the documentation for the properly executed sterilization process on dosimetry. Both standards describe general requirements to the dosimetry system: The dose measurements must be traceable to national standards...... and documented uncertainty limits of the dose measurements can be used to specify process control limits. This is also useful, for example, when dose setting experiments are carried out according to the methods described in ISO 11137, where product samples shall be irradiated within narrow limits......., the uncertainty of the dose measurement and the environmental influences must be known. This paper discusses how to obtain and maintain traceability and how to document measurement uncertainty. The implications of these requirements in the process control of radiation sterilization are further discussed. Known...

  6. Proton-beam radiation therapy dosimetry standardization

    International Nuclear Information System (INIS)

    Gall, K.P.

    1995-01-01

    Beams of protons have been used for radiation therapy applications for over 40 years. In the last decade the number of facilities treating patients and the total number of patients being treated has begun go grow rapidly. Due to the limited and experimental nature of the early programs, dosimetry protocols tended to be locally defined. With the publication of the AAPM Task Group 20 report open-quotes Protocol for Dosimetry of Heavy Charged Particlesclose quotes and the open-quotes European Code of Practice for Proton-Beam Dosimetryclose quotes the practice of determining dose in proton-beam therapy was somewhat unified. The ICRU has also recently commissioned a report on recommendations for proton-beam dosimetry. There have been three main methods of determining proton dose; the Faraday cup technique, the ionization chamber technique, and the calorimeter technique. For practical reasons the ionization chamber technique has become the most widely used. However, due to large errors in basic parameters (e.g., W-value) is also has a large uncertainty for absolute dose. It has been proposed that the development of water calorimeter absorbed dose standards would reduce the uncertainty in absolute proton dose as well as the relative dose between megavoltage X-ray beams and proton beams. The advantages and disadvantages are discussed

  7. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  8. Results of the dosimetry intercomparison

    International Nuclear Information System (INIS)

    Dure, Elsa S.

    2000-07-01

    The appropriate way to verify the accuracy of the results of dose reported by the laboratories that offer lend personal dosimetry service is in the periodic participation of round of intercomparison dosimetry, undertaken by laboratories whose standards are trace (Secondary Laboratory). The Laboratory of External Personal Dosimetry of the CNEA-PY has participated in three rounds of intercomparison. The first two were organized in the framework of the Model Project RLA/9/030 RADIOLOGICAL WASTE SECURITY, and the irradiations were carried out in the Laboratory of Regional Calibration of the Center of Nuclear Technology Development, Belo Horizonte-Brazil (1998) and in the National Laboratory of Metrology of the ionizing radiations of the Institute of Radioprotection and Dosimetry, Rio de Janeiro-Brazil (1999). The third was organized by the IAEA and the irradiations were made in the Physikalisch-Technische Bundesanstalt PTB, Braunschweig - Federal Republic of Germany (1999-2000) [es

  9. Validation criteria of an internal dosimetry laboratory in vivo

    International Nuclear Information System (INIS)

    Alfaro L, M. de las M.

    2014-10-01

    People working with radioactive materials, under certain circumstances (e.g. not using the proper protective equipment, an incident not covered, etc.) could be incorporated into the body. The radiation protection programs include direct measurement methods -in vivo- or indirect -in vitro- or both, to know that radioactive material is incorporated into the body. The monitoring measurements of internal contamination or (Radio-bioassay) are carried out with the purpose of determining the amount of radioactive material incorporated in the body; estimate the effective dose and committed dose; management administration of radiation protection; appropriate medical management; and to provide the data necessary for the legal requirements and the preservation of records. The measurement methods used in the monitoring of internal contamination must be validated by the combination of the following processes: calibration, using standards reference materials and/or simulators; execute systematic research, using control samples; and intercomparison between laboratories and performance tests. In this paper the validation criteria of an internal dosimetry laboratory in vivo are presented following the information provided by the standard ANSI N13-30-1996 and ISO/TEC 17025-2005 as are the criteria of facilities, staff training, interpretation of measurements, performance criteria for monitoring of internal contamination in vivo, results reporting and records retention. Thereby we achieve standardized quantitative performance criteria of truthfulness, accuracy and detection limit and a consensus on statistical definitions to establish the validation plan of a monitoring laboratory of internal contamination in vivo. (Author)

  10. The U.S. Department of Energy Laboratory Accreditation Program for testing the performance of extremity dosimetry systems: a summary of the program status

    International Nuclear Information System (INIS)

    Cummings, F.M.; Carlson, R.D.; Gesell, T.F.; Loesch, R.M.

    1992-01-01

    In 1986, The U.S. Department of Energy (DOE) implemented a program to test the performance of its personnel whole-body dosimetry systems. This program was the DOE Laboratory Accreditation Program (DOELAP). The program parallels the performance testing program specified in the American National Standard for Dosimetry - Personnel Dosimetry Performance -Criteria for Testing (ANSI N13.11-1983), but also addresses the additional dosimetry needs of DOE facilities. As an extension of the whole-body performance testing program, the DOE is now developing a program to test the performance of personnel extremity dosimetry systems. The draft DOE standard for testing extremity dosimetry systems is much less complex than the whole-body dosimetry standard and reflects the limitations imposed on extremity dosimetry by dosimeter design and irradiation geometry. A pilot performance test session has been conducted to evaluate the proposed performance-testing standard. (author)

  11. Twenty new ISO standards on dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Farrar IV, H.

    2000-01-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have

  12. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  13. Dosimetry. Standard practice for dosimetry in gamma irradiation facilities for food and non-food processing

    International Nuclear Information System (INIS)

    2008-01-01

    This Ghana Standard outlines the installation qualification program for an irradiator and the dosimetry procedures to be followed during operational qualification, performance qualification and routine processing in facilities that process food and non-food with gamma rays. This is to ensure that the product has been treated with predetermined range of absorbed dose. It is not intended for use in X-ray and electron beam facilities and therefore dosimetry systems in such facilities are not covered

  14. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  15. UK laboratory intercomparison on internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Speed, J.; Birchall, A.; Bull, R.; Cockerill, R.; Jarvis, N.S.; Marsh, J.W.; Peace, M.S.; Roberts, G.; Scarlett, C.; Spencer, D.; Stewart, P

    2003-07-01

    A laboratory intercomparison for internal dose assessment from a variety of intake scenarios is described. This is the first UK intercomparison using the revised ICRP Human Respiratory Tract and biokinetic models. Four United Kingdom laboratories participated and six cases were assessed. Overall, the agreement in internal dose assessments between laboratories was considered satisfactory with 79% of the assessed committed effective doses, e(50), for cases within a band of {+-}40% of the median value. The range (highest/lowest) in e(50) estimated by the laboratories was smallest (1.2) for a case involving inhalation of {sup 137}Cs. The range was greatest (6.0) for a case involving a wound with, and possible inhalation of, {sup 238}Pu, {sup 239}Pu and {sup 241}Am; the variation between laboratories in assessment of intakes could not be considered to be satisfactory in this case. Judgements on the most appropriate data to use in estimating intakes, choice of parameter values for use with the ICRP models and allowing for the effects of treatment with DTPA were important sources of variability between laboratories. (author)

  16. ASTM Standards for Reactor Dosimetry and Pressure Vessel Surveillance

    International Nuclear Information System (INIS)

    GRIFFIN, PATRICK J.

    1999-01-01

    The ASTM standards provide guidance and instruction on how to field and interpret reactor dosimetry. They provide a roadmap towards understanding the current ''state-of-the-art'' in reactor dosimetry, as reflected by the technical community. The consensus basis to the ASTM standards assures the user of an unbiased presentation of technical procedures and interpretations of the measurements. Some insight into the types of standards and the way in which they are organized can assist one in using them in an expeditious manner. Two example are presented to help orient new users to the breadth and interrelationship between the ASTM nuclear metrology standards. One example involves the testing of a new ''widget'' to verify the radiation hardness. The second example involves quantifying the radiation damage at a pressure vessel critical weld location through surveillance dosimetry and calculation

  17. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    Science.gov (United States)

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  18. Status report of the ESR/alanine project of the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Girzikowsky, R.

    1990-01-01

    The main tasks of the Dosimetry Laboratory of the IAEA are in the field of therapy-level dosimetry. Other dose ranges, i.e. protection-level standardization and calibration, are partly covered, too. On high-dose level the laboratory has been offering a Fricke-dosimetry service to Member States on request since 1965. In 1985 the Dosimetry Section has initiated an International Dose Assurance Service (IDAS). This service is an important part of the Agency's high-dose standardization programme and is based on Electron-Spin-Resonance (ESR) analysis of radiation-induced free radicals in alanine. This ESR/alanine dosimetry system was initially developed for high-dose application by GSF/Munich as the Agency's outside contractor. Although efforts were undertaken to equip the Agency Laboratory with an ESR analyzer since 1984, the purchase of an adequate unit was postponed until the end of 1988. From the date of establishment of the IDAS programme until today, the handling of all technical aspects, i.e. dosimeter production and evaluation was and is carried out by GSP/Munich under IAEA contract. As mentioned above, the IAEA Dosimetry Laboratory is in possession of its own ESR analyzer since December 1988. It was then installed in May 1989. Only one staff member of the laboratory was assigned to this project. He made himself acquainted with the analyzer, the measuring technique, and the application of alanine as dosimeter material. The ESR spectrometric analyzer is a CW ESR type ESP 300 manufactured by Bruker GmbH/FRG. It consists of a 9''/2,7 kW magnet, an X-band microwave bridge, a field regulator unit, a signal channel unit and a data system ESP 1620 based on the 68020 CPU. The probe material selected for measurement of concentration of radiation-induced free radicals is L-Alanine. This amino acid is a suitable material for transfer dosimeters due to its properties, i.e. wide sensitivity range (10 Gy to 100 kGy), energy independence for high-energy photons and electron

  19. Stability check source measurements with a secondary standard dosimeter in SSDL-Pakistan

    International Nuclear Information System (INIS)

    Salman, S.; Mahmoud, K.; Orfi, S.D.

    1988-01-01

    The stability check source is an integral part of a Secondary Standard Dosimetry System. The purpose of the stability check source is to confirm that the overall response of the dosimeter has not changed significantly since the instrument was calibrated. In case any change in the sensitivity of the ionization chamber or measuring assembly occurs the same is reflected in the reference check source measurements. Stability check source measurements are taken in a Primary Standard Dosimetry Laboratory (PSDL) at the time of calibration of secondary standard dosimeter and mean time (in seconds) to the reference setting of 50 scale divisions with ambient conditions of air at 20 deg. C, 101.3 kPa and 50% RH is quoted in a calibration certificate. This quoted stability check source time figure is the basis for future confirmation of overall response of the secondary standard dosimeter system. This note presents the results of stability check source measurements carried out in SSDL Pakistan over a period of five years

  20. Accreditation and training on internal dosimetry in a laboratory network in Brazil: an increasing demand.

    Science.gov (United States)

    Dantas, B M; Dantas, A L A; Acar, M E D; Cardoso, J C S; Julião, L M Q C; Lima, M F; Taddei, M H T; Arine, D R; Alonso, T; Ramos, M A P; Fajgelj, A

    2011-03-01

    In recent years, Brazilian Nuclear Programme has been reviewed and updated by government authorities in face of the demand for energy supply and its associated environmental constraints. The immediate impact of new national programmes and projects in nuclear field is the increase in the number of exposed personnel and the consequent need for reliable dosimetry services in the country. Several Technical Documents related to internal dosimetry have been released by the International Atomic Energy Agency and International Commission on Radiological Protection. However, standard bioassay procedures and methodologies for bioassay data interpretation are still under discussion and, in some cases, both in routine and emergency internal monitoring, procedures can vary from one laboratory to another and responses may differ markedly among Dosimetry Laboratories. Thus, it may be difficult to interpret and use bioassay data generated from different laboratories of a network. The main goal of this work is to implement a National Network of Laboratories aimed to provide reliable internal monitoring services in Brazil. The establishment of harmonised in vivo and in vitro radioanalytical techniques, dose assessment methods and the implementation of the ISO/IEC 17025 requirements will result in the recognition of technical competence of the network.

  1. Standard definitions of terms relating to dosimetry - approved standard 1973

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Definitions are presented for terms related to radiation dosimetry. These definitions are the same as, or similar to, those recommended by the International Commission on Radiological Units and Measurements (ICRU) as presented in the National Bureau of Sandards Handbook 62, but attempt has been made to define some of the terms more exactly

  2. Proposal of a methodology for quality control in thermoluminescent dosimetry laboratory

    International Nuclear Information System (INIS)

    Feital, Joao Carlos da S.; Almeida, Claudio Domingues de; Bezerra, Marcos A.

    2005-01-01

    Taken into account that in thermoluminescence dosimetry adequate selection procedures as well as accurate TLD readings are necessary, this paper presents results of methodology that can be applied as part of quality control programs in thermoluminescence dosimetry laboratories. For the experiment, a set of 200 TLDs ( LiF 100 ) were used and 9 from which were selected, a standard source of Cs -137 , a PTW kiln, a TL 'Harshaw' reader - model 5500 operating under the 'Win Rem' software and a Sr 90 / Y 90 'Bicron' irradiator. In the proceeding the selected dosimeters were irradiated and read 28 times during 18 months, then by one of the standard deviation properties, values up to 14 % were found, for a confidence level of 95 %. The results found and the bibliographic data related to the responses (arbitrary reading) in the crystals used in TLDs, have shown that this methodology can be applied in quality control programs. (author)

  3. Standardized physics-dosimetry for US pressure vessel cavity surveillance programs

    International Nuclear Information System (INIS)

    Ruddy, F.H.; McElroy, W.N.; Lippincott, E.P.

    1984-01-01

    This paper summarizes the applications of ASTM standard methods, guides and practices to define the selection and deployment of recommended dosimetry sets, the selection of dosimetry capsules and thermal neutron shields, the placement of dosimetry, the methods of measurement of dosimetry sensor reaction products, data analysis procedures, and uncertainty evaluation procedures. It also describes the validation of these standards both by in-reactor testing of advanced PV cavity surveillance physics-dosimetry and by data development. The use of these standards to guide selection and development of advanced dosimetry sets for commercial reactors is also summarized. (Auth.)

  4. Pilot test of ANSI draft standard N13.29 environmental dosimetry -- Performance criteria for testing

    International Nuclear Information System (INIS)

    Klemic, G.; Shebell, P.; Monetti, M.; Raccah, F.; Sengupta, S.

    1998-09-01

    American National Standards Institute Draft N13.29 describes performance tests for environmental radiation dosimetry providers. If approved it would be the first step toward applying the types of performance testing now required in personnel dosimetry to environmental radiation monitoring. The objective of this study was to pilot test the draft standard, before it undergoes final balloting, on a small group of dosimetry providers that were selected to provide a mix of facility types, thermoluminescent dosimeter designs and monitoring program applications. The first phase of the pilot test involved exposing dosimeters to laboratory photon, beta, and x-ray sources at routine and accident dose levels. In the second phase, dosimeters were subjected to ninety days of simulated environmental conditions in an environmental chamber that cycled through extremes of temperature and humidity. Two out of seven participants passed all categories of the laboratory testing phase, and all seven passed the environmental test phase. While some relatively minor deficiencies were uncovered in the course of the pilot test, the results show that draft N13.29 describes useful tests that could be appropriate for environmental dosimetry providers. An appendix to this report contains recommendations that should be addressed by the N13.29 working group before draft N13.29 is submitted for balloting

  5. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, Harry IV

    1990-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms and applications of radiation processing. To date, the group has completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment. This set will be available for adoption by national regulatory agencies or other standards-setting organizations for their procedures and protocols. (author)

  6. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  7. International cooperative effort to establish dosimetry standardization for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV.

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab

  8. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    Science.gov (United States)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  9. Secondary calibration laboratory for dosimetry in levels of therapy at the University of Santiago; Laboratorio secundario de calibracion para dosimetria en niveles de terapia en la Universidad de Santiago

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pazos Alvarez, A.

    2011-07-01

    A basic inherent benefits provided by the existence of a traceability chain radiation in any application, add the legal requirement for hospitals as pointed to by the RO. 1566/1998, which sets quality standards in radiotherapy. The decree attributed to hospital specialists radio physics in article 10 the responsibility for determining the acceptance and initial reference state of radiation generating equipment for therapeutic purposes, and the establishment and implementation of quality control programs associated and technical and physical aspects of radiation dosimetry. Different international organizations such as ICRU and IAEA recommendations on maintaining the accuracy of the dose delivered to patients in general, should be placed at least 5% considering the whole chain irradiation. In order to achieve this purpose it is necessary to establish programs of quality control and calibration dosimetric regular basis. The protocol of the IAEA TRS398 recommended dose calibration in water because it is a quantity of interest closest to clinical use and allows a relative uncertainty in the calibration environment reduced to 1%.. (Author)

  10. Standardized physics-dosimetry for US pressure vessel cavity surveillance programs

    International Nuclear Information System (INIS)

    Ruddy, F.H.; McElroy, W.N.; Lippincott, E.P.

    1984-01-01

    Standardized Physics-Dosimetry procedures and data are being developed and tested for monitoring the neutron doses accumulated by reactor pressure vessels (PV) and their support structures. These procedures and data are governed by a set of 21 ASTM standard practices, guides, and methods for the prediction of neutron-induced changes in light water reactor (LWR) PVs and support structure steels throughout the service life of the PV. This paper summarizes the applications of these standards to define the selection and deployment of recommended dosimetry sets, the selection of dosimetry capsules and thermal neutron shields, the placement of dosimetry, the methods of measurement of dosimetry sensor reaction products, data analysis procedures, and uncertainty evaluation procedures. It also describes the validation of these standards both by in-reactor testing of advanced PV cavity surveillance physics-dosimetry and by data development. The use of these standards to guide selection and deployment of advanced dosimetry sets for commercial reactors is also summarized

  11. Department of Energy standard for the performance testing of personnel dosimetry systems

    International Nuclear Information System (INIS)

    1986-12-01

    This standard is intended to be used in the Department of Energy Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems. It is based on the American National Standards Institute's (ANSI) ''Criteria for Testing Personnel Dosimetry Performance,'' ANSI N13.11-1983, recommendations made to DOE in ''Guidelines for the Calibration of Personnel Dosimeters,'' Pacific Northwest Laboratory (PNL)-4515 and comments received during peer review by DOE and DOE contractor personnel. The recommendations contained in PNL-4515 were based on an evaluation of ANSI N13.11 conducted for the Office of Nuclear Safety, DOE, by PNL. Parts of ANSI N13.11 that did not require modification were used essentially intact in this standard to maintain consistency with nationally recognized standards. Modifications to this standard have resulted from several DOE/DOE contractor reviews and a pilot testing session. An initial peer review by selected DOE and DOE contractor representatives on technical content was conducted in 1983. A review by DOE field offices, program offices, and contractors was conducted in mid-1984. A pilot performance testing session sponsored by the Office of Nuclear Safety was conducted in early 1985 by the Radiological and Environmental Sciences Laboratory, Idaho Falls. Results of the pilot test were reviewed in late 1985 by a DOE and DOE contractor committee. 11 refs., 4 tabs

  12. Establishment of qualities mammography according to the standard IEC-61267 in the laboratory of metrology of ionizing radiation of the National Center of Dosimetry and enlargement of the accreditation by ENAC; Establecimiento de las calidades de mamografia segun la norma IEC-61267 en el laboratorio de metrologia de radiaciones ionizantes del centro nacional de dosimetria (CND) y proceso de ampliacion de su acreditacion por ENAC

    Energy Technology Data Exchange (ETDEWEB)

    Roig Petit, F.; Mestre de Juan, V.; Alabau Albors, J.; Palma Copete, J.; Ruiz Rodriguez, J. C.; Pons Mocholi, S.

    2013-07-01

    The extension of the accreditation of the laboratory of the National Center Dosimetry (No. 58/LC10.036) by the national accreditation entity (ENAC), according to the ISO 17025 standard [2], for the standard qualities of mammography by the IEC 61267 comes to meet part of the needs that demand our health care environment in terms of radiation measuring instruments calibration. This work intends to publicize this enlargement commenting on the different phases of the process to get the accreditation. (Author)

  13. Commissioning dosimetry for the laboratory irradiation facility type PX-γ-30

    International Nuclear Information System (INIS)

    Prieto Miranda, E.F.; Cuesta Fuente, G.I.; Chavez Ardanza, A.; Sainz Vidal, D.

    1997-01-01

    In the present paper at the laboratory irradiation type PX-y-30 was carried out the commissioning dosimetry, which belongs to Radiological Department of the CEADEN. It was determined the dose distribution as well as principal dosimetric parameters of the irradiation process. Besides, an irradiation position was found for the calibration or intercomparison of dosimetry systems

  14. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed

  15. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  16. Personal dosimetry in Kazakhstan

    International Nuclear Information System (INIS)

    Khvoshnyanskaya, I.R.; Vdovichenko, V.G.; Lozbin, A.Yu.

    2003-01-01

    KATEP-AE Radiation Laboratory is the first organization in Kazakhstan officially licensed by the Kazakhstan Atomic Energy Committee to provide individual dosimetry services. The Laboratory was established according to the international standards. Nowadays it is the largest company providing personal dosimetry services in the Republic of Kazakhstan. (author)

  17. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  18. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  19. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    International Nuclear Information System (INIS)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de

    2014-01-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  20. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  1. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  2. Quality assurance program in the External dosimetry laboratory of the CPHR

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J.

    2006-01-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  3. Metrological characteristics of the new BSS2 beta secondary standard system

    International Nuclear Information System (INIS)

    Reynaldo, Sibele R.

    2005-01-01

    Due to the increased interest and the importance of beta radiation dosimetry for radiation protection purposes, the Centro de Desenvolvimento da Tecnologia Nuclear. MG, Brazil, acquired the newest Beta Secondary Standard system (BSS2) in order to replace the old BSS1 model, with the goal of implement a beta radiation metrology laboratory and provide the corresponding reference radiation. The new system BSS2, unique in Latin America, requires operational testing and metrological characterization for reliability purposes. For this, some comparative investigations of the two systems were made. The influence of opening and closing the shutter in the final dose of radiation was identified as the highest in the BSS2 in relation to the one founded in BSS1, justified by the structural difference of the shutters of the systems and the reproducibility of source-detector geometry was better in BSS2, because of the robustness of the same

  4. Productivity standards for histology laboratories.

    Science.gov (United States)

    Buesa, René J

    2010-04-01

    The information from 221 US histology laboratories (histolabs) and 104 from 24 other countries with workloads from 600 to 116 000 cases per year was used to calculate productivity standards for 23 technical and 27 nontechnical tasks and for 4 types of work flow indicators. The sample includes 254 human, 40 forensic, and 31 veterinary pathology services. Statistical analyses demonstrate that most productivity standards are not different between services or worldwide. The total workload for the US human pathology histolabs averaged 26 061 cases per year, with 54% between 10 000 and less than 30 000. The total workload for 70% of the histolabs from other countries was less than 20 000, with an average of 15 226 cases per year. The fundamental manual technical tasks in the histolab and their productivity standards are as follows: grossing (14 cases per hour), cassetting (54 cassettes per hour), embedding (50 blocks per hour), and cutting (24 blocks per hour). All the other tasks, each with their own productivity standards, can be completed by auxiliary staff or using automatic instruments. Depending on the level of automation of the histolab, all the tasks derived from a workload of 25 cases will require 15.8 to 17.7 hours of work completed by 2.4 to 2.7 employees with 18% of their working time not directly dedicated to the production of diagnostic slides. This article explains how to extrapolate this productivity calculation for any workload and different levels of automation. The overall performance standard for all the tasks, including 8 hours for automated tissue processing, is 3.2 to 3.5 blocks per hour; and its best indicator is the value of the gross work flow productivity that is essentially dependent on how the work is organized. This article also includes productivity standards for forensic and veterinary histolabs, but the staffing benchmarks for histolabs will be the subject of a separate article. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Alanine-EPR as a transfer standard dosimetry system for low energy X radiation

    International Nuclear Information System (INIS)

    Khoury, H.J.; Silva, E.J. da; Mehta, K.; Barros, V.S. de; Asfora, V.K.; Guzzo, P.L.; Parker, A.G.

    2015-01-01

    The purpose of this paper is to evaluate the use of alanine-EPR as a transfer standard dosimetry system for low energy X radiation, such as that in RS-2400, which operates in the range from 25 to 150 kV and 2 to 45 mA. Two types of alanine dosimeters were investigated. One is a commercial alanine pellets from Aérial-Centre de Ressources Technologiques, France and one was prepared in our laboratory (LMRI-DEN/UFPE). The EPR spectra of the irradiated dosimeters were recorded in the Nuclear Energy Department of UFPE, using a Bruker EMX10 EPR spectrometer operating in the X-band. The alanine-EPR dosimetry system was calibrated in the range of 20–220 Gy in this X-ray field, against an ionization chamber calibrated at the relevant X-ray energy with traceability to PTB. The results showed that both alanine dosimeters presented a linear dose response the same sensitivity, when the EPR signal was normalized to alanine mass. The total uncertainty in the measured dose was estimated to be about 3%. The results indicate that it is possible to use the alanine-EPR dosimetry system for validation of a low-energy X ray irradiator, such as RS-2400.

  6. Outcome Standards for Secondary Marketing Education.

    Science.gov (United States)

    Stone, James R., III

    1985-01-01

    Describes a study which sought to establish outcome standards very important for secondary marketing education. Business people, former students, and marketing educators were asked to judge the standards identified from the literature in terms of importance to secondary marketing education. (CT)

  7. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  8. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  9. Personnel dosimetry methods introduced in the Czechoslovak national laboratories

    International Nuclear Information System (INIS)

    Trousil, J.; Singer, J.; Kokta, L.; Prouza, Z.

    1979-01-01

    Personnel dosimetry methods are described that were developed in the Institute for Research, Production and Application of Radioisotopes and that have been or will be introduced in the national personnel dosimetry service. In Czechoslovakia, workers exposed to a radiation risk are divided into two groups, according to the level of the risk. The criterion is the possibility of exceeding one tenth of the MPD. For the higher risk group, a complex dose meter is usually used for dosimetry of photon and beta radiation; it contains a film dose meter and a radiothermoluminescent (RTL) glass dose meter. The RTL glass dose meter also serves as an accident dose meter. For neutron dosimetry, a dose meter comprising a solid-state track detector in combination with fissionable foils has been introduced. For accident dosimetry, a silicon diode of Czechoslovak production is used. For the lower risk group, only the introduction of an RTL dose meter is foreseen. There will be a three month control period; for neutron dosimetry, the track detector in combination with fissionable foils is retained. For measurements of hand doses, a themoluminescent ring dose meter has been introduced. The dose meters are described, giving information on the types of detectors employed, measurement techniques and descriptions of the basic characteristics of the instruments, their basic dosimetric parameters and the dose and energy ranges which can be measured. The results of international comparisons are presented; these have served to confirm the measurement precision. In conclusion, some questions of dose-meter calibration are summarized, and the problems of dose measurement in mixed fields of neutrons and gamma rays are discussed. (author)

  10. Oak Ridge National Laboratory Embrittlement Data Base (EDB) and Dosimetry Evaluation (DE) program

    International Nuclear Information System (INIS)

    Pace, J.V. III; Remec, I.; Wang, J.A.; White, J.E.

    1996-01-01

    The objective of this program is to develop, maintain, and upgrade computerized data bases, calculational procedures, and standards relating to reactor pressure vessel fluence spectra determinations and embrittlement assessments. As part of this program, the information from radiation embrittlement research on nuclear reactor pressure vessel steels and from power reactor surveillance reports is maintained in a data base published on a periodic basis. The Embrittlement Data Base (EDB) effort consists of verifying the quality of the EDB, providing user-friendly software to access and process the data, and exploring and assessing embrittlement prediction models. The Dosimetry Evaluation effort consists of maintaining and upgrading validated neutron and gamma radiation transport procedures, maintaining cross-section libraries with the latest evaluated nuclear data, and maintaining and updating validated dosimetry procedures and data bases. The information available from this program provides data for assisting the Office of Nuclear Reactor Regulation, with support from the Office of Nuclear Regulatory Research, to effectively monitor current procedures and data bases used by vendors, utilities, and service laboratories in the pressure vessel irradiation surveillance program

  11. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-09-01

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  12. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DeWard, L.A.; Micka, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST).

  13. QA experience at the University of Wisconsin accredited dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    DeWard, L.A.; Micka, J.A.

    1993-01-01

    The University of Wisconsin Accredited Dosimetry Calibration Laboratory (UW ADCL) employs procedure manuals as part of its Quality Assurance (QA) program. One of these manuals covers the QA procedures and results for all of the UW ADCL measurement equipment. The QA procedures are divided into two main areas: QA for laboratory equipment and QA for external chambers sent for calibration. All internal laboratory equipment is checked and recalibrated on an annual basis, after establishing its consistency on a 6-month basis. QA for external instruments involves checking past calibration history as well as comparing to a range of calibration values for specific instrument models. Generally, the authors find that a chamber will have a variation of less than 0.5 % from previous Co-60 calibration factors, and falls within two standard deviations of previous calibrations. If x-ray calibrations are also performed, the energy response of the chamber is plotted and compared to previous instruments of the same model. These procedures give the authors confidence in the transfer of calibration values from National Institute of Standards and Technology (NIST)

  14. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  15. Tour of the Standards and Calibrations Laboratory

    International Nuclear Information System (INIS)

    Elliott, J.H.

    1978-01-01

    This tour of Lawrence Livermore Laboratory's Standards and Calibrations Laboratory is intended as a guide to the capabilities of and services offered by this unique laboratory. Described are the Laboratory's ability to provide radiation fields and measurements for dosimeters, survey instruments, spectrometers, and sources and its available equipment and facilities. The tour also includes a survey of some Health Physics and interdepartmental programs supported by the Standards and Calibrations Laboratory and a listing of applicable publications

  16. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, A [University of Colorado, Anschutz Medical Campus, Aurora, Colorado (United States); Poli, G [International Atomic Energy Agency, Vienna, Vienna (Austria); Beykan, S; Lassman, M [University of Wuerzburg, Wuerzberg, Wuerzberg (Germany)

    2016-06-15

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for method development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a

  17. Personnel radiation dosimetry laboratory accreditation programme for thermoluminescent dosimeters : a proposal

    International Nuclear Information System (INIS)

    Bhatt, B.C.; Srivastava, J.K.; Iyer, P.S.; Venkatraman, G.

    1993-01-01

    Accreditation for thermoluminescent dosimeters is the process of evaluating a programme intending to use TL personnel dosimeters to measure, report and record dose equivalents received by radiation workers. In order to test the technical competence for conducting personnel dosimetry service as well as to decentralize personnel monitoring service, it has been proposed by Radiological Physics Division (RPhD) to accredit some of the laboratories, in the country. The objectives of this accreditation programme are: (i) to give recognition to competent dosimetry processors, and (ii) to provide periodic evaluation of dosimetry processors, including review of internal quality assurance programme to improve the quality of personnel dosimetry processing. The scientific support for the accreditation programme will be provided by the scientific staff from Radiological Physics Division (RPhD) and Radiation Protection Services Division (RPSD). This paper describes operational and technical requirements for the Personnel Radiation Dosimetry Laboratory Accreditation Programme for Thermoluminescent Dosimeters for Personnel Dosimetry Processors. Besides, many technical documents dealing with the TL Personnel Dosimeter System have been prepared. (author). 5 refs., 2 figs

  18. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-07-01

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  19. CIEMAT external dosimetry service: ISO/IEC 17025 accreditation and 3 y of operational experience as an accredited laboratory

    International Nuclear Information System (INIS)

    Romero, A.M.; Rodriguez, R.; Lopez, J.L.; Martin, R.; Benavente, J.F.

    2016-01-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. (authors)

  20. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    International Nuclear Information System (INIS)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-01-01

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption

  1. Standard Practice for Dosimetry of Proton Beams for use in Radiation Effects Testing of Electronics

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Margaret A.; Blackmore, Ewart; Cascio, Ethan W.; Castaneda, Carlos; von Przewoski, Barbara; Eisen, Harvey

    2008-07-25

    Representatives of facilities that routinely deliver protons for radiation effect testing are collaborating to establish a set of standard best practices for proton dosimetry. These best practices will be submitted to the ASTM International for adoption.

  2. Laboratory of research for environmental radiation and its dosimetry in the ININ

    International Nuclear Information System (INIS)

    Chavez S, B.M.

    2003-01-01

    The objectives of this work are to learn on the methodology that should be continued for the investigation of such a specialized topic as it is a radiation laboratory and to develop the executive project of a building that contains laboratories focused to the investigation of the radiation levels in the environment and their dosimetry. The National Institute of Nuclear Research (ININ), is the place where are carried out many of the investigations related to the field of the physics and chemistry in Mexico besides being the center of nuclear research more important of Latin America and it is for that reason that here is proposed the Laboratory of Low Radiation and its Dosimetry, since the Institute accounts with the whole infrastructure and necessary safety for this type of laboratories. (Author)

  3. Proton beam dosimetry for radiosurgery: implementation of the ICRU Report 59 at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Myers, Karla D.; Rosenthal, Stanley J.; Smith, Alfred R.

    2002-01-01

    Recent proton dosimetry intercomparisons have demonstrated that the adoption of a common protocol, e.g. ICRU Report 59, can lead to improved consistency in absorbed dose determinations. We compared absorbed dose values, measured in the 160 MeV proton radiosurgery beamline at the Harvard Cyclotron Laboratory, based on ionization chamber methods with those from a Faraday cup technique. The Faraday cup method is based on a proton fluence determination that allows the estimation of absorbed dose with the CEMA approximation, under which the dose is equal to the fluence times the mean mass stopping power. The ionization chamber technique employs an air-kerma calibration coefficient for 60 Co radiation and a calculated correction in order to take into account the differences in response to 60 Co and proton beam radiations. The absorbed dose to water, based on a diode measurement calibrated with a Faraday cup technique, is approximately 2% higher than was obtained from an ionization chamber measurement. At the Bragg peak depth, the techniques agree to within their respective uncertainties, which are both approximately 4% (1 standard deviation). The ionization chamber technique exhibited superior reproducibility and was adopted in our standard clinical practice for radiosurgery. (author)

  4. Alanine dosimetry for clinical applications. Proceedings

    International Nuclear Information System (INIS)

    Anton, M.

    2006-05-01

    The following topics are dealt with: Therapy level alanine dosimetry at the UK Nationational Physical Laboratory, alanine as a precision validation tool for reference dosimetry, composition of alanine pellet dosimeters, the angular dependence of the alanine ESR spectrum, the CIAE alanine dosimeter for radiotherapy level, a correction for temporal evolution effects in alanine dosimetry, next-generation services foe e-traceability to ionization radiation national standards, establishing e-traceability to HIST high-dose measurement standards, alanine dosimetry of dose delivery from clinical accelerators, the e-scan alanine dosimeter reader, alanine dosimetry at ISS, verification of the integral delivered dose for IMRT treatment in the head and neck region with ESR/alanine dosimetry, alanine dosimetry in helical tomotherapy beams, ESR dosimetry research and development at the University of Palermo, lithium formate as a low-dose EPR radiation dosimeter, sensitivity enhancement of alanine/EPR dosimetry. (HSI)

  5. Dosimetry at the location of secondary tumors after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baas, H W; Davelaar, J J; Broerse, J J; Noordijk, E M [University Hospital, Leiden (Netherlands). Dept. of Clinical Oncology

    1995-12-01

    After a latency period of many years the incidence of a secondary tumor is considered a serious late effect of radiotherapy. Analysis of about 200 patients, treated by radiotherapy for Hodgkin`s disease in our hospital, shows an actuarial risk for the incidence of a secondary tumor of about 7% after 10 years. The chance of tumor induction depends on the dose at the location of the tumor and therefore a good dose estimation is mandatory. Radiotherapy was given with Co-60 in the early years and with linear accelerators thereafter, exposing the target areas to 36 - 40 Gy. For dose estimations at the penumbra and outside the beam, where tumor incidence is expected to be high, we used a.o. Monte Carlo calculations. We developed an EGS4 computer simulation for a treatment beam from a linear accelerator irradiating a mathematical phantom representing the patient geometry (GSF ADAM phantom). The isodose curves at certain energies were obtained for a water phantom and fitted quite well with measurements. In addition to Monte Carlo calculations we also used existing treatment planning systems. The dose estimations of a number of patients and the derived risk per unit of dose, which is important for both radiotherapy as well as radiation protection in general, is discussed.

  6. A prototype, glassless densitometer traceable to primary optical standards for quantitative radiochromic film dosimetry

    International Nuclear Information System (INIS)

    Rosen, B. S.; Hammer, C. G.; Kunugi, K. A.; DeWerd, L. A.; Soares, C. G.

    2015-01-01

    Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression ® 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibrated optical density (OD) was determined for 96 Gafchromic ® EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to 60 Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3 rotational

  7. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    OpenAIRE

    Clark, Catharine H; Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK...

  8. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    Science.gov (United States)

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  9. The Quality Control of Reference Standards in Metrology Dosimetry

    International Nuclear Information System (INIS)

    Lazarevic, Dj.; Ciraj Bjelac, O.; Kovacevic, M.; Vukcevic, M.

    2008-01-01

    This works presents the quality control tests applied to two types of ionization chambers with suitable electrometers. Measuring assemblies were tested in order to assess their performance and adequacy for use as reference standards in ionising radiation metrology laboratory for calibrations in the field of radiotherapy and radiation protection. Two types of ionizing chambers (Farmer type, 0.6 cm 3 and spherical ionizing chamber, 1 l) with suitable electrometers were tested. Following test were performed: repeatability, long term stability, polarity and leakage current measurement. All tested measuring assemblies demonstrated proper performance, correctness and high reliance of measurements, since all implemented quality control test results were within acceptable limits. (author)

  10. Report of a consultants meeting on dosimetry in diagnostic radiology

    International Nuclear Information System (INIS)

    Pernicka, F.

    1999-01-01

    During its biennial meeting in 1996, the Standing Advisory Committee 'SSDL Scientific Committee', recommended extending the long experience of the Agency in the field of standardization and monitoring dosimetry calibrations at radiotherapy and radiation protection level for the Secondary Standard Dosimetry Laboratory (SSDL) Network, to the field of diagnostic x-ray dosimetry. It was emphasized that 'Measurements on diagnostic x-ray machines have become increasingly important and some SSDLs are involved in such measurements. The Agency's dosimetry laboratory should, therefore, have proper radiation sources available to provide traceable calibrations to the SSDLs'. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments. The purpose of the consultants' meeting was to advise the Agency on dosimetry in diagnostic radiology. They were specifically requested to overview scientific achievements in the field and to give advice to the Agency on the need for further developments

  11. Implementation of the International Code of Practice on Dosimetry in Diagnostic Radiology (TRS 457): Review of Test Results

    International Nuclear Information System (INIS)

    2011-01-01

    In 2007, the IAEA published Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457). This publication recommends procedures for calibration and dosimetric measurement for the attainment of standardized dosimetry. It also addresses requirements both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. The implementation of TRS No. 457 decreases the uncertainty in the dosimetry of diagnostic radiology beams and provides Member States with a unified and consistent framework for dosimetry in diagnostic radiology, which previously did not exist. A coordinated research project (CRP E2.10.06) was established in order to provide practical guidance to professionals at SSDLs and to clinical medical physicists on the implementation of TRS No. 457. This includes the calibration of radiological dosimetry instrumentation, the dissemination of calibration coefficients to clinical centres and the establishment of dosimetric measurement processes in clinical settings. The main goals of the CRP were to: Test the procedures recommended in TRS No. 457 for calibration of radiation detectors in different types of diagnostic beams and measuring instruments for varying diagnostic X ray modalities; Test the clinical dosimetry procedures, including the use of phantoms and patient dose surveys; Report on the practical implementation of TRS No. 457 at both SSDLs and hospital sites. Testing of TRS No. 457 was performed by a group of medical physicists from hospitals and SSDLs from various institutions worldwide

  12. Intercomparison of the PTB and LMRI standards in beta dosimetry

    International Nuclear Information System (INIS)

    Boehm, J.; Hillion, P.; Simoen, J.P.

    1976-01-01

    To set up national standard measuring devices for verifying the unit of the quantity 'absorbed dose rate in soft tissue' at different depths for β-radiation, extrapolation chambers have been developed at the PTB and LMRI. They are constructed of nearly tissue equivalent materials and connected to measuring devices of highest metrological quality. A comparison of these standards has been carried out using two β-ray emitters of 90 Sr+ 90 Y, one from each laboratory. Absorbed dose rates between 0.5 Gy h -1 and 1.3 Gy h -1 have been determined. The overall uncertainties of the absorbed dose rates in tissue are 1.8%. The part of the uncertainty due to systematic uncertainties of corrections, assumed to be carried out independently by each laboratory, amounts to 0.8% for the LMRI and 0.7% for the PTB. The ratios of the corresponding absorbed dose rates measured at the PTB and at the LMRI differ by 0.2% to 0.7%. On the average, the LMRI values are 0.4% smaller than the PTB values. The agreement is felt to be very satisfactory

  13. Intercomparison ot the PTB and LMRI standards in beta dosimetry

    International Nuclear Information System (INIS)

    Hillion, P.; Simoen, J.P.; Boehm, J.

    1976-12-01

    To set up national standard measuring devices for verifying the unit of the quantity 'absorbed dose rate in soft tissue' at different depths for β-radiation, extrapolation chambers have been developed at the PTB and LMRI. They are constructed of nearly tissue equivalent materials and connected to measuring devices of highest metrological quality. A comparison of these standards has been carried out using two β-ray sources of 90 Sr + 90 Y, one from each laboratory. Absorbed dose rates between 0,5 Gy h -1 and 1.3 Gy -1 have been determined. The overall uncertainties of the absorbed dose rates in tissue are 1.8%. The part of the uncertainty due to systematic uncertainties of corrections unique for each laboratory amounts to 0.8% for the LMRI and 0.7% for the PTB. The ratios of the corresponding absorbed dose rates measured at the PTB and at the LMRI differ by 0.2% to 0.7%. On the average, the LMRI values are 0.4% samller than the PTB values. The agreement is felt to be very satisfactory. (orig.) [de

  14. Laboratory Course on "Streptomyces" Genetics and Secondary Metabolism

    Science.gov (United States)

    Siitonen, Vilja; Räty, Kaj; Metsä-Ketelä, Mikko

    2016-01-01

    The "'Streptomyces' genetics and secondary metabolism" laboratory course gives an introduction to the versatile soil dwelling Gram-positive bacteria "Streptomyces" and their secondary metabolism. The course combines genetic modification of "Streptomyces"; growing of the strain and protoplast preparation, plasmid…

  15. [Standardization of terminology in laboratory medicine I].

    Science.gov (United States)

    Yoon, Soo Young; Yoon, Jong Hyun; Min, Won Ki; Lim, Hwan Sub; Song, Junghan; Chae, Seok Lae; Lee, Chang Kyu; Kwon, Jung Ah; Lee, Kap No

    2007-04-01

    Standardization of medical terminology is essential for data transmission between health-care institutions or clinical laboratories and for maximizing the benefits of information technology. Purpose of our study was to standardize the medical terms used in the clinical laboratory, such as test names, units, terms used in result descriptions, etc. During the first year of the study, we developed a standard database of concept names for laboratory terms, which covered the terms used in government health care centers, their branch offices, and primary health care units. Laboratory terms were collected from the electronic data interchange (EDI) codes from National Health Insurance Corporation (NHIC), Logical Observation Identifier Names and Codes (LOINC) database, community health centers and their branch offices, and clinical laboratories of representative university medical centers. For standard expression, we referred to the English-Korean/ Korean-English medical dictionary of Korean Medical Association and the rules for foreign language translation. Programs for mapping between LOINC DB and EDI code and for translating English to Korean were developed. A Korean standard laboratory terminology database containing six axial concept names such as components, property, time aspect, system (specimen), scale type, and method type was established for 7,508 test observations. Short names and a mapping table for EDI codes and Unified Medical Language System (UMLS) were added. Synonym tables for concept names, words used in the database, and six axial terms were prepared to make it easier to find the standard terminology with common terms used in the field of laboratory medicine. Here we report for the first time a Korean standard laboratory terminology database for test names, result description terms, result units covering most laboratory tests in primary healthcare centers.

  16. Status of computed tomography dosimetry for wide cone beam scanners

    International Nuclear Information System (INIS)

    2011-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. To provide such standardization in diagnostic radiology, the IAEA published Code of Practice entitled Dosimetry in Diagnostic Radiology: An International Code of Practice (IAEA Technical Reports Series No. 457; 2007), which recommends procedures for calibration and dosimetric measurement both in standards dosimetry laboratories, especially Secondary Standards Dosimetry Laboratories (SSDLs), and in clinical centres for radiology, as found in most hospitals. These standards address the main dosimetric methodologies needed in clinical diagnostic radiology, with the calibration of associated dosimetric equipment, including the measurement methodologies for computed tomography (CT). For some time now there has been a growing awareness that radiation dose originating from medical diagnostic procedures in radiology, is contributing an increasing proportion to the total population dose, with a large component coming from CT examinations. This is accompanied by rapid developments in CT technology, including the use of increasingly wide X ray scanning beams, which are presenting problems in dosimetry that currently cannot be adequately addressed by existing standards. This situation has received attention from a number of professional bodies, and institutions have proposed and are investigating new and adapted dosimetric models in order to find robust solutions to these problems that are critically affecting clinical application of CT dosimetry. In view of these concerns, and as a response to a recommendation from a coordinated research project that reviewed the implementation of IAEA Technical Reports Series No. 457, a meeting was held to review current dosimetric methodologies and to determine if a practical solution for dosimetry for wide X ray beam CT scanners was currently available. The meeting rapidly formed the view that there was an interim solution that

  17. Study of the reliability of the TLDs reader in a Thermoluminescent dosimetry laboratory

    International Nuclear Information System (INIS)

    Silva F, J.C. da; Fonseca, H.G. da

    2006-01-01

    Acting from the beginning of the decade of 80 in a postal program called 'Dentistry Programs' the Institute of Radioprotection and Dosimetry (IRD) it makes an effort supported by the IAEA so that it can determine with security the reference levels for the diverse practices in radiodiagnostic, including the dentistry. The dentistry program that uses 4 TLDs of lithium fluorite (LiF 100) for evaluations of the doses and of the hemirreductor layer, until 1995 it had already verified close of 5529 X-ray equipment. This work accompanies the result of 3 main parameters (arbitrary reading, reference light and noise) of the reader Harshaw marks 5500, when it is used for routine readings of the TLDs that arrive in the dosimetry laboratory for the due ratings. Together with these TLDs 9 previously selected dosemeters of a certain dosemeters lot is placed with a percentage uncertainty of 3% (for 1 standard deviation). before them they were irradiated in an irradiator of Sr90/Y90 with a dose of approximately 5 mGy, they are treated thermally in an oven PTW it marks to 400 grades for 1 hour + 100 grades for 2 hours and 100 grades in 15 minutes after the irradiations. The referred methodology follows a procedure where they are distributed of 3 in 3 the chosen TLDs of the group of the 9, to the beginning, half and at the end among the total quantity of dosemeters read in the reading disk that it can read of a single time 50 dosemeters. Together with this 10 measurements of reference light and noise are made, data that are provided by the reader through the 'softer WinRem'. Finally the obtained results of reference light and noise, its are compared with the maker's recommendations. Already that of the arbitrary reading (average of the 9 TLDs and its uncertainties), it has revealed a reduction in the percentage uncertainty (2 deviations standard / average) with relationship to one of the first results already obtained through the methodology proposal. It has been, also, applied the

  18. Quality assurance manual for the Department of Energy laboratory accreditation program for personnel dosimetry systems

    International Nuclear Information System (INIS)

    1987-02-01

    The overall purpose of this document is to establish a uniform approach to quality assurance. This will ensure that uniform, high-quality personnel dosimetry practices are followed by the participating testing laboratories. The document presents guidelines for calibrating and maintaining measurement and test equipment (M and TE), calibrating radiation fields, and subsequently irradiating and handling personnel dosimeters in laboratories involved in the DOE dosimetry systems testing program. Radiation energies for which the test procedures apply are photons with approximately 15 keV to 2 MeV, beta particles above 0.3 MeV, neutrons with approximately 1 keV to 2 MeV. 12 refs., 4 tabs

  19. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  20. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  1. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Thermoluminescent dosimetry in two laboratories of the ININ

    International Nuclear Information System (INIS)

    Cejudo, R.; Gonzalez, P.R.; Azorin N, J.

    2002-01-01

    The effects of the high doses of radiation are well known, but the effects caused by the exposure to low level radiations do not. However it is well known that the dose by small scale what this was as long as it comes from the ionizing radiation it has the enough energy for altering the normal performance of the cells in the living beings. In this work the obtained results in the measurement of the radiation levels in two laboratories of the ININ are presented. One of them located in the Gamma source building (FG) and the other one is now know as Connected to Basic and Environmental Sciences (ACBA). This work was motivated by the nonconformist personnel which works in the last laboratory, since this place was used during many years as warehouse of radioactive wastes, therefore it is expected that the dose levels were higher. The dose was measured with Tl of CaSO 4 :Dy + Ptfe dosemeters developed in the ININ. The results showed that the radiation levels in both laboratories are similar and they are under of the recommended levels for public in general, except a point in ACBA where the dose exceeded in a 64% that value. (Author)

  3. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  4. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  5. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Bera, P.; Vatnitsky, S.

    2002-01-01

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  6. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    International Nuclear Information System (INIS)

    Rozenfeld, M.

    1993-01-01

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM

  7. History, organization, and oversight of the accredited dosimetry calibration laboratories by the AAPM

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, M. [St. James Hospital and Health Centers, Chicago Heights, IL (United States)

    1993-12-31

    For more than 20 years, the American Association of Physicists in Medicine (AAPM) has operated an accreditation program for secondary standards laboratories that calibrate radiation measuring instruments. Except for one short period, that program has been able to provide the facilities to satisfy the national need for accurate calibrations of such instruments. That exception, in 1981, due to the combination of the U.S. Nuclear Regulatory Commission (NRC) requiring instrument calibrations by users of cobalt-60 teletherapy units and the withdrawal of one of the three laboratories accredited at that time. However, after successful operation as a Task Group of the Radiation Therapy Committee (RTC) of the AAPM for two decades, a reorganization of this structure is now under serious consideration by the administration of the AAPM.

  8. Implantation of a new Beta Secondary Standard system at Centro de Desenvolvimento da Tecnologia Nuclear

    International Nuclear Information System (INIS)

    Reynaldo, Sibele Reis

    2005-01-01

    The crescent use of beta radiation sources in medical, industrial and research applications has increased the need for higher accuracy in beta dosimetry. As the first Beta Secondary Standard system (BSS1) was developed about 20 years ago, a new BSS2 system was made commercially available to fulfill new metrological demands and to follow the technological development. The BSS2 has a new positioning set-up, high activity and long half-life beta radiation sources and a special safety system. The Centro de Desenvolvimento da Tecnologia Nuclear is the first laboratory in Latin America that has got a BSS2. This work describes the BSS2 and it compares its advantages in relation to BSS1; results of the beam uniformity tests of the radiation fields from 90 Sr/ 90 Y, 85 Kr and 147 Pm sources, that were measured with an ionization chamber and with thermoluminescent detectors, are also shown. Results show that the beta radiation fields are considered to be uniform for diameters between 8 and 20 cm according to the chosen source. (author)

  9. US Department of Energy Laboratory Accreditation Program for personnel dosimetry systems (DOELAP)

    International Nuclear Information System (INIS)

    Carlson, R.D.; Gesell, T.F.; Kalbeitzer, F.L.; Roberson, P.L.; Jones, K.L.; MacDonald, J.C.; Vallario, E.J.; Pacific Northwest Lab., Richland, WA; USDOE Assistant Secretary for Nuclear Energy, Washington, DC

    1988-01-01

    The US Department of Energy (DOE) Office of Nuclear Safety has developed and initiated the DOE Laboratory Accreditation Program (DOELAP) for personnel dosimetry systems to assure and improve the quality of personnel dosimetry at DOE and DOE contractor facilities. It consists of a performance evaluation program that measures current performance and an applied research program that evaluates and recommends additional or improved test and performance criteria. It also provides guidance to DOE, identifying areas where technological improvements are needed. The two performance evaluation elements in the accreditation process are performance testing and onsite assessment by technical experts. Performance testing evaluates the participant's ability to accurately and reproducibly measure dose equivalent. Tests are conducted in accident level categories for low- and high-energy photons as well as protection level categories for low- and high-energy photons, beta particles, neutrons and mixtures of these

  10. Performance of dichromate dosimetry systems in calibration and dose intercomparison

    International Nuclear Information System (INIS)

    Bof, E.S.; Smolko, E.

    1999-01-01

    This report presents the results of the High Dose Dosimetry Laboratory of Argentina during ten years of international intercomparisons for high dose with the International Dose Assurance Service (IDAS) of the IAEA, using the standard high dose dichromate dosimetry system, and the results of a high dose intercomparison regional exercise in which our Laboratory acted as a reference laboratory, using the standard high dose and low dose dichromate dosimetry system. (author)

  11. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    quantity used in applied dosimetry. The problem is of enormous importance in medical dosimetry, because the refinement of radiotherapeutic techniques requires very accurate knowledge of the doses absorbed by the various tissues irradiated in the course of a treatment. - The use of fast neutron beams from cyclotrons in radiobiology and radiotherapy has also brought measurement problems, both in relation to the theoretical aspects and in relation to instrumentation. In this area users are in fact at more of a loss than the users of more conventional electron and photon beams, because there are virtually no reference scales as yet. Nevertheless, a highly active standardization programme is being pursued in the United States of America and in Europe among working groups set up by the medical physicists concerned. The studies undertaken in certain national laboratories should make it possible within a few years to set up a coherent dosimetric reference system adapted to this particularly complex sphere. - As far as international co-operation is concerned, efforts are being continued on behalf of the developing countries. The IAEA and WHO have set up a worldwide network of Secondary Standard Dosimetry Laboratories; the importance of these was stressed, and the national laboratories of the industrialized countries were urged to take an even more active part than heretofore in the operations of the network. (author)

  12. The need for standardization in laboratory networks.

    Science.gov (United States)

    Peter, Trevor F; Shimada, Yoko; Freeman, Richard R; Ncube, Bekezela N; Khine, Aye-Aye; Murtagh, Maurine M

    2009-06-01

    Expanding health care services for HIV, tuberculosis, and malaria has increased the demand for affordable and reliable laboratory diagnostics in resource-limited countries. Many countries are responding by upgrading their public laboratories and introducing new technology to provide expanded testing services into more regions. This expansion carries the risk of increasing the diversity of an already highly diverse technology and testing platform landscape, making it more difficult to manage laboratory networks across different levels of the health care system. To prevent this trend, countries are recommended to implement policies and guidelines that standardize test menus, technology, platforms, and commodities across multiple laboratories. The benefits of standardization include rational prioritization of resources for capacity development and more efficient supply chain management through volume-based price discounts for reagents and instrument service. Procurement procedures, including specification, prequalification, and contract negotiation, need to align with the standardization policies for maximum benefit. Standardization should be adhered to irrespective of whether procurement is centralized or decentralized or whether carried out by national bodies or development partners.

  13. The calibration procedures in the Studsvik standardized personnel dosimetry system

    International Nuclear Information System (INIS)

    Widell, C.O.

    1978-01-01

    Every large nuclear installation in Sweden reads its own personnel TLDs. In order to supervise this decentralized reading of dose meters, the TLD readers are connected by telephone lines to a central computer for dose registration. This computer is used both for registering the personnel doses and for checking the TLD readers. This checking is performed by the use of pre-irradiated calibration dose meters which are always used when a batch of personnel dose meters are read. The pre-irradiated dose meters are either irradiated using 137 Cs to various doses up to 100mSv(10000mrem) or using a 90 Sr source in a reference dose irradiator to a dose equal to 3mSv(300mrem) from a 137 Cs source. The results from the reading of the pre-irradiated dose meters are processed by the computer and a calibration factor is calculated. The calibration factor is automatically used to calculate the doses to the personnel TLD's. However, if the calibration factor deviates by more than 10% from the previously used factor, this fact is shown to the operator - who then has to decide what calibration factor is going to be used. This calibration and supervisory procedure together with the safety interlocks in the TLD readers has resulted in a very reliable and accurate dosimetry system. (author)

  14. Laboratory Technicians in Australian Secondary Schools

    Science.gov (United States)

    Hackling, Mark W.

    2009-01-01

    A number of reports have argued that secondary science education needs to be more inquiry oriented and involve authentic and practical investigations to develop scientific literacy and better engage students in learning science. Inquiry-oriented approaches, such as those advocated in the new science national curriculum, require that teachers have…

  15. The role of the national physical laboratory in monitoring and improving dosimetry in UK radiotherapy

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.; Rosser, K.E.

    2001-01-01

    There are approximately 60 radiotherapy centres in the UK. In 1999, these centres carried out over 102,000 treatments in 1.2 million fractions. These centres are organised by IPEM into eight geographical regions for the purpose of inter-departmental audits, which have been carried out on a regular basis to check the uniformity of dosimetry, treatment planning, record keeping, etc. Thwaites et al (1992) carried out a dosimetric intercomparison of megavoltage photon beams in all UK radiotherapy centres obtaining a mean value for the ratio audit/local dose of 1.003 with a standard deviation of 1.5%. The present programme covers dosimetry of megavoltage photons and electrons and low and medium energy (10-300 kV) photons. Megavoltage photon audits have the longest history, while electron audits began in 2000 and kV audits are only at the pilot stage

  16. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Book of Extended Synopses

    International Nuclear Information System (INIS)

    2010-01-01

    The major goal of the symposium is to provide a forum where advances in radiation dosimetry during the last decade, in radiation medicine and radiation protection can be disseminated and scientific knowledge exchanged. It will include all specialties in radiation medicine and radiation protection dosimetry with a specific focus on those areas where the standardization of dosimetry has improved in the recent years (brachytherapy, diagnostic radiology and nuclear medicine). It will also summarize the present status and outline future trends in medical radiation dosimetry and identify possible areas for improvement. Its conclusions and summaries should lead to the formulation of recommendations for the scientific community

  17. International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). Book of Extended Synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The major goal of the symposium is to provide a forum where advances in radiation dosimetry during the last decade, in radiation medicine and radiation protection can be disseminated and scientific knowledge exchanged. It will include all specialties in radiation medicine and radiation protection dosimetry with a specific focus on those areas where the standardization of dosimetry has improved in the recent years (brachytherapy, diagnostic radiology and nuclear medicine). It will also summarize the present status and outline future trends in medical radiation dosimetry and identify possible areas for improvement. Its conclusions and summaries should lead to the formulation of recommendations for the scientific community

  18. Characterization and Simulation of a New Design Parallel-Plate Ionization Chamber for CT Dosimetry at Calibration Laboratories

    Science.gov (United States)

    Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.

    2013-12-01

    In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.

  19. Alanine EPR dosimetry of therapeutic irradiators

    International Nuclear Information System (INIS)

    Bugay, O.; Bartchuk, V.; Kolesnik, S.; Mazin, M.; Gaponenko, H.

    1999-01-01

    The high-dose alanine EPR dosimetry is a very precise method in the dose range 1-100 kGy. The system is used generally as the standard high-dose transfer dosimetry in many laboratories. This is comparatively expensive technique so it is important to use it as a more universal dosimetry system also in the middle and low dose ranges. The problems of the middle-dose alanine dosimetry are discussed and the solution of several problems is proposed. The alanine EPR dosimetry has been applied to the dose measurements of medical irradiators in the Kiev City Oncology Center. (author)

  20. Remote Laboratories: Bridging University to Secondary Schools

    Directory of Open Access Journals (Sweden)

    Horácio Fernandes

    2012-01-01

    Full Text Available e-lab is a remote laboratory infrastructure powered by a software framework that allows the operation and data retrieve from a remote apparatus. In this demonstration we will present the e-lab interface properties and its modus operandi, giving as well some topics of complimentary software use for data interpretation and analysis.

  1. Personnel-dosimetry intercomparison studies at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Swaja, R.E.; Sims, C.S.

    1982-01-01

    Since 1974, seven annual personnel dosimetry intercomparison studies have been conducted at the Oak Ridge National Laboratory using the Health Physics Reactor. These studies have produced more than 2000 measurements by 72 participating organizations of neutron and gamma dose equivalents between 0.1 to 15.0 mSv in six mixed radiation fields. The relative performance of three basic types of personnel neutron dosimeters (nuclear emulsion film, thermoluminescent, and track-etch) and two basic types of gamma dosimeters (film and thermoluminescent) was assessed based on experimental results obtained during the seven intercomparisons

  2. Need for improved standards in neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1976-01-01

    There is a continuing need for standards in neutron monitoring. A discussion of special problem areas and the benefits of intercomparisons is given. The RBE for leukemia induction in the survivors of the nuclear bombings of Hiroshima and Nagasaki is greater than ten for absorbed doses in the bone marrow of less than 100 rads; this may have an important impact on neutron standards preparation

  3. The need for international standardization in clinical beta dosimetry for brachytherapy

    International Nuclear Information System (INIS)

    Quast, U.; Boehm, J.; Kaulich, T.W.

    2002-01-01

    Beta radiation has found increasing interest in radiotherapy. Besides the curative treatment of small and medium-sized intraocular tumors by means of ophthalmic beta radiation plaques, intravascular brachytherapy has proven to successfully overcome the severe problem of restenosis after interventional treatment of arterial stenosis in coronaries and peripheral vessels in many clinical trials with a large number of patients. Prior to initiating procedures applying beta radiation in radiotherapy, however, there is a common need to specify methods for the determination and specification of the absorbed dose to water or tissue and their spatial distributions. The IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy (2002) is a help for photon brachytherapy calibration. But, for beta seed and line sources, IAEA recommends well type ionization chambers as working standards which are far from measuring absorbed dose to water of the radiation clinically used. Although the application of such working standards seems to be more precise, large errors can occur when the medical physicist has to convert the calibration data to absorbed dose to water of the beta radiation emitted. The user must believe that the source is equally activated and that the manufacturer did not change the design and construction of the source encapsulation. With the DGMP Report 16 (2001) Guidelines for medical physical aspects of intravascular brachytherapy a very detailed code of practice is given, especially for the calibration and clinical dosimetry of intravascular beta radiation sources. As there is a global need for standardization in clinical dosimetry for intravascular brachytherapy utilizing beta radiation, the DIN-NAR, the German committee on standardization in radiology, task group dosimetry, has initiated an international adhoc working group for a new ISO work item proposal on the standardization of procedures in clinical dosimetry to guarantee reliable

  4. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  5. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature

    International Nuclear Information System (INIS)

    Bolch, W.E.; Eckerman, Keith F.; Sgouros, George; Thomas, Steven R.

    2009-01-01

    The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.

  6. Real-time dosimetry system in catheterisation laboratory: utility as a learning tool in radiation protection

    International Nuclear Information System (INIS)

    Pinto Monedero, M.; Rodriguez Cobo, C.; Pifarre Martinez, X.; Ruiz Martin, J.; Barros Candelero, J.M.; Goicolea Ruigomez, J.; Diaz Blaires, G.; Garcia Lunar, I.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: Workers at the catheter laboratory are among the most exposed to ionising radiation in hospitals. However, it is difficult to be certain of the radiation doses received by the staff, as personal dosemeters are often misused, and thus, the dose history is not reliable. Moreover, the information provided by personal dosemeters corresponds to the monthly accumulated dose, so corrective actions tends to be delayed. The purpose of this work is, on the one hand, to use a real-time dosimetry system to establish the occupational doses per procedure of workers at the catheter laboratories and, on the other hand, to evaluate its utility as a learning tool for radiation protection purposes with the simultaneous video recording of the interventions. (authors)

  7. Dosimetry of cosmic rays in civil aircraft according to ISO standards

    International Nuclear Information System (INIS)

    Ploc, O.; Sommer, M.; Kakona, M.; Peksova, D.; Slegl, J.

    2018-01-01

    The aim of the paper is to draw attention to the existence of these ISO standards and to show the experiment how they can contribute in practice to improving the dosimetry of aircraft crews. The experiment took place this year on board an ABS jets aircraft flying around the world with a Liulin detector, and the CARI program was used as the validation code. (authors)

  8. Implementation of a OSL dosimetry laboratory at IRD/CNEN-BR

    International Nuclear Information System (INIS)

    Moura, Jose; Alencar, Marcus A. Vallim de; Mauricio, Claudia L.P.; Hunt, John

    2005-01-01

    The optically stimulated luminescence (OSL) it is a phenomenon characterized by the luminous emission of an insulating material or semiconductor, during your exhibition to the light, after it being previously exposed to the ionizing radiation. This phenomenon has been used more and more in the dosimetry of the ionizing radiations, why the intensity OSL of some materials is proportional to the absorbed dose in these. The processes OSL and thermoluminescence (TL) they only differ in the stimulation form for light emission. One of the advantages of the OSL process in relation to the traditional technique of TL dosimetry is the no complete destruction of the information of the absorbed dose in the material during the reading. Following this world tendency, the External Individual Monitoring Service of the Institute of Radioprotection and Dosimetry (SEMEX/IRD) implemented the OSL dosimetry laboratory. The acquired reader was the reader model LAUGHTER TL/OSL-GIVE-15B/C. With that reader it is possible to do readings TL and OSL. After the installation of the equipment in a darkroom with temperature and humidity controlled, they were made the preliminary tests with the equipment and the laboratory became operational. After this first stage, they were initiate the studies with the Al 2 O 3 :C dosimeters by Harshaw under the denomination TLD 500. The reading parameters and thermal treatment were optimized to study the applicability of OSL technique with the TLD 500 dosimeter for the use in environmental monitoring. It was also verified the linearity of the system for high doses (10 mGy-1 Gy) seeking your use in radiotherapy, as well as the effect of the thermal treatment in the OSL signal of the Al 2 O 3 :C dosimeter. The results prove the possibility of use of this system in environmental monitoring. The reproductivity of the system for the air kerma value of 100 mGy, considering a degree of confidence of 95%, was to 4,8% for OSL readings and 5,6% for TL. In the two cases

  9. Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Guzman G, K. A.; Mendez V, R.; Vega C, H. R.

    2014-08-01

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of 241 AmBe and other 252 Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  10. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison

    International Nuclear Information System (INIS)

    Bassinet, C.; Woda, C.; Bortolin, E.; Della Monaca, S.; Fattibene, P.; Quattrini, M.C.; Bulanek, B.; Ekendahl, D.; Burbidge, C.I.; Cauwels, V.; Kouroukla, E.; Geber-Bergstrand, T.; Mrozik, A.; Marczewska, B.; Bilski, P.; Sholom, S.; McKeever, S.W.S.; Smith, R.W.; Veronese, I.

    2014-01-01

    In the framework of the EU-FP7 MULTIBIODOSE project, two protocols using OSL of resistors removed from the circuit board of mobile phones were developed with the aim to use the resistors as fortuitous dosimeters in the event of a large scale radiological accident. This paper presents the results of an inter-laboratory comparison carried out under the umbrella of EURADOS. The two aims of this exercise were the validation of the MULTIBIODOSE protocols by a large number of laboratories and the dissemination of the method with the objective of preparing the basis for a network that could increase Europe's response capacity in the case of a mass casualty radiological emergency. Twelve institutes from eleven European countries and one institute from the USA, with various degrees of expertise in OSL dosimetry, took part in the OSL inter-laboratory comparison. Generally, a good agreement within uncertainties was observed between estimated and nominal doses. - Highlights: • Resistors in mobile phones could function as reliable fortuitous dosimeters in case of a large scale radiological accident. • Two OSL protocols were validated by an inter-laboratory comparison. • It is feasible to set up a network of laboratories so as to increase the measurement capacity

  11. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Patricia L.; Caldas, Linda V.E., E-mail: patrilan@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  12. Performance of a parallel plate ionization chamber in beta radiation dosimetry

    International Nuclear Information System (INIS)

    Antonio, Patricia L.; Caldas, Linda V.E.

    2011-01-01

    A homemade parallel plate ionization chamber with graphite collecting electrode, and developed for use in mammography beams, was tested in relation to its usefulness in beta radiation dosimetry at the Calibration Laboratory of IPEN. Characterization tests of this ionization chamber were performed, using the Sr-90 + Y-90, Kr-85 and Pm-147 sources of a beta secondary standard system. The results of saturation, leakage current, stabilization time, response stability, linearity, angular dependence, and calibration coefficients are within the recommended limits of international recommendations that indicate that this chamber may be used for beta radiation dosimetry. (author)

  13. The role of the National Physical Laboratory in monitoring and improving dosimetry in UK radiotherapy

    International Nuclear Information System (INIS)

    Thomas, R.A.S.; Duane, S.; McEwen, M.R.; Rosser, K.E.

    2002-01-01

    In the UK, the National Physical Laboratory, in collaboration with the Institute for Physics and Engineering in Medicine operates an audit programme to ensure national consistency in radiotherapy dosimetry. The present programme covers dosimetry of megavoltage photons and electrons (3-19 MeV) and low and medium energy (10-300 kV) photons. The aim of each audit is to verify the local measurement of absorbed dose at the radiotherapy centre. The audit measurements - principally beam quality and linac output - are made following the same protocol as the clinic but using different equipment. The audit is not an absolute measurement of the absorbed dose but amounts to a check that the equipment used by the centre is operating as expected and that the Code of Practice is being followed correctly. The protocols used in the UK are IPSM 1990 for high-energy photons, IPEMB 1996 for electrons and IPEMB 1996 for low energy photons. For the purpose of these audits, NPL maintains a set of calibrated ionisation chambers

  14. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  15. Dosimetry for ocular proton beam therapy at the Harvard Cyclotron Laboratory based on the ICRU Report 59

    International Nuclear Information System (INIS)

    Newhauser, W.D.; Burns, J.; Smith, A.R.

    2002-01-01

    The Massachusetts General Hospital, the Harvard Cyclotron Laboratory (HCL), and the Massachusetts Eye and Ear Infirmary have treated almost 3000 patients with ocular disease using high-energy external-beam proton radiation therapy since 1975. The absorbed dose standard for ocular proton therapy beams at HCL was based on a fluence measurement with a Faraday cup (FC). A majority of proton therapy centers worldwide, however, use an absorbed dose standard that is based on an ionization chamber (IC) technique. The ion chamber calibration is deduced from a measurement in a reference 60 Co photon field together with a calculated correction factor that takes into account differences in a chamber's response in 60 Co and proton fields. In this work, we implemented an ionization chamber-based absolute dosimetry system for the HCL ocular beamline based on the recommendations given in Report 59 by the International Commission on Radiation Units and Measurements. Comparative measurements revealed that the FC system yields an absorbed dose to water value that is 1.1% higher than was obtained with the IC system. That difference is small compared with the experimental uncertainties and is clinically insignificant. In June of 1998, we adopted the IC-based method as our standard practice for the ocular beam

  16. Dosimetry in Diagnostic Radiology for Paediatric Patients

    International Nuclear Information System (INIS)

    2013-01-01

    both in standards dosimetry laboratories and clinical centres for radiology, as found in most hospitals. A coordinated research project was established in order to provide practical guidance to professionals at the Secondary Standards Dosimetry Laboratories (SSDLs) and to clinical medical physicists on the implementation of TRS 457, including the establishment of dosimetric measurement processes in clinical settings. Among the recommendations from the coordinated research project (see IAEA Human Health Reports No. 4, published in 2011) was the need for guidance on dosimetric standards and methodologies related to dosimetry for paediatric patients undergoing diagnostic radiology

  17. Standard practice for analysis and interpretation of physics dosimetry results for test reactors

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This practice describes the methodology summarized in Annex Al to be used in the analysis and interpretation of physics-dosimetry results from test reactors. This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods that are in various stages of completion (see Fig. 1). Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods. This practice is directed towards the development and application of physics-dosimetrymetallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practice E 853, Practice E 560, Matrix E 706(IE), Practice E 185, Matrix E 706(IG), Guide E 900, and Method E 646

  18. The acoustic center of laboratory standard microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2006-01-01

    An experimental procedure is described for obtaining the effective acoustic distance between pairs of microphones coupled by a free field, leading to the determination of the position of the acoustic center of the microphones. The procedure, which is based on measuring the modulus of the electrical...... transfer impedance, has been applied to a large number of microphones. In all cases effects due to reflections from the walls of the anechoic chamber and the interference between the microphones have been removed using a time-selective technique. The procedure of determining the position of the acoustic...... center from the inverse distance law is analyzed. Experimental values of the acoustic center of laboratory standard microphones are presented, and numerical results obtained using the boundary element method supplement the experimental data. Estimated uncertainties are also presented. The results...

  19. The OSHA hazardous chemical occupational exposure standard for laboratories.

    Science.gov (United States)

    Armbruster, D A

    1991-01-01

    OSHA's chemical occupational exposure standard for laboratories is an outgrowth of the previously issued Hazard Communication Standard. The standard relieves laboratories from complying with general industry standards but does require compliance with specific laboratory guidelines. The heart of the standard is the creation of a Chemical Hygiene Plan (CHP). The CHP addresses major issues such as safety equipment and procedures, work practices, training, the designation of a chemical hygiene officer, and the provision of medical consultation and examination for affected employees. This new standard, in full effect as of January 31, 1991, presents yet another regulatory challenge to laboratory managers but also ensures a safer environment for laboratory workers.

  20. Air kerma national standard of Russian Federation for x-ray and gamma radiation. Activity SSDL/VNIIM in medical radiation dosimetry field

    International Nuclear Information System (INIS)

    Kharitonov, I.A.; Villevalde, N.D.; Oborin, A.V.; Fominykh, V.I.

    2002-01-01

    for medium-energy X-ray range in 1998. The results of comparisons are presented in the table 1. Dimensions of unities of air kerma and air kerma rate are transmitted from primary standard to secondary standards with expanded uncertainty from 1,3 to 2,5 % (k=2), which are including and at laboratory SSDL/VNIIM and base dosimetry laboratory CNIRRI. The comparisons of secondary standards with the primary standard VNIIM are performed one time in 5 years. The laboratory SSDL/VNIIM is the component of state primary standards laboratory in the field of measurement ionizing radiations VNIIM. SSDL/VNIIM has the secondary standard - universal dosimeter UNIDOS with ionization chambers of volume from 0,6 cm 3 to 10 liters, radioactive sources from Fe-55, Cd-109, Am-241, Cs-137 and Co-60 with activity from 0,03 to 140 GBq. The primary standard equipment and facility on the basis industrial X-ray apparatus YRD-1 with a tungsten-anode X-ray tube and inherent filtration of around 3 mm Al (at generating potential from 50 to 250 kV) are used for calibration dosimetric devices in the field X-ray. There is termoluminescence dosimetric system such as KDT-02M with TL detectors from LiF for spending audit measurements by method 'dose-post'. Laboratory SSDL/VNIIM and base dosimetric laboratory CNIRRI are carried out calibrations and verifications of air kerma and air kerma rate reference standards and working measurement means for X-ray and gamma therapy and diagnostics, belonging to the oncology and diagnostic centers, clinics and hospitals. The laboratory CNIRRI fulfils the verification of measurement means and supervision of the application in the medical radiology, but the regional departments of radial diagnostics put into practice monitoring of doses, obtained by patients and staff at fulfilling of diagnostic and medical procedures. The diagnostic and clinical dosimeters are calibrated directly under the primary standard of air kerma and air kerma rate for achievement the highest

  1. Development of a Secondary Neutron Fluence Standard at GELINA

    International Nuclear Information System (INIS)

    Heyse, Jan; Eykens, Roger; Moens, Andre; Plompen, Arjan J.M.; Schillebeeckx, Peter; Wynants, Ruud; Anastasiou, Maria

    2013-06-01

    The MetroFission project, a Joint Research Project within the European Metrology Research Program, aims at addressing a number of metrological problems involved in the design of proposed Generation IV nuclear reactors. One of the objectives of this multidisciplinary project is the improvement of neutron cross section measurement techniques in order to arrive at uncertainties as required for the design and safety assessment of new generation power plants and fuel cycles. This objective is in line with the 'Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations' published by a working party of the OECD Nuclear Energy Agency in 2008. These requests are often very challenging, being at or beyond the state-of-the-art in neutron measurements, which is set by self-normalizing methods and the neutron data standards used at laboratories where the data are measured. A secondary neutron fluence standard has been developed and calibrated at the neutron time-of-flight facility GELINA of the JRC's Institute for Reference Materials and Measurements (IRMM). It consists of a flux monitor, a reference ionization chamber containing a 10 B layer and a 235 U layer, and a parallel plate ionization chamber with 8 well characterized 235 U deposits. These devices are used to determine the neutron fluence, based on the well-known neutron induced fission reaction on 235 U. All deposits have been prepared and characterized at the IRMM target preparation lab. The secondary fluence standard at the GELINA facility can be used for reliable determination of the efficiency of fluence measurement devices used in neutron data measurements at IRMM and elsewhere. It is an essential tool to reliably calibrate fluence normalization devices used in neutron time-of-flight cross section measurements. (authors)

  2. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    International Nuclear Information System (INIS)

    Brady, S. L.; Kaufman, R. A.

    2012-01-01

    Purpose: The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ∼25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. Methods: The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Results: Calibration precision was measured to be better than 5%–7%, 3%–5%, and 2%–4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy −1 versus the CT scatter phantom 29.2 ± 1.0 mV cGy −1 and FIA with x-ray 29.9 ± 1.1 mV cGy −1 methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ∼3000 mV. Conclusions: The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the

  3. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry.

    Science.gov (United States)

    Brady, S L; Kaufman, R A

    2012-06-01

    The use of metal-oxide-semiconductor field-effect transistor (MOSFET) detectors for patient dosimetry has increased by ~25% since 2005. Despite this increase, no standard calibration methodology has been identified nor calibration uncertainty quantified for the use of MOSFET dosimetry in CT. This work compares three MOSFET calibration methodologies proposed in the literature, and additionally investigates questions relating to optimal time for signal equilibration and exposure levels for maximum calibration precision. The calibration methodologies tested were (1) free in-air (FIA) with radiographic x-ray tube, (2) FIA with stationary CT x-ray tube, and (3) within scatter phantom with rotational CT x-ray tube. Each calibration was performed at absorbed dose levels of 10, 23, and 35 mGy. Times of 0 min or 5 min were investigated for signal equilibration before or after signal read out. Calibration precision was measured to be better than 5%-7%, 3%-5%, and 2%-4% for the 10, 23, and 35 mGy respective dose levels, and independent of calibration methodology. No correlation was demonstrated for precision and signal equilibration time when allowing 5 min before or after signal read out. Differences in average calibration coefficients were demonstrated between the FIA with CT calibration methodology 26.7 ± 1.1 mV cGy(-1) versus the CT scatter phantom 29.2 ± 1.0 mV cGy(-1) and FIA with x-ray 29.9 ± 1.1 mV cGy(-1) methodologies. A decrease in MOSFET sensitivity was seen at an average change in read out voltage of ~3000 mV. The best measured calibration precision was obtained by exposing the MOSFET detectors to 23 mGy. No signal equilibration time is necessary to improve calibration precision. A significant difference between calibration outcomes was demonstrated for FIA with CT compared to the other two methodologies. If the FIA with a CT calibration methodology was used to create calibration coefficients for the eventual use for phantom dosimetry, a measurement error ~12

  4. LWR pressure vessel irradiation surveillance dosimetry. Quarterly progress report, July--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G L; McElroy, W N; Lippincott, E P; Gold, R

    1978-12-01

    Program objectives and progress to date by the national laboratories in LWR pressure vessel irradiation surveillance dosimetry are summarized. Participants in the program include: Rockwell International, Hanford Engineering Development Laboratory, National Bureau of Standards, and Oak Ridge National Laboratory.

  5. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  6. Upgrading the Medical Physics Calibration Laboratory Towards ISO/IEC 17025: Radiation Standards and Calibration in Diagnostic Radiology

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Muhammad Jamal Md Isa; Abd Aziz Mhd Ramli; Wan Hazlinda Ismail; Norhayati Abdullah; Shahrul Azlan Azizan; Siti Sara Deraman; Nor Azlin Azraai; Md Khairusalih Md Zin

    2010-01-01

    Calibration of quality control (QC) test tools used in diagnostic radiology is legally required under the Ministry of Health (MOH) requirement. The Medical Physics Calibration Laboratory of the Malaysian Nuclear Agency is the national focal point for the calibration of quality control test tools used in diagnostic radiology. The Medical Physics Calibration Laboratory has measurement traceability to primary standard dosimetry laboratory (Physikalisch-Technische Bundesanstalt (PTB)), thus providing an interface between the primary standard dosimetry laboratory and Malaysian hospitals, clinics and license class H holder. The Medical Physics Calibration Laboratory facility is comprised of a constant potential x-ray system with a capability of 160 kV tube and a series of reference and working standard ion chambers. The stability of reference and working standard ion chambers was measured using strontium-90. Dosimetric instruments used in diagnostic radiology is calibrated in terms of air kerma to comply with an International Code of Practices of dosimetry for example IAEA's Technical Report Series number 457. The new series of standard radiation qualities was established based on ISO/IEC 61267. The measurement of beam homogeneity was measured using film and ion chamber to define the field size at certain distance and kV output was measured using the spectrometer and non-invasive kVp meter. The uncertainties measurement was determined with expended uncertainties to a level of confidence of approximately 95% (coverage factor k=2). This paper describes the available facility and the effort of the Medical Physics Calibration Laboratory to upgrade the laboratory towards ISO/IEC 17025. (author)

  7. RCA/IAEA third external dosimetry intercomparison in East Asia

    International Nuclear Information System (INIS)

    Momose, T.; Yamamoto, H.; Cruz Suarez, R.

    2005-01-01

    Full text: Several intercomparison exercises were organized by the International Atomic Energy Agency (IAEA) on the determination of operational quantities at the regional or interregional basis. These exercises revealed significant differences in the approach, methods and assumptions, and consequently in the measurement results obtained by participating laboratories. In the East Asia region, the third phase of the Hp(10) intercomparison, organized within the frame of the Regional Cooperation Agreement (RCA) as a follow-up to previous exercises during 1990-92 and 1995-96, was completed mid-2004. The first phase grouped 25 laboratories from 16 member states, and 4 Secondary Standards Dosimetry Laboratories irradiated dosimeters in 6 different qualities for photon and beta radiations. In the second phase, 23 laboratories from 16 member states participated, and 3 Secondary Standards Dosimetry Laboratories provided irradiation in 5 different radiation qualities simulating workplace fields. The results of the second phase for the determination of operational quantities Hp(d) were satisfactory for all participating Member States, with marked improvement from the first phase; the laboratories demonstrated good performance in both quantities tested. These results underline the importance of such an intercomparison programme as a key element towards the harmonization of quantities and units on an international level. This paper presents the results of this RCA/IAEA intercomparison, and also the forthcoming RCA activities supporting intercomparison runs for the assessment of occupational exposure. Member states strongly recommend that the IAEA continue acting as a focal point for, inter alia, training in all forms, particularly in measurements and dosimetry techniques. This exercise also stressed the importance for the IAEA to take an active role in establishing a network of monitoring laboratories for radiation protection purposes, as it would provide for better information

  8. Secondary School Chemistry Teacher's Current Use of Laboratory Activities and the Impact of Expense on Their Laboratory Choices

    Science.gov (United States)

    Boesdorfer, Sarah B.; Livermore, Robin A.

    2018-01-01

    In the United States with the Next Generation Science Standards (NGSS)'s emphasis on learning science while doing science, laboratory activities in the secondary school chemistry continues to be an important component of a strong curriculum. Laboratory equipment and consumable materials create a unique expense which chemistry teachers and schools…

  9. The spectra of the standard x-ray qualities used in STUK's Radiation Metrology Laboratory

    International Nuclear Information System (INIS)

    Tapiovaara, T.; Tapiovaara, M.; Siiskonen, T.; Hakanen, A.

    2008-02-01

    This report presents the fluence spectra of the standard x-radiation qualities used in the Radiation Dosimetry Laboratory of Radiation and Nuclear Safety Authority (STUK). The spectra were measured in August 2007. The radiation qualities characterised in the report are the ISO Narrow spectrum series (ISO N10-N200, ISO 4037-1:1996) and both of the RQR-spectrum series specified by the IEC (IEC 1267:1994 and IEC 61267:2005). The measurements were made using a high purity Ge-detector and the measured pulse height spectra were corrected to fluence spectra. Spectral characteristics were computed from the spectral data and compared to the requirements in the standards and to the values given in the quality manual of the laboratory. (orig.)

  10. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.

    Science.gov (United States)

    Clark, Catharine H; Aird, Edwin G A; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia A D; Thomas, Russell A S; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed.

  11. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  12. Standard Practice for Use of a Lif Photo-Fluorescent Film Dosimetry System

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the handling, testing, and procedure for using a lithium fluoride (LiF)-based photo-fluorescent film dosimetry system to measure absorbed dose (relative to water) in materials irradiated by photons or electrons. Other alkali halides that may also exhibit photofluorescence (for example, NaCl, NaF, and KCl) are not covered in this practice. Although various alkali halides have been used for dosimetry for years utilizing thermoluminescence, the use of photoluminescence is relatively new. 1.2 This practice applies to photo-fluorescent film dosimeters (referred hereafter as photo-fluorescent dosimeters) that can be used within part or all of the following ranges: 1.2.1 Absorbed dose range of 5 10-2 to 3 102 kGy (1-3). 1.2.2 Absorbed dose rate range of 0.3 to 2 10 4 Gy/s (2-5)). 1.2.3 Radiation energy range for photons of 0.05 to 10 MeV (2). 1.2.4 Radiation energy range for electrons of 0.1 to 10 MeV (2). 1.2.5 Radiation temperature range of -20 to +60°C (6,7). 1.3 This standard doe...

  13. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials

    Science.gov (United States)

    Aird, Edwin GA; Bolton, Steve; Miles, Elizabeth A; Nisbet, Andrew; Snaith, Julia AD; Thomas, Russell AS; Venables, Karen; Thwaites, David I

    2015-01-01

    Dosimetry audit plays an important role in the development and safety of radiotherapy. National and large scale audits are able to set, maintain and improve standards, as well as having the potential to identify issues which may cause harm to patients. They can support implementation of complex techniques and can facilitate awareness and understanding of any issues which may exist by benchmarking centres with similar equipment. This review examines the development of dosimetry audit in the UK over the past 30 years, including the involvement of the UK in international audits. A summary of audit results is given, with an overview of methodologies employed and lessons learnt. Recent and forthcoming more complex audits are considered, with a focus on future needs including the arrival of proton therapy in the UK and other advanced techniques such as four-dimensional radiotherapy delivery and verification, stereotactic radiotherapy and MR linear accelerators. The work of the main quality assurance and auditing bodies is discussed, including how they are working together to streamline audit and to ensure that all radiotherapy centres are involved. Undertaking regular external audit motivates centres to modernize and develop techniques and provides assurance, not only that radiotherapy is planned and delivered accurately but also that the patient dose delivered is as prescribed. PMID:26329469

  14. Operational comparison of bubble (super heated drop) dosimetry with routine albedo thermoluminescent dosimetry for a selected group of Pu-238 workers at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1999-01-01

    This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at the Los Alamos National Laboratory (LANL) working on the Radioactive Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The bubble dosimeters were issued and read on a daily basis and the data were used as an ALARA tool. The personnel albedo dosimeter was processed on monthly basis and used as the dose-of-record. The results of this study indicated that cumulative bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average. However it was observed that there is a significant variability of the results on an individual basis both month-to-month and from one individual to another

  15. Quality assurance program in the External dosimetry laboratory of the CPHR; Programa de aseguramiento de la calidad en el laboratorio de dosimetria externa del CPHR

    Energy Technology Data Exchange (ETDEWEB)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J. [Centro de Proteccion e Higiene de las Radiaciones, Calle 20 No. 4113 e/41 y 47. Playa, C.P. 11300, A.P. 6195, C.P. 10600 La Habana (Cuba)

    2006-07-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  16. Interior Design Standards in the Secondary FCS Curriculum

    Science.gov (United States)

    Katz, Shana H.; Smith, Bettye P.

    2006-01-01

    This article deals with a study on interior design standards in the secondary FCS curriculum. This study assessed the importance FCS teachers placed on content standards in the interior design curriculum to help determine the amount of time and emphasis to place on the units within the courses. A cover letter and questionnaire were sent…

  17. Normalize the response of EPID in pursuit of linear accelerator dosimetry standardization.

    Science.gov (United States)

    Cai, Bin; Goddu, S Murty; Yaddanapudi, Sridhar; Caruthers, Douglas; Wen, Jie; Noel, Camille; Mutic, Sasa; Sun, Baozhou

    2018-01-01

    Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID-based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two-dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark-field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML-controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross-comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM-corrected images reproduced a horn-shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM-corrected images showed increased 1D-Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3-month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. Analysis of results from intercomparison among Spanish laboratories involved of photon energy ''137 Cs for environmental dosimetry laboratories

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Brosed, A.; Salas, R.

    2003-01-01

    Any environmental thermoluminescent dosemeter (TLD) system must be periodically calibrated at a calibration laboratory. In this frame, the Consejo de Seguridad Nuclear (CSN) has performed an intercomparison among Spanish laboratories involved in environmental monitoring, by means of TLD, in order to verify the traceability of the whole dosimeter and reader to the national standard for the protection quantities of interest for a given photon energy (''137Cs). To achieve this goal the CSN asked the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) to carry out the reference irradiations in the energy above mentioned at the lonising Radiations Metrology Unit headquarters. Nine laboratories have participated. All the dosemeters were irradiated with the same air kerma rate. The radiological quantity used was the ambient dose equivalent, H (10), and the values of this quantity assigned to each laboratory were between 210 and 360 μSv. All the dosemeters of the participating laboratories met the two analysis criteria used. All of them demonstrated a satisfactory fulfilment of the requirements established by so called trumpet curves and of the requirements established by the ANSI 1311. (Author) 7 refs

  19. First national intercomparison of personal dosimetry for dosimetry service providers in paec

    International Nuclear Information System (INIS)

    Akhter, J.; Ahmed, S.S.

    2006-12-01

    Health Physics Division, PINSTECH, has conducted an intercomparison exercise for PAEC organizations which are responsible for providing personal dosimetry services for the assessment of occupational doses of radiation workers. The exercise was on voluntary basis and it was designed to harmonize the procedure of individual dose monitoring techniques in terms of new ICRP operational quantities of personal dose equivalent Hp (10) for photons. Cobalt-60 and Cesium-137 protection level sources were used for irradiation. The dosimeters were exposed to radiation in the range of 0.46 to 24.20 mSv. Irradiations were performed in Secondary Standard Dosimetry Laboratory (SSDL) at HPD, PINSTECH according to IAEA/WHO standards. The performance of the participating laboratories was judged by trumpet curve that provides the acceptable limits on overall accuracy for occupational dose monitoring at 95% confidence level according to international standards. The response of measured dose/standard true dose (Hm/Ht lies in the range of 0.66 to 1.11 for 60CO and 0.84 to 1.17 for 137CS. This report describes the procedure and results of the intercomparison exercise. (author)

  20. U and Th thin film neutron dosimetry for fission-track dating: application to the age standard Moldavite

    International Nuclear Information System (INIS)

    Iunes, P.J.; Bigazzi, G.; Hadler Neto, J.C.; Laurenzi, M.A.; Balestrieri, M.L.; Norelli, P.; Osorio Araya, A.M.; Guedes, S.; Tello S, C.A.; Paulo, S.R.; Moreira, P.A.F.P.; Palissari, R.; Curvo, E.A.C.

    2005-01-01

    Neutron dosimetry based on U and Th thin films was used for fission-track dating of the age standard Moldavite, the central European tektite, from the Middle Miocene deposit of Jankov (southern Bohemia, Czech Republic). Our fission-track age (13.98+/-0.58Ma) agrees with a recent 40 Ar/ 39 Ar age, 14.34+/-0.04Ma, based on several determinations on Moldavites from different sediments, including the Jankov deposit. This result indicates that the U and Th thin film neutron dosimetry represents a reliable alternative for an absolute approach in fission-track dating

  1. Hematology laboratory standardization: a plan for harmonization in Asia.

    Science.gov (United States)

    Bunyaratvej, A; Tatsumi, N; Funahara, Y

    1999-01-01

    Hematology laboratory is generally required in the hospital. At the macroscale, hematology laboratories have served a large number of population. In Asia, more than 3,000 million people are potentially to use the hematology laboratory service, particularly the complete blood count. Since 1970s, automated technology has been introduced to Asia and as years passed by, technology diversity is increasing. However, there are considerable number of hematology laboratories that have no automated machine. They are still relied on manual technology which is still variable in spectrophotometer for hemoglobin determination, centrifuge for hematocrit and diluting pipet for cell counting. In particular, blood smear preparation and interpretation are very difficult to control for standardization from person to person and laboratory to laboratory. Different methodology and a large population in the huge geographical area in Asia, the agreement of standard criteria is greatly important. This report has shown strategy and action plan to reach the goal of hematology laboratory standardization in Asia.

  2. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    Science.gov (United States)

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  3. The 1998 calibration of Australian secondary standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Van der Gaast, H.

    1998-10-01

    New calibration factors are reported for several of the ionization chambers maintained at the Australian Radiation Laboratory (ARL) and at the Australian Nuclear Science and Technology Organisation (ANSTO) as Australian secondary standards of exposure/air kerma and absorbed dose at 60 Co. These calibration factors supplement or replace the calibration factors given in earlier reports. Updated 90 Sr reference source data are given for the ARL chambers, and for two of the ANSTO chambers. These results confirm the stability of the secondary standards. A re-calibration of the ANSTO reference electrometer is reported. This was carried out using an improved method, which is fully described

  4. Validation criteria of an internal dosimetry laboratory in vivo; Criterios para la validacion de un laboratorio de dosimetria interna in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M. de las M., E-mail: mercedes.alfaro@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    People working with radioactive materials, under certain circumstances (e.g. not using the proper protective equipment, an incident not covered, etc.) could be incorporated into the body. The radiation protection programs include direct measurement methods -in vivo- or indirect -in vitro- or both, to know that radioactive material is incorporated into the body. The monitoring measurements of internal contamination or (Radio-bioassay) are carried out with the purpose of determining the amount of radioactive material incorporated in the body; estimate the effective dose and committed dose; management administration of radiation protection; appropriate medical management; and to provide the data necessary for the legal requirements and the preservation of records. The measurement methods used in the monitoring of internal contamination must be validated by the combination of the following processes: calibration, using standards reference materials and/or simulators; execute systematic research, using control samples; and intercomparison between laboratories and performance tests. In this paper the validation criteria of an internal dosimetry laboratory in vivo are presented following the information provided by the standard ANSI N13-30-1996 and ISO/TEC 17025-2005 as are the criteria of facilities, staff training, interpretation of measurements, performance criteria for monitoring of internal contamination in vivo, results reporting and records retention. Thereby we achieve standardized quantitative performance criteria of truthfulness, accuracy and detection limit and a consensus on statistical definitions to establish the validation plan of a monitoring laboratory of internal contamination in vivo. (Author)

  5. [Accreditation of clinical laboratories based on ISO standards].

    Science.gov (United States)

    Kawai, Tadashi

    2004-11-01

    International Organization for Standardization (ISO) have published two international standards (IS) to be used for accreditation of clinical laboratories; ISO/IEC 17025:1999 and ISO 15189:2003. Any laboratory accreditation body must satisfy the requirements stated in ISO/IEC Guide 58. In order to maintain the quality of the laboratory accreditation bodies worldwide, the International Laboratory Accreditation Cooperation (ILAC) has established the mutual recognition arrangement (MRA). In Japan, the International Accreditation Japan (IAJapan) and the Japan Accreditation Board for Conformity Assessment (JAB) are the members of the ILAC/MRA group. In 2003, the Japanese Committee for Clinical Laboratory Standards (JCCLS) and the JAB have established the Development Committee of Clinical Laboratory Accreditation Program (CLAP), in order to establish the CLAP, probably starting in 2005.

  6. Secondary electron images obtained with a standard PEEM set up

    International Nuclear Information System (INIS)

    Benka, O.; Zeppenfeld, P.

    2004-01-01

    Secondary electron images excited by 3 to 4.3 keV electrons are obtained with a standard photoelectron electron emission microscope (PEEM) set up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 o with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF-reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼ -(V 1 + 5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The lateral resolution is in the range of μm. The material contrast obtained in these difference images are discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer. (author)

  7. Annual course of retraining for the occupational exposure personnel of the laboratory of internal dosimetry; Curso anual de reentrenamiento para el POE del laboratorio de dosimetria interna

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-09-15

    The general objective of this report is to instruct the personnel in the basic concepts of radiological protection and in the Manual of Procedures of Radiological Safety of the Laboratory of Internal Dosimetry. Also, to exchange experiences during the activities that are carried out in the laboratory and in the knowledge of abnormal situations. The referred Manual consists of 14 procedures and 5 instructions which are listed in annex of this document. The content of this course consists of three topics: 1. Basic principles of radiological protection to reduce the received dose equivalent. 2. Use of radiation measurer equipment. 3. Emergency procedures of the laboratory of internal dosimetry. (Author)

  8. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  9. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France

    International Nuclear Information System (INIS)

    Ward, Dann C.

    2011-01-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  10. THE HISTORY OF ESTABLISHMENT OF THE NATURAL SOURCES DOSIMETRY LABORATORY IN THE INSTITUTE OF RADIATION HYGIENE AFTER PROFESSOR P.V. RAMZAEV, 1987–2005

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available The first 5–7 years of the period under review in the history of the Natural Sources Dosimetry Laboratory happened to be in very hard period, which had a time the entire country. A severe funding reduction of the Institute in the 90-s created a threat of loss of the most active and highly professional middle-aged specialists. In these conditions, the only and the most efficient way to maintain Institute as a scientific establishment was to organize the Federal Radiological Center under the guidance of Dr. A.N. Barkovskiy. The Federal Radiological Center consisted of the all physical laboratories, including the Natural Sources Dosimetry Laboratory, without government funding. Nevertheless, as it is shown below, this period was the most fruitful for theoretical and experimental researches, and for development of legal documents and instructional guidance documents. Over these years, more than 10 sanitary regulations and hygienic standards, and more than 20 guidance documents were developed and implemented. Doses of the population due to the natural exposure data-collecting system on the base of federal statistical observation №4-DOZ form were designed. At this period, the first Federal Target Program «Radon» and the System of radiation and hygienic passportization of organizations and territories were developed and authorized. Dr. E.M. Krisiuk was fully engaged in these activities. In these years a great number of non-nuclear companies were examined. Large-scale studies of levels of exposure of the population on specific territories were conducted. The paper examines a summary of the main results, which were obtained in the most important areas of research and practical studies in the period under review.

  11. Modeling of secondary organic aerosol yields from laboratory chamber data

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2009-08-01

    Full Text Available Laboratory chamber data serve as the basis for constraining models of secondary organic aerosol (SOA formation. Current models fall into three categories: empirical two-product (Odum, product-specific, and volatility basis set. The product-specific and volatility basis set models are applied here to represent laboratory data on the ozonolysis of α-pinene under dry, dark, and low-NOx conditions in the presence of ammonium sulfate seed aerosol. Using five major identified products, the model is fit to the chamber data. From the optimal fitting, SOA oxygen-to-carbon (O/C and hydrogen-to-carbon (H/C ratios are modeled. The discrepancy between measured H/C ratios and those based on the oxidation products used in the model fitting suggests the potential importance of particle-phase reactions. Data fitting is also carried out using the volatility basis set, wherein oxidation products are parsed into volatility bins. The product-specific model is most likely hindered by lack of explicit inclusion of particle-phase accretion compounds. While prospects for identification of the majority of SOA products for major volatile organic compounds (VOCs classes remain promising, for the near future empirical product or volatility basis set models remain the approaches of choice.

  12. The role of the Secondary Laboratory of Dosimetric calibration in the implementation of the dosimetric magnitudes with radiological protection aims

    International Nuclear Information System (INIS)

    Perez Medina O, V.; Alvarez R, J.T.; Tovar M, V.M.

    2006-01-01

    It is very well-known the paper of the net of secondary laboratories of dosimetric calibration of the OAS in the dissemination of the traceability of the dosimetric magnitudes: kerma in air and absorbed dose in water, to the radiotherapy departments, given the high accuracy and precision that require the radiotherapy treatments. However the LSCD has other important areas at least for the development, implementation and evaluation of dosimetric magnitudes denominated operative magnitudes with ends of radiological protection: environmental equivalent dose H*(10), directional equivalent dose H'(0.07) and personal equivalent dose Hp. In the case of radiological protection the LSCD-ININ has been implementing the infrastructure to give service of personal dosimetry for photons and beta particles in terms of the operative magnitudes. For photons: X and gamma rays, it account with a secondary pattern camera PTW T34035 gauged in H * and Hp in the primary laboratory of Germany PTB. For the case of beta radiation its account with an extrapolation camera PTW 23392 with a secondary pattern kit of sources of the type I, gauged in terms of H'(0.07) in the PTB. (Author)

  13. Accuracy Requirements in Medical Radiation Dosimetry

    International Nuclear Information System (INIS)

    Andreo, P.

    2011-01-01

    The need for adopting unambiguous terminology on 'accuracy in medical radiation dosimetry' which is consistent with international recommendations for metrology is emphasized. Uncertainties attainable, or the need for improving their estimates, are analysed for the fields of radiotherapy, diagnostic radiology and nuclear medicine dosimetry. This review centres on uncertainties related to the first step of the dosimetry chain in the three fields, which in all cases involves the use of a detector calibrated by a standards laboratory to determine absorbed dose, air kerma or activity under reference conditions in a clinical environment. (author)

  14. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  15. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  16. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers

    International Nuclear Information System (INIS)

    Souza, Roberto Salomon de

    2004-01-01

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  17. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories

    International Nuclear Information System (INIS)

    Bhavani, M.; Tamizh Selvan, G.; Kaur, Harpreet; Adhikari, J.S.; Vijayalakshmi, J.; Venkatachalam, P.; Chaudhury, N.K.

    2014-01-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to 60 Co γ-radiation for ten different doses (0–5 Gy) at a dose rate of 0.7 and 2 Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5 Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications. - Highlights: • This is the first report from India on Networking for Biological Dosimetry preparedness using dicentric chromosomal (DC) aberration assay. • There is no significant difference in the in vitro dose response curve (Slope, Intercept, Curvature) constructed among the two labs. • No significant variation in the scoring of DC aberrations between the scorers irrespective of labs. • The DC results obtained by the labs from the Giemsa stained metaphase preparations were confirmed with centromere specific-FISH for further reliability and validity

  18. The impact of laboratory quality assurance standards on laboratory operational performance

    Directory of Open Access Journals (Sweden)

    E Ratseou

    2014-01-01

    Full Text Available It has become a trend for companies to implement and be certified to various quality management systems so as to improve consistency, reliability, and quality of product delivery to customers. The most common quality management systems adopted are the ISO 9000 series of standards for manufacturing and services related organisations, with ISO 17025 and Good Laboratory Practices (GLP standards adopted specifically by laboratories as quality assurance initiatives. There are various reports on the impact of the ISO 9000 series on organisational performance but no studies or reports have been done on the performance of laboratory standards. Therefore this article reports on a study conducted to investigate the impact of ISO 17025 and GLP on the operational performance of both commercial and non-commercial laboratories. A qualitative research study was conducted to examine the impact standards on the aspects of health and safety, supplier selection and performance, human resources, customer satisfaction and profitability of the laboratory. The data collected suggest that there is no difference in laboratory operational performance with or without the standards. In other words it appears that the basic fundamental requirements inherent with laboratories are sufficient to perform both operationally and optimally. This leads to the view that standards are implemented as a customer requirement and not as an operational requirement.

  19. Radiotherapy Dosimetry Protocols For High Energy Photons And Electrons

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1999-01-01

    One vital requirement in radiotherapy is to ensure as closely as possible consistency in determination of dose between different centers and at different times, both within a given country and internationally, because the comparison and transfer of clinical experience and the evaluation of clinical trials is dependent on common statements of dose delivered. In addition at each loon] centre it is vital that the absorbed dose calibration of each beam is carried out to exacting and consistent standards, as this is the fundamental measurement upon which the quality of all treatments on that machine depend throughout its clinical lifetime. The systems in place to ensure consistency in dosimetry differ in the details from country to country, but all depend on the same basic considerations: - the use of ion chambers of similar design and similar construction materials, - traceable calibrations of these chambers to an accredited primary or secondary standard dosimetry laboratory (SSDL) in terms of some agreed relevant dosimetric quantity, - dose statements in terms of absorbed dose to a common material, water, - the application of an appropriate recommended national or international dosimetry protocol (or code of practice) which ensures commonality in the method of use of the calibrated ion chamber, the radiotherapy treatment beam calibration conditions and any data required to convert the ion chamber reading to absorbed dose to water, and - strict quality control on each step in this process

  20. Standardization of dosimetry and damage analysis work for U.S. LWR, FBR, and MFR development program

    International Nuclear Information System (INIS)

    McElroy, W.N.; Doran, D.G.; Gold, R.; Morgan, W.C.; Grundl, J.A.; McGarry, E.D.; Kam, F.B.K.; Swank, J.H.; Odette, G.R.

    1978-01-01

    The accuracy requirements for various measured/calculated exposure and correlation parameters associated with current dosimetry and damage analysis procedures and practices depend on the accuracy needs of reactor development efforts in testing, design, safety, operations, and surveillance programs. Present state-of-the-art accuracies are estimated to be in the range of +-2 to 30 percent (1 sigma), depending on the particular parameter. There now appears to be international agreement, at least for the long term, that most reactor fuels and materials programs will not be able to accept an uncertainty greater than about +5 percent (1 sigma). The current status of dosimetry and damage analysis standardization work within the U.S. for LWR, FBR and MFR is reviewed in this paper

  1. Participation of the regional reference center for dosimetry of Argentina in the personnel dosimetry intercomparison for Latin America

    International Nuclear Information System (INIS)

    Alvarez, P.; Lindner, C.; Montano, R.G.; Saravi, M.

    1998-01-01

    Full text: A Regional Personnel Dosimetry Intercomparison was organized in the Regional Reference Center for Dosimetry (CRRD), in agreement with the International Atomic Energy Agency (IAEA) and the Nuclear Regulatory Authority (ARN), with the participation of 9 countries of Latin America. For dosimeter irradiations, X-ray, 60 Co γ-ray and 137 Cs γ-ray beams were used during the intercomparison. The air kerma rate was measured with the Secondary Standard NE 2560 and NE 2561 ionisation chamber. In compliance with ISO 4037 guideline, the wide spectrum series W60, W110 and W200 for the X-ray irradiations were chosen, determining their quality by the HVL method. Prior to the intercomparison, these beams were checked by the Physikalish Technische Bundesanstalt (PTB) using thermoluminescence dosimeters 'pill box', which were irradiated in air and in ICRU phantom. As result of this check, only one 'X ray beam got a deviation of 7%, while the rest of them were less than 3%. Periodic checks of the beams by a Primary Standard Dosimetry Laboratory such as PTB give reliability to the irradiations performed by this CRRD. (author) [es

  2. EPR dosimetry of whole deciduous tooth using a constant rotation goniometer and background subtraction with a dentine standard

    International Nuclear Information System (INIS)

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1996-01-01

    We report here a rapid method of electron paramagnetic resonance (EPR) dosimetry of dental enamel which will allow screening of whole deciduous teeth of children following a nuclear accident. The technique requires virtually no sample preparation and is capable of measuring doses of less than 100 mGy. Teeth may be scanned for threshold dose levels without the need for added calibration doses and those of particular interest may be more accurately examined using the additive dose method. The success of the technique lies in the elimination of anisotropic effects by rotation of spectra from the empty cavity and a standard background tooth. Normalization using in- cavity Mn++ standards is also employed

  3. Improving ultrasound for appendicitis through standardized reporting of secondary signs.

    Science.gov (United States)

    Partain, Kristin N; Patel, Adarsh U; Travers, Curtis; Short, Heather L; Braithwaite, Kiery; Loewen, Jonathan; Heiss, Kurt F; Raval, Mehul V

    2017-08-01

    Our aim was to implement a standardized US report that included secondary signs of appendicitis (SS) to facilitate accurate diagnosis of appendicitis and decrease the use of computed tomography (CT) and admissions for observation. A multidisciplinary team implemented a quality improvement (QI) intervention in the form of a standardized US report and provided stakeholders with monthly feedback. Outcomes including report compliance, CT use, and observation admissions were compared pretemplate and posttemplate. We identified 387 patients in the pretemplate period and 483 patients in the posttemplate period. In the posttemplate period, the reporting of SS increased from 5.4% to 79.5% (pappendicitis also improved in the posttemplate period. A focused QI initiative led to high compliance rates of utilizing the standardized US report and resulted in lower CT use and fewer admissions for observation. Study of a Diagnostic Test Level of Evidence: 1. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. DEVELOPMENT HISTORY OF NATURAL SOURCES DOSIMETRY LABORATORY AT THE RESEARCH INSTITUTE OF RADIATION HYGIENE AFTER PROFESSOR P.V. RAMZAEV: 1970–1986

    Directory of Open Access Journals (Sweden)

    E. P. Lisachenko

    2016-01-01

    Full Text Available At the initial development stage of the Leningrad Research Institute of Radiation Hygiene natural sources dosimetry laboratory the experts focused at establishment of equipment and methodology. The following period of the lab activity was rather related to theoretical and experimental research which finally led to creation of a new in radiation hygiene field of work on standard protection of population irradiation caused by natural sources of ionizing radiation. The article describes the main results of the laboratory research of construction materials natural radioactivity and the subsequent substantiation of specifications on natural radionuclides content in them. There was parallel research of natural radionuclides transfer in the system “fertilizers→soil→plants” and further along the nutrition chain into the human body. In these works there were first obtained the quantitative data on coefficients of natural radionuclides transfer from fertilizers into agricultural plants, data on the natural radionuclides content in phosphate fertilizers of the main manufacturers, and the reference data on the natural radioactivity of arable soils. This research provided substantiation of a standard of natural radionuclides content in phosphate fertilizers. Important results were also received in a large-scale research of natural environment radioactivity and of technological processes of production, processing and use of mineral raw materials. During this research for the first time there were obtained the tool data on irradiation levels and structure of doses of non-uranium industries enterprises’ employees and on natural radionuclides balance parameters in different technologies.For the last two years of the considered period the laboratory was practically not engaged in its primary activity – the efforts of all laboratory and the Institute experts were focused at analysis of Chernobyl NPP accident consequences, research of man

  5. Recommendations concerning classification of and discharge standards for radionuclide laboratories

    International Nuclear Information System (INIS)

    1985-01-01

    In the report recommendations are made for the limitation of the radioactive gaseous and liquid effluents from radionuclide laboratories. The recommended values are based on a radiation exposure for members of a critical group in the population corresponding to 1% of the dose limit for individual members of the public as recommended by the ICRP. Based on these standards a classification of radionuclide laboratories is proposed. It is recommended to retain the present Dutch classification in A-, B-, C- and D-laboratories. The report contains appendices with detailed data about the transport routes of radionuclides in the environment and the subsequent irradiation of members of the public. (orig.)

  6. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  7. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  8. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    Science.gov (United States)

    M. Noor, Noramaliza; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D. A.

    2017-11-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 μm core diameter Ge-doped silica fibres (Ge-9 μm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%.

  9. Interlaboratory niobium dosimetry comparison

    International Nuclear Information System (INIS)

    Wille, P.

    1980-01-01

    For an interlaboratory comparison of neutron dosimetry using niobium the 93 sup(m)Nb activities of irradiated niobium monitors were measured. This work was performed to compare the applied techniques of dosimetry with Nb in different laboratories. The niobium monitors were irradiated in the fast breeder EBRII, USA and the BR2, Belgium. The monitors were dissolved and several samples were prepared. Their niobium contents were determined by the 94 Nb-count rates. since the original specific count rate was known. The KX radiations of the 93 sup(m)Nb of the samples and of a calibrated Nb-foil were compared. This foil was measured by PTB, Braunschweig and CBNM, Geel, which we additionally compared with the KX radiation of 88 Sr produced by a thin 88 Y source from a 88 Y-standard solution (PTB). (orig.) [de

  10. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  11. Reactor dosimetry integral reaction rate data in LMFBR Benchmark and standard neutron fields: status, accuracy and implications

    International Nuclear Information System (INIS)

    Fabry, A.; Ceulemans, H.; Vandeplas, P.; McElroy, W.N.; Lippincott, E.P.

    1977-01-01

    This paper provides conclusions that may be drawn regarding the consistency and accuracy of dosimetry cross-section files on the basis of integral reaction rate data measured in U.S. and European benchmark and standard neutron fields. In a discussion of the major experimental facilities CFRMF (Idaho Falls), BIGTEN (Los Alamos), ΣΣ (Mol, Bucharest), NISUS (London), TAPIRO (Roma), FISSION SPECTRA (NBS, Mol, PTB), attention is paid to quantifying the sensitivity of computed integral data relative to the presently evaluated accuracy of the various neutron spectral distributions. The status of available integral data is reviewed and the assigned uncertainties are appraised, including experience gained by interlaboratory comparisons. For all reactions studied and for the various neutron fields, the measured integral data are compared to the ones computed from the ENDF/B-IV and the SAND-II dosimetry cross-section libraries as well as to some other differential data in relevant cases. This comparison, together with the proposed sensitivity and accuracy assessments, is used, whenever possible, to establish how well the best cross-sections evaluated on the basis of differential measurements (category I dosimetry reactions) are reliable in terms of integral reaction rates prediction and, for those reactions for which discrepancies are indicated, in which energy range it is presumed that additional differential measurements might help. For the other reactions (category II), the inconsistencies and trends are examined. The need for further integral measurements and interlaboratory comparisons is also considered

  12. Dosimetry for radiation processing. Final report of the co-ordinated research project on characterization and evaluation of high dose dosimetry techniques for quality assurance in radiation processing

    International Nuclear Information System (INIS)

    2000-06-01

    In many Member States the use of large cobalt-60 gamma ray facilities and electron beam accelerators with beam energies from about 0.1 to 10 MeV for industrial processing continues to increase. For these processes, quality assurance relies on the application of well established dosimetry systems and procedures. This is especially the case for health regulated processes, such as the radiation sterilization of health care products, and the irradiation of food to eliminate pathogenic organisms or to control insect pests. A co-ordinated research project (CRP) was initiated by the IAEA in June 1995. Research contracts and research agreements in areas of high dose dosimetry were initiated to meet these challenges. The major goals of this CRP were to investigate the parameters that influence the response of dosimeters and to develop reference and transfer dosimetry techniques, especially for electron beams of energy less than 4 MeV and for high energy X ray sources (up to 5 MV). These will help to unify the radiation measurements performed by different radiation processing facilities and other high dose dosimetry users in Member States and encourage efforts to obtain traceability to primary and secondary standards laboratories. It will also aim to strengthen and expand the present International Dose Assurance Service (IDAS) provided by the IAEA

  13. LLNL X-ray Calibration and Standards Laboratory

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The LLNL X-ray Calibration and Standards Laboratory is a unique facility for developing and calibrating x-ray sources, detectors, and materials, and for conducting x-ray physics research in support of our weapon and fusion-energy programs

  14. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  15. Dosimetry in diagnostic and interventional radiology - ICRU and IAEA activities

    International Nuclear Information System (INIS)

    Zoetelief, J.; Pernicka, F.

    2002-01-01

    , the entrance surface air kerma (ESAK), the entrance air kerma, the air kerma, the entrance surface dose (ESD), the entrance skin dose (ESD) and the integral skin dose. Different names are used for the same quantity, e.g. entrance surface air kerma, air kerma and entrance air kerma. The same abbreviation ESD is used for both entrance surface dose (absorbed dose most likely expressed in air) and entrance skin dose (absorbed dose most likely expressed in skin tissue). Similar problems exist for dosimetry in mammography and CT. The present situation in dosimetry for medical x-ray imaging clearly indicates the need for dose quantities recommended for the different applications and the need for a harmonised system for names, symbols and units. This has been recognised by the International Commission on Radiation Units and Measurements (ICRU) and resulted in the establishment of an ICRU Report Committee on patient dosimetry in medical imaging. The report proposes a harmonised system of quantities and units for patient dosimetry in medical imaging using x-rays. New symbols are proposed for various quantities. General information is provided on measurement methods, including various aspects of calibration of dosemeters, and methods of determining organ and tissue doses. The International Atomic Energy Agency (IAEA) is developing an international code of practice for dosimetry in x-ray diagnostic radiology. The main objective of the code of practice is to help to achieve and maintain a high level of quality in dosimetry, to improve the implementation of traceable standards at the national level and to ensure control of radiation dose in x-ray medical imaging worldwide. Compared to the ICRU, the IAEA activities put more emphasis on the practical aspects of establishment of proper calibration facilities, e.g. at the Secondary Standard Dosimetry Laboratories, and provide more detailed recommendations for clinical dosimetry. Co-ordination between ICRU and IAEA activities is

  16. Experiences in the continuous improvement of quality assurance of the dosimetry services of SLDC-MD-ININ

    International Nuclear Information System (INIS)

    Tovar M, V. M.; Vergara M, F.; Perez M, V.; Anaya M, R.; Cejudo A, J.; Alvarez R, J. T.; Arenas O, A.; Cruz F, C.

    2010-09-01

    From 2003 the Secondary Laboratory of Dosimetric Calibration (SLDC) of Metrology Department of Ionizing Radiations (MD), has complemented the Quality Manual of National Institute of Nuclear Research (ININ) according to the standard ISO 9001: 2000. However, due to that the National Center of Metrology of Mexico delegates its functions in the dosimetry and activity area for the field of the ionizing radiations to the ININ: one of the requirements so that the ININ has been designated as -Declared Institute- before the International Office of Weights and Measurements, it is to demonstrate before the Inter-American System of Metrology that the quality system of the SLDC fulfills the standard ISO/IEC 17025: 2005, satisfied this requirement the Inter-American System of Metrology in their meeting of evaluation of quality systems, Ottawa (2007) grants a certification document to the SLDC that guarantees their capacities of calibration measurements for dosimetry services. Concretely, inside the standard activities ISO 9000 with respect to the point 8 on measurement, analysis and improvement the Management of Quality Assurance of ININ carries out at year two interns auditing and every month is given continuation to the non conformities detected in the procedures that support the services of the SLDC for dosimetry with purposes of radiological protection and clinical dosimetry. (Author)

  17. Agricultural Mechanics Laboratory Management Professional Development Needs of Wyoming Secondary Agriculture Teachers

    Science.gov (United States)

    McKim, Billy R.; Saucier, P. Ryan

    2011-01-01

    Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…

  18. Survey of international personnel radiation dosimetry programs

    International Nuclear Information System (INIS)

    Swaja, R.E.

    1985-04-01

    In September of 1983, a mail survey was conducted to determine the status of external personnel gamma and neutron radiation dosimetry programs at international agencies. A total of 130 agencies participated in this study including military, regulatory, university, hospital, laboratory, and utility facilities. Information concerning basic dosimeter types, calibration sources, calibration phantoms, corrections to dosimeter responses, evaluating agencies, dose equivalent reporting conventions, ranges of typical or expected dose equivalents, and degree of satisfaction with existing systems was obtained for the gamma and neutron personnel monitoring programs at responding agencies. Results of this survey indicate that to provide the best possible occupational radiation monitoring programs and to improve dosimetry accuracy in performance studies, facility dosimetrists, regulatory and standards agencies, and research laboratories must act within their areas of responsibility to become familiar with their radiation monitoring systems, establish common reporting guidelines and performance standards, and provide opportunities for dosimetry testing and evaluation. 14 references, 10 tables

  19. Accrediting of the OKTA Laboratory - Harmonizing with the European standards

    International Nuclear Information System (INIS)

    Denkovski, Gligor

    2004-01-01

    In the energetics of Republic of Macedonia, after 13 years of independence of the country, there is still chaos in applying of many standards that are not used any more, even in the countries from which they are taken over. Step forward is the applying of the new standards in the oil industry. Control of applying of these standards is still open question. Factory laboratories regardless their equipping are not formally authorized to perform analysis for purposes other than those for their own needs. With establishing of Accrediting Institute of Republic of Macedonia (IARM), and adopting of corresponding regulations, there are conditions for accrediting of laboratories in order of giving services to the State and other users. Subject of this work is accrediting of the laboratory of OKTA - Crude Oil Refinery, Skopje, according the international standard ISO / IEC 17025. Finally this will be beginning of the control of import of crude oil products with suspicious origin and quality, that have been on the Macedonian market for years. (Author)

  20. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  1. Immediate needs for MQA testing at state secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cline, R. [Radiation Instrument Calibration Laboratory, Springfield, IL (United States)

    1993-12-31

    The Calibration Laboratory attempts to provide services that satisfy the needs and requests for a variety of customers. New needs and requests have resulted in calibration of instrumentation outside the original laboratory designs. These tasks require several changes at the laboratory and a need for new support services, especially measurement quality assurance (MQA). The MQA tests are gamma (Cs-137) below 0.5 mrem (5{mu}Sv) per hour and x-ray kVp. Modification to the current gamma (Cs-137) MQA test is recommended because lower intensity fields are commonly measured.

  2. Immediate needs for MQA testing at state secondary calibration laboratories

    International Nuclear Information System (INIS)

    Cline, R.

    1993-01-01

    The Calibration Laboratory attempts to provide services that satisfy the needs and requests for a variety of customers. New needs and requests have resulted in calibration of instrumentation outside the original laboratory designs. These tasks require several changes at the laboratory and a need for new support services, especially measurement quality assurance (MQA). The MQA tests are gamma (Cs-137) below 0.5 mrem (5μSv) per hour and x-ray kVp. Modification to the current gamma (Cs-137) MQA test is recommended because lower intensity fields are commonly measured

  3. The transfer voltage standard for calibration outside of a laboratory

    Directory of Open Access Journals (Sweden)

    Urekar Marjan

    2017-01-01

    Full Text Available The transfer voltage standard is designed for transferring the analog voltage from a calibrator to the process control workstation for multi-electrode electrolysis process in a plating plant. Transfer voltage standard is based on polypropylene capacitors and operational amplifiers with tera-ohm range input resistance needed for capacitor self-discharging effect cancellation. Dielectric absorption effect is described. An instrument for comparison of reference and control voltages is devised, based on precise window comparator. Detailed description of the main task is given, including constraints, theoretical and practical solutions. Procedure for usage of the standard outside of a laboratory conditions is explained. Comparison of expected and realized standard characteristics is given. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-32019

  4. Lower Secondary School Students' Attitudes Toward Computer-Supported Laboratory Exercises

    Directory of Open Access Journals (Sweden)

    Andreja Špernjak

    2010-03-01

    Full Text Available In Science teaching laboratory work is recognized as one of the cornerstones. In school science laboratory work computers can be used as computer supported laboratory (real and as virtual laboratory. In the first case “real” laboratories involve bench top experiments utilizing data acquisition systems while “virtual” laboratory entails interactive simulations and animations. Lower secondary school students in age between 11 and 15 performed three laboratory exercises (Activity of yeast, Gas exchange in breathing, Heart rate as classic, computer-supported and virtual laboratory. As a result of testing we know that all three methods are suitable even for younger students. When they were asked which method they liked the most, their first choice was computer-supported laboratory, followed by classic laboratory, and virtual laboratory at the end. Additionally recognized weak and strong sides of used methods are discussed.

  5. National intercomparison on in vivo measurement of Iodine-131 in the thyroid within a Brazilian Internal Dosimetry Laboratory Network - IAEA PROJECT BRA9055; Intercomparacao nacional de medicao in vivo de Iodo-131 na tireoide - Projeto TC IAEA BRA 9055

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A., E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro (Brazil); Cardoso, J.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ramos, M.A.P.; Sa, M.S. [Eletrobras Eletronuclear, Angra dos Reis, RJ (Brazil); Alonso, T.C.; Silva, T.V.; Oliveira, C.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Lima, F.F.; Oliveira, M.L.; Lacerda, I.V.B. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fajgelj, A. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2013-08-15

    In 2011, in Brazil, a National Intercalibration and Intercomparison exercise on in vivo measurement of iodine-131 in the thyroid was carried out in the scope of the Project IAEABRA9055 'Establishing a National Laboratory Network for Internal Individual Monitoring'. The exercise was conducted by the Institute for Radiation Protection and Dosimetry (IRD) and the Institute for Nuclear and Energetic Research (IPEN), from National Nuclear Energy Commission (CNEN). The objectives of the exercise were to (i) update information on current instrumentation resources available in the in vivo monitoring laboratories in operation in Brazil and to (ii) verify the reliability of the results of measurements of iodine-131 in thyroid provided by those laboratories. The procedure consisted on the measurement of a neck-thyroid anthropomorphic phantom provided by the In Vivo Monitoring Laboratory of IRD, containing two barium-133 standard sources certified by the National Laboratory for Metrology of Ionizing Radiation. Each participant should measure the phantom in a period of five days. The five laboratories are located in the States of Rio de Janeiro, Sao Paulo, Minas Gerais and Pernambuco, in the following Institutions: Institute for Radiation Protection and Dosimetry, Nuclear Power Station Almirante Alvaro Alberto, Center for the Development of Nuclear Technology, Institute for Nuclear and Energetic Research, and Regional Center for Nuclear Sciences. The results reported included: activity measured, minimum detectable activity, accuracy and precision. The performance of the laboratories was evaluated according to the criteria suggested by ANSI 13.30 indicating their capacity to provide reliable results of iodine-131 content in the thyroid. (author)

  6. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  7. 40 CFR 262.103 - What is the scope of the laboratory environmental management standard?

    Science.gov (United States)

    2010-07-01

    ... environmental management standard? 262.103 Section 262.103 Protection of Environment ENVIRONMENTAL PROTECTION... University Laboratories XL Project-Laboratory Environmental Management Standard § 262.103 What is the scope of the laboratory environmental management standard? The Laboratory Environmental Management Standard...

  8. Validation of a densimeter calibration procedure for a secondary calibration laboratory

    International Nuclear Information System (INIS)

    Alpizar Herrera, Juan Carlos

    2014-01-01

    A survey was conducted to quantify the need for calibration of a density measurement instrument at the research units at the Sede Rodrigo Facio of the Universidad de Costa Rica. A calibration procedure was documented for the instrument that presented the highest demand in the survey by the calibration service. A study of INTE-ISO/IEC 17025: 2005 and specifically in section 5.4 of this standard was done, to document the procedure for calibrating densimeters. Densimeter calibration procedures and standards were sought from different national and international sources. The method of hydrostatic weighing or Cuckow method was the basis of the defined procedure. Documenting the calibration procedure and creating other documents was performed for data acquisition log, intermediate calculation log and calibration certificate copy. A veracity test was performed using as reference laboratory a laboratory of calibration secondary national as part of the validation process of the documented procedure. The results of the E_n statistic of 0.41; 0.34 and 0.46 for the calibration points 90%, 50% and 10% were obtained for the densimeter scale respectively. A reproducibility analysis of the method was performed with satisfactory results. Different suppliers were contacted to estimate the economic costs of the equipment and materials, needed to develop the documented method of densimeter calibration. The acquisition of an analytical balance was recommended, instead of a precision scale, in order to improve the results obtained with the documented method [es

  9. Calibration of a tertiary standard in N-ISO qualities for radioprotection and personal dosimetry

    International Nuclear Information System (INIS)

    Rojas, Enrique; Seminario, Lizet

    2013-01-01

    Dosimetric calibration of radiation monitors and personal dosimeters in different radiological quantities are performed in order to obtain accurate measurements, for this reason the SSDL calculates the dosimetry calibration factor and its associated uncertainty, for each range of use. The calibration factor is performed using the known radiation field method and its uncertainty is calculated according to the ISO recommendations. The SSDL calculates the expanded uncertainty (U c ) with a coverage factor that provides a level of not less than 95 % of confidence. (authors).

  10. Study of the reliability of the TLDs reader in a Thermoluminescent dosimetry laboratory; Estudio de la constancia de la lectora de TLDs en un laboratorio de dosimetria termoluminiscente

    Energy Technology Data Exchange (ETDEWEB)

    Silva F, J.C. da; Fonseca, H.G. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende s/n- CEP, 22780-160, Rio de Janeiro (Brazil)]. e-mail: Jfeital@ird.gov.br

    2006-07-01

    Acting from the beginning of the decade of 80 in a postal program called 'Dentistry Programs' the Institute of Radioprotection and Dosimetry (IRD) it makes an effort supported by the IAEA so that it can determine with security the reference levels for the diverse practices in radiodiagnostic, including the dentistry. The dentistry program that uses 4 TLDs of lithium fluorite (LiF 100) for evaluations of the doses and of the hemirreductor layer, until 1995 it had already verified close of 5529 X-ray equipment. This work accompanies the result of 3 main parameters (arbitrary reading, reference light and noise) of the reader Harshaw marks 5500, when it is used for routine readings of the TLDs that arrive in the dosimetry laboratory for the due ratings. Together with these TLDs 9 previously selected dosemeters of a certain dosemeters lot is placed with a percentage uncertainty of 3% (for 1 standard deviation). before them they were irradiated in an irradiator of Sr90/Y90 with a dose of approximately 5 mGy, they are treated thermally in an oven PTW it marks to 400 grades for 1 hour + 100 grades for 2 hours and 100 grades in 15 minutes after the irradiations. The referred methodology follows a procedure where they are distributed of 3 in 3 the chosen TLDs of the group of the 9, to the beginning, half and at the end among the total quantity of dosemeters read in the reading disk that it can read of a single time 50 dosemeters. Together with this 10 measurements of reference light and noise are made, data that are provided by the reader through the 'softer WinRem'. Finally the obtained results of reference light and noise, its are compared with the maker's recommendations. Already that of the arbitrary reading (average of the 9 TLDs and its uncertainties), it has revealed a reduction in the percentage uncertainty (2 deviations standard / average) with relationship to one of the first results already obtained through the methodology proposal. It has

  11. A report from the AVS Standards Committee - Comparison of ion gauge calibrations by several standards laboratories

    Science.gov (United States)

    Warshawsky, I.

    1982-01-01

    Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.

  12. The DOE Laboratory Accreditation Program 8 years later

    International Nuclear Information System (INIS)

    Cummings, R.; Kershisnik, R.; Taylor, T.; Grothaus, G.; Loesch, R.M.

    1994-01-01

    The DOE Laboratory Accreditation Program was implemented in 1986. Currently, the program is conducting its seventeenth performance testing session for whole body personnel dosimeters. All but two DOE laboratories have gained accreditation for their whole body personnel dosimetry systems. Several test situations which were anticipated in the early stages of DOELAP have not materialized. In addition, the testing standard for whole body personnel dosimetry systems is under review and revision. In the near future, the accreditation programs for extremity dosimetry and bioassay will be implemented. This presentation summarizes the status and anticipated direction of the DOE whole body and extremity dosimetry and bioassay laboratory accreditation program

  13. Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

    International Nuclear Information System (INIS)

    Babapour Mofrad, F.; Aghaeizadeh Zoroofi, R.; Abbaspour Tehran Fard, A.; Akhlaghpoor, Sh.; Chen, Y. W.; Sato, Y.

    2010-01-01

    In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo Simulation and phantoms have been used in many works before. The shape, size and volume In organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framework for constructing individual phantom for dosimetry was performed on five liver CT scan data sets of Japanese normal individuals. The Zubal phantom was used as an original phantom to be adjusted by each individual data set. This registration was done by Spherical Harmonics and Thin-Plate Spline methods. Hausdorff distance was calculated for each case. Results: Result of Hausdorff distance for five lndividual phantoms showed that before registration ranged from 140.9 to 192.1, and after registration it changed to 52.5 to 76.7. This was caused by Index similarity ranged from %56.4 to %70.3. Conclusion: A new and automatic three-dimensional (3D) phantom construction approach was-suggested for individual internal dosimetry simulation via Spherical Harmonics and Thin-Plate Spline methods. The results showed that the Individual comparable phantom can be calculated with acceptable accuracy using geometric registration. This method could be used for race-specific statistical phantom modeling with major application in nuclear medicine for absorbed dose calculation.

  14. Reference and standard benchmark field consensus fission yields for U.S. reactor dosimetry programs

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Helmer, R.G.; Greenwood, R.C.; Rogers, J.W.; Heinrich, R.R.; Popek, R.J.; Kellogg, L.S.; Lippincott, E.P.; Hansen, G.E.; Zimmer, W.H.

    1977-01-01

    Measured fission product yields are reported for three benchmark neutron fields--the BIG-10 fast critical assembly at Los Alamos, the CFRMF fast neutron cavity at INEL, and the thermal column of the NBS Research Reactor. These measurements were carried out by participants in the Interlaboratory LMFBR Reaction Rates (ILRR) program. Fission product generation rates were determined by post-irradiation analysis of gamma-ray emission from fission activation foils. The gamma counting was performed by Ge(Li) spectrometry at INEL, ANL, and HEDL; the sample sent to INEL was also analyzed by NaI(Tl) spectrometry for Ba-140 content. The fission rates were determined by means of the NBS Double Fission Ionization Chamber using thin deposits of each of the fissionable isotopes. Four fissionable isotopes were included in the fast neutron field measurements; these were U-235, U-238, Pu-239, and Np-237. Only U-235 was included in the thermal neutron yield measurements. For the fast neutron fields, consensus yields were determined for three fission product isotopes--Zr-95, Ru-103, and Ba-140. For these fission product isotopes, a separately activated foil was analyzed by each of the three gamma counting laboratories. The experimental standard deviation of the three independent results was typically +- 1.5%. For the thermal neutron field, a consensus value for the Cs-137 yield was also obtained. Subsidiary fission yields are also reported for other isotopes which were studied less intensively (usually by only one of the participating laboratories). Comparisons with EBR-II fast reactor yields from destructive analysis and with ENDF/B recommended values are given

  15. Upper secondary school as an innovative health laboratory

    DEFF Research Database (Denmark)

    Nielsen, Stine Frydendal

    , 2009; Heldbjerg et al., 2009) on cultural and organizational aspects of physical activity in the upper secondary school in a latemodern era. The project aims to provide knowledge about the application of a participatory approach when working with health promotion and thus be conducive to a sustainable...... a methodological study seeking to develop methods in creating organizational change regarding health policies with participation, democracy and innovation as the main focus-areas (Dahl og Juhl: 2009). This method demands involvement from Rysensteen Gymnasium and the design is structured so that ideas, discussions...

  16. Radiation protection dosimetry and calibrations

    International Nuclear Information System (INIS)

    Verhavere, Ph.

    2007-01-01

    At the SCK-CEN different specialised services are delivered for a whole range of external and internal customers in the radiation protection area. For the expertise group of radiation protection dosimetry and calibrations, these services are organized in four different laboratories: dosimetry, anthropogammametry, nuclear calibrations and non-nuclear calibrations. The services are given by a dedicated technical staff who has experience in the handling of routine and specialised cases. The scientific research that is performed by the expertise group makes sure that state-of-the-art techniques are being used, and that constant improvements and developments are implemented. Quality Assurance is an important aspect for the different services, and accreditation according national and international standards is achieved for all laboratories

  17. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    International Nuclear Information System (INIS)

    Pilot, G.; Noel, J.P.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1992-01-01

    As part of an inter-facility comparison of secondary emissions from plasma arc and laser-cutting techniques, standard cutting tests have been done by plasma arc underwater and in air, and by laser beam in air. The same team was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick, grade 304 stainless-steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institut fuer Werkstoffkunde of Universitaet Hannover and CEA/CEN Cadarache. 10 mm and in some cases 20 mm thick, grade 304, stainless-steel plates were cut by laser beam in five different facilities: CEA-CEN Fontenay, CEA-CEN Saclay, Institut fuer Werkstoffkunde of Universitaet Hannover and ENEA/Frascati. The results obtained in the standard experiments are rather similar, and the differences that appear can be explained by the various scales of the involved facilities (semi-industrial and laboratory) and by some particularities in the cutting parameters (an additional secondary gas flow of oxygen in plasma cutting at Universitaet Hannover, for example)

  18. Measurements of secondary emissions from plasma arc and laser cutting in standard experiments

    International Nuclear Information System (INIS)

    Pilot, G.; Noel, M.; Leautier, R.; Steiner, H.; Tarroni, G.; Waldie, B.

    1990-01-01

    As part of an inter-facility comparison of secondary emissions from plasma-arc and laser cutting techniques, standard cutting tests have been done by plasma arc underwater and in air and laser beam in air. The same team, CEA/DPT/SPIN, was commissioned to measure the secondary emissions (solid and gaseous) in each contractor's facility with the same measuring rig. 20 mm and 40 mm thick grade 304 stainless steel plates were cut by plasma-torch in three different facilities: Heriot Watt University of Edinburgh, Institute fuer Werkstoffkunde of Hannover and CEA/CEN Cadarache. 10 mm and sometimes 20 mm thick grade 304 stainless steel plates were cut by laser beam in four different facilities: CEA/CEN Fontenay, CEA/CEN Saclay, Institute fuer Werkstoffkunde of Hannover and ENEA/FRASCATI. The results obtained in the standard experiments are rather similar, the differences that appear can be explained by the various scales of the facilities (semi-industrial and laboratory scale) and by some particularity in the cutting parameters (additional secondary gas flow of oxygen in plasma cutting at Hannover for example). Some supplementary experiments show the importance of some cutting parameters. (author)

  19. Standard reference materials analysis for MINT Radiocarbon Laboratory

    International Nuclear Information System (INIS)

    Noraishah Othman; Kamisah Alias; Nasasni Nasrul

    2004-01-01

    As a follow-up to the setting up of the MINT Radiocarbon Dating facility. an exercise on the IAEA standard reference materials was carried out. Radiocarbon laboratories frequently used these 8 natural samples to verify their systems. The materials were either pretreated or analysed directly to determine the activity of 14 C isotopes of the five samples expressed in % Modern (pMC) terms and to make recommendations on further use of these materials. We present the results of the five materials and discuss the analyses that were undertaken. (Author)

  20. National Standards Laboratory biennial report, 1971--1973

    Energy Technology Data Exchange (ETDEWEB)

    None

    1974-02-28

    This report describes the activities of the laboratory in: length interferometry; engineering metrology; photogrammetry; mass, volume, density, and pressure measurement: force, hardness, and materials testing machines; vibration; corrosion; time and frequency; acoustics; electrical standards; power frequency; high voltage; rf and microwave measurement; temperature measurement; optical radiometry; optics; dielectrics; magnetics; thermal and elastic properties of solids; electron transport in metals; low-energy collisions in gases; physics of the fluid state and high pressures; water vapor physics; viscometry; airglow; solar physics; and theoretical astrophysics. (DLC)

  1. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  2. The standard laboratory module approach to automation of the chemical laboratory

    International Nuclear Information System (INIS)

    Hollen, R.M.; Erkkila, T.H.

    1993-01-01

    Automation of the technology and practice of environmental laboratory automation has not been as rapid or complete as one might expect. Confined to autosamplers and limited robotic systems, our ability to apply production concepts to environmental analytical analysis is not great. With the impending remediation of our hazardous waste sites in the US, only the application of production chemistry techniques will even begin to provide those responsible with the necessary knowledge to accomplish the cleanup expeditiously and safely. Tightening regulatory requirements have already mandated staggering increases in sampling and characterization needs with the future only guaranteeing greater demands. The Contaminant Analysis Automation Program has been initiated by our government to address these current and future characterization by application of a new robotic paradigm for analytical chemistry. By using standardized modular instruments, named Standard Laboratory Modules, flexible automation systems can rapidly be configured to apply production techniques to our nations environmental problems at-site

  3. Dosimetry in radiotherapy. V.1

    International Nuclear Information System (INIS)

    1988-01-01

    A series of symposia on dosimetry in medicine and biology have been held by the IAEA in co-operation with WHO. The present symposium was the first one focusing on ''Dosimetry in Radiotherapy''. The papers presented reflected the different steps in the calibration chain such as the calibration standards established by the National Standards Laboratories and the conversion of the reading of calibrated instruments to the desired quantity, i.e. absorbed dose to water at a reference point in the user's beam at the radiotherapy clinic. The programme further examined the procedures necessary for optimization of the treatment of the patient, such as treatment planning methods, dose distribution studies, new techniques of dose measurement, improvements in the physical dose distributions/conformation therapy and special problems involved in total body treatments. Results of quality assurance in radiotherapy were presented from local hospitals as well as from national and international studies. Refs, figs and tabs

  4. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  5. Chemical dosimetry principles in high dose dosimetry

    International Nuclear Information System (INIS)

    Mhatre, Sachin G.V.

    2016-01-01

    In radiation processing, activities of principal concern are process validation and process control. The objective of such formalized procedures is to establish documentary evidence that the irradiation process has achieved the desired results. The key element of such activities is inevitably a well characterized reliable dosimetry system that is traceable to recognized national and international dosimetry standards. Only such dosimetry systems can help establish the required documentary evidence. In addition, industrial radiation processing such as irradiation of foodstuffs and sterilization of health careproducts are both highly regulated, in particular with regard to dose. Besides, dosimetry is necessary for scaling up processes from the research level to the industrial level. Thus, accurate dosimetry is indispensable

  6. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  7. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  8. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  9. Measurement of photoemission and secondary emission from laboratory dust grains

    Science.gov (United States)

    Hazelton, Robert C.; Yadlowsky, Edward J.; Settersten, Thomas B.; Spanjers, Gregory G.; Moschella, John J.

    1995-01-01

    The overall goal of this project is experimentally determine the emission properties of dust grains in order to provide theorists and modelers with an accurate data base to use in codes that predict the charging of grains in various plasma environments encountered in the magnetospheres of the planets. In general these modelers use values which have been measured on planar, bulk samples of the materials in question. The large enhancements expected due to the small size of grains can have a dramatic impact upon the predictions and the ultimate utility of these predictions. The first experimental measurement of energy resolved profiles of the secondary electron emission coefficient, 6, of sub-micron diameter particles has been accomplished. Bismuth particles in the size range of .022 to .165 micrometers were generated in a moderate pressure vacuum oven (average size is a function of oven temperature and pressure) and introduced into a high vacuum chamber where they interacted with a high energy electron beam (0.4 to 20 keV). Large enhancements in emission were observed with a peak value, delta(sub max) = 4. 5 measured for the ensemble of particles with a mean size of .022 micrometers. This is in contrast to the published value, delta(sub max) = 1.2, for bulk bismuth. The observed profiles are in general agreement with recent theoretical predictions made by Chow et al. at UCSD.

  10. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    International Nuclear Information System (INIS)

    Noor, Noramaliza M.; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D.A.

    2017-01-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 µm core diameter Ge-doped silica fibres (Ge-9 µm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%. - Highlights: • We review significant factors that impact upon radiotherapy dosimetry, • We carried out the

  11. SU-G-TeP2-03: Comparison of Standard Dosimetry Protocol in Japan and AAPM TG-51 Addendum in Order to Establish Optimal Dosimetry for FFF Beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, T; Adachi, Y [Department of Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka (Japan); Hayashi, N [Graduate School of Health Sciences, Fujita Health University, Tayoake, Aichi (Japan); Nozue, M [Department of Radiation Oncology, Seirei Hamamtsu General Hospital, Hamamatsu, Shizuoka (Japan)

    2016-06-15

    Purpose: Japan Standard Dosimetry of Absorbed dose to water in external beam radiotherapy (JSDP12) is widely used to measure radiation dose in radiotherapy. However, JSDP12 does not take flattening-filter-free (FFF) beam into consideration. In addition, JSDP12 applied TPR20,10 for dose quality index for photon beam. The purpose of this study is to compare JSDP12 with AAPM TG-51 addendum in order to establish optimal dosimetry procedure for FFF beam. Method: We evaluated the ion-recombination factor (ks) and the correction factor of radial beam profile (Prp) in FFF beam dosimetry. The ks was introduced by 2 voltages method and verified by Jaffe’s plot. The Prp was given by both film measurement and calculation of treatment planning system, and compared them. Next, we compared the dose quality indexes (kQ) between TPR20,10 method and PDD(10)x method. Finally we considered optimal dosimetry protocol for FFF photon beam using JSDP12 with referring TG-51 addendum protocols. The FFF photon beams of 6 MV (6X-FFF) and 10 MV (10X-FFF) from TrueBeam were investigated in this study. Results: The ks for 6X-FFF and 10X-FFF beams were 1.005 and 1.010, respectively. The Prp of 0.6 cc ionization chamber for 6X-FFF and 10X-FFF beams (Film, TPS) were (1.004, 1.008) and (1.005, 1.008), respectively. The kQ for 6X-FFF and 10X-FFF beams (JSDP12, TG-51 addendum) were (0.9950, 0.9947) and (0.9851, 0.9845), respectively. The most effective factor for uncertainty in FFF photon beam measurement was Prp for JSDP12 formalism. Total dosimetric differences between JSDP12 and TG-51 addendum for 6X-FFF and 10X-FFF were -0.47% and -0.73%, respectively. Conclusion: The total dosimetric difference between JSDP12 and TG-51 addendum was within 1%. The introduction of kQ given by JSDP is feasible for FFF photon beam dosimetry. However, we think Prp should be considered for optimal dosimetry procedure even if JSDP12 is used for FFF photon beam dosimetry.

  12. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  13. Protocol for X-ray dosimetry and exposure arrangements employed in studies of late somatic effects in mammals

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kogel, A.J. van der; Broerse, J.J.; Scarpa, G.; Dixon-Brown, A.

    1985-01-01

    A number of European laboratories studying the late effects of ionizing radiation in animals have established an effective cooperation within the European Late Effects Project Group (EULEP) since 1970. To facilitate the exchange of biological results several techniques, including quality control of the experimental animals, pathology and dosimetry, have to be standardized. The most important aspects of the procedures for X-irradiation and dosimetry of small animals are summarized. These include recommendations on irradiation conditions, dosimetry methods, characteristics of phantoms and factors affecting X-ray dosimetry. X-irradiation procedures employed by the participating institutes are described and the results of five X-ray dosimetry intercomparisons are reported. The introduction of a common dosimetry protocol has resulted in improvements in exposure arrangements and absolute dosimetry. (author)

  14. Performance testing of dosimetry processors, status of NRC rulemaking for improved personnel dosimetry processing, and some beta dosimetry and instrumentation problems observed by NRC regional inspectors

    International Nuclear Information System (INIS)

    Dennis, N.A.; Kinneman, J.D.; Costello, F.M.; White, J.R.; Nimitz, R.L.

    1983-01-01

    Early dosimetry processor performance studies conducted between 1967 and 1979 by several different investigators indicated that a significant percentage of personnel dosimetry processors may not be performing with a reasonable degree of accuracy. Results of voluntary performance testing of US personnel dosimetry processors against the final Health Physics Society Standard, Criteria for Testing Personnel Dosimetry Performance by the University of Michigan for the Nuclear Regulatory Commission (NRC) will be summarized with emphasis on processor performance in radiation categories involving beta particles and beta particles and photon mixtures. The current status of the NRC's regulatory program for improved personnel dosimetry processing will be reviewed. The NRC is proposing amendments to its regulations, 10 CFR Part 20, that would require its licensees to utilize specified personnel dosimetry services from processors accredited by the National Voluntary Laboratory Accreditation Program of the National Bureau of Standards. Details of the development and schedule for implementation of the program will be highlighted. Finally, selected beta dosimetry and beta instrumentation problems observed by NRC Regional Staff during inspections of NRC licensed facilities will be discussed

  15. Perofrmance testing of personnel dosimetry services. Final report of a two-year pilot study, October 1977-September 1979

    International Nuclear Information System (INIS)

    Plato, P.; Hudson, G.

    1980-01-01

    A two-year pilot study was conducted of the Health Physics Society Standards Committee (HPSSC) Standard titled, Criteria for Testing Personnel Dosimetry Performance. The objectives of the pilot study were: to give processors an opportunity to correct any problems that are uncovered; to develop operational and administrative prodedures to be used later by a permanent testing laboratory; and to determine whether the proposed HPSSC Standard provides an adequate and practical test of dosimetry performance. Fifty-nine dosimetry processors volunteered to submit dosimeters for test irradiations according to the requirements of the HPSSC Standard. The feasibility of using the HPSSC Standard for a future mandatory testing program for personnel dosimetry processors is discussed. This report shows the results of the pilot study and contains recommendations for revisions in the Standard that will make a mandatory testing program useful to regulatory agencies, dosimetry processors, and radiation workers that use personnel dosimeters

  16. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Heeren de O, A. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C., E-mail: tcff01@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear, Programa de Pos Graduacao / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling {sup 18}F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by {sup 40}K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  17. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using MCNPX code

    International Nuclear Information System (INIS)

    Guerra P, F.; Heeren de O, A.; Melo, B. M.; Lacerda, M. A. S.; Da Silva, T. A.; Ferreira F, T. C.

    2015-10-01

    The Plan of Radiological Protection licensed by the National Nuclear Energy Commission - CNEN in Brazil includes the risks of assessment of internal and external exposure by implementing a program of individual monitoring which is responsible of controlling exposures and ensuring the maintenance of radiation safety. The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology - LID/CDTN is responsible for routine monitoring of internal contamination of the Individuals Occupationally Exposed (IOEs). These are, the IOEs involved in handling 18 F produced by the Unit for Research and Production of Radiopharmaceuticals sources; as well a monitoring of the entire body of workers from the Research Reactor TRIGA IPR-R1/CDTN or whenever there is any risk of accidental incorporation. The determination of photon emitting radionuclides from the human body requires calibration techniques of the counting geometries, in order to obtain a curve of efficiency. The calibration process normally makes use of physical phantoms containing certified activities of the radionuclides of interest. The objective of this project is the calibration of the WBC facility of the LID/CDTN using the BOMAB physical phantom and Monte Carlo simulations. Three steps were needed to complete the calibration process. First, the BOMAB was filled with a KCl solution and several measurements of the gamma ray energy (1.46 MeV) emitted by 40 K were done. Second, simulations using MCNPX code were performed to calculate the counting efficiency (Ce) for the BOMAB model phantom and compared with the measurements Ce results. Third and last step, the modeled BOMAB phantom was used to calculate the Ce covering the energy range of interest. The results showed a good agreement and are within the expected ratio between the measured and simulated results. (Author)

  18. Argentine intercomparison programme for personal dosimetry

    International Nuclear Information System (INIS)

    Gregori, B.N.; Papadopulos, S.B.; Cruzate, J.; Kunst, J.J.; Saravi, M.

    2005-01-01

    Full text: In 1997 began in Argentine, sponsored by Nuclear Regulatory Authority (ARN) the intercomparison program for personal dosimetry laboratories, on a voluntary basis. Up to know 6 exercises have been done. The program began with a workshop to present the quantities, personal dose equivalent, Hp(10) and extremities dose equivalent, Hs(d). The first aim of this program was to know the true sate of personal dosimetry laboratories in the country, and then introduce the personal dose equivalent, Hp(10) into the dose measurements. The Regional Reference Center for Dosimetry (CCR), belonging to CNEA and the Physical Dosimetry Laboratory of ARN performed the irradiation. Those were done air free and on ICRU phantom, using x-ray, quality ISO: W60, W110 and W200; and 137 Cs and 60 Co gamma rays. The irradiation was made following ISO 4037 (2) recommendations. There are studied the dose, energy and angular response of the different measuring system. The range of the dose analyzed was from 0.2 mSv up to 80 mSv. The beam incidence was normal and also 20 o and 60 o . The dosimeters irradiation's were performed kerma in free in air and in phantom in order to study the availability of the service to evaluate the behavior as a function of kerma free in air or Hp(10). At the same time several items have been asked to each participant referring to the action range, the detectors characteristics, the laboratory procedures, the existence of an algorithm and its use for the dosimeter evaluation and the wish to participate in a quality assurance program. The program worked in writing a standard of personal dosimetry laboratories, that was published in 2001. In this work the results of each laboratory and its performance based on the ICRP-60 and ICRP-35 acceptance criteria are shown. Also the laboratory evolution and inquiry analyses have been included. (author)

  19. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  20. Quality audit service of the IAEA for radiation processing dosimetry

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1996-01-01

    The mandate of the International Atomic Energy Agency includes assistance to Member States to establish nuclear technologies safely and effectively. In pursuit of this, a quality audit service for dosimetry relevant to radiation processing was initiated as a key element of the High-Dose Standardization Programme of the IAEA. The standardization of dosimetry for radiation processing provides a justification for the regulatory approval of irradiated products and their unrestricted international trade. In recent times, the Agency's Dosimetry Laboratory has placed concentrated effort towards establishing a quality assurance programme based on the ISO 9000 series documents. The need for reliable and accurate dosimetry for radiation processing is increasing in Member States and we can envisage a definite role for the SSDLs in such a programme. (author). 10 refs, 3 figs

  1. A transferability study of the EPR-tooth-dosimetry technique

    International Nuclear Information System (INIS)

    Sholom, S.; Chumak, V.; Desrosiers, M.; Bouville, A.

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS (Ukraine) (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Inst. of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment. (authors)

  2. Hydrogen Field Test Standard: Laboratory and Field Performance

    Science.gov (United States)

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are

  3. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.

    Science.gov (United States)

    Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank

    2014-08-21

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  4. Individual dosimetry and calibration

    International Nuclear Information System (INIS)

    Otto, T.

    1997-01-01

    In 1996, the Dosimetry and Calibration Section was, as in previous years, mainly engaged in routine tasks: the distribution of over 6000 dosimeters (with a total of more than 10,000 films) every two months and the calibration of about 900 fixed and mobile instruments used in the radiation survey sections of RP group. These tasks were, thanks to an experienced team, well mastered. Special efforts had to be made in a number of areas to modernize the service or to keep it in line with new prescriptions. The Individual Dosimetry Service had to assure that CERN's contracting firms comply with the prescriptions in the Radiation Safety Manual (1996) that had been inspired by the Swiss Ordinance of 1994: Companies must file for authorizations with the Swiss Federal Office for Public Health requiring that in every company an 'Expert in Radiation Protection' be nominated and subsequently trained. CERN's Individual Dosimetry Service is accredited by the Swiss Federal Authorities and works closely together with other, similar services on a rigorous quality assurance programme. Within this framework, CERN was mandated to organize this year the annual Swiss 'Intercomparison of Dosimeters'. All ten accredited dosimetry services - among others those of the Paul Scherrer Institute (PSI) in Villigen and of the four Swiss nuclear power stations - sent dosimeters to CERN, where they were irradiated in CERN's calibration facility with precise photon doses. After return to their origin they were processed and evaluated. The results were communicated to CERN and were compared with the originally given doses. A report on the results was subsequently prepared and submitted to the Swiss 'Group of Experts on Personal Dosimetry'. Reference monitors for photon and neutron radiation were brought to standard laboratories to assure the traceability of CERN's calibration service to the fundamental quantities. For photon radiation, a set of ionization chambers was calibrated in the reference field

  5. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  6. Using an Online Remote Laboratory for Electrical Experiments in Upper Secondary Education

    Directory of Open Access Journals (Sweden)

    Lars Håkansson

    2012-03-01

    Full Text Available The use of remote laboratories in courses at university level has been reported in literature numerous times since the mid 90’s. In this article focus is on activities carried out by teachers and students, at the Upper Secondary School Level, using the remote laboratory VISIR (Virtual Instrument Systems in Reality. The Upper Secondary School, Katedralskolan in Lund, Sweden, cooperate with Blekinge Institute of Technology, Sweden, in a project that concerns the introduction of remote laboratory environment suitable for Upper Secondary School science courses. A remote laboratory in electronics has been introduced and is used as a complement to the traditional workbench in the hands-on laboratory. Significant results from the project are; 1 the great interest shown by the students for the remote experiments, 2 the students appreciation for the fact that it was not simulations but actual real experiments, 3 the remote laboratory is easy to implement for use by both teachers and students and 4 it can be used simultaneously by many students.

  7. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans - joint RENEB and EURADOS inter-laboratory comparisons.

    Science.gov (United States)

    Ainsbury, Elizabeth; Badie, Christophe; Barnard, Stephen; Manning, Grainne; Moquet, Jayne; Abend, Michael; Antunes, Ana Catarina; Barrios, Lleonard; Bassinet, Celine; Beinke, Christina; Bortolin, Emanuela; Bossin, Lily; Bricknell, Clare; Brzoska, Kamil; Buraczewska, Iwona; Castaño, Carlos Huertas; Čemusová, Zina; Christiansson, Maria; Cordero, Santiago Mateos; Cosler, Guillaume; Monaca, Sara Della; Desangles, François; Discher, Michael; Dominguez, Inmaculada; Doucha-Senf, Sven; Eakins, Jon; Fattibene, Paola; Filippi, Silvia; Frenzel, Monika; Georgieva, Dimka; Gregoire, Eric; Guogyte, Kamile; Hadjidekova, Valeria; Hadjiiska, Ljubomira; Hristova, Rositsa; Karakosta, Maria; Kis, Enikő; Kriehuber, Ralf; Lee, Jungil; Lloyd, David; Lumniczky, Katalin; Lyng, Fiona; Macaeva, Ellina; Majewski, Matthaeus; Vanda Martins, S; McKeever, Stephen W S; Meade, Aidan; Medipally, Dinesh; Meschini, Roberta; M'kacher, Radhia; Gil, Octávia Monteiro; Montero, Alegria; Moreno, Mercedes; Noditi, Mihaela; Oestreicher, Ursula; Oskamp, Dominik; Palitti, Fabrizio; Palma, Valentina; Pantelias, Gabriel; Pateux, Jerome; Patrono, Clarice; Pepe, Gaetano; Port, Matthias; Prieto, María Jesús; Quattrini, Maria Cristina; Quintens, Roel; Ricoul, Michelle; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Sholom, Sergey; Sommer, Sylwester; Staynova, Albena; Strunz, Sonja; Terzoudi, Georgia; Testa, Antonella; Trompier, Francois; Valente, Marco; Hoey, Olivier Van; Veronese, Ivan; Wojcik, Andrzej; Woda, Clemens

    2017-01-01

    RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiation-induced thermoluminescent signals in glass screens taken from mobile phones. In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.

  8. IAEA workshop/seminar on calibration procedures in dosimetry, Quito, 6-24 October 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The International Atomic Energy Agency in co-operation with the Ecuadorian Atomic Energy Commission organized a workshop and seminar on calibration procedures in dosimetry at the SSDL Quito, 6 to 24 October 1986. All calibration laboratories in the Latin American region were invited to participate. The purpose of the workshop were calibration exercises with therapy-level and protection-level secondary standards at various calibration qualities, discussions on progress made in the different SSDLs in the region and delivering lectures on pertinent subjects. A total of 15 Secondary Standards (10 therapy-level and 5 protection-level) were brought along by the participants and 35 calibration comparisons were performed with those having a valid calibration factor. Thirty-three determinations of calibration factors were performed for secondary standards not having had a calibration before. Twelve different calibration qualities were available (Cobalt-60 and X-rays) and Agency's Secondary Standards traceable to BIPM were the reference standards. The participants were divided into two working groups, each one week and each group into two sub-groups. Both irradiation bunkers were used simultaneously. The one houses the teletherapy Cobalt-60 unit and the protection-level Cobalt-60 irradiator, the other one the constant potential X-ray machine with maximum generating potential of 320 KV and suitable for both therapy-level as well as protection-level calibrations. Due to the heavy workload and limited time available some nightshifts were required to accomplish the requested calibration comparisons

  9. Role of dosimetry in radiation processing applications

    International Nuclear Information System (INIS)

    Mehta, Kishor

    2001-01-01

    Today, radiation processing is a growing technology offering potential technological advantages as well as enhanced safety and economy. It is expanding on two fronts: the variety of applications is exploding as well as the sources of radiation. And with that comes the necessary advances in dosimetry. However, the success of the technology still depends on the assertion that the irradiated products are reliable and safe, whether they are health care products or cables and wires. And this is best assured through quality assurance programmes. The key element in QA in radiation processing is a well-characterised, reliable dosimetry that is traceable to the international measurement system. Traceability is the foundation for international acceptance of the irradiated products; and with international trade of irradiated products on the rise, it becomes absolutely critical. It is thus vital that the industry recognises this pivotal position of good dosimetry and the role a national standards laboratory plays in that connection. (author)

  10. Quality assurance in personal dosimetry of external radiation: present situation and future needs

    International Nuclear Information System (INIS)

    Ma, N.

    2006-01-01

    Whole body personal dosimetry is well established for the individual monitoring of radiation workers. High quality radiation dosimetry is essential for workers who rely upon personal dosemeters to record the amount of radiation to which they are exposed. The mandate has been given to the Personal Dosimetry, (secondary standard dosimetry laboratories) S.S.D.L., (Malaysian institute for nuclear energy research) M.I.N.T. to assure the individual monitoring for radiation workers in Malaysia. In 2005, the S.S.D.L;-M.I.N.T. supply, process and read out of personal dosemeters of nearly 13,000 dosimeters monthly, whereby. 12,000 are films and 1,000 are T.L.D.s. The objective of individual monitoring is not limited to the measurement of doses delivered to individuals, but it should demonstrate that limits of exposure have not been exceeded and that working conditions have not unexpectedly deteriorated. Dosimetry measurements are an important component of radiation protection programs and must be of high quality. The exposure of workers to radiation must be controlled and monitored in order to comply with regulatory requirements. S.S.D.L.-M.I.N.T; demonstrates that its performance is at an acceptable level by implementing overall system performance, as evidenced by the ISO 9001 certification of the Personal Dosimetry Service in 2002 and ISO/I.E.C. 17025 accreditation to the calibration laboratory in 2004. The certification and accreditation processes achieved the goal by formalizing the recognition of satisfactory performance, and providing evidence of this performance. Overall performances are assessed, personnel operating the system will be trained and are well qualified and all actions will be documented. The paper describes the overview of the Q.M.S. carried out at the S.S. D.L.-M.I.N.T.. During the implementation of Q.M.S. a few areas has been identified for future consideration. These include performance specification and type testing of dosemeters, which provide a

  11. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  12. The Value of Laboratory Tests in Diagnosing Secondary Osteoporosis at a Fracture and Osteoporosis Outpatient Clinic

    NARCIS (Netherlands)

    de Klerk, Gijs; Hegeman, J. Han; van der Velde, Detlef; van der Palen, Jacobus Adrianus Maria; ten Duis, Henk J.

    2013-01-01

    Background: As more and more patients meeting the criteria for osteoporosis are referred to a fracture and osteoporosis outpatient clinic (FO clinic), the laboratory costs to screen for secondary osteoporosis also increases. This study was conducted to determine the value of screening on underlying

  13. Evaluation of the national secondary standard response of radiodiagnosis

    International Nuclear Information System (INIS)

    Peixoto, Jose Guilherme P.; Villalobos, Josefa P.; Carlos, Marcia T.

    1996-01-01

    Before calibration in Germany Primary Laboratory / PTB the Radcal diagnostic ionization chamber repeatability was tested in the Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI), Brazil. Response of the chamber during experiment for repeatability demonstrate a variance in the range of 0.1%

  14. Thermal stability of morpholine, AMP and sarcosine in PWR secondary systems. Laboratory and loop experiments

    International Nuclear Information System (INIS)

    Feron, D.; Lambert, I.

    1991-01-01

    Laboratory and loop tests have been carried out in order to investigate the thermal stability of three amines (morpholine, AMP and sarcosine) in PWR secondary conditions. Laboratory experiments have been performed in a titanium autoclave at 300 deg C. The results pointed out high thermal decomposition rates of AMP and sarcosine. A decomposition mechanism is proposed for the 3 amines. Loop tests have been performed in order to compare steam cycle conditioning with ammonia, morpholine and AMP. The amine concentrations and the decomposition products such as acetate and formate have been followed around the secondary circuit of the ORION loop which reproduces the main physico-chemical characteristics of a PWR secondary circuit. These concentrations are reported together with the evolution of cationic conductivities. The influence of oxygen concentration on amine thermal stability has been observed. Results are expressed also in terms of decomposition rates and of relative volatility

  15. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  16. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  17. Complete Biological Evaluation of Therapeutical Radiopharmaceuticals in Rodents, Laboratory Beagles and Veterinary Patients - Preclinical Distribution-, Kinetic-, Excretion-, Internal Dosimetry-, Radiotoxicological-, Radiation Safety- and Efficacy Data

    International Nuclear Information System (INIS)

    Balogh, L.; Domokos, M.; Polyak, A.; Thuroczy, J.; Janoki, G.

    2009-01-01

    The research and development of various novel therapeutical radiopharmaceuticals is a huge demand in many laboratories world-wide. Beside of multiple bone metastases pain-palliation and radiosynovectomy agents a number of specific radiopharmaceutical applicants mainly for oncological applications are in the pipeline. Numerous in vitro methods are available in the first line to test the radiolabelling efficiency, the possible radioactive and non-labelled impurities, the stability of the label at different conditions and mediums, and some specific characteristics of radiopharmaceutical applicants eg.: receptor binding assays, antigen-antibody assays. But, still before human clinical trials there are several questions to be solved in regards of toxicology, radiotoxicology, radiation safety and maybe most importantly the efficacy tasks. All these issues cannot be answered without animal tests. Several decades back animal tests in radiopharmacy meant only standard bioassays in a large number of healthy rodents. Later on pathological models eg.: human tumor xenografts in immunodeficient animals came-out and through them radiopharmaceutical tumor-uptake by the targets were available to evaluate in vivo as well. Xenografts are still popular and widely used models in the field but instead of wide-scaled bioassays nowadays repeated scintiscans or hybrid images (SPECT/CT, PET/CT) are more and more often used to answer kinetic-, excretion-, tumor uptake, internal dosimetry (Minimum Effective Dose, Maximum Tolerable Dose, critical organ doses, tumor doses) questions. Greater animals like laboratory Beagles are more closely in size, clinical and metabolic parameters to the human objects so playing a more perfect role of human medical doctor and especially veterinary patients. Easy to understand that many of the spontaneously occurring companion animal diseases are a good model of human pathological diseases. The need of a better diagnosis and treatment of that animals meets with

  18. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  19. Experiences in the continuous improvement of quality assurance of the dosimetry services of SLDC-MD-ININ; Experiencias en la mejora continua del aseguramiento de la calidad de los servicios de dosimetria de LSCD-ME-ININ

    Energy Technology Data Exchange (ETDEWEB)

    Tovar M, V. M.; Vergara M, F.; Perez M, V.; Anaya M, R.; Cejudo A, J.; Alvarez R, J. T.; Arenas O, A.; Cruz F, C., E-mail: victor.tovar@inin.gob.m [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio Secundario de Calibracion Dosimetrica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    From 2003 the Secondary Laboratory of Dosimetric Calibration (SLDC) of Metrology Department of Ionizing Radiations (MD), has complemented the Quality Manual of National Institute of Nuclear Research (ININ) according to the standard ISO 9001: 2000. However, due to that the National Center of Metrology of Mexico delegates its functions in the dosimetry and activity area for the field of the ionizing radiations to the ININ: one of the requirements so that the ININ has been designated as -Declared Institute- before the International Office of Weights and Measurements, it is to demonstrate before the Inter-American System of Metrology that the quality system of the SLDC fulfills the standard ISO/IEC 17025: 2005, satisfied this requirement the Inter-American System of Metrology in their meeting of evaluation of quality systems, Ottawa (2007) grants a certification document to the SLDC that guarantees their capacities of calibration measurements for dosimetry services. Concretely, inside the standard activities ISO 9000 with respect to the point 8 on measurement, analysis and improvement the Management of Quality Assurance of ININ carries out at year two interns auditing and every month is given continuation to the non conformities detected in the procedures that support the services of the SLDC for dosimetry with purposes of radiological protection and clinical dosimetry. (Author)

  20. Standardization of the Fricke gel dosimetry method and tridimensional dose evaluation using the magnetic resonance imaging technique

    International Nuclear Information System (INIS)

    Cavinato, Christianne Cobello

    2009-01-01

    This study standardized the method for obtaining the Fricke gel solution developed at IPEN. The results for different gel qualities used in the preparation of solutions and the influence of the gelatin concentration in the response of dosimetric solutions were compared. Type tests such as: dose response dependence, minimum and maximum detection limits, response reproducibility, among others, were carried out using different radiation types and the Optical Absorption (OA) spectrophotometry and Magnetic Resonance (MR) techniques. The useful dose ranges for Co 60 gamma radiation and 6 MeV photons are 0,4 to 30,0 Gy and 0,5 to 100,0 Gy , using OA and MR techniques, respectively. A study of ferric ions diffusion in solution was performed to determine the optimum time interval between irradiation and samples evaluation; until 2,5 hours after irradiation to obtain sharp MR images. A spherical simulator consisting of Fricke gel solution prepared with 5% by weight 270 Bloom gelatine (national quality) was developed to be used to three-dimensional dose assessment using the Magnetic Resonance Imaging (MRI) technique. The Fricke gel solution prepared with 270 Bloom gelatine, that, in addition to low cost, can be easily acquired on the national market, presents satisfactory results on the ease of handling, sensitivity, response reproducibility and consistency. The results confirm their applicability in the three-dimensional dosimetry using MRI technique. (author)

  1. Neutron dosimetry. Terms and definitions. Preliminary standard. Neutronendosimetrie. Begriffe und Benennungen. Vornorm

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    With this standard, definitions and terms are introduced without references. Radiation field quantities and dose quantities are defined as differential quotients like in the consecutive parts of DIN 6814. The stochastic nature of radiation and of its interactions has been accounted for by the fact that each differential quotient is to be understood as the limiting value of the statistic expectancy value of the corresponding differential quotient. The present standard is limited to the definition of non-stochastic quantities for radiation field and dose. It does not include definitions of micro-dose quantities valid for all types of radiation.

  2. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  3. Calculations of two new dose metrics proposed by AAPM Task Group 111 using the measurements with standard CT dosimetry phantoms

    International Nuclear Information System (INIS)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2013-01-01

    Purpose: AAPM Task Group 111 proposed to measure the equilibrium dose-pitch product D-caret eq for scan modes involving table translation and the midpoint dose D L (0) for stationary-table modes on the central and peripheral axes of sufficiently long (e.g., at least 40 cm) phantoms. This paper presents an alternative approach to calculate both metrics using the measurements of scanning the standard computed tomographic (CT) dosimetry phantoms on CT scanners.Methods: D-caret eq was calculated from CTDI 100 and ε(CTDI 100 ) (CTDI 100 efficiency), and D L (0) was calculated from D-caret eq and the approach to equilibrium function H(L) =D L (0)/D eq , where D eq was the equilibrium dose. CTDI 100 may be directly obtained from several sources (such as medical physicist's CT scanner performance evaluation or the IMPACT CT patient dosimetry calculator), or be derived from CTDI Vol using the central to peripheral CTDI 100 ratio (R 100 ). The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers [X. Li, D. Zhang, and B. Liu, Med. Phys. 39, 901–905 (2012); and ibid. 40, 031903 (10pp.) (2013)]. R 100 was assessed for a series of GE, Siemens, Philips, and Toshiba CT scanners with multiple settings of scan field of view, tube voltage, and bowtie filter.Results: The calculated D L (0) and D L (0)/D eq in PMMA and water cylinders were consistent with the measurements on two GE CT scanners (LightSpeed 16 and VCT) by Dixon and Ballard [Med. Phys. 34, 3399–3413 (2007)], the measurements on a Siemens CT scanner (SOMATOM Spirit Power) by Descamps et al. [J. Appl. Clin. Med. Phys. 13, 293–302 (2012)], and the Monte Carlo simulations by Boone [Med. Phys. 36, 4547–4554 (2009)].Conclusions: D-caret eq and D L (0) can be calculated using the alternative approach. The authors have provided the required ε(CTDI 100 ) and H(L) data in two previous papers. R 100 is presented for a majority of multidetector CT scanners currently on the market, and can be

  4. Comparison between IAEA/TRS-277 and IAEA/TRS-398 protocols for electron beam dosimetry with cylindrical ionization chambers; Comparacao entre os protocolos IAEA/TRS-277 e IAEA/TRS-398 para dosimetria em feixes de eletrons com camaras de ionizacao cilindricas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Roberto Salomon de

    2004-07-01

    With the purpose to guarantee an uncertainty in the dosimetry in radiation therapy, the International Atomic Energy Agency (IAEA) published in 1987 the Technical Reports Series (TRS) number 277 - Absorbed Dose Determination in Photon and Electron Beams - An International Code of Practice -, updated in 1997, when was published its second edition. In 2000 was published the TRS number 398 - Absorbed Dose Determination in External Beam Radiotherapy - An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. The TRS number 398 brings a great conceptual change in relation to the basis of the formalism, before based on calibration factor in terms of air kerma, and now based on calibration factor in terms of absorbed dose in water. Since the TRS number 398 was published, the Secondary Standard Dosimetry Laboratories are calibrating the user's ionization chambers in terms of absorbed dose to water. However, nor all the clinics in Rio de Janeiro and Brazil have its ionization chambers calibrated in terms of absorbed dose to water. The National Cancer Institute, where the measurements were taken, was the first institution in the Rio de Janeiro to have its ionization chambers calibrated in terms of a new formalism. This work describes a comparison between dosimetry done with a cylindrical ionization chamber under electron beams utilizing the TRS number 277 formalism, based on air kerma, and the TRS number 398 formalism, based on absorbed dose to water, reporting the uncertainties variation of the dosimetry associated to each protocol. (author)

  5. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics

    Science.gov (United States)

    Davis, T. A.; Athey, S. L.; Vandevender, M. L.; Crihfield, C. L.; Kolanko, C. C. E.; Shao, S.; Ellington, M. C. G.; Dicks, J. K.; Carver, J. S.; Holland, L. A.

    2015-01-01

    This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water is a standard chemistry experiment, but the typical laboratory apparatus (e.g., Hoffman cell)…

  6. Gaining competitive advantage in personal dosimetry services through ISO 9001 certification

    International Nuclear Information System (INIS)

    Noriah, M.A.

    2005-01-01

    Full text: In Malaysia, the harmonization of dose monitoring for almost 12,000 radiation workers is assigned to the Secondary Standard Dosimetry Laboratory of Malaysian Institute for Nuclear Technology Research, SSDL-MINT. Established in 1980, SSDL-MINT is responsible for improving personal and workplace safety by providing high quality personal dosimetry services. It is important to demonstrate that the performance of personal dosimetry meets recognized standards, to ensure radiation doses to individual workers are within the safe limits and to verify compliance with dose limits. Concern on the quality of personal dosimetry service began to be expressed in 2000. The concern led to the ISO certification, which brought an unprecedented effort characterized by high degree coordination, proper documentation and well trained of personal dosimetry operators. These huge efforts resulted with certification ISO 9002:1994 by the SIRIM International QAS Sdn. Bhd. in January 2002. The adoption of these requirements for the ISO 9002 standard makes routine handling of the process easier, and increases the reliability and effectiveness of the services. This helps to increase the quality and uniformity of personal dosimetry. The revision of the ISO 9002:1994 to ISO 9001:2000 necessitated SSDL-MINT revising its quality management system. The work began in middle 2002, and by May 2003, SSDL-MINT has been upgraded to ISO 9001:2000. Certification to the ISO 9001:2000 demonstrates our ability to consistency provide service that meets the requirements of the customer and the regulatory authority. These includes: improved consistency of service / product performance and therefore higher customer satisfaction levels; uniformity in work processes across organizations; simplified and more uniform structure for quality documents; improved customer perception of the organizations image, culture and performance; reduced number of product and process non-conformances; greater employee

  7. Progress report on the IAEA programme on the standardization of reactor dosimetry measurements

    International Nuclear Information System (INIS)

    Ertek, C.; Cross, B.; Chernyshev, V.

    1979-01-01

    This report briefly summarizes present activities, current status and procedures associated with neutron spectrum unfolding by activation technique within the IAEA programme on standardization of reactor radiation measurements. Experimental efforts and calculations related to unfolding are critically analyzed including the most recent techniques, interlaboratory cooperation, direct influence of recently measured cross-sections on the unfolded neutron flux density spectrum, re-evaluation of some cross-sections, neutron self-shielding factors and scattering effects. (author)

  8. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA; Intercalibracion de mediciones radiologicas para fines de vigilancia del laboratorio de dosimetria interna coordinada por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-07-15

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  9. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    CERN Document Server

    Neumaier, S; Zwiener, R

    2003-01-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration...

  10. 42 CFR 493.1443 - Standard; Laboratory director qualifications.

    Science.gov (United States)

    2010-10-01

    ... laboratory in the State in which the laboratory is located; or (6) For the subspecialty of oral pathology, be certified by the American Board of Oral Pathology, American Board of Pathology, the American Osteopathic... or clinical pathology, or both, by the American Board of Pathology or the American Osteopathic Board...

  11. Calibration of ARI QC ionisation chambers using the Australian secondary standards for activity

    International Nuclear Information System (INIS)

    Mo, L.; Van Der Gaast, H.A.; Alexiev, D.; Butcher, K.S.A.; Davies, J.

    1999-01-01

    The Secondary Standard Activity Laboratory (SSAL) in ANSTO routinely provides standardised radioactive sources, traceable activity measurements and custom source preparation services to customers. The most important activity carried out is the calibration of ionisation chambers located in the Quality Control (QC) section of Australian Radioisotopes (ARI). This ensures that their activity measurements are traceable to the Australian primary methods of standardisation. ARI QC ionisation chambers are calibrated for 99m Tc, 67 Ga, 131 I, 201 Tl and 153 Sm. The SSAL has a TPA ionisation chamber, which has been directly calibrated against a primary standard for a variety of radioactive nuclides. Calibration factors for this chamber were determined specifically for the actual volumes (5ml for 99m Tc, 131 I, 2ml for 67 Ga, 201 Tl and 3 ml for 153 Sm) and types of vial (Wheaton) which are routinely used at ARI. These calibration factors can be used to accurately measure the activity of samples prepared by ARI. The samples can subsequently be used to calibrate the QC ionisation chambers. QC ionisation chambers are re-calibrated biannually

  12. Quality system applied to the development and operation of the environmental and internal dosimetry laboratory of the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Tossi, Mirta H.; Picardi, Haydee M.; Rona, Nicolas F.; Gonzalez, Maria I.; Cohen, Isaac M.

    1997-01-01

    The characteristics of the quality plan , applied to the project of construction, commissioning and operation of the Laboratory of Internal and Environmental Dosimetry of Comision Nacional de Energia Atomica, are described. The basic objectives are: to carry out the determination of plutonium, natural and enriched uranium in biological samples, involving the operation of five plants connected with the fuel cycles, and radionuclides in environmental samples; to achieve enough sensitivity in the methods, so as to detect trends which could require the application of corrective measures or, alternatively, the practices standardisation that contribute to an operation improvement; to adequate the laboratory, under full operation conditions, for inclusion in a dose evaluation and environmental monitoring integrated system. (author). 1 ref

  13. 76 FR 72216 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-11-22

    ... accordance with the Standard's definitions for ``laboratory use of hazardous chemicals'' and ``laboratory... using hazardous chemicals; hazard-control techniques; equipment- reliability measures; worker... burden (time and costs) of the information collection requirements, including the validity of the...

  14. Sixth symposium on neutron dosimetry

    International Nuclear Information System (INIS)

    1987-01-01

    This booklet contains all abstracts of papers presented in 13 sessions. Main topics: Cross sections and Kerma factors; analytical radiobiology; detectors for personnel monitoring; secondary charged particles and microdosimetric basis of q-value for neutrons; personnel dosimetry; concepts for radiation protection; ambient monitoring; TEPC and ion chambers in radiation protection; beam dosimetry; track detectors (CR-39); dosimetry at biomedical irradiation facilities; health physics at therapy facilities; calibration for radiation protection; devices for beam dosimetry (TLD and miscellaneous); therapy and biomedical irradiation facilities; treatment planning. (HP)

  15. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  16. 77 FR 16987 - National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Science.gov (United States)

    2012-03-23

    ... National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production AGENCY... for secondary aluminum production (77 FR 8576). The EPA is extending the deadline for written comments... from the Aluminum Association. The Aluminum Association has requested the extension in order to allow...

  17. The stellar spectroscopy laboratory and curriculum counselling for secondary-school students

    International Nuclear Information System (INIS)

    Cenadelli, D.

    2011-01-01

    The stellar spectroscopy laboratory is the flagship of a wide-ranging work of curriculum counselling fostered by the Physics Department of the Milan University and the high school 'G. Parini' in Milan. In time, valuable results were gained in setting up a new way of collaboration between the high school and university worlds and in spurring secondary-school students to embark in a scientific, and more specifically physical, career. The present work briefly discusses the contents of the laboratory, its didactical value, its role of curriculum counselling and its effectiveness in directing students to take into consideration the physical sciences as a possible university choice.

  18. Experiments in the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB in the Asse II salt mine - summary highlighting work performed and outlook

    International Nuclear Information System (INIS)

    Neumaier, S.; Zwiener, R.; Boehm, J.

    2003-03-01

    Due to its extremely low area dose rate, the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the PTB at the 925 m level of the Asse II Salt Mine offers unique possibilities for the investigation and calibration of dosimetry systems of high sensitivity as are used, for example, in environmental monitoring. Due to its low area dose rate, this laboratory has an outstanding position worldwide. The low ambient dose equivalent rate in the UDO of approx. 1 nSv/h, that means of only approx. 1 percent of the ambient dose rate typically encountered at the Earth's surface, is mainly due to the following reasons: - At the depth at which the UDO is situated, the penetrating muon component of cosmic radiation which considerably contributes to the environmental equivalent dose rate at the Earth's surface (in Braunschweig, for example, approx. one third) is already attenuated by more than five orders of magnitude and is therefore completely negligible for dosimetric investigations; - The activity concentration of the pure rock salt surrounding the UDO is extremely low; it amounts only to a few becquerel per kg (from 40 K), which is approx. one hundredth of the values usually found for 'common construction materials'. Uranium and thorium have not been detected so far (upper limits for U and Th: 0,1 Bq/kg and 0,01 Bq/kg, respectively); - The radon concentration of the air is about 10 to 20 becquerel per m 3 and stems from the ventilation of the mine with outside air; - The laboratory building consists of selected materials with very low natural activity. The PTB is thus the only National Metrology Institute capable of investigating dosimetry systems free from the disturbing influences of natural ambient radiation. The objective of the present report is to illustrate, by means of selected examples, the activities which have so far been carried out at the UDO and which are planned for the few remaining years to come. The final chapter is devoted to whether the PTB will

  19. Secondary standards (non-activation) for neutron data measurements above 20 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1991-01-01

    In addition to H(n,p) scattering and 235,238 U(n,f) reactions, secondary standards for neutron flux determination may be useful for neutron energies above 20 MeV. For experiments where gamma rays are detected, reference gamma-ray production cross sections are relevant. For neutron-induced charged particle production, standard (n,p) and (n,alpha) cross sections would be helpful. Total cross section standards would serve to check the accuracy of these measurements. These secondary standards are desirable because they can be used with the same detector systems employed in measuring the quantities of interest. Uncertainties due to detector efficiency, geometrical effects, timing and length of flight paths can therefore be significantly reduced. Several secondary standards that do not depend on activation techniques are proposed. 14 refs

  20. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684; Dosimetrie pour la radioprotection en milieu medical - rapport du groupe de travail n. 9 du European radiation dosimetry group (EURADOS) - coordinated netword for radiation dosimetry (CONRAD - contrat CE fp6-12684)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  1. Proposals for new standardized general diagnostic criteria for the secondary headaches

    DEFF Research Database (Denmark)

    Olesen, J; Steiner, T; Bousser, M-G

    2009-01-01

    headache and chronic migraine. These changes made apparent a further need for broader revisions to the standard formulation of diagnostic criteria for the secondary headaches. Currently, the fourth criterion makes impossible the definitive diagnosis of a secondary headache until the underlying cause has...... propose maintaining a standard approach to the secondary headaches using a set of four criteria A, B, C and D, but we construct these so that the requirement for resolution or successful treatment is removed. The proposal for general diagnostic criteria for the secondary headaches will be entered...... classification are then foreseen for the next 10 years. Until the printing of ICHD-IIR, the printed ICHD-II criteria remain in place for all other purposes. We issue a plea to the headache community to use and study these proposed general criteria for the secondary headaches in order to provide more evidence...

  2. Dosimetry Service

    CERN Multimedia

    2006-01-01

    Cern Staff and Users can now consult their dose records for an individual or an organizational unit with HRT. Please see more information on our web page: http://cern.ch/rp-dosimetry Dosimetry Service is open every morning from 8.30 - 12.00. Closed in the afternoons. We would like to remind you that dosimeters cannot be sent to customers by internal mail. Short-term dosimeters (VCT's) must always be returned to the Service after the use and must not be left on the racks in the experimental areas or in the secretariats. Dosimetry Service Tel. 7 2155 Dosimetry.service@cern.ch http://cern.ch/rp-dosimetry

  3. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  4. Differences in Anticipatory Behaviour between Rats (Rattus norvegicus Housed in Standard versus Semi-Naturalistic Laboratory Environments.

    Directory of Open Access Journals (Sweden)

    I Joanna Makowska

    Full Text Available Laboratory rats are usually kept in relatively small cages, but research has shown that they prefer larger and more complex environments. The physiological, neurological and health effects of standard laboratory housing are well established, but fewer studies have addressed the sustained emotional impact of a standard cage environment. One method of assessing affective states in animals is to look at the animals' anticipatory behaviour between the presentation of a cue signalling the arrival of a reward and the arrival of that reward. The primary aim of this study was to use anticipatory behaviour to assess the affective state experienced by female rats a reared and housed long-term in a standard laboratory cage versus a semi-naturalistic environment, and b before and after treatment with an antidepressant or an anxiolytic. A secondary aim was to add to the literature on anticipatory behaviour by describing and comparing the frequency and duration of individual elements of anticipatory behaviour displayed by rats reared in these two systems. In all experiments, total behavioural frequency was higher in standard-housed rats compared to rats from the semi-naturalistic condition, suggesting that standard-housed rats were more sensitive to rewards and experiencing poorer welfare than rats reared in the semi-naturalistic environment. What rats did in anticipation of the reward also differed between housing treatments, with standard-housed rats mostly rearing and rats from the semi-naturalistic condition mostly sitting facing the direction of the upcoming treat. Drug interventions had no effect on the quantity or form of anticipatory behaviour, suggesting that the poorer welfare experienced by standard-housed rats was not analogous to depression or anxiety, or alternatively that the drug interventions were ineffective. This study adds to mounting evidence that standard laboratory housing for rats compromises rat welfare, and provides further

  5. Differences in Anticipatory Behaviour between Rats (Rattus norvegicus) Housed in Standard versus Semi-Naturalistic Laboratory Environments.

    Science.gov (United States)

    Makowska, I Joanna; Weary, Daniel M

    2016-01-01

    Laboratory rats are usually kept in relatively small cages, but research has shown that they prefer larger and more complex environments. The physiological, neurological and health effects of standard laboratory housing are well established, but fewer studies have addressed the sustained emotional impact of a standard cage environment. One method of assessing affective states in animals is to look at the animals' anticipatory behaviour between the presentation of a cue signalling the arrival of a reward and the arrival of that reward. The primary aim of this study was to use anticipatory behaviour to assess the affective state experienced by female rats a) reared and housed long-term in a standard laboratory cage versus a semi-naturalistic environment, and b) before and after treatment with an antidepressant or an anxiolytic. A secondary aim was to add to the literature on anticipatory behaviour by describing and comparing the frequency and duration of individual elements of anticipatory behaviour displayed by rats reared in these two systems. In all experiments, total behavioural frequency was higher in standard-housed rats compared to rats from the semi-naturalistic condition, suggesting that standard-housed rats were more sensitive to rewards and experiencing poorer welfare than rats reared in the semi-naturalistic environment. What rats did in anticipation of the reward also differed between housing treatments, with standard-housed rats mostly rearing and rats from the semi-naturalistic condition mostly sitting facing the direction of the upcoming treat. Drug interventions had no effect on the quantity or form of anticipatory behaviour, suggesting that the poorer welfare experienced by standard-housed rats was not analogous to depression or anxiety, or alternatively that the drug interventions were ineffective. This study adds to mounting evidence that standard laboratory housing for rats compromises rat welfare, and provides further scientific support for

  6. 42 CFR 493.1405 - Standard; Laboratory director qualifications.

    Science.gov (United States)

    2010-10-01

    ... degree in a chemical, physical, biological, or clinical laboratory science from an accredited institution; and (i) Be certified by the American Board of Medical Microbiology, the American Board of Clinical... certified in anatomic or clinical pathology, or both, by the American Board of Pathology or the American...

  7. Next generation platforms for high-throughput bio-dosimetry

    International Nuclear Information System (INIS)

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of bio-dosimetry assays was described. These platforms can be used at different stages of bio-dosimetry assays starting from blood collection into micro-tubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multi-well and multichannel plates. Robotically friendly platforms can be used for different bio-dosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. (authors)

  8. Quality control of the NPL-CRC secondary standard system used for activimeters calibration at IPEN, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Martins, Elaine W.; Potiens, Maria da P.A.

    2009-01-01

    The objective of this study was to establish a quality control program to be applied at the NPL-CRC activimeter secondary standard system, used as reference to comparison in tests made with the work tertiary standard activimeter, Capintec basic CRC R -15BT, both belonging to the Calibration Laboratory of IPEN. The repeatability, reproducibility and the precision tests were performed using a sealed check source of 133 Ba, from Amersham. It was made 70 series of 10 measurements to each activimeter, totaling 1400 measurements. Considering the variation limit of 5% to precision and reproducibility tests in the nuclear medicine services, recommended by the Brazilian standard CNEN-NN-3.05, the results observed in the behavior of the IPEN activimeter were satisfactory. (author)

  9. Use of the National Committee for Clinical Laboratory Standards Guidelines for Disk Diffusion Susceptibility Testing in New York State Laboratories

    Science.gov (United States)

    Kiehlbauch, Julia A.; Hannett, George E.; Salfinger, Max; Archinal, Wendy; Monserrat, Catherine; Carlyn, Cynthia

    2000-01-01

    Accurate antimicrobial susceptibility testing is vital for patient care and surveillance of emerging antimicrobial resistance. The National Committee for Clinical Laboratory Standards (NCCLS) outlines generally agreed upon guidelines for reliable and reproducible results. In January 1997 we surveyed 320 laboratories participating in the New York State Clinical Evaluation Program for General Bacteriology proficiency testing. Our survey addressed compliance with NCCLS susceptibility testing guidelines for bacterial species designated a problem (Staphylococcus aureus and Enterococcus species) or fastidious (Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria gonorrhoeae) organism. Specifically, we assessed compliance with guidelines for inoculum preparation, medium choice, number of disks per plate, and incubation conditions for disk diffusion tests. We also included length of incubation for S. aureus and Enterococcus species. We found overall compliance with the five characteristics listed above in 80 of 153 responding laboratories (50.6%) for S. aureus and 72 of 151 (47.7%) laboratories for Enterococcus species. The most common problem was an incubation time shortened to less than 24 h. Overall compliance with the first four characteristics was reported by 92 of 221 (41.6%) laboratories for S. pneumoniae, 49 of 163 (30.1%) laboratories for H. influenzae, and 11 of 77 (14.3%) laboratories for N. gonorrhoeae. Laboratories varied from NCCLS guidelines by placing an excess number of disks per plate. Laboratories also reported using alternative media for Enterococcus species, N. gonorrhoeae, and H. influenzae. This study demonstrates a need for education among clinical laboratories to increase compliance with NCCLS guidelines. PMID:10970381

  10. The challenge of Ciemat internal dosimetry service for accreditation according to ISO/IEC 17025 standard, for in vivo and in vitro monitoring and dose assessment of internal exposures

    International Nuclear Information System (INIS)

    Lopez, M.A.; Martin, R.; Hernandez, C.; Navarro, J.F.; Navarro, T.; Perez, B.; Sierra, I.

    2016-01-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. CIEMAT Internal Dosimetry Service (IDS) has developed and implemented a quality system based on ISO/IEC 17025 to ensure compliance with the general requirements of this reference standard. The development of documentary support according to this quality system permitted to standardise the systematic activities performed within the whole body counter and in vitro bioassay laboratories as well as the procedures carried out by qualified staff in charge of internal dose assessment. There was no previous experience in the accreditation of other internal dosimetry services in Spain. Then, requirements from the national regulatory body (Nuclear Safety Council, CSN) and national accreditation entity (ENAC) have been considered. The main concerns were to guarantee the traceability in the whole process and to avoid possible charge of interpretation or subjectivity in the methodology of dose assessment due to intakes of radionuclides when calculating from monitoring data. All the related international standards dealing with internal dosimetry were taken into account: ISO 28218 'Performance criteria for radiobioassay', ISO 27048 'Dose Assessment for the

  11. A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom

    Science.gov (United States)

    Martinez, Lance Michael

    This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.

  12. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1999-01-01

    The Dosimetry and Calibration Section fulfils two tasks within CERN's Radiation Protection Group: the Individual Dosimetry Service monitors more than 5000 persons potentially exposed to ionizing radiation on the CERN sites, and the Calibration Laboratory verifies throughout the year, at regular intervals, over 1000 instruments, monitors, and electronic dosimeters used by RP Group. The establishment of a Quality Assurance System for the Individual Dosimetry Service, a requirement of the new Swiss Ordinance for personal dosimetry, put a considerable workload on the section. Together with an external consultant it was decided to identify and then describe the different 'processes' of the routine work performed in the dosimetry service. The resulting Quality Manual was submitted to the Federal Office for Public Health in Bern in autumn. The CERN Individual Dosimetry Service will eventually be officially endorsed after a successful technical test in March 1999. On the technical side, the introduction of an automatic development machine for gamma films was very successful. It processes the dosimetric films without an operator being present, and its built-in regeneration mechanism keeps the concentration of the processing chemicals at a constant level

  13. Personal dosimetry performance testing in the United States

    International Nuclear Information System (INIS)

    Soares, Christopher G.

    2008-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11. Now in it's fourth edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Laboratory Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by U.S. Nuclear Regulatory Commission (NRC) regulations. The U.S. Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). One of the goals of this current revision was the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonization to U.S. personal dosemeter performance testing. The testing philosophy of ANSI/HPS N13.11 has always combined elements of type testing and routine performance testing and is thus different from the testing philosophy used in the rest of the world. In this paper, the history of performance testing in the U.S. is briefly reviewed. Also described is the revision that produced the fourth edition of this standard, which has taken place over the last three years (2005-2008) by a working group representing national standards laboratories, government laboratories, the military, dosimetry vendors, universities and the nuclear power industry. (author)

  14. SSDL personel dosimetry system: migration from a client - server system into a web-based system

    International Nuclear Information System (INIS)

    Maizura Ibrahim; Rosnah Shariff; Ahmad Bazlie Abdul Kadir; John Konsoh Sangau; Mohd Amin Sharifuldin Salleh; Taiman Kadni; Noriah Mod Ali

    2007-01-01

    Personnel Dosimetry System has been used by the Secondary Standard Dosimetry Laboratory (SSDL), Nuclear Malaysia since ten years ago. The system is a computerized database system with a client-server concept. This system has been used by Film Badge Laboratory, SSDL to record details of clients, calculation of Film Badge dosage, management of radiation workers data's, generating of dosage report, retrieval of statistical reports regarding film badge usage for the purpose of reporting to monitoring bodies such as Atomic Energy Licensing Board (AELB), Ministry of Health and others. But, due to technical problems that frequently occurs, the system is going to be replaced by a newly developed web- based system called e-SSDL. This paper describe the problems that regularly occurs in the previous system, explains how the process of replacing the client-server system with a web-based system is done and the differences between the previous and current system. This paper will also present details architecture of the new system and the new process introduced in processing film badges. (Author)

  15. The role of the IAEA codes of practice in the radiation dosimetry dissemination chain

    International Nuclear Information System (INIS)

    Andreo, P.

    2002-01-01

    Full text: More than 30 years ago the International Atomic Energy Agency (IAEA) published on behalf of IAEA, WHO and PAHO its first Code of Practice (CoP) for radiotherapy dosimetry, TRS-110. Aimed at kV x-rays, 60 Co and 137 Cs therapy in developing countries, and based on roentgens and rads, 'old book' readers will still find interesting practical recommendations like QA procedures that include radiographs of the ionization chamber to check that the internal electrode construction has not moved. TRS-110 was also the first and only CoP with the distinction of including the name of the author in its cover, John B Massey, recognizing that IAEA acted solely as a publisher. For the following almost 20 years IAEA dosimetry activities have prioritized the development of a Network of Secondary Standard Dosimetry Laboratories (SSDLs). In addition to disseminating traceable radiation metrology standards, in some countries the SSDLs have played the important role of compensating the lack of qualified medical physicists. The balance between radiation metrology and medical physics has now shifted towards the first area and the IAEA recommends that SSDLs should not perform the duties of medical physicists except in dire situations. During this long period, there were no updates of TRS-110 or a new IAEA CoP published, even if different generations of national dosimetry protocols had emerged. The absence of IAEA recommendations favoured the arbitrary use of such national protocols, mostly issued in UK and USA, with the result that multiple protocols were used within a given country and there were no practical links between medical physics and SSDLs except for detector calibrations. The publication in 1987 of the TRS-277 Code of Practice established a quantum leap with regard to the Agency's role in harmonizing international radiotherapy dosimetry. A new generation of N K -based national protocols had emerged in the early eighties, and the authors of TRS-277 were chosen among

  16. Review and comparison of quality standards, guidelines and regulations for laboratories

    Directory of Open Access Journals (Sweden)

    Tjeerd A.M. Datema

    2011-12-01

    Full Text Available Background: The variety and number of laboratory quality standards, guidelines and regulations (hereafter: quality documents makes it difficult to choose the most suitable one for establishing and maintaining a laboratory quality management system. Objectives: There is a need to compare the characteristics, suitability and applicability of quality documents in view of the increasing efforts to introduce quality management in laboratories, especially in clinical diagnostic laboratories in low income and middle income countries. This may provide valuable insights for policy makers developing national laboratory policies, and for laboratory managers and quality officers in choosing the most appropriate quality document for upgrading their laboratories. Method: We reviewed the history of quality document development and then selected a subset based on their current use. We analysed these documents following a framework for comparison of quality documents that was adapted from the Clinical Laboratory Standards Institute guideline GP26 Quality management system model for clinical laboratory services. Results: Differences were identified between national and international, and non-clinical and clinical quality documents. The most salient findings were the absence of provisions on occurrence management and customer service in almost all non-clinical quality documents, a low number of safety requirements aimed at protecting laboratory personnel in international quality documents and no requirements regarding ethical behaviour in almost all quality documents. Conclusion: Each laboratory needs to investigate whether national regulatory standards are present. These are preferred as they most closely suit the needs of laboratories in the country. A laboratory should always use both a standard and a guideline: a standard sums up the requirements to a quality management system, a guideline describes how quality management can be integrated in the laboratory

  17. Standardization of irradiation values at the Radiation Calibration Laboratory

    International Nuclear Information System (INIS)

    Pham Van Dung; Hoang Van Nguyen; Phan Van Toan; Phan Dinh Sinh; Tran Thi Tuyet; Do Thi Phuong

    2007-01-01

    The objective of the theme is to determine dose rates around radiation facilities and sources in the NRI Radiation Calibration Laboratory. By improving equipment, calibrating a main dosemeter and carrying out experiments, the theme team received the following results: 1. The controller of a X-rays generator PY(-200 was improved. It permits to increase accuracy of radiation dose calibration up to 2-4 times; 2. The FAMER DOSEMETER 2570/1B with the ionization chamber NE 2575 C of the NRI Radiation Calibration Laboratory was calibrated at SSDL (Hanoi); 3. Dose rates at 4 positions around a high activity Co-60 source were determined; 4. Dose rates at 3 positions around a low activity Co-60 source were determined; 5. Dose rates at 3 positions around a low activity Cs-137 source were determined; 6. Dose rate at 1 position of a X-rays beam (Eaverage = 48 keV) was determined; 7. Dose rate at 1 position of a X-rays beam (Eaverage = 65 keV) was determined. (author)

  18. Standard practice for application of thermoluminescence-dosimetry (TLD) systems for determining absorbed dose in radiation-hardness testing of electronic devices. ASTM standard

    International Nuclear Information System (INIS)

    1998-05-01

    This practice is under the jurisdiction of ASTM Committee E-10 on Nuclear Technology and Applications and is the direct responsibility of Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices. Current edition approved Jun. 10, 1997. Published May 1998. Originally published as E 668-78. Last previous edition E 668-93

  19. Medical laboratories in sub-Saharan Africa that meet international quality standards.

    Science.gov (United States)

    Schroeder, Lee F; Amukele, Timothy

    2014-06-01

    A recent survey of laboratories in Kampala, Uganda, demonstrated that only 0.3% of laboratories (3/954) met international quality standards. To benchmark laboratory quality throughout the rest of sub-Saharan Africa (SSA), we compiled a list of SSA laboratories meeting international quality standards. Accrediting bodies were queried via online registries or direct communication in May 2013. There were 380 laboratories accredited to international standards in SSA. Ninety-one percent were in South Africa. Thirty-seven of 49 countries had no laboratories accredited to international quality standards. Accredited laboratory density (per million people) in South Africa, Namibia, and Botswana were similar to those in many European countries. Single variable linear regression showed a correlation between accredited laboratory density and health expenditures per person (adjusted R(2) = 0.81, P clinical laboratory. For those that do, there is a strong correlation between country-specific accredited laboratory density and per-capita health expenditures. Copyright© by the American Society for Clinical Pathology.

  20. Canadian Laboratory Standards for Sexually Transmitted Infections: Best Practice Guidelines

    Directory of Open Access Journals (Sweden)

    Max A Chernesky

    2005-01-01

    Full Text Available Sexually transmitted infections (STI continue to spread, and show no international boundaries. Diseases such as gonorrhea and syphilis, which we thought were under control in Canadian populations, have increased in incidence. Sexually transmitted or associated syndromes such as cervicitis, enteric infections, epididymitis, genital ulcers, sexually related hepatitis, ophthalmia neonatorum, pelvic inflammatory disease, prostatitis and vulvovaginitis present a challenge for the physician to identify the microbial cause, treat the patient and manage contacts. During the past 10 years, new technologies developed for the diagnosis of STIs have provided a clearer understanding of the real accuracy of traditional tests for the diagnosis of infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum, herpes simplex viruses, hepatitis B virus, human papillomaviruses, HIV, Haemophilus ducreyi, Trichomonas vaginalis and mycoplasmas. This has presented a major challenge to the diagnostic laboratory, namely, selecting the most sensitive and specific test matched with the most appropriate specimens to provide meaningful and timely results to facilitate optimal patient care.

  1. National BTS bronchiectasis audit 2012: is the quality standard being adhered to in adult secondary care?

    Science.gov (United States)

    Hill, Adam T; Routh, Chris; Welham, Sally

    2014-03-01

    A significant step towards improving care of patients with non-cystic fibrosis bronchiectasis was the creation of the British Thoracic Society (BTS) national guidelines and the quality standard. A BTS bronchiectasis audit was conducted between 1 October and 30 November 2012, in adult patients with bronchiectasis attending secondary care, against the BTS quality standard. Ninety-eight institutions took part, submitting a total of 3147 patient records. The audit highlighted the variable adoption of the quality standard. It will allow the host institutions to benchmark against UK figures and drive quality improvement programmes to promote the quality standard and improve patient care.

  2. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    Science.gov (United States)

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  3. Excellence in clinical laboratories: the standard ISO 15189:2007

    Directory of Open Access Journals (Sweden)

    Antonio Scipioni

    2010-06-01

    Full Text Available I laboratori clinici operano in stretto contatto con i pazienti e collaborano direttamente alla loro cura, in modo corresponsabile con i medici e i reparti ospedalieri. L’importanza della loro attività per la salute pubblica rende obbligatoria l’esplicitazione di alcuni punti finora spesso considerati ovvii. Ai pazienti dev’essere infatti garantito che: - i metodi di analisi utilizzati siano stati preliminarmente valutati, per confermare la loro rispondenza agli obiettivi dell’analisi stessa, verificati, per controllarne l’effettiva efficacia e, se necessario, validati per garantire che siano appropriati allo scopo; - il personale che esegue le analisi sia stato adeguatamente formato e quindi tecnicamente competente; - il laboratorio assicuri un’adeguata consulenza allo staff clinico che richiede le analisi, allo scopo di ottenere una sinergia tra il laboratorio e il clinico che ha in cura il paziente, sia nella fase di prelievo di materiale biologico, sia nella fase di interpretazione dei risultati. Tutto ciò è necessario per dimostrare ai pazienti

  4. Secondary electron images obtained with a standard photoelectron emission microscope set-up

    International Nuclear Information System (INIS)

    Benka, Oswald; Zeppenfeld, Peter

    2005-01-01

    The first results of secondary electron images excited by 3-4.3 keV electrons are presented. The images are obtained with a standard FOCUS-PEEM set-up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 deg. with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼-(V 1 +5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The material contrast obtained in these difference images is discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer

  5. Calibration of working standard ionization chambers and dose standardization

    International Nuclear Information System (INIS)

    Abd Elmahoud, A. A. B.

    2011-01-01

    Measurements were performed for the calibration of two working standard ionization chambers in the secondary standard dosimetry laboratory of Sudan. 600 cc cylindrical former type and 1800 cc cylindrical radical radiation protection level ionization chambers were calibrated against 1000 cc spherical reference standard ionization chamber. The chamber were calibrated at X-ray narrow spectrum series with beam energies ranged from (33-116 KeV) in addition to 1''3''7''Cs beam with 662 KeV energy. The chambers 0.6 cc and 0.3 cc therapy level ionization were used for dose standardization and beam output calibrations of cobalt-60 radiotherapy machine located at the National Cancer Institute, University of Gazira. Concerning beam output measurements for 6''0''Co radiotherapy machine, dosimetric measurements were performed in accordance with the relevant per IAEA dosimetry protocols TRS-277 and TRS-398. The kinetic energy released per unit mass in air (air kerma) were obtained by multiplying the corrected electrometer reading (nC/min) by the calibration factors (Gy/n C) of the chambers from given in the calibration certificate. The uncertainty of measurements of air kerma were calculated for the all ionization chambers (combined uncertainty) the calibration factors of these ionization chambers then were calculated by comparing the reading of air kerma of secondary standard ionization chambers to than from radical and farmer chambers. The result of calibration working standard ionization chambers showed different calibration factors ranged from 0.99 to 1.52 for different radiation energies and these differences were due to chambers response and specification. The absorbed dose to to water calculated for therapy ionization chamber using two code of practice TRS-277 and TRS-398 as beam output for 6''0''Co radiotherapy machine and it can be used as a reference for future beam output calibration in radiotherapy dosimetry. The measurement of absorbed dose to water showed that the

  6. Working conditions analysis according T.L. personal dosimetry results

    International Nuclear Information System (INIS)

    Marinkovic, O.; Jovanovic, S.

    2006-01-01

    Laboratory for personal dosimetry in the Institute of Occupational and Radiological Health, Belgrade, used TLD more than twenty years. Before that, film dosimetry was main method in external monitoring. T.L. dosimetry was started with Reader Toledo 654 and crystals Mg B 4 O 7 . Finally, from 1992 laboratory has Harshaw TLD Reader Model 6600. Dosimeters are crystals LiF type 100, card packed, worn in standard filtrated holders. Personal dosimetry data are keeping 30 years for each worker according to regulations. The data from 1990 are in electronic form. Long experience enables conclusion that new technique means more advantages in practice. Recommendation from this laboratory practice refers to TLD read-out cycle. The longest period should be one month. LiF is recommended crystal. Glow curve deconvolution gives information about chronological irradiation. It is very important to conclude was dosimetry irradiated by 'one-shot' or continuously. Preparing calibration for determination the time since accident laboratory has to define adequate dose calibration methodology including low temperature peaks. Possibility to follow working conditions analyzing TLD glow curve is much more important than low decrease of dose severity. Time depend analyze is not possible if TLD would be read-out more than (approximately) six weeks after irradiation. If ionizing sources produce such low dose and has negligible probability of accidental exposure (according nowadays regulation read-out frequency could be once in three month), the recommendation is not to use external personal monitoring. Reading personal dosimeters once in three months deemed not useful. Complete and successful personal dosimetry dictates using system that enables glow curve shape representation to be sure that signal is ionizing irradiation result or not. Time depend analyze imparts information about protection permanence. In special circumstance, it is possible to estimate the time of exposure. This is extremely

  7. Applying Standards for Leaders to the Selection of Secondary School Principals

    Science.gov (United States)

    Wildy, Helen; Pepper, Coral; Guanzhong, Luo

    2011-01-01

    Purpose: The purpose of this paper is to report innovative research aimed at ascertaining whether standards for school leaders could be applied to the process of selecting senior secondary school principals for appointment. Specifically, psychometrically robust measures of performance are sought that would sufficiently differentiate performance to…

  8. Constructing Assessment Model of Primary and Secondary Educational Quality with Talent Quality as the Core Standard

    Science.gov (United States)

    Chen, Benyou

    2014-01-01

    Quality is the core of education and it is important to standardization construction of primary and secondary education in urban (U) and rural (R) areas. The ultimate goal of the integration of urban and rural education is to pursuit quality urban and rural education. Based on analysing the related policy basis and the existing assessment models…

  9. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  10. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 7 2155 http://cern.ch/rp-dosimetry

  11. Dosimetry Service

    CERN Multimedia

    Dosimetry Service

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service Tel. 7 2155 http://cern.ch/rp-dosimetry

  12. Dosimetry Service

    CERN Multimedia

    2005-01-01

    Please remember to read your dosimeter at least once a month. Regular read-outs are vital to ensure that your personal dose is periodically monitored. Dosimeters should be read even if you have not visited the controlled areas. Dosimetry Service - Tel. 72155 http://cern.ch/rp-dosimetry

  13. Profile of laboratory instruction in secondary school level chemistry and indication for reform

    Science.gov (United States)

    Wang, Mei

    This study is a profile of the laboratory component of instruction in secondary school level chemistry. As one of several companion studies, the purpose of the study is to investigate present practices related to instruction as a means of producing reform that improve cognitive and non-cognitive learning outcomes. Five hundred-forty students, from 18 chemistry classes taught by 12 teachers in ten high schools were involved in this study. Three schools included public and private schools, urban school, suburban schools, and rural schools. Three levels or types of chemistry courses were offered in these schools: school regular chemistry for college bound students, Chemistry in the Community or "ChemCom" for non-college bound students, and a second year of chemistry or advanced placement chemistry. Laboratory sessions in each of these three levels of courses were observed, videotaped, and later analyzed using the Modified Revised Science Teachers Behaviors Inventory (MR-STBI). The 12 chemistry teachers, eight science supervisors, and selected students were interviewed to determine their professional backgrounds and other factors that might influence how they teach, how they think, and how they learn. The following conclusions developed from the research are: (1) The three levels of chemistry courses are offered across high schools of varying sizes and locations. (2) Teachers perceive that students come to chemistry classes poorly prepared to effectively carry out laboratory experiences and/or investigations. (3) While students indicated that they are able to effectively use math skills in analyzing the results of chemistry laboratory experiments, teachers, in general, are not satisfied with the level at which students are prepared to use these skills, or to use writing skills. (4) Students working in pairs, is the typical approach. Group cooperation is sometimes used in carrying out the laboratory component of chemistry instruction in the ChemCom and AP chemistry

  14. Twenty years of an international nuclear laboratory

    International Nuclear Information System (INIS)

    Suschny, O.

    1982-01-01

    The laboratories of the International Atomic Energy Agency were started in 1959 with a physics laboratory, a chemistry laboratory and an electronics workshop. Early work centred on absolute radionuclide calibrations and on assessments of the consequences of radioactive fallout from atomic weapons testing on the health of the people in Member States. Subsequently, work was started on the use of radioactive and stable isotopes in agriculture, in hydrology, in medical applications, in pest and insect control and with the entry into force of the Nuclear Non-Proliferation Treaty a Safeguard Analytical Laboratory was established to provide support for the Agency's safeguards inspection responsibilities. Together with WHO a network of 43 Secondary Standard Dosimetry Laboratories were set up in Member States to improve dosimetric accuracy in medicine and radiation protection worldwide. Throughout their history, the laboratories of the IAEA have lent great importance on their training programmes that have enabled many workers in nuclear or nuclear related research to gain experience. This emphasis on training has been stressed particularly to benefit research workers from developing countries

  15. Technical basis document for internal dosimetry

    International Nuclear Information System (INIS)

    Hickman, D.P.

    1991-01-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) internal dosimetry program. Geotech policy describes the intentions of the company in complying with radiation protection standards and the as low as reasonably achievable (ALARA) program. It uses this policy and applicable protection standards to derive acceptable methods and levels of bioassay to assure compliance. The models and computational methods used are described in detail within this document. FR-om these models, dose- conversion factors and derived limits are computed. These computations are then verified using existing documentation and verification information or by demonstration of the calculations used to obtain the dose-conversion factors and derived limits. Recommendations for methods of optimizing the internal dosimetry program to provide effective monitoring and dose assessment for workers are provided in the last section of this document. This document is intended to be used in establishing an accredited dosimetry program in accordance with expected Department of Energy Laboratory Accreditation Program (DOELAP) requirements for the selected radionuclides provided in this document, including uranium mill tailing mixtures. Additions and modifications to this document and procedures derived FR-om this document are expected in the future according to changes in standards and changes in programmatic mission

  16. Intercomparison of Environmental Dosemeters Using Various TL Materials and Dosimetry Systems

    International Nuclear Information System (INIS)

    Crnic, B.; Gobec, S.; Zorko, B.; Knezevic, Z.; Majer, M.; Ranogajec-Komor, M.

    2013-01-01

    The aim of the present work was to compare the ambient dose equivalent (H*(10)) values determined at 20 sites around NPP Krško, using different thermoluminescence (TL) materials and various dosimetry systems. The H*(10) was measured by the CaF 2 :Mn (TLD-400) provided by the Jozef Stefan Institute (JSI) Ljubljana, Slovenia. These dosemeters were deployed in the environment in plastic bags and suspended inside the plastic bottles. On the other hand the Ruder Boskovic Institute (RBI), Zagreb, Croatia applied LiF:Mg,Cu,P (TLD-100H), CaF 2 :Mn, Al 2 O 3 :C TL detectors and radiophotoluminescence (RPL) glass dosemeters type SG1. They were placed at the same locations in as much as possible same conditions as JSI detectors. According to the protocol established for this intercomparison, the control and transport detectors (not deployed in the environment) were held in dark storage containers and used to determine the background radiation. The TL responses were corrected for individual sensitivity of the TL detectors which is an important factor after the calibration irradiations. The calibration irradiations were performed by 137Cs sources provided in Secondary Standard Dosimetry Laboratory facilities at the JSI and RBI. The results obtained by different TL materials and different dosimetry systems show interesting features especially concerning local environmental peculiarities. The H*(10) obtained by the dosemeters of various types deployed in the countryside fluctuate less than 10 %. The outcome should emphasize also in the manner that the results obtained and reported in the intercomparison are traceable to the primary standards.(author)

  17. Establishment of a new calibration method of pencil ionization chamber for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Dias, Daniel Menezes

    2010-01-01

    Pencil ionization chambers are used for beam dosimetry in computed tomography equipment (CT). In this study, a new calibration methodology was established, in order to make the Calibration Laboratory of Instituto de Pesquisas Energeticas e Nucleares (LCI) suitable to international metrological standards, dealing with specific procedures for calibration of these chambers used in CT. Firstly, the setup for the new RQT radiation qualities was mounted, in agreement with IEC61267 from the International Electrotechnical Commission (IEC). After the establishment of these radiation qualities, a specific calibration methodology for pencil ionization chambers was set, according to Technical Report Series No. 457, from the International Atomic Energy Agency (IAEA), which describes particularities of the procedure to be followed by the Secondary Standard Dosimetry Laboratories (SSDL's), concerning to collimation and positioning related to the radiation beam. Initially, PPV (kV) measurements and the determination of copper additional filtrations were carried out, measuring the half value layers (HVL) recommended by the IEC 61267 standard, after that the RQT 8, RQT 9 and RQT 10 radiation quality references were established. For additional filters, aluminum and copper of high purity (around 99.9%) were used. RQT's in thickness of copper filters equivalent to the set 'RQR (Al) + Additional Filtration (Cu)' was directly found by an alternative methodology used to determine additional filtrations, which is a good option when RQR's have not the possibility of be setting up. With the establishment of this new methodology for the ionization pencil chambers calibration, the LCI is ready to calibrate these instruments according to the most recent international standards. Therefore, an improvement in calibration traceability, as well as in metrological services offered by IPEN to all Brazil is achieved. (author)

  18. Microbiological Standardization in Small Laboratory Animals and Recommendations for the Monitoring

    OpenAIRE

    Meral Karaman

    2014-01-01

    Microbiological standardization in laboratory animal breeding is based on the classification according to the microorganisms that the animals host and consequently their upbringing environment, as well as the certification of their microbiological status and the protection of their properties. Although there are many different classifications for microbiological standardization of laboratory animals, they can be basically classified as; gnotobiotic animals, animals bred with a complete barrie...

  19. Use of the calorimeter in the dosimetry for electron accelerators

    International Nuclear Information System (INIS)

    Chavez B, A.

    1991-02-01

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  20. Radiation protection dosimetry in medicine - Report of the working group n.9 of the European radiation dosimetry group (EURADOS) - coordinated network for radiation dosimetry (CONRAD - contract EC N) fp6-12684

    International Nuclear Information System (INIS)

    2009-01-01

    This report present the results achieved within the frame of the work the WP 7 (Radiation Protection Dosimetry of Medical Staff) of the coordination action CONRAD (Coordinated Network for Radiation Dosimetry) funded through the 6. EU Framework Program. This action was coordinated by EURADOS (European Radiation Dosimetry Group). EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. WP7 coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated through sub-groups covering three specific areas: 1. Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2. Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons in large exposure during interventional radiology procedures, especially to determine effective doses to cardiologists during cardiac catheterization; and 3. Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (authors)

  1. Inter-laboratory variation in DNA damage using a standard comet assay protocol

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen

    2012-01-01

    determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol...... analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained...

  2. Secondary students in professional laboratories: Discoveries about science learning in a community of practitioners

    Science.gov (United States)

    Song, Mary Elizabeth

    This study explores what educators may learn from the experiences of secondary students working in professional scientific laboratories. My investigation is guided by the methodology of phenomenological; I depend primarily on interviews conducted with students and professional researchers. This material is supported primarily by on-site observations, and by informal conversations between me and the study participants. My dissertation has three goals: (one) to use the work of secondary students in scientific research laboratories to consider how they know the discipline; (two) to distinguish the students' professional accomplishments from science learning at school; and, (three) to engage readers in a reflection about authority within the scientific community, and the possibility that by accomplishing research, students take their legitimate place among those who construct scientific knowledge. My methods and focus have allowed me to capture qualities of the student narratives that support the emergence of three major themes: the importance of doing "real work" in learning situations; the inapplicability of "school learning" to professional research arenas; and the inclusive nature of the scientific community. At the same time, the study is confined by the narrow pool of participants I interviewed over a short period of time. These talented students were all academically successful, articulate, "well-rounded" and in this sense, mature. They typically had strong family support, and they talked about ideas with their parents. Indeed, the students were all capable story-tellers who were anxious to share their experiences publicly. Yet they themselves remind the reader of their struggles to overcome naivete in the lab. By doing so they suggested to me that their experiences might be accessible to a broad range of young men and women; thus this study is a good beginning for further research.

  3. Microbiological Standardization in Small Laboratory Animals and Recommendations for the Monitoring

    Directory of Open Access Journals (Sweden)

    Meral Karaman

    2014-03-01

    Full Text Available Microbiological standardization in laboratory animal breeding is based on the classification according to the microorganisms that the animals host and consequently their upbringing environment, as well as the certification of their microbiological status and the protection of their properties. Although there are many different classifications for microbiological standardization of laboratory animals, they can be basically classified as; gnotobiotic animals, animals bred with a complete barrier system (Germ free, GF, with Colonization-Resistant Flora; CRF, animals bred with a partial barrier system (Specified Pathogen Free, SPF, and animals bred by conventional methods in units without barriers (Conventional; CV. Monitoring of microbiological standardization is carried out in two ways. One is controlling barrier systems (process control and the other is controlling laboratory animals (product control. In controlling barrier systems samples are taken routinely from ambient air, surfaces, base plate materials of animals, foods and waters, and microbiological tests are carried out. FELASA guidelines are frequently used in monitoring laboratory animals. These guidelines where the monitoring frequency, sample size, micro-organisms to be tested, vary according to the microbiological quality of the animals, and test methods and are frequently updated by FELASA and shared in their web pages. In our country, in general, laboratory animals used for experimental studies present no microbiological standardization, and follow-up protocols are not implemented. Therefore, construction of facilities for the production of microbiologically standard animals and establishment of backup laboratories testing microbiological quality should be established.

  4. The need for a quality standard for assurance in medical research laboratories

    Directory of Open Access Journals (Sweden)

    S Cohen

    2014-01-01

    Full Text Available The objective of this article is to show the results of a research study conducted to evaluate the need for a quality standard specific for medical research laboratories based on the shortfalls of ISO 15189 when used for this purpose. A qualitative research methodology was used, which comprised of collecting data from 20 well-qualified and experienced medical laboratory personnel by means of interviews based on a framework developed from a literature review. The data were analysed by means of a thematic technique and the results were verified by a team of medical researchers. The seven themes arising from the analyses were inflexibility; ambiguity; unfair requirements; inappropriate focus; inadequacy for research; renewal; and acceptance for accreditation. The results indicated that the ISO 15189 standard in its present content does not totally suit medical research laboratories and shows support for the development of a standard specific for research laboratories.

  5. 78 FR 63999 - Notice of Vitamin D Standardization Program (VDSP) Symposium: Tools To Improve Laboratory...

    Science.gov (United States)

    2013-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Notice of Vitamin D... Vitamin D Standardization Program (VDSP) to those with an interest in the effort to standardize vitamin D... laboratory personnel; vitamin D researchers; and members of professional societies with clinical and public...

  6. Ethical and methodological standards for laboratory and medical biological rhythm research.

    Science.gov (United States)

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was

  7. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    Science.gov (United States)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  8. Implementing an integrated standards-based management system to ensure compliance at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hjeresen, D.; Roybal, S.; Bertino, P.; Gherman, C.; Hosteny, B.

    1995-01-01

    Los Alamos National Laboratory (LANL or the Laboratory) is developing and implementing a comprehensive, Integrated Standards-Based Management System (ISBMS) to enhance environmental, safety, and health (ESH) compliance efforts and streamline management of ESH throughout the Laboratory. The Laboratory recognizes that to be competitive in today's business environment and attractive to potential Partnerships, Laboratory operations must be efficient and cost-effective. The Laboratory also realizes potential growth opportunities for developing ESH as a strength in providing new or improved services to its customers. Overall, the Laboratory desires to establish and build upon an ESH management system which ensures continuous improvement in protecting public health and safety and the environment and which fosters a working relationship with stakeholders. A team of process experts from the LANL Environmental Management (EM) Program Office, worked with management system consultants, and the Department of Energy (DOE) to develop an ESH management systems process to compare current LANL ESH management Systems and programs against leading industry standards. The process enabled the Laboratory to gauge its performance in each of the following areas: Planning and Policy Setting; Systems and Procedures; Implementation and Education; and Monitoring and Reporting. The information gathered on ESH management systems enabled LANL to pinpoint and prioritize opportunities for improvement in the provision of ESH services throughout the Laboratory and ultimately overall ESH compliance

  9. [The challenges of standardization in clinical diagnostic laboratories of medical organizations].

    Science.gov (United States)

    Men'shikov, V V

    2013-04-01

    The generalized data concerning the conditions of application of regulations of national standards in clinical diagnostic laboratories of medical organizations is presented. The primary information was provided by 14 regions of 6 federal administrative okrugs of Russia. The causes of challenges of application of requirements of standards are presented. They are mostly related with insufficient financial support, lacking of manpower, difficulties with reagents supply, inadequate technical maintenance of devices and absence of support of administration of medical organizations. The recommendations are formulated concerning the necessity of publishing the document of Minzdrav of Russia to determine the need in application of standards in laboratory practice.

  10. Preservice Secondary Teachers Perceptions of College-Level Mathematics Content Connections with the Common Core State Standards for Mathematics

    Science.gov (United States)

    Olson, Travis A.

    2016-01-01

    Preservice Secondary Mathematics Teachers (PSMTs) were surveyed to identify if they could connect early-secondary mathematics content (Grades 7-9) in the Common Core State Standards for Mathematics (CCSSM) with mathematics content studied in content courses for certification in secondary teacher preparation programs. Respondents were asked to…

  11. 40 CFR Appendix P to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... the data handling procedures for the reported data). 2.3Comparisons with the Primary and Secondary... Secondary National Ambient Air Quality Standards for Ozone P Appendix P to Part 50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY...

  12. Neutron dosimetry in biology

    International Nuclear Information System (INIS)

    Sigurbjoernsson, B.; Smith, H.H.; Gustafsson, A.

    1965-01-01

    To study adequately the biological effects of different energy neutrons it is necessary to have high-intensity sources which are not contaminated by other radiations, the most serious of which are gamma rays. An effective dosimetry must provide an accurate measure of the absorbed dose, in biological materials, of each type of radiation at any reactor facility involved in radiobiological research. A standardized biological dosimetry, in addition to physical and chemical methods, may be desirable. The ideal data needed to achieve a fully documented dosimetry has been compiled by H. Glubrecht: (1) Energy spectrum and intensity of neutrons; (2) Angular distribution of neutrons on the whole surface of the irradiated object; (3) Additional undesired radiation accompanying the neutrons; (4) Physical state and chemical composition of the irradiated object. It is not sufficient to note only an integral dose value (e.g. in 'rad') as the biological effect depends on the above data

  13. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  14. Dosimetry methods

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, A.; Kovacs, A.

    2003-01-01

    Chemical and physical radiation dosimetry methods, used for the measurement of absorbed dose mainly during the practical use of ionizing radiation, are discussed with respect to their characteristics and fields of application....

  15. Calibration and consistency of results of an ionization-chamber secondary standard measuring system for activity

    International Nuclear Information System (INIS)

    Schrader, Heinrich

    2000-01-01

    Calibration in terms of activity of the ionization-chamber secondary standard measuring systems at the PTB is described. The measurement results of a Centronic IG12/A20, a Vinten ISOCAL IV and a radionuclide calibrator chamber for nuclear medicine applications are discussed, their energy-dependent efficiency curves established and the consistency checked using recently evaluated radionuclide decay data. Criteria for evaluating and transferring calibration factors (or efficiencies) are given

  16. NBS (National Bureau of Standards) measurement services: Fricke dosimetry in high-energy electron beams. Final report

    International Nuclear Information System (INIS)

    Soares, C.G.; Bright, E.L.; Ehrlich, M.

    1987-07-01

    The NBS Fricke-Dosimetry Service (advertised in NBS Special Publication 250, 1986-1988 and earlier editions) is described in detail. After a brief historical introduction and description of the service, the theoretical basis (including what quantities are measured, how, and why) and the philosophy of internal quality checks are discussed in some detail. This is followed by a description of the physical setup and of the step-by-step operating and reporting procedures. Throughout the section, there is reference to sample records of past performance, in order to facilitate continuity of operation in the case of personnel changes. The document concludes with a discussion of the uncertainties involved in the measurement quality-assurance service, safety considerations, and an appendix containing samples of all form letters and of the final report mailed to the participants

  17. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina; Actividades desarrolladas por el laboratorio de dosimetria biologica de la Autoridad Regulatoria Nuclear de Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A.; Sapienza, C. E.; Taja, M. R.; Bubniak, R.; Deminge, M.; Di Giorgio, M., E-mail: csapienza@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina)

    2013-07-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary.

  18. Thermoluminescent dosimetry in veterinary diagnostic radiology

    International Nuclear Information System (INIS)

    Hernández-Ruiz, L.; Jimenez-Flores, Y.; Rivera-Montalvo, T.; Arias-Cisneros, L.; Méndez-Aguilar, R.E.; Uribe-Izquierdo, P.

    2012-01-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. - Highlights: ► Personnel dosimetry in laboratory veterinary diagnostic was determined. ► Student workplaces are safe against radiation. ► Efficiency value of apron lead was determined. ► X-ray beams distribution into veterinarian laboratory was measured.

  19. Air kerma standardization for diagnostic radiology, and requirements proposal for calibration laboratories

    International Nuclear Information System (INIS)

    Ramos, Manoel Mattos Oliveira

    2009-01-01

    The demand for calibration services and quality control in diagnostic radiology has grown in the country since the publication of the governmental regulation 453, issued by the Ministry of Health in 1998. At that time, to produce results facing the new legislation, many laboratories used different standards and radiation qualities, some of which could be inadequate. The international standards neither supplied consistent radiation qualities and standardization for the different types of equipment available. This situation changed with the publication of the new edition of the IEC 61267 standard, published in 2005. A metrology network was created, but it is not yet accredited by the accreditation organism of the country, INMETRO. The objective of this work was to implement the standardization of the air kerma for the un attenuated qualities (RQR) of IEC 61267, and to develop a requirement proposal for instruments calibration laboratories. Results of interlaboratory comparisons demonstrate that the quantity is standardized and internationally traceable. A laboratory requirement proposal was finalized and it shall be submitted to INMETRO to be used as auxiliary normative document in laboratory accreditation. (author)

  20. Reactor Dosimetry State of the Art 2008

    Science.gov (United States)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    nuclides - 2008 / T. Golashvili -- Oral session 6: Test reactors, accelerators and advanced systems. Neutronic analyses in support of the HFIR beamline modifications and lifetime extension / I. Remec and E. D. Blakeman. Characterization of neutron test facilities at Sandia National Laboratories / D. W. Vehar ... [et al.]. LYRA irradiation experiments: neutron metrology and dosimetry / B. Acosta and L. Debarberis. Calculated neutron and gamma-ray spectra across the prismatic very high temperature reactor core / J. W. Sterbentz. Enhancement of irradiation capability of the experimental fast reactor joyo / S. Maeda ... [et al.]. Neutron spectrum analyses by foil activation method for high-energy proton beams / C. H. Pyeon ... [et al.] -- Oral session 7: Cross sections, nuclear data, damage correlations. Investigation of new reaction cross-section evaluations in order to update and extend the IRDF-2002 reactor dosimetry library / É. M. Zsolnay, H. J. Nolthenius and A. L. Nichols. A novel approach towards DPA calculations / A. Hogenbirk and D. F. Da Cruz. A new ENDFIB-VII.O based multigroup cross-section library for reactor dosimetry / F. A. Alpan and S. L. Anderson. Activities at the NEA for dosimetry applications / H. Henriksson and I. Kodeli. Validation and verification of covariance data from dosimetry reaction cross-section evaluations / S. Badikov. Status of the neutron cross section standards / A. D. Carlson -- Oral session 8: transport calculations. A dosimetry assessment for the core restraint of an advanced gas cooled reactor / D. A. Thornton ... [et al.]. Neutron dosimetry study in the region of the support structure of a VVER-1000 type reactor / G. Borodkin ... [et al.]. SNS moderator poison design and experiment validation of the moderator performance / W. Lu ... [et al.]. Analysis of OSIRIS in-core surveillance dosimetry for GONDOLE steel irradiation program by using TRIPOLI-4 Monte Carlo code / Y. K. Lee and F. Malouch.Reactor dosimetry applications using RAPTOR

  1. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol

    Science.gov (United States)

    Vaden, Timothy D.; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-01-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of “spectator” organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models. PMID:21262848

  2. Intra-operative parathyroid hormone monitoring through central laboratory is accurate in renal secondary hyperparathyroidism.

    Science.gov (United States)

    Vulpio, Carlo; Bossola, Maurizio; Di Stasio, Enrico; Pepe, Gilda; Nure, Eda; Magalini, Sabina; Agnes, Salvatore

    2016-05-01

    The usefulness, the methods and the criteria of intra-operative monitoring of the parathyroid hormone (ioPTH) during parathyroidectomy (PTX) for renal secondary hyperparathyroidism (rSHPT) in patients on chronic hemodialysis remain still matter of debate. The present study aimed to evaluate the ability of a low cost central-laboratory second generation PTH assay to predict an incomplete resection of parathyroid glands (PTG). The ioPTH decay was determined In 42 consecutive patients undergoing PTX (15 subtotal and 27 total without auto-transplant of PTG) for rSHPT. The ioPTH monitoring included five samples: pre-intubation, post-manipulation of PTG and at 10, 20 and 30min post-PTG excision. The patients with PTH exceeding the normal value (65pg/ml) at the first postoperative week, 6 and 12months were classified as persistent rSHPT. The concentrations of ioPTH declined significantly over time in patients who received total or subtotal PTX; however, no difference was found between the two types of PTX. Irrespective of the type of PTX and the number of PTG removed, combining the absolute and percentage of ioPTH decay at 30min after PTG excision, we found high sensitivity (100%), specificity (92%), negative predictive value (100%) and accuracy (93%) in predicting the persistence of rSHPT. The monitoring of the ioPTH decline by a low cost central-laboratory second generation assay is extremely accurate in predicting the persistence of disease in patients on maintenance hemodialysis undergoing surgery for rSHPT. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. International standards for tuberculosis care: Relevance and implications for laboratory professionals

    Directory of Open Access Journals (Sweden)

    Pai M

    2007-01-01

    Full Text Available On World Tuberculosis (TB Day 2006, the International Standards for Tuberculosis Care (ISTC was officially released and widely endorsed by several agencies and organizations. The ISTC release was the culmination of a year long global effort to develop and set internationally acceptable, evidence-based standards for tuberculosis care. The ISTC describes a widely endorsed level of care that all practitioners, public and private, should seek to achieve in managing individuals who have or are suspected of having, TB and is intended to facilitate the effective engagement of all healthcare providers in delivering high quality care for patients of all ages, including those with smear-positive, smear-negative and extra-pulmonary TB, TB caused by drug-resistant Mycobacterium tuberculosis and TB/HIV coinfection. In this article, we present the ISTC, with a special focus on the diagnostic standards and describe their implications and relevance for laboratory professionals in India and worldwide. Laboratory professionals play a critical role in ensuring that all the standards are actually met by providing high quality laboratory services for smear microscopy, culture and drug susceptibility testing and other services such as testing for HIV infection. In fact, if the ISTC is widely followed, it can be expected that there will be a greater need and demand for quality assured laboratory services and this will have obvious implications for all laboratories in terms of work load, requirement for resources and trained personnel and organization of quality assurance systems.

  5. A gender analysis of secondary school physics textbooks and laboratory manuals

    Science.gov (United States)

    Kostas, Nancy Ann

    Secondary school physics textbooks and laboratory manuals were evaluated for gender balance. The textbooks and manuals evaluated were all current editions available at the time of the study with copyrights of 1988 to 1992. Illustrations, drawings and photographs were judged gender balanced based on the number of men and women, boys and girls shown in both active and passive roles. Illustrations, drawings and photographs were also evaluated by the number of male and female scientists identified by name. The curricular content of the textbooks was analyzed for gender balance by three criteria: the number of named male and female scientists whose accomplishments were described in the text; the number of careers assigned to men and women; and the number of verbal analogies assigned to girls interests, boys interests or neutral interests. The laboratory activities in the manuals were categorized as demonstrations, experiments and observations. Three of each of these types of activities from each manual were analyzed for skills and motivating factors important to girls as identified by Potter and Rosser (1992). Data were analyzed by use of descriptive statistics of frequencies, means and chi-square goodness of fit. The.05 level of significance was applied to all analyses based upon an expected frequency of 50 - 50 percentage of men and women and a 4.5 percent for women scientists to 95.5 percent for men scientists. The findings were as follows. None of the textbooks had a balance of men/women, boys/girls in the illustrations, drawings and photographs. The Hewitt (Scott-Foresman, 1989) textbook was the only textbook with no significant difference. Using the expected frequency for male and female scientists, two textbooks were gender balanced for illustrations, drawings and photographs while all textbooks were gender balanced for described accomplishments of scientists. The Hewitt (Scott Foresman, 1989) textbook had the only gender balanced representation of careers

  6. Charging of Single Micron Sized Dust Grains by Secondary Electron Emission: A Laboratory Study

    Science.gov (United States)

    Spann, James F., Jr.; Venturini, Catherine C.; Comfort, R. H.

    1998-01-01

    We present the details of a new laboratory study whose objective is to experimentally study the interaction of micron sized particles with plasmas and electromagnetic radiation. Specifically, to investigate under what conditions and to what extent do particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and ultraviolet radiation environment The emphasis is the study of the two charging mechanisms, secondary emission of electrons and photoelectric effect. The experiment uses a technique known as electrodynamic suspension of particles. With this technique, a single charged particle is electrodynamically levitated and then exposed to a controlled environment. Its charge to mass ratio is directly measured. Viscous drag measurements and the light scattering measurements characterize its size and optical characteristics. The environment to which the particle is expose may consist of room temperature and pressure or a rarefied atmosphere where only one major gaseous constituent is present, or, as in this case, a vacuum environment under electron bombardment or UV radiation . In addition, the environment can be cycled as part of the experiment. Therefore, using this technique, a single particle can be repeatedly exposed to a controlled environment and its response measured, or a single particle can be exposed to similar environments with minor differences and its response measured as a function of only the changed environmental conditions.

  7. Guide for selection of dosimetry system for electron processing

    International Nuclear Information System (INIS)

    Mehta, K.

    1988-01-01

    Correct applications of radiation processing depend on accurate measurements of absorbed radiation dose. Radiation dosimetry plays several important roles in radiation processing. In particular, there are three stages for any radiation process during which dosimetry is a key to success: basic laboratory research, commissioning of the process and quality control. Radiation dosimeters may be divided into various classes depending upon their areas of applications and their relative quality: primary standard dosimeter, reference standard dosimeter, transfer standard dosimeter and routine in-house dosimeter. Several commercially available dosimeters are described under each class, and their advantages and limitations are discussed. Finally, recommendations are made as to which dosimeter is most suitable for each of the three stages of electron-beam processing. 124 refs

  8. Dosimetry and Calibration Section

    International Nuclear Information System (INIS)

    Otto, T.

    1998-01-01

    The two tasks of the Dosimetry and Calibration Section at CERN are the Individual Dosimetry Service which assures the personal monitoring of about 5000 persons potentially exposed to ionizing radiation at CERN, and the Calibration Laboratory which verifies all the instruments and monitors. This equipment is used by the sections of the RP Group for assuring radiation protection around CERN's accelerators, and by the Environmental Section of TISTE. In addition, nearly 250 electronic and 300 quartz fibre dosimeters, employed in operational dosimetry, are calibrated at least once a year. The Individual Dosimetry Service uses an extended database (INDOS) which contains information about all the individual doses ever received at CERN. For most of 1997 it was operated without the support of a database administrator as the technician who had assured this work retired. The Software Support Section of TIS-TE took over the technical responsibility of the database, but in view of the many other tasks of this Section and the lack of personnel, only a few interventions for solving immediate problems were possible

  9. Effect of Availability and Utilization of Physics Laboratory Equipment on Students' Academic Achievement in Senior Secondary School Physics

    Science.gov (United States)

    Olufunke, Bello Theodora

    2012-01-01

    The study determined the available Physics Laboratory Equipment (PLE) for the teaching and learning of physics in senior secondary schools in Nigeria as well as the extent of utilizing the available equipment. The research design adopted for the study was descriptive survey. The sample consisted of nine hundred students who were randomly chosen…

  10. ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program

    Science.gov (United States)

    Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk

    2004-05-01

    Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.

  11. Application of the ICRP recommendations to revised secondary radiation protection standards

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Corley, J.P.

    1988-01-01

    In 1977, the International Commission on Radiological Protection (ICRP) issued Publication No. 26 containing its recommendations for major changes in the conceptual basis for radiation protection. The new recommendations consider total risk (to the whole body) instead of controlling (critical-organ) risk. Subsequent publications and explanatory statements most useful for providing clarification of the intent of the new recommendations have not resolved practical problems encountered in attempting to apply them to either occupational or public exposures. Some of the problems that still exist in applying these recommendations for estimating doses to members of the public include the following: allowance for age differences within an exposed population group, definition of 50-y dose versus lifetime (70-y) dose, definition of negligible risk levels for individual and collective doses, and derivation of appropriate concentration guidelines. The United States is in the process of adopting the revised recommendations of the ICRP. In addition to adopting versions of the primary radiation protection standards, both the U.S. Nuclear Regulatory Commission and the U.S. Department of Energy have developed draft secondary standards that are similar to the Derived Air Concentration values given by the ICRP. This paper presents a brief history of the development of these revised secondary standards, discusses their technical bases, provides a comparison of them, and discusses their limitations and potential misapplication

  12. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    Science.gov (United States)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  13. Clinical dosimetry

    International Nuclear Information System (INIS)

    Rassow, J.

    1973-01-01

    The main point of this paper on clinical dosimetry which is to be understood here as application of physical dosimetry on accelerators in medical practice, is based on dosimetric methodics. Following an explanation of the dose parameters and description of the dose distribution important for clinical practice as well as geometric irradiation parameters, the significance of a series of physical parameters such as accelerator energy, surface energy of average stopping power etc. is dealt with in detail. Following a section on field homogenization with bremsstrahlung and electron radiation, details on dosimetry in clinical practice are given. Finally, a few problems of dosemeter or monitor calibration on accelerators are described. The explanations are supplemented by a series of diagrams and tables. (ORU/LH) [de

  14. Nanotechnology Laboratory Continues Partnership with FDA and National Institute of Standards and Technology | Poster

    Science.gov (United States)

    The NCI-funded Nanotechnology Characterization Laboratory (NCL)—a leader in evaluating promising nanomedicines to fight cancer—recently renewed its collaboration with the U.S. Food and Drug Administration (FDA) and the National Institute of Standards and Technology (NIST) to continue its groundbreaking work on characterizing nanomedicines and moving them toward the clinic. In

  15. Importance of the Primary Radioactivity Standard Laboratory and Implementation of its Quality Management

    Science.gov (United States)

    Sahagia, Maria; Razdolescu, Anamaria Cristina; Luca, Aurelian; Ivan, Constantin

    2007-04-01

    The paper presents some specific aspects of the implementation of the quality management in the Radionuclide Metrology Laboratory, from IFIN-HH, the owner of the primary Romanian standard in radioactivity. The description of the accreditation, according to the EN ISO/IEC 17025:2005, is presented.

  16. Importance of the Primary Radioactivity Standard Laboratory and Implementation of its Quality Management

    International Nuclear Information System (INIS)

    Sahagia, Maria; Razdolescu, Anamaria Cristina; Luca, Aurelian; Ivan, Constantin

    2007-01-01

    The paper presents some specific aspects of the implementation of the quality management in the Radionuclide Metrology Laboratory, from IFIN-HH, the owner of the primary Romanian standard in radioactivity. The description of the accreditation, according to the EN ISO/IEC 17025:2005, is presented

  17. 76 FR 25376 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-05-04

    ...'') applies to laboratories that use hazardous chemicals in accordance with the Standard's definitions for...-reliability measures; worker information-and-training programs; conditions under which the employer must... validity of the methodology and assumptions used; The quality, utility, and clarity of the information...

  18. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement.

    Science.gov (United States)

    Touger, Michael; Birnbaum, Adrienne; Wang, Jessica; Chou, Katherine; Pearson, Darion; Bijur, Polly

    2010-10-01

    We assess agreement between carboxyhemoglobin levels measured by the Rad-57 signal extraction pulse CO-oximeter (RAD), a Food and Drug Administration-approved device for noninvasive bedside measurement, and standard laboratory arterial or venous measurement in a sample of emergency department (ED) patients with suspected carbon monoxide poisoning. The study was a cross-sectional cohort design using a convenience sample of adult and pediatric ED patients in a Level I trauma, burn, and hyperbaric oxygen referral center. Measurement of RAD carboxyhemoglobin was performed simultaneously with blood sampling for laboratory determination of carboxyhemoglobin level. The difference between the measures for each patient was calculated as laboratory carboxyhemoglobin minus carboxyhemoglobin from the carbon monoxide oximeter. The limits of agreement from a Bland-Altman analysis are calculated as the mean of the differences between methods ±1.96 SDs above and below the mean. Median laboratory percentage carboxyhemoglobin level was 2.3% (interquartile range 1 to 8.5; range 0% to 38%). The mean difference between laboratory carboxyhemoglobin values and RAD values was 1.4% carboxyhemoglobin (95% confidence interval [CI] 0.2% to 2.6%). The limits of agreement of differences of measurement made with the 2 devices were -11.6% and 14.4% carboxyhemoglobin. This range exceeded the value of ±5% carboxyhemoglobin defined a priori as clinically acceptable. RAD correctly identified 11 of 23 patients with laboratory values greater than 15% carboxyhemoglobin (sensitivity 48%; 95% CI 27% to 69%). There was one case of a laboratory carboxyhemoglobin level less than 15%, in which the RAD device gave a result greater than 15% (specificity of RAD 96/97=99%; 95% CI 94% to 100%). In the range of carboxyhemoglobin values measured in this sample, the level of agreement observed suggests RAD measurement may not be used interchangeably with standard laboratory measurement. Copyright © 2010 American

  19. The Latin American Biological Dosimetry Network (LBDNet)

    International Nuclear Information System (INIS)

    Garcia, O.; Lamadrid, A.I.; Gonzalez, J.E.; Romero, I.; Mandina, T.; Di Giorgio, M.; Radl, A.; Taja, M.R.; Sapienza, C.E.; Deminge, M.M.; Fernandez Rearte, J.; Stuck Oliveira, M.; Valdivia, P.; Guerrero-Carbajal, C.; Arceo Maldonado, C.; Cortina Ramirez, G.E.; Espinoza, M.; Martinez-Lopez, W.; Di Tomasso, M.

    2016-01-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. (authors)

  20. The Latin American Biological Dosimetry Network (LBDNet).

    Science.gov (United States)

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Dosimetry and shielding

    International Nuclear Information System (INIS)

    Farinelli, U.

    1977-01-01

    Today, reactor dosimetry and shielding have wide areas of overlap as concerns both problems and methods. Increased interchange of results and know-how would benefit both. The areas of common interest include calculational methods, sensitivity studies, theoretical and experimental benchmarks, cross sections and other nuclear data, multigroup libraries and procedures for their adjustment, experimental techniques and damage functions. This paper reviews the state-of-the-art and the latest development in each of these areas as far as shielding is concerned, and suggests a number of interactions that could be profitable for reactor dosimetry. Among them, re-evaluation of the potentialities of calculational methods (in view of the recent developments) in predicting radiation environments of interest; the application of sensitivity analysis to dosimetry problems; a common effort in the field of theoretical benchmarks; the use of the shielding one-material propagation experiments as reference spectra for detector cross sections; common standardization of the detector nuclear data used in both fields; the setting up of a common (or compatible) multigroup structure and library applicable to shielding, dosimetry and core physics; the exchange of information and experience in the fields of cross section errors, correlations and adjustment; and the intercomparison of experimental techniques

  2. Synthesis and production of potassium dichromate as a secondary standard dosimeter; Investigation of its comparative properties with Fricke and clear perspex dosimeters in comprehensive dose mapping of IR-136 Gamma Irradiator

    International Nuclear Information System (INIS)

    Taimoori Seechani; Behzad.

    1995-01-01

    Measurement of the absorbed dose is the principle mode or means of quality control in various application of radiation processing. Specially, the cumulative absorbed dose and its variation in different density product boxes (dose mapping) are often required. Proper discharge of these task would require the use of dosimeters having sufficient degree of accuracy and precision. The secondary standard potassium dichromate dosimeter is synthesized for the first time in Iran. The properties of this dosimeter such as dose response, dose rate dependency, reproducibility, molar extinction coefficient, reduction yield and effect of silver ions on reduction yield of dosimetry solution, irradiation temperature effect as well as pre- and post-irradiation stability of the dosimetry solution have been studied. The comparison of the results of this work with that of the ASTM standard of potassium dichromate has shown very good agreement. The produced dichromate dosimeters were used for comprehensive dose mapping or commissioning of the IR-136 irradiator. The non-uniformity ratio and the isodose lines in various product densities in the IR-136 have been measured. Cumulative dose values were obtained for different rows and levels of the IR-136 irradiator system. The results of dichromate dosimetry, wherever possible, were compared with the response of Fricke and clear perspex dosimeters. At low dose values, the precision of this dosimeter was found to be better than the precision of clear perspex, but about the same as that of Fricke dosimeter. It is thus may be said that this dosimeter has combined the desirable properties of both dosimeter together

  3. Report of the second research co-ordination meeting (RCM) for the co-ordinated research project (CRP E2 40 06) on characterization and evaluation of high-dose dosimetry techniques for quality assurance in radiation processing. IAEA, Vienna, 6-10 October 1997

    International Nuclear Information System (INIS)

    Mehta, K.

    1998-01-01

    In many Member States the use of large Cobalt-60 gamma ray facilities and electron beam accelerators with beam energies from about 0.1 to 10 MeV for industrial processing continues to grow. For these processes, quality assurance relies on the application of well-established dosimetry systems and procedures. This is especially the case for health-regulated processes, such as the radiation sterilization of health care products, and the irradiation of food to eliminate pathogenic organisms or to control insect pests. For radiation sterilization, the publication of the international standard ISO 11137 Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization and the European Standard EN 552 - Sterilization of medical devices - Validation and routine control of sterilization by irradiation has resulted in the standardization of requirements to ensure global harmonization. Standardized dosimetry is also valuable in the radiation processing of many widely used commodities, such as polymers, automotive and airborne components, battery parts, computers, audio and video hardware, coatings, lubricants, adhesives, and composites. The major goal of this CRP is to investigate the factors that influence the response of dosimeters and establish procedures to improve dosimetry for quality assurance of the different types of radiation processes. This will help to unify the radiation measurements performed by different radiation processing facilities and other high-dose dosimetry users in Member States and encourage efforts to obtain traceability to primary and secondary standards laboratories. It will also aim to strengthen and expand the present International Dose Assurance Service (IDAS) provided by the Agency

  4. Environmental dosimetry

    International Nuclear Information System (INIS)

    Gold, R.

    1977-01-01

    For more than 60 years, natural radiation has offered broad opportunities for basic research as evidenced by many fundamental discoveries. Within the last decade, however, dramatic changes have occurred in the motivation and direction of this research. The urgent need for economical energy sources entailing acceptably low levels of environmental impact has compelled the applied aspects of our radiation environment to become overriding considerations. It is within this general framework that state-of-the-art environmental dosimetry techniques are reviewed. Although applied motivation and relevance underscores the current milieu for both reactor and environmental dosimetry, a perhaps even more unifying force is the broad similarity of reactor and environmental radiation fields. In this review, a comparison of these two mixed radiation fields is presented stressing the underlying similarities that exist. On this basis, the evolution of a strong inner bond between dosimetry methods for both reactor and environmental radiation fields is described. The existence of this bond will be illustrated using representative examples of observed spectra. Dosimetry methods of particularly high applicability for both of these fields are described. Special emphasis is placed on techniques of high sensitivity and absolute accuracy which are capable of resolving the components of these mixed radiation fields

  5. Final Air Toxics Standards for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources Fact Sheet

    Science.gov (United States)

    This page contains a December 2007 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Clay Ceramics Manufacturing, Glass Manufacturing, and Secondary Nonferrous Metals Processing Area Sources

  6. Development of indicators for patient care and monitoring standards for secondary health care services of Mumbai.

    Science.gov (United States)

    Malik, Seema S; D'Souza, Roshni Cynthia; Pashte, Pramod Mukund; Satoskar, Smita Manohar; D'Souza, Remilda Joyce

    2015-01-01

    The Qualitative aspect of health care delivery is one of the major factors in reducing morbidity and mortality in a health care setup. The expanding suburban secondary health care delivery facilities of the Municipal Corporation of Greater Mumbai are an important part of the healthcare backbone of Mumbai and therefore the quality of care delivered here needed standardization. The project was completed over a period of one year from Jan to Dec, 2013 and implemented in three phases. The framework with components and sub-components were developed and formats for data collection were standardized. The benchmarks were based on past performance in the same hospital and probability was used for development of normal range. An Excel spreadsheet was developed to facilitate data analysis. The indicators comprise of 3 components--Statutory Requirements, Patient care & Cure and Administrative efficiency. The measurements made, pointed to the broad areas needing attention. The Indicators for patient care and monitoring standards can be used as a self assessment tool for health care setups for standardization and improvement of delivery of health care services.

  7. TRS 398 dosimetry protocol for radiotherapy

    International Nuclear Information System (INIS)

    Palmans, H.; Smyth, V.

    2004-01-01

    Full text: In recent years, international codes of practice based on absorbed dose to water standards have been published for the clinical reference dosimetry of external beams. It has become widely accepted that dosimetry of radiotherapeutic beams should be based on these standards. These codes of practice are a major improvement over earlier ones that used air kerma calibration factors as they are based on a calibration directly in a phantom in terms of the quantity of interest. The previous codes begin with calibration in air in terms of air kerma, then use theoretical and generic conversion factors to obtain dose to water that do not take account of chamber-to-chamber variation. Other good reasons for implementing the new codes are that they are conceptually simpler, include improved physical data and improve the consistency for various ionisation chamber types as well as between different beam types. TRS-3982,3 is a new Code of Practice (CoP) for reference dosimetry of external radiotherapy beams based on absorbed dose to, water calibrations and was published by the IAEA in a joint effort with the WHO, PAHO and ESTRO. It is the first CoP of its kind comprehensively covering all external radiotherapy beams except neutrons. The Radiotherapy Interest Group (RJG) of the ACPSEM has recommended that radiotherapy centres in Australia and New Zealand implement this CoP by the end of 2004. In this workshop, the general philosophy of the CoP will be outlined which will provide a framework for each of the individual subcodes. Although it represents just one of the potential implementations of the CoP, this workshop will deal only with dosimetry based on a cylindrical ionisation chamber with an absorbed dose calibration factor in 60Co from the standards laboratory. With the framework of the code in mind, it is straightforward to identify the basic steps that are required for measuring absorbed dose under reference conditions in a high-energy photon beam. The same is true

  8. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  9. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  10. Implementation of an alanine dosimetry service

    International Nuclear Information System (INIS)

    Gago Arias, A.; Nunez Pelaez, N.; Peteiro Vilaseco, E.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.

    2011-01-01

    This work facing the implementation of an alanine dosimetry service, linked to the installation of Co 6 0 Radio physics Laboratory (LP) and Paramagnetic Resonance Service of the University of Santiago de Compostela (USC).

  11. Worldwide QA networks for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Svensson, H.; Ibbott, G.

    2002-01-01

    institutions participating in the U.S. National Cancer Institute's (NCI's) co-operative clinical trials. The RPC currently monitors approximately 1300 centres throughout the USA, Canada and several other countries. The audit tools include, in addition to mailed TLD, review of the institution's dosimetry data, the treatment records of patients entered into trials, and the institution's QA programme. Anthropomorphic phantoms have been developed to evaluate specific treatment techniques. Other currently operating external audit programmes have been either associated with national and international clinical trial groups, similarly to RPC, e.g. EORTC (European Organisation for Research in Treatment of Cancer) in Europe, MRC (Medical Research Council) in the UK, or have been one-off national dosimetry intercomparison exercises, carried out to test various levels of radiotherapy dosimetry, e.g. in Sweden, the Netherlands, Belgium, Switzerland, Australia. Some individual countries have set up comprehensive regular audits of radiotherapy centres, including QA programmes, equipment and dosimetry, e.g. Finland, New Zealand. The IAEA supports its Member States in developing national programmes for TLD based QA audits in radiotherapy dosimetry and whenever possible, establishes links between the national programmes and the IAEA's Dosimetry Laboratory. It disseminates its standardised TLD methodology and provides technical back up to national TLD networks assuring at the same time traceability to primary dosimetry standards. There are several countries (Argentina, Algeria, Brazil, China, Colombia, Cuba, Czech Republic, India, Israel, Malaysia, Philippines, Poland and Vietnam) that have established TLD programmes to audit radiotherapy beams in their countries with assistance of the IAEA. Recently a new IAEA project has been initiated for national TLD audits in non-reference conditions as significant numbers of deviations in non-reference situations, as used clinically on patients, have been

  12. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1981-01-01

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  13. Electronic laboratory quality assurance program: A method of enhancing the prosthodontic curriculum and addressing accreditation standards.

    Science.gov (United States)

    Moghadam, Marjan; Jahangiri, Leila

    2015-08-01

    An electronic quality assurance (eQA) program was developed to replace a paper-based system and to address standards introduced by the Commission on Dental Accreditation (CODA) and to improve educational outcomes. This eQA program provides feedback to predoctoral dental students on prosthodontic laboratory steps at New York University College of Dentistry. The purpose of this study was to compare the eQA program of performing laboratory quality assurance with the former paper-based format. Fourth-year predoctoral dental students (n=334) who experienced both the paper-based and the electronic version of the quality assurance program were surveyed about their experiences. Additionally, data extracted from the eQA program were analyzed to identify areas of weakness in the curriculum. The study findings revealed that 73.8% of the students preferred the eQA program to the paper-based version. The average number of treatments that did not pass quality assurance standards was 119.5 per month. This indicated a 6.34% laboratory failure rate. Further analysis of these data revealed that 62.1% of the errors were related to fixed prosthodontic treatment, 27.9% to partial removable dental prostheses, and 10% to complete removable dental prostheses in the first 18 months of program implementation. The eQA program was favored by dental students who have experienced both electronic and paper-based versions of the system. Error type analysis can yield the ability to create customized faculty standardization sessions and refine the didactic and clinical teaching of the predoctoral students. This program was also able to link patient care activity with the student's laboratory activities, thus addressing the latest requirements of the CODA regarding the competence of graduates in evaluating laboratory work related to their patient care. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    Energy Technology Data Exchange (ETDEWEB)

    Cerra, F.; Heaton, H.T. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.

  15. Standard guide for qualification of measurement methods by a laboratory within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide provides guidance for selecting, validating, and qualifying measurement methods when qualification is required for a specific program. The recommended practices presented in this guide provide a major part of a quality assurance program for the laboratory data (see Fig. 1). Qualification helps to assure that the data produced will meet established requirements. 1.2 The activities intended to assure the quality of analytical laboratory measurement data are diagrammed in Fig. 1. Discussion and guidance related to some of these activities appear in the following sections: Section Selection of Measurement Methods 5 Validation of Measurement Methods 6 Qualification of Measurement Methods 7 Control 8 Personnel Qualification 9 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitati...

  16. Services of the CDRH X-ray calibration laboratory and their traceability to National Standards

    International Nuclear Information System (INIS)

    Cerra, F.; Heaton, H.T.

    1993-01-01

    The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescent dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards

  17. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets.

    Science.gov (United States)

    Vento, Peter J; Swartz, Megan E; Martin, Lisa Be; Daniels, Derek

    2008-11-01

    The benzimidazole anthelmintic fenbendazole (FBZ) is a common and effective treatment for pinworm infestation in laboratory animal colonies. Although many investigators have examined the potential for deleterious biologic effects of FBZ, more subtle aspects of the treatment remain untested. Accordingly, we evaluated differences in food intake when healthy male Sprague-Dawley rats were provided a standard nonmedicated laboratory rodent chow or the same chow supplemented with FBZ. We also tested for a preference for either food type when subjects were provided a choice of the 2 diets. Data from these experiments showed no differences in food intake or body weight when rats were maintained on either standard or FBZ-supplemented chow. When the rats were given access to both the standard and FBZ-supplemented diets, they showed a clear preference for the standard diet. The preference for the standard diet indicates that the rats can discriminate between the 2 foods and may avoid the FBZ-supplemented chow when possible. Investigators conducting experiments during treatment with FBZ in which differences in food preference are relevant should be aware of these data and plan their studies accordingly.

  18. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  19. Technical requirements for implementation of an individual monitoring service for evaluation of operational quantity HP(10) using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Francisco, Adelaide Benedita Armando

    2016-01-01

    This work aims to establish technical requirements for the development of a TLDs system for the assessment of operational quantity H P (10), in order to implement an external individual monitoring service in countries who do not have. This allows a better understanding of the technic and the thermoluminescent dosimetry system, thus contributing to identify the technical criteria to be followed by a dosimetry laboratory and evaluation of the dosimetric system performance. For this, the review of the specific literature of the dosimetry field was conducted and later the type and performance tests that must be followed by a dosimetric system were reproduced in practice. In additional was made a analysis of internationals standards norms and the technical regulation used in Brazil, to define the essentials type testes to a dosimetric system. To check the performance of a dosimetry system, a performance analysis of the Brazilian TLDs system was carried out over the past 6 years using the trumpet curve, where it was observed that most of TLDs system, in this review period, were approved and have excellent performance. The technical requirements for the development of a thermoluminescent dosimetry system ensure that the system provides technically reliable results and allow demonstration of compliance with the standard criteria established by national and international standards, and the implementation of the dosimetry system, is verified the compliance of the annual doses limits set for occupationally exposed. (author)

  20. Thermoluminescence characteristics of Israeli household salts for retrospective dosimetry in radiological events

    Energy Technology Data Exchange (ETDEWEB)

    Druzhyna, S. [Department of Nuclear Engineering, Ben-Gurion University, 84105 Beer Sheva (Israel); Datz, H. [Radiation Safety Division, Soreq Nuclear Research Center, 81800 Yavne (Israel); Horowitz, Y.S. [Physics Department, Ben Gurion University, 84105 Beer Sheva (Israel); Oster, L., E-mail: leonido@sce.ac.il [Physics Unit, Sami Shamoon College of Engineering, 84100 Beer Sheva (Israel); Orion, I. [Department of Nuclear Engineering, Ben-Gurion University, 84105 Beer Sheva (Israel)

    2016-06-15

    Highlights: • Examination the potential use of Israeli household salt as a retrospective dosimeter. • Detailed investigation of the basic dosimetric characteristics of the salts. • It is shown that computerized glow curve analysis for accurate background subtraction and dose measurement is required. - Abstract: Following a nuclear accident or terror attack involving the dispersal of radioactive substances, radiation dose assessment to first responders and the members of the public is essential. The need for a retrospective assessment of the radiation dose to those possibly affected is, therefore, obligatory. The present study examines the potential use of Israeli household salt as a retrospective dosimeter (RD). The experiments were carried out on Israeli salt samples (NaCl) following a Nielsen market track survey based on scanning data representing the barcoded market, including organized and independent retail chains and a sample of private minimarkets and supermarkets. The technique used was thermoluminescence (TL) dosimetry. Salt samples were exposed to levels of dose from 0.5 mGy to 300 Gy at the Israeli Secondary Standard Dosimetry Laboratory of the Soreq Nuclear Research Center using a calibrated {sup 137}Cs source. Our emphasis has been on a detailed investigation of the basic dosimetric characteristics of the salts including: (i) glow curve analysis (ii) individual glow peak dose response (iii) reproducibility (iv) estimation of minimal measurable dose (v) effect of nitrogen readout, (vi) influence of humidity during pre-irradiation storage and (vii) light induced fading. The results are sufficiently favorable to lead to the conclusion that the Israeli household salts can serve as a pragmatic potential candidate for RD under certain restricted conditions. Occasional pre-calibration of the major salt brands in a dedicated laboratory may be essential depending on the required accuracy in the estimation of dose and consequent clinical evaluation.

  1. Thermoluminescence characteristics of Israeli household salts for retrospective dosimetry in radiological events

    International Nuclear Information System (INIS)

    Druzhyna, S.; Datz, H.; Horowitz, Y.S.; Oster, L.; Orion, I.

    2016-01-01

    Highlights: • Examination the potential use of Israeli household salt as a retrospective dosimeter. • Detailed investigation of the basic dosimetric characteristics of the salts. • It is shown that computerized glow curve analysis for accurate background subtraction and dose measurement is required. - Abstract: Following a nuclear accident or terror attack involving the dispersal of radioactive substances, radiation dose assessment to first responders and the members of the public is essential. The need for a retrospective assessment of the radiation dose to those possibly affected is, therefore, obligatory. The present study examines the potential use of Israeli household salt as a retrospective dosimeter (RD). The experiments were carried out on Israeli salt samples (NaCl) following a Nielsen market track survey based on scanning data representing the barcoded market, including organized and independent retail chains and a sample of private minimarkets and supermarkets. The technique used was thermoluminescence (TL) dosimetry. Salt samples were exposed to levels of dose from 0.5 mGy to 300 Gy at the Israeli Secondary Standard Dosimetry Laboratory of the Soreq Nuclear Research Center using a calibrated 137 Cs source. Our emphasis has been on a detailed investigation of the basic dosimetric characteristics of the salts including: (i) glow curve analysis (ii) individual glow peak dose response (iii) reproducibility (iv) estimation of minimal measurable dose (v) effect of nitrogen readout, (vi) influence of humidity during pre-irradiation storage and (vii) light induced fading. The results are sufficiently favorable to lead to the conclusion that the Israeli household salts can serve as a pragmatic potential candidate for RD under certain restricted conditions. Occasional pre-calibration of the major salt brands in a dedicated laboratory may be essential depending on the required accuracy in the estimation of dose and consequent clinical evaluation.

  2. 40 CFR Appendix I to Part 50 - Interpretation of the 8-Hour Primary and Secondary National Ambient Air Quality Standards for Ozone

    Science.gov (United States)

    2010-07-01

    ... Secondary National Ambient Air Quality Standards for Ozone 1. General. This appendix explains the data.... Primary and Secondary Ambient Air Quality Standards for Ozone. 2.1 Data Reporting and Handling Conventions... and Secondary National Ambient Air Quality Standards for Ozone I Appendix I to Part 50 Protection of...

  3. Microfluidic cartridges for DNA purification and genotyping processed in standard laboratory instruments

    Science.gov (United States)

    Focke, Maximilian; Mark, Daniel; Stumpf, Fabian; Müller, Martina; Roth, Günter; Zengerle, Roland; von Stetten, Felix

    2011-06-01

    Two microfluidic cartridges intended for upgrading standard laboratory instruments with automated liquid handling capability by use of centrifugal forces are presented. The first microfluidic cartridge enables purification of DNA from human whole blood and is operated in a standard laboratory centrifuge. The second microfluidic catridge enables genotyping of pathogens by geometrically multiplexed real-time PCR. It is operated in a slightly modified off-the-shelf thermal cycler. Both solutions aim at smart and cost-efficient ways to automate work flows in laboratories. The DNA purification cartridge automates all liquid handling steps starting from a lysed blood sample to PCR ready DNA. The cartridge contains two manually crushable glass ampoules with liquid reagents. The DNA yield extracted from a 32 μl blood sample is 192 +/- 30 ng which corresponds to 53 +/- 8% of a reference extraction. The genotyping cartridge is applied to analyse isolates of the multi-resistant Staphyloccus aureus (MRSA) by real-time PCR. The wells contain pre-stored dry reagents such as primers and probes. Evaluation of the system with 44 genotyping assays showed a 100% specificity and agreement with the reference assays in standard tubes. The lower limit of detection was well below 10 copies of DNA per reaction.

  4. Hematological dosimetry

    International Nuclear Information System (INIS)

    Fluery-Herard, A.

    1991-01-01

    The principles of hematological dosimetry after acute or protracted whole-body irradiation are reviewed. In both cases, over-exposure is never homogeneous and the clinical consequences, viz medullary aplasia, are directly associated with the mean absorbed dose and the seriousness and location of the overexposure. The main hematological data required to assess the seriousness of exposure are the following: repeated blood analysis, blood precursor cultures, as indicators of whole-body exposure; bone marrow puncture, medullary precursor cultures and medullary scintigraphy as indicators of the importance of a local over-exposure and capacity for spontaneous repair. These paraclinical investigations, which are essential for diagnosis and dosimetry, are also used for surveillance and for the main therapeutic issues [fr

  5. Syringe calibration factors and volume correction factors for the NPL secondary standard radionuclide calibrator

    CERN Document Server

    Tyler, D K

    2002-01-01

    The activity assay of a radiopharmaceutical administration to a patient is normally achieved via the use of a radionuclide calibrator. Because of the different geometries and elemental compositions between plastic syringes and glass vials, the calibration factors for syringes may well be significantly different from those for the glass containers. The magnitude of these differences depends on the energies of the emitted photons. For some radionuclides variations have been observed of 70 %, it is therefore important to recalibrate for syringes or use syringe calibration factors. Calibration factors and volume correction factors have been derived for the NPL secondary standard radionuclide calibrator, for a variety of commonly used syringes and needles, for the most commonly used medical radionuclide.

  6. CT dosimetry computer codes: Their influence on radiation dose estimates and the necessity for their revision under new ICRP radiation protection standards

    International Nuclear Information System (INIS)

    Kim, K. P.; Lee, J.; Bolch, W. E.

    2011-01-01

    Computed tomography (CT) dosimetry computer codes have been most commonly used due to their user friendliness, but with little consideration for potential uncertainty in estimated organ dose and their underlying limitations. Generally, radiation doses calculated with different CT dosimetry computer codes were comparable, although relatively large differences were observed for some specific organs or tissues. The largest difference in radiation doses calculated using different computer codes was observed for Siemens Sensation CT scanners. Radiation doses varied with patient age and sex. Younger patients and adult females receive a higher radiation dose in general than adult males for the same CT technique factors. There are a number of limitations of current CT dosimetry computer codes. These include unrealistic modelling of the human anatomy, a limited number of organs and tissues for dose calculation, inability to alter patient height and weight, and non-applicability to new CT technologies. Therefore, further studies are needed to overcome these limitations and to improve CT dosimetry. (authors)

  7. Quantization of secondary ion mass spectrometry (SIMS) data using external and internal standards

    International Nuclear Information System (INIS)

    Gnaser, H.

    1983-01-01

    Some aspects of multi-dimensional characterization of solids by secondary ion mass spectrometry (SIMS) are given. A theoretical part discusses methods for the quantization of SIMS data and the most prominent effects of ion-solid interactions as related to SIMS. After a description of the instrument used for experiments (a quadrupole-equipped ion microprobe featuring a liquid metal ion source in addition to the standard duoplasmatron gas ion source) the first experimental section is devoted to the determination of practical sensitivities and relative sensitivity factors for selected pure elements, binary and treary alloys and multicomponent systems. For 23 pure elements practical sensitivities under O + 2 bombardment also have been compared to those under In + -bombardment; it was shown that on oxygen saturated surfaces yields under In + -bombardment are higher, this making feasible use of submicron In-beams for surface analysis. In the second experimental section boron implants in silicon have been used for studying depth profiling capabilities of the instrument. Sputtering yields of Si and degrees of ionization of both B and Si have been measured. It has been shown that implantation profiles may deviate considerably from Gaussian but can be described by means of mathematical distribution functions. In the third experimental section depth resolution of the erosion process has been studied by profiling a Ni/Cr multilayer sample (100 A single layer) and been found to be approximately constant over the depth range investigated. Quantization of depth profiles, usually distorted by matrix effects, has been attempted using the primary beam species (In) as internal implantation standard. Some problems in connection with the conversion of secondary ion micrographs to concentration maps are discussed. Elemental detection limits in multidimensional SIMS analysis are given in dependence of primary beam size and total eroded depth. (Author)

  8. High-dosage dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.

    1999-01-01

    The high-dose dosimetry programme was initiated by the International Atomic Energy Agency in 1977. Like any other Agency programme, this one has various activities. These cover: research contracts and research agreements, co-ordinated research projects (CRP), training courses, and laboratory-based activities. The Agency's dose quality audit service (International Dose Assurance Service, IDAS), initiated in 1985, is one of the key elements of the programme. At earlier times, the technical part was operated through a laboratory in Germany. However, after purchasing the Bruker ESR spectrometer, the entire service has been operated from the Agency since 1992. This audit service has served well the needs of various institutes around the world involved with radiation processing. We have had two Co-ordinated Research Projects (the second one is in its last year) over the last several years. Both were/are aimed at standardization of dosimetry for radiation processing. Nine or ten participants of each CRP were about evenly distributed between the developed and developing Member States. In collaboration with the Food and Environmental Protection Section and the Industrial Applications and Chemistry Section, the Dosimetry and Medical Radiation Physics Section has participated in several training courses; these have been mainly regional courses. This collaboration has worked well since such courses combine specific radiation processing applications with the needs of good dosimetry and process control. Also, the Agency has organised several dose intercomparisons in recent time. The activities of the high-dose dosimetry programme since the last symposium (November 1990) are reviewed here. (author)

  9. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT

    International Nuclear Information System (INIS)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-01-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  10. Dosimetry tools and techniques for IMRT

    International Nuclear Information System (INIS)

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-01-01

    dosimeters, from secondary standards to field instruments, is established to assure the quantitative nature of the tests. This report is intended to describe the characteristics of the components of these systems; dosimeters, phantoms, and dose evaluation algorithms. This work is the report of AAPM Task Group 120.

  11. Construction of a laboratory for the implantation of primary standardization of the magnitude kerma in the air for the X-ray beams used in mammography

    International Nuclear Information System (INIS)

    Cardozo, W.L.; Magalhes, L.A.A.M.F.; Peixoto, J.G.P.

    2009-01-01

    Aiming to diminish the uncertainty in each phase of the metrological chain, and the uncertainty in dosimetry processed at the X-ray beam applied in the mammography, is necessary that the LNMRI/IRD to develop a reference primary standard for the absolute form to the magnitude kerma in the air

  12. Measurement assurance studies of high-energy electron and photon dosimetry in radiation-therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, M; Soares, C G [National Bureau of Standards, Washington, DC (USA)

    1981-08-01

    This is a brief review of surveys on the dosimetry of radiation-therapy beams by the National Bureau of Standards (NBS). Covered are the NBS ferrous-sulfate (Fricke) dosimetry service, a recently completed survey carried out with thermoluminescence dosimeters (TLD) on the dosimetry in cobalt-60 teletherapy beams, and plans for a TLD survey of dosimetry in high-energy bremsstrahlung beams.

  13. Neutron Standards Laboratory of the CIEMAT; Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of {sup 241}AmBe and other {sup 252}Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  14. The EURADOS/CONRAD activities on radiation protection dosimetry in medicine

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.; Bordy, J.M.; Daures, J.; Denozieres, M.; Buls, N.; Clerinx, P.; Carinou, E.; Clairand, I.; Debroas, J.; Donadille, L.; Itie, C.; Ginjaume, M.; Jansen, J.; Jaervinen, H.; Miljanic, S.; Ranogajec-Komor, M.; Nikodemova, D.; Rimpler, A.; Sans Merce, M.; D'Errico, F.

    2008-01-01

    Full text: This presentation gives an overview on the research activities that EURADOS coordinates in the field of radiation protection dosimetry in medicine. EURADOS is an organization founded in 1981 to advance the scientific understanding and the technical development of the dosimetry of ionising radiation in the fields of radiation protection, radiobiology, radiation therapy and medical diagnosis by promoting collaboration between European laboratories. EURADOS operates by setting up Working Groups dealing with particular topics. Currently funded through the CONRAD project of the 6th EU Framework Programme, EURADOS has working groups on Computational Dosimetry, Internal Dosimetry, Complex mixed radiation fields at workplaces, and Radiation protection dosimetry of medical staff. The latter working group coordinates and promotes European research for the assessment of occupational exposures to staff in therapeutic and diagnostic radiology workplaces. Research is coordinated by sub-groups covering three specific areas: 1: Extremity dosimetry in nuclear medicine and interventional radiology: this sub-group coordinates investigations in the specific fields of the hospitals and studies of doses to different parts of the hands, arms, legs and feet; 2: Practice of double dosimetry: this sub-group reviews and evaluates the different methods and algorithms for the use of dosemeters placed above and below lead aprons, especially to determine personal doses to cardiologists during cardiac catheterisation, but also in CT-fluoroscopy and some nuclear medicine developments (e.g. use of Re-188); and 3: Use of electronic personal dosemeters in interventional radiology: this sub-group coordinates investigations in laboratories and hospitals, and intercomparisons with passive dosemeters with the aim to enable the formulation of standards. (author)

  15. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    includes having a dosimetry laboratory of world class, accredited by the National Voluntary Laboratory Accreditation (USA) , certification to ISO- 17025, and classified into types radiation than those already made. (Author)

  16. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    Science.gov (United States)

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.

    Science.gov (United States)

    Marty, Micah J; Pawlik, Joseph R

    2015-01-11

    Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.

  18. Developing an Implementation Guideline to International Standard School for Schools under Secondary Educational Service Area Office 25

    Directory of Open Access Journals (Sweden)

    Worawut Poltree

    2017-09-01

    Full Text Available The objectives of developing an implementation guideline to international standard school for schools under secondary educational service area office 25 were ; 1 to study present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25 and 2 to develop an implementation guideline to international standard school for schools under secondary educational service area office 25. There were 68 samples ; administrators, deputy administrators, head of quality management systems, and academic teachers by purposive sampling. The tools used to collect the data were the five level scale questionnaire and structured interviews. Data were analyzed using mean, standard deviation, and descriptive analysis. The researcher set the research by 2 phase. The first phase educated present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25. The research was assessed feasibility of developing an implementation guideline to international standard school for schools under secondary educational service area office 25 by 5 experts. The research results were: 1. The present and problem an implementation guideline to international standard school for schools under secondary educational service area office 25 found that the overall present were at the high level and each one was at the high level. The overall problem were at the low and each one was at the moderate 2 aspects ; The leadership and the focus on personnel. Then it was at the low level. 2. Developing an implementation guideline to international standard school for schools under secondary educational service area office 25 found that 1 the leadership had set with the vision, values, performance of the school’s senior leadership, including good governance of the school, implementation of the ethics law, and responsibility for the community, 2 strategic

  19. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  20. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  1. Validating Fricke dosimetry for the measurement of absorbed dose to water for HDR 192Ir brachytherapy: a comparison between primary standards of the LCR, Brazil, and the NRC, Canada

    Science.gov (United States)

    Salata, Camila; Gazineu David, Mariano; de Almeida, Carlos Eduardo; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom

    2018-04-01

    Two Fricke-based absorbed dose to water standards for HDR Ir-192 dosimetry, developed independently by the LCR in Brazil and the NRC in Canada have been compared. The agreement in the determination of the dose rate from a HDR Ir-192 source at 1 cm in a water phantom was found to be within the k  =  1 combined measurement uncertainties of the two standards: D NRC/D LCR  =  1.011, standard uncertainty  =  2.2%. The dose-based standards also agreed within the uncertainties with the manufacturer’s stated dose rate value, which is traceable to a national standard of air kerma. A number of possible influence quantities were investigated, including the specific method for producing the ferrous-sulphate Fricke solution, the geometry of the holder, and the Monte Carlo code used to determine correction factors. The comparison highlighted the lack of data on the determination of G(Fe3+) in this energy range and the possibilities for further development of the holders used to contain the Fricke solution. The comparison also confirmed the suitability of Fricke dosimetry for Ir-192 primary standard dose rate determinations at therapy dose levels.

  2. Characterization of the neutron sources storage pool of the Neutron Standards Laboratory, using Montecarlo Techniques

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The development of irradiation damage resistant materials is one of the most important open fields in the design of experimental facilities and conceptual nucleoelectric fusion plants. The Neutron Standards Laboratory aims to contribute to this development by allowing the neutron irradiation of materials in its calibration neutron sources storage pool. For this purposes, it is essential to characterize the pool itself in terms of neutron fluence and spectra due to the calibration neutron sources. In this work, the main features of this facility are presented and the characterization of the storage pool is carried out. Finally, an application is shown of the obtained results to the neutron irradiation of material.

  3. Importance of pharmaceutical laboratory compliance with international standard requirements in respect of raising their competitiveness

    Directory of Open Access Journals (Sweden)

    Božanić Vojislav N.

    2009-01-01

    Full Text Available Current Good Manufacturing Practice (cGMP being a legal regulation in developed countries will become a legal regulation in Republic of Serbia starting with March 2010. In this paper comparative analysis between requirements of standard ISO/IEC 17025 and requirements of cEU GMP is shown. Considering the fact that in Republic of Serbia no pharmaceutical industry laboratory has been accredited according to requirements of ISO/IEC 17025, while keeping in mind that more than 90% of these laboratories have not fulfilled cEU GMP requirements, this paper aimed at pointing to the possibility of fulfilling both of mentioned requirements at the same time, which would open the way to different types of interlaboratory cooperation for pharmaceutical quality control laboratories and contribute to improving competitiveness of pharmaceutical companies. Accreditation, especially in the case of pharmaceutical quality control laboratories, is important because it guaranties the level of organizational and technical competency. It could easily be said that accreditation is becoming a must in quality control of products in order for the organization to be able to gain a leading role in the global market. Both accreditation and cGMP show the organization's commitment to having products of highest quality level. Considering the above mentioned facts, it is of greatest advantage for pharmaceutical quality control laboratories to fulfill both requirements of ISO/IEC 17025 and cGMP and reach total compliance. The aim of doing this lies in an easier acceptance of pharmaceutical products in different markets, overcoming technical barriers and affirmation of quality as key factor in reaching competitiveness, while keeping in mind the importance of strategic and competitive positioning in the global market.

  4. (Re)implantation of quality system of LCR (Laboratory for Radiation Sciences) for accreditation in the standard ABNT NBR ISO/IEC 17025:2005

    International Nuclear Information System (INIS)

    Leite, Sandro P.; Fernandes, Elisabeth O.; David, Mariano G.; Pires, Evandro J.; Alves, Carlos F.E.; Almeida, Carlos E.

    2014-01-01

    This paper presents preparing procedure of the metrology laboratory (LABMETRO), which belongs Laboratorio de Ciencias Radiologicas of Rio de Janeiro , for postulating accreditation of its services metrology to INMETRO. This process, supported by the Technological Services Network SIBRATEC/FINEP for Radiation Protection and Dosimetry Technological Services, had as one of its aims to avoid possible technical barriers to the purchase services in the area of ionizing radiation laboratories. Accreditation will also enable the integration of services such laboratories in Brazilian Calibration Network (RBC). (author)

  5. Topics in radiation dosimetry radiation dosimetry

    CERN Document Server

    1972-01-01

    Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developm

  6. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W.H.; Thein, C.M.; Bogard, J.S. [eds.

    1994-10-01

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developments in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.

  7. Experiences and performance of the Harshaw dosimetry system at two major processing centres

    International Nuclear Information System (INIS)

    Tawil, R.A.; Olhalber, T.; Rathbone, B.

    1996-01-01

    The installations, operating practice, dose algorithms and results and maintenance experience at two major dosimetry processing centres are described. System selection considerations and a comprehensive quality programme are described in the light of the publication of testing requirements by various dosimetry regulatory organisations. Reported information from Siemens Dosimetry Services comprises their selection of dosemeters and processing equipment including service history, a description of their dose computation algorithm, and detailed results of their testing against DOELAP standards. Battelle Pacific Northwest Laboratories (PNL) provides a description of their dosemeters and equipment with service history; in addition, a discussion of their new neural network approach to a dose computation algorithm and test results from that algorithm are presented. (Author)

  8. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    Science.gov (United States)

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  9. Intra-building telecommunications cabling standards for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.L.

    1993-08-01

    This document establishes a working standard for all telecommunications cable installations at Sandia National Laboratories, New Mexico. It is based on recent national commercial cabling standards. The topics addressed are Secure and Open/Restricted Access telecommunications environments and both twisted-pair and optical-fiber components of communications media. Some of the state-of-the-art technologies that will be supported by the intrabuilding cable infrastructure are Circuit and Packet Switched Networks (PBX/5ESS Voice and Low-Speed Data), Local Area Networks (Ethernet, Token Ring, Fiber and Copper Distributed Data Interface), and Wide Area Networks (Asynchronous Transfer Mode). These technologies can be delivered to every desk and can transport data at rates sufficient to support all existing applications (such as Voice, Text and graphics, Still Images, Full-motion Video), as well as applications to be defined in the future.

  10. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  11. Comparison of a commercial blood cross-matching kit to the standard laboratory method for establishing blood transfusion compatibility in dogs.

    Science.gov (United States)

    Guzman, Leo Roa; Streeter, Elizabeth; Malandra, Allison

    2016-01-01

    To evaluate the accuracy of a commercial blood transfusion cross-match kit when compared to the standard laboratory method for establishing blood transfusion compatibility. A prospective observational in intro study performed from July 2009 to July 2013. Private referral veterinary center. Ten healthy dogs, 11 anemic dogs, and 24 previously transfused dogs. None. Forty-five dogs were enrolled in a prospective study in order to compare the standard blood transfusion cross-match technique to a commercial blood transfusion cross-matching kit. These dogs were divided into 3 different groups that included 10 healthy dogs (control group), 11 anemic dogs in need of a blood transfusion, and 24 sick dogs that were previously transfused. Thirty-five dogs diagnosed with anemia secondary to multiple disease processes were cross-matched using both techniques. All dogs cross-matched via the kit had a compatible major and minor result, whereas 16 dogs out of 45 (35%) had an incompatible cross-match result when the standard laboratory technique was performed. The average time to perform the commercial kit was 15 minutes and this was 3 times shorter than the manual cross-match laboratory technique that averaged 45-50 minutes to complete. While the gel-based cross-match kit is quicker and less technically demanding than standard laboratory cross-match procedures, microagglutination and low-grade hemolysis are difficult to identify by using the gel-based kits. This could result in transfusion reactions if the gel-based kits are used as the sole determinant of blood compatibility prior to transfusion. Based on our results, the standard manual cross-match technique remains the gold standard test to determine blood transfusion compatibility. © Veterinary Emergency and Critical Care Society 2016.

  12. Synthesis of amino-functionalized silica nanoparticles for preparation of new laboratory standards

    Science.gov (United States)

    Alvarez-Toral, Aitor; Fernández, Beatriz; Malherbe, Julien; Claverie, Fanny; Pecheyran, Christophe; Pereiro, Rosario

    2017-12-01

    Platinum group elements (PGEs) are particularly interesting analytes in different fields, including environmental samples as well as high cost materials that contain them, such as for example automotive catalysts. This type of solid samples could be analysed by laser ablation (LA) coupled to ICP-MS, which allow to significantly reducing the analysis time since the time-consuming processes for sample preparation are not required. There is a considerable demand of standards with high PGEs concentration for quantification purposes, which cannot be carried out easily using LA-ICP-MS because the available standards (i.e. NIST SRM 61 × series) do not have such analytes in the same concentration range. In this paper, a new strategy is proposed for the synthesis of homogeneous laboratory standards with Pt, Pd and Rh concentrations that range from 77 μg/g of Pd up to 2035 μg/g of Rh. The proposed strategy is based on the synthesis of monodisperse amino-functionalized amorphous silica nanoparticles, which can retain metal ions. In addition to Pt, Pd and Rh, three lanthanides were also added to the nanoparticles (La, Ce, Nd). Sturdy pressed pellets can be made from the resulting nanopowder without the use of any binder. Elemental composition of standards made of nanoparticles was analysed by conventional nebulization ICP-MS and their homogeneity was successfully evaluated by LA-ICP-MS.

  13. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  14. Standardization and integration of ecological and human risk assessments at Department of Energy national laboratories

    International Nuclear Information System (INIS)

    Breckenridge, R.P.; Berry, D.

    1995-01-01

    In 1990, the directors of twelve national laboratories operated by the US Department of Energy (DOE) chartered a steering group to address DOE's concerns about the effectiveness of any regulations driving the cost of environmental restoration and waste management. The goal of this presentation is to inform and to seek collaboration on the challenge of standardizing ecological and human health risk assessment approaches and development of an approach to address the differences between environmental remediation and restoration activities at DOE's waste management sites across the country. Recent changes in risk related regulations and budget cuts have prompted significant changes in DOE's approach to conducting and standardizing risk-based approaches for waste management. The steering group was established in 1990 to organize a broad, long-term educational outreach and research program focused on better science and public understanding of the risks associated with hazardous agents (chemical, biological, radiological, and physical) in the environment and the workplace. This presentation discusses the group's goal to (1) act as one resource for providing the technical basis for health and environmental standards; (2) catalyze a national effort to improve public understanding of risk and the importance of cost benefit analysis in evaluating mitigation of risk; (3) catalyze improvements in understanding of health and environmental effects of hazardous agents; and (4) analyze with regulatory agencies, industry, and the public the potential for evolution of risk-based consensus standard into federal and state environmental and occupational/public health regulations. Major accomplishments will be presented along with the group's agenda for standardizing risk, environmental, and occupational/public health standards

  15. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments

    Directory of Open Access Journals (Sweden)

    Jesús Montes-Romero

    2017-11-01

    Full Text Available This article describes a complete characterization system for photovoltaic devices designed to acquire the current-voltage curve and to process the obtained data. The proposed system can be replicated for educational or research purposes without having wide knowledge about electronic engineering. Using standard calibrated instrumentation, commonly available in any laboratory, the accuracy of measurements is ensured. A capacitive load is used to bias the device due to its versatility and simplicity. The system includes a common part and an interchangeable part that must be designed depending on the electrical characteristics of each PV device. Control software, developed in LabVIEW, controls the equipment, performs automatic campaigns of measurements, and performs additional calculations in real time. These include different procedures to extrapolate the measurements to standard test conditions and methods to obtain the intrinsic parameters of the single diode model. A deep analysis of the uncertainty of measurement is also provided. Finally, the proposed system is validated by comparing the results obtained from some commercial photovoltaic modules to the measurements given by an independently accredited laboratory.

  16. Calorimetric dosimetry of reactor radiation

    International Nuclear Information System (INIS)

    Radak, B.; Markovic, V.; Draganic, I.

    1961-01-01

    Calorimetric dosimetry of reactor radiation is relatively new reactor dosimetry method and the number of relevant papers is rather small. Some difficulties in applying standard methods (chemical dosemeters, ionization chambers) exist because of the complexity of radiation. In general application of calorimetric dosemeters for measuring absorbed doses is most precise. In addition to adequate choice of calorimetric bodies there is a possibility of determining the yields of each component of the radiation mixture in the total absorbed dose. This paper contains a short review of the basic calorimetry methods and some results of measurements at the RA reactor in Vinca performed by isothermal calorimeter [sr

  17. Implementation of the Brazilian primary standard for x-rays

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Almeida, C.E.V. de

    2002-01-01

    In the field of ionizing radiation metrology, a primary standard of a given physical quantity is essentially an experimental set-up which allows one to attribute a numerical value to a particular sample of that quantity in terms of a unit given by an abstract definition. The absolute measurement of the radiation quantity air kerma, is performed with a free-air ionization chamber. A great deal of research to determine the absolute measurement resulted in different designs for primary standard free-air ionization chambers such as cilindrics or plane parallel chambers. The implementation of primary standard dosimetry with free-air ionization chambers is limited to the National Metrology Institutes - NMIs. Since 1975, the Bureau International des Poids et Mesures - BIPM has been conducting comparisons of NMIs primary free-air standard chambers in the medium energy x-rays range. These comparisons are carried out indirectly through the calibration at both the BIPM and at the NMI of one or more transfer ionization chambers at a series of four reference radiation qualities. The scientific work programme of the National Laboratory for Ionizing Radiation Metrology - LNMRI of the Institute of Radioprotection and Dosimetry - IRD, which belongs to the National Commission of Nuclear Energy - CNEN, includes the establishment of a primary standard for x-rays of medium energy x-ray range. This activity is justified by the demand to calibrate periodically Brazilian network of the secondary standards without losing quality of the measurement. The LNMRI decided to implement four reference radiation qualities establishing the use of a transfer chamber calibrated at BIPM. The LNMRI decided to implement the primary standard dosimetry using a free-air ionization chamber with variable volume, made by Victoreen, model 480. Parameters related to the measurement of the quantity air kerma were evaluated, such as: air absorption, scattering inside the ionization chamber, saturation, beam

  18. Evaluation of an ionization chamber response at small distances during dosimetry of gamma radiation beams

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, Luciana C.; Potiens, Maria da Penha A.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: lafonso@ipen.br; mppalbu@ipen.br; lcaldas@ipen.br

    2007-07-01

    The beam dosimetry measurements of a gamma irradiator, utilized for calibration of mainly portable radiation monitors, at the Calibration Laboratory of IPEN, have been taken between the source-instrument distance of 1 m and 4 m. Due to the source decay and instruments with higher dose rate ranges, calibrations at distances smaller than 1 m are necessary. For this purpose, a 30 cm{sup 3} ionization chamber calibrated against a secondary standard system was utilized. The use of this chamber is appropriate, because it can be totally irradiated. The behavior of this ionization chamber was studied in terms of: repeatability, stability and current leakage, using a {sup 90}Sr+{sup 90}Y source. The repeatability test presented uncertainties lower than {+-}0.5%. Analyzing the stability results, the variation did not exceed {+-}1.0%. The current leakage did not exceed 0.5% of the reference value. The measurements at the irradiator beams were taken at smaller distances than 1 m (in steps of 10 cm). The distance square inverse law was verified for both {sup 137}Cs and {sup 60}Co sources; the variations did not exceed {+-}5%, according to the ISO 4037-1 standard. (author)

  19. Evaluation of an ionization chamber response at small distances during dosimetry of gamma radiation beams

    International Nuclear Information System (INIS)

    Afonso, Luciana C.; Potiens, Maria da Penha A.; Caldas, Linda V.E.

    2007-01-01

    The beam dosimetry measurements of a gamma irradiator, utilized for calibration of mainly portable radiation monitors, at the Calibration Laboratory of IPEN, have been taken between the source-instrument distance of 1 m and 4 m. Due to the source decay and instruments with higher dose rate ranges, calibrations at distances smaller than 1 m are necessary. For this purpose, a 30 cm 3 ionization chamber calibrated against a secondary standard system was utilized. The use of this chamber is appropriate, because it can be totally irradiated. The behavior of this ionization chamber was studied in terms of: repeatability, stability and current leakage, using a 90 Sr+ 90 Y source. The repeatability test presented uncertainties lower than ±0.5%. Analyzing the stability results, the variation did not exceed ±1.0%. The current leakage did not exceed 0.5% of the reference value. The measurements at the irradiator beams were taken at smaller distances than 1 m (in steps of 10 cm). The distance square inverse law was verified for both 137 Cs and 60 Co sources; the variations did not exceed ±5%, according to the ISO 4037-1 standard. (author)

  20. Transport of lead in secondary systems of PWR plants: laboratory and plant investigations

    International Nuclear Information System (INIS)

    Feron, D.; Rocher, A.; Nordmann, F.

    1992-01-01

    Both in France and abroad, abnormally high lead concentrations have been found in the deposits on certain steam generator tubes subject to combined inter and transgranular corrosion on the secondary side. Many potential sources of lead have been identified in PWR steam-water system, mainly at the turbine level. Tests on a loop (ORION) have shown that lead (as Pb or PbO) can transport from the condenser to the steam generator and that the contaminant mainly concentrates in flow restricted areas of steam generators

  1. Clinical dosimetry using mosfets

    International Nuclear Information System (INIS)

    Ramani, Ramaseshan; Russell, Stephen; O'Brien, Peter

    1997-01-01

    Purpose: The use of metal oxide-silicon field effect transistors (MOSFETs) as clinical dosimeters is demonstrated for a number of patients with targets at different clinical sites. Methods and Materials: Commercially available MOSFETs were characterized for energy response, angular dependency of response, and effect of accumulated dose on sensitivity and some inherent properties of MOSFETs. The doses determined both by thermoluminescence dosimetry (TLD) and MOSFETs in clinical situation were evaluated and compared to expected doses determined by calculation. Results: It was observed that a standard calibration of 0.01 Gy/mV gave MOSFET determined doses which agreed with expected doses to within 5% at the 95% confidence limit for photon beams from 6 to 25 MV and electron beams from 5 to 14 MeV. An energy-dependent variation in response of up to 28% was observed between two orientations of a MOSFET. The MOSFET doses compared very well with the doses estimated by TLDs, and the patients tolerated MOSFETs very well. A standard deviation of 3.9% between expected dose and MOSFET determined dose was observed, while for TLDs the standard deviation was 5.1%. The advantages and disadvantages of using MOSFETs for clinical dosimetry are discussed in detail. Conclusion: It was concluded that MOSFETs can be used as clinical dosimeters and can be a good alternative to TLDs. However, they have limitations under certain clinical situations

  2. Report on external occupational dosimetry in Canada

    International Nuclear Information System (INIS)

    1995-12-01

    In light of the new recommendations of the ICRP in Report 60 on dose quantities and dose limits, this working group was set up to examine the implications for external dosimetry in Canada. The operational quantities proposed by the ICRU are discussed in detail with regard to their applicability in Canada. The current occupational dosimetry services available in Canada are described as well as the several performance intercomparisons that have been carried out within the country as well as internationally. Recommendations are given with respect to standards for dosimetry, including accuracy and precision. More practical advice is given on the choice of dosimeter to use for external dosimetry, frequency of monitoring, and who should be monitored. Specific advice is given on the monitoring of pregnant workers and problem of non-uniform irradiation. Accident and emergency dosimetry are dealt with briefly. Suggestions are given regarding record keeping both for employers and for the national dose registry. 48 refs., 6 tabs., 1 fig

  3. The Relationship between Computer and Internet Use and Performance on Standardized Tests by Secondary School Students with Visual Impairments

    Science.gov (United States)

    Zhou, Li; Griffin-Shirley, Nora; Kelley, Pat; Banda, Devender R.; Lan, William Y.; Parker, Amy T.; Smith, Derrick W.

    2012-01-01

    Introduction: The study presented here explored the relationship between computer and Internet use and the performance on standardized tests by secondary school students with visual impairments. Methods: With data retrieved from the first three waves (2001-05) of the National Longitudinal Transition Study-2, the correlational study focused on…

  4. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section 50.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL...

  5. Radiation dosimetry

    International Nuclear Information System (INIS)

    Harper, M.W.; Thomas, B.; Conway, J.

    1977-01-01

    A dosemeter is described that is based on the TSCD principle (thermally stimulated current dosimetry). Basically this involves irradiating a responsive material and then heating it,whereby an electric current is produced. If the material is heated in an electric field the peak value of the thermally stimulated current or alternatively the total charge released by heating, can be related to the radiation dose received. The instrument described utilises a sheet coated with a thermoplastic polymer, such as a poly4-methylpent-l-ene. The polymer should have a softening point not lower than 150 0 C with an electrical resistivity of at least 10 16 chms/cm at 150 0 C. The polymer may also be PTFE. Heating should be in the range 150 0 C to 200 0 C and the electric field in the range 50 to 10,000V/mm. (U.K.)

  6. Use of SMT phototransistors for dosimetry in computerized tomography

    International Nuclear Information System (INIS)

    Magalhaes, C.M.S. de; Silva, J.O. da; Antonio Filho, J.; Santos, L.A.P. dos

    2007-01-01

    A dosimetry system using commercially available SMT (Surface-Mount Technology) phototransistors is evaluated for dose measurements in X-ray computed tomography. First, the phototransistors were characterized at the laboratory using a Pantak X-ray in the standard radiation quality RQR9 from IEC61267. The following tests were realized: energy dependence, response with dose rate and repetitiveness. The phototransistors yielded a real-time readout and a 6430 Sub-femto-ammeter Keithley was used to obtain their electrical current. This methodology allowed the correlating of their results with a standard ionisation chamber, a NE2571 ionization chamber coupled to a NE2670 electrometer that measured the applied dose at the detector position. After the characterization of the phototransistors, free-in-air and in head phantom dose measurements were carried out with the dosimetry system at the Hospital. Phototransistors were used to determine the dose profile measurements along the axis of rotation undergoing CT head examination. A Flip-Flop electrometer was used to obtain these measurements. The results indicated that the current values were reliable when compared with the results of doses of CT ionization chamber under the same conditions. The loss of radiation sensitivity, postirradiation, with time is not significant and the SMT phototransistor brings some features to CT dosimetry including high sensitivity, small size, real-time measurements and linearity. (author)

  7. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  8. Organ dosimetry

    International Nuclear Information System (INIS)

    Kaul, Dean C.; Egbert, Stephen D.; Otis, Mark D.; Kuhn, Thomas; Kerr, George D.; Eckerman, Keith F.; Cristy, Mark; Ryman, Jeffrey C.; Tang, Jabo S.; Maruyama, Takashi

    1987-01-01

    This chapter describes the technical approach, complicating factors, and sensitivities and uncertainties of calculations of doses to the organs of the A-bomb survivors. It is the object of the effort so described to provide data that enables the dosimetry system to determine the fluence, kerma, absorbed dose, and similar quantities in 14 organs and the fetus, specified as being of radiobiological interest. This object was accomplished through the use of adjoint Monte Carlo computations, which use a number of random particle histories to determine the relationship of incident neutrons and gamma rays to those transported to a target organ. The system uses these histories to correlate externally-incident energy- and angle-differential fluences with the fluence spectrum (energy differential only) within the target organ. In order for the system to work in the most efficient manner possible, two levels of data were provided. The first level, represented by approximately 6,000 random adjoint-particle histories, enables the computation of the fluence spectrum with sufficient precision to provide statistically reliable (± 6 %) mean doses within any given organ. With this limited history inventory, the system can be run rapidly for all survivors. Mean organ dose and dose uncertainty are obtainable in this mode. The second mode of operation enables the system to produce a good approximation to fluence spectrum within any organ or to produce the dose in each of an array of organ subvolumes. To be statistically reliable, this level of detail requires far more random histories, approximately 40,000 per organ. Thus, operation of the dosimetry system in this mode (i.e., with this data set) is intended to be on an as-needed, organ-specific basis, since the system run time is eight times that in the mean dose mode. (author)

  9. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  10. [Implementation of the technical requirements of the UNE-EN-ISO 15189 quality standard in a mycobacterial laboratory].

    Science.gov (United States)

    Guna Serrano, M del Remedio; Ocete Mochón, M Dolores; Lahiguera, M José; Bresó, M Carmen; Gimeno Cardona, Concepción

    2013-02-01

    The UNE-EN-ISO 15189:2007 standard defines the requirements for quality and competence that must be met by medical laboratories. These laboratories should use this international standard to develop their own quality management systems and to evaluate their own competencies; in turn, this standard will be used by accreditation bodies to confirm or recognize the laboratories' competence. In clinical microbiology laboratories, application of the standard implies the implementation of the technical and specific management requirements that must be met to achieve optimal quality when carrying out microbiological tests. In Spain, accreditation is granted by the Spanish Accreditation Body (Entidad Nacional de Acreditación). This review aims to discuss the practical application of the standard's technical requirements in mycobacterial laboratory. Firstly, we define the scope of accreditation. Secondly, we specify how the items of the standard on personnel management, control of equipment, environmental facilities, method validation, internal controls and customer satisfaction surveys were developed and implemented in our laboratory. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  11. Some methods for calibration and beta radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, Linda V. Ehlin

    1980-01-01

    The calibration of beta radiation was studied from the point of view of primary and secondary standardization, using extrapolation chambers and examining several effects. The properties of a commercial ionization chamber were investigated, and the possibility of its use in calibration and dosimetry of 90 Sr- 90 Y beta radiation was demonstrated . A secondary standard calibration facility was developed and the results obtained with this facility were compared with those obtained from a primary system directly or indirectly. Nearly energy independent response was obtained in.the range 60 keV to 0,8 MeV with this secondary standard. Two solid state techniques namely thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) were also used for beta dosimetry. Various characteristics like reproducibility, response with dose,energy dependence, etc. were studied for the materials: LiF, CaF 2 ,Li 2 B 4 O 7 , Be O, CaSO 4 and Al 2 O 3 . TL detectors of thickness 0,9 mm underestimate the dose 60 μm thick CaSO 4 :Tm embedded on a thin aluminium plate gave energy independent response behind skin layers of 7 mg/cm 2 . Mixed field of beta, X and gamma radiation was analysed using this detector. Quartz based Be O and graphite based alpha beta-Al 2 O 3 were found to be good beta radiation detectors when the TSEE technique is used. Energy independent CaSO 4 :Tm TL dosimeters were used in international comparison for dose measurements and the results obtained were in agreement with the actual given doses within 10%. The TL detectors were also used for dose rate measurements from glazed painted tiles used in construction industry and a 85 Kr source used in textile and metal industries. Results obtained in the later case were Q compared with those using the secondary standard facility. (author)

  12. Quality management system in the CIEMAT Radiation Dosimetry Service.

    Science.gov (United States)

    Martín, R; Navarro, T; Romero, A M; López, M A

    2011-03-01

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible.

  13. The International Atomic Energy Agency circulation of laboratory air standards for stable isotope comparisons: Aims, preparation and preliminary results

    International Nuclear Information System (INIS)

    Allison, C.E.; Francey, R.J.; Steele, L.P.

    2002-01-01

    Ten air standards in high-pressure aluminium cylinders were prepared, covering a specified range of CO 2 concentration and δ 13 C and δ 18O isotopic composition, to be used for laboratory intercomparisons with the primary aim of merging global atmospheric CO 2 δ 13 C data sets. After establishing the stability of the standards, five were circulated between four laboratories with established high precision global monitoring networks to quantify differences between the measurement scales used in the laboratories. Measurements of CO 2 concentration in three of the four laboratories showed agreement to better than 0.2 ppm for the five standards. Measurements of N 2 O concentration reported by three of the laboratories agreed to better than 3 ppb after correction for known scaling factor differences, but a fourth laboratory reported results for two cylinders lower by about 20 ppb, contributing a δ 13 C uncertainty of about 0.012 per mille for these two cylinders. The reported measurements of the δ 13 C and δ 18O of CO 2 extracted from the air in the five standards showed large offsets between the laboratories of up to 0.1 per mille in δ 13 C and up to 1 per mille in δ 18O . Analysis of the results shows that about 40% of the offsets arises from differences in the procedures used in each laboratory to calculate the δ 13 C and δ 18 O values from the raw measurements and that the remainder arises from the pre-concentration step. Using one of the circulated standards to 'normalise' the others removes most of the inter-laboratory differences but there remains a non-linear response in one or more laboratories. The differences in δ 13 C that remain after normalisation are larger than the target precision of 0.01 per mille. (author)

  14. X radiation qualities characterization following the standard IEC 61267 recommendations at the calibration laboratory of IPEN

    International Nuclear Information System (INIS)

    Franciscatto, Priscila Cerutti

    2009-01-01

    This work presents a methodology for the X radiation qualities characterization following the new recommendations of the standard 61267 of the International Electrotechnical Commission (IEC) to establish a new procedure for calibration of dosimetric systems used in the field of diagnostic radiology. The reference qualities radiation of IEC 61267: RQR 2 to RQR 10, RQA 2 to RQA 10, RQB 2 to RQB 10 and RQN 2 to RQN 10 were implanted at the calibration laboratory of IPEN (LCI). Their characteristics were analyzed through measurements of beam parameters such as: Practical peak voltage (PPV), specific additional filtrations for each qualities (high purity aluminum of about 99.9%), 1st and 2nd Half Value Layers, homogeneity coefficient. The inherent filtration of the X ray tube was also determined. With the establishment of these radiation qualities, the LCI will be ready to calibrate the measuring instruments of radiation in the new qualities, allowing an improvement in radiological services offered by IPEN. (author)

  15. New measurements of G using the measurement standards laboratory torsion balance

    International Nuclear Information System (INIS)

    Armstrong, T.R.; Fitzgerald, M.P.

    2003-01-01

    This Letter presents the results of a series of measurements of the Newtonian gravitational constant G using the compensated torsion balance developed at the Measurement Standards Laboratory. Since our last published result using the torsion balance in the compensated mode of operation [Meas. Sci. Technol. 10, 439 (1999)], several improvements have been made to reduce the uncertainty in the final result. The new measurements have used both stainless steel and copper large masses. The values of G for the two sets of masses are in good agreement. After combining all of the measurements we get a value of G=6.673 87(0.000 27)x10 -11 m 3 kg -1 s -2 . This new value is 5 parts in 10 5 smaller than our previous published values

  16. Laboratory and field temperature preference and avoidance data of fish related to the establishment of standards

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Cherry, D.S.; Dickson, K.L.; Cairns, J. Jr.

    1975-01-01

    Temperature preferences for important fish species in the New River in the vicinity of Appalachian Power Company's Glen Lyn, Virginia plant were determined independently by both field and laboratory studies. A relationship was demonstrated between the temperature preference data generated by the two approaches. Based on the temperature preference data the responses of fish to the thermal discharges can be predicted. From these data and from other data on the fish community structure, it was possible to determine that the thermal discharge was causing no appreciable harm to the fish community. Based on these studies it was concluded that the most reasonable approach to establishing thermal standards is to couple temperature preference studies with site specific studies. (U.S.)

  17. Microarray-based genotyping of Salmonella: Inter-laboratory evaluation of reproducibility and standardization potential

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Riber, Leise; Vigre, Håkan

    2011-01-01

    Bacterial food-borne infections in humans caused by Salmonella spp. are considered a crucial food safety issue. Therefore, it is important for the risk assessments of Salmonella to consider the genomic variationamong different isolates in order to control pathogen-induced infections. Microarray...... critical methodology parameters that differed between the two labs were identified. These related to printing facilities, choice of hybridization buffer,wash buffers used following the hybridization and choice of procedure for purifying genomic DNA. Critical parameters were randomized in a four......DNA and different wash buffers. However, less agreement (Kappa=0.2–0.6) between microarray results were observed when using different hybridization buffers, indicating this parameter as being highly criticalwhen transferring a standard microarray assay between laboratories. In conclusion, this study indicates...

  18. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    Vega C, H. R.; Mendez V, R.; Guzman G, K. A.

    2014-10-01

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: 241 AmBe and 252 Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  19. The Role of the National Laboratory in Improving Secondary Science Education

    Energy Technology Data Exchange (ETDEWEB)

    White,K.; Morris, M.; Stegman, M.

    2008-10-20

    While the role of science, technology, engineering, and mathematics (STEM) teachers in our education system is obvious, their role in our economic and national security system is less so. Our nation relies upon innovation and creativity applied in a way that generates new technologies for industry, health care, and the protection of our national assets and citizens. Often, it is our science teachers who generate the excitement that leads students to pursue science careers. While academia provides these teachers with the tools to educate, the rigors of a science and technology curriculum, coupled with the requisite teaching courses, often limit teacher exposure to an authentic research environment. As the single largest funding agency for the physical sciences, the US Department of Energy's (DOE) Office of Science plays an important role in filling this void. For STEM teachers, the DOE Academies Creating Teacher Scientists program (ACTS) bridges the worlds of research and education. The ACTS program at Brookhaven National Laboratory (BNL), one of several across the country, exemplifies the value of this program for participating teachers. Outcomes of the work at BNL as evidenced by the balance of this report, include the following: (1) Teachers have developed long-term relationships with the Laboratory through participation in ongoing research, and this experience has both built enthusiasm for and enriched the content knowledge of the participants. (2) Teachers have modified the way they teach and are more likely to engage students in authentic research and include more inquiry-based activities. (3) Teachers have reported their students are more interested in becoming involved in science through classes, extra-curricular clubs, and community involvement. (4) Teachers have established leadership roles within their peer groups, both in their own districts and in the broader teaching community. National laboratories are making an important contribution to the

  20. Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters

    International Nuclear Information System (INIS)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jeremie; Zhang, Jianshun Jensen; Fisk, William J.

    2009-01-01

    We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

  1. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  2. Dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Jahr, R.

    1975-03-01

    Following an explanation of the physical fundamentals of neutron dosimetry, the special needs in medicine and biology are gone into. It is shown that the dose equivalent used in radiation protection simplifies in an undue manner the complicated dependence of the biological effects. The reason for this is the fact that the RBE for heavy recoil nuclei, amongst others, depends on the energy and sort of particle, whereas it is approximately equal to one for electrons independent of the energy. It is thus necessary in the fields of biology and medicine to have additional information on energy spectra of the neutrons as well as of all charged secondary particles as a function of the position in the phantom. These are obtained partly by calculation and partly by special dosemeters. The accuracy achieved so far is 5%. (ORU/LH) [de

  3. Standard Test Method for Calibration of Non-Concentrator Photovoltaic Secondary Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers calibration and characterization of secondary terrestrial photovoltaic reference cells to a desired reference spectral irradiance distribution. The recommended physical requirements for these reference cells are described in Specification E1040. Reference cells are principally used in the determination of the electrical performance of a photovoltaic device. 1.2 Secondary reference cells are calibrated indoors using simulated sunlight or outdoors in natural sunlight by reference to a primary reference cell previously calibrated to the same desired reference spectral irradiance distribution. 1.3 Secondary reference cells calibrated according to this test method will have the same radiometric traceability as the of the primary reference cell used for the calibration. Therefore, if the primary reference cell is traceable to the World Radiometric Reference (WRR, see Test Method E816), the resulting secondary reference cell will also be traceable to the WRR. 1.4 This test method appli...

  4. Secondary Aluminum National Emission Standards for Hazardous Air Pollutants (NESHAP) Applicability Flowcharts

    Science.gov (United States)

    This March 2003 document contains three diagrams that that are intended to assist you in determining whether you own or operate any equipment that is subject to the NESHAP for Secondary Aluminum Production Facilities.

  5. Neutron personnel dosimetry considerations for fusion reactors

    International Nuclear Information System (INIS)

    Barton, T.P.; Easterly, C.E.

    1979-07-01

    The increasing development of fusion reactor technology warrants an evaluation of personnel neutron dosimetry systems to aid in the concurrent development of a radiation protection program. For this reason, current state of knowledge neutron dosimeters have been reviewed with emphasis placed on practical utilization and the problems inherent in each type of dosimetry system. Evaluations of salient parameters such as energy response, latent image instability, and minimum detectable dose equivalent are presented for nuclear emulsion films, track etch techniques, albedo and other thermoluminescent dosimetry techniques, electrical conductivity damage effects, lyoluminescence, thermocurrent, and thermally stimulated exoelectron emission. Brief summaries of dosimetry regulatory requirements and intercomparison study results help to establish compliance and recent trends, respectively. Spectrum modeling data generated by the Neutron Physics Division of Oak Ridge National Laboratory for the Princeton Tokamak Fusion Test Reactor (TFTR) Facility have been analyzed by both International Commission on Radiological Protection fluence to dose conversion factors and an adjoint technique of radiation dosimetry, in an attempt to determine the applicability of current neutron dosimetry systems to deuterium and tritium fusion reactor leakage spectra. Based on the modeling data, a wide range of neutron energies will probably be present in the leakage spectra of the TFTR facility, and no appreciable risk of somatic injury to occupationally exposed workers is expected. The relative dose contributions due to high energy and thermal neutrons indicate that neutron dosimetry will probably not be a serious limitation in the development of fusion power

  6. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  7. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  8. Review of ANSI [American National Standards Institute] N13.11: A status report

    International Nuclear Information System (INIS)

    Sims, C.S.

    1988-01-01

    In 1983, the American National Standards Institute (ANSI) issued the dosimetry standard titled ''Personnel Dosimetry Performance -- Criteria for Testing'' as ANSI N13.11. This standard forms the basis for the National Voluntary Laboratory Accreditation Program (NVLAP) which has become familiar to dosimeter processors in recent years. This standard is particularly important because the Nuclear Regulatory Commission (NRC) requires that all licensees have personnel dosimetry devices processed by processors that are NVLAP accredited. This standard is currently undergoing review and modifications are going to be made. This paper contains a brief history of the events leading to the development of ANSI N13.11 - 1983, information concerning the present standard and associated performance test results, and the selection of the review group. Following that, the status of the review is presented and statements regarding the future outlook for the standard are made. 10 refs., 5 tabs

  9. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  10. Use of secondary sewage water as a culture medium for Chaetoceros gracilis and Thalassiosira Sp (Chrysophyceae in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Rauquírio André Albuquerque Marinho da Costa

    1999-01-01

    Full Text Available Experiments were carried out in order to test the efficiency of additions of secondary sewage as a culture medium for Chaetoceros gracilis and Thalassiosira sp (Chrysophyceae under laboratory conditions. These algae were cultivated in sea water with concentrations of 10%, 20%, 30% and 40% of wastewater. The results were compared with those obtained by the nutritive medium f2 of Guillard (1975. The best results in terms of cellular densities were observed at 40% additions. There were significant differences (significance levels of 5% between the nutritive medium f2 and the 40% additions for both the species. Maximum cellular densities observed for all additions tested were, 4,125.00 x 10³ cells/ml for Chaetoceros gracilis on the ninth day and 834.00 x 10³ cells/ml for Thalassiosira sp on the fifth day. Biomass was higher in the nutritive medium f2 than in the other treatments, reaching average values of 2,363μg/ml for Chaetoceros gracilis. At all experimental units, the best results were registered at 40% addition for Chaetoceros gracilis, where average values of 0.768μg/ml were observed on the fifth day, and at 30% additions for Thalassiosira sp where 0.883μg/ml were observed on the thirteenth day. It was concluded that secondary sewage could be used as a culture medium for the species tested here, after large scale tests.

  11. Standardization of 8-color flow cytometry across different flow cytometer instruments: A feasibility study in clinical laboratories in Switzerland.

    Science.gov (United States)

    Glier, Hana; Heijnen, Ingmar; Hauwel, Mathieu; Dirks, Jan; Quarroz, Stéphane; Lehmann, Thomas; Rovo, Alicia; Arn, Kornelius; Matthes, Thomas; Hogan, Cassandra; Keller, Peter; Dudkiewicz, Ewa; Stüssi, Georg; Fernandez, Paula

    2017-07-29

    The EuroFlow Consortium developed a fully standardized flow cytometric approach from instrument settings, through antibody panel, reagents and sample preparation protocols, to data acquisition and analysis. The Swiss Cytometry Society (SCS) promoted a study to evaluate the feasibility of using such standardized measurements of 8-color data across two different flow cytometry platforms - Becton Dickinson (BD) FACSCanto II and Beckman Coulter (BC) Navios, aiming at increasing reproducibility and inter-laboratory comparability of immunophenotypic data in clinical laboratories in Switzerland. The study was performed in two phases, i.e. a learning phase (round 1) and an analytical phase (rounds 2 and 3) consisting of a total of three rounds. Overall, 10 laboratories using BD FACSCanto II (n=6) or BC Navios (n=4) flow cytometers participated. Each laboratory measured peripheral blood samples from healthy donors stained with a uniform antibody panel of reagents - EuroFlow Lymphoid Screening Tube (LST) - applying the EuroFlow standardized protocols for instrument setup and sample preparation (www.EuroFlow.org). All data files were analyzed centrally and median fluorescence intensity (MedFI) values for individual markers on defined lymphocyte subsets were recorded; variability from reference MedFI values was assessed using performance scores. Data troubleshooting and discussion of the results with the participants followed after each round at SCS meetings. The results of the learning phase demonstrated that standardized instrument setup and data acquisition are feasible in routine clinical laboratories without previous experience with EuroFlow. During the analytical phase, highly comparable data were obtained at the different laboratories using either BD FACSCanto II or BC Navios. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%. In the last study round, 89% of participants scored over 90% MedFI values within the acceptance criteria

  12. Neutron dosimetry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J W

    1955-03-29

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutr