WorldWideScience

Sample records for secondary creep problems

  1. An axisymmetric method of creep analysis for primary and secondary creep

    International Nuclear Information System (INIS)

    Jahed, Hamid; Bidabadi, Jalal

    2003-01-01

    A general axisymmetric method for elastic-plastic analysis was previously proposed by Jahed and Dubey [ASME J Pressure Vessels Technol 119 (1997) 264]. In the present work the method is extended to the time domain. General rate type governing equations are derived and solved in terms of rate of change of displacement as a function of rate of change in loading. Different types of loading, such as internal and external pressure, centrifugal loading and temperature gradient, are considered. To derive specific equations and employ the proposed formulation, the problem of an inhomogeneous non-uniform rotating disc is worked out. Primary and secondary creep behaviour is predicted using the proposed method and results are compared to FEM results. The problem of creep in pressurized vessels is also solved. Several numerical examples show the effectiveness and robustness of the proposed method

  2. Numerical algorithms in secondary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.

    1980-01-01

    The problem of stationary creep is presented as well as its variational formulation, when weak constraints are established, capable of assuring one single solution. A second, so-called elasto-creep problem, is further analysed, together with its variational formulation. It is shown that its stationary solution coincides with that of the stationary creep and the advantages of this formulation with respect to the former one is emphasized. Some numerical applications showing the efficiency of the method propesed are finally presented [pt

  3. Primary and secondary creep in aluminum alloys as a solid state transformation

    Science.gov (United States)

    Fernández, R.; Bruno, G.; González-Doncel, G.

    2016-08-01

    Despite the massive literature and the efforts devoted to understand the creep behavior of aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters and experimental conditions is, at present, still missing. The analysis of creep is typically carried out in terms of the so-called steady or secondary creep regime. The present work offers an alternative view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers primary and secondary creep together as solid state isothermal transformations, similar to recrystallization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-Kolmogorov equation, typically used to analyze these transformations, can also be employed to explain creep deformation. The description is fully compatible with present (empirical) models of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at different temperatures and stresses to validate the proposed model.

  4. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-01-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  5. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  6. Creep buckling analysis of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents

  7. Nonlinear Subincremental Method for Determination of Elastic-Plastic-Creep Behaviour

    DEFF Research Database (Denmark)

    Ottosen, N. Saabye; Gunneskov, O.

    1985-01-01

    to general elastic-plastic-creep behaviour including problems with a highly nonlinear total strain path caused by the occurrence of creep hardening. This nonlinear method degenerates to the linear approach for elastic-plastic behaviour and when secondary creep is present. It is also linear during step......The frequently used subincremental method has so far been used on a linear interpolation of the total strain path within each main step. This method has proven successful when elastic-plastic behaviour and secondary creep is involved. The authors propose a nonlinear subincremental method applicable...

  8. Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach

    DEFF Research Database (Denmark)

    Esposito, L.; Boccaccini, D. N.; Pucillo, G. P.

    2017-01-01

    The creep behaviour of porous iron-chromium alloy used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the secondary creep stage of infiltrated and non-infiltrated porous metal supports (MS) was investigated and theoretically modelled...... as function of temperature, determined by the high temperature impulse excitation technique, was directly used to account for the porosity and the related effective stress acting during the creep tests. The proposed creep rate formulation was used to extend the Crofer® 22 APU Monkman-Grant diagram...... in the viscous creep regime. The influence of oxide scale formation on creep behaviour of the porous MS was assessed by comparing the creep data of pre-oxidised samples tested in reducing atmosphere....

  9. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui

    2011-06-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated below and above this glass transition temperature using a dynamic mechanical analysis (DMA) machine Q800 from TA instruments at 8 different temperatures: 10, 25, 40, 60, 80, 100, 120 and 150°C. The Burger\\'s model, which is the combined Maxwell model and Kelvin-Voigt model, fits well with our primary and secondary creep data. Accordingly, the results show that there\\'s little or no creep below the glass transition temperature. Above the glass transition temperature, the primary creep and creep rate increases with the temperature, with a retardation time constant around 6 minutes. © 2011 IEEE.

  10. Prediction of macroscopic and local stress-strain behaviors of perforated plates under primary and secondary creep conditions

    International Nuclear Information System (INIS)

    Igari, Toshihide; Tokiyoshi, Takumi; Mizokami, Yorikata

    2000-01-01

    Prediction methods of macroscopic and local creep behaviors of perforated plates are examined in order to apply these methods to the structural design of perforated structures such as heat exchangers used in elevated temperatures. Both primary and secondary creeps are considered for predicting macroscopic and local creep behaviors of perorated plates which are made of actual structural materials. Both uniaxial and multiaxial loading of perforated plates are taken into consideration. The concept of effective stress is applied to the prediction of macroscopic creep behaviors of perforated plates, and the predicted results are compared with the numerical results by FEM for the unit section of perorated plated under creep, in order to confirm the propriety of the proposed method. Based on the idea that stress exponents in creep equations govern the stress distribution of perforated plates, a modified Neuber's rule is used for predicting local stress and strain concentrations. The propriety of this prediction method is shown through a comparison of the prediction with the numerical results by FEM for the unit section of perforated plates under creep, and experimental results by the Moire method. (author)

  11. Creep properties of Hastelloy X and their application to structural design

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Murase, Koichi; Fujioka, Junzo; Shimizu, Shigeki; Satoh, Keisuke

    1977-01-01

    Creep and stress rupture tests on three heats of Hastelloy X differing in the manufacturing process were carried out at 800 0 C, 900 0 C and 1000 0 C. Interpretation of the observed creep properties was made, and a method for predicting necessary design data from the experimentally obtained results was discussed. The results are as follows. (1) It was difficult to separate the primary, secondary and tertiary creep stages in the creep curve of Hastelloy X of the present tests. However, those were made distinguishable by plotting the results in a double-logarithmic coordinates. From these creep rate curves, the primary and secondary creep rates and the times to the initiation of secondary and tertiary creeps were derived. (2) It is considered that the same stress and temperature dependences between the primary and secondary creep rates exist in the creep behaviour of Hastelloy X of the present tests. (3) All the creep data, except the isochronous stress-strain curve, required for the design such as stress vs. rupture time, stress vs. secondary creep rate and stress vs. time to initiation of tertiary creep could be arranged through the Larson-Miller parameter. On the other hand, the isochronous stress-strain curve was figured out by estimating creep curves. The constitutive equations of creep for a heat of Hastelloy X proposed in this paper and the isochronous stress-strain curves derived from these constitutive equations were consistent with the experimental data obtained for the corresponding material. (auth.)

  12. Anomalous creep behaviour of 316 stainless steel at 550 deg C

    International Nuclear Information System (INIS)

    Hyde, T.H.

    1986-01-01

    The results of fifteen constant-load creep tests at 550 0 C, with nominal stresses in the range 200 to 360 MPa and with test durations of up to 14000h, are presented. The usual primary, secondary and tertiary creep behaviour was exhibited for nominal stresses greater than about 330 MPa. At lower stresses, 'renewed' primary and secondary creep regions were observed. The renewed secondary creep strain rates were found to be about an order of magnitude greater than the initial secondary creep strain rates. The results indicate that the occurence of the renewed primary and secondary creep regions is associated with time-dependent exposure to a temperature of 550 0 C. The presence or magnitude of the prior stress level does not appear to have any significant effect. The results are relevant to design procedures because extrapolation of short duration or high stress data to long-term design lifetimes is often required. Unless the possibility of the occurence of renewed primary and secondary creep is taken into account, gross errors in strain predictions could occur. (author)

  13. Life prediction of simple structures subject to cyclic primary and secondary loading resulting in creep and platicity

    International Nuclear Information System (INIS)

    Otter, N.R.; Jones, R.T.

    1979-01-01

    High temperature reactors are subject to cyclic mechanical and thermal loadings resulting from start up and shut down operations. The design must therefore guard against structural failure resulting from excessive deformation and creep-fatigue damage. Before any simplified inelastic analysis techniques can be applied, their validity needs to be examined under situations representative of the reactor. For this to be carried out it is necessary to determine the behaviour of components, initially geometrically simple, subject to loadings, cyclic primary and secondary in nature, which result in creep and plasticity. Beam-like structures have been investigated on a finite element basis with the aim of determining how cyclic plasticity, creep enhancement and plastic ratchetting vary in relationship with modified shakedown criteria, magnitude of loading and hold time. (orig.)

  14. Lattice continuum and diffusional creep.

    Science.gov (United States)

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  15. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui; Deng, Peigang; Lam, Gilbert; Lu, Bo; Lee, Yi-Kuen; Tai, Yu-Chong

    2011-01-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated

  16. Numerical description of creep of highly creep resistant alloys

    International Nuclear Information System (INIS)

    Preussler, T.

    1991-01-01

    Fatigue tests have been performed with a series of highly creep resistant materials for gas turbines and related applications for gaining better creep data up to long-term behaviour. The investigations were performed with selected individual materials in the area of the main applications down to strains and stresses relevant to design, and have attained trial durations of 25000 to 60000 h. In continuing former research, creep equations for a selection of characterizing individual materials have been improved and partly newly developed on the basis of a differentiated evaluation. Concerning the single materials, there are: one melt each of the materials IN-738 LC, IN-939, IN-100, FSX-414 and Inconel 617. The applied differentiated evaluation is based on the elastoplastical behaviour from the hot-drawing test, the creep behaviour from the non interrupted or the interrupted fatigue test, and the contraction behaviour from the annealing test. The creep equations developed describe the high temperature deformation behaviour taking into account primary, secondary and partly the tertiary creep dependent of temperature, stress and time. These equations are valid for the whole application area of the respective material. (orig./MM) [de

  17. Experimental research on creep characteristics of Nansha soft soil.

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  18. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Directory of Open Access Journals (Sweden)

    Qingzi Luo

    2014-01-01

    Full Text Available A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  19. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility C a/C c is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925

  20. Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Jayakumar, T.

    2014-02-15

    Highlights: • Design of a lever type creep machine for carrying out creep test in flowing sodium. • Leveling of lever during creep was achieved by automated movement of fulcrum. • Design of creep chamber for providing constant sodium flow rate across creep specimen. • Minimum use of bellow in chamber for sodium containment and mechanical isolation. • Mini-lever mechanism to counter balance load reduction on specimen due to bellow stiffness. - Abstract: A creep testing system has been designed, fabricated, installed and validated for carrying out creep tests in flowing liquid sodium. The testing system consists of two sections namely creep testing machine and an environmental chamber. The testing system has the ability of (i) applying tensile load to the test specimen through a lever, (ii) monitoring continuously the creep elongation and (iii) allowing sodium to flow around the creep specimen at constant velocity. The annular space between the creep specimen and the environmental chamber has been suitably designed to maintain constant sodium flow velocity. Primary and secondary bellows are employed in the environmental chamber to (i) mechanically isolate the creep specimen, (ii) prevent the flowing sodium in contact with air and (iii) maintain an argon gas cover to the leaking sodium if any from primary bellow, with a provision to an alarm get activated by a spark plug. The lever-horizontality during creep test has been maintained by automatically lifting up the fulcrum instead of lowering down the pull rod as conventionally used. A mini lever mechanism has been incorporated in the load train to counter balance the load reduction on specimen from the changing stiffness of the bellows. The validation of the testing system has been established by carrying out creep tests on 316L(N) stainless steel at 873 K over a wide stress range and comparing the results with those obtained in air by employing the developed and conventional creep testing machines.

  1. On the derivation of a creep law from isothermal bore hole convergence

    International Nuclear Information System (INIS)

    Prij, J.; Mengelers, J.H.J.

    1981-01-01

    Some analytical as well as numerical aspects relevant to the creep behaviour of cavity-like structures in salt domes are presented. Two finite element models are presented for the modelling of the bore hole configuration, both dealing with the problem of a correct choice of the amount of salts which must be taken into account. A numerical procedure is suggested to derive a material creep law from measured bore hole convergence. This procedure is applied on convergence measurement in the ASSE mine (Germany) leading to a secondary creep law (depsilon/dt)sup(c)=8.8x10 -11 sigmasup(5.5) (sigma in MPa, (depsilon/dt)sup(c) in days -1 ) which describes the transient convergence behaviour correctly. Some questions concerning the uniqueness of the derived creep law are discussed

  2. The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Ure, J.; Chen, H.F.

    2014-01-01

    The ratchet boundaries and ratchet strains are derived for the Bree problem and an elastic-perfectly plastic material with different yield stresses on-load and off-load. The Bree problem consists of a constant uniaxial primary membrane stress and a cycling thermal bending stress. The ratchet problem with differing yield stresses is also solved for a modified loading in which both the primary membrane and thermal bending stresses cycle in-phase. The analytic solutions for the ratchet boundaries are compared with the results of deploying the linear matching method (LMM) and excellent agreement is found. Whilst these results are of potential utility for purely elastic–plastic behaviour, since yield stresses will often differ at the two ends of the cycle, the solution is also proposed as a means of assessing creep ratcheting via a creep ductility exhaustion approach. -- Highlights: • The Bree problem is solved for differing yield stresses on and off load. • The modified Bree problem with cycling primary load is also solved. • These solutions can be applied to creep ratcheting using a pseudo-yield stress

  3. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  4. Creep-fatigue evaluation method for type 304 and 316FR SS

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.; Ueno, F.

    1997-01-01

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant in the case of significant life reduction. It is considered that this phenomenon has its origin in the grain boundary sliding as observed in cavity-type creep-rupture. Accordingly a simplified procedure to estimate intergranular damages caused by the grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, failure ductility includes plastic strain, and damage estimation is based on the primary creep strain, which is recoverable during strain cycling. Therefore the accumulated creep strain becomes a very large value, and quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the product of secondary creep rate and time to rupture (Monkman-Grant product) is applied to fracture ductility, and grain boundary sliding strain is approximately estimated using the accumulated secondary creep strain. From the new concept it was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, cyclic creep strain behaviour is also softened. An unrecoverable accumulated primary creep strain causes hardening of the primary creep, and the reduction of deformation resistance to the secondary creep caused by thermal softening accelerates grain boundary sliding rate. As the results creep damages depend not on applied stress but on effective stress. The new concept ductility exhaustion method based on the above consideration leads up to simplified time fraction estimation method only by continuous cycling fatigue and monotonic creep which was already developed in PNC for Monju design guide. This method gave good life prediction for the intergranular failure mode and is convenient for design use on the elastic

  5. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  6. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  7. Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Yingchong Wang

    2015-01-01

    Full Text Available Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating, secondary (steady state creep regime, and tertiary creep (accelerating creep stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0 for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage.

  8. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction...

  9. Creep equations for gas turbine materials

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Preussler, T.

    1988-01-01

    The long-term high-temperature deformation behaviour of typical gas turbine materials can be described on the basis of a differentiated evaluation which takes the results from thermal tension tests, short-term creep tests with continuous extension measurement, long-term creep tests with discontinuous extension measurement as well as annealing tests with contraction measurement into account. By this, especially the 'negative creeping' can be controlled. Equations were developed for individual materials of the type IN-738 LC, IN-939, IN-100 and FSX-414, which describe the high-temperature deformation behaviour with consideration to the primary and secondary creeping and partly the tertiary creeping. The equations are valid in the entire application-relevant range, i.e. up to 100 000 h in the case of industrial turbine materials. (orig.) [de

  10. Creep mechanisms of U720Li disc superalloy at intermediate temperature

    International Nuclear Information System (INIS)

    Yuan, Y.; Gu, Y.F.; Cui, C.Y.; Osada, T.; Tetsui, T.; Yokokawa, T.; Harada, H.

    2011-01-01

    Highlights: → Crept microstructures of U720Li at 725 deg. C/630 MPa have been investigated by TEM. → Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. → Grain boundary sliding occurred at last creep stage. → Three methods were suggested to improve the creep property at relatively high temperature. - Abstract: The microstructures of U720Li disc superalloy have been investigated by transmission electron microscopy (TEM) before and after creep test at 725 deg. C/630 MPa. The evolution of the crept microstructures was marked as three different stages (I, II and III) corresponding to gradually increased strain 0.1%, 5% and 27%, respectively. At stage I, dislocations bypassed secondary γ' via Orowan loops. At stage II, partial dislocations started to shear secondary γ', leaving stacking fault (SF) behind and microtwins formed in part of grains. At stage III, grain boundary sliding occurred due to very large strain and increased effective stress. The results indicated that the creep mechanisms of U720Li at 725 deg. C/630 MPa evolved with gradually increased strain. Orowan looping process combining dislocation slip and climb and partial dislocations shearing precipitates were the main creep mechanisms. It is suggested that decreasing the interparticle spacing of secondary γ', strengthening secondary γ' and decreasing stacking fault energy (SFE) of γ matrix may be effective methods to improve the creep property at relatively higher temperatures.

  11. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  12. New results in the limit analysis by secondary modified creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Zouain, N.

    1982-03-01

    Two methods for computing upper and lower bounds of colapse loads are proposed by means of generalized creep constitutive relations. The actual material behaviour is rigid-perfectly plastic and the techniques here analized consist in the substitution of this material by a fictitious one which presents steady state creep response. Some analytical examples are also presented. (Author) [pt

  13. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  14. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  15. Creep behaviour of heat resistant steels. Pt. 2

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Oehl, M.

    1993-01-01

    Creep data scatter bands of steels 2.25 Cr-1 Mo and 12 Cr-1 Mo-0.3 V were evaluated with the aid of model functions based on time temperature parameters. From the times to reach given strain values, mean isostrain curves in the stress time diagramme were calculated and therefrom, mean creep curves were derived. On this basis, creep equations were established, which include primary-, secondary- and tertiary-creep and are valid in the main range of application of each steel. Further, mean stress strain curves from hot tensile tests were used to describe the initial plastic strain in the creep equations. The values calculated with the established creep equations agreed relatively well with the correspondent original scatter band values from the creep tests. (orig.) [de

  16. Low stress creep of stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.; Baker, C.

    1976-06-01

    The creep of 20%Cr, 25%Ni, Nb stainless steel has been examined at temperatures from 675 to 775 0 C at sheer stressed below 13 MPa and grain sizes from 6 to 20μm. The results have indicated that the initial creep rates were linearly dependent upon stress but with a threshold stress below which no creep occurred, i.e. Bingham behaviour; in addition, the creep activation energy at small strains was substantially lower than the lattice self-diffusion value and the initial creep rates were approximately related to the grain size through an inverse cube relation. It has been concluded that at low strains (approaching the initial elastic deflection) the creep mechanism was probably that of grain boundary diffusion creep (Coble, 1963) and this is further supported by the close agreement between the observed and theoretically predicted creep rate values. Steady-state creep rates were not observed; initially the creep rates fell rapidly with strain after which a more gradual decrease occurred. Whilst the creep rate - stress relationship continued to be of a Bingham form, the progressive reduction in creep rate with strain was found to be mainly attributable to an increase in the effective viscosity, threshold stress effects being generally of secondary importance. A model has been proposed which explains the initial creep rates as being due to Cable creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. (author)

  17. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  18. Creep curve formularization at 950degC for Hastelloy XR

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Muto, Yasushi

    1991-03-01

    Creep tests under constant stress were conducted on a nickel-base heat-resistant alloy, Hastelloy XR, in air at 950degC. Minimum creep strain rate, time to the onset of tertiary creep and time to rupture were obtained as a function of applied stress. Then, a creep constitutive equation was made based on the Garofalo formula for primary and secondary creep and based on the Kachanov-Rabotnov formula for tertiary creep, which could represent fairly well the experimental creep deformation curves under the constant stress conditions. The creep deformation under the constant load condition corresponding to the stress increment was analysed using the creep constitutive equation and strain hardening law. Then the calculated creep strain showed slightly higher value than the experimental creep strain, and the calculated life was shorter than the experimental one. (author)

  19. Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Javad [Materials Science and Engineering Department, Shahid Chamran University, Ahwaz (Iran, Islamic Republic of)], E-mail: javadsafari@yahoo.com; Nategh, Saeed [Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: nategh@sharif.edu

    2009-01-15

    The interaction of dislocation with strengthening particles, including primary and secondary {gamma}', during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 deg. C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of {gamma}' particles in creep at 871 deg. C under stress of 475 MPa was commenced at the earlier creep times and governed the creep deformation mechanism. In two levels of examined stresses, as far as the creep deformation was controlled by glide and climb, creep curves were found to be at the second stage of creep and commence of the tertiary creep, with increasing creep rate, were found to be in coincidence with the particles shearing. Microstructure evolution, with regard to {gamma}' strengthening particles, led to particles growth and promoted activation of other deformation mechanisms such as dislocation bypassing by orowan loop formation. Dislocation-secondary {gamma}' particles interaction was detected to be the glide and climb at the early stages of creep, while at the later stages, the dislocation bypassed the secondary precipitation by means of orowan loops formation, as the secondary particle were grown and the mean inter-particle distance increased.

  20. Concrete creep and thermal stresses:new creep models and their effects on stress development

    OpenAIRE

    Westman, Gustaf

    1999-01-01

    This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...

  1. Unified creep-plasticity model for halite

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior

  2. Creep characterization of type 316LN and HT-9 stainless steels by the K-R creep damage model

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sung Ho; Ryu, Woo Seog

    2001-01-01

    The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, k, m, λ, γ, and q were determined for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ=ε R /ε * and λ f =ε/ε R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depicted well the experimental data to the full lifetime and its damage curve showed a good agreement when γ=24. However for the HT-9 stainless steel, the values of λ and λ f were different as λ=6.2 and λ f =8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages

  3. Creep crack extension by grain-boundary cavitation

    International Nuclear Information System (INIS)

    Bassani, J.L.

    1981-01-01

    Recent work by Riedel and coworkers has led to various descriptions of stationary and moving crack tip fields under creep conditions. For stationary and growing cracks, several flow mechanisms (e.g., elastic, time-independent plastic, primary creep, and secondary creep) can dictate the analytical form of the crack tip field. In this paper, relationship between overall loading and crack velocities are modelled based upon grain-boundary cavity growth and coalescence within the zone of concentrated strain in the crack tip field. Coupled diffusion and creep growth of the cavities is considered. Overall crack extension is taken to be intermittent on a size scale equivalent to the size of a grain. Numerical results are presented for a center-cracked panel of 304 stainless steel. (author)

  4. Ratchetting in the creep range

    International Nuclear Information System (INIS)

    Ponter, A.R.S.; Cocks, A.C.F.; Clement, G.; Roche, R.; Corradi, L.; Franchi, A.

    1985-01-01

    This report attempts to present a ''State of the Art'' of this problem from three contracting and complementary points of view which reflect separate traditions within the discipline of structural analysis. Part I gives a brief summary of the essential elements of the three constitutive parts and a set of conclusions and recommendations are then formulated. Part II is an attempt by a group at CEA Saclay, France, to distil from available experimental data a set of rules expressed in terms of the stress classifications of the ASME codes, which will ensure the prevention of excessive creep ratchetting. The resulting stresses to an effective (or reference) stress and the creep assessment is then made in terms of the creep produced by the effective stress. They aim at analytical procedures for LMFBR components that operate in the creep region and are subject to considerable thermal transients. Part III by Ponter and Cocks of the University of Leicester is a theoretical study of the problem using bounding and other approximate techniques. The problem is studied in a sequence of increasingly complex problems commencing with an isothermal structure subjected to constant load and terminating in a structure subjected to arbitrary cyclic thermal loading. The results are expressed in terms of a reference stress derived from a plastic shakedown solution, and a reference history of temperature. These techniques are capable of providing assessment of the creep deformation of a structure when the plastic shakedown properties of the structures are known. The particular circumstances which occur in a LMFBR are emphasized. Part IV by Corradi and Franchi discusses the methods by which finite element solution may be calculated. These are surveyed with particular reference to the numerical problems involved and the relationship between computational procedure and the form of the constitutive equation. 162 refs

  5. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  6. Examination of Experimental Data for Irradiation - Creep in Nuclear Graphite

    Science.gov (United States)

    Mobasheran, Amir Sassan

    The objective of this dissertation was to establish credibility and confidence levels of the observed behavior of nuclear graphite in neutron irradiation environment. Available experimental data associated with the OC-series irradiation -induced creep experiments performed at the Oak Ridge National Laboratory (ORNL) were examined. Pre- and postirradiation measurement data were studied considering "linear" and "nonlinear" creep models. The nonlinear creep model considers the creep coefficient to vary with neutron fluence due to the densification of graphite with neutron irradiation. Within the range of neutron fluence involved (up to 0.53 times 10^{26} neutrons/m ^2, E > 50 KeV), both models were capable of explaining about 96% and 80% of the variation of the irradiation-induced creep strain with neutron fluence at temperatures of 600^circC and 900^circC, respectively. Temperature and reactor power data were analyzed to determine the best estimates for the actual irradiation temperatures. It was determined according to thermocouple readouts that the best estimate values for the irradiation temperatures were well within +/-10 ^circC of the design temperatures of 600^circC and 900 ^circC. The dependence of the secondary creep coefficients (for both linear and nonlinear models) on irradiation temperature was determined assuming that the variation of creep coefficient with temperature, in the temperature range studied, is reasonably linear. It was concluded that the variability in estimate of the creep coefficients is definitely not the results of temperature fluctuations in the experiment. The coefficients for the constitutive equation describing the overall growth of grade H-451 graphite were also studied. It was revealed that the modulus of elasticity and the shear modulus are not affected by creep and that the electrical resistivity is slightly (less than 5%) changed by creep. However, the coefficient of thermal expansion does change with creep. The consistency of

  7. Creep in crystalline rock with application to high level nuclear waste repository

    International Nuclear Information System (INIS)

    Eloranta, P.; Simonen, A.

    1992-06-01

    The time-dependent strength and deformation properties of hard crystalline rock are studied. Theoretical models defining the phenomena which can effect these properties are reviewed. The time- dependent deformation of the openings in the proposed nuclear waste repository is analysed. The most important factors affecting the subcritical crack growth in crystalline rock are the stress state, the chemical environment, temperature and microstructure of the rock. There are several theoretical models for the analysis of creep and cyclic fatigue: deformation diagrams, rheological models thermodynamic models, reaction rate models, stochastic models, damage models and time-dependent safety factor model. They are defective in describing the three-axial stress condition and strength criteria. In addition, the required parameters are often too difficult to determine with adequate accuracy. Therefore these models are seldom applied in practice. The effect of microcrack- driven creep on the stability of the work shaft, the emplacement tunnel and the capsulation hole of a proposed nuclear waste repository was studied using a numerical model developed by Atomic Energy of Canada Ltd. According to the model, the microcrack driven creep progresses very slowly in good quality rock. Poor rock quality may accelerate the creep rate. The model is very sensitive to the properties of the rock and secondary stress state. The results show that creep causes no stability problems on excavations in good rock. The results overestimate the effect of the creep, because the analysis omitted the effect of support structures and backfilling

  8. microstructure change in 12 % Cr steel during creep

    International Nuclear Information System (INIS)

    Winatapura, D. S.; Panjaitan, E.; Arslan, A.; Sulistioso, G.S.

    1998-01-01

    The microstructure change in steel containing of 12% Cr or DIN X20CrMoV 12 1 during creep has been studied by means of optical microscopy and Transmission Electron Microscope (TEM). The creep testing at 650 o C was conducted under constant load of 650 Mpa. The heat treatment of the specimen before creep testing was austenization, followed by tempering for 2 hours. The obtained microstructure was tempered martensitic. This microstructure consisted of the martensite laths, and distributed randomly in the matrix. During tempering, chromium carbide particles of Cr 7 C 6 less than 0,2 μmin-size were precipitated on or and in the subgrain and lath martensite grain boundary. During creep testing those particles transformed and precipitated as chrome carbide precipitates of Cr 23 C 6 . At the secondary creep stage, the void formation occurred, and then it developed into the creep cracks. At tertiary creep stage for 3554 hours, the specimen was failure. The creep cracks were informs of transgranular and intergranular modes which propagated almost perpendicular to the stress axis. From this observation, it is suggested that tempering caused the ductility of martensitic microstructure, which increased the creep resistant or Cr 12% steel

  9. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  10. Oxidation and creep failure of alloy 617 foils at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Ko, G.D.; Li, F.X. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of); Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr

    2008-08-31

    The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 {mu}m thick foils at 800-1000 deg. C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr{sub 2}O{sub 3}), which was thermodynamically unstable at 1000 deg. C, and discrete internal oxides, alumina ({alpha}-Al{sub 2}O{sub 3}), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr{sub 2}O{sub 3} oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 deg. C, while the primary, secondary and tertiary creeps were observed at 1000 deg. C. Dynamic recrystallization occurred at 800 deg. C and 900 deg. C, while partial dynamic recrystallization at 1000 deg. C. The apparent activation energy, Q{sub app}, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.

  11. Stress Distribution in Layered Elastic Creeping Array with a Vertical Cylindrical Shaft

    Directory of Open Access Journals (Sweden)

    Bobyleva Tatiana

    2017-01-01

    Full Text Available Construction should be taking into account the influence of time factor on the stability of the structures. In the paper hereditary creep and homogenization theories are used to determine stresses in the layered elastic creeping array with a vertical shaft. Volterra correspondence principle was applied. As a result, the reduction of a time-dependent elastic creeping problem to a corresponding elastic problem became possible. The method proposes a way to determine average (effective elastic creeping properties and homogenized stress field from known properties of the layers’ components. Creep kernels are of a convolution type and are taken in the exponential form. The problem of heterogeneous elastic creeping environment is reduced to a problem of homogeneous transversely isotropic medium. Different boundary conditions on the cylindrical shaft’s surface were considered. An analytical solution was obtained. These explicit expressions can be useful for the necessary calculations in the construction practice.

  12. In-situ Creep Testing Capability Development for Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  13. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  14. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  15. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  16. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  17. Coupled Modeling of Groundwater Flow and Land Subsidence with Secular Strain (Creep)

    Science.gov (United States)

    Bakr, M.

    2012-12-01

    Land subsidence limits sustainable development of many areas around the world. This is especially the case in low lying regions such as deltas which accommodate a significant percentage of the human population. Among the most common human-induced factors for land subsidence, is groundwater extractions. In these cases, groundwater flow and land subsidence are coupled processes, especially in basins with extensive spatial extent of soft soils (e.g. clay, peat). Creep (or secondary consolidation) is a land subsidence component that usually contributes to total land subsidence in soft soils. It leads to a reduction in void ratio at constant effective stress, and consequently, to the development of an apparent pre-consolidation pressure. The creep component has been usually ignored in the analysis of coupled groundwater flow and land subsidence. Here, the focus is the development of a coupled model of groundwater flow and land subsidence in porous media considering secular strain (creep). The Bjerrum method for settlement calculation (Bjerrum, 1967) due to change in effective stresses is coupled with MODFLOW to tackle the problem. In particular, the SUB-WT package of MODFLOW (Leake and Galloway, 2007) is modified where the Bjerrum method is used to calculate the primary and secondary consolidation due to change in effective stresses as a result of groundwater abstraction. The Bjerrum model is based on linear strains relationship. Usage of linear strains means that the model directly supports the common parameters Cr, Cc, Cα (i.e. re-compression, compression, and secondary compression indices; respectively). The Bjerrum model assumes that creep rate will reduce with increasing over-consolidation and that over-consolidation will grow by unloading and by ageing. To verify the coupled model, a hypothetical problem is considered where a simple hydrogeological system consisting of a shallow unconfined aquifer and a deeper confined aquifer separated by a (semi

  18. Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Galindo-Nava, E.I., E-mail: eg375@cam.ac.uk; Rae, C.M.F.

    2016-01-10

    A new approach for modelling dislocation creep during primary and secondary creep in FCC metals is proposed. The Orowan equation and dislocation behaviour at the grain scale are revisited to include the effects of different microstructures such as the grain size and solute atoms. Dislocation activity is proposed to follow a jog-diffusion law. It is shown that the activation energy for cross-slip E{sub cs} controls dislocation mobility and the strain increments during secondary creep. This is confirmed by successfully comparing E{sub cs} with the experimentally determined activation energy during secondary creep in 5 FCC metals. It is shown that the inverse relationship between the grain size and dislocation creep is attributed to the higher number of strain increments at the grain level dominating their magnitude as the grain size decreases. An alternative approach describing solid solution strengthening effects in nickel alloys is presented, where the dislocation mobility is reduced by dislocation pinning around solute atoms. An analysis on the solid solution strengthening effects of typical elements employed in Ni-base superalloys is also discussed. The model results are validated against measurements of Cu, Ni, Ti and 4 Ni-base alloys for wide deformation conditions and different grain sizes.

  19. Secondary Creep Response of Hand Lay-Up GRP Composites ...

    African Journals Online (AJOL)

    Glass Reinforced Plastics (GRP) composite load bearing components are now in common use, quite often at temperatures above the ambient, where creep behaviour may be significant, as in pressurized industrial containers. This is especially true of those composites produced by the Hand Lay-Up Contact Moulding ...

  20. Microscopic creep models and the interpretation of stress-dip tests during creep

    International Nuclear Information System (INIS)

    Poirier, J.P.

    1976-09-01

    A critical analysis is made of the principal divergent view points concerning stress-dip tests. The raw data are examined and interpreted in the light of various creep models. The following problems are discussed: is the reverse strain anelastic or plastic; is the zero creep rate periodic due to recovery or is it spurious; can the existence or inexistence of an internal stress be deduced from stress-dip tests; can stress-dip tests allow to determine whether glide is jerky or viscous; can the internal stress be measured by stress-dip tests

  1. Tensile, creep and relaxation characteristics of zircaloy cladding at 3850C

    International Nuclear Information System (INIS)

    Murty, K.L.; McDonald, S.G.

    1981-01-01

    Axial creep tests were carried out at stresses ranging form 30 ksi to 50 ksi. Steady-state creep rates were evaluated from stress change tests to minimize the number of samples. The secondary creep rate was related to the applied stress through a Sinh function. The functional dependence of the strain rate on the stress was also evaluated from load relaxation tests. It is demonstrated that the strain rates derived from load relaxation tests are identical to the creep data when the relaxation testing was carried out at the point of maximum load in a tensile test. In addition, the creep and relaxation results are identical to the true ultimate tensile stress versus applied strain-rate data derived from tensile tests. (orig./HP)

  2. Creep properties of forged 2219 T6 aluminum alloy shell of general-purpose heat source-radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Hammond, J.P.

    1981-12-01

    The shell (2219 T6 aluminum forging) of the General Purpose Heat Source-Radioisotope Thermoelectric Generator was designed to retain the generator under sufficient elastic stress to secure it during space flight. A major concern was the extent to which the elastic stress would relax by creep. To determine acceptability of the shell construction material, the following proof tests simulating service were performed: 600 h of testing at 270 0 C under 24.1 MPa stress followed by 10,000 h of storage at 177 0 C under 55.1 MPa, both on the ground; and 10,000 h of flight in space at 270 0 C under 34.4 MPa stress. Additionally, systematic creep testing was performed at 177 and 260 0 C to establish creep design curves. The creep tests performed at 177 0 C revealed comparatively large amounts of primary creep followed by small amounts of secondary creep. The early creep is believed to be abetted by unstable substructures that are annealed out during testing at this temperature. The creep tests performed at 270 0 C showed normal primary creep followed by large amounts of secondary creep. Duplicate proof tests simulating the ground exposure conditions gave results that were in good agreement. The proof test simulating space flight at 270 0 C gave 0.11% primary creep followed by 0.59% secondary creep. About 10% of the second-stage creep was caused by four or five instantaneous strains, which began at the 4500-h mark. One or two of these strain bursts, occurred in each of several other tests at 177 and 260 0 C but were assessed as very moderate in magnitude. The effect is attributable to a slightly microsegregated condition remaining from the original cast structure

  3. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.

    Science.gov (United States)

    Meraj, Md; Pal, Snehanshu

    2017-10-11

    In this paper, the creep behavior of nanocrystalline Ni having bimodal grain structure is investigated using molecular dynamics simulation. Analysis of structural evolution during the creep process has also been performed. It is observed that an increase in size of coarse grain causes improvement in creep properties of bimodal nanocrystalline Ni. Influence of bimodality (i.e., size difference between coarse and fine grains) on creep properties are found to be reduced with increasing creep temperature. The dislocation density is observed to decrease exponentially with progress of creep deformation. Grain boundary diffusion controlled creep mechanism is found to be dominant at the primary creep region and the initial part of the secondary creep region. After that shear diffusion transformation mechanism is found to be significantly responsible for deformation as bimodal nanocrystalline Ni transforms to amorphous structure with further progress of the creep process. The presence of , , and  distorted icosahedra has a significant influence on creep rate in the tertiary creep regime according to Voronoi cluster analysis.

  4. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  5. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  6. Creep properties of discontinuous fibre composites with partly creeping fibres

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  7. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    Science.gov (United States)

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  9. Predicting sample lifetimes in creep fracture of heterogeneous materials

    Science.gov (United States)

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.

    2016-08-01

    Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

  10. Loading History Effect on Creep Deformation of Rock

    Directory of Open Access Journals (Sweden)

    Wendong Yang

    2018-06-01

    Full Text Available The creep characteristics of rocks are very important for assessing the long-term stability of rock engineering structures. Two loading methods are commonly used in creep tests: single-step loading and multi-step loading. The multi-step loading method avoids the discrete influence of rock specimens on creep deformation and is relatively time-efficient. It has been widely accepted by researchers in the area of creep testing. However, in the process of multi-step loading, later deformation is affected by earlier loading. This is a key problem in considering the effects of loading history. Therefore, we intend to analyze the deformation laws of rock under multi-step loading and propose a method to correct the disturbance of the preceding load. Based on multi-step loading creep tests, the memory effect of creep deformation caused by loading history is discussed in this paper. A time-affected correction method for the creep strains under multi-step loading is proposed. From this correction method, the creep deformation under single-step loading can be estimated by the super-position of creeps obtained by the dissolution of a multistep creep. We compare the time-affected correction method to the coordinate translation method without considering loading history. The results show that the former results are more consistent with the experimental results. The coordinate translation method produces a large error which should be avoided.

  11. Relationship between strain and central deflection in small punch creep specimens

    International Nuclear Information System (INIS)

    Yang Zhen; Wang Zhiwen

    2003-01-01

    Acquiring information about creep strain directly from small punch creep tests is difficult because the deformation behaviour of the small punch specimen is complicated. A routine is suggested in the present paper to treat this problem indirectly. Based on a finite element analysis, it is proposed that the relationship of central deflection δ to central creep strain ε c of a specimen subjected to creep can be represented approximately by the relationship of central deflection δ to central (elastic-plastic) strain ε of a specimen not subjected to creep. With this hypothesis, the δ∼ε c relation of the small punch creep specimen is obtained by resorting to a rigid-plastic membrane stretch forming model. Finally, small punch creep test results are used to evaluate creep strain and creep strain rate by taking advantage of this δ∼ε c relation

  12. Irradiation creep and growth of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Lansiart, S.; Darchis, L.; Pelchat, J.

    1990-01-01

    The influence of temperature and fast neutron flux on irradiation creep and growth of stress relieved zircaloy-4 pressurized tubes has been derived from experimental irradiations in NaK, performed up to 2.5 10 25 n.m -2 in the temperature range [280, 350] 0 C. A significant influence of temperature on axial growth has been observed: at 280 0 C the elongation can no longer be expressed as a linear function of fluence as for the 350 0 C irradiation temperature; diametral growth, on the other hand, always appears negligible. Irradiation creep obviously depends on temperature too; the diametral strain (including thermal part) has been modelled as a sum of primary and secondary terms, the former being independent of fluence. For the tubing considered it is observed that the ranking of the different batches, with respect to diametral creep resistance, is the same before and under irradiation. Concerning axial creep strain the stress relieved material behaves as does an isotropic tube. This is not the case of recrystallized zircaloy-4 F, which shows a non negligible axial deformation, related to the diametral creep one, even though this diametral irradiation creep strain is strongly reduced comparatively to that of the stress relieved material. The comparison of the two materials growth rates is more complex since their dependence on temperature and flux differs

  13. Conception of elevated temperature structures. Creep and notion of primary stress

    International Nuclear Information System (INIS)

    Roche, Roland; Jakubowicz, Henri.

    1978-04-01

    As an introduction, it is shown that primary and secondary stresses are introduced for taking into account the stress redistribution in ductile materials. But in the creep range, materials are not always ductile and fast fracture can occurs. Besides, stress redistribution due to creep effect is different of plastic redistribution. Therefore the primary stress must be different in the creep range and correction is needed to the conventional values of primary stress. The study of a simple example (parallele bars) gives a practical expression of the correcting factor to be applied to the primary stress [fr

  14. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  15. Creep behaviour and creep mechanisms of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  16. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  17. Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method

    Directory of Open Access Journals (Sweden)

    Yu. I. Dimitrienko

    2015-01-01

    Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.

  18. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  19. Analysis of stress and deformation in non-stationary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.

    1980-12-01

    A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt

  20. Creep properties of superalloys for the HTGR in impure helium environments

    International Nuclear Information System (INIS)

    Kawakami, H.; Nakanishi, T.

    1981-01-01

    This paper describes creep behaviors of two heat resistant alloys, Hastelloy X and Incoloy 800, in helium environments of the HTGR. In impure helium environments, these alloys are susceptible to carburization and oxidization. We have investigated these effects separately, and related them to the creep behaviors of the alloys. Experiments were carried out at 900 0 C both in helium and in air. Carburization results in decrease of secondary creep strain rate and delay of tertiary creep initiation. Oxidization caused decrease in tertiary creep strain rate of Hastelloy X, but did not that of Incoloy 800. Enhancement in tertiary creep strain rate of Hastelloy X in a very weakly oxidizing environment was confirmed in creep crack growth experiment using notched plate specimens. The rupture time of Hastelloy X in helium was short when compared with in air. Stress versus rupture time curves for both environments were parallel up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9. In case of Incoloy 800, rupture time in helium was markedly prolonged as compared with that in air. (orig.)

  1. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-01-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  2. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  3. Description of Concrete Creep under Time-Varying Stress Using Parallel Creep Curve

    OpenAIRE

    Park, Yeong-Seong; Lee, Yong-Hak; Lee, Youngwhan

    2016-01-01

    An incremental format of creep model was presented to take account of the development of concrete creep due to loading at different ages. The formulation was attained by introducing a horizontal parallel assumption of creep curves and combining it with the vertical parallel creep curve of the rate of creep method to remedy the disadvantage of the rate of creep method that significantly underestimates the amount of creep strain, regardless of its simple format. Two creep curves were combined b...

  4. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  5. High-temperature creep of equiaxed Cd-26.5 at % Zn eutectic in the superplastic regime

    International Nuclear Information System (INIS)

    Tonejc, Anton; Poirier, J.-P.

    1976-01-01

    The temperature and stress dependence on the secondary creep rate of the Cd+26.5Zn eutectoid in the superplastic domain was studied in constant-stress compression creep. Experiments were performed in the following ranges of temperature, stress and grain size: 170C 2 , 1<10μm. In all cases secondary creep was established after a strain approximately equal to 4%. For temperatures higher than 200C all the techniques yielded the same value for m (m=0.49+-0.03) in the whole investigated range of stresses. For T=170C a lower value of m was found (m=0.33). The activation energy was determined and found equal to 25Kcal/mol. Micrographic examinations were performed on sectioned samples at several stages of deformation. The grain size was found to be identical for various conditions of temperature and stress and very stable with respect to deformation. The experimental results of the creep tests are discussed in relation with the microstructural aspects

  6. Experimental study of a macrocrack propagation in a concrete specimen subjected to creep loading

    Science.gov (United States)

    Rossi, P.; Boulay, C.; Tailhan, J.-L.; Martin, E.

    2013-07-01

    Structures managers need a better prediction of the delayed failure of concrete structures, especially for very important structures like nuclear power plant encasement. Sustained loadings at high level (above 75% of loading capacity of the structure), can lead to structure failure after some time. In this study, a series of 4-point bending tests were performed in order to characterize the creep behaviour of pre-cracked beams under high load level. The specimens were made of normal strength concrete. A power law relationship is observed between the secondary deflection creep rate and the failure time. It is also shown that when crack propagation occurs during the creep loading, the creep deflection rate increases with the creep loading level and with the crack propagation rate.

  7. Creep properties of heat-resistant superalloys for nuclear plants in helium

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Satoh, Keisuke; Matsuda, Shozo; Murase, Hirokazu; Fujioka, Junzo.

    1979-01-01

    In order to estimate the creep and rupture strengths of candidate alloys for the intermediate heat exchanger of VHTR, creep and stress rupture tests in impure helium were conducted on Hastelloy X, Inconel 617, Inconel 625, Incoloy 800 and Incoloy 807 at 900 0 C. The results were discussed in comparison with those in air and the alloys were examined from the point of view of the elevated temperature structural design. The main results obtained are summarized as follows: (1) No appreciable decrease in creep and rupture strengths in helium as compared with those in air is observed on Hastelloy X and Inconel 625. On the contrary, the creep and rupture strengths of Inconel 617 in helium decrease slightly as compared with those in air. In the case of Incoloy 807, the creep strength to cause 1 percent total strain and that to initiate secondary creep increase remarkably in helium as compared with those in air. However, the creep strength to cause initiation of tertiary creep and the rupture strength in helium remarkably decrease as compared with those in air. (2) The order of magnitude of the S 0 value for each material in helium is as follows; Hastelloy X > Inconel 617 > Incoloy 807 > Inconel 625 > Incoloy 800 Meanwhile, that of the S sub(t) value in helium is; Inconel 617 > Hastelloy X > Incoloy 807 > Inconel 625 > Incoloy 800. (author)

  8. Ageing at 1203K of 20/25Nb stainless steel AGR fuel cladding material - microstructural development and its effect on creep properties

    International Nuclear Information System (INIS)

    Ecob, R.C.; Gilmour, T.C.

    1986-11-01

    The effects of ageing at 1203K for times up to 2.69Ms on the uniaxial constant stress creep properties of a 20/25Nb AGR fuel cladding alloy at 1073 and 1173K have been investigated and correlated with quantitative measurements of the microstructural developments which occur during exposure to both the ageing and creep testing temperatures. A single creep testing stress of 86.6MPa has been used. It is shown that the variation of minimum creep rate can only be explained in terms of the observed NbC particle coarsening at short ageing times (up to 7.44ks). After longer ageing treatments the minimum creep rate tends to decrease with ageing time, which is interpreted as being due to grain growth and, in particular, the onset of secondary recrystallisation. The minimum creep rates displayed by the material are reduced by factors of up to 20 in the presence of partial secondary recrystallisation. It is concluded that the effects of the development of the NbC particle distributions during 1203K ageing on the 1073 or 1173K uniaxial creep endurance of the material are relatively small. Consideration is given to the circumstances in which it might be of more importance, which include longer 1203K ageing treatments, more complex low strain stress/strain cycles. During the ageing treatments and creep tests investigated in the present work, the only significant influences on creep properties arise from grain growth and secondary recrystallisation. (UK)

  9. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  10. Evaluation of conversion relationships for impression creep test at elevated temperatures

    International Nuclear Information System (INIS)

    Hyde, T.H.; Sun, W.

    2009-01-01

    This paper contains some results related to the evaluation of the conversion relationships between impression creep test data and conventional uniaxial creep test date, for determining the secondary creep properties at elevated temperature. Some important aspects, including conversion factors, specimen dimensions, typical test results and validity of the test technique etc are briefly reviewed. The method used to determine the conversion factors is based on a reference stress approach using the results of finite element (FE) analyses; this is described in the paper. The conversion factors (reference parameters) obtained from 2-dimensional (2D) and 3-dimensional (3D) FE analyses are compared and the effects of specimen geometry, on the conversion relationships, are assessed. The recommendations on the use of these conversion factors, in practical impression creep testing, are given. Proposals for future exploitation of the technique are addressed.

  11. Stone column settlement performance in structured anisotropic clays: the influence of creep

    Directory of Open Access Journals (Sweden)

    Brian G. Sexton

    2016-10-01

    Full Text Available The recently developed elasto-viscoplastic Creep-SCLAY1S model has been used in conjunction with PLAXIS 2D to investigate the effectiveness of vibro-replacement in a creep-prone clay. The Creep-SCLAY1S model accounts for anisotropy, bonding, and destructuration, and uses the concept of a constant rate of viscoplastic multiplier to calculate creep strain rate. A comparison of settlement improvement factors with and without creep indicates that ‘total’ settlement improvement factors (primary plus creep are lower than their ‘primary’ counterparts (primary settlement only. The lowest settlement improvement factors arise for analyses incorporating the effect of bonding and destructuration. Examination of the variations of vertical stress with time and depth has indicated that vertical stress is transferred from the soil to the column as the soil creeps. This results in additional column yielding. In addition, the radial and hoop stresses in the soil are lower for the ‘creep’ case. The reduced radial stresses lead to additional column bulging and hence more settlement, whereas the hoop stress reductions appear to be a secondary effect, caused by additional plastic deformation for the ‘creep’ case.

  12. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  13. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  14. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  15. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  16. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  17. Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, P.M.; Henry, M.F.; Whitis, D.D.; Milligan, W.W.; Mills, M.J.

    2005-01-01

    Creep deformation substructures in the superalloy Rene 88 DT have been investigated after small-strain (0.2-0.5%) creep at 650 deg C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and deformation mechanisms have been observed as a function of applied stress and precipitate microstructure. Both coarse and fine bimodal precipitate microstructures have been tested, produced by relatively slow and fast cooling from the supersolvus solutionizing temperature. The finer γ' microstructure exhibited significantly lower creep rates. It has been established that microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress, and changes to shearing by 1/2[1 1 0] dislocations and Orowan looping around the larger secondary precipitates at higher applied stress. In the coarser microstructure, the dominant deformation mode is isolated faulting where 1/2[1 1 0] dislocations shear the matrix while superlattice extrinsic stacking faults are created in the secondary γ' particles. The detailed mechanisms by which these deformation modes proceed are discussed, leading to the proposition that the thermally activated process for both microtwinning and isolated faulting is similar, involving diffusion-mediated re-ordering within the γ' particles in the wake of shearing 1/6 Shockley partials. Based on the present evidence, it is proposed that the tertiary γ' volume fraction is crucial in dictating the transition in mechanism and the creep strength of these alloys

  18. Creep characterization of Al alloy thin films for use in RF-MEMS switches

    NARCIS (Netherlands)

    Modlinski, R.; Witvrouw, A.; Ratchev, P.; Puers, R.; Toonder, den J.M.J.; Wolf, I.C.D.Y.M.

    2004-01-01

    Creep is expected to be a major reliability problem in some MEMS, as for example RF-MEMS switches, especially at high RF powers. For this reason it should be avoided to use creep sensitive materials in these devices. In this paper we report on creep studies on Al-alloys, materials that are often

  19. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  20. Study of creep behaviour in P-doped copper with slow strain rate tensile tests

    International Nuclear Information System (INIS)

    Xuexing Yao; Sandstroem, Rolf

    2000-08-01

    Pure copper with addition of phosphorous is planned to be used to construct the canisters for spent nuclear fuel. The copper canisters can be exposed to a creep deformation up to 2-4% at temperatures in services. The ordinary creep strain tests with dead weight loading are generally employed to study the creep behaviour; however, it is reported that an initial plastic deformation of 5-15% takes place when loading the creep specimens at lower temperatures. The slow strain rate tensile test is an alternative to study creep deformation behaviour of materials. Ordinary creep test and slow strain rate tensile test can give the same information in the secondary creep stage. The advantage of the tensile test is that the starting phase is much more controlled than in a creep test. In a tensile test the initial deformation behaviour can be determined and the initial strain of less than 5% can be modelled. In this study slow strain rate tensile tests at strain rate of 10 -4 , 10 -5 , 10 -6 , and 10 -7 /s at 75, 125 and 175 degrees C have been performed on P-doped pure Cu to supplement creep data from conventional creep tests. The deformation behaviour has successfully been modelled. It is shown that the slow strain rate tensile tests can be implemented to study the creep deformation behaviours of pure Cu

  1. Deformation by grain boundary sliding and slip creep versus diffusional creep

    International Nuclear Information System (INIS)

    Ruano, O A; Sherby, O D; Wadsworth, J.

    1998-01-01

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called diffusional creep region are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called diffusional creep regions

  2. Fractional order creep model for dam concrete considering degree of hydration

    Science.gov (United States)

    Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu

    2018-05-01

    Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.

  3. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  4. Tensile creep behavior in an advanced silicon nitride

    International Nuclear Information System (INIS)

    Lofaj, F.

    2000-01-01

    Tensile creep behavior and changes in the microstructure of the advanced silicon nitride, SN 88M, were studied at temperatures from 1250 to 1400 C to reveal the creep resistance and lifetime-controlling processes. Assuming power law dependence of the minimum strain rate on stress, stress exponents from 6 to 8 and an apparent activation energy of 780 kJ/mol were obtained. Extensive electron microscopy observations revealed significant changes in the crystalline secondary phases and creep damage development. Creep damage was classified in two groups: 'inter-granular' defects in the amorphous boundary phases, and 'intra-granular' defects in silicon nitride grains. The inter-granular defects involved multigrain junction cavities, two-grain junction cavities, microcracks and cracks. The intra-granular defects included broken large grains, small symmetrical and asymmetrical cavities, and crack-like intragranular cavities. Cavities are generated continuously during the whole deformation starting from the threshold strain of ∝0.1%, and they contribute linearly to the tensile strain. Cavities produce more than 90% of the total tensile strain, and it is concluded that cavitation is the main creep mechanism in silicon nitride ceramics. The multigrain junction cavities are considered to be the most important for generating new volume and producing tensile strain. The Luecke and Wiederhorn (L and W) creep model, based on cavitation at multigrain junctions according to an exponential law, was proven to correspond to the stress dependence of the minimum strain rate. A qualitative model based on the L and W model was suggested and expanded to include intragranular cavitation. The basic mechanisms involve a repeating of the sequence grain boundary sliding (GBS) => cavitation at multigrain junctions => viscous flow and dissolution-precipitation. (orig.)

  5. TEM microstructural analysis of creep deformed CM186LC single crystal Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Blackler, M. [Howmet Ltd., Exeter (United Kingdom); Barnard, P.M. [ALSTOM Power Turbo-Systems Technology Centre, Rugby (United Kingdom)

    2006-07-01

    The nickel based single crystal superalloy CM186LC was extensively investigated as a potential low cost material for industrial gas turbine vanes within the COST522 programme. The alloy exhibits inhomogeneous structure consisting of dendritic regions and eutectic colonies. In the present work attention is focused on microstructural changes observed in single crystal CM186LC following creep deformation at 750 C. Creep tests were conducted at 750 C with an applied stress of 560 or 675 MPa for up to 11440 hours. The microstructure o ruptured and terminated specimens was investigated by scanning (SEM) and transmission (TEM) electron microscopy. TEM analysis revealed the microstructural changes in the CM186LC at primary and secondary creep as well as after creep rupture. (orig.)

  6. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  7. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  8. The creep of UO2 fuel doped with Nb2O5

    International Nuclear Information System (INIS)

    Sawbridge, P.T.; Reynolds, G.L.; Burton, B.

    1981-01-01

    The creep of UO 2 containing small additions of Nb 2 O 5 has been investigated in the stress range 0.5-90 MN/m 2 at temperatures between 1422 and 1573 K. The functional dependence of the creep rate of five dopant concentrations up to 0.8 mol% Nb 2 O 5 has been examined and it was established that in all the materials the secondary creep rate could be represented by the equation epsilonkT = Asigmasup(n) exp(-Q/RT), where epsilon is the steady state creep rate per hour, Q the activation energy and A and n are constants for each material. It was observed that Nb 2 O 5 additions can cause a dramatic increase in the steady state creep rate as long as the niobium ion is maintainde in the Nb 5+ valence state. Material containing 0.4 mol% Nb 2 O 5 creeps three orders of magnitude faster than the pure material. Analysis of the results in terms of grain size compensated viscosity suggest that, like pure UO 2 , the creep rate of Nb 2 O 5 doped fuel is diffusion-controlled and proportional to the reciprocal square of the grain size. A model is developed which suggests that the increase in creep rate results from suppression of the U 5+ ion concentration by the addition of Nb 5+ ions, which modifies the crystal defect structure and hence the uranium ion diffusion coefficient. (orig.)

  9. Creep theories compared by means of high sensitivity tensile creep data

    International Nuclear Information System (INIS)

    Salim, A.

    1987-01-01

    Commonly used creep theories include time-hardening, strain-hardening and Rabotnov's modified strain-hardening. In the paper they are examined by using high sensitivity tensile creep data produced on 1% CrMoV steel at a temperatue of 565 0 C. A special creep machine designed and developed by the author is briefly described and is compared with other existing machines. Tensile creep data reported cover a stress range of 100-260 MN m -2 ; four variable-creep tests each in duplicate are also reported. Test durations are limited to 3000 h, or failure, whichever occurs earlier. The strain-hardening theory and Rabotnov's modified strain-hardening theory are found to give good prediction of creep strain under variable stress conditions. The time-hardening theory shows a relatively poor agreement and considerably underestimates the accumulated inelastic strain under increasing stress condition. This discrepancy increases with the increased stress rate. The theories failed to predict the variable stress results towards the later part of the test where tertiary effects were significant. The use of creep equations which could account for creep strain at higher stress levels seems to improve the situation considerably. Under conditions of variable stress, it is suggested that a theory based on continuous damage mechanics concepts might give a better prediction. (author)

  10. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy

    International Nuclear Information System (INIS)

    Tian, Chenggang; Han, Guoming; Cui, Chuanyong; Sun, Xiaofeng

    2014-01-01

    Highlights: • The decrease of SFE could promote the dislocation dissociation. • The creep mechanisms were significantly affected by the SFE of the alloys. • The creep properties of the alloys improved with the decrease of SFE by facilitating the microtwinning process. - Abstract: Cobalt in a 23 wt.% Co containing Ni-base superalloys was systematically substituted by Ni in order to study the effects of stacking fault energy (SFE) on the creep mechanisms. The deformation microstructures of the alloys during different creep stages at 725 °C and 630 MPa were investigated by transmission electron microscopy (TEM). The results showed that the creep life increased as the SFE decreased corresponding to the increase of Co content in the alloys. At primary creep stage, the dislocation was difficult to dissociate independent of SFE. In contrast, at secondary and tertiary creep stages the dislocations dissociated at γ/γ′ interface and the partial dislocation started to shear γ′ precipitates, leaving isolated faults (IFs) in high SFE alloy, while the dislocations dissociated in the matrix and the partials swept out the matrix and γ′ precipitates creating extended stacking faults (ESFs) or deformation microtwins which were involved in diffusion-mediated reordering in low SFE alloy. It is suggested that the deformation microtwinning process should be favorable with the decrease of SFE, which could enhance the creep resistance and improve the creep properties of the alloys

  11. Further evaluation of creep-fatigue life prediction methods for low-carbon nitrogen-added 316 stainless steel

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1999-01-01

    Low-carbon, medium-nitrogen 316 stainless steel is a principal candidate for a main structural material of a demonstration fast breeder reactor plant in Japan. A number of long-term creep tests and creep-fatigue tests have been conducted for four products of this steel. Two representative creep-fatigue life prediction methods, i.e., time fraction rule and ductility exhaustion method were applied. Total stress relaxation behavior was simulated well by an addition of a viscous strain term to the conventional (primary plus secondary) creep strain, but only the letter was assumed to contribute to creep damage in the ductility exhaustion method. The present ductility exhaustion approach was found to have very good accuracy in creep-fatigue life prediction for all materials tested, while the time fraction rule tended to overpredict failure life as large as a factor of 30. Discussion was made on the reason for this notable difference

  12. Creep behavior of sintered and fused Mo grades

    International Nuclear Information System (INIS)

    Gregoire, J.; Robert, G.

    1975-01-01

    Three types of molybdenum were examined. They are produced: one by arc melting without additions, another by powder metallurgy without additions and the third by powder metallurgy but strengthened by a 1%Zr dispersion. The secondary creep, the structure of the deformed zones, the modes of fracture and the structures of the welding zones were studied [fr

  13. Creep properties of EB welded joint on Hastelloy X

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Susei, Shuzo; Shimizu, Shigeki; Satoh, Keisuke; Nagai, Hiroyoshi.

    1980-01-01

    In order to clarify the creep properties of EB welds on Hastelloy X which is one of the candidate alloys for components of VHTR, creep tests on EB weld metal and welded joint were carried out. The results were discussed in comparison with those of base metal and TIG welds. Further, EB welds were evaluated from the standpoint of high temperature structural design. The results obtained are summarized as follows. 1) Both creep rupture strengths of EB weld metal and EB welded joint are almost equal to that of base metal, but those of TIG welds are lower than base metal. As for the secondary creep rate, EB weld metal is higher and TIG weld metal is lower than base metal. As for the time to onset of tertiary creep, no remarkable difference among base metal, EB weld metal and TIG weld metal is observed. 2) In case of EB weld metal, although anisotropy is slightly observed, the ductility is same or more as compared with base metal. In case of TIG weld metal, on the contrary, anisotropy is not observed and the ductility is essentially low. 3) Such rupture morphology of EB weld metal as appears to have resulted from interconnection of voids which occurred at grain boundary is similar to base metal. In case of TIG weld metal, however, many cracks with sharp tips are observed at grain boundary, and the rupture appears to have occurred in brittle by propagation and connection of the cracks. 4) It can be said from the standpoint of high temperature structural design that EB welding is very suitable to welding for structure where creep effects are significant, because both of the creep ductility and the rupture strength are almost equal to those of base metal. (author)

  14. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  15. A quantitative prediction model of SCC rate for nuclear structure materials in high temperature water based on crack tip creep strain rate

    International Nuclear Information System (INIS)

    Yang, F.Q.; Xue, H.; Zhao, L.Y.; Fang, X.R.

    2014-01-01

    Highlights: • Creep is considered to be the primary mechanical factor of crack tip film degradation. • The prediction model of SCC rate is based on crack tip creep strain rate. • The SCC rate calculated at the secondary stage of creep is recommended. • The effect of stress intensity factor on SCC growth rate is discussed. - Abstract: The quantitative prediction of stress corrosion cracking (SCC) of structure materials is essential in safety assessment of nuclear power plants. A new quantitative prediction model is proposed by combining the Ford–Andresen model, a crack tip creep model and an elastic–plastic finite element method. The creep at the crack tip is considered to be the primary mechanical factor of protective film degradation, and the creep strain rate at the crack tip is suggested as primary mechanical factor in predicting the SCC rate. The SCC rates at secondary stage of creep are recommended when using the approach introduced in this study to predict the SCC rates of materials in high temperature water. The proposed approach can be used to understand the SCC crack growth in structural materials of light water reactors

  16. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  17. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  18. Investigations on creep and creep fatigue crack behaviour for component assessment

    International Nuclear Information System (INIS)

    Gengenbach, T.; Klenk, A.; Maile, K.

    2004-01-01

    There are various methods to assess crack initiation and crack growth behaviour of components under creep and creep fatigue loading. The programme system HT-Riss has been developed to support calculations aimed to determine the behaviour of a crack under creep or creep-fatigue loading using methods based on stress-intensity factor K (e.g. the Two-Criteria-Diagram) or C*-Integral. This paper describes the steps which have to be performed to assess crack initiation and growth of a component using this programme system. First the size of the maximum initial defect in a specimen or in a component has to be estimated and the necessary fracture mechanics parameters have to be determined. Then the time for creep crack initiation and creep crack growth is calculated. Using these values a prediction of life time and necessary inspection intervals is possible. For exemplification the crack assessment of a component-like specimen and a component is shown. (orig.)

  19. Magnetic flux creep in HTSC and Anderson-Kim theory

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2014-01-01

    The theoretical and experimental data on flux creep in high-temperature superconductors (HTSC) were analyzed in the review paper. On the one hand, the main attention is paid to the most striking experimental results which have had a significant influence on the investigations of flux creep in HTSC. On the other hand, the analysis of theoretical studies is concentrated on the works, which explain the features of flux creep on the basis of the Anderson-Kim (AK) theory modifications, and received previously unsufficient attention. However, it turned out that the modified AK theory could explain a lot of features of flux creep in HTSC: the scaling behaviour of current-voltage curves of HTSC, the finite rate of flux creep at ultra low temperatures, the logarithmic dependence of effective pinning potential as a function of transport current and its decrease with temperature. The harmonic potential field which is used in this approach makes it possible to solve accurately the both problems: viscous vortex motion and flux creep in this field. Moreover the distribution of pinning potential and the interaction of vortices with each other are taken into account in the approach. Thus, the modification of the AK theory consists, essentially, in its detailed elaboration and approaching to real situations in superconductors

  20. Development of evaluation technique of high temperature creep characteristics by small punch-creep test method (I)

    International Nuclear Information System (INIS)

    Baek, Seung Se; Na, Sung Hun; Yu, Hyo Sun; Na, Eui Gyun

    2001-01-01

    In this study, a Small Punch Creep(SP-Creep) test using miniaturized specimen(10 x 10 x 0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-1Mo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600 .deg. C. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decrease with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation of SP-Creep rate for 2.25Cr-1Mo steel is suggested, and a good agreement between experimental and calculated data has been found

  1. Prediction of the creep properties of discontinuous fibre composites from the matrix creep law

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Boecker Pedersen, O.; Lilholt, H.

    1975-02-01

    Existing theories for predicting the creep properties of discontinuous fibre composites with non-creeping fibres from matrix creep properties, originally based on a power law, are extended to include an exponential law, and in principle a general matrixlaw. An analysis shows that the composite creep curve can be obtained by a simple displacement of the matrix creep curve in a log sigma vs. log epsilon diagram. This principle, that each point on the matrix curve has a corresponding point on the composite curve,is given a physical interpretation. The direction of displacement is such that the transition from a power law toan exponential law occurs at a lower strain rate for the composite than for the unreinforced matrix. This emphasizes the importance of the exponential creep range in the creep of fibre composites. The combined use of matrix and composite data may allow the creep phenomenon to be studied over a larger range of strain rates than otherwise possible. A method for constructing generalized composite creep diagrams is suggested. Creep properties predicted from matrix data by the present analysis are compared with experimental data from the literature. (author)

  2. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  3. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  4. Development of a constitutive model for the plastic deformation and creep of copper and its use in the estimate of the creep life of the copper canister

    International Nuclear Information System (INIS)

    Pettersson, Kjell

    2006-12-01

    A previously developed model for the plastic deformation and creep of copper (included as an Appendix to the present report) has been used as the basis for a discussion on the possibility of brittle creep fracture of the copper canister during long term storage of nuclear waste. Reported creep tests on oxygen free (OF) copper have demonstrated that copper can have an extremely low creep ductility. However with the addition of about 50 ppm phosphorus to the copper it appears as if the creep brittleness problem is avoided and that type of copper (OFP) has consequently been chosen as the canister material. It is shown in the report that the experiments performed on OFP copper does not exclude the possibility of creep brittleness of OFP copper in the very long term. The plasticity and creep model has been used to estimate creep life under conditions of intergranular creep cracking according to a model formulated by Cocks and Ashby. The estimated life times widely exceed the design life of the canister. However the observations of creep brittleness in OF copper indicate that the Cocks-Ashby model probably does not apply to the OF copper. Thus additional calculations have been done with the plasticity and creep model in order to estimate stress as a function of time for the probably most severe loading case of the canister with regard to creep failure, an earth quake shear. Despite the fact that the stress in the canister will remain at the 100 MPa level for thousands of years after an earth quake the low temperature, about 50 deg C or less, will make the solid state diffusion process assumed to control the brittle cracking process, too slow to lead to any significant brittle creep cracking in the canister

  5. A unified analysis of kinetic models for the problem of thermal creep based on the boundary conditions of Cercignani-Lampis for heterogeneous plates

    International Nuclear Information System (INIS)

    Rosa, Cinara Ewerling da; Knackfuss, Rosenei Felippe

    2013-01-01

    In this work is presented a series of numerical results and graphical comparisons of the physical quantities of interest such as: the velocity profile and the heat on profile. This formulation is developed for the problem of Thermal Creep, where the gas is moving between two parallel plates with different chemical constitutions (heterogeneous plates) due to a temperature gradient. The flow of a rarefied gas, is investigated with special attention to the gas-surface interaction, modeled by the Cercignani-Lampis kernel, that unlike Maxwell's scattering kernel, is defined in terms of two accommodation coefficients (normal and tangential) to represent the physical properties of the gas. The kinetic theory for rarefied gas dynamics, derived from the linearized Boltzmann equation, is developed in an unified approach, to the BGK model, S model, GJ model and MRS model. In the search for solutions to solve the problem of Thermal Creep with kernel of the Cercignani-Lampis, we used a analytical version of the discrete ordinates method (ADO) based on an arbitrary quadrature scheme, under which is determined a problem of eigenvalues and their respective separation constants. Numerical results are developed by the computer program FORTRAN. (author)

  6. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  7. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  8. The effect of hydrostatic pressure on the creep life of a 2.25% Cr1% Mo Steel

    International Nuclear Information System (INIS)

    Lonsdale, D.; Flewitt, P.E.J.

    1979-01-01

    The effect of superimposed hydrostatic pressures on the creep life of a 2.25% Cr 1% Mo steel, with a bainitic microstructure, is examined. Creep tests have been carried out at 923K with uniaxial stresses in the range 55 to 80 MPa and superimposed hydrostatic pressures up to 35 MPa. Optical and scanning electron microscopy have been used to evaluate the contribution of the hydrostatic stress to grain boundary cavitation. Increasing the hydrostatic pressure for a given uniaxial stress suppresses cavitation, but little changes the secondary creep rate, thereby excending the creep life. Furthermore, the time to failure depends on both the applied uniaxial stress and the hydrostatic pressure and not simply the principal stress. (orig.) [de

  9. Problems Encountered by Religious Vocational Secondary School and Other Secondary School Students in Physical Education and Sports Activities

    Science.gov (United States)

    Bar, Mustafa; Yaman, Menzure Sibel; Hergüner, Gülten

    2016-01-01

    The study aimed to determine problems encountered by Religious Vocational Secondary School and other Secondary School students in physical education and sports activities and to compare these problems according to school type and gender. A questionnaire named "Problems encountered in attending to physical education and sports activities"…

  10. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  11. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  12. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  13. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  14. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  15. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  16. Numerical integration of some new unified plasticity-creep formulations

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1977-01-01

    The usual constitutive description of metals at high temperature treats creep as a phenomenon which must be added to time independent phenomena. A new approach is now being advocated by some people, principally metallurgists. They all treat the inelastic strain as a unified quantity, incapable of being separated into time dependent and time independent parts. This paper examines the behavior of the differential formulations reported in the literature together with one proposed by the author. These formulations are capable of representing primary and secondary creep, cyclic hardening to a stable cyclic stress-strain loop, a conventional plasticity behavior, and a Bauchinger effect which may be creep induced and discernable either at fast or slow loading rates. The new unified formulations seem to lead to very non-linear systems of equations which are very well behaved in some regions and very stiff in other regions where the word 'stiff' is used in the mathematical sense. Simple conventional methods of integrating incremental constitutive equations are observed to be totally inadequate. A method of numerically integrating the equations is presented. (Auth.)

  17. Effect of carbides on the creep properties of a Ni-base superalloy M963

    International Nuclear Information System (INIS)

    He, L.Z.; Zheng, Q.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.; Tieu, A.K.; Lu, C.; Zhu, H.T.

    2005-01-01

    Effect of carbides on the creep properties of a cast Ni-base superalloy M963 tested at 800 and 900 deg. C over a broad stress range has been investigated. Correlation between the carbides and creep properties of the alloy is enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During high temperature creep tests, the primary MC carbide decomposes sluggishly and a large amount of secondary carbides precipitate. The cubic and acicular M 6 C carbide precipitates at the dendritic core region. Extremely fine chromium-rich M 23 C 6 carbide precipitates preferentially at grain boundaries. The M 6 C and M 23 C 6 carbides are found to be beneficial to the creep properties of the alloy. At lower temperature (800 deg. C), the interface of MC carbide with matrix is one of the principal sites for crack initiation. At higher temperature (900 deg. C), the oxidation and the precipitation of μ phase are the main factors for significant loss in creep strength of the alloy

  18. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  19. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Mathew, M.D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  20. Simulation of irradiation creep

    International Nuclear Information System (INIS)

    Reiley, T.C.; Jung, P.

    1977-01-01

    The results to date in the area of radiation enhanced deformation using beams of light ions to simulate fast neutron displacement damage are reviewed. A comparison is made between these results and those of in-reactor experiments. Particular attention is given to the displacement rate calculations for light ions and the electronic energy losses and their effect on the displacement cross section. Differences in the displacement processes for light ions and neutrons which may effect the irradiation creep process are discussed. The experimental constraints and potential problem areas associated with these experiments are compared to the advantages of simulation. Support experiments on the effect of thickness on thermal creep are presented. A brief description of the experiments in progress is presented for the following laboratories: HEDL, NRL, ORNL, PNL, U. of Lowell/MIT in the United States, AERE Harwell in the United Kingdom, CEN Saclay in France, GRK Karlsruhe and KFA Julich in West Germany

  1. Finite element analysis of nonlinear creeping flows

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Guerreiro, J.N.C.

    1988-12-01

    Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt

  2. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-01

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  3. Mechanical properties of steel X 6 CrNi 18 11 after creep

    Energy Technology Data Exchange (ETDEWEB)

    Heesen, E te; Lorenz, H; Grosser, E D [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    Test series were conducted to determine the influence of prior creep on the mechanical properties of X 6 CrNi 18 11 base material, weld joint and weld metal. Creep and tensile tests on base and weld joint were performed at 600 degrees C, the weld metal was Investigated at 550, 600, and 650 degrees C. With regard to the base materials, prior creep leads to a significant reduction in tensile ductility combined with an increase of the 0.2 % proof stress. Residual ductility represents a sufficient ductility reserve. For the weld joint tensile strength remains unchanged up to the end of the secondary creep stage. Although tensile elongation and reduction of area decrease, the relative reduction is less compared to the base material. Concerning the weld metal the 0.2 % proof stress reveals a marked decrease due to the test temperature leading to a stress relief heat treatment. Ultimate tensile strength and ductility Indicate little or no deviations from the original values. Thermal exposures in the absence of stress nearly gave the same properties as were found on precrept specimens. (author)

  4. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  5. A Critical Analysis of the Conventionally Employed Creep Lifing Methods.

    Science.gov (United States)

    Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen

    2014-04-29

    The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure.

  6. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700°C

    Science.gov (United States)

    Sordi, V. L.; Bueno, L. O.

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700°C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300°C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation dot epsilon = A.σn and the Monkman-Grant relation dot epsilon.tmR = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  7. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  8. Revisiting Creeping Competences in the EU

    DEFF Research Database (Denmark)

    Citi, Manuele

    2014-01-01

    case where secondary legislation was employed to extend a formal treaty-based competence (civilian research and technology policy) to an area that, for historical and strategic reasons, has always been a policy monopoly of national governments: research and technology development policy for security...... and defence. Through the analysis of a large pool of documentary data, I elaborate a set of linked hypotheses about the empirical dynamics of creeping competences, and show how the theory of incomplete contracting is best suited to explain this phenomenon....

  9. High temperature graphite irradiation creep experiment in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Manzel, R.; Everett, M. R.; Graham, L. W.

    1971-05-15

    The irradiation induced creep of pressed Gilsocarbon graphite under constant tensile stress has been investigated in an experiment carried out in FE 317 of the OECD High Temperature Gass Cooled Reactor ''Dragon'' at Winfrith (England). The experiment covered a temperature range of 850 dec C to 1240 deg C and reached a maximum fast neutron dose of 1.19 x 1021 n cm-2 NDE (Nickel Dose DIDO Equivalent). Irradiation induced dimensional changes of a string of unrestrained graphite specimens are compared with the dimensional changes of three strings of restrained graphite specimens stressed to 40%, 58%, and 70% of the initial ultimate tensile strength of pressed Gilsocarbon graphite. Total creep strains ranging from 0.18% to 1.25% have been measured and a linear dependence of creep strain on applied stress was observed. Mechanical property measurements carried out before and after irradiation demonstrate that Gilsocarbon graphite can accommodate significant creep strains without failure or structural deterioration. Total creep strains are in excellent agreement with other data, however the results indicate a relatively large temperature dependent primary creep component which at 1200 deg C approaches a value which is three times larger than the normally assumed initial elastic strain. Secondary creep constants derived from the experiment show a temperature dependence and are in fair agreement with data reported elsewhere. A possible determination of the results is given.

  10. Creep of titanium--silicon alloys

    International Nuclear Information System (INIS)

    Paton, N.E.; Mahoney, M.W.

    1976-01-01

    Operative creep mechanisms in laboratory melts of Ti-5Zr-0.5Si and Ti-5Zr-0.5Si have been investigated as a function of microstructure, creep stress, and temperature. From creep rate data and transmission electron microscopy results, it has been shown that an important creep strengthening mechanism at 811 0 K in Si-bearing Ti alloys is clustering of solute atoms on dislocations. All of the alloys investigated showed anomalously high apparent activation energies and areas for creep and a high exponent (n) in the Dorn equation. In addition, the effect of heat treatment was investigated and it is shown that the highest creep strength was obtained by using a heat treatment which retained the maximum amount of silicon in solution. This is consistent with the proposed creep strengthening mechanism. An investigation of the creep behavior of several other Si containing alloys including two commercial alloys, Ti-11 and IMI-685 indicated similar results. 12 fig., 6 tables

  11. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  12. Theoretical and experimental investigations of creep buckling on NiCr 22 Co 12 Mo tubes

    International Nuclear Information System (INIS)

    Ahmed, K.; Breitbach, G.; Over, H.; Schubert, F.; Nickel, H.

    1988-08-01

    The postulated pressure loss of the secondary circuit is one of the hardest loading conditions for the heat exchanging components in a HTGR plant. It is to proof for the design that the heat exchanging metallic components (heat exchanger or reformer tubes of a PNP plant for instance) do not collapse under such an emergency condition. An external pressure p a stressed tubes or cylindric shells at a pressure loss of a secondary circuit side. This external pressure buckles the tubes in dependence of the fabrication implied out of roundness 0 (fabrication tolerances) by material creep in the high temperature region. This creep buckling ends in a failure (collapse) of the component after a critical time t cr . The aim of the work is the experimental verification of creep buckling behaviour for the heat exchanger components and the comparison with different constitutive equations. With these equations safety factors can be formulated against as well the critical collapse time and pressure as the permissible out of roundness from fabrication. (orig.) [de

  13. Stress analysis of fuel claddings with axial fins including creep effects

    International Nuclear Information System (INIS)

    Krieg, R.

    1977-01-01

    For LMFBR fuel claddings with axial fins the stress and strain fields are calculated which may be caused by internal pressure, differential thermal expansion and irradiation induced differential swelling. To provide an appropriate description of the cladding material it is assumed that the total strain is the sum of a linear elastic and a creep term, where the latter one includes the thermal as well as the irradiation induced creep. First the linear elastic problem is treated by a semi-analytical method leading to a bipotential equation for Airys' stress function. Solving this equation analytically means that the field equations valid within the cladding are satisfied exactly. By applying a combined point matching- least square-method the boundary conditions could be satisfied approximately such that in most cases the remaining error is within the uncertainty range of the loading conditions. Then the nonlinear problem which includes creep is approximated by a sequence of linear elastic solutions with time as parameter. The accumulated creep strain is treated here as an imposed strain field. To study the influence of different effects such as fin shape, temperature region, irradiation induced creep and swelling or internal pressure, a total of eleven cases with various parameter variations are investigated. The results are presented graphically in the following forms: stress and strain distributions over the cladding cross section for end of life conditions and boundary stresses and strains versus time. (Auth.)

  14. Prediction of long-term creep curves

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Maruyama, Kouichi

    1992-01-01

    This paper aims at discussing how to predict long-term irradiation enhanced creep properties from short-term tests. The predictive method based on the θ concept was examined by using creep data of ferritic steels. The method was successful in predicting creep curves including the tertiary creep stage as well as rupture lifetimes. Some material constants involved in the method are insensitive to the irradiation environment, and their values obtained in thermal creep are applicable to irradiation enhanced creep. The creep mechanisms of most engineering materials definitely change at the athermal yield stress in the non-creep regime. One should be aware that short-term tests must be carried out at stresses lower than the athermal yield stress in order to predict the creep behavior of structural components correctly. (orig.)

  15. Creep resistance and material degradation of a candidate Ni–Mo–Cr corrosion resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Sachin L., E-mail: sachin@ansto.gov.au [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhattacharyya, Dhriti [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Yuan, Guangzhou; Li, Zhijun J. [Center of Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (China); Budzakoska-Testone, Elizabeth; De Los Reyes, Massey; Drew, Michael; Edwards, Lyndon [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-09-30

    This study investigated the creep deformation properties of GH3535, a Ni–Mo–Cr corrosion resistant structural alloy being considered for use in future Gen IV molten salt nuclear reactors (MSR) operating at around 700 °C. Creep testing of the alloy was conducted at 650–750 °C under applied stresses between 85–380 MPa. From the creep rupture results the long term creep strain and rupture life of the alloy were estimated by applying the Dorn Shepard and Larson Miller time-temperature parameters and the alloy's allowable ASME design stresses at the MSR's operating temperature were evaluated. The material's microstructural degradation at creep rupture was characterised using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The microstructural study revealed that the material failure was due to wedge cracking at triple grain boundary points and cavitation at coarse secondary grain boundary precipitates, nucleated and grown during high temperature exposure, leading to intergranular crack propagation. EBSD local misorientation maps clearly show that the root cause of cavitation and crack propagation was due to large strain localisation at the grain boundaries and triple points instigated by grain boundary sliding during creep deformation. This caused the grain boundary decohesion and subsequent material failure.

  16. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  17. Creep Behavior in Interlaminar Shear of a SiC/SiC Ceramic Composite with a Self-healing Matrix

    Science.gov (United States)

    Ruggles-Wrenn, M. B.; Pope, M. T.

    2014-02-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1,200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbide overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16-22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Larger creep strains were accumulated in steam. However, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated.

  18. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  19. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  20. Metallurgical principles of creep processes

    International Nuclear Information System (INIS)

    Bolton, C.J.

    1977-12-01

    A brief review is presented of current theories of a number of the physical processes which can be involved in deformation and fracture under creep conditions. The processes considered are power law creep, diffusion creep, grain boundary sliding, cavitation and other modes of failure, and creep crack growth. The note concludes with some suggestions for future work. (author)

  1. Creep rupture of structures subjected to variable loading and temperature

    International Nuclear Information System (INIS)

    Wojewodzki, W.

    1975-01-01

    The aim of the present paper is to show on the basis of equations and the analysis of creep mechanisms the possibilities of a description of the creep behavior of material under variable temperature and loading conditions. Also the influence of cyclic proportional loading and temperature gradient upon the rupture life and strains of a thick cylinder is investigated in detail. The obtained theoretical creep curves coincide with the experimental results for investigated steel in the temperature range from 500 0 C to 575 0 C. The constitutive equations together with the functions determined previously are applied to solve the problem of thick cylinder subjected to cyclic proportional pressure and temperature gradient. Numerical results for the thick steel cylinder are presented both in diagrammatical and tabular form. The obtained new results clearly show the significant influence of temperature gradient, cyclic temperature gradient, and cyclic pressure upon the stress redistribution, the magnitude of deformation, the propagation of the front damage and the rupture life. It was found that small temperature fluctuations at elevated temperature can shorten the rupture life very considerably. The introduced description of the creep rupture behavior of material under variable temperature and loading conditions together with the results for the thick cylinder indicate the possibilities of solutions of practical problems encountered in structural mechanics of reactor technology

  2. A constitutive equation for creep fracture under constant, variable or cyclic positive stress

    International Nuclear Information System (INIS)

    Snedden, J.D.

    1977-01-01

    Prediction of creep fracture of metals under variable stress is one of the most difficult problems of applied mechanics. At NEL this problem is under investigation using an approach in which creep is represented by two macroscopic components: an anelastic (reversible) component and a plastic (irreversible) component. Under variable loading conditions, the anelastic component's behaviour will be most important and, if an experimental programme is logically planned, the structural processes responsible will be implicit in the resulting constitutive equation describing the material's behaviour. The present paper deals with the development and application of a constitutive equation for creep fracture of RR58 Aluminium alloy at 180 0 C under variable stress and such a constitutive equation can be extrapolated to cover long-time behaviour just as with conventional constant stress creep fracture equations. Constant stress, in fact, is one of the boundary conditions of the general constitutive equation, representing zero prior damage. The other boundary condition is that of 'cadence loading' in which the stress is completely removed and then re-applied in a cyclic fashion. (Auth.)

  3. Irradiation creep models - an overview

    International Nuclear Information System (INIS)

    Matthews, J.R.; Finnis, M.W.

    1988-01-01

    The modelling of irradiation creep is now highly developed but many of the basic processes underlying the models are poorly understood. A brief introduction is given to the theory of cascade interactions, point defect clustering and dislocation climb. The range of simple irradiation creep models is reviewed including: preferred nucleation of interstitial loops; preferred absorption of point defects by dislocations favourably orientated to an applied stress; various climb-enhanced glide and recovery mechanisms, and creep driven by internal stresses produced by irradiation growth. A range of special topics is discussed including: cascade effects; creep transients; structural and induced anisotropy; and the effect of impurities. The interplay between swelling and growth with thermal and irradiation creep is emphasized. A discussion is given on how irradiation creep theory should best be developed to assist the interpretation of irradiation creep observations and the requirements of reactor designers. (orig.)

  4. Model-based Approach for Long-term Creep Curves of Alloy 617 for a High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Yong Wan

    2008-01-01

    Alloy 617 is a principal candidate alloy for the high temperature gas-cooled reactor (HTGR) components, because of its high creep rupture strength coupled with its good corrosion behavior in simulated HTGR-helium and its sufficient workability. To describe a creep strain-time curve well, various constitutive equations have been proposed by Kachanov-Rabotnov, Andrade, Garofalo, Evans and Maruyama, et al.. Among them, the K-R model has been used frequently, because a secondary creep resulting from a balance between a softening and a hardening of materials and a tertiary creep resulting from an appearance and acceleration of the internal or external damage processes are adequately considered. In the case of nickel-base alloys, it has been reported that a tertiary creep at a low strain range may be generated, and this tertiary stage may govern the total creep deformation. Therefore, a creep curve for nickel-based Alloy 617 will be predicted appropriately by using the K-R model that can reflect a tertiary creep. In this paper, the long-term creep curves for Alloy 617 were predicted by using the nonlinear least square fitting (NLSF) method in the K-R model. The modified K-R model was introduced to fit the full creep curves well. The values for the λ and K parameters in the modified K-R model were obtained with stresses

  5. Influence of delta ferrite on mechanical and creep properties of steel P92

    Energy Technology Data Exchange (ETDEWEB)

    Mohyla, Petr [VSB - Technical Univ. of Ostrava (Czech Republic). Faculty of Mechanical Engineering; Kubon, Zdenek [Material and Metallurgical Research Ltd., Ostrava (Czech Republic)

    2010-07-01

    This article presents some new results obtained during research of chromium modified steel P92. This steel is considered the best modified 9-12% Cr steel for the construction of modern power plants with ultra-super-critical steam parameters. High creep rupture strength of steel P92 is characterized by its chemical composition and by microstructure as well. Optimal microstructure of steel P92 is ideally composed of homogeneous martensite and fine dispersion of secondary particles. During the research program one P92 heat with an occurrence of about 20% delta ferrite was produced. The article describes the microstructure of the heat in various modes of heat treatment, as well as the results of mechanical properties tests at room temperature and also creep test results. The results are confronted with properties of other heats that have no delta ferrite. The relevance is on the significant difference while comparing of creep test results. The comparison of results brings conclusions, defining influence of delta ferrite on mechanical and creep properties of P92 steel. (orig.)

  6. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  7. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Schubert, F.

    1990-08-01

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, ε min = k.σ n . The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.) [de

  8. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  9. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  10. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  11. Lattice Boltzmann computation of creeping fluid flow in roll-coating applications

    Science.gov (United States)

    Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga

    2018-04-01

    Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.

  12. Long-term creep behavior of high-temperature gas turbine materials under constant and variable stress

    International Nuclear Information System (INIS)

    Granacher, J.; Preussler, T.

    1987-01-01

    Within the framework of the documented research project, extensive creep rupture tests were carried out with characteristic, high-temperature gas turbine materials for establishment of improved design data. In the range of the main application temperatures and in stress ranges down to application-relevant values the tests extended over a period of about 40,000 hours. In addition, long-term annealing tests were carried out in the most important temperature ranges for the measurement of the density-dependent straim, which almost always manifested itself as a material contraction. Furthermore, hot tensile tests were carried out for the description of the elastoplastic short-term behavior. Several creep curves were derived from the results of the different tests with a differentiated evaluation method. On the basis of these creep curves, creep equations were set up for a series of materials which are valid in the entire examined temperature range and stress range and up to the end of the secondary creep range. Also, equations for the time-temperature-dependent description of the material contraction behavior were derived. With these equations, the high-temperature deformation behavior of the examined materials under constant creep stress can be described simply and application-oriented. (orig.) With 109 figs., 19 tabs., 77 refs [de

  13. A study on stress analysis of small punch-creep test and its experimental correlations with uniaxial-creep test

    International Nuclear Information System (INIS)

    Lee, Song In; Baek, Seoung Se; Kwon, Il Hyun; Yu, Hyo Sun

    2002-01-01

    A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9CrlMoVNb steel. It was shown that the initial maximum equivalent stress, σ eq · max from FE analysis was correlated with steady-state equivalent creep strain rate, ε qf-ss , rupture time, t r , activation energy, Q and Larson-Miller parameter, LMP during SP-creep deformation. The simple correlation laws, σ SP - σ TEN , P SP -σ TEN and Q SP -Q TEN adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at 650 deg. C as follows : Q SP-P =1.37 Q TEN , Q SP-σ =1.53 Q TEN

  14. Measuring irradiation creep

    International Nuclear Information System (INIS)

    Pelah, I.

    1981-03-01

    Simulation of fusion-neutron induced damage by beams of light ions is discussed. It is suggested that accelerated creep measurements to determine ''end of life'' of materials may be done by the application of thermal treatment and thermal creep measurements. (author)

  15. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  16. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  17. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  18. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  19. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  20. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  1. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-08-01

    Creep is a cause of deformation; it may also result in rupture in time. Although LMFBR structures are not heavily loaded, they are subjected to large thermal transients. Can structure lifetime be shortened by such transients. Several proposals have been made to assist adesigners with thermal ratcheting in the creep range. Unfortunately these methods are not validated by experiments, and they take only inelastic distorsion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies in providing an experimental basis to ratcheting analysis rules in the creep range, and in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimen made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture

  2. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-01-01

    Several proposals have been made to assist adesigners with thermal ratcheting in the creep range, the more known has been made by O'DONNELL and POROWSKY. Unfortunately these methods are not validated by experiments, and they take only inelastic distortion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies - in providing an experimental basis to ratcheting analysis rules in the creep range, - in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimens made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture. (orig./GL)

  3. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  4. Negative creep in nickel base superalloys

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John

    2004-01-01

    Negative creep describes the time dependent contraction of a material as opposed to the elongation seen for a material experiencing normal creep behavior. Negative creep occurs because of solid state transformations that results in lattice contractions. For most applications negative creep will h...

  5. Biaxial creep behavior of ribbed GCFR cladding at 6500C in nominally pure helium (99.99%)

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Purohit, A.; Grajek, W.J.; Peoppel, R.B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650 0 C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures

  6. EFAM ETM-CREEP 03 - the engineering flaw assessment method for creep

    International Nuclear Information System (INIS)

    Landes, J.D.; Schwalbe, K.H.

    2002-01-01

    EFAM ETM-CREEP is a document that describes the GKSS procedure for estimating residual lives for structural components that contain crack-like defects and operating in a high temperature regime where they undergo creep deformation. It uses the traditional parameters C t and C * and the ETM parameters δ 5 and δ 5 to characterize the crack extension rates. It relies on input from EFAM ETM 97 for calculating these parameters and from EFAM GTP-CREEP 02 to provide the material property data for crack extension rates and fracture toughness data. (orig.) [de

  7. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  8. Creep properties and microstructure evaluation of weld joint of the pipe made of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kasl, Josef; Jandova, Dagmar; Chvostova, Eva [SKODA VYZKUM s.r.o., Plzen (Czech Republic); Folkova, Eva [SKODA POWER a.s., Plzen (Czech Republic)

    2010-07-01

    One-side weld joint of W type was prepared from P92 type steel using GTAW and SMAW method. Creep test to the rupture of smooth cross-weld samples has been carried out at temperatures ranging from 575 to 650 C and at stresses from 70 to 240 MPa. Fractographic analysis, hardness measurement and detailed study of submicrostructure have been performed using light, scanning and transmission electron microscopy. Changes of microstructure were correlated with the creep strength. Increase in size of secondary phases and cavities formation were evident after creep tests at temperatures above 575 C. Voids were concentrated in the fine prior austenite grain heat affected zones, where fracture occurred. In addition, a sporadic occurrence of individual cavities was found out in the base material and the weld metal after tests at 625 and 650 C. During creep exposures at temperatures above 600 C Laves phase precipitated. (orig.)

  9. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  10. Graphic Organizer in Action: Solving Secondary Mathematics Word Problems

    Directory of Open Access Journals (Sweden)

    Khoo Jia Sian

    2016-09-01

    Full Text Available Mathematics word problems are one of the most challenging topics to learn and teach in secondary schools. This is especially the case in countries where English is not the first language for the majority of the people, such as in Brunei Darussalam. Researchers proclaimed that limited language proficiency and limited Mathematics strategies are the possible causes to this problem. However, whatever the reason is behind difficulties students face in solving Mathematical word problems, it is perhaps the teaching and learning of the Mathematics that need to be modified. For example, the use of four-square-and-a-diamond graphic organizer that infuses model drawing skill; and Polya’s problem solving principles, to solve Mathematical word problems may be some of the strategies that can help in improving students’ word problem solving skills. This study, through quantitative analysis found that the use of graphic organizer improved students’ performance in terms of Mathematical knowledge, Mathematical strategy and Mathematical explanation in solving word problems. Further qualitative analysis revealed that the use of graphic organizer boosted students’ confidence level and positive attitudes towards solving word problems.Keywords: Word Problems, Graphic Organizer, Algebra, Action Research, Secondary School Mathematics DOI: http://dx.doi.org/10.22342/jme.7.2.3546.83-90

  11. Modeling Creep Processes in Aging Polymers

    Science.gov (United States)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  12. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  13. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  14. Problems of implementing continuous assessment in secondary ...

    African Journals Online (AJOL)

    The paper examined problems of implementing continuous assessment in secondary schools in Obowo local government area of Imo State, Nigeria. Data were collected with the aid of a structured questionnaire administered to 100 randomly selected respondents in the study area. Descriptive statistics were used for data ...

  15. GOLIA-RK, Structure Stress for Isotropic Materials with Creep and Temperature Fields

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1976-01-01

    1 - Nature of the physical problem solved: Stress analysis of complex structures in presence of creep, dimensional changes and thermal field. Plane stress, plane strain, generalized plane strain and axisymmetric problems can be solved. The material is assumed to be either isotropic or transversely isotropic. Any laws of material behaviour can easily be incorporated by the user (see subroutines WIGNER and CLAW). 2 - Method of solution: Finite element method using triangular elements with linear local fields. The equations for the displacements are solved by Choleski's method. An algorithm is incorporated to calculate automatically the successive time steps in a creep problem. 3 - Restrictions on the complexity of the problem: Maximum number of elements is 700. Maximum number of nodal points is 400. The indexes of two adjacent nodes are not permitted to differ by more than 19

  16. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    Farina, Luis Claudio

    2009-01-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  17. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  18. Numerical and experimental study of creep of grade 91 steel at high temperature

    International Nuclear Information System (INIS)

    Lim, R.

    2011-01-01

    Grade 91 steel is a suitable candidate for structural components of the secondary and the vapour of the generation IV nuclear reactors. Their in-service lifetime will be extended to 60 years. It is necessary to consider the mechanisms involved-term during long creep to propose more reliable predictions of creep lifetimes. Necking is the main failure mechanism for creep lifetimes up to 160 kh at 500 C and 94 kh at 600 C. Necking modelling including the material creep softening leads to two bound laws including experimental lifetimes of a large number of tempered martensitic steels loaded up to 200 kh at temperature 500-700 C. The observed creep intergranular cavities are shown to affect very weekly creep strain rate. The prediction of the cavity evolution will allow estimating creep lifetimes out of experimental data domain. Their nucleation and growth, supposed to be associated to vacancy diffusion, are modelled using two classical models. The first one considers instantaneous nucleation (Raj and Ashby) and the second one continuous nucleation obeying the Dyson law (Riedel). The second one leads to two bound laws, more stable with respect to the parameter values. It allows predicting final sizes of cavities in reasonable agreement with the measured ones. Nevertheless, nucleation rate should be estimated from measured cavity densities. Nucleation of cavities by diffusion is simulated using the Raj model. This model does not allow predicted final cavity densities in agreement with the measured ones, even by considering cavity nucleation at precipitates/Laves interfaces experimentally observed and the maximum local stress concentration of a factor 2 computed using finite element calculation in a 2D plane strain hypothesis based on either simulated or real microstructures containing triple points or precipitates/Laves phases. The use of the Dyson law allows us to propose predictions of long-term creep lifetimes. Lifetime predicted using the diffusion-induced growth

  19. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Application of the cracked pipe element to creep crack growth prediction

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)

    1997-04-01

    Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.

  1. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  2. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  3. A study on creep properties of laminated rubber bearings. Pt. 1. Creep properties and numerical simulations of thick rubber bearings

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi

    2000-01-01

    In this report, to evaluate creep properties and effects of creep deformation on mechanical properties of thick rubber bearings for three-dimensional isolation system, we show results of compression creep test for rubber bearings of various rubber materials and shapes and development of numerical simulation method. Creep properties of thick rubber bearings were obtained from compression creep tests. The creep strain shows steady creep that have logarithmic relationships between strain and time and accelerated creep that have linear relationships. We make numerical model of a rubber material with nonlinear viscoelastic constitutional equations. Mechanical properties after creep loading test are simulated with enough accuracy. (author)

  4. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  5. A phenomenological theory of transient creep

    International Nuclear Information System (INIS)

    Ajaja, O.; Ardell, A.J.

    1979-01-01

    A new creep theory is proposed which takes into account the strain generated during the annihilation of dislocations. This contribution is found to be very significant when recovery is appreciable, and is mainly responsible for the decreasing creep rate associated with the normal primary creep of class II materials. The theory provides excellent semiquantitative rationalization for the types of creep curves presented in the preceding paper. In particular, the theory predicts a change in the shape of the primary creep curve from normal to inverted as recovery becomes less important, i.e. as the applied stress and/or temperature decrease(s). It also predicts a minimum creep rate under certain circumstances, hence pseudo-tertiary behaviour. These different types of creep curves are predicted even though the net dislocation density decreases monotonically with time in all cases. Qualitative rationalization is presented for the inverted transient which always follows a stress drop in class II materials, as well as for the inverted primary and sigmoidal creep behaviour of class I solid solutions. (author)

  6. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  7. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Science.gov (United States)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  8. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  9. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Nandagopal, M.; Mannan, S.L.

    2011-01-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  10. Problems and Prospects of Utilizing ICTs in Secondary Schools in ...

    African Journals Online (AJOL)

    Problems and Prospects of Utilizing ICTs in Secondary Schools in Owerri Education Zone, Nigeria. ... Annals of Modern Education ... ICT Education should be included in the secondary school curriculum while provision is made for necessary infrastructural support and massive training and development of skilled manpower ...

  11. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    Science.gov (United States)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  12. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  13. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  14. Mechanisms of transient radiation-induced creep

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  15. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications

    Science.gov (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  16. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  17. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report

    International Nuclear Information System (INIS)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J.

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q K . The influence of a preceding temperature transient up to 800 C (≤Ac 1b ) or 840 C (>Ac 1b ) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [de

  18. Estimation of the controlling stress in creep fracture

    International Nuclear Information System (INIS)

    Henderson, J.; Ferguson, F.R.

    1975-01-01

    The implementation of correct criterion in creep design, has been shown to be of fundamental significance in the assessment of component life. The present report considers the problem of the means whereby the criterion may be derived for a particular metal without the availability of sophisticated complex-stress testing equipment and procedures such as the combined tension and torsion tests on thin walled tubular specimens employed in the earlier fundamental researches on the subject. By investigating a wide spectrum of engineering metals it was established that for homogeneous stress conditions two criteria appeared to be sufficient to cover all the metals studied for complex-stress creep fracture, either the maximum principal stress or the octahedral shear stress criterion. Further, it was found that those metals which developed random and continuous cracking during creep were controlled with respect to fracture time by the maximum principal stress, while metals which showed virtually no cracking were governed by the octahedral shear stress or second order invariant. The physical nature of the final fracture (transcrystalline or inter-crystalline), contrary to considerable current concepts, was found to be unrelated to which criterion was operative. Having reduced the possible fracture criteria to two, it only remained to develop a simple test method exploiting this finding to achieve the precise identification for a particular metal. Seven metals including aluminium, copper, titanium, cast iron and three steels have been investigated in the present report at temperatures where creep conditions are operative. The results have shown that the method leads to sufficiently accurate prediction of the complex stress creep fracture criterion for the metals studied

  19. A review of creep analysis and design under multi-axial stress states

    International Nuclear Information System (INIS)

    Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2007-01-01

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented

  20. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  1. Research on Construction Optimization of Three-Connected-Arch Hydraulic Underground Cavities Considering Creep Property

    Directory of Open Access Journals (Sweden)

    Bao-yun Zhao

    2014-01-01

    Full Text Available In order to prevent the creep of surrounding rock in long-term construction, with consideration of different construction methods and other factors during the construction of large-scale underground cavity, three different construction schemes are designed for specific projects and a nonlinear viscoelastic-plastic creep model which can describe rock accelerated creeping is introduced and applied to construction optimization calculation of the large-scale three-connected-arch hydraulic underground cavity through secondary development of FLAC3D. The results show that the adoption of middle cavity construction method, the second construction method, enables the maximum vault displacement of 16.04 mm. This method results in less stress redistribution and plastic zone expansion to the cavity’s surrounding rock than the other two schemes, which is the safest construction scheme. The conclusion can provide essential reference and guidance to similar engineering for construction optimization.

  2. Transitions in creep mechanisms and creep anisotropy in Zr-1Nb-1Sn-0.2Fe sheet

    International Nuclear Information System (INIS)

    Murty, K.L.; Ravi, J.; Wiratmo

    1995-01-01

    The creep characteristics of a Zr-1Nb-1Sn-0.2Fe alloy sheet were investigated at temperatures from 773 to 923K and at stresses ranging from 9 to 150MPa along both the rolling and transverse directions. Transitions in creep mechansims are noted, with diffusional viscous creep at low stresses, viscous-glide-controlled microcreep in the intermediate stress regime and the climb of edge dislocations at high stresses. The creep anisotropy decreases with a decrease in the stress exponent and the creep rates differ by only 30% in the viscous creep regime, while an order-of-magnitude difference is noted at high stresses. The solute-strengthening effect of Nb addition is evident in the stress regime where appropriate data are available. These transitions in creep mechansims clearly reveal the dangers in blind extrapolation of short-term high stress data to low stresses and long times relevant to in-reactor conditions. The creep behavior of these materials is similar to that noted in Class I alloys, while the transitions in deformation mechanisms in Zircaloy-4 resemble those found in pure metals or Class II alloys with no viscous glide mechanism. ((orig.))

  3. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  4. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  5. Correlation of creep rate with microstructural changes during high temperature creep

    Science.gov (United States)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  6. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  7. Analysis of Current HT9 Creep Correlations and Modification

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Sohn, Dongseong; Cheon, Jin Sik

    2014-01-01

    It has high thermal conductivity, high mechanical strength and low irradiation induced swelling. However high temperature creep of HT9 has always been a life limiting factor. Above 600 .deg. C, the dislocation density in HT9 is decreased and the M 23 C 6 precipitates coarsen, these processes are accelerated if there is irradiation. Finally microstructural changes at high temperature lead to lower creep strength and large creep strain. For HT9 to be used as a future cladding, creep behavior of the HT9 should be predicted accurately based on the physical understanding of the creep phenomenon. Most of the creep correlations are composed of irradiation creep and thermal creep terms. However, it is certain that in-pile thermal creep and out-of-pile thermal creep are different because of the microstructure changes induced from neutron irradiation. To explain creep behavior more accurately, thermal creep contributions other than neutron irradiation should be discriminated in a creep correlation. To perform this work, existing HT9 creep correlations are analyzed, and the results are used to develop more accurate thermal creep correlation. Then, the differences between in-pile thermal creep and out-of-pile thermal creep are examined

  8. Biaxial creep behavior of ribbed GCFR cladding at 650/sup 0/C in nominally pure helium (99. 99%)

    Energy Technology Data Exchange (ETDEWEB)

    Yaggee, F. L.; Purohit, A.; Grajek, W. J.; Peoppel, R. B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650/sup 0/C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures.

  9. Magnetothermoelastic creep analysis of functionally graded cylinders

    International Nuclear Information System (INIS)

    Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.

    2010-01-01

    This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.

  10. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  11. Determination of safety margins for creep loaded primary circuit components in case of loss of pressure accidents of a HTR plant (SR 383)

    International Nuclear Information System (INIS)

    Breitbach, G.; Ahmed, K.; Over, H.; Schubert, F.; Nickel, H.

    1991-10-01

    The wall thickness of tubes in high temperature plants must be limited in such a way that pressure differences can not produce unadmissible deformations. For HTR (PNP-Plant) the postulated loss of secondary pressure is one of the considered accidents. In that case the tubes of the heat exchangers are loaded by the outher pressure of the primary coolant. So the risk of a creep collapse is given. The report is related to experimental and theoretical work for the creep collapse phenomena. HTR relevant tube geometries of the high temperature alloys NiCr22Co12Mo (INCONEL 617) and X10NiCrAlTi 32 20 (INCOLOY 800) were tested at temperatures of 900 and 950deg C and outer pressure loads in the range 40 bars. The experimental results are compared with theoretically computed values and discussed. The problem of safety margin is treated. Further, simplified procedures are developed for the estimation of the collapse time. (orig.) [de

  12. Creep failure of a spray drier

    CSIR Research Space (South Africa)

    Carter, P

    1998-06-01

    Full Text Available , and creep. The calculations pointed to creep, and no positive metallurgic or physical evidence was discovered to support any of the hypotheses. However, the compression stresses implied that creep deformation could have occurred without inducing discernible...

  13. FEM-calculation of different creep-tests with French and German RPV-steels

    International Nuclear Information System (INIS)

    Willschuetz, H.-G.; Altstadt, E.; Weiss, F.-P.; Sehgal, B.R.

    2003-01-01

    For calculations of Lower Head Failure experiments like FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed where the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. For an evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in 3 levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called 'tube-failure-experiments' are modeled: the RUPTHER-14 and the 'MPA-Meppen'- experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER experiments. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi55 RPV-steels, which are chemically nearly identical. If these 2 steels show a similar behavior, it should be allowed to transfer experimental and numerical data from one to the other. (author)

  14. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 2. Quantitative evaluation of microstructural damage in creep-interrupted specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1998-02-01

    Mod.9Cr-1Mo steel has a martensitic lath structure. Recovery of the lath structure takes place in the course of creep. Microstructural degradation due to the recovery results in the acceleration of creep rate and the subsequent failure of a specimen. Change of lath width during creep of the steel was quantitatively investigated to propose a residual life assessment methodology based on the recovery process. Since the steel was tempered at 1053K, the lath structure is thermally stable at the testing temperatures (848K-923K). However, recovery of lath structure readily takes place during creep, indicating that the recovery is induced by creep deformation. Lath width d increases with creep strain and saturates to a value d s determined by creep stress. The increase of d is faster at a higher stress and temperature. A normalized change in lath width, Δd/Δd s , was introduced to explain the variation of lath growth rate with creep stress and temperature. Δd is the change in lath width from the initial value d 0 , and Δd s is the difference between d s and d 0 . Δd/Δd s is uniquely related to creep strain ε and the relationship is independent of creep stress as well as creep temperature. This Δd/Δd s -ε relationship obtained by an accelerated creep test at a higher temperature or stress is applicable to any creep condition including service conditions of engineering plants. Creep strain can be evaluated from the measurement of Δd/Δd s based on the Δd/Δd s -ε relationship. A creep curve under any creep condition can readily be calculated by creep data of the steel. Combining these information one can assess residual life of a structural component made of the steel. (author)

  15. Creep test observation of viscoelastic failure of edible fats

    Energy Technology Data Exchange (ETDEWEB)

    Vithanage, C R; Grimson, M J; Wills, P R [Department of Physics, University of Auckland, Private Bag 92019 (New Zealand); Smith, B G, E-mail: cvit002@aucklanduni.ac.nz [Food Science Programmes, Department of Chemistry, University of Auckland, Private Bag 92019 (New Zealand)

    2011-03-01

    A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.

  16. Shakedown and ratchetting below the creep range

    International Nuclear Information System (INIS)

    Ponter, A.R.S.

    1983-01-01

    The report reviews current understanding of the behaviour of structure subject to variable mechanical and thermal loading below the creep range through a comparison of theoretical solutions and experimental studies. The particular characteristics of the austenitic stainless steels are emphasized in components subject to moderate primary loads and large thermal loads. The review shows that a clear classification of types of thermal loading is required in design. Two main classes, termed category A and B, exist which arise not from the magnitude of the thermal stresses but their extent through the material volume of the structure. In category A situations, the Bree plate problem being the prime example, the maximum thermal stresses occur over a volume of the structure which does not contain a mechanism of failure. As a result very large thermal stresses may be withstood without ratchetting occurring for sufficiently small mechanical loads. For category B situations, the maximum thermal stress occur within a volume of material which contains a mechanism of deformation. In such cases, the capacity of the structure to withstand thermal loading is limited by a variation of the maximum thermal stress at a material point of 2σsub(γ) where σsub(γ) is a suitably defined yield stress. This situation seems to be the most typical problem of the Liquid Metal Fast Reactor and the ''3Sm'' limit in the ASME III code restriction on secondary stress cannot be exceeded if ratchetting is to be prevented

  17. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  18. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  19. Creep deformation and rupture behaviour of 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Mythili, R.; Chandravathi, K.S.; Saroja, S.; Mathew, M.D.

    2012-01-01

    Highlights: ► Creep tests on broad temperature and stress ranges were carried out. ► Microstructural instability on creep and thermal exposures were studied using TEM. ► Creep damage tolerance factor of the material was estimated. - Abstract: This paper presents the creep deformation and rupture behaviour of indigenously produced 9Cr–1W–0.2V–0.06Ta Reduced Activation Ferritic–Martensitic (RAFM) steel for fusion reactor application. Creep studies were carried out at 773, 823 and 873 K over a stress range of 100–300 MPa. The creep deformation of the steel was found to proceed with relatively shorter primary regime followed by an extended tertiary regime with virtually no secondary regime. The variation of minimum creep rate of the material with applied stress followed a power law relation, ε m = Aσ n , with stress exponent value ‘n’ decreasing with increase in temperature. The product of minimum creep rate and creep rupture life was found to obey the modified Monkman–Grant relation. The time to onset of tertiary stage of deformation was directly proportional to rupture life. TEM studies revealed relatively large changes in martensitic sub-structure and coarsening of precipitates in the steel on creep exposure as compared to thermal exposure. Microstructural degradation was considered as the prime cause of extended tertiary stage of creep deformation, which was also reflected in the damage tolerance factor λ with a value more than 2.5. In view of the microstructural instability of the material on creep exposure, the variation of minimum creep rate with stress and temperature did not obey Dorn's equation modified by invoking Lagneborg and Bergman's concepts of back stress.

  20. A Creep Model for High-Density Snow

    Science.gov (United States)

    2017-04-01

    proportionality, Q = activation energy (Cal/mol), R = the ideal gas constant (1.985 Cal/mol K), and T = absolute temperature in Kelvin. Applying this, I...modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...this power law ). The present study used this general form as the basis for developing two creep models: one to describe the pri- mary creep and

  1. The role of creep in stress strain curves for copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Hallgren, Josefin

    2012-01-01

    Highlights: ► A dislocation based model takes into account both dynamic and static recovery. ► Tests at constant load and at constant strain rate modelled without fitting parameters. ► The model can describe primary and secondary creep of Cu-OFP from 75 to 250 °C. ► The temperature and strain rate dependence of stress strain curves can be modelled. ► Intended for the slow strain rates in canisters for storage of nuclear waste. - Abstract: A model for plastic deformation in pure copper taking work hardening, dynamic recovery and static recovery into account, has been formulated using basic dislocation mechanisms. The model is intended to be used in finite-element computations of the long term behaviour of structures in Cu-OFP for storage of nuclear waste. The relation between the strain rate and the maximum flow stress in the model has been demonstrated to correspond to strain rate versus stress in creep tests for oxygen free copper alloyed with phosphorus Cu-OFP. A further development of the model can also represent the primary and secondary stage of creep curves. The model is compared to stress strain curves in compression and tension for Cu-OFP. The compression tests were performed at room temperature for strain rates between 5 × 10 −5 and 5 × 10 −3 s −1 . The tests in tension covered the temperature range 20–175 °C for strain rates between 1 × 10 −7 and 1 × 10 −4 s −1 . Consequently, it is demonstrated that the model can represent mechanical test data that have been generated both at constant load and at constant strain rate without the use of any fitting parameters.

  2. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  3. Trunk proprioception adaptations to creep deformation.

    Science.gov (United States)

    Abboud, Jacques; Rousseau, Benjamin; Descarreaux, Martin

    2018-01-01

    This study aimed at identifying the short-term effect of creep deformation on the trunk repositioning sense. Twenty healthy participants performed two different trunk-repositioning tasks (20° and 30° trunk extension) before and after a prolonged static full trunk flexion of 20 min in order to induce spinal tissue creep. Trunk repositioning error variables, trunk movement time and erector spinae muscle activity were computed and compared between the pre- and post-creep conditions. During the pre-creep condition, significant increases in trunk repositioning errors, as well as trunk movement time, were observed in 30° trunk extension in comparison to 20°. During the post-creep condition, trunk repositioning errors variables were significantly increased only when performing a 20° trunk extension. Erector spinae muscle activity increased in the post-creep condition, while it remained unchanged between trunk repositioning tasks. Trunk repositioning sense seems to be altered in the presence of creep deformation, especially in a small range of motion. Reduction of proprioception acuity may increase the risk of spinal instability, which is closely related to the risk of low back pain or injury.

  4. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  5. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  6. Evaluation of vancomycin MIC creep in Staphylococcus aureus.

    Science.gov (United States)

    Diaz, Raquel; Ramalheira, Elmano; Afreixo, Vera; Gago, Bruno

    2017-09-01

    Vancomycin is the primary treatment for methicillin-resistant Staphylococcus aureus (MRSA). However, an increasing proportion of MRSA isolates with high minimum inhibitory concentrations (MICs) within the susceptible range (vancomycin 'MIC creep') is being observed. The aim of this study was to assess the vancomycin MIC distribution for S. aureus isolates over a period of 4 years in Centro Hospitalar Baixo Vouga (Aveiro, Portugal) and to identify differences in vancomycin MIC determined by different susceptibility testing methods. For each S. aureus isolate, the vancomycin MIC was assayed by the VITEK ® 2 automated system and the broth microdilution testing method. The results showed significant differences in vancomycin MIC by different methods (P=0.021, sign test) and did not suggest the presence of vancomycin MIC creep during the study period. Vancomycin MIC creep is a regional problem, therefore it can only be assessed through the evaluation of local susceptibility profiles, and antibiogram based on real MIC assay should be an essential element in local MRSA infection clinical management. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  7. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  8. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  9. Assessment of concrete creep and shrinkage

    International Nuclear Information System (INIS)

    Trivedi, Neha; Singh, R.K.

    2012-01-01

    B-3 model prediction of concrete creep and shrinkage strains on cylindrical specimen and BARC Containment test model (BARCOM) are presented. Experimental shrinkage strain is shown to be in agreement with B-3 model predictions for cylindrical specimen and BARCOM. Creep strain in cylindrical specimen is found to be in agreement with B-3 model. In BARCOM for wall cast in different pores, creep strain is in agreement with B-3 model in hoop direction however in longitudinal direction, observed creep strain in higher than B-3 model. For dome structure cast in a single pour, experimental creep strain shows confirmity with B-3 model both in hoop and longitudinal directions. The study on concrete aging and average longitudinal shrinkage strain is carried out. (author)

  10. Irradiation-induced creep in graphite: a review

    International Nuclear Information System (INIS)

    Price, R.J.

    1981-08-01

    Data on irradiation-induced creep in graphite published since 1972 are reviewed. Sources include restrained shrinkage tests conducted at Petten, the Netherlands, tensile creep experiments with continuous strain registration at Petten and Grenoble, France, and controlled load tests with out-of-reactor strain measurement performed at Oak Ridge National Laboratory, Petten, and in the United Kingdom. The data provide reasonable confirmation of the linear viscoelastic creep model with a recoverable transient strain component followed by a steady-state strain component, except that the steady-state creep coefficient must be treated as a function of neutron fluence and is higher for tensile loading than for compressive loading. The total transient creep strain is approximately equal to the preceding elastic strain. No temperature dependence of the transient creep parameters has been demonstrated. The initial steady-state creep coefficient is inversely proportional to the unirradiated Young modulus

  11. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  12. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  13. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  14. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  15. Point defects and the creep of metals

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1976-01-01

    Basic concepts felt to be important in diffusion-controlled creep of metals are reviewed and it is suggested that such creep is controlled by edge-dislocation climb under a rather wide range of conditions. The effect of a damage-producing flux on such creep processes is explored. It is shown that processes such as Herring-Nabarro creep are unaffected by irradiation. Evidence is presented for a climb-plus-glide mechanism of radiation creep for stresses above unirradiated yield or flow stresses. At lower stresses a preferential dislocation loop nucleation model is suggested

  16. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  17. Radiation effects on time-dependent deformation: Creep and growth

    International Nuclear Information System (INIS)

    Simonen, E.P.

    1989-03-01

    Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb-glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed. 53 refs., 18 figs., 1 tab

  18. CHOICE THEORY OF CREEP DEFORMATION FOR EVALUATION OF LONG FINE-GRAINED AUTOCLAVED AERATED CONCRETE IN VIEW OF FACTORS CARBONIZATION

    Directory of Open Access Journals (Sweden)

    D. K-S. Bataev

    2015-01-01

    Full Text Available Experimental data on the effect of the age of autoclaved aerated concrete with and without carbonation factor to change its physical and mechanical characteristics, as well as by the amount of creep deformation and degree of reversibility. It was found that the solution of applied problems creep theory for structures of autoclaved aerated concrete, in accordance with their carbonation from the effects of atmospheric carbon dioxide, it is necessary to use the theory of elastic-creeping body on the basis of function creep measures in the form proposed by prof. S.V. Alexandrovsky. 

  19. Problems of discipline in primary and secondary school: Teachers' opinions

    Directory of Open Access Journals (Sweden)

    Savović Branka B.

    2002-01-01

    Full Text Available Investigations carried out in late 2001 in primary and secondary schools of Belgrade, Novi Sad and Niš comprised students, teachers and associates. The aim of investigations was to get insight into the state-of-the-arts problems and needs of our primary and secondary schools. The paper is a part of investigations, related to the results obtained for students' opinions of their interrelations with teachers as well as opinions of teachers themselves. The sample comprised 727 students of 4th grade of secondary vocational and high schools, 562 students of 8th grade of primary schools 168 secondary school and 107 primary school teachers. We investigated their interrelationships and within this framework the level of potential or current aggressive behavior. The majority of teachers (51% estimated student-teacher relationships mediocre - neither good nor bad. The most frequent problem in students' behavior is, according to the teachers instruction disturbance. One-quarter of teachers find that students offend them, ridicule them, or mock at them in front of others, and 5 per cent complain of physical injury intimidation on the part of students. When a problem comes up, 18 per cent of teachers talk with a student, and nearly 10 per cent of teachers give lower grades in their subject, so as to punish a student for undisciplined behaviors. In teachers' opinion, society, school the least, is to be blamed for the situation.

  20. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  1. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  2. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools

    Science.gov (United States)

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah

    2017-01-01

    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  3. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  4. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  5. Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Kawasaki, Megumi; Beyerlein, Irene J.; Vogel, Sven C.; Langdon, Terence G.

    2008-01-01

    High-purity aluminum was processed by equal-channel angular pressing (ECAP) and then tested under creep conditions at 473 K. The results show conventional power-law creep with a stress exponent of n = 5 which is consistent with an intragranular dislocation process involving the glide and climb of dislocations. It is demonstrated that diffusion creep is not important in these tests because the ultrafine grains produced by ECAP are not stable at this temperature. Texture measurements were undertaken using the high-pressure preferred orientation neutron time-of-flight diffractometer and they reveal significant differences in the evolution of texture during creep in pressed and unpressed specimens. These experimental measurements of texture are in excellent agreement with theoretical textures predicted using a visco-plastic self-consistent model that limits deformation to plastic slip. The calculations provide additional confirmation that creep occurs through an intragranular dislocation process

  6. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  7. Review of recent irradiation-creep results

    International Nuclear Information System (INIS)

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references

  8. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  9. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.

    Science.gov (United States)

    Harrison, William; Abdallah, Zakaria; Whittaker, Mark

    2014-03-14

    Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component's service life and to quantify the effects of creep on fatigue life. The theta (θ) projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  10. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  11. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  12. Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jun Min; Lee, Han Sang; Kim, Yun Jae [Korea Univ., Daejeon (Korea, Republic of)

    2017-08-15

    Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the Mα-tangent method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep.

  13. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  14. Model for transient creep of southeastern New Mexico rock salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important

  15. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    A creep constitutive equation of Hastelloy X was obtained from available experimental data. A sensitivity analysis of this creep constitutive equation was carried out. As the result, the following were revealed: (i) Variations in creep behavior with creep constitutive equation are not small. (ii) In a simpler stress change pattern, variations in creep behavior are similar to those in the corresponding fundamental creep characteristics (creep strain curve, stress relaxation curve, etc.). (iii) Cumulative creep damage estimated in accordance with ASME Boiler and Pressure Vessel Code Case N-47 from a stress history predicted by ''the standard creep constitutive equation'' which predicts the average behavior of creep strain curve data is not thought to be on the safe side on account of uncertainties in creep damage caused by variations in creep strain curve. (author)

  16. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  17. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  18. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  19. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  20. Creep Properties of Walikukun (Schouthenia ovata Timber Beams

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-09-01

    Full Text Available This study presents an evaluation of creep constants of Walikukun (Schoutheniaovata timber beams when rheological model of four solid elements, which is obtained byassembling Kelvin and Maxwell bodies in parallel configuration, was adopted. Creep behaviorobtained by this method was further discussed and compared with creep behavior developedusing phenomenological model of the previous study. Creep data of previous study was deformationmeasurement of Walikukun beams having cross-section of 15 mm by 20 mm with a clearspan of 550 mm loaded for three weeks period under two different room conditions: with andwithout Air Conditioner. Creep behavior given by both four solid elements model and phenomenological(in this case are power functions had good agreement during the period of creepmeasurement, but they give different prediction of creep factor beyond this period. The powerfunction of phenomenological model could give a reasonable creep prediction, while for the foursolid elements model a necessary modification is required to adjust its long-term creep behavior.

  1. Creep behavior of concrete under multiaxial stress at elevated temperature, 1

    International Nuclear Information System (INIS)

    Ohgishi, Sakichi; Kishitani, Koichi; Oshima, Hisaji; Kosaka, Yoshio; Shiire, Toyokazu.

    1977-01-01

    The field of application of concrete structures is extended to that of low and high temperature and dynamic loading. The creep of concrete has been studied under one, two or three axis compression below 80 deg. C, and this is owing to the design standards for PCPVs in Europe and America adopting the design temperature below 80 deg. C. However, the design temperature for PCPVs is expected to rise, and the high temperature, three axis creep of concrete must be studied to examine the physical property and thermodynamics in wide range of temperature, such as free energy gradient, the behavior of adsorbed water molecules, and activating energy, which control the creep. In this study, various problematical points in the development of a testing apparatus which can make three axis compression creep test from 300 to 500 deg. C were pointed out, and the measures to solve them were investigated. The creep testing apparatus was actually manufactured for trial, and the performance was tested. The design conditions for the testing apparatus, the problems in the manufacture, the selection of materials, and the results of trial are described. As for the pressurizing media, oil is used up to 180 deg. C, mercury up to 300 deg. C, and molten anatomical alloy in nitrogen atmosphere up to 500 deg. C. Buried Ailtech gauges can be used for the strain measurement up to 320 deg. C. The leakpreventing method for various penetrations was developed successfully. (Kako, I.)

  2. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  3. Creep resistance in a new alloy based on Fe3Al

    International Nuclear Information System (INIS)

    Morris, D.G.

    1994-01-01

    Iron aluminide alloys based on the composition Fe 3 Al are receiving considerable attention as structural materials for applications at high temperatures in view of their excellent resistance to oxidation and corrosion as well as reasonable mechanical properties. Recently, problems associated with poor ductility at room temperature have been alleviated by small additions of Cr and by microstructure control, as well by as the realization that the low ductility is, in part, extrinsic behavior due to environmental attack. These materials suffer also from a loss of their good strength at temperatures above about 600 C, and recent attention has led also to the development of creep resistant alloys. The present report considers a new alloy developed for improved creep resistance which shows also good oxidation and erosion resistance. Effort has been devoted to an examination of the dislocation structures that characterize deformation, both cold and hot, during fast tensile straining as well as during creep testing

  4. Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-06-01

    Full Text Available Previous investigations indicate that the creep resistance of magnesium alloys is proportional to the stability of precipitated intermetallic phases at grain boundaries. These stable intermetallic phases were considered to be effective to suppress the deformation by grain boundary sliding, leading to the improvement of creep properties. Based on this point, adding the alloying elements to form the stable intermetallics with high melting point became a popular way to develop the new creep resistant magnesium alloys. The present investigation, however, shows that the creep properties of binary Mg–Sn alloy are still poor even though the addition of Sn possibly results in the precipitation of thermal stable Mg2Sn at grain boundaries. That means other possible mechanisms function to affect the creep response. It is finally found that the poor creep resistance is attributed to the segregation of Sn at dendritic and grain boundaries. Based on this observation, new approaches to improve the creep resistance are suggested for magnesium alloys because most currently magnesium alloys have the commonality with the Mg–Sn alloys.

  5. The effects of adding molybdenum and niobium on the creep strength of 18Cr-10Ni-20Co austenitic steel

    International Nuclear Information System (INIS)

    Tomono, Yutaka

    1987-01-01

    The decrease in the creep strength of structural materials during service at elevated temperatures is a very important problem that affects the security of plants and machinery. The improvement in the creep strength of 18Cr-10Ni-20Co austenitic steel achieved through the addition of molybdenum and niobium was studied in tests carried out at 973K and 1,073K. The creep strengthening mechanism was examined using transmission electron micrographs, X-ray diffraction, etc. The results obtained are summarized as follows: (1) The creep strength of low C-18Cr-10Ni-20Co austenitic steel with molybdenum was greatly improved by the addition of niobium up to 1% by weight. In the case of long-term creep, no trend toward decreasing creep strength was observed. (2) The creep strength of austenitic steel possessing a matrix strengthened with molybdenum can be improved through the addition of niobium combined with precipitation hardening with fine carbides precipitated in the grains. (author)

  6. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  7. Life assessment of Mod.9Cr-1Mo steel. Quantitative evaluation of microstructural damage in creep interrupted specimens and in creep-fatigue specimens

    International Nuclear Information System (INIS)

    Maruyama, Kouichi; Kato, Syoichi; Nagae, Yuji

    1999-02-01

    Boiler and steam turbine components in power generating plants are used under creep and creep-fatigue conditions. It is important to measure both creep and creep-fatigue damage of the components in order to assess the residual life of the components. Modified 9Cr-1Mo steel, a candidate material for steam generator in FBR, has a tempered martensitic lath structure. It was proposed in the second report that lath width in the lath structure is closely related to creep strain, and using this relation one can assess residual creep life of a structural component made of the steel. The objectives of this study are to investigate the change of the lath structure during creep.fatigue deformation, and to estimate creep strain by measuring area of cell composing the lath structure. The area of cell can be a better measure of creep deformation than the lath width. The lath structure is covered during creep-fatigue deformation. The lath structure becomes equiaxed cell structure under creep-fatigue more quickly compared with the lath structure recovered during creep. The lath structure recovered under creep-fatigue has a stationary value of the lath width determined by maximum stress at Nf/2. (Nf: number of cycles) If the recovery process of the lath structure can be investigated under creep-fatigue, the lath width can be a measure of the life assessment under creep-fatigue. Area of cell composing the lath structure increases with creep deformation and reaches a stationary value S s determined by creep stress. The rate of increase in the area is faster at a higher stress and temperature. A normalized change in the area of cell, ΔS/ΔS s , was introduced as a measure of the recovery process of martensitic lath structure. ΔS is the change in area of cell from the initial value S 0 , ΔS s is the difference between S s and S 0 . ΔS/ΔS s is uniquely related to creep strain independent of creep conditions. However, the scatter of data in ΔS/ΔS s -strain relation is wider than

  8. Irradiation creep in simple binary alloys

    International Nuclear Information System (INIS)

    Nagakawa, J.; Sethi, V.K.; Turner, A.P.L.

    1981-07-01

    Creep enhancement during 21-MeV deuteron irradiation was examined at 350 0 C for two simple binary alloys with representative microstructures, i.e., solid-solution (Ni - 4 at. % Si) and precipitation-hardened (Ni - 12.8 at. % Al) alloys. Coherent precipitates were found to be very effective in suppressing irradiation-enhanced creep. Si solute atoms depressed irradiation creep moderately and caused irradiation hardening via radiation-induced segregation. The stress-dependence of irradiation creep in Ni - 4 at. % Si should a transition, which seems to reflect a change of mechanism from dislocation climb due to stress-induced preferential absorption (SIPA) to climb-controlled dislocation glide enhanced by irradiation

  9. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  10. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  11. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...... is quite stable and convergence can be reached also with big time steps. Keywords: Viscoplasticity, creep, unified constitutive model, aluminum, high temperature....

  12. The effect of vacuum environment on creep rupture properties of Inconel 617 at 1000 deg C

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Imamura, Riuzo

    1981-01-01

    The creep rupture strength of nickel-base superalloy in weakly acidic gas at high temperature above 1000 deg C lowers remarkably as compared with that in the atmosphere, and this problem is one of the important subjects in connection with the research and development of high temperature heat exchangers for multi-purpose high temperature gas-cooled reactor system being developed in Japan. In the case of Inconel 617, abnormal decarbonization phenomenon occurs in weakly acidic gas, and this is regarded as the cause of lowering the creep strength. In this study, the effects of the decarbonization in weak vacuum at 1000 deg C and the oxidation of Inconel 617 on its crack occurrence and propagation were clarified experimentally with notched plate test pieces. The material used was Inconel 617 nickel-base superalloy made by Huntington Alloys Inc. in the U.S. The creep rupture experiment was carried out with a simple tension creep tester. At the nominal stress of 3.5 kg/mm 2 , the creep rupture time in 0.3 Torr was the shortest when the grain size was 78 μm, and the creep rupture time increased as the grain size became larger. The creep rupture time in 0.3 Torr decreased to a half of that in the atmosphere. In 0.3 Torr, cracks occurred early, and propagated fast as compared with in the atmosphere. This is because the local creep velocity at the bottom of notches and in front of creep cracks is fast owing to the lack of protective oxide film. (Kako, I.)

  13. ESTIMATION MODEL OF RESIDUAL LIFE-TIME OF LOCOMOTIVE FRAME BOGIE WITH ALLOWANCE FOR CREEP

    Directory of Open Access Journals (Sweden)

    V. R. Skalskyi

    2014-12-01

    Full Text Available Purpose. The problem of determining the residual life of frame bogie elements of locomotives is a great importance for predicting their work safely and avoidance potential failures on the track. This especially concern cases when such elements have creep-fatigue cracks which grow under action of cyclic loading with excerpts T1 in the cycle and reach their critical size. Here the question of the propagation of such defects (cracks arises, their kinetics and about the period of subcritical cracks growth. The aim is to develop a calculation model for determination the period of subcritical creep-fatigue cracks growth in the bogies frames of electric locomotive. The model takes into account the basic parameters of load, geometry of the construction element and cracks. Methodology. The calculation model for determination the period of subcritical creep-fatigue cracks growth in structural elements of frame under conditions of variable load time has been formulated. It is based on the first law of thermodynamics concerning to mechanics of solids slow fracture at low temperature creep and variable loadings. It is assumed that the period of unsteady creep dominates here (the first section of the creep curve. Low-temperature creep is creep of materials at temperatures T0 < 0,5Tmp, where Tmp − the melting point of the material. Findings. The analytical formula for the determination of the stress intensity factor of truck bolster with technological hole has been obtained. It is shown that by experimentally established constants of the material using the proposed analytical relations can easily determine residual resource of the bogie frame elements. Originality. The new mathematical model for describing the kinetics of creep-fatigue cracks growth in the frames bogies of electric locomotive under variable in time loadings with various time excerpts and on this base the period determination of subcritical crack growth has been proposed. Practical value

  14. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  15. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  16. Study of the creep of lime-stabilised zirconia

    International Nuclear Information System (INIS)

    Saint-Jacques, Robert G.

    1971-09-01

    This research thesis reports the study of creep of stabilised zirconia containing between 13 and 20 per cent of lime, at temperatures between 1.200 and 1.400 C, and under compression stresses between 500 and 4.000 pounds by square inch. Specimens are polycrystalline with an average grain diameter between 7 and 29 microns. The author notably shows that the creep rate of lime-stabilised zirconia is directly proportional to the applied stress, and that the creep apparent activation energy is close to activation energy of volume self-diffusion of calcium and zirconium in lime-stabilised zirconia. Results of creep tests show that, in the studied conditions, the creep rate is directly proportional to the inverse of the grain average diameter, and this is in compliance with the Gifkins and Snowden theory of creep by sliding at grain boundaries. The author also shows that the creep rate of the lime stabilised zirconia varies with lime content, and reaches a maximum when zirconia contains about 15 per cent of lime. Lower creep rates obtained for higher and lower lime contents are explained [fr

  17. Creep-rupture tests on chromium-containing conventional and ODS steels in oxygen-controlled Pb and air at 650 °C

    International Nuclear Information System (INIS)

    Yurechko, Mariya; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2014-01-01

    Highlights: • Generally superior creep performance of ODS steels with 12–14% Cr is indicated. • Strength of 9Cr-ODS at 650°C approaches conventional 9Cr steels at decreasing load. • ODS steels show brittle primary and ductile residual fracture. • Apparent link between secondary creep rate and fracture mode of ODS steels. • Clear impact of liquid Pb at low load, corresponding to long time-to-rupture. - Abstract: Conventional martensitic steels with 9 mass% chromium (Cr), namely T91 and P92, and ODS steels with 9, 12 and 14 mass% Cr, respectively, were subjected to creep-rupture tests in stagnant oxygen-controlled lead (Pb) at 650 °C and c o = 10 −6 mass% dissolved oxygen. The 9Cr conventional steels were tested in the liquid metal at static engineering stress in the range from 75 to 200 MPa. 12 and 14Cr ODS were tested at 190–400 MPa, and 9Cr ODS at 75–300 MPa. Reference tests in stagnant air were carried out in the same stress ranges. The ODS steels with 12 or 14 mass% Cr, mainly tested in oxygen containing Pb, clearly exhibit a change in the stress-dependence of secondary creep rate and appearance of fracture surface at 330–400 MPa. No such change has been observed for 9Cr ODS so far. The conventional martensitic steel P92 shows a significant drop in creep strength accompanied by reduced necking and a change from ductile to brittle fracture when tested in Pb at 75 MPa (time-to-rupture t R = 13,090 h)

  18. Accelerated diffusion controlled creep of polycrystalline materials. Communication 1. Model of diffusion controlled creep acceleration

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1998-01-01

    The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe

  19. Long-term creep test with finite elements

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1975-01-01

    Following a presentation of concrete creep, a brief summary of the direct and incremental calculation methods for long-term creep behaviour is given. In addition, a survey on the methods of the inner state variables is given which, on the one hand, gives a uniform framework for the various formulations of concrete creep, and on the other hand leads to a computable calculation method. Two examples on long-term creep behaviour illustrate the application field of the calculation method. (orig./LH) [de

  20. Creep of fissile ceramic materials under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1975-01-01

    Theoretical estimation of the irradiation-induced creep rate of U0 2 by a modification of the Nabarro-Herring model for diffusional creep resulted in a creep rate range between about 6 x 10 -6 to 8 x 10 -5 h -1 for a fission rate of 1 x 10 14 f/cm 3 s and a stress of 2 kgf/mm 2 . Accordingly, the creep rate is enhanced by irradiation at temperatures below 1000 0 to 1200 0 C. It is essentially due to the 'thermal rods' along the fission fragment tracks. Therefore, irradiation-induced creep rates should depend only slightly on temperature and must be markedly lower for carbide and nitride fuel. In-reactor creep experiments on UO 2 were performed at fuel temperatures between 250 0 to 850 0 C. At burnups between 0.3 to 3% the steady-state compressive creep rates are proportional to stress (0 to 4 kgf/mm 2 ) and to fission rate (1 x 10 13 to 2 x 10 14 f/cm 3 s), and are in the range estimated before. The increase in the creep rate with increasing temperature is low and corresponds to an apparent activation energy of only 5200 cal/mol. At burnups above 3 to 4% the stress exponent of the irradiation-induced creep rate increased from n = 1 to n = 1.5. Creep measurements on UO 2 to 15 wt-%Pu0 2 (mechanically mixed, sintered density 86% TD) showed the same temperature dependence as UO 2 below 700 0 C. However, the creep rates were higher by a factor of about 20 compared to fully dense UO 2 . This difference may be explained by assuming a high 'effective' porosity. In-pile creep tests on some UN samples resulted in creep rates that were lower by an order of magnitude than for UO 2 under comparable conditions. (author)

  1. Irradiation creep and growth behavior of Zircaloy-4 inner shell of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jong-Ha; Cho, Yeong-Garp; Kim, Jong-In [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2012-03-15

    The inner shell of the reflector vessel of HANARO was made of Zircaloy-4 rolled plate. Zircaloy-4 rolled plate shows highly anisotropic behavior by fast neutron irradiation. This paper describes the analysis method for the irradiation induced creep and growth of the inner shell of HANARO. The anisotropic irradiation creep behavior was modeled as uniaxial strain-hardening power law modified by Hill's stress potential and the anisotropic irradiation growth was modeled by using volumetric swelling with anisotropic strain rate. In this study, the irradiation induced creep and growth behavior of the inner shell of the HANARO reflector vessel was re-evaluated. The rolling direction, the fast neutron flux, and the boundary conditions were applied with the same conditions as the actual inner shell. Analysis results show that deformation of the inner shell due to irradiation does not raise any problem for the lifetime of HANARO. (author)

  2. Effect of Long-Term Thermal Exposures on Microstructure and Impression Creep in 304HCu Grade Austenitic Stainless Steel

    Science.gov (United States)

    Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.

    2017-10-01

    This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.

  3. A numerical approach to predict the long-term creep behaviour and precipitate back-stress evolution of 9-12% chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, I.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Kozeschnik, E. [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Vienna Univ. of Technology (Austria). Christian Doppler Lab. ' Early Stages of Precipitation'

    2010-07-01

    The mechanical properties of modern 9-12% Cr steels are significantly influenced by the presence and stability of different precipitate populations. These secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a remarkable change in the obstacle effect of these precipitates on dislocation movement. In the present work, the experimentally observed creep rupture strength of a modified 9-12% Cr steel developed in the European COST Group is compared to the calculated maximum obstacle effect (Orowan threshold stress) caused by the precipitates present in the investigated alloy for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed. (orig.)

  4. Correlation of Creep Behavior of Domal Salts

    International Nuclear Information System (INIS)

    Munson, D.E.

    1999-01-01

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable

  5. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements

    International Nuclear Information System (INIS)

    Grenier, P.

    1966-06-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the α and β phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the α - β transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the β phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [fr

  6. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  7. Diffusion creep and its inhibition in a stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.

    1977-01-01

    The creep of 20% Cr, 25% Ni, Nb stainless steel was examined at low stresses and temperatures around 0.55 T/sub m/. The initial creep behaviour was consistent with the Coble theory of grain boundary diffusion creep; however, steady state creep was not observed and the creep rates quickly fell below the Coble theoretical values although they still remained greater than the Herring--Nabarro predictions. This reduction in creep rate was attributable to an increase in the effective viscosity of the steel rather than to any change in threshold stress. A model is proposed which explains the initial creep rates as being due to Coble creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. 11 figures

  8. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  9. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  10. New considerations on variability of creep rupture data and life prediction

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Jeong, Won Taek; Kong, Yu Sik

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in thee creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time and state steady creep rate on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

  11. New Considerations on Variability of Creep Rupture Data and Life Prediction

    International Nuclear Information System (INIS)

    Jung, Won Taek; Kong, Yu Sik; Kim, Seon Jin

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model

  12. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  13. Multiaxial creep behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Findley, W.N.; Mark, R.

    1975-07-01

    Tests in combined tension-torsion, pure tension and pure torsion, were conducted at elevated temperature (about 1100 0 F). Most of these tests were repeats of previous experiments where friction in the extensometer caused anomalous creep behavior. The existence of a creep surface at 12.5 ksi effective Mises stress was explored. Work on a compression creep apparatus continued. Creep and recovery data were fitted to the equation epsilon/sub ij/ = epsilon 0 /sub ij/ + e + /sub ij/t/sup n//sub ij/ by means of a least squares method. (5 tables, 10 fig) (auth)

  14. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  15. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  16. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  17. Creep of Two-Phase Microstructures for Microelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)

    1998-12-01

    The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a

  18. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  19. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  20. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  1. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  2. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  3. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  4. Creep life assessment of Mod.9Cr-1Mo steel. Pt. 1. Quantitative evaluation of microstructural damage in creep rupture specimens

    International Nuclear Information System (INIS)

    Sawada, Kota; Maruyama, Kouichi; Komine, Ryuji; Nagae, Yuji

    1997-03-01

    Several microstructural changes take place in a material during the course of creep. These changes can be a measure of creep life consumption. In this paper, microstructural changes in Mod.9Cr-1Mo steel were studied in order to examine their ability as the measure of creep life consumption. Macroscopic structural changes, such as void growth, rotation of lath structure toward the tensile axis and elongation of grains, are evident only in the necked portion of ruptured specimens. These macroscopic structural changes are not useful for creep life assessment. Lath width increases and dislocation density within lath decreases with increasing creep duration. These changes in dislocation substructure start in the early stage of creep life, and cause the increase of strain rate in the tertiary creep stage. The lath width and the dislocation density reach a stationary value before rupture. The stationary values are independent of temperature, and uniquely related to creep stress normalized by shear modulus. The extent of these microstructural changes are greater at lower stresses under which the material is practically used. These facts suggest that the lath width and the dislocation density within lath can be a useful measure of creep life consumption. Hardness of crept specimens is closely related to the lath width and the dislocation density within lath. The changes of these microstructural features can be evaluated by the measurement of hardness. (author)

  5. Flux-pinning-induced stresses in a hollow superconducting cylinder with flux creep and viscosity properties

    International Nuclear Information System (INIS)

    Feng, W.J.; Gao, S.W.

    2014-01-01

    Highlights: • Magnetoelastic problem for a superconducting cylinder with a hole is investigated. • The effects of both flux creep and viscous flux flow on stresses are analyzed. • For the FC case, the maximal hoop tensile stress always occurs at hole edge. • For the ZFC case, the maximal hoop stress is not certain to occur at hole edge. - Abstract: The magnetoelastic problem for a superconducting cylinder with a concentric hole placed in a magnetic field is investigated, where the flux creep and viscous flux flow have been considered. The stress distributions are derived and numerical calculated for the descending field in both the zero-field cooling (ZFC) and field cooling (FC) processes. The effects of applied magnetic field, flux creep and viscous flux flow on the maximal radial and hoop stresses are discussed in detail, and some novel phenomena are found. Among others, for the FC case, the maximal hoop tensile stress always occurs at the hole edge, whist for the ZFC case, the maximal stresses including both hoop and radial stresses either occur in the vicinity of the hole or occur at the position of flux frontier in the remagnetization process. For the descending field, in general, both the flux creep and viscosity parameters have important effects on the maximal radial and hoop stresses. All these phenomena are perhaps of vital importance for the application of superconductors

  6. Creep characteristics of single crystalline Ni3Al(Ta,B)

    International Nuclear Information System (INIS)

    Wolfenstine, J.; Earthman, J.C.

    1994-01-01

    The creep characteristics, including the nature of the creep transient after a stress reduction and activation energy for creep of single crystalline Ni 3 Al(Ta,B) in the temperature range 1,083 to 1,388 K, were investigated. An inverse type of creep transient is exhibited during stress reduction tests in the creep regime where the stress exponent is equal to 3.2. The activation energy for creep in this regime is equal to 340 kJ mol -1 . A normal type of creep transient is observed during stress reduction tests in the regime where the stress exponent is equal to 4.3. The activation energy for creep in this regime is equal to 530 kJ mol -1 . The different transient creep behavior and activation energies for creep observed in this investigation are consistent with the previous suggestion that the n = 4.3 regime is associated with creep by dislocation climb, whereas the n = 3.2 regime is associated with a viscous dislocation glide process for Ni 3 Al at high temperatures

  7. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  8. Irradiation creep and creep rupture of titanium-modified austenitic stainless steels and their dependence on cold work level

    International Nuclear Information System (INIS)

    Garner, F.A.; Hamilton, M.L.; Eiholzer, C.R.; Toloczko, M.B.; Kumar, A.S.

    1991-11-01

    A titanium-modified austenitic type stainless steel was tested at three cold work levels to determine its creep and creep rupture properties under both thermal aging and neutron irradiation conditions. Both the thermal and irradiation creep behavior exhibit a complex non-monotonic relationship with cold work level that reflects the competition between a number of stress-sensitive and temperature-dependent microstructural processes. Increasing the degree of cold work to 30% from the conventional 20% level was detrimental to its performance, especially for applications above 550 degrees c. The 20% cold work level is preferable to the 10% level, in terms of both in-reactor creep rupture response and initial strength

  9. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  10. Irradiation creep due to SIPA-induced growth

    International Nuclear Information System (INIS)

    Woo, C.H.

    1980-01-01

    An additional contribution to irradiation creep resulting from the stress-induced preferred adsorption (SIPA) effect is described - SIPA-induced growth (SIG). The mechanism of SIG is discussed and an expression for its contribution to irradiation creep developed. It is shown that SIG is very significant in comparison with SIPA. Enhancement of creep by swelling may also occur. (U.K.)

  11. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  12. Application of the cracked pipe element to creep crack growth prediction

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, J.; Charras, T.

    1997-04-01

    The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

  13. A contribution to the question of creep and relaxation of concrete under high temperatures

    International Nuclear Information System (INIS)

    Schneider, U.

    1979-01-01

    It was initially shown that, in dealing with the high temperature problem, it is expedient to distinguish certain material properties in terms of isothermal and non-isothermal conditions. A general equation of state could be derived to describe the key question complex relating to deformation behaviour of concrete under high temperatures. For the case of an isothermal temperature load under 100 0 C numerous measurement results are available from the literature. The creep behaviour of light and normal concrete up to 450 0 C was investigated and discussed. Pre-storage, concrete utilization, inelastic deformation and the influence of conditions of stress in the heat-up phase on high-temperature creep were treated. It could be shown on the basis of numerous evaluations and computer studies that also under high temperature conditions the creep behaviour of concrete is best described in terms of exponential functions. Preliminary experimental results on creep behaviour under transient temperature conditions have already been published within the framework of the sub-project ''fire properties of components''. These results, together with new measurement values have been subjected to theoretical analysis. The creep functions (phi-functions) for light and normal concrete developed for the transient temperature state constitute an important part of this work. Various suggestions have been made for criteria of failure for concrete at high tempratures. For the transient state a critical concrete temperature can be specified. Investigations on rates of deformation at the time of failure have shown that a so-called high level and low level is possible. The question of high temperature relaxation of conrete was studied both experimentally and theoretically. The constraining force problem was considered in detail in this research for comparison purposes since it offers a number of possibilities for new approaches and solutions particularly from a theoretical viewpoint. (orig

  14. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  15. Datalogger for the creep laboratory

    International Nuclear Information System (INIS)

    Sambasivan, S.I.; Karthikeyan, T.V.; Chowdhary, D.M.; Anantharaman, P.N.

    1989-01-01

    The creep laboratory, MDL/ICGAR is a facility to study the creep properties of materials which are of interest to the fast reactor programme. The creep test is conducted over a few days to several months and years depending on the test variables employed. In these tests the creep strain and creep rate as a function of time are studied while the load and temperature are kept constant. The datalogger automates the process of recording the strain information as a function of time and also monitors the temperature throughout the test. The system handles 126 temperature channels and 42 strain channels from 27 machines. The temperature inputs are from the thermocouples and for cold junction compensation RTD's are used. An extensometer with a linear variable differential transformer (LVDT) or Super Linear Variable Capacitor (SLVC) form the set up to measure strain. The data logger consists of a front end analog input sub-system (AISS), a 8085 based Data Acquisition System (DAS) communicating to a microcomputer with CP/M operating system. The system responds to the user through the console and outputs of a dot matrix printer. The system, running a real time executive, also allows for on line enabling or disabling of a channel, printing of data, examining the current status and value, setting and getting time etc. (author)

  16. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  17. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  18. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In the case of the time fraction approach the rupture strength is used to calculate creep damage, whereas creep ductility is used in the ductility exhaustion approach. In part I of this paper the methods that are used to determine these material properties are applied to some creep and constant strain rate tests on a Type 347 weld metal. In addition, new developments to the ductility exhaustion approach are described which give improved predictions of creep damage at failure in these tests. These developments use reverse modelling to determine the most appropriate creep damage model as a function of strain rate, stress and temperature. Hence, the new approach is no longer a ductility exhaustion approach but is a true creep damage model

  19. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    Science.gov (United States)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  20. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  1. Advances in the assessment of creep data

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, S.R.

    2010-07-01

    Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s, and their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the capability of the analytical tools available at the time. The formation of ECCC (the European Creep Collaborative Committee) in 1991, with a main objective of providing reliable peer reviewed long-time creep property values for European Design and Product Standards, led to the development of rigorous assessment procedures such as PD6605 and DESA incorporating post assessment tests to verify: physical realism, effectiveness of model-fit within the range of the source experimental data, and extrapolation credibility. The first ECCC assessment recommendations published in 1996 undoubtedly provided a catalyst for others to exploit the availability of low cost, powerful desktop computers to develop rigorous methodologies for the physically realistic analysis of uniaxial and multi-axial data for the reliable and accurate characterisation of creep strain, and rupture strength and ductility properties. More recent improvements in data assessment methodologies have been driven by the need to effectively model the creep deformation and rupture characteristics of the complex new generation alloys and fabrications being designed to cater for the continually evolving requirements of modern advanced power plant. These advances in the assessment of creep data are reviewed. (orig.)

  2. Numerical treatment of creep crack growth

    International Nuclear Information System (INIS)

    Kienzler, R.; Hollstein, T.

    1990-06-01

    To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)

  3. Vortex pinning and creep experiments

    International Nuclear Information System (INIS)

    Kes, P.H.

    1991-01-01

    A brief review of basic flux-pinning and flux-creep ingredients and a selection of experimental results on high-temperature-superconductivity compounds is presented. Emphasis is put on recent results and on those properties which are central to the emerging understanding of the flux-pinning and flux-creep mechanisms of these fascinating materials

  4. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  5. CANSWEL-2: a computer model of the creep deformation of Zircaloy cladding under loss-of-coolant accident conditions

    International Nuclear Information System (INIS)

    Haste, T.J.

    1982-07-01

    The CANSWEL-2 code models cladding creep deformation under conditions relevant to a loss-of-coolant accident (LOCA) in a pressurised water reactor (PWR). It considers in detail the centre rod of a 3 x 3 nominally square array, taking into account azimuthal non-uniformities in cladding thickness and temperature, and the mechanical restraint imposed on contact with neighbouring rods. Any of the rods in the array may assume a non-circular shape. Models are included for primary and secondary creep, dynamic phase change and superplasticity when both alpha- and beta-phase Zircaloy are present. A simple treatment of oxidation strengthening is incorporated. Account is taken of the anisotropic creep behaviour of alpha-phase Zircaloy which leads to cladding bowing. The CANSWEL-2 model is used both as a stand-alone code and also as part of the LOCA analysis code MABEL-2. (author)

  6. Macroscopic flux-creep magnetization of superconductors in applied magnetic field and local change peculiarities of their differential resistivity

    International Nuclear Information System (INIS)

    Romanovskii, V.R.

    2003-01-01

    The physical peculiarities of the flux-creep dynamics of low- and high-temperature superconductors placed in external varying magnetic field are studied. The flux-creep problem was studied for the partial penetration state. The proposed analysis was based on the macroscopic description of the flux creep by power and exponential equations of current-voltage characteristics of superconductors. It is shown that during flux creep the screening current penetrates into the superconductor at a finite velocity. Therefore, inside the superconductor a moving boundary of a magnetization region appears like in the critical state model. The time-dependent equations of screening current front have been written. However, unlike the critical state model nontrivial conditions are fulfilled at the moving boundary. They describe the smooth transition of the electromagnetic field induced by external perturbation to the undisturbed ones. A flux-creep distribution of the differential resistivity of the superconductor has been discussed. The performed analysis reveals that it monotonically decreases toward the moving boundary and depends on the magnetic ramp rate. In accordance with these flux-creep conditions the energy dissipation in the superconductors and their magnetic moment depend on the propagation law of the screening current moving boundary. The applicability of the Bean model for describing the flux-creep states is investigated

  7. The effect of creep ratchetting on thin shells

    International Nuclear Information System (INIS)

    Hibbeler, R.C.; Wang, P.Y.

    1975-01-01

    The behavior of thin shells, in particular, cylindrical and spherical shells, which are subjected to a long-time cyclic thermal gradient is discussed. Like many reactor components (shells) which are subjected to start-up and shut-down conditions, provided the temperature is high enough, the shell will exhibit a progressive growth with each cycle of temperature. This phenomena is often referred to as ratchetting and is caused by inelastic strains developed by creep. Although the thermal stress distribution is biaxial it is possible to represent the material behavior using a simple uniaxial-stress model. Assuming thermal stress interaction occurs, the equations which determine the solution of the strain growth and stress per cycle are presented. The flexibility of the analysis provides a means for including the effects of an arbitrary temperature-cycle time and temperature dependence of material properties. A step temperature variation is considered. During each part of the temperature cycle it is necessary to satisfy the equilibrium and compatibility conditions for the model. At any instant, the total strain will depend upon elastic, thermal, and creep strain components in addition to prior inelastic creep strains accumulated during previous temperature cycles. Accounting for all these conditions, the relations describing the behavior of the material can be determined during an arbitrary jth cycle of temperature. In particular, the cases of material properties are considered which are used for reactor components. Where possible, a closed form solution is given for appropriate values of the creep law exponents n and m. For the general case, an algorithm for the computer-solution to the problem is given. Using the general solution, the analysis appears to offer a suitable compromise between accurate behavior description and analytical complexity

  8. The Motivation of Secondary School Students in Mathematical Word Problem Solving

    Science.gov (United States)

    Gasco, Javier; Villarroel, Jose-Domingo

    2014-01-01

    Introduction: Motivation is an important factor in the learning of mathematics. Within this area of education, word problem solving is central in most mathematics curricula of Secondary School. The objective of this research is to detect the differences in motivation in terms of the strategies used to solve word problems. Method: It analyzed the…

  9. Inelastic analysis of Battelle-Columbus piping elbow creep test

    International Nuclear Information System (INIS)

    Dhalla, A.K.; Newman, S.Z.

    1979-01-01

    Analytical results are presented for room temperature and 593 deg. C creep bending deformation of a piping elbow structure tested at the Battelle-Columbus Laboratory. This analysis was performed in support of the International Piping Benchmark Problem Program being coordinated by ORNL. Results are presented for both simplified and refined structural models, and compared with test measurements reported by the Battelle-Columbus Laboratory. (author)

  10. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    In order to carry out the structural design of high temperature pipings, intermediate heat exchangers and isolating valves for a multipurpose high temperature gas-cooled reactor, in which coolant temperature reaches 1000 deg C, the creep characteristics of Hastelloy X used as the heat resistant material must be clarified. In addition to usual creep rupture life and the time to reach a specified creep strain, the dependence of creep strain curves on time, temperature and stress must be determined and expressed with equations. Therefore, using the creep data of Hastelloy X given in the literatures, the creep constitutive equation was made. Since the creep strain curves under the same test condition were different according to heats, the sensitivity analysis of the creep constitutive equation was performed. The form of the creep constitutive equation was determined to be Garofalo type. The result of the sensitivity analysis is reported. (Kako, I.)

  11. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  12. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  13. Eccentric pressurized tube for measuring creep rupture

    International Nuclear Information System (INIS)

    Schwab, P.R.

    1981-01-01

    Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research

  14. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  15. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  16. Tests on creep and influence of creep on strength of concrete under multiaxial stresses

    International Nuclear Information System (INIS)

    Lanig, N.; Stoeckl, S.; Kupfer, H.

    1988-12-01

    Long-time tests of three-axially loaded, sealed cylindrical specimens d = 15 cm, h = 40 cm, were carried out. The 20-cm-cube strength of the concrete was app. 45 N/mm 2 . The creep stresses were chosen in the following ranges: 0,3 ≤ σ c /β c ≤ 2,1; 0 ≤ σ r /σ l ≤ 1,0. The creep coefficients obtained were clearly depending on the multi-axial stress conditions. The creep coefficients for a t = 2 years loading were reaching app. 1 for σ l /β c = 0,3 and app. 3 for σ l /β c = 2,1, when the test evaluation was based on the initial deformations meausred after 1 minute. For σ l /β c = 2,1 the creep coefficients obtained were about 4 times as large, proceeding form calculated elastic deformations. Further evaluations concerned the Young's modulus E, Poisson's ratio μ, the bulk modulus K and the shear modulus G. The preceding permanent load leads to an increase in the Young's modulus of the concrete in longitudinal direction of the specimen up to about 4 times the value of not preloaded comparative specimens. (orig.) [de

  17. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  18. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  19. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  20. Sources of Variation in Creep Testing

    Science.gov (United States)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  1. Effects of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1982-10-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure Ni with three different microstructures were irradiated at 473 0 K with 15 to 17 MeV deuterons in the PNL light ion irradiation creep apparatus. A dispersed barrier model for climb-glide creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the SIPA creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities

  2. Effect of loading rate on creep of phosphorous doped copper

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Oestling, Henrik C.M.; Sandstroem, Rolf (Swerea KIMAB (Sweden))

    2011-12-15

    Creep testing of copper intended for nuclear waste disposal has been performed on continuous creep tests machines at a temperature of 75 deg C. The loading time has been varied from 1 hour to 6 months. The rupture strain including both loading and creep strains does not differ from traditional dead weight lever creep test rigs. The loading strain increases with increasing loading time, at the expense of the creep strain. The time dependence of the creep strain has been modelled taking athermal plastic deformation and creep into account. During loading the contribution to the strain from the athermal plastic deformation dominates until the stress is close to the constant load level. When the constant load has been reached there is no more athermal strain and all of the strain comes from creep

  3. Creep behavior of double tempered 8% Cr-2% WVTa martensitic steel

    International Nuclear Information System (INIS)

    Tamura, Manabu; Shinozuka, Kei; Esaka, Hisao; Nowell, Matthew M.

    2006-01-01

    Creep testing was carried out at around 650degC for a martensitic 8Cr-2WVTa steel (F82H), which is a candidate alloy for the first wall of the fusion reactors of the Tokamak type. Rupture strength of the double tempered steel (F82HD) is lightly higher than that of simple tempered steel (F82HS). On the other hand, creep rate of F82HD is obviously smaller than that of F82HS in acceleration creep, though creep strain of F82HD in transition creep, where creep rate decreases with increasing strain, is larger than that of F82HS. Hardness of the crept H82HD decreases with increasing creep strain, which corresponded with the transmission electron microscopy (TEM) observation. On the contrary, X-ray diffraction and electron back-scattered diffraction pattern measurements show that fine sub-grains are created during transition creep. The creep curves were analyzed using an exponential type creep equation and the apparent activation energy, the activation volume and the pre-exponential factor were calculated as a function of creep strain. Then, these parameters were converted into two parameters, i.e. equivalent obstacle spacing (EOS) and mobile dislocation density parameter (MDDP). While EOS decreases with increasing creep strain, MDDP increases with increasing strain during transition creep. The decrease in EOS and the increase in either EOS or MDDP are rate-controlling factors in transition and acceleration creep, respectively. On the other hand, in case of F82HS, EOS increases and MDDP decreases during transition creep. In this case, the decrease in MDDP controls the creep rate during transition creep of F82HS. It is concluded that both EOS and MDDP are representative parameters of the change in substructure during creep. (author)

  4. In situ monitored in-pile creep testing of zirconium alloys

    Science.gov (United States)

    Kozar, R. W.; Jaworski, A. W.; Webb, T. W.; Smith, R. W.

    2014-01-01

    The experiments described herein were designed to investigate the detailed irradiation creep behavior of zirconium based alloys in the HALDEN Reactor spectrum. The HALDEN Test Reactor has the unique capability to control both applied stress and temperature independently and externally for each specimen while the specimen is in-reactor and under fast neutron flux. The ability to monitor in situ the creep rates following a stress and temperature change made possible the characterization of creep behavior over a wide stress-strain-rate-temperature design space for two model experimental heats, Zircaloy-2 and Zircaloy-2 + 1 wt%Nb, with only 12 test specimens in a 100-day in-pile creep test program. Zircaloy-2 specimens with and without 1 wt% Nb additions were tested at irradiation temperatures of 561 K and 616 K and stresses ranging from 69 MPa to 455 MPa. Various steady state creep models were evaluated against the experimental results. The irradiation creep model proposed by Nichols that separates creep behavior into low, intermediate, and high stress regimes was the best model for predicting steady-state creep rates. Dislocation-based primary creep, rather than diffusion-based transient irradiation creep, was identified as the mechanism controlling deformation during the transitional period of evolving creep rate following a step change to different test conditions.

  5. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  6. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  7. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Orthotropic creep in polyethylene glycol impregnated archaeological oak from the Vasa ship - Results of creep experiments in a museum-like climate

    Science.gov (United States)

    Vorobyev, Alexey; van Dijk, Nico P.; Kristofer Gamstedt, E.

    2018-02-01

    Creep in archaeological oak samples and planks from the Vasa ship impregnated with polyethylene glycol (PEG) has been studied in museum-like climate. Creep studies of duration up to three years have been performed in nearly constant relative humidity and temperature of the controlled museum climate. Cubic samples were subjected to compressive creep tests in all orthotropic directions. Additionally, the creep behaviour of planks with and without PEG and of recent oak was tested in four-point bending. The experimental results have been summarised and also compared with reference results from recent oak wood. The effect of variable ambient conditions on creep and mass changes is discussed. The experimental results of creep in the longitudinal direction showed deformations even for the low stresses. There is relatively much more scatter in creep behaviour, and not all samples showed linear viscoelastic response. The creep in radial and tangential directions of the cubes and the plank samples showed a strong dependency on the ambient conditions. Some samples showed expansion for decreasing moisture content, possibly caused by the thermal expansion of the PEG component. For the planks, increasing creep deformation was observed induced by changing ambient conditions. Such behaviour may be related to e.g. oscillations in ambient conditions and presence of PEG in the wood cell wall and cell lumen. The behaviour of PEG archaeological wood depends on the level of deterioration that occurred over centuries. However, although the findings presented here apply to this specific case, they provide a unique view on such wood.

  9. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  10. Factors influencing the creep strength of hot pressed beryllium

    International Nuclear Information System (INIS)

    Webster, D.; Crooks, D.D.

    1975-01-01

    The parameters controlling the creep strength of hot pressed beryllium block have been determined. Creep strength was improved by a high initial dislocation density, a coarse grain size, and a low impurity content. The impurities most detrimental to creep strength were found to be aluminum, magnesium, and silicon. A uniform distribution of BeO was found to give creep strength which was inferior to a grain boundary distribution. The creep strength of very high purity, hot isostatically pressed beryllium was found to compare favorably with that of other more commonly used high temperature metals

  11. Concrete creep at transient temperature: constitutive law and mechanism

    International Nuclear Information System (INIS)

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs

  12. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    International Nuclear Information System (INIS)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf

    2007-08-01

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen

  13. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf [Corrosion an d Metals Research Institute, Stockholm (Sweden)

    2007-08-15

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen.

  14. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  15. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  16. Effect of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1983-01-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure nickel (Ni) with three different microstructures were irradiated at 473 K with 15-17 MeV deuterons in the Pacific Northwest Laboratory (PNL) light ion irradiation creep apparatus. A dispersed barrier model for Climb-Glide (CG) creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the Stress Induced Preferential Absorption (SIPA) creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The CG and SIPA modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities. (orig.)

  17. Studies of Grain Boundaries in Materials Subjected to Diffusional Creep

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas

    Grain boundaries in crystalline Cu(2%Ni) creep specimens have been studied by use of scanning and transmission electron microscopy in order to establish the mechanism of deformation. Creep rate measurements and dependencies were found to fit reasonably well with the model for diffusional creep......) with the activity displayed during diffusional creep testing. It was found that boundaries with low deviation from perfect Σ did not contribute macroscopically to the creep strain. A resist deposition procedure was examined to improve the reference surface grid so as to allow determination of the grain boundary...... plane by use of simple stereomicroscopy directly on the surface. The etched pattern deteriorated heav-ily during creep testing, supposedly because of dislocation creep, due to exces-sive creep stress. Grain boundaries have been studied and characterised by TEM providing an insight into the diversity...

  18. A study on the creep characteristics of simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.; Na, S.

    2001-09-01

    Compression creep test was performed using simulated DUPIC fuel in the temperature range from 1773 to 1973 K under the stress range of 21 - 60 MPa. Creep rate and the activation energy were obtained. The activation energy for creep was 649.35 - 675.94 kJ/mol at the low stress region, where creep mechanism was controlled by diffusion. On the other hand, the activation energy at high stress region was 750.68 - 792.18 kJ/mol, where creep mechanism was controlled by dislocation motion. The activation energy for dislocation creep was higher than that for diffusion creep. The activation energy of reference simulated DUPIC fuel was higher than that of UO2

  19. A new method for measuring creep-strain

    International Nuclear Information System (INIS)

    Joas, H.D.

    2001-01-01

    To realise a safe and economic operation of components undergoing creep damage, sometimes a theoretical and an experimental evaluation is necessary. The discussed Creep-Replica-Method is a new possibility to estimate the creep-strain due to the real loading conditions of a component during a certain time of operation which gives a chance to assess the integrity, the consumed life and the possible repairing of a component. (Author)

  20. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  1. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  2. Internal stress model for pre-primary stage of low-stress creep

    International Nuclear Information System (INIS)

    Kloc, L

    2010-01-01

    Initial transient stage in low-stress creep experiments was observed in all such experiments. Recently, evidences were presented that this stage cannot be considered as a normal creep primary stage, though the shape of the creep curve is similar. The strain reached during this so called pre-primary stage is fully recoverable upon unloading; the internal stresses must play important role in the effect. Model of standard linear anelastic solid was modified by introduction of creeping body instead of viscous dashpot. Both power law and hyperbolic sine creep law were used to fit observed creep curves of model and structural materials. Mainly the model using hyeprbolic sine creep law provides good fit to individual creep curves and sets of creep curves at different stresses.

  3. Evaluation of the creep cavitation behavior in Grade 91 steels

    International Nuclear Information System (INIS)

    Siefert, J.A.; Parker, J.D.

    2016-01-01

    Even in properly processed Grade 91 steel, the long term performance and creep rupture strength of base metal is below that predicted from a simple extrapolation of short term data. One of the mechanisms responsible for this reduction in strength is the development of creep voids. Importantly, nucleation, growth and inter linkage of voids under long term creep conditions also results in a significant loss of creep ductility. Thus, elongations to rupture of around 5% in 100,000 h are now considered normal for creep tests on many tempered martensitic steels. Similarly, creep damage development in the heat affected zones of welds results in low ductility cracking at times below the minimum expected life of base metal. In all cases, the relatively brittle behavior is directly a consequence of creep void development. Indeed, the results of component root cause analysis have shown that crack development in Grade 91 steel in-service components is also a result of the formation of creep voids. The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels, presents information regarding methods which allow proper characterization of the creep voids and discusses factors affecting creep fracture behavior in tempered martensitic steels. It is apparent that the maximum zone of cavitation observed in Grade 91 steel welds occurred in a region in the heat affected zone which is ∼750 μm in width. This region corresponds to the band where the peak temperature during welding is in the range of ∼1150–920 °C.The cavity density in this band was over about 700 voids/mm"2 at an estimated creep life fraction of ∼99%. - Highlights: • The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels. • Information regarding methods which allow proper characterization of the creep voids is also presented. • Factors affecting creep fracture behavior in tempered

  4. Limit analysis via creep

    International Nuclear Information System (INIS)

    Taroco, E.; Feijoo, R.A.

    1981-07-01

    In this paper it is presented a variational method for the limit analysis of an ideal plastic solid. This method has been denominated as Modified Secundary Creep and enables to find the collapse loads through a minimization of a functional and a limit process. Given an ideal plastic material it is shown how to determinate the associated secundary creep constitutive equation. Finally, as an application, it is found the limit load in an pressurized von Mises rigid plastic sphere. (Author) [pt

  5. EFEITO DO CREEP FEEDING E CREEP GRAZING NAS CARACTERÍSTICAS DA PASTAGEM DE TIFTON E AZEVÉM E NO DESEMPENHO DE OVINOS

    Directory of Open Access Journals (Sweden)

    Cláudio José Araújo da Silva1, 2, 3, 4, 3,

    2012-06-01

    Full Text Available The objective of this study was to evaluate the influence of creep feeding and creep grazing on the pasture characteristics and on performance and productivity of sheep. Three systems of lambs production on Tifton 85 (Cynodon spp. pastures oversown with Italian ryegrass (Lolium multiflorum Lam were studied: lambs with dams until slaughter without supplementation (1; lambs with dams until slaughter fed concentrate in creep feeders at 2% BW.day-1 (2; and lambs with dams until slaughter and supplemented with white clover (Trifolium repens in creep grazing system ad libitum (3. The characteristics of the pasture did not differ (P>0.05 among the systems. Individual lamb growth was higher with creep feeding (307g/day and creep grazing (274g/day compared to no supplemented systems (204g/day; p<0.05. Animal productivity per area on supplemented treatments (2.4 kg BW/ha/day was significantly greater than no supplemented one (1.8kg BW/ha/day; p<0.05. White clover showed to be a particularly good supplement for raising lambs on pastures. It may be concluded that systems of feeding lambs in creep feeding and creep grazing yielded favorable productivity mainly if there is forage deficit in spring.

  6. 3D Topology optimization of Stokes flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Dammann, Bernd

    of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...

  7. Creep analysis of silicone for podiatry applications.

    Science.gov (United States)

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Creep behaviour of modified 9Cr-1Mo ferritic steel

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Isaac Samuel, E.

    2011-01-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  9. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  10. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  11. Detection of generator bearing inner race creep by means of vibration and temperature analysis

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Hilmisson, Reynir

    2015-01-01

    Vibration and temperature analysis are the two dominating condition monitoring techniques applied to fault detection of bearing failures in wind turbine generators. Relative movement between the bearing inner ring and generator axle is one of the most severe failure modes in terms of secondary...... damages and development. Detection of bearing creep can be achieved reliably based on continuous trending of the amplitude of vibration running speed harmonic and temperature absolute values. In order to decrease the number of condition indicators which need to be assessed, it is proposed to exploit...... a weighted average descriptor calculated based on the 3rd up to 6th harmonic orders. Two cases of different bearing creep severity are presented, showing the consistency of the combined vibration and temperature data utilization. In general, vibration monitoring reveals early signs of abnormality several...

  12. Creep behavior of UO2 above 20000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-01-01

    A series of high temperature creep measurements were made for UO 2 in the temperature range from 2000 0 C to the melting temperature. The effects of temperature, stress and accrued strain on the creep rate have been measured. The results indicate that additional creep mechanisms are being activated at the higher temperatures

  13. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    This report presents a proposal for a standardised method for creep tests and the necessary theoretical framework that can be used to describe creep of a granulated loose-fill material. Furthermore results from a round robin test are shown. The round robin test was carried out in collaboration...... with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant...

  14. Creep testing of nodular iron at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.; Seitisleam, Facredin; Wu, Rui; Sandstroem, Rolf (Swerea KIMAB AB, Stockholm (Sweden))

    2010-12-15

    The creep strain at room temperature, 100 and 125 deg C has been investigated for the ferritic nodular cast iron insert intended for use as the load-bearing part of canisters for long term disposal of spent nuclear fuel. The microstructure consisted of ferrite, graphite nodules of different sizes, compacted graphite and pearlite. Creep tests have been performed for up to 41,000 h. The specimens were cut out from material taken from two genuine inserts, I30 and I55. After creep testing, the specimens from the 100 deg C tests were hardness tested and a metallographic examination was performed. Creep strains at all temperatures appear to be logarithmic, and accumulation of creep strain diminishes with time. The time dependence of the creep strain is consistent to the W-model for primary creep. During the loading plastic strains up to 1% appeared. The maximum recorded creep strain after the loading phase was 0.025%. This makes the creep strains technically insignificant. Acoustic emission recordings during the loading of the room temperature tests showed no sounds or other evidence of microcracking during the loading phase. There is no evidence that the hardness or the graphite microstructure changed during the creep tests

  15. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  16. Development of an accelerated creep testing procedure for geosynthetics.

    Science.gov (United States)

    1997-09-01

    The report presents a procedure for predicting creep strains of geosynthetics using creep tests at elevated temperatures. Creep testing equipment was constructed and tests were performed on two types of geosynthetics: High Density Polyethylene (HDPE)...

  17. Quantitative analysis of microstructure deformation in creep fenomena of ferritic SA-213 T22 and austenitic SA-213 TP304H material

    Science.gov (United States)

    Mulyana, Cukup; Taufik, Ahmad; Gunawan, Agus Yodi; Siregar, Rustam Efendi

    2013-09-01

    The failure of critical component of fossil fired power plant that operated in creep range (high stress, high temperature and in the long term) depends on its microstructure characteristics. Ferritic low carbon steel (2.25Cr-1Mo) and Austenitic stainless alloy (18Cr-8Ni) are used as a boiler tube in the secondary superheater outlet header to deliver steam before entering the turbin. The tube failure is occurred in a form of rupture, resulting trip that disrupts the continuity of the electrical generation. The research in quantification of the microstructure deformation has been done in predicting the remaining life of the tube through interrupted accelerated creep test. For Austenitic Stainless Alloy (18Cr-8Ni), creep test was done in 550°C with the stress 424.5 MPa and for Ferritic Low Carbon Steel (2.25Cr-1Mo) in 570°C with the stress 189 MPa. The interrupted accelerated creep test was done by stopping the observation in condition 60%, 70%, 80% and 90% of remaining life, the creep test fracture was done before. Then the micro hardness test, photo micro, SEM and EDS were obtained from those samples. Refer to ASTM E122, microstructure parameters were calculated. The results indicated that there are a consistency of decreasing their grain diameters, increasing their grain size numbers, micro hardness, and the length of crack or void number per unit area with the decreasing of remaining life. While morphology of grain (stated in parameter α=LV/LH) relatively constant for austenitic. However, for ferritic the change of morphology revealed significantly. Fracture mode propagation of ferritic material is growth with voids transgranular and intergranular crack, and for austenitic material the fracture growth with intergranular creep fracture void and wedge crack. In this research, it was proposed a formulation of mathematical model for creep behavior corresponding their curve fitting resulted for the primary, secondary and tertiary in accelerated creep test. In

  18. Degradation of mechanical properties of CrMo creep resistant steel operating under conditions of creep

    Directory of Open Access Journals (Sweden)

    J. Michel

    2012-01-01

    Full Text Available Mechanical properties of a steam tube made of CrMo creep resistant steel are analysed in this contribution after up to 2,6•105 hours service life in creep conditions at temperature 530 °C and calculated stress level in the tube wall 46,5 MPa. During service life there were in the steel gradual micro structure changes, fi rst pearlite spheroidization, precipitation, coaugulation and precipitate coarsening. Nevertheless the strength and deformation properties of the steel (Re, Rm, A5, Z, and the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2,1•105 hours in service. The steam tube is now in service more than 2,6•105 h.

  19. Long term creep strength of silver alloyed copper

    International Nuclear Information System (INIS)

    Auerkari, P.; Sandlin, S.

    1988-12-01

    The long term creep strength of silver alloyed copper has been estimated using literature creep data for materials with less than 0.1% Ag. The available data was very limited, and it was necessary to test the differences between various data sets and extrapolation methods. Assuming constant stress level and constant or changing temperature, the creep behaviour has been assessed using mainly Larson-Miller and theta-projection approaches. The calculations indicate that the different extrapolation methods and data sources can yield strongly different life estimates. With the available incomplete data the theta projection method may give the conservative life predictions, whereas the Larson-Miller approach grossly overestimates creep life. It is recommended that supplementary data is acquired to better assess the long term creep properties of canisters in repository conditions

  20. Creep behavior in interlaminar shear of a Hi-Nicalon™/SiC–B4C composite at 1200 °C in air and in steam

    International Nuclear Information System (INIS)

    Ruggles-Wrenn, M.B.; Pope, M.T.; Zens, T.W.

    2014-01-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Similar creep strains were accumulated in air and in steam. Furthermore, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated. The tested specimens were also examined using electron probe microanalysis (EPMA) with wavelength dispersive spectroscopy (WDS). Analysis of the fracture surfaces revealed significant surface oxidation, but only trace amounts of boron and carbon. Cross sectional analysis showed increasing boron concentration in the specimen interior

  1. Evaluation of long term creep-fatigue life for type 304 stainless steel

    International Nuclear Information System (INIS)

    Kawasaki, Hirotsugu; Ueno, Fumiyoshi; Aoto, Kazumi; Ichimiya, Masakazu; Wada, Yusaku

    1992-01-01

    The long term creep-fatigue life of type 304 stainless steel was evaluated by the creep-fatigue life prediction method based on a linear damage fraction rule. The displacement controlled creep-fatigue tests were carried out, and the time to failure of longer than 10000 hours was obtained. The creep damage of long term creep-fatigue was evaluated by taking into account the stress relaxation behavior with elastic follow-up during the hold period. The relationship between life reduction of creep-fatigue and fracture mode was provided by the creep cavity growth. The results of this study are summarized as follows; (1) The long term creep-fatigue data can be reasonably evaluated by the present method. The predicted lives were within a factor of 3 of the observed ones. (2) The present method provides the capability to predict the long term creep-fatigue life at lower temperatures as well as that at the creep dominant temperature. (3) The value of creep damage for the long term creep-fatigue data increased by elastic follow-up. The creep-fatigue damage diagram intercepted between 0.3 and 1 can represent the observed creep-fatigue damages. (4) The cavity growth depends on the hold time. The fracture of long term creep-fatigue is caused by the intergranular cavity growth. The intergranular fracture of creep-fatigue is initiated by the cavity growth and followed by the microcrack propagation along grain boundaries starting from creep cavities. (author)

  2. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Lan, Xiao-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Qiu, Jingwen [College of Electrical and Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Hu, Te [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Tang, Hui-ping [State Key Laboratory of Porous Metal Materials, Northwestern Institute of Nonferrous Metal Research, Xi' an, Shaanxi 710012 (China)

    2016-08-15

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocation mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.

  3. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  4. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  5. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  6. Creep behavior for advanced polycrystalline SiC fibers

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-01-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep open-quotes mclose quotes curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261 degrees C), Nicalon S (1256 degrees C), annealed Hi Nicalon (1215 degrees C), Hi Nicalon (1078 degrees C), Nicalon CG (1003 degrees C) and Tyranno E (932 degrees C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests

  7. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  8. Unexpected damage and/or failures caused by creep below the limit temperature for creep design; Ovaentade krypskador och/eller haverier orsakade av krypmekanismer under graenstemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Eklund, Anders; Taflin, Anders; Thunvik, Thomas

    2006-07-15

    Recently, several cases of cracking caused by creep have occurred in components operating at temperatures below the specified limit temperature for creep. Components operating below this limit temperature have not been designed with due regard to creep cracking and have accordingly not been subjected to inspection for creep damage. This work has surveyed the extent of these cases of creep damage by reviewing earlier failures and performed metallographic studies of damaged components and made parametric calculations of creep crack growth below the limit temperature. The following critical parameters have been determined for power plants: Creep damage below the transition temperature does not usually occur until operating times above 200.000 hours. Time to rupture differs from ordinary creep crack growth because these cracks have substantially longer incubation time of 20-30 years, with relative low creep deformation, and after that a rapid creep crack growth with only some few years to the creep rupture. Operation at 470-480 deg C, i.e. up to some 10 deg C below the transition temperature for a material like EN 13CrMo4-5, can be expected to result in severe creep damages comparable with ordinary creep failures at stressed locations. Operation at a temperature of 450-460 deg C can give rise to creep damage, however, this damage shows a more sparse occurrence. Creep damaged welds occurring below the limit temperature show cracks at the melting junction of the weld bead in opposite to ordinary creep damages. System stresses can also cause a more rapid crack growth. An international survey also shows that the variation of creep strength values between individual steel batches are just as wide as for ordinary creep. Based on this work, the following complementary recommendations can be issued: Elastic stress analysis (based on expansion calculations) can also be recommended for the identification of areas with intensified stresses. One should also perform a complete

  9. Creep deformation in near-γ TiAl. Part 1: The influence of microstructure on creep deformation in Ti-49Al-1V

    International Nuclear Information System (INIS)

    Worth, B.D.; Jones, J.W.; Allison, J.E.

    1995-01-01

    The influence of microstructure on creep deformation was examine in the e near-γ TiAl alloy Ti-49Al-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 C and 870 C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed γ microstructure, while sub-boundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed γ microstructure, is attributed to an increase in dislocation mobility within the equiaxed γ constituent, that results from partitioning of oxygen from the γ phase to the α 2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α 2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in duplex and equiaxed γ microstructures

  10. Modelling of creep hysteresis in ferroelectrics

    Science.gov (United States)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  11. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  12. Implications of Jeffreys-Lomnitz Transient Creep

    Science.gov (United States)

    Strick, Ellis

    1984-01-01

    In 1958 Jeffreys proposed a power law generalization of the logarithmic transient creep earlier attributed to Lomnitz. Although Jeffreys' power law form was admittedly defective in that it became unbounded at infinite time, he did apply it to the viscoelastic behavior of the earth-moon system. Since then it has been successfully applied by many investigators to mantle rehology and Chandler wobble. Experimental seismic studies indicate that most rock types exhibit the almost constant Q behavior which Lomnitz showed to be associated with his logarithmic creep. In this paper, we study not only the Q behavior related to Jeffreys' power law creep but also other mechanical properties such as a precise spring-dashpot ladder network realization are developed. In addition, a very simple physically realizable modification of this ladder network leads to a boundedness at long times of Jeffreys' creep in a manner which does not affect his successful application at finite times.

  13. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  14. Temperature-dependence of creep behaviour of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Watts, D C

    2013-04-01

    To determine the effect of temperature, over a clinically relevant range, on the creep behaviour of a set of conventional and flowable resin-composites including two subgroups having the same resin matrix and varied filler loading. Eight dental resin-composites: four flowable and four conventional were investigated. Stainless steel split moulds (4 mm × 6 mm) were used to prepare cylindrical specimens for creep examination. Specimens were irradiated in the moulds in layers of 2mm thickness (40s each), as well as from the radial direction after removal from the moulds, using a light-curing unit with irradiance of 650 mW/cm(2). A total of 15 specimens from each material were prepared and divided into three groups (n=5) according to the temperature; Group I: (23°C), Group II: (37°C) and Group III: (45°C). Each specimen was loaded (20 MPa) for 2h and unloaded for 2h. Creep was measured continuously over the loading and unloading periods. At higher temperatures greater creep and permanent set were recorded. The lowest mean creep occurred with GS and GH resin-composites. Percentage of creep recovery decreased at higher temperatures. At 23°C, the materials exhibited comparable creep. At 37°C and 45°C, however, there was a greater variation between materials. For all resin-composites, there was a strong linear correlation with temperature for both creep and permanent set. Creep parameters of resin-composites are sensitive to temperature increase from 23 to 45°C, as can occur intra-orally. For a given resin matrix, creep decreased with higher filler loading. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  16. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  17. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  18. Relaxation creep model of impending earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Morgounov, V. A. [Russian Academy of Sciences, Institute of Physics of the Earth, Moscow (Russian Federation)

    2001-04-01

    The alternative view of the current status and perspective of seismic prediction studies is discussed. In the problem of the ascertainment of the uncertainty relation Cognoscibility-Unpredictability of Earthquakes, priorities of works on short-term earthquake prediction are defined due to the advantage that the final stage of nucleation of earthquake is characterized by a substantial activation of the process while its strain rate increases by the orders of magnitude and considerably increased signal-to-noise ratio. Based on the creep phenomenon under stress relaxation conditions, a model is proposed to explain different images of precursors of impending tectonic earthquakes. The onset of tertiary creep appears to correspond to the onset of instability and inevitably fails unless it unloaded. At this stage, the process acquires the self-regulating character to the greatest extent the property of irreversibility, one of the important components of prediction reliability. Data in situ suggest a principal possibility to diagnose the process of preparation by ground measurements of acoustic and electromagnetic emission in the rocks under constant strain in the condition of self-relaxed stress until the moment of fracture are discussed in context. It was obtained that electromagnetic emission precedes but does not accompany the phase of macrocrak development.

  19. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  20. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  1. Intergranular creep of oriented bi-crystals of aluminium

    International Nuclear Information System (INIS)

    Biscondi, Michel

    1971-01-01

    This research thesis reports the study of the nature of intergranular creep, and of relationships between structure and creep ability of some grain boundaries. After having explained why bi-crystals are interesting for this kind of study, the author defines experimental conditions and describes measurement methods. He reports the study of the influence of external factors (time, test temperature, applied stress) on intergranular creep. He shows that grain boundary structure has a determining influence of the grain boundary ability to intergranular creep. The author discusses the obtained results and makes some propositions for the interpretation of the observed phenomenon

  2. Creep deformation, creep damage accumulation and residual life prediction for three low alloyed CrMo-steels

    International Nuclear Information System (INIS)

    Kondyr, A.; Sandstroem, R.; Samuelsson, A.

    1979-02-01

    A detailed analysis of creep strain results for three low alloyed steels of type 0.5 Mo, 1 Cr-0.5 Mo and 2.25 Cr-1 Mo has been undertaken. The results show that, excluding the primary stage, the true strain rate can be described by a simple analytical expression dE/dt = Aexp(B.E) where A and B are constants at constant stress and temperature. A is approximately equal to the minimum strain rate and B inversly proportional to the fracture strain. Furthermore, 1/AB equals the time t sub(r) to rupture. The residual life fraction in creep can be expressed as exp(-B.E) = 1-t/t sub(r) and a creep damage function μ is introduced as μ = 1-ABt. The expressions for strain rate and damage are shown to be a special case of the Rabotnov-Kachanov equations. The analysis has been generalized to account for multiaxial stress states, and as an example creep in a tube with internal pressure is considered. (author)

  3. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    Science.gov (United States)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  4. Creep behavior of Zircaloy cladding under variable conditions

    International Nuclear Information System (INIS)

    Matsuo, Y.

    1989-01-01

    Various creep tests of Zircaloy cladding tubes under variable conditions were conducted to investigate which hardening rule can be applicable for the creep behavior associated with condition changes. The results show that the strain-hardening rule is applicable in general when either the stress or temperature conditions change, provided that a certain amount of creep strain recovery is observed in case of stress drop. In stress reversal conditions, however, softening of the material was observed. Strain rate after stress reversal is much higher than that predicted by the strain-hardening rule. In this case, the modified strain-hardening model, considering a recoverable creep-hardening range together with the strain recovery, predicts the creep behavior well. The applicability of the model is ascertained through a verification test that includes stress reversal, strain recovery, stress changes, and temperature changes

  5. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    Sun, E.Y.

    1995-01-01

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10 -9 s -1 ), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10 -8 s -1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  6. The investigation of expanded polystyrene creep behaviour

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey

    2017-01-01

    Full Text Available The results obtained in long-term testing under constant compressive stress of the cut from the Slabs EPS 50/100 and EPS 150 with the density ranging from 15 to 24 kg/m3, which were manufactured by the same manufacturer by foaming EPS solid granules (beads in closed volume. The creep strain of the above described specimens was used as a criterion for estimating the deformability of the EPS slabs under long-term compressive stress. It was measured using special stands EN 1606, maintaining constant stress during the fixed time interval tn=122 days. Creep strains were determined by the methods described in EN 1606 for constant stress σc=0.35σ10% (compressive stress σ10% was determined in accordance with EN 826:2013. The long-term compressive stress measurement error did not exceed 1 %, while the creep strain measurement error was not larger than 0,005 mm. The tests were conducted at the ambient temperature of (23±2°С and relative humidity of (50±5 %.The long-term constant compressive load σc=0.35σ10%. The method of mathematical and statistical experimental design optimization models taking into account the thickness of specimens is proposed to determine the creep compliance Ic (tn the creep strain εc (tn and predictive point estimate of creep strain εc (T. Graphical interpretation of the abstained models is also presented. It should be noted that the abstained equations may be used in practice for estimating the creep strains at time tn=122 days and predictive estimates of εc (T for the load time of 10 years.

  7. Reliability assessment of creep rupture life for Gr. 91 steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Kim, Seon-Jin; Jang, Jinsung

    2013-01-01

    Highlights: • Statistical analysis of a number of creep rupture data based on Z parameter. • Determination of the constant C in LM parameter and long-term creep life prediction. • Generation of random variables for Z s and Z cr by Monte-Carlo simulation in a SCRI model. • Examples for design application were reasonably drawn from the viewpoints of reliability. - Abstract: This paper presents reliability assessment of the long-term creep life of Gr. 91 steel, which is a major structural material for high temperature structural components of Generation-IV reactor systems. A number of creep rupture data for Gr. 91 steel were collected through literature surveys, and the long-term creep life was predicted by Larson–Miller parameter. A “Z parameter” method was used to describe the magnitude of the deviation of the creep rupture data to a master curve. A “Service Condition-creep Rupture property Interference (SCRI) model” based on the Z parameter was used to simultaneously consider the scattering of the creep rupture data of materials and the fluctuations of service conditions in reliability assessment. A statistical analysis of the creep rupture data was conducted by the Z parameter. To carry out the SCRI model, a number of random variables for Z s describing service conditions and Z cr describing the dispersion of the creep rupture data were generated using a Monte-Carlo simulation technique. As examples for application, the creep rupture life under a certain service conditions of Gr. 91 steel was reasonably drawn from the viewpoints of reliability

  8. Plastic creep flow processes in fracture at elevated temperatures

    International Nuclear Information System (INIS)

    Rice, J.R.

    1979-01-01

    Recent theoretical developments on fracture at elevated temperature in the presence of overall plastic (dislocation) creep are discussed. Two topics are considered: stress fields at tips of macroscopic cracks in creeping solids; and diffusive growth of microscopic grain boundary cavities in creeping solids

  9. A Statistical Test for Identifying the Number of Creep Regimes When Using the Wilshire Equations for Creep Property Predictions

    Science.gov (United States)

    Evans, Mark

    2016-12-01

    A new parametric approach, termed the Wilshire equations, offers the realistic potential of being able to accurately lift materials operating at in-service conditions from accelerated test results lasting no more than 5000 hours. The success of this approach can be attributed to a well-defined linear relationship that appears to exist between various creep properties and a log transformation of the normalized stress. However, these linear trends are subject to discontinuities, the number of which appears to differ from material to material. These discontinuities have until now been (1) treated as abrupt in nature and (2) identified by eye from an inspection of simple graphical plots of the data. This article puts forward a statistical test for determining the correct number of discontinuities present within a creep data set and a method for allowing these discontinuities to occur more gradually, so that the methodology is more in line with the accepted view as to how creep mechanisms evolve with changing test conditions. These two developments are fully illustrated using creep data sets on two steel alloys. When these new procedures are applied to these steel alloys, not only do they produce more accurate and realistic looking long-term predictions of the minimum creep rate, but they also lead to different conclusions about the mechanisms determining the rates of creep from those originally put forward by Wilshire.

  10. Evaluation of long-term creep behaviour on K-cladding tubes

    International Nuclear Information System (INIS)

    Bang, J. G.; Jeong, Y. H.; Jeong, Y. H.

    2003-01-01

    KAERI has developed new zirconium alloys for high burnup fuel cladding. To evaluate the performance of these alloys, various out-pile tests are conducting. At high burnup, the creep resistance as well as corrosion resistance is one of the major factors determining nuclear fuel performance. Long-term creep test was performed at 350 .deg. C and 400 .deg. C and 100, 120, 135, and 150 MPa of applied hoop stress to evaluate the creep properties. The creep resistance was strongly affected by the final heat treatment conditions, while there was no effect of intermediate heat treatment. The creep strain of the recrystallized alloys is higher than that of the stress-relieved alloys by a factor of 3. The alloying elements also influenced the creep behaviour. Increase of Sn content enhanced the creep resistance, while Nb decreased the creep resistance. As a result of texture analysis, basal pole was directed to normal direction, while prism pole was to rolling direction. The development of the deformation texture and the ammealing texture showed almost similar process to Zircaloy cladding

  11. Review and comparison of transient creep laws used for natural rock salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Lauson, H.S.

    1981-04-01

    A number of creep laws are reviewed, which have been proposed to describe the transient creep of rock salt for use in design calculations of nuclear waste isolation and strategic petroleum reserve repositories. It is shown that they all have the same general form, and their ability to fit creep data for rock salt is tested. Four creep laws are found to fit the data for individual creep tests about equally well. Three of these include steady-state as well as transient creep, while the fourth, equivalent to power-law time hardening in the case of a creep test, does not. Extrapolations at constant stress and temperature of the three creep laws with steady-state creep essentially coincide for times longer than a few months, since the transient creep becomes negligible for such times. Power-law hardening, on the other hand, since it depends on time through a power less than one, predicts much smaller creep strains at very long times

  12. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  13. Evaluation of design safety factors for time-dependent buckling

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-02-01

    The ASME Boiler and Pressure Vessel Code rules concerning time-dependent (creep) buckling for Class 1 nuclear components have recently been changed. Previous requirements for a factor of ten on service life have been replaced with a factor of safety of 1.5 on loading for load-controlled buckling. This report examines the supposed equivalence of the two rules from the standpoint of materials behavior--specifically, the secondary creep strain rate exponent. The comparison is made using results obtained numerically for an axially-loaded, cylindrical shell with varying secondary creep exponents. A computationally efficient scheme for analyzing creep buckling problems is also presented

  14. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  15. Irradiation creep experiments on fusion reactor candidate structural materials

    International Nuclear Information System (INIS)

    Hausen, H.; Cundy, M.R.; Schuele, W.

    1991-01-01

    Irradiation creep rates were determined for annealed and cold-worked AMCR- and 316-type steel alloys in the high flux reactor at Petten, for various irradiation temperatures, stresses and for neutron doses up to 4 dpa. Primary creep elongations were found in all annealed materials. A negative creep elongation was found in cold-worked materials for stresses equal to or below about 100 MPa. An increase of the negative creep elongation is found for decreasing irradiation temperatures and decreasing applied stresses. The stress exponent of the irradiation creep rate in annealed and cold-worked AMCR alloys is n = 1.85 and n = 1.1, respectively. The creep rates of cold-worked AMCR alloys are almost temperature independent over the range investigated (573-693 K). The results obtained in the HFR at Petten are compared with those obtained in ORR and EBR II. The smallest creep rates are found for cold-worked materials of AMCR- and US-PCA-type at Petten which are about a factor two smaller than the creep rates obtained of US-316 at Petten or for US-PCA at ORR or for 316L at EBR II. The scatter band factor for US-PCA, 316L, US-316 irradiated in ORR and EBR II is about 1.5 after a temperature and damage rate normalization

  16. Towards self-healing creep resistant steels

    NARCIS (Netherlands)

    Van der Zwaag, S.; Zhang, S.; Fang, H.; Bruck, E.; Van Dijk, N.H.

    2016-01-01

    We report the main findings of our work on the behaviour of binary Fe-Cu and Fe-Au model alloys designed to explore routes to create new creep resistant steels having an in-built ability to autonomously fill creep induced porosity at grain boundaries. The alloying elements were selected on the basis

  17. An analysis of irradiation creep in nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Hacker, P.J.

    2002-01-01

    Nuclear graphite under load shows remarkably high creep ductility with neutron irradiation, well in excess of any strain experienced in un-irradiated graphite (and additional to any dimensional changes that would occur without stress). As this behaviour compensates, to some extent, some other irradiation effects such as thermal shutdown stresses, it is an important property. This paper briefly reviews the approach to irradiation creep in the UK, described by the UK Creep Law. It then offers an alternative analysis of irradiation creep applicable to most situations, including HTR systems, using AGR moderator graphite as an example, to high values of neutron fluence, applied stress and radiolytic weight loss. (authors)

  18. Effect of cold work on creep properties of oxygen-free copper

    International Nuclear Information System (INIS)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.

    2009-03-01

    Spent nuclear fuel is in Sweden planned to be disposed by encapsulating in waste packages consisting of a cast iron insert surrounded by a copper canister. The cast iron is load bearing and the copper canister gives corrosion protection. The waste package is heavy. Throughout the manufacturing process from the extrusion/pierce-and-draw manufacturing to the final placement in the repository, the copper is subjected to handling which could introduce cold work in the material. It is well known that the creep properties of engineering materials at higher temperatures are affected by cold working. The study includes creep testing of four series of cold worked, oxygen-free, phosphorus doped copper (Cu-OFP) at 75 deg C. The results are compared to reference series for as series of copper cold worked in tension (12 and 24 %) and two series cold worked in compression (12 % parallel to creep load axis and 15 % perpendicular to creep load axis) were tested. The results show that pre-straining in tension of copper leads to prolonged creep life at 75 deg C. The creep rate and ductility are reduced. The influence on the creep properties increases with the amount of cold work. Cold work in compression applied along the creep load axis has no effect on the creep life or the creep rate. Nonetheless the ductility is still impaired. However, cold work in compression applied perpendicular to the creep load direction has a positive effect on the creep life. Cold work in both tension and compression results in a pronounced reduction of the initial creep strain, which is the strain obtained from the beginning of the loading until full creep load is achieved. Yet the area reduction is unaffected by the degree of cold work

  19. The influence of low dose irradiation on the creep properties of type 316 welds

    International Nuclear Information System (INIS)

    Marshall, P.; Steeds, J.W.; Lin, Y.P.; Finlan, G.T.

    1987-01-01

    Fully instrumented creep and stress rupture tests have been performed at 873K for times up to 20,000h on a series of type 316 steel/17Cr 8Ni 2Mo weld metal specimens in the unirradiated and thermal neutron irradiated conditions. The specimens tested included all weld metal longitudinal and transverse composites in the as-welded condition and following a stress relief heat treatment of 10h at 1075K. Simulated heat affected zone (HAZ) specimens were also tested. Analysis of the creep results combined with metallography, autoradiography and TEM established that the decrease in properties of irradiated samples is caused by an increasing secondary strain rate due to enhanced helium induced grain boundary fracture of the simulated HAZ and enhanced interdendritic fracture in the weld metal. Implications of strength reductions on the design of welded structures subjected to thermal irradiation are briefly assessed. (author)

  20. Estimation of creep life of thick welded joints using a simple model. Creep characteristics in thick welded joint and their improvements. 2

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Yamazaki, Masayoshi

    2001-01-01

    The information of the creep behavior of the thick welded joint is very important to secure the safety of the elevated temperature vessels like the nuclear reactors. The creep behavior of the thick welded point is very complex, thence it is difficult to practice the experiment or the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first study. The simple model is constructed of several one-dimensional finite elements which can analyze three-dimensional creep behavior under a assumption. The model is easy to treat, and needs only a little labor and computation time to simulate the creep curve and local strain of the thick welded joint. In this second study, the capability of the model is expanded to estimate the creep life of the thick welded joint. New model can easily estimate the time of the rupture of the thick welded joint. It is verified comparing the result with the experimental one that the model can accurately predict the creep life. The histories of the local strains to the rupture time may be observed in the simulation by using the model. The information will be useful to improve the creep characteristics of the joints. (author)

  1. Creep behaviour of porous metal supports for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Sudireddy, Bhaskar Reddy

    2014-01-01

    The creep behaviour of porous ironechromium alloy used as solid oxide fuel cell support was investigated, and the creep parameters are compared with those of dense strips of similar composition under different testing conditions. The creep parameters were determined using a thermo......-mechanical analyser with applied stresses in the range from 1 to 15 MPa and temperatures between 650 and 800 _C. The GibsoneAshby and Mueller models developed for uniaxial creep of open-cell foams were used to analyse the results. The influence of scale formation on creep behaviour was assessed by comparing the creep...... data for the samples tested in reducing and oxidising atmospheres. The influence of preoxidation on creep behaviour was also investigated. In-situ oxidation during creep experiments increases the strain rate while pre-oxidation of samples reduces it. Debonding of scales at high stress regime plays...

  2. SECONDARY PHYSICAL EDUCATION AVOIDANCE AND GENDER: PROBLEMS AND ANTIDOTES

    Directory of Open Access Journals (Sweden)

    Thomas Ryan

    2012-07-01

    Full Text Available Our goal was to locate and evaluate the barriers that impact and cause females to avoid secondary elective physical education courses. We sought to find answers to stop the further decline of female enrolment in secondary physical education by looking into curricula, program and instructional variables. Anecdotal evidence informed this study which was very much exploratory, building upon several key facts. First, Ontario (Canada secondary students are only required to take one credit (course in physical education in order to graduate and second, most students take the required physical education course in grade nine which is their first year of high school. Following this there is an average of 10% fewer females in every physical education class in the province of Ontario and only an average of 12% are enrolled in physical education each year. Several issues were identified and explored including self-confidence; motivation; perceived value of physical activity; opportunities for physical activity; marking scheme; competition; co-ed classes; teaching approach; and peers as possible problems and solutions.

  3. Creep properties and microstructure of the new wrought austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, T.; Hakl, J.; Novak, P. [SVUM a.s., Prague (Czech Republic); Vyrostkova, A. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research

    2010-07-01

    The contribution is oriented on the new wrought austenitic steel BGA4 (Cr23Ni15Mn6Cu3W1.5NbVMo) developed by the British Corus Company. Our main aim is to present creep properties studied in SVUM a.s. Prague during COST 536 programme. The dependencies of the creep strength, strength for specific creep strain and minimum creep strain rate were evaluated on the basis of long term creep tests carried out at temperature interval (625; 725) C. Important part of a paper is metallographic analysis. (orig.)

  4. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  5. Measurement of soil creep by inclinometer

    Science.gov (United States)

    Robert R. Ziemer

    1977-01-01

    Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...

  6. Creep-fatique interactions in 316 stainless steel under torsional loading

    International Nuclear Information System (INIS)

    Wei, K.; Dyson, B.F.

    1982-01-01

    Some fatigue, fatigue with creep dwells and creep tests have been performed in torsion using 316 stainless steel at 600 0 C. As expected from push-pull testing, the introduction of a creep dwell reduced fatigue endurances and changed the fracture from classical transgranular to intergranular. Optical microscopical examination revealed a large number of intergranular cracks concentrated along shear planes, but quantitative assessment identified the importance of creep tensile stresses in crack development. In contrast, little intergranular damage was found after torsion creep, which is consistent with its exhibited buckling mode of failure. It is concluded that reverse plastic strain is the cause of intergranular crack formation in the material and is therefore the primary mechanism of creep-fatigue interaction. (author)

  7. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  8. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.

    Science.gov (United States)

    Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2015-03-06

    Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Mo tubes followed by a superheater of straight tubes of Alloy 800H in the central zone of the steam generator. The high-temperature components affected by creep-fatigue interaction are the tubing and the superheated steam tubesheet of Alloy 800H. The effects of the revised creep-fatigue damage relationships were evaluated by: (1) calculating the temperature-dependent allowable strain range with the assumed bilinear damage relationship for Alloy 800H; (2) calculating the temperature-dependent allowable strain range with reduced fatigue allowables for 2-1/4 Cr-1 Mo; and (3) predicting the strain range in the critical parts by extrapolation of finite element calculations for the second or last cycle analyzed for each transient to the expected number of cycles and hold times. The preliminary analyses indicate that the Alloy 800H tubing and tubesheets have predicted strains substantially under the allowables based upon the bilinear damage relationship but that the 2-1/4 Cr-1 Mo tubing at the hot end inner radius portion of the EES tube bundle presents a slightly overstressed situation. It is believed that there is sufficient design latitude to resolve this problem in the continuing preliminary design. It is concluded that the HTGR-SC/C steam generator design has sufficient margin to accommodate the more conservative creep-fatigue damage relationships. (author)

  10. Microstructural change during creep deformation in a 10%Cr martensitic steel

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Song, B. J.; Ryu, Woo Seog

    2001-01-01

    The relationship between creep deformation and microstructural changes in martensitic 10Cr-MoW steel has been studied. Transmission electron microscopy and image analyser were used to determine the variation of precipitates and martensite lath width size during creep deformation and aging. As precipitates are coarsened during creep deformation, dislocations become easy to move and the recovery proceeds rapidly. This leads to the growth of lath width. The average size of precipitates was linearly increased with creep time. On the other hand the growth rate of lath width is constant until tertiary creep, but the growth of lath width is accelerated during tertiary creep. It has been concluded that the growth behavior of lath width are consistent with creep deformation. Because the growth of lath width is controlled by the coarsening of precipitates it is important to form more stable precipitates in creep condition for improvement of creep properties of martensitic steel. Microstructure of martensitic steel is thermally very stable, so the size of precipitates and martensite lath width are hardly changed during aging

  11. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered

  12. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    Science.gov (United States)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  13. Low ductility creep failure in austenitic weld metals

    International Nuclear Information System (INIS)

    Thomas, R.G.

    Creep tests have been carried out for times of up to approx. 22,000 hrs on three austenitic weld metals of nominal composition 17Cr-8Ni-2Mo, 19Cr-12Ni-3Mo+Nb and 17Cr-10Ni-2Mo. The two former deposits were designed to produce delta-ferrite contents in the range 3-9% while the latter was designed to be fully austenitic. The common feature of all three weld metals was that they all gave very low strains at failure, typically approx. 1%. The microstructures of the failed creep specimens have been studied using optical and electron microscopy and the precipitate structures related to the occurrence of low creep strains. Creep deformation and fracture mechanisms in austenitic materials in general have been reviewed and this has been used as a basis for discussion of the observations of the present work. Finally, some of the factors that can be controlled to improve long-term creep ductility have been appraised

  14. Irradiation creep transients in Ni-4 at.% Si

    International Nuclear Information System (INIS)

    Nagakawa, J.

    1983-01-01

    In the course of irradiation creep experiments on Ni-4 at.% Si alloy, two types of creep transients were observed on the termination of irradiation. The short term transient was completed within one minute while the long term transient persisted for nearly ten hours. A change in the temperature distribution was excluded from the possible causes, partly because the stress dependence of the observed transient strains was not linear, and partly because the strain increase expected from the temperature change was much smaller than the observed value. Transient behavior of point defects was examined in conjunction with the climb-glide mechanism and the steady-state irradiation creep data. Calculated creep transient due to excess vacancy flux to dislocations was in good agreement with the observed short term transient. The long term transient appears to be a result of dislocation microstructure change. The present results suggest an enhanced irradiation creep under cyclic irradiation conditions which will be encountered in the early generations of fusion reactors. (orig.)

  15. Origin of the extra low creep ductility of copper without phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Rolf [Corrosion and Metals Research Inst., Materials Science and Engineering, Royal Inst. of Technology, Stockholm (Sweden); Rui Wu [Corrosion and Metals Research Inst., Stockholm (Sweden)

    2007-02-15

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180 to 250 deg C. If 50 ppm phosphorus was added to the material the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the observed creep ductility for copper with and without phosphorus. A new model called the double ledge model has been introduced that explains why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries, locks their sliding and thereby reduces the formation and growth of cavities. This is the main reason why extra low creep ductility does not occur in phosphorus alloyed copper.

  16. Finite element-implementation of creep of concrete for thin-shell analysis using nonlinear constitutive relations and creep compliance functions

    International Nuclear Information System (INIS)

    Walter, H.; Mang, H.A.

    1991-01-01

    A procedure for combining nonlinear short-time behavior of concrete with nonlinear creep compliance functions is presented. It is an important ingredient of a computer code for nonlinear finite element (FE) analysis of prestressed concrete shells, considering creep, shrinkage and ageing of concrete, and relaxation of the prestressing steel. The program was developed at the Institute for Strength of Materials of Technical University of Vienna, Austria. The procedure has resulted from efforts to extend the range of application of a Finite Element program, abbreviated as FESIA, which originally was capable of modeling reinforeced concrete in the context of thin-shell analysis, using nonlinear constitutive relations for both, conrete and steel. The extension encompasses the time-dependent behavior of concrete: Creep, shrinkage and ageing. Creep is modeled with the help of creep compliance functions which may be nonlinear to conform with the short-time constitutive relations. Ageing causes an interdependence between long-time and short-time deformations. The paper contains a description of the physical background of the procedure and hints on the implementation of the algorithm. The focus is on general aspects. Details of the aforementioned computer program are considered only where this is inevitable. (orig.)

  17. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  18. A Study on Creep Behavior of Wood Flour- Recycled Polypropylene Composite

    Directory of Open Access Journals (Sweden)

    Saman Ghahri

    2013-06-01

    Full Text Available The creep behavior of wood flour- recycled polypropylene composites (with and without compatibilizer has been evaluated in this study. For this purpose, virgin polypropylene (PP was thermo-mechanically degraded by five times of extrusion under controlled conditions in a twin-screw extruder at a rotor speed of 100 rpm and at temperature of 1900C. The virgin and recycled polypropylene were mixed with the wood flour (50/50% W/W as well as the compatibilizer (0, 2% W/W by a counter-rotating twin-screw extruder to manufacture the wood flour-PP composites (WPCs samples. The nominal cross section of the manufactured composites was 70×10 mm2. Short term flexural creep test at 30% of ultimate bending load was performed by using flexural creep equipment. The total time to complete every test was 120 min (60 min creep and 60 min recovery. Results revealed that recycling of the PP reduced the creep resistance in composites containing recycled polypropylene. Also results have shown that with the presence of compatibilizer (MAPP creep deflection, creep factor and relative creep decrease and creep modulus increase. The composites containing virgin PP and MAPP exhibited higher creep resistance than those containing recycled PP.

  19. Special problems in making geotechnical measurements in salt

    International Nuclear Information System (INIS)

    Verslvis, S.; Lindner, E.N.

    1983-01-01

    The transfer of experience, theory, and instrumentation suitable for hard rock media has posed numerous problems which this paper will address. Foremost of these pertains to the time-dependent (creep) behavior of salt. The theoretical mechanism is elusive; creep laws formulated to predict this behavior represent the state of the art in regression analysis. Furthermore, long term experiments (1 year) that would be necessary to determine creep mechanism(s) are enormously expensive and tie-up test equipment. Second, tests for determining in situ stress are based on the theory of elasticity. However anelastic (non-recoverable) strains contribute a significant portion of the material behavior precluding back calculating in situ stresses. Another problem pertains to the rate-dependent behavior of salt. Loading and temperature gradients experienced in the laboratory are more severe than would be experienced in a repository. Significant differences in material behavior can be expected along with special problems with instrumentation

  20. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    1999-01-01

    the deformation caused by deposition of material at (or removal of material from) grain boundaries. The misorientation across the grain boundaries, and hence the character of the boundaries, was measured with the use of electron back-scattering patterns. The deformation behavior of the individual boundaries......A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from...

  1. A Study of the Creep Effect in Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Thorborg, Knud; Tinggaard, Carsten

    2008-01-01

    This paper investigates the creep effect, the visco elastic behaviour of loudspeaker suspension parts, which can be observed as an increase in displacement far below the resonance frequency. The creep effect means that the suspension cannot be modelled as a simple spring. The need for an accurate...... creep model is even larger as the validity of loudspeaker models are now sought extended far into the nonlinear domain of the loudspeaker. Different creep models are investigated and implemented both in simple lumped parameter models as well as time domain non-linear models, the simulation results...

  2. Power-law creep of powder-metallurgy grade molybdenum sheet

    International Nuclear Information System (INIS)

    Ciulik, J.; Taleff, E.M.

    2007-01-01

    Creep behavior of commercial-purity, powder-metallurgy grade molybdenum (Mo) sheet has been investigated at temperatures between 1300 and 1600 deg. C (0.56-0.63 T m ) using tensile testing at controlled strain rates. Strain-rate-change tests were performed at constant-temperatures over true-strain rates from 1.0 x 10 -6 to 5.0 x 10 -4 s -1 . Results agree with previously published data indicating that Mo follows power-law creep with a stress exponent of about 5; however, the present results address a temperature range not previously documented. The activation energy for creep was determined to be 240 kJ/mol within this temperature range, which is lower than previously published values and approximately half the value reported for self-diffusion, indicating that diffusion mechanisms faster than lattice diffusion are active. It is shown that Mo creep data from a variety of investigations converge closely to a single line on a master plot of strain rate normalized using an activation energy of 240 kJ/mol when plotted against stress normalized by the temperature-dependent elastic modulus. This activation energy for creep is attributed to an effective diffusivity that fits the creep data obtained during this study as well as from previously published creep data from commercial-purity molybdenum

  3. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  4. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  5. Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe

    OpenAIRE

    Hamza, S. E. E.; El-Bakry, Mostafa Y.

    2015-01-01

    The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...

  6. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  7. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process...... termed the microprestresses, which reduces the stiffness of the concrete and increase the creep rate. The aging material is modelled in an incremental way reflecting the hydration process in which new layers of cement gel solidifies in a stress free state and add stiffness to the material. Analysis...

  8. Study of creep microstructure in aluminium at medium temperatures

    International Nuclear Information System (INIS)

    Caillard, Daniel

    1980-01-01

    This research thesis focused on the use of electronic microscopy for the study of the properties of a sub-structure which appears during the second stage of creep in aluminium under intermediate temperatures. The author used conventional observations at 100 kV performed on thin blades manufactured after the macroscopic creep test, and in situ deformation observations in the high voltage microscope for the examination of thicker blades. After a review of knowledge on creep and on creep models, the author describes the used experimental conditions, notably for in situ experiments, their benefits and limitations. Geometric properties of various dislocation networks present in sub-grains and sub-boundaries are then described. A creep model is then proposed, based on the previous observations, and is compared with other published experimental results

  9. Proposition of Improved Methodology in Creep Life Extrapolation

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung

    2016-01-01

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10"5 h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10"5 ∼ 2x10"5 h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  10. Proposition of Improved Methodology in Creep Life Extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10{sup 5} h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10{sup 5} ∼ 2x10{sup 5} h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  11. Stress Calculation of a TRISO Coated Particle Fuel by Using a Poisson's Ratio in Creep Condition

    International Nuclear Information System (INIS)

    Cho, Moon-Sung; Kim, Y. M.; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.; Kim, W. K.

    2007-01-01

    KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) project since 2004, has been developing a performance analysis code for the TRISO coated particle fuel named COPA (COated Particle fuel Analysis). COPA predicts temperatures, stresses, a fission gas release and failure probabilities of a coated particle fuel in normal operating conditions. KAERI, on the other hand, is developing an ABAQUS based finite element(FE) model to cover the non-linear behaviors of a coated particle fuel such as cracking or debonding of the TRISO coating layers. Using the ABAQUS based FE model, verification calculations were carried out for the IAEA CRP-6 benchmark problems involving creep, swelling, and pressure. However, in this model the Poisson's ratio for elastic solution was used for creep strain calculation. In this study, an improvement is made for the ABAQUS based finite element model by using the Poisson's ratio in creep condition for the calculation of the creep strain rate. As a direct input of the coefficient in a creep condition is impossible, a user subroutine for the ABAQUS solution is prepared in FORTRAN for use in the calculations of the creep strain of the coating layers in the radial and hoop directions of the spherical fuel. This paper shows the calculation results of a TRISO coated particle fuel subject to an irradiation condition assumed as in the Miller's publication in comparison with the results obtained from the old FE model used in the CRP-6 benchmark calculations

  12. Effects of composition on the in-reactor creep of AISI 316

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1980-01-01

    Pre- and postirradiation measurements of pressurized tube specimens irradiated at 450/degree/C to 4.6*10/sup 22/ n/cm/sup 2/(E>0.1 MeV) have indicated that increases in the solute concentrations of silicon, phosphorus, and molybdenum retard irradiation creep. The data suggest that carbon and nitrogen act synergistically with the major influence on creep being the nitrogen concentration. Irradiation-induced creep is insensitive to cobalt variations. There is a trend for specimens with higher swelling to exhibit higher creep. As the shear modulus increases, irradiation creep also increases. This shear modulus correlation is opposite to one observed for thermal creep deformation. 8 refs

  13. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  14. Avoiding the secondary magnetic monopole problem in the inflation theories: The 75 of SU(5)

    International Nuclear Information System (INIS)

    Kim, C.W.; Kim, J.E.; Kim, J.S.

    1985-01-01

    A class of inflation models suffer from the secondary monopole problem which cannot be diluted by inflation. Using the Coleman-Weinberg potential for the 75-dimensional representation of SU(5), we suggest a group theoretical way to avoid the problem. It is shown that the vacuum, when released from the origin, starts to evolve and roll down along the Sp(4) . U(1) direction. It is noticed that the 75 provides an option for the vacuum to roll down to the SU(3) . SU(2) . U(1) vacuum without causing the secondary cosmological monopole problem. (orig.)

  15. An Approach for Impression Creep of Lead Free Microelectronic Solders

    Science.gov (United States)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  16. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  17. Effect of creep-aging on precipitates of 7075 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.C., E-mail: yclin@csu.edu.cn [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China); Jiang, Yu-Qiang; Chen, Xiao-Min; Wen, Dong-Xu [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083 (China); Zhou, Hua-Min [State Key Laboratory of Material Processing and Die and Mould Technology, Wuhan 430074 (China)

    2013-12-20

    The creep-aging behaviors of 7075 aluminum alloy are studied by uniaxial tensile creep experiments under elevated temperatures. The effects of creep-aging temperature and applied stress on the precipitates of 7075-T651 aluminum alloy are investigated using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Results show that (1) coarse insoluble precipitates (Al{sub 7}Cu{sub 2}Fe and Mg{sub 2}Si) and intermediate precipitates (Al{sub 18}Mg{sub 3}Cr{sub 2} and Al{sub 3}Zr) are found in the aluminum matrix, and the effects of creep-aging treatment on these precipitates are not obvious; (2) the main aging precipitates are η′ and η phases, and the amount of aging precipitates increase with the increase of creep-aging temperature and applied stress; (3) with the increase of creep-aging temperature and applied stress, the precipitates are discontinuously distributed on the grain boundary, and the width of precipitate free zone increases with the increase of creep-aging temperature and applied stress and (4) compared with the microstructure in the traditional stress-free aged sample, the creep-aging process can refine the precipitates and narrow the width of the precipitate free zone.

  18. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  19. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  20. A study of creep behavior in refractory alloys for thermionic emitter applications

    International Nuclear Information System (INIS)

    Gao Hong; Zee, Ralph

    1997-01-01

    The creep behavior of HfC strengthened tungsten alloys was studied. An ultrahigh vacuum high precision creep test system was constructed for this purpose so that the samples could be heated up to 3000 K for heat treatment and creep strain could be measured from the creep sample inside the vacuum chamber. Creep tests were conducted in tungsten strengthened with 0.37 percent of HfC at temperatures between 2000 K to 2500 K for durations up to 8 weeks. To explain the creep behavior observed in this dispersion strengthened alloy, a creep model was proposed which accounted for the presence of HfC particles in the form of a back stress generated by these particles. This model was verified by the creep test data of a W-0.37HfC alloy tested under both extruded and recrystallized microstructural conditions. According to this model, the steady state creep of this type alloys was expected to increase with time due to the HfC particle coarsening and recrystallization under high temperatures. In contrast, conventional simple power law creep only predicts a constant steady state creep for these materials, which does not represent the microstructural evolution of the materials. In this study, the experimental study was designed to verify the semi-mechanistic phenomenological creep model developed for carbide particle strengthened tungsten alloys

  1. Creep strength of reduced activation ferritic/martensitic steel Eurofer'97

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A.M.; Lapena, J.; Lindau, R.; Rieth, M.; Schirra, M.

    2005-01-01

    Creep rupture strength of tempered martensitic steel Eurofer'97 has been investigated. Different products form (plate and bar) have been tested in the temperature range from 450 deg. C to 650 deg. C at different loads. No significant differences in the creep rupture properties have been found between the studied product forms. The Eurofer'97 has shown adequate creep rupture strength levels at short creep rupture tests, similar to those of the F-82 H mod. steel. However, for long testing times (>9000 h) the results available up to now at 500 deg. C and 550 deg. C seem to indicate a change in the creep degradation mechanism

  2. Numerical modeling of the creep behavior of clays with emphasis on tunnels and underground openings

    International Nuclear Information System (INIS)

    1990-02-01

    This report presents an interpretive overview and critical assessment of the state-of-the-art for numerical modeling of the creep behavior of clays. The overview and assessment is focused upon application to underground openings. Field and laboratory observations of time-dependent behavior, constitutive modeling of creep behavior, and numerical implementation of constitutive equations are addressed. A critical assessment of the ability of existing models to predict aspects of creep behavior relevant to waste repository design and suggestions for improved analyses that can be developed with existing technology are provided. Both heuristic and mathematical constitutive models are reviewed. Heuristic models provide a basis for evaluation of the required parameters for the continuum mechanics based mathematical models. The continuum mechanics models are required for numerical analysis. It has been demonstrated that, by using iterative and incremental analysis, virtually any viscous or inviscid continuum mechanics material model can be adapted to consider time-dependent behavior. Available numerical models for numerical analysis of geotechnical problems involving creep deformations are reviewed. Models for thermo-mechanical coupling are also addressed in this review. Cases where creep-inclusive analyses have been applied to analysis of prototype behavior are cited. However, the lack of well documented case histories of time-dependent deformations over significant time spans is identified as a major obstacle to model verification. Recommendations are made for an alternative design approach capable of guaranteeing the very long term mechanical integrity of the liner. 167 refs., 22 figs., 6 tabs

  3. Creep Behavior of Poly(lactic acid) Based Biocomposites.

    Science.gov (United States)

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-04-08

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  4. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  5. Thermally activated creep and fluidization in flowing disordered materials

    Science.gov (United States)

    Merabia, Samy; Detcheverry, François

    2016-11-01

    When submitted to a constant mechanical load, many materials display power law creep followed by fluidization. A fundamental understanding of these processes is still far from being achieved. Here, we characterize creep and fluidization on the basis of a mesoscopic viscoplastic model that includes thermally activated yielding events and a broad distribution of energy barriers, which may be lowered under the effect of a local deformation. We relate the creep exponent observed before fluidization to the width of barrier distribution and to the specific form of stress redistribution following yielding events. We show that Andrade creep is accompanied by local strain hardening driven by stress redistribution and find that the fluidization time depends exponentially on the applied stress. The simulation results are interpreted in the light of a mean-field analysis, and should help in rationalizing the creep phenomenology in disordered materials.

  6. Anisotropic thermal creep of internally pressurized Zr-2.5Nb tubes

    International Nuclear Information System (INIS)

    Li, W.; Holt, R.A.

    2010-01-01

    The anisotropy of creep of internally pressurized cold-worked Zr-2.5Nb tubes with different crystallographic textures is reported. The stress exponent n was determined to be about three at transverse stresses from 100 to 250 MPa with an activation energy of ∼99.54 kJ/mol in the temperature range 300-400 o C. The stress exponent increased to ∼6 for transverse stresses from 250 to 325 MPa. From this data an experimental regime of 350 o C and 300 MPa was established in which dislocation glide is the likely strain-producing mechanism. Creep tests were carried out under these conditions on internally pressurized Zr-2.5Nb tubes with 18 different textures. Creep strain and creep anisotropy (ratio of axial to transverse steady-state creep rate, ε . A /ε . T ) exhibited strong dependence on crystallographic textures of the Zr-2.5Nb tubes. It was found that the values of (ε . A /ε . T ) increased as the difference between the resolved faction of basal plane normals in the transverse and radial directions (f T - f R ) increases. The tubes with the strongest radial texture showed a negative axial creep strain and a negative creep rate ratio (ε . A /ε . T ) and tubes with a strong transverse texture exhibited the positive values of steady-state creep rate ratio (ε . A /ε . T ) and good creep resistance in the transverse direction. These behaviors are qualitatively similar to those observed during irradiation creep, and also to the predictions of polycrystalline models for creep in which glide is the strain-producing mechanism and prismatic slip is the dominant system. A detailed analysis of the results using polycrystalline models may assist in understanding the anisotropy of irradiation creep.

  7. Prediction of Asphalt Creep Compliance Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zofka A.

    2012-06-01

    Full Text Available Creep compliance of the hot-mix asphalt (HMA is a primary input of the pavement thermal cracking prediction model in the recently developed Mechanistic-Empirical Pavement Design Guide (M-EPDG in the US. The HMA creep compliance is typically determined from the Indirect Tension (IDT tests and requires complex experimental setup. On the other hand, creep compliance of asphalt binders is determined from a relatively simple three- point bending test performed in the Bending Beam Rheometer (BBR device. This paper discusses a process of training an Artificial Neural Network (ANN to correlate the creep compliance values obtained from the IDT with those from an innovative approach of testing HMA beams in the BBR. In addition, ANNs are also trained to predict HMA creep compliance from the creep compliance of asphalt binder and vice versa using the BBR setup. All trained ANNs exhibited a very high correlation of 97 to 99 percent between predicted and measured values. The binder creep compliance curves built on the ANN-predicted values also exhibited good correlation with those obtained from laboratory experiments. However, the simulation of trained ANNs on the independent dataset produced a significant deviation from the expected values which was most likely caused by the differences in material composition, such as aggregate type and gradation, presence of recycled additives, and binder type.

  8. A discrete dislocation dynamics model of creeping single crystals

    Science.gov (United States)

    Rajaguru, M.; Keralavarma, S. M.

    2018-04-01

    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  9. Creep in jointed rock masses. State of knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Glamheden, Rune (Golder Associates AB (Sweden)); Hoekmark, Harald (Clay Technology AB, Lund (Sweden))

    2010-06-15

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature.

  10. Small ring testing of a creep resistant material

    International Nuclear Information System (INIS)

    Hyde, C.J.; Hyde, T.H.; Sun, W.; Nardone, S.; De Bruycker, E.

    2013-01-01

    Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys

  11. Creep in jointed rock masses. State of knowledge

    International Nuclear Information System (INIS)

    Glamheden, Rune; Hoekmark, Harald

    2010-06-01

    To describe creep behaviour in hard rock masses in a physically realistic way, elaborate models including various combinations of dash pots, spring elements and sliders would be needed. According to our knowledge, there are at present no numerical tools available that can handle such a creep model. In addition, there are no records over sufficient long time periods of tunnel convergence in crystalline rock that could be used to determine or calibrate values for the model parameters. A possible method to perform bounding estimates of creep movements around openings in a repository may be to use distinct element codes with standard built-in elasto-plastic models. By locally reducing the fracture shear strength near the underground openings a relaxation of fracture shear loads is reached. The accumulated displacements may then represent the maximum possible effects of creep that can take place in a jointed rock mass without reference to the actual time it takes to reach the displacements. Estimates based on results from analyses where all shear stresses are allowed to disappear completely will, however, be over-conservative. To be able to set up and analyse reasonably realistic numerical models with the proposed method, further assumptions regarding the creep movements and the creep region around the opening have to be made. The purpose of this report is to present support for such assumptions as found in the literature

  12. Perspectives of pupils, parents, and teachers on mental health problems among Vietnamese secondary school pupils.

    Science.gov (United States)

    Nguyen, Dat Tan; Dedding, Christine; Pham, Tam Thi; Bunders, Joske

    2013-11-06

    Secondary school can be a stressful period for adolescents, having to cope with many life changes. Very little research has been conducted on the mental health status of secondary school pupils in South East Asian countries, such as Vietnam.The study aimed to explore perceptions of mental health status, risk factors for mental health problems and strategies to improve mental health among Vietnamese secondary school students. A qualitative design was used to address the main study question including: six in-depth interviews conducted with professionals (with two researchers, two psychiatrists, and two secondary school teachers) to learn about their experience of mental health problems among secondary school pupils; 13 focus group discussions (four with teachers, four with parents, and five with pupils); and 10 individual in-depth interviews with pupils who did not take part in the FGDs, to reflect on the collected data and to deepen the authors' understanding. All interviews and FGDs were audio-taped, transcribed and analyzed for the identification of emerging issues using qualitative techniques of progressive coding, analytic memoing and ongoing comparison. Our study confirms the need to pay attention to mental health of pupils in Vietnam. Depression, anxiety, stress, suicidal thoughts and suicide attempts were seen as major problems by all stakeholders. Mental health problems were mainly associated with academic pressure, resulting from an overloaded curriculum and pressure from teachers and parents to succeed. The study found that pupils' mental health demands interventions at many levels, including at the level of government (Ministry of Education and Training), schools, communities, families and pupils themselves. Vietnamese secondary school pupils feel that their mental health status is poor, because of many risk factors in their learning and living environment. The need now is to investigate further to identify and apply strategies to improve students' mental

  13. Perspectives of pupils, parents, and teachers on mental health problems among Vietnamese secondary school pupils

    Science.gov (United States)

    2013-01-01

    Background Secondary school can be a stressful period for adolescents, having to cope with many life changes. Very little research has been conducted on the mental health status of secondary school pupils in South East Asian countries, such as Vietnam. The study aimed to explore perceptions of mental health status, risk factors for mental health problems and strategies to improve mental health among Vietnamese secondary school students. Methods A qualitative design was used to address the main study question including: six in-depth interviews conducted with professionals (with two researchers, two psychiatrists, and two secondary school teachers) to learn about their experience of mental health problems among secondary school pupils; 13 focus group discussions (four with teachers, four with parents, and five with pupils); and 10 individual in-depth interviews with pupils who did not take part in the FGDs, to reflect on the collected data and to deepen the authors’ understanding. All interviews and FGDs were audio-taped, transcribed and analyzed for the identification of emerging issues using qualitative techniques of progressive coding, analytic memoing and ongoing comparison. Results Our study confirms the need to pay attention to mental health of pupils in Vietnam. Depression, anxiety, stress, suicidal thoughts and suicide attempts were seen as major problems by all stakeholders. Mental health problems were mainly associated with academic pressure, resulting from an overloaded curriculum and pressure from teachers and parents to succeed. The study found that pupils’ mental health demands interventions at many levels, including at the level of government (Ministry of Education and Training), schools, communities, families and pupils themselves. Conclusions Vietnamese secondary school pupils feel that their mental health status is poor, because of many risk factors in their learning and living environment. The need now is to investigate further to identify and

  14. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  15. Transient creep of repository rocks. Mechanistic creep laws for rock salt. Final report

    International Nuclear Information System (INIS)

    Handin, J.; Russell, J.E.; Carter, N.L.

    1984-09-01

    We have tested 10 by 20-cm cores of Avery Island rocksalt in triaxial compression at confining pressure of 3.4 and 20 MPa, temperature of 100 0 C, 150 0 C, and 200 0 C, and constant strain rates of 10 -4 , 10 -5 , and 10 -6 s -1 . Neglecting the small effect of confining pressure, we have fit our data to a semi-empirical constitutive model that relates differential stress to strain, strain rate, and absolute temperature. This model rather well predicts the results of relaxation (nearly constant strain) tests as well as constant-stress-rate and constant-stress (creep) tests. Furthermore, even though stress-strain curves reflect the strain hardening that corresponds to transient creep, our model also predicts the steady-state flow stresses measured in creep tests under comparable conditions. Comparing the response of coarse-grained (8 mm) natural rocksalt, fine-grained (0.3 mm) synthetic aggregates, and halite single crystals has revealed that although the effect of grain size alone is small, the influences of substructure (e.g., subgrain size and dislocation density) and impurities (especially brine) may well be large and certainly deserve further investigation

  16. Creep behaviour of thin walled composite tubes

    International Nuclear Information System (INIS)

    Thiebaud, F.; Muzic, B.; Perreux, D.; Varchon, D.; Oytana, C.; Lebras, J.

    1993-01-01

    Fiber reinforced composites are more and more employed in high performance structure for nuclear power plant, mainly as water piping tubes. The increase of the use of composites is due to the advantages that they give : high stiffness, large ultimate strength, corrosion resistance. This last advantage is sought for the pieces in contact with water, and it's one of the reason why the composite can be preferred to metal. However the mechanical behaviour of composite is actually poorly known. The high anisotropy is the main difficulty to obtain a realistic model of behaviour. This problem implies that the safety factor used in the design of structure is often too large. In this article a general overview of the mechanical behaviour of tube made in glass epoxy material is proposed. We discuss especially the creep behaviour under biaxial loadings. The form of the proposed model presently allows predicting a nonlinearity of the behaviour and provides a good correlation with the experimental data of several tests not described in this paper. It accounts for the change of the Poisson ratio during creep and cyclic tests. However the complete identification requires long time testings and consequently the model must be corrected to take into account the damage which occurs in these cases

  17. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  18. Creep-induced anisotropy in covalent adaptable network polymers.

    Science.gov (United States)

    Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai

    2017-10-11

    Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.

  19. influence of relative humidity on tensile and compressive creep

    African Journals Online (AJOL)

    HOD

    creep specimens were cured in a fog room at 99% RH and 20 oC until the beginning of the tests in the controlled environment creep rooms. To eliminate the influence of stress level and age of loading, a uniform stress of 12.26MPa was used for the three compressive creep tests and the specimens were all loaded at the.

  20. Creep mitigation in composites using carbon nanotube additives

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Joshi, A [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Wang, Z [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Kane, R S [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Koratkar, N [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2007-05-09

    A major limitation of thermosetting epoxy based polymeric materials in long-term structural applications is mechanical creep. Here it is demonstrated that single-walled carbon nanotube additives in low weight fractions (0.1-0.25%) are effective in limiting the load-induced re-orientation of epoxy chains, resulting in a significant slowing of the creep response. Nanotube additives could therefore be the key enabler for the long-term higher-temperature application of polymeric structures which would otherwise fail by excessive creep deformation.