WorldWideScience

Sample records for secondary cosmic radiation

  1. Irradiation of the Bulgarian population with secondary cosmic radiation

    International Nuclear Information System (INIS)

    Vasilev, G.

    1983-01-01

    The radiation of the Bulgarian population was estimated, the former being due to secondary space radiation. A method of calculation was applied using the values for dose powers at different heights, proposed by the Research Committee on Atomic Radiation Action (UNO, 1976). Parallelly with that comparative measurements were taken using counters for space radiation VA-Z-232. The stay of the population in different type buildings was taken into account. The mean annual dose of radiation of the Bulgarian population from the secondary space radiation is 245μGy, and the collective effective equivalent dose is 2, 2.10 3 hum sv. (authors)

  2. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  3. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans

    International Nuclear Information System (INIS)

    Simmer, Gregor

    2012-01-01

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  4. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  5. Hazards of cosmic radiation

    International Nuclear Information System (INIS)

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  6. What is cosmic radiation?

    International Nuclear Information System (INIS)

    2004-01-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  7. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  8. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  9. Simulating cosmic radiation absorption and secondary particle production of solar panel layers of Low Earth Orbit (LEO) satellite with GEANT4

    Science.gov (United States)

    Yiǧitoǧlu, Merve; Veske, Doǧa; Nilüfer Öztürk, Zeynep; Bilge Demirköz, Melahat

    2016-07-01

    All devices which operate in space are exposed to cosmic rays during their operation. The resulting radiation may cause fatal damages in the solid structure of devices and the amount of absorbed radiation dose and secondary particle production for each component should be calculated carefully before the production. Solar panels are semiconductor solid state devices and are very sensitive to radiation. Even a short term power cut-off may yield a total failure of the satellite. Even little doses of radiation can change the characteristics of solar cells. This deviation can be caused by rarer high energetic particles as well as the total ionizing dose from the abundant low energy particles. In this study, solar panels planned for a specific LEO satellite, IMECE, are analyzed layer by layer. The Space Environment Information System (SPENVIS) database and GEANT4 simulation software are used to simulate the layers of the panels. The results obtained from the simulation will be taken in account to determine the amount of radiation protection and resistance needed for the panels or to revise the design of the panels.

  10. Measurement of secondary cosmic radiation and calculation of associated dose conversion coefficients for humans; Messung sekundaerer kosmischer Strahlung und Berechnung der zugehoerigen Dosiskonversionskoeffizienten fuer den Menschen

    Energy Technology Data Exchange (ETDEWEB)

    Simmer, Gregor

    2012-04-11

    Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.

  11. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    Salah El-Din, T.; Gomaa, M.A.; Sallah, N.

    2010-01-01

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  12. Diffuse Cosmic Infrared Background Radiation

    Science.gov (United States)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  13. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  14. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  15. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  16. Cerenkov radiation from cosmic rays

    International Nuclear Information System (INIS)

    Turver, K.E.

    1988-01-01

    It is almost 40 years since it was suggested that Cerenkov radiations may be produced in the atmosphere by the passage of the cosmic radiation and account for a small part of the night sky brightness. The first detection of this visible Cerenkov radiation followed within a few years and by the 1960s the atmospheric Cerenkov radiation technique was established as a tool in high energy astrophysics. An exciting new field of astronomy, high energy gamma ray astronomy, has developed which relies on the atmospheric Cerenkov light. We here review the mechanism for the production of Cerenkov light in the atmosphere and summarize the contributions to high energy astrophysics made using the technique. (author)

  17. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  18. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  19. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  20. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  1. Cosmogenic Secondary Radiation from a Nearby Supernova

    Science.gov (United States)

    Overholt, Andrew

    2017-01-01

    Increasing evidence has been found for multiple supernovae within 100 pc of the solar system. Supernovae produce large amounts of cosmic rays which upon striking Earth's atmosphere, produce a cascade of secondary particles. Among these cosmic ray secondaries are neutrons and muons, which penetrate far within the atmosphere to sea level and even below sea level. Muons and neutrons are both forms of ionizing radiation which have been linked to increases in cancer, congenital malformations, and other maladies. This work focuses on the impact of muons, as they penetrate into ocean water to impact the lowest levels of the aquatic food chain. We have used monte carlo simulations (CORSIKA, MCNPx, and FLUKA) to determine the ionizing radiation dose due to cosmic ray secondaries. This information shows that although most astrophysical events do not supply the necessary radiation flux to prove dangerous; there may be other impacts such as an increase to mutation rate.

  2. Angular anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1982-01-01

    The theory of fluctuations in the cosmic microwave background radiation is reviewed. Anisotropy on large-scale (dipole and quadrupole) and on small scales is discussed. The smoothing effects of secondary ionization (fractional ionization x) are found to be unimportant over an angular scale greater than approx.= 5(OMEGAx)sup(1/3) degrees. (author)

  3. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  4. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  5. Cosmic rays and radiations from the cosmos

    International Nuclear Information System (INIS)

    Parizot, E.

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  6. Search for Antihelium in the Cosmic Radiation

    DEFF Research Database (Denmark)

    Streitmatter, R.E.; Barbier, L.M.; Christian, E.R.

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report on the r......The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report...

  7. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  8. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  9. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  10. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  11. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  12. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  13. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  14. Cosmic ray antimatter: Is it primary or secondary?

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1981-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.

  15. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  16. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  17. Cosmic radiation algorithm utilizing flight time tables

    International Nuclear Information System (INIS)

    Katja Kojo, M.Sc.; Mika Helminen, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Katja Kojo, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Gerhard Leuthold, D.Sc.

    2006-01-01

    Cosmic radiation is considerably higher on cruising altitudes used in aviation than at ground level. Exposure to cosmic radiation may increase cancer risk among pilots and cabin crew. The International Commission on Radiation Protection (ICRP) has recommended that air crew should be classified as radiation workers. Quantification of cosmic radiation doses is necessary for assessment of potential health effects of such occupational exposure. For Finnair cabin crew (cabin attendants and stewards), flight history is not available for years prior to 1991 and therefore, other sources of information on number and type of flights have to be used. The lack of systematically recorded information is a problem for dose estimation for many other flight companies personnel as well. Several cosmic radiation dose estimations for cabin crew have been performed using different methods (e.g. 2-5), but they have suffered from various shortcomings. Retrospective exposure estimation is not possible with personal portable dosimeters. Methods that employ survey data for occupational dose assessment are prone to non-differential measurement error i.e. the cabin attendants do not remember correctly the number of past flights. Assessment procedures that utilize surrogate measurement methods i.e. the duration of employment, lack precision. The aim of the present study was to develop an assessment method for individual occupational exposure to cosmic radiation based on flight time tables. Our method provides an assessment method that does not require survey data or systematic recording of flight history, and it is rather quick, inexpensive, and possible to carry out in all other flight companies whose past time tables for the past periods exist. Dose assessment methods that employ survey data are prone to random error i.e. the cabin attendants do not remember correctly the number or types of routes that they have flown during the past. Our method avoids this since survey data are not needed

  18. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  19. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  20. Measurements of the cosmic background radiation

    International Nuclear Information System (INIS)

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  1. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  2. Atmospheric ions and pollution. Ions of the cosmic radiation

    International Nuclear Information System (INIS)

    Cachon, A.

    1977-01-01

    The principal historical steps before the so-called 'cosmic radiation' was known as an extra-terrestrial radiation are described. The origin, nature and energy of the radiation are discussed together with its evolution all along its path through atmosphere, in view of the interaction that occurs between the radiation and the atmosphere. The mechanism of the ionization induced by cosmic radiation is analyzed, the corresponding energy balance is established and the possible singularities in air ionization induced by cosmic rays are discussed [fr

  3. TeV Blazars and Cosmic Infrared Background Radiation

    OpenAIRE

    Aharonian, F. A.

    2001-01-01

    The recent developments in studies of TeV radiation from blazars are highlighted and the implications of these results for derivation of cosmologically important information about the cosmic infrared background radiation are discussed.

  4. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  5. Computation of cosmic radiation spectra and application to aircrew dosimetry

    International Nuclear Information System (INIS)

    Yoo, Song Jae

    2002-02-01

    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018μSv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant

  6. Secondary components, integral multiplicity factor and coupling coefficients of cosmic rays in the Earth atmosphere and other planets

    International Nuclear Information System (INIS)

    Dorman, L.I.; Yanke, V.G.

    1979-01-01

    Integral multiples of cosmic rays in Earth and other planets atmospheres have been determined. Kinetic equations describing the evolution of hadronic cascade in atmosphere using modern accelerating data have been solved with that end in view. Bond coefficients for nucleonic, muonic and electronic components of secondary cosmic radiation have been built using integral multiples. Normalized bond coefficients for three components obtained for maximum solar activity are presented. Integral muon and nucleon generation and bond coefficients have also been given for Mars

  7. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  8. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  9. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  10. Human population exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bouville, A.; Lowder, W.M.

    1988-01-01

    Critical evaluations of existing data on cosmic radiation in the atmosphere and in interplanetary space have been carried out in order to estimate the exposure of the world's population to this important component of natural background radiation. Data on population distribution and mean terrain heights on a 1 x 1 degree grid have been folded in to estimate regional and global dose distributions. The per caput annual dose equivalent at ground altitudes is estimated to be 270 μSv from charged particles and 50 μSv from neutrons. More than 100 million people receive more than 1 mSv in a year, and two million in excess of 5 mSv. Aircraft flight crews and frequent flyers receive an additional annual dose equivalent in the order of 1 mSv, though the global per caput annual dose equivalent from airplane flights is only about 1 μSv. Future space travellers on extended missions are likely to receive dose equivalents in the range 0.11 Sv, with the possibility of higher doses at relatively high dose rates from unusually large solar flares. These results indicate a critical need for a better understanding of the biological significance of chronic neutron and heavy charged particle exposure. (author)

  11. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  12. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  13. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  14. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  15. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  16. Collapse of radiating fluid spheres and cosmic censorship

    International Nuclear Information System (INIS)

    Unruh, W.G.

    1985-01-01

    The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship

  17. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  18. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  19. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  20. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  1. Cosmic radiation exposure in supersonic and subsonic flight

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The main body of this document consists of four major sections: (1) an introduction describing the scope of Committee operations and proving a brief exposition of the concepts of radiation protection; (2) a survey of experimental and theoretical data on cosmic radiations that have been obtained in individual research projects with emphasis on investigations that were performed under the sponsorship of the Committee. The studies evaluate galactic and solar radiation as a function of altitude and magnetic latitude; (3) best current estimates of cosmic radiation levels in the atmosphere; and (4) radiation protection recommendations dealing with maximum permissible doses and operational aspects covering satellite warning systems, on-board instrumentation, and forecasting. Nine annexes submitted by individual authors cover various of these subjects in greater detail

  2. Contribution of cosmic rays to radiation exposure of the population

    International Nuclear Information System (INIS)

    Sztanyik, L.B.; Nikl, I.

    1982-01-01

    To evaluate the exposure of the Hungarian population to cosmic rays, the absorbed dose rate in air of cosmic radiation was directly measured by high pressure ionization chamber at ground level on the surface of different bodies of water and at various altitudes on the board of an aircraft. From the dose rates measured this way, the outdoor dose equivalent rate from the ionizing components of cosmic radiation to people living at sea level would be 300-325 μSv per year. Taking into account the altitude distribution of the population, the average weighted dose equivalent is about 320 μSv per year. At Kekestetoe, the highest peak of the Matra Mountains, (the highest altitude in Hungary), the annual dose equivalent is about 50 per cent higher than on the Great Hungarian Plain. (author)

  3. Focusing of cosmic radiation near power lines. A theoretical approach

    International Nuclear Information System (INIS)

    Skedsmo, A.; Vistnes, A.I.

    1997-02-01

    The purpose of this work was to determine if, and to what extent, cosmic radiation can be focused by power lines. As an alternative to experimental measurements, a computer program was developed for simulation of particle trajectories. Starting from given initial values, the cosmic particles trajectories through the electromagnetic field surrounding power lines were simulated. Particular efforts have been made to choose initial values which represent the actual physical condition of the cosmic radiation at ground level. The results show an average decrease in the particle flux density in an area below a power line and a corresponding increased flux between 12 m and 45 m on either side of the centre of the power line. The average shift in flux density is, however, extremely small (less than 0.1%) and probably not measurable with existing detector technology. 11 refs., 4 figs., 2 tabs

  4. Measurements of K/Π ratio in cosmic radiation

    International Nuclear Information System (INIS)

    Mahon, J.R.P.

    1986-01-01

    Measurements of k/Π ratio in cosmic radiation by its half lives and its fluxes, were carried out. The kaon flux was obtained using the Cherenkov detector, and for pion flux scintillation detectors were used. The final results of K/Π ratio ∼ 0.2 was obtained. (M.C.K.) [pt

  5. Cosmic gamma radiation of ultra high energy of primordial origin

    International Nuclear Information System (INIS)

    Aquino Filho, F.G. de.

    1984-01-01

    The quantum mechanical effects near a collapsing black hole as shown by Stephen W.Hawking in 1974 to produce streaming particles through tunneling effect was explored in the context of cosmic gamma ray production. In this thesis, we show the possible production of gamma rays of high energies (ν approx 10 41 Hz) in the initial stages of the formation of the Universe by the explosion of primordial mini black holes. These mini black hole explosions happening at 10 -43 s to 10 -37 s after the start perhaps may account for the existing universal cosmic background radiation of 2.7 0 K. (Author) [pt

  6. On the cosmic microwave background radiation

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-12-01

    Full Text Available In this article we will try to give a pale idea to the reader of what could be the Cosmic Microwave Background (RCFM that, according to the traditional Big Bang model, was generated by a primordial explosion. With this purpose we find it very important to present a brief historical summary of how the Microcosm, based on the Standard Model of Elementary Particle Physics (MPPE, and the Macrocosm, based on the Standard Big Bang Model (MPBB, have evolved over time. In addition, in the final part of the article we will analyze the two physical processes presented in the literature that seek to explain the RCFM: Bariogenesis and Plasma Quark-Gluon.

  7. Search for the Cosmic Infrared Background Radiation using COBE Data

    Science.gov (United States)

    Hauser, Michael

    2001-01-01

    This project was initiated to allow completion of the primary investigation of the Diffuse Infrared Background Experiment (DIRBE) on NASA's Cosmic Background Explorer (CORE) mission, and to study the implications of those findings. The Principal Investigator (PI) on this grant was also the Principal Investigator on the DIRBE team. The project had two specific goals: Goal 1: Seek improved limits upon, or detections of, the cosmic infrared background radiation using data from the COBE Diffuse Infrared Background Experiment (DIRBE). Goal 2: Explore the implications of the limits and measured values of the cosmic infrared background for energy releases in the Universe since the formation of the first luminous sources. Both of these goals have been successfully accomplished.

  8. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  9. Hybrid Detector for the Measurement of Properties of Secondary Cosmic Rays

    International Nuclear Information System (INIS)

    Chavez, N.; Pasaye, E.; Salazar, H.; Villasenor, L.

    2003-01-01

    We report on the measurement of the lifetimes of pions, kaons and muons in the secondary cosmic-ray radiation by using a hybrid detector. The detector consists of a container filled with liquid scintillator that produces scintillation light when crossed by charged particles; this container is located atop a water tank that produces Cherenkov light when crossed by charged particles. Both containers have one phototube inside to detect the light produced. The electronics used consists of NIM modules, two digital oscilloscopes and one PC. This equipment is multipurpose and can be conventionally found in any modern physics laboratory. The results obtained for the muon, pion and kaon lifetimes are the following: τμ =2.120±0.02 μs, τπ =24.63±3 ns y τK = 12.52±2 ns in good agreement with the literature

  10. Anisotropy of the cosmic blackbody radiation.

    Science.gov (United States)

    Wilkinson, D T

    1986-06-20

    The universe is filled with thermal radiation having a current temperature of 2.75 K. Originating in the very early universe, this radiation furnishes strong evidence that the Big Bang cosmology best describes our expanding universe from an incredibly hot, compacted early stage until now. The model can be used to extrapolate our physics backward in time to predict events whose effects might be observable in the 2.75 K radiation today. The spectrum and isotropy are being studied with sophisticated microwave radiometers on the ground, in balloons, and in satellites. The results are as predicted by the simple theory: the spectrum is that of a blackbody (to a few percent) and the radiation is isotropic (to 0.01 percent) except for a local effect due to our motion through the radiation. However, a problem is emerging. Primordial fluctuations in the mass density, which later became the great clusters of galaxies that we see today, should have left an imprint on the 2.75 K radiation-bumpiness on the sky at angular scales of about 10 arc minutes. They have not yet been seen.

  11. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  12. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  13. Radiation transport of cosmic ray nuclei in lunar material and radiation doses

    International Nuclear Information System (INIS)

    Silberberg, R.; Tsao, C.H.; Adams, J.H. Jr.; Letaw, J.R.

    1985-01-01

    The radiation environment on the lunar surface is inhospitable. The permanent settlers may work ten hours per 24-hour interval for the two-week-long lunar day on the lunar surface, or 20 percent of the total time. At moderate depths below the lunar surface (less than 200 g/sq cm) the flux of secondary neutrons exceeds considerably that in the upper atmosphere of the earth, due to cosmic-ray interactions with lunar material. The annual dose equivalent due to neutrons is about 20 or 25 rem within the upper meter of the lunar surface. The dose equivalent due to gamma rays generated by nuclear interactions near the lunar surface is only on the order of 1 percent of that due to neutrons. However, gamma-ray line emission from excited nuclei and nuclear spallation products generated by cosmic rays near the lunar surface is of considerable interest: these lines permit the partial determination of lunar composition by gamma spectroscopy. 12 references

  14. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  15. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  16. The absorbed dose in air of photons generated from secondary cosmic rays at sea level at Nagoya, Japan

    International Nuclear Information System (INIS)

    Akhmad, Y.R.

    1995-01-01

    Investigations have been carried out to determine the absorbed dose in air of photons generated from secondary cosmic radiation at sea level at Nagoya, Japan. To isolate the contribution from cosmic photons, the pulse-height distributions due to μ particles and electrons were eliminated from the observed pulse-height distribution of a measurement with a 3'' diam. spherical NaI(Tl) detector. The pulse height due to μ particles and electrons was inferred from the coincidence technique using two types of scintillation detectors with different sensitivities to photons. To obtain the photon fluence rate for further dose calculation, the pulse-height distribution of cosmic photons was unfolded by the iterative method. The mean and its standard deviation of the absorbed dose in air and fluence rate due to cosmic photons calculated from a one year observation are 2.86±0.05 nGy.h -1 and 0.1342±0.0015 photons.cm -2 .s -1 , respectively. The absorbed dose in air from cosmic photons was 0.5% lower during autumn to winter and 0.6% higher during spring to summer than the mean taken over the year. (author)

  17. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  18. Is there a cosmological cosmic radiation

    International Nuclear Information System (INIS)

    Montmerle, Thierry.

    1977-01-01

    The possibility that cosmological cosmic rays ('CCR': protons and α particles) may have existed in the post recombination era of the early universe (z approximately 100) is examined. In this context, the CCR interact with the ambient gaseous medium. High energy collisions (> 1 GeV/n) give rise to diffuse background γ-rays via π 0 decay, and low energy collisions (10-100 MeV/n) give rise to light nuclei: 6 Li, 7 Li and 7 Be (via the α+α reaction), D and 3 He (via p + α reactions). Taking expansion and ionization losses into account, a system of coupled time-dependent transport equations is solved in the case of a CCR burst. The 1-100 MeV γ-ray background spectrum and the light element abundances are then taken as observational constraints on the CCR hypothesis. It is found that, in this framework, it is possible to account simultaneously for the γ-ray background spectrum and for the 7 Li/H ratio, but there are some difficulties with the 7 Li/ 6 Li ratio. To avoid these, it is possible, because of the spread in the γ-ray data, to lower the CCR flux, so that the CCR hypothesis cannot be ruled out on this basis at present. The theoretical possibility of observing in 1-100 MeV γ-ray background some definite features (e.g. matter antimatter regions annihilating) at any redshift up to z sub(c) approximately 100 is, in the case of π 0 -decay theories, rather restricted with present experiments, and this is shown by the introduction of a 'visibility function' which folds the theoretical γ-ray background intensity as a function of redshift through the efficiency of a given experiment [fr

  19. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  20. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  1. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  2. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  3. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  4. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    Spurny, F.; Kovar, I.; Bottollier-Depois, J.F.; Plawinski, L.

    1998-01-01

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  5. Cosmic Radiation Measurements in Airline Service

    Energy Technology Data Exchange (ETDEWEB)

    Bagshaw, M

    1999-07-01

    Ionising radiation monitoring equipment is installed in all Concordes and much data have been derived. To validate the measurements from the on-board monitoring equipment, a programme of measurements on Concorde has been carried out using passive dosemeters in association with the UK National Radiological Protection Board. Data from a typical month (in this case October 1997) shows an arithmetic mean dose across the British Airways Concorde fleet of 12.9 ({+-}0.4) {mu}Sv.h{sup -1}. Results from the NRPB measurements for the same month give a dose of 11.4 ({+-}0.5) {mu}Sv.h{sup -1} and application of the CARI 3Q programme gives a dose of 9.6 {mu}Sv.h{sup -1} for the same month. The effective route dose between London and New York gives a mean value of 43.1 {mu}Sv for the Concorde detectors. The NRPB results give a route dose of 38.9 {mu}Sv whereas the CARI 3Q programme gives a route dose of 32.5 {mu}Sv. Measurements have also been performed on the Boeing 747-400 aircraft on the high latitude ultralonghaul direct London-Tokyo flight and these give values in the region of 6 {mu}Sv.h{sup -1}, against the CARI 3Q estimate of 3.7 {mu}Sv.h{sup -1}. (author)

  6. Cosmic Radiation Measurements in Airline Service

    International Nuclear Information System (INIS)

    Bagshaw, M.

    1999-01-01

    Ionising radiation monitoring equipment is installed in all Concordes and much data have been derived. To validate the measurements from the on-board monitoring equipment, a programme of measurements on Concorde has been carried out using passive dosemeters in association with the UK National Radiological Protection Board. Data from a typical month (in this case October 1997) shows an arithmetic mean dose across the British Airways Concorde fleet of 12.9 (±0.4) μSv.h -1 . Results from the NRPB measurements for the same month give a dose of 11.4 (±0.5) μSv.h -1 and application of the CARI 3Q programme gives a dose of 9.6 μSv.h -1 for the same month. The effective route dose between London and New York gives a mean value of 43.1 μSv for the Concorde detectors. The NRPB results give a route dose of 38.9 μSv whereas the CARI 3Q programme gives a route dose of 32.5 μSv. Measurements have also been performed on the Boeing 747-400 aircraft on the high latitude ultralonghaul direct London-Tokyo flight and these give values in the region of 6 μSv.h -1 , against the CARI 3Q estimate of 3.7 μSv.h -1 . (author)

  7. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations. (authors)

  8. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  9. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  10. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2003-01-01

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  11. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  12. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  13. Primary and Secondary Anisotropies of Cosmic Microwave Background

    Science.gov (United States)

    Seljak, Uros

    2002-01-01

    The three main topics we proposed to do are linear calculations (continuing development of CMBFAST), nonlinear calculations of gas physics relevant to Cosmic Microwave Background (CMB) (Sunyaev-Zeldovich effect, etc.) and nonlinear effects on CMB due to dark matter (gravitational lensing, etc.). We describe each of these topics, as well as additional topics PI and his group worked on that are related to the topics in the proposal.

  14. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  15. Control of occupational exposure to cosmic radiation outside the atmosphere

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Kaneko, Masahito

    2000-01-01

    Japan is participating in the project of constructing ISS, International Space Station, and taking part of constructing JEM, Japan Experimental Module. It is expected that people working in this module upon completion should be controlled their exposure to cosmic radiation according to Japanese laws. Hence, the issue has been studied by a committee in NASDA, National Space Development Agency of Japan. In 1999, its interim report was released and public comments had been invited. In this presentation, following the introduction of the gist of the interim report as well as comments by the authors, countermeasures are proposed. (author)

  16. Generalized Chaplygin gas and cosmic microwave background radiation constraints

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2003-01-01

    We study the dependence of the location of the cosmic microwave background radiation peaks on the parameters of the generalized Chaplygin gas model, whose equation of state is given by p=-A/ρ α , where A is a positive constant and 0<α≤1. We find, in particular, that observational data arising from Archeops, BOOMERANG, supernova and high-redshift observations allow constraining significantly the parameter space of the model. Our analysis indicates that the emerging model is clearly distinguishable from the α=1 Chaplygin case and the ΛCDM model

  17. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  18. Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis

    International Nuclear Information System (INIS)

    Patil, K. D.; Zade, S. S.; Mohod, A. N.

    2008-01-01

    We investigate the possibility of cosmic censorship violation in the gravitational collapse of radiating dyon solution. It is shown that the final outcome of the collapse depends sensitively on the electric and magnetic charge parameters. The graphs of the outer apparent horizon, inner Cauchy horizon for different values of parameters are drawn. It is found that the electric and magnetic components push the apparent horizon towards the retarded time-coordinate axis, which in turn reduces the radius of the apparent horizon in Vaidya spacetime. Also, we extend the earlier work of Chamorro and Virbhadra [Pramana, J. Phys. 45 (1995) 181

  19. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  20. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J M; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  1. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J.M.; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  2. Radiation in the Einstein universe and the cosmic background

    International Nuclear Information System (INIS)

    Segal, I.E.

    1983-01-01

    It is shown that the cosmic background radiation is not at all uniquely or scientifically relatively economically indicative of a ''big bang.'' Specifically, essentially any temporally homogeneous theory in the Einstein universe is consistent with the existence of a cosmic background radiation (CBR) conforming to the Planck law; in particular, the chronometric cosmology is such. It is noted that the Einstein universe appears particularly natural as a habitat for photons by virtue of the absence of infrared divergences and of the absolute convergence of the trace for associated Gibbs-state density matrices. These features are connected with the closed character of space in the Einstein universe, and facilitate the use of the latter in modeling local phenomena, in place of Minkowski space with periodic boundary conditions or the like, with minimal loss of covariance or effect on the wave functions. In particular, the Einstein universe may be used in the analysis of the perturbation of a Planck-law spectrum due to a local nonvanishing isotropic angular momentum of the CBR, of whatever origin. The estimated distortion of the spectrum due to such a kinematically admissible effect is in very good agreement with that observed by Woody and Richards, which is opposite in direction to those earlier predicted by big-bang theories. The theoretical analysis involves a preliminary treatment of equilibria of linear quantum fields with supplementary quasilinear constraints

  3. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  4. AMS-02 data confront acceleration of cosmic ray secondaries in nearby sources

    DEFF Research Database (Denmark)

    Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We revisit the model proposed earlier to account for the observed increase in the positron fraction in cosmic rays with increasing energy, in the light of new data from the Alpha Magnetic Spectrometer (AMS-02) experiment. The model accounts for the production and acceleration of secondary electrons...

  5. Secondary osteoporosis due to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Katsuyuki; Kihana, Toshimasa; Inoue, Yasuhiro; Takeda, Yasunari; Matsuura, Shumpei; Kataoka, Masaaki; Hamamoto, Ken (Ehime Univ., Shigenobu (Japan). School of Medicine)

    1991-09-01

    Bone mineral density (BMD) of the 3rd lumber vertebra (L3) and the 5th lumber vertebra (L5) were measured by quantitative computed tomography (QCT). BMD of L3 and L5 in 139 normal control cases decreased linearly with age (L3: Y= 317.32 - 3.283X, L5: Y= 314.35 - 2.9056X). Ratio of the BMD of L5 to L3 (L5/L3 ratio, %) was constant in the value of 106.03{+-}12.84% before 50 years old and increased linearly after 50 years old (Y= 21.624 + 1.7187X). In 30 radiated cases, BMD of the radiated L5 ws decreased after 20 Gy of radiation and reached 47.44{+-}18.74% of the preradiated value after 50 Gy of radiation. L5/L3 ratio was also decreased after 20 Gy of radiation and reached 48.34{+-}19.33% of pre-radiated value after 50 Gy radiation. BMD of L5 and L5/L3 ratio after 50 Gy of radiation were decreased linearly with age (L5: Y= 107.44 - 0.9686X, L5/L3 ratio: Y= 106.98 - 0.9472X). Quality of life (performance status: PS, lumbago score) after radiation correlated significantly with age, body weight, BMD of L3 before radiation, BMD of L5 after radiation. PS and lumbago score were increased significantly in cases of more than 75 years old, less than 50 kg, less than 100 mg/cm{sup 3} of BMD of L3 before radiation and less than 40 mg/cm{sup 3} of BMD of L5 after radiation. Quality of life after radiation was improved by treatment of alfacalcidol (PS: 3.0{+-}0.61 to 1.2{+-}0.47, lumbago score: 15.4{+-}4.08 to 4.2{+-}1.17). In conclusion, it should be said that pelvic radiation for gynecologic malignancy may disturb the bone metabolism and quality of life in the early phase after radiation, especially in the aged patients and that quality of life could be improved by treatment of alfacalcidol. (author).

  6. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  7. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  8. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  9. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  10. Interaction of ultrahigh energy cosmic rays with microwave background radiation

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Kanevskij, B.L.; Vardanyan, V.V.

    1989-01-01

    The formation of the bump and black-body cutoff in the cosmic-ray (CR) spectrum arising from the π-meson photoproduction reaction in collisions of CR protons with the microwave background radiation (MBR) photons is studied. A kinetic equation which describes CR proton propagation in MBR with account of a catastrophic of the π-meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with spectrum obtained under assumption of continuous energy loss approximation. However spectra from local sources especially for the times of propagation t>10 9 years differ noticeably from those obtained in the continuous loss approximation. 24 refs.; 5 figs

  11. Comment on AMS02 results support the secondary origin of cosmic ray positrons

    OpenAIRE

    Dado, Shlomo; Dar, Arnon

    2015-01-01

    We present a simple calculation of the flux of secondary positrons produced in the ISM that is based only on priors. Our calculated ISM flux agrees very well with that calculated with the elaborate GALPROP code. It confirms that secondary production of positrons in the ISM by the primary cosmic rays cannot explain the observed sub-TeV flux of CR positrons. Moreover, we show that once energy loss of positrons in source and in the ISM are included, secondary production inside the CR sources plu...

  12. On the anisotropies of cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Molnar, Z.

    1996-01-01

    The work gives a brief overview of the topic of cosmic microwave background radiation anisotropies. Then is deals with the so-called Rees-Sciama affect; i.e. with the anisotropies arising between the last scattering surface and us due to transparent huge irregularities. Using the formulas of Special Theory of Relativity it is proven that in the neighbourhood of expanding spherical body the Meszaros calculation (Meszaros 1994) are correct; the inaccuracy is maximally of order 10 -12 . Then the profile of the blue shift of expansion caused by an expanding sphere is calculated for the case, when the radius of this sphere is much smaller that the relevant Hubble radius. Hence the profiles of the shifts of light periods through a void and through a supercluster are given in the most general cases. These cases contain all the three Friedmannian models and both the synchronous and asynchronous clusters. Then the obtained profiles are explicitly decomposed into the sum of the multipole terms, and it is shown that the observed difference between the measured direction of the maximum of dipole anisotropy of cosmic microwave background radiation and the result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect. This means that no alternative exists to the two possibilities for the explanation of the data of Lauer and Postman; either the either the huge system of Abell clusters is streaming, or the Friedmannian model is queried. The third possibility is, of course, that the data of observations of Lauer and Postman are incorrect. However, any of these three possibilities seem to be strange enough; hence, the problems coming from data of Lauer and Postman further holds. This is the key result of paper. As a further technical result it is also shown that in principle there is no upper limit of Rees-Sciama effect. (author)

  13. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  14. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  16. Secondary Disease in Radiation Chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C. C. [Biology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1969-07-15

    A review of research dealing directly or indirectly with the development of bidirectional tolerance in radiation chimeras has been made, emphasizing some of the contemporary research on this subject in Oak Ridge and Knoxville. By controlling such factors as cell dose, age of donor animal and day of cell injection, it was possible to achieve bidirectional tolerance. Attempts to reduce bidirectional tolerance in favour of increasing the graft-versus-host reaction were less successful. Hypoxic caging demonstrated a new approach to achieving bidirectional tolerance through physiological competition for growth. Graft-versus-host reactions have a lower growth priority than marrow regeneration or erythropoietic hyperplasia. Study of pathologic processes, immunologic capability and the-biochemical lesions in radiation chimeras all lead to new ideas that involve bidirectional tolerance. The investigations on dose rate in radiation suppression of the immune response and on LD{sub 50} (30- to 90-day)values after injection of different numbers of marrow cells all have a bearing on control of the host-versus-graft response and therefore are important in understanding bidirectional tolerance. (author)

  17. Cosmic radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    De Angelis, G.; Facius, R.; Reitz, G.

    2003-01-01

    Since decades, elevated frequencies of dicentric chromosomes (DIC) in human lymphocytes have successfully been used as a biological dosimeter in cases of acute, often accidental exposures to ionizing radiation. As long as duration and time lags after exposure are small compared to the lifetime of DIC, their frequencies can also be used to assess doses from protracted, chronic irradiation. E.g., within the substantial range of uncertainties, the frequencies of DIC observed in cosmonauts are compatible with the frequencies expected from doses of low and high LET radiation to which they were exposed in low earth orbit (LEO). On the other hand, frequencies of DIC detected in lymphocytes of civilian aviation crewmembers rarely correlate with the doses accumulated all along their professional career. For such long duration exposures with relatively low induction rates, the concomitant decay of DIC frequencies due to the removal during exposure of lymphocytes carrying DIC has to be taken into account. We present temporal profiles of frequencies of DIC during the exposure calculated with a model of exponential decay of DIC for some scenarios of chronic exposure to cosmic radiation. E.g., even after a 'heavily' shielded Mars mission, the expected frequencies of DIC in lymphocytes of astronauts will be 10 to 40 times higher than the terrestrial control levels. For air flight personnel we calculated the time profiles of frequencies of DIC in lymphocytes of a 'typical' pilot, a male cabin attendant and a female cabin attendant whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career as recorded in detailed duty logs. These results demonstrate that experimental (epidemiological) studies concerning DIC in air or space flight personnel must explicitly take into consideration the temporal exposure profiles in the prospective study population and that the point in time at which blood samples are to be drawn must

  18. Cosmic radiation dosimetry onboard aircrafts at the brazilian airspace

    International Nuclear Information System (INIS)

    Federico, Claudio Antonio

    2011-01-01

    The objective of this work is the establishment of a dosimetric system for the aircrew in the domestic territory. A technique to perform measurements of ambient dose equivalent in aircrafts was developed. An active detector was evaluated for onboard aircraft use, testing its adequacy to this specific type of measurement as well as its susceptibility to the magnetic and electromagnetic interferences. The equipment was calibrated in standard radiation beams and in a special field of the European Laboratory CERN, that reproduces with great proximity the real spectrum in aircraft flight altitudes; it was also tested in several flights, in an Brazilian Air Force's aircraft. The results were evaluated and compared with those obtained from several computational programs for cosmic radiation estimates, with respect to its adequacy for use in the South American region. The program CARI-6 was selected to evaluate the estimated averaged effective doses for the aircrew who operate in this region. A statistical distribution of aircrew effective doses in South America and Caribe was made, and the results show that a great part of this aircrew members are subjected to annual effective doses that exceed the dose limits for the members of the public. Additionally, a preliminary passive dosemeter, based in thermoluminescent detectors, was proposed; international collaborations with United Kingdom and Italy were established for joint measurements of the ambient equivalent doses in aircrafts. (author)

  19. Constraining the cosmic radiation density due to lepton number

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2013-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis is typically parameterized in terms of the effective number of neutrinos N eff , and it is a key parameters in cosmological models slightly more general than the successful minimal ΛCDM scenario. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. We summarize here the results of a recent analysis to determine the BBN bound on N eff from primordial neutrino–antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations, and considering quite a wide range for the total lepton number in the neutrino sector, η ν =η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in . Comparing these results with the forthcoming measurement of N eff by the Planck satellite will give insight on the nature of the radiation content of the universe

  20. Aircrew Exposure from Cosmic Radiation on Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; McCall, M.J.; Green, A.R.; Bennett, L.G.I.; Pierre, M.; Schrewe, U.J.; O' Brien, K.; Felsberger, E

    2001-07-01

    As a result of the recent recommendations of the ICRP 60, and in anticipation of possible regulation on occupational exposure of Canadian-based aircrew, an extensive study was carried out by the Royal Military College of Canada over a one-year period to measure the cosmic radiation at commercial jet altitudes. A tissue-equivalent proportional counter was used to measure the ambient total dose equivalent rate on 62 flight routes, resulting in over 20,000 data points at one-minute intervals at various altitudes and geomagnetic latitudes (i.e. which span the full cut-off rigidity of the Earth's magnetic field). These data were then compared to similar experimental work at the Physikalisch Technische Bundesanstalt, using a different suite of equipment, to measure separately the low and high linear energy transfer components of the mixed radiation field, and to predictions with the LUIN transport code. All experimental and theoretical results were in excellent agreement. From these data, a semi-empirical model was developed to allow for the interpolation of the dose rate for any global position, altitude and date (i.e. heliocentric potential). Through integration of the dose rate function over a great circle flight path, a computer code was developed to provide an estimate of the total dose equivalent on any route worldwide at any period in the solar cycle. (author)

  1. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    Science.gov (United States)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  2. Commentary about the large transverse momenta secondaries observed at the ISR-CERN (on basis of cosmic ray data)

    CERN Document Server

    Rodrigues, W A; Turtelli, A

    1974-01-01

    The authors discuss the large transverse momentum secondaries observed at CERN-ISR on the basis of high energy cosmic ray data which indicate the existence of a discrete mass spectrum for intermediate fireball states. (13 refs).

  3. Cosmic background radiation spectral distortion and radiative decays of relic neutral particles

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Doroshkevich, A.G.; Khlopov, M.Yu.; Yurov, V.P.; Vysotskij, M.I.

    1989-01-01

    The recently observed excess of photons on a short wavelength side of the peak of a cosmic background radiation spectrum can be described by radiative decays of relic neutral particles. The lifetime and mass of a decaying particle must satisfy the following conditions: 2x10 9 s 14 s, 0.4 eV -9 -8x10 -8 ) μ b , and the interaction of new particles with the usual matter must be rather strong. The generalization of the standard SU(3)xSU(2)xU(1) model is presented which includes new particles with the desired properties. 18 refs.; 3 figs.; 2 tabs

  4. Contribution gives the cosmic radiation to the doses for exhibition to the natural radiation in the Cuban population

    International Nuclear Information System (INIS)

    Tomas Zerquera, J.; Peres Sanchez, D.; Prendes Alonso, M

    1998-01-01

    With the objective to specify the preponderant contribution the cosmic component the radiation in the dose that the Cuban population receives you carries out a program she gives mensurations she gives this component in the whole country

  5. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    International Nuclear Information System (INIS)

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  6. Imprints of relic gravitational waves in cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Baskaran, D.; Grishchuk, L. P.; Polnarev, A. G.

    2006-01-01

    A strong variable gravitational field of the very early Universe inevitably generates relic gravitational waves by amplifying their zero-point quantum oscillations. We begin our discussion by contrasting the concepts of relic gravitational waves and inflationary 'tensor modes'. We explain and summarize the properties of relic gravitational waves that are needed to derive their effects on cosmic microwave background (CMB) temperature and polarization anisotropies. The radiation field is characterized by four invariants I, V, E, B. We reduce the radiative transfer equations to a single integral equation of Voltairre type and solve it analytically and numerically. We formulate the correlation functions C l XX ' for X, X ' =T, E, B and derive their amplitudes, shapes and oscillatory features. Although all of our main conclusions are supported by exact numerical calculations, we obtain them, in effect, analytically by developing and using accurate approximations. We show that the TE correlation at lower l's must be negative (i.e. an anticorrelation), if it is caused by gravitational waves, and positive if it is caused by density perturbations. This difference in TE correlation may be a signature more valuable observationally than the lack or presence of the BB correlation, since the TE signal is about 100 times stronger than the expected BB signal. We discuss the detection by WMAP of the TE anticorrelation at l≅30 and show that such an anticorrelation is possible only in the presence of a significant amount of relic gravitational waves (within the framework of all other common assumptions). We propose models containing considerable amounts of relic gravitational waves that are consistent with the measured TT, TE and EE correlations

  7. Exposure to cosmic radiation: a developing major problem in radiation protection

    International Nuclear Information System (INIS)

    Lowder, W.M.; Hajnal, F.

    1992-01-01

    'Full Text:' Cosmic radiation at ground altitudes is usually a relatively minor contributor to human radiation exposure, producing a global collective dose equivalent that is about 10 percent of the total from all natural sources. However, more than a million people living at high altitudes receive annual dose equivalents in excess of 5 mSv. In recent years, there has been increasing concern about the exposure of aircraft flight crews and passengers, for whom annual dose equivalents of up to several mSv have been estimated. Recent EML results indicate the presence of an important high-energy neutron component at jet aircraft altitudes, perhaps producing dose equivalents of the order of 0.1. mSv/h at high latitudes. Finally, space agencies have been long concerned with the potential exposures of astronauts, especially from the rare massive solar flare events. As more people venture into space, this source of human radiation exposure will become increasingly important. Available date on those aspects of cosmic radiation exposure will be reviewed, along with current and anticipated future research activities that may yield and improve assessment of the problem. The question of how such exposures might be controlled will be addressed, but not answered. (author)

  8. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  9. Secondary biogeneous radiation of human organism

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Surkenova, G.N.

    1999-01-01

    When studying samples of three types of tissues of alive healthy human organism (hands, surface of breast, hair) it is shown that hair permanently emit secondary biogeneous radiation (SBR) which may registered with biological detectors. The hypothesis is suggested that natural background radiation permanently exciting biopolymers (proteins, nuclei acids) being present in alive organism in condensed state induces permanently present electromagnetic field of SBR which is vitally important for human organism. The field partly extends beyond the organism, where it is registered with sensitive biological detectors [ru

  10. High-transverse-momentum secondaries and rising total cross sections in cosmic-ray interactions

    CERN Document Server

    Cline, D; Luthe, J

    1973-01-01

    The authors draw attention to hadron collisions from cosmic-ray data showing evidence for high-transverse-momentum secondaries in substantial excess of the celebrated exponential cutoff, analogous to recent observations at the CERN intersecting storage rings. The data support a composite (parton/quark) picture of the proton in which deep inelastic proton collisions at high energy ( approximately 10/sup 3/ GeV) produce constituents, observed through hadron jets. This phenomenon is possibly connected to the rise of the total cross section observed in the same range of energy. (24 refs).

  11. Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM

    Science.gov (United States)

    Wong, C. M.; Ng, L. K.

    1985-01-01

    A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented.

  12. Cloud chamber researches in nuclear physics and cosmic radiation

    International Nuclear Information System (INIS)

    Blackett, P.

    1984-01-01

    An extract from Blackett's Nobel Prize speech of 1948, this recounts the work done by the author on particle tracks in a Wilson cloud chamber in 1932 at the Cavendish Laboratory, Cambridge. In particular he studied the energetic particles in cosmic rays using a cloud chamber and camera. The improvements to the equipment are recounted and photographs of cosmic ray showers taken with it are shown. (UK)

  13. Dosemetry for exposures to cosmic radiation in civilian aircraft - Part 1: Conceptual basis for measurements

    International Nuclear Information System (INIS)

    2006-01-01

    Aircraft crew are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union (EU) introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionizing radiation, including cosmic radiation, as occupational exposure. The Directive requires account to be taken of the exposure of aircraft crew liable to receive more than 1 mSv per year. It then identifies the following four protection measures: (i) to assess the exposure of the crew concerned; (ii) to take into account the assessed exposure, when organizing working schedules with a view to reducing the doses of highly exposed crew; (iii) to inform the workers concerned of the health risks their work involves; and (iv) to apply the same special protection during pregnancy to female crew in respect of the 'child to be born' as to other female workers. The EU Council Directive has already been incorporated into laws and regulations of EU Member States and is being included in the aviation safety standards and procedures of the Joint Aviation Authorities and the European Air Safety Agency. For regulatory and legislative purposes, the radiation protection quantities of interest are equivalent dose (to the foetus) and effective dose. The cosmic radiation exposure of the body is essentially uniform and the maternal abdomen provides no effective shielding to the foetus. As a result, the magnitude of equivalent dose to the foetus can be put equal to that of the effective dose received by the mother. Doses on board aircraft are generally predictable, and events comparable to unplanned exposure in other radiological workplaces cannot normally occur (with the rare exceptions of extremely intense and energetic solar particle events). Personal dosemeters for

  14. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    International Nuclear Information System (INIS)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  15. COMPARISON OF COSMIC RAYS RADIATION DETECTORS ON-BOARD COMMERCIAL JET AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Jakoubek, J.; Kyselová, D.; Ploc, Ondřej; Bemš, J.; Štěpán, Václav; Uchihori, Y.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 484-488 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : cosmic radiation * commercial jet aircraft * radiation dose Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  16. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Salles, Krause C.S.; Prado, Nadya M.C.

    2013-01-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  17. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  18. Equatorial secondary cosmic ray observatory to study space weather and terrestrial events

    Science.gov (United States)

    Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.

    2018-05-01

    Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors

  19. Cosmic rays and radiations from the cosmos; Rayons cosmiques et rayonnement du cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Parizot, E

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  20. Ageing effects on image sensors due to terrestrial cosmic radiation

    NARCIS (Netherlands)

    Nampoothiri, G.G.; Horemans, M.L.R.; Theuwissen, A.J.P.

    2011-01-01

    We analyze the “ageing” effect on image sensors introduced by neutrons present in natural (terrestrial) cosmic environment. The results obtained at sea level are corroborated for the first time with accelerated neutron beam tests and for various image sensor operation conditions. The results reveal

  1. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  2. Forward to all-around survey of environmental neutrons from cosmic ray secondary neutron measurements. History and prospects

    International Nuclear Information System (INIS)

    Aratani, M.

    2000-01-01

    At the present stage of our civilization, environmental neutrons come from not only cosmic ray but also the various kinds of nuclear facilities where uranium, plutonium, californium-252, and other transuranium elements are treated in a large scale. To be regret, those neutron-emitting elements have already been released into the environment by experiments with the military purpose, and been distributed among atmosphere, hydrosphere and geosphere in further larger scale than the peaceful use of nuclear energy. Now environmental neutrons should be surveyed against the horizontal component from the nuclear facilities, upward component from soil, and downward component as secondary neutron from cosmic ray, which is to be regarded as background neutron in the environment. The third category of neutrons have long been surveyed by Y. Nishina and his group of the Institute of Physical and Chemical Research (IPCR) since 1970 at the Itabashi Branch (Itabashi, Tokyo) of IPCR. The BF 3 gas-filled monitors (20 cm in diameter x 200 cm) of 28 (36 at maximum) vessels were used for neutrons till Sept. of 1998, and were transferred to Yanpahchin, Tibet, China for the primary neutrons that might be preferred to secondary ones by researchers of the cosmic ray. A critical accident happened at the Tokai facilities of JCO (Japan Conversion Organization) on Sept. 30 1999, and was discussed in various contexts at home and in a severe tone abroad. A background survey of the environmental neutrons has not been made at any nuclear site or facilities concerning fission in this country. The neutron monitor which detected and recorded the neutrons from the JCO critical accidents was what had been equipped for the fusion research, but not for fission application. Radiation education on neutron has not been made in both school and social education. Basic scientists also may be responsible for the critical accident through making light of these fundamental aspects of nuclear technology. In this

  3. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  4. Elucidation of the fluctuation history of cosmic radiation and global environmental using AMS

    International Nuclear Information System (INIS)

    Horiuchi, Kazuho

    2008-01-01

    Recently, accuracy of AMS has further been raised in trace amounts of sample. Besides application of 14 C to the age estimation, it has been able to restore in detail the past fluctuation of cosmic radiation strength using the other radioactive isotopes ( 10 Be, 36 Cl etc) in environmental samples and to elucidate the correlation of this with the fluctuation of climate and environment. In this report, the attempts to elucidate the fluctuation history of cosmic radiation and global environment with ice cores using AMS are presented. (M.H.)

  5. Air traffic and cosmic radiation. An epidemiological study among aircraft crews in Germany

    International Nuclear Information System (INIS)

    Blettner, M.; Hammer, G.P.; Langner, I.; Zeeb, H.

    2003-01-01

    Airline pilots and cabin crew are exposed to cosmic ionizing radiation and other occupational factors that may influence their health status. The mortality of some 6,000 pilots and 20,000 cabin crew members was investigated in a cohort study. Overall a pronounced healthy worker effect was seen. The cancer mortality risk is slightly lower than in the general population. Currently there is no indication for an increase in cancer mortality due to cosmic radiation. A further follow-up is planned. (orig.) [de

  6. Beryllium isotopes in cosmic radiation measured with plastic detectors

    International Nuclear Information System (INIS)

    Fukui, K.; Enge, W.; Beaujean, R.

    1976-01-01

    Plastic stacks consisting of Daicel cellulose nitrate and Kodak cellulose nitrate were flown from Fort Churchill, Canada in 1971 for the study of isotopic components of light nuclei, especially beryllium, in primary cosmic rays. Tracks found in these detectors were analysed for charge and mass identification; the ratio between Be 7 and total Be is obtained as 0.64 +- 0.25 at detector level. (orig.) [de

  7. The cosmic background radiation circa ν2K

    International Nuclear Information System (INIS)

    Bond, J. Richard; Pogosyan, Dmitry; Prunet, Simon

    2000-01-01

    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {ω b , ω cdm , Ω tot , Ω Λ , n s , τ C , σ 8 }. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature (Ω tot = 1.08 ± 0.06) and the initial fluctuations were nearly scale invariant (n s 1.03 ± 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates (ω b -Ω b h 2 0.030 ± 0.005 cf. 0.019 ± 0.002). The CDM density is in the expected range (ω cdm 0.17±0.02). Even stranger is the CMB+LSS evidence that the density of the universe is dominated by unclustered energy akin to the cosmological constant (Ω Λ = 0.66 ± 0.06), at the same level as that inferred from high redshift supernova observations. We also sketch the CMB+LSS implications for massive neutrinos

  8. Nuclear interactions between cosmic radiation and interstellar gas, and nucleosynthesis of lithium, beryllium, and boron

    International Nuclear Information System (INIS)

    Meneguzzi, Maurice.

    1975-01-01

    The effects of nuclear interactions between the nuclei of cosmic radiation and those of interstellar gas were studied. The variation in the chemical composition of cosmic radiation with energy shows that the quantity of matter it passes through decreases between 1 and 100GeV/nucleon from 6 to 1g/cm 2 approximately. The chemical and isotopic composition for C, N and O suggests that the relative abundances of these nuclei at the source are much the same as the universal abundances except for the ratio C/O, higher by about a factor 1.5 in cosmic radiation sources. The enrichment of interstellar gas in light elements Li, Be and B was calculated. The value obtained accounts well for the universal abundances of the four isotopes 6 Li, 9 Be, 10 B, 11 B independently of the model used. It may be assumed that large fluxes of low-energy cosmic rays exist in the remains of supernovae and that 7 Li is produced in these objects and then spread out in the galaxy. These objects could be extended sources of nuclear γ's, which are observable, but the same process proves unable to produce sufficient quantities of the very heavy proton-rich elements of dubious origin. Inelastic collisions or spallation reactions between cosmic and interstellar gas nuclei induce a quantity of nuclear γ ray emission not necessarily undetectable. The position flux of a few MeV from the β + disintegration of unstable spallation products is too low on the other hand to give an estimate of the low-energy cosmic radiation flux in the interstellar medium [fr

  9. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  10. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  11. New limits to the small scale fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Fomalont, E.B.; Wall, J.V.

    1983-01-01

    The VLA has been used at 4.9 GHz to observe a small region of sky in order to extend the radio source count to low flux density (Fomalont et al., these proceedings) and to look for small scale fluctuations in the 2.7 K cosmic microwave background radiation. (Auth.)

  12. Cosmic radiation during air travel: trends in exposure of aircrews and airline passengers

    NARCIS (Netherlands)

    Blaauboer RO; LSO

    2004-01-01

    An unfavourable effect of flying is the enhanced exposure of both passengers and aircrew to cosmic radiation at high altitudes. On the basis of a detailed survey on passengers arriving at or departing from Amsterdam Schiphol Airport in the 1988-1997 period, estimates of individual effective dose for

  13. Distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum

    International Nuclear Information System (INIS)

    De Zotti, G.

    1982-01-01

    The theory of the origin and evolution of distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum is reviewed. Some proposed experiments, designed to substantially improve our knowledge of that portion of the spectrum, are briefly described. (author)

  14. CALIBRATION OF MODIFIED LIULIN DETECTOR FOR COSMIC RADIATION MEASUREMENTS ON-BOARD AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    2015-01-01

    Roč. 164, č. 4 (2015), s. 489-492 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  15. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  16. Measurement of the cosmic background radiation temperature at 6.3 cm

    International Nuclear Information System (INIS)

    Mandolesi, N.; Calzolari, P.; Cortiglioni, S.; Morigi, G.

    1984-01-01

    We present results of a measurement of the cosmic background radiation temperature at a wavelength of 6.3 cm. We obtained the value T/sub CBR/ = 2.71 +- 0.20 K. This is in good agreement with, and has a smaller error than, any previous measurement at equal or longer wavelengths

  17. Sensitiveness to cosmic radiation: on some aspects of data collection and their representation

    International Nuclear Information System (INIS)

    Leray, J.L.; Musseau, O.; Marti, A.; Coic, Y.

    1987-07-01

    During simulation of cosmic radiation effects, the energy deposition by length unit is altered because of energy lowering along the range. This mechanism is illustrated by exhaustive data got from the microprocessor type 2901. Wrong conclusions may be deduced concerning behavior in space field. New representations of cross sections are presented; they lead to safer predictions on behavior in space environment [fr

  18. Cosmic radiation exposure of aircraft crew: compilation of measured and calculated data

    Czech Academy of Sciences Publication Activity Database

    Lindborg, L.; Bartlett, D.; Beck, P.; McAulay, I.; Schnuer, K.; Schraube, H.; Spurný, František

    2004-01-01

    Roč. 110, 1-4 (2004), s. 417-422 ISSN 0144-8420 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : cosmic radiation exposure * aircraft crew * measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  19. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    International Nuclear Information System (INIS)

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  20. Application of Apollo cosmic radiation dosimetry to lunar colonization studies

    International Nuclear Information System (INIS)

    English, R.A.; Bailey, J.V.; Brown, R.D.

    1972-01-01

    The radiation data gathered from the lunar landing missions of Apollo 11 through Apollo 15 are presented. These data have been analyzed to provide dosimetry evaluation of the ambient radiation and radiation from potential solar particle events for the planning of safe, long-term stays of relatively large numbers of individuals upon the moon. (U.S.)

  1. INCA project for investigation of primary cosmic radiation spectrum

    International Nuclear Information System (INIS)

    Aleksandrov, K.V.; Erlykin, A.D.; Zhdanov, G.B.

    2002-01-01

    The scientific purposes of the INCA project and application of the ionization-neutron calorimeter for direct measurements of the cosmic rays spectrum and composition in the knee area and the primary electrons spectrum by 10 14 - 10 13 eV are discussed. The new effective method for the primary electrons and protons separation with the complex rejection coefficient of 10 -5 - 10 -6 is proposed for studying the primary electrons spectrum by E e > 1 TeV. The experimental and calculation data are in good agreement [ru

  2. Attempt to measure the cosmic background radiation at high altitude

    International Nuclear Information System (INIS)

    Labeyrie, Jacques; Le Boiteux, Henri

    1959-01-01

    Results are given of the measurement by G.M. tubes of hard component of cosmic background between o and 60 km of altitude, at 43 deg. N latitude, on january 27, 1959 (17 h. GMT). The counting rate starts at 0.3 pulses per second (sea level) reaches a maximum value of 15.6 (18 km) and remains constant at 5.7 above 40 km. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 573, may 1959

  3. Dark energy and the cosmic microwave background radiation

    Science.gov (United States)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  4. Measurement of secondary cosmic ray intensity at Regener-Pfotzer height using low-cost weather balloons and its correlation with solar activity

    OpenAIRE

    Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab

    2017-01-01

    Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ~ 14.50 deg N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) partic...

  5. Natural environmental radioactivity with particular regard to radon gas and cosmic radiation

    International Nuclear Information System (INIS)

    Lowder, W.M.

    1993-01-01

    A paper given at the previous workshop described the growth of our knowledge of the nature and sources of human exposure to naturally-occurring radiation and radionuclides, and summarized assessments of the individual components of this exposure. Here, some recent developments relevant to the earlier conclusions are described, and a closer look is taken at the increasingly important human exposure contribution of cosmic radiation, especially at aircraft altitudes. (author). 21 refs, 1 tab

  6. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  7. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    Sallaz-Damaz, Y.

    2008-10-01

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 10 10 to 10 15 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  8. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    Science.gov (United States)

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  9. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  10. Natural radiation doses for cosmic and terrestrial components in Costa Rica

    International Nuclear Information System (INIS)

    Mora, Patricia; Picado, Esteban; Minato, Susumu

    2007-01-01

    A study of external natural radiation, cosmic and terrestrial components, was carried out with in situ measurements using NaI scintillation counters while driving along the roads in Costa Rica for the period July 2003-July 2005. The geographical distribution of the terrestrial air-absorbed dose rates and the total effective dose rates (including cosmic) are represented on contour maps. Information on the population density of the country permitted the calculation of the per capita doses. The average effective dose for the total cosmic component was 46.88±18.06 nSv h -1 and the average air-absorbed dose for the terrestrial component was 29.52±14.46 nGy h -1 . The average total effective dose rate (cosmic plus terrestrial components) was 0.60±0.18 mSv per year. The effective dose rate per capita was found to be 83.97 nSv h -1 which gives an annual dose of 0.74 mSv. Assuming the world average for the internal radiation component, the natural radiation dose for Costa Rica will be 2.29 mSv annually

  11. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  12. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  13. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  14. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  15. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  16. Non-universal spectra of ultra-high energy cosmic ray primaries and secondaries in a structured universe

    International Nuclear Information System (INIS)

    Sigl, Guenter

    2007-01-01

    Analytical calculations of extra-galactic cosmic ray spectra above ∼ 10 17 eV are often performed assuming continuous source distributions, giving rise to spectra that depend little on the propagation mode, be it rectilinear or diffusive. We perform trajectory simulations for proton primaries in the probably more realistic case of discrete sources with a density of ∼ 10 -5 Mpc -3 . We find two considerable non-universal effects that depend on source distributions and magnetic fields: First, the primary extra-galactic cosmic ray flux can become strongly suppressed below a few 10 18 eV due to partial confinement in magnetic fields surrounding sources. Second, the secondary photon to primary cosmic ray flux ratio between ≅ 3 x 10 18 eV and ≅ 10 20 eV decreases with decreasing source density and increasing magnetization. As a consequence, in acceleration scenarios for the origin of highest energy cosmic rays the fraction of secondary photons may be difficult to detect even for experiments such as Pierre Auger. The cosmogenic neutrino flux does not significantly depend on source density and magnetization. (author)

  17. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  18. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    Science.gov (United States)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  19. Investigation of energy spectrum and nuclear interactions of primary cosmic radiation; Badanie widma energetycznego i oddzialywan jadrowych pierwotnego promieniowania kosmicznego

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [Dept. of High Energy Physics, The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the paper the JACEE experiment data analysis: energy spectra in the energy range 10{sup 12} - 10{sup 15} eV of different nuclides in cosmic radiation and some aspects of nuclear interactions at energy above 10{sup 12} eV/nucleon is presented. The data were compared with results of theory of cosmic radiation acceleration by striking waves arises from supernova stars explosions. In the interactions of cosmic radiation nuclei the short-lived particles production has been observed what agrees with long-distance component of cascades initiated by cosmic radiation interactions. In one case an interaction with asymmetric photons emission were observed 72 refs, 33 figs, 4 tabs

  20. Experiments on studying solar cosmic radiation nuclear composition and energy spectra on the Prognoz-9 sattelite

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Gordeev, Yu.P.; Denisov, Yu.I.; Kolesov, G.Ya; Podorol'skij, A.N.; Nikitin, B.A.

    1986-01-01

    Performances of the SKI-1 device installed on board the artificial satellite of the Earth ''Prognoz-9'' and intended for measurements of a nuclear component of solar cosmic radiation are considered. The device permits to determine intensites of proton fluxes in the 10-30, 30-60, 60-90 and 90-120 MeV energy ranges and nuclei with charges z=1-30 and the following energies: 5-20 MeV for 1 H and 4 He nuclei, 10-26 MeV for C nuclei, 12-42 MeV for O nuclei, 23-80 MeV for Fe nuclei. The SKI-1 comprises two similar telescopes. The telescope includes 4 silicon semiconducting detectors. Energy spectra of solar cosmic radiation and data characterizing time dependence of their intensity are given

  1. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  2. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    Science.gov (United States)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  3. Propagation of ultra-high-energy cosmic rays and their secondaries with CRPropa

    International Nuclear Information System (INIS)

    Vliet, Arjen Rene van

    2015-04-01

    Due to experiments like the Pierre Auger Observatory (Auger) and the Telescope Array (TA), high-statistics data is becoming available on the energy spectrum, the composition and the arrival directions of ultra-high-energy cosmic rays (UHECRs, cosmic rays with energies above ∝ 10 17 eV). To interpret this data in terms of actual astrophysical parameters, or to test astrophysical models against the measured data, dedicated simulations of the propagation of UHECRs from their sources to Earth are needed. To this end, the UHECR propagation code called CRPropa has been developed. It can take into account all relevant interactions with ambient photon backgrounds (pair production, photodisintegration and photopion production) as well as nuclear decay, cosmological evolution effects and deflections in extragalactic and galactic magnetic fields. CRPropa, including its newest features, is described in this thesis. When considering the propagation of ultra-high-energy nuclei, the dominant interaction for most isotopes and energies is photodisintegration. Photodisintegration has been implemented in CRPropa for all relevant isotopes (up to iron) and all relevant photodisintegration channels using cross-section calculations with the publicly-available code called TALYS, including extensions for the low mass numbers. This photodisintegration setup is compared here extensively with the photodisintegration scheme developed by Puget, Stecker and Bredekamp, leading to several improvements on the cross sections implemented in CRPropa. In the interactions of UHECRs with background photon fields, secondary neutrinos and photons, so-called cosmogenic neutrinos and photons, can be created. CRPropa can simulate the production and propagation of these secondary particles as well. The IceCube Neutrino Observatory (IceCube) has recently reported the first observation of extraterrestrial neutrinos in the PeV energy range. In this work is investigated whether these neutrinos could have

  4. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  5. Distortions in the cosmic background radiation and big-bang 4He nucleosynthesis

    International Nuclear Information System (INIS)

    Mathews, G.J.; Alhassid, Y.; Fuller, G.M.

    1981-01-01

    The observed distortion of the cosmic background radiation is analyzed in the framework of information theory to derive a simple form of the photon occupation probability. Taking this distribution function as indicative of the Lagrange parameters which might characterize the era of nucleosynthesis during the big bang, and assuming equilibrium among the constituents present, we find that the primordial 4 He abundance may be reduced by as much as 15% from the standard big-bang prediction

  6. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  7. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  8. What is cosmic radiation?; Qu'est ce-que le rayonnement cosmique?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  9. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  10. Dosimetric significance of cosmic radiation in the altitude of SST and in free space

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O C [Kiel Univ. (Germany, F.R.). Inst. fuer Reine und Angewandte Kernphysik

    1977-01-01

    The integral cosmic-ray flux, and hence the dose rate, increases with altitude. At the cruising altitude of the subsonic jets, about 10 km, the dose rate is already about a factor 70 higher than at sea level. At the higher altitudes of SST the situation is different because the composition of the galactic component differs from that at the subsonic level, the solar flares are more efficient, and a small number of heavy nuclei are still present. In free space an additional radiation hazard appears when the radiation belts have to be crossed.

  11. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  12. THE BORON-TO-CARBON ABUNDANCE RATIO AND GALACTIC PROPAGATION OF COSMIC RADIATION

    International Nuclear Information System (INIS)

    Obermeier, A.; Boyle, P.; Müller, D.; Hörandel, J.

    2012-01-01

    In two long-duration balloon flights in 2003 and 2006, the TRACER cosmic-ray detector has measured the energy spectra and the absolute intensities of the cosmic-ray nuclei from boron (Z = 5) to iron (Z = 26) up to very high energies. In particular, the second flight has led to results on the energy spectrum of the secondary boron nuclei, and on the boron abundance relative to that of the heavier primary parent nuclei, commonly quantified as the 'B/C abundance ratio'. The energy dependence of this ratio, now available up to about 2 TeV amu –1 , provides a measure for the energy dependence of cosmic-ray propagation through the Galaxy, and for the shape of the cosmic-ray source energy spectrum. We use a Leaky-Box approximation of cosmic-ray propagation to obtain constraints on the relevant parameters on the basis of the results of TRACER and of other measurements. This analysis suggests that the source energy spectrum is a relatively soft power law in energy E –α , with spectral exponent α = 2.37 ± 0.12, and that the propagation path length Λ(E) is described by a power law in energy with exponent δ = 0.53 ± 0.06, but may assume a constant residual value Λ 0 at high energy. The value of Λ 0 is not well constrained but should be less than about 0.8 g cm –2 . Finally, we compare the data with numerical solutions of a diffusive reacceleration model, which also indicates a soft source spectrum.

  13. STARLIFE - An International Campaign to Study the Role of Galactic Cosmic Radiation in Astrobiological Model Systems

    Science.gov (United States)

    Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda

    2017-02-01

    In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.

  14. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  15. Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palermo, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration

    2018-01-01

    We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 ×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li /Be flux ratio of 2.0 ±0.1 . The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.

  16. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere

    International Nuclear Information System (INIS)

    Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S.

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircraft have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at. (authors)

  17. Production of secondary particles and nuclei in cosmic rays collisions with the interstellar gas using the FLUKA code

    CERN Document Server

    Mazziotta, M N; Ferrari, A; Gaggero, D; Loparco, F; Sala, P R

    2016-01-01

    The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a ki...

  18. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  19. Cosmic radiation exposure on Canadian-based commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R

    1998-07-01

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y{sup -1} but will be well below the occupational limit of 20 mSv y{sup -1}. (author)

  20. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R

    1999-07-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y{sup -1}, but will be below the occupational limit of 20 mSv.y{sup -1}. (author)

  1. Investigations of aircrews exposure to cosmic radiation - results, conclusions and suggestions

    CERN Document Server

    Bilski, P; Horwacik, T; Marczewska, B; Ochab, E; Olko, P

    2002-01-01

    In frame of a research project undertaken in collaboration with Polish airlines LOT, analysis of aircrews exposure to cosmic radiation has been performed. The applied methods included measurements of radiation doses with thermoluminescent detectors (MTS-N, MCP-N) and track detectors (CR-39) and also calculations of route doses with the CARI computer code. The obtained results indicate that aircrews of nearly all airplanes, with exception of these flying only on ATR aircraft, exceed regularly or may exceed in some conditions, effective doses of 1 mSv. In case of Boeing-767 aircrews such exceeding occurs always, independently of solar activity. Investigations revealed, that during these periods of the solar cycle, when intensity of cosmic radiation is high, exceeding of 6 mSv level is also possible. These results indicate, that according to Polish and European regulations it is necessary for airlines to provide regular estimations of radiation exposure of aircrews. Basing on the obtained results a system for pe...

  2. The importance of secondary radiation at radiation protection clothing; Die Bedeutung der Sekundaerstrahlung bei Strahlenschutzkleidung

    Energy Technology Data Exchange (ETDEWEB)

    Eder, Heinrich

    2017-07-01

    For a long time, the protective material lead was seen as ''gold standard'' for the shielding of photon radiation (X-ray and γ-rays). At long sight, however, lead should be eliminated from medical products. When irradiated, substitutes of lead can produce much more secondary radiation. Moreover, the radiobiological impact of the low energetic secondary radiation has to be rated higher than that of primary radiation. With the introduction of the new measuring standard IEC 6133-1 secondary radiation now is considered when evaluating attenuation properties of protective clothing.

  3. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  4. Radio detection of cosmic rays with LOFAR

    NARCIS (Netherlands)

    Hörandel, J. R.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Karskens, T.; Krause, M.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Thoudam, S.; Trinh, T. N G

    2015-01-01

    When high-energy cosmic rays (ionized atomic nuclei) impinge on the atmosphere of the Earth they interact with atomic nuclei and initiate cascades of secondary particles - the extensive air showers. Many of the secondary particles in the air showers are electrons and positrons. They cause radiation

  5. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  6. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  7. Production of positron annihilation radiation by cosmic-rays near sea level

    CERN Document Server

    Puzovic, J M

    2002-01-01

    Production of positron annihilation radiation by cosmic-rays in Al, Fe, Sn and Pb is measured by means of a triggered HPGe detector. The equipment is located in Belgrade, at an absolute height of 125 m a.s.l. The production rate per unit mass is found to be proportional to the square of the atomic number of the material divided by its mass number, with the proportionality constant equal to 8.1(3)x10 sup - sup 6 s sup - sup 1 g sup - sup 1.

  8. Dynamics of voids and clusters and fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Salpeter, E.E.

    1983-01-01

    The author summarizes briefly calculations on spherically symmetric models without dissipation for the dynamical development of large voids and galaxy (super)clusters from small underdensities and overdensities, respectively, at the recombination era. Implications are mentioned and conjectures for more complex geometries are discussed. He infers the density fluctuations which must have been present just after the recombination era to produce some present-day configuration. Fluctuations in the present-day cosmic background radiation are related to this and their inferred amplitude depends very strongly on the present-day value of the cosmological density parameter. The relation to observed upper limits on these fluctuations are discussed. (Auth.)

  9. Snow measurement by cosmic radiation; Mesure de la neige par rayonnement cosmique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The knowledge of the water content equivalence of the snow cover is an important element for the improvement of the water resource management. It allows in particular to evaluate and foresee the filling up supplies of big seasonal reservoirs. Electricite de France (EdF), in collaboration with the national center of scientific research (CNRS) and Meteo France, has developed a new generation of sensors, the cosmic radiation snow gauge, allowing the automatic monitoring of the status of snow stocks by the measurement of the water value of the snow cover. (J.S.)

  10. Determination of cosmic ray produced radionuclides by means of background radiation counting system, 3

    International Nuclear Information System (INIS)

    1976-01-01

    This is the third report of the progress report series on studies of cosmic ray produced radionuclides by means of low background radiation counting system. In Part I some characteristics of a low beta-gamma coincidence spectrometer are described -- counter system, electronics, background spectra, counting efficiencies -- and studies on radioactive impurities in materials for scientific research are also described. In Part II, suitable solvents for a large scale liquid scintillation counter were examined and best combinations of solvents, solutes and naphthalene are shown. In Part III, miscellaneous topics are reported. (auth.)

  11. Theoretical investigations of the anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1981-01-01

    In this work, the anisotropy of the cosmic microwave background radiation is calculated within the context of the standard Big Bang cosmological model. The results of the calculations for different initial conditions are compared to the observational data available in order to try to learn more about conditions in the early universe. It is found that a model which has isothermal fluctuations superimposed on the standard model can explain all of the observations so far. In fact, a range of models with different initial densities can explain the observations. There is not enough information at present to choose among these models, but more data should be available in the near future

  12. Effect of seeds of heavy charged particles of galactic cosmic radiation

    International Nuclear Information System (INIS)

    Maksimova, Y.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The yield of aberrant cells and its dependence on the exposure time and the site where particles hit the object were measured. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. A significant contribution of galactic cosmic radiation to the radiobiological effect is indicated. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed is established. The most sensitive target is the root meristem

  13. Constraining neutrino physics with big bang nucleosynthesis and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Hansen, S.H.; Melchiorri, A.; Mangano, G.; Miele, G.; Pisanti, O.

    2002-01-01

    We perform a likelihood analysis of the recent results on the anisotropy of cosmic microwave background radiation from the BOOMERanG and DASI experiments to show that they single out an effective number of neutrinos in good agreement with standard big bang nucleosynthesis. We also consider degenerate big bang nucleosynthesis to provide new bounds on effective relativistic degrees of freedom N ν and, in particular, on the neutrino chemical potential ξ α . When including supernova type Ia data we find, at 2σ, N ν ≤7 and -0.01≤ξ e ≤0.22, vertical bar ξ μ,τ vertical bar ≤2.6

  14. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  15. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  16. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  17. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  18. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  19. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    Science.gov (United States)

    Talbot, Lee

    1999-03-01

    -year period. Professor O'Sullivan said that the NRPB used TLDs for low and high LET radiations and PADC for neutrons. The investigation of dosemeter response was carried out using Monte Carlo codes. The active instruments used for measurements were the tissue equivalent proportional counter (TEPC) and a Bonnersphere spectrometer using eight spheres. The instrumentation used was calibrated in the CERN-CEC reference field. In summary, it was found that the shape of the neutron spectrum does not change with altitudes and that the maximum dose rate was found to be under the seats of the aircraft. Dr Lindbourg of the Swedish Radiation Protection Institute gave a short talk on the importance of using the TEPC for cosmic ray measurements, as it is the only means of reading directly absorbed dose to tissue and the radiation quality (in terms of lineal energy). Dr Schewe from PTB, Germany, gave the next talk on reference fields and calibration procedures. The speaker highlighted the difficulties in measuring radiation fields onboard aircraft, as the calibration fields used are often vastly different to the radiation field the instrumentation is being exposed to. The speaker said that this could lead to errors in the measurements in excess of 50%. One way around this is to use realistic reference fields, which produce similar particle compositions and particle fluences as those present in the cosmic radiation at aircraft altitudes. For this work the reference field facility in one of the secondary beams lines of the CERN Super Proton Synchrotron was used. In summary it was shown that the TEPC could be used as a reference instrument for evaluating ambient dose equivalent in aircraft. The next speaker was Dr Tommasino of the ANPA, Rome, who talked about in-flight measurement of radiation fields and doses. He stated that the problem of radiation dose assessment has been developed within the multinational research programmes of the Commission of the European Communities. The speaker talked

  20. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  2. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  3. Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006

    International Nuclear Information System (INIS)

    Ploc, Ondrej; Spurny, Frantisek; Jadrnickova, Iva; Turek, Karel

    2008-01-01

    Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin--a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (E dep ) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated

  4. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  5. Isotropization of the cosmic background radiation due to galactic gravitational screening

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1988-04-01

    The primordial objects with the masses of galaxies or their clusters formed at early stages such as z > 10 can play a powerful role of gravitational lenses and their random multiple scattering brings an effective screening for the cosmic background radiation. In a cold-dark-matter dominant model with the white-noise spectrum of initial density perturbations, it is shown that, if the primordial objects with the masses 10 12 h -1 (solar mass) are in the nonlinear stage at the epochs 1 + z = 10 ∼ 20, the objects with 6 x 10 14 h -1 (solar mass) are in the nonlinear stage at 1 + z = 6.3 ∼ 14, and accordingly the small-scale anisotropy of the radiation may be smoothed-out within 13 ∼ 28 minutes by this gravitational screening, where the Hubble constant H o = 100 h km s -1 Mpc -1 . (author)

  6. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    Science.gov (United States)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  7. Measurements of the Cosmic Radiation Doses at Board of Aircraft of Polish Airlines LOT. Part 1

    International Nuclear Information System (INIS)

    Bilski, P.; Budzanowski, M.; Horwacik, T.; Marczewska, B.; Olko, P.

    2000-12-01

    Radiation doses received by a group of 30 pilots of the Polish Airlines LOT were investigated between July and October 2000. The measurement of the low-LET component of the cosmic radiation, lasting in average 2 months, was performed with 7 LiF:Mg,Ti and 7 L iF:Mg,Cu,P thermoluminescent detectors. The neutron component was measured with the thermoluminescent albedo cassettes. Additionally for all flights, records of altitude profiles were kept and effective doses were then calculated with the CARI-6 computer code. In total, about 560 flights were included in the calculations. The highest obtained dose was about 0.8 mSv in 2 months. Results of calculations are mostly consistent with the results of measurements. (author)

  8. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  9. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    Science.gov (United States)

    2014-03-01

    Defense Threat Reduction Agency 8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201...Attention to the Cosmic Radiation Component DISTRIBUTION A. Approved for public release: distribution is unlimited March 2014...Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component 5a

  10. The secondary biogenic radiation of gamma-irradiated human blood

    International Nuclear Information System (INIS)

    Kuzin, A.M.; Surkenova, G.N.; Budagovskij, A.V.; Gudi, G.A.

    1997-01-01

    The sample of blood freshly taken from healthy men were gamma-irradiated with a dose of 10 Gy. It was shown that after the treatment the blood gained the capacity to emit secondary biogenic radiation. Emission lasted for some hours, passed through quartz-glass curette and was revealed by stimulating influence on biological detector (sprouting seeds)

  11. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  12. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  13. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration's computer code CARI-3N. 2 refs

  14. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations

  15. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration`s computer code CARI-3N. 2 refs.

  16. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations.

  17. Ribbons on the Cosmic Background Radiation Sky: A Powerful Test of a Baryon Symmetric Universe

    International Nuclear Information System (INIS)

    Kinney, W.H.; Kolb, E.W.; Turner, M.S.; Kolb, E.W.; Turner, M.S.; Turner, M.S.

    1997-01-01

    If the Universe consists of domains of matter and antimatter, annihilations at domain interfaces leave a distinctive imprint on the cosmic background radiation (CBR) sky. The signature is anisotropies in the form of long, thin ribbons of width θ W ∼0.1 circ , separated by angle θ L ≅1 circ (L/100h -1 Mpc) (L is the characteristic domain size) and with distortion parameter y∼10 -6 . Such a pattern could potentially be detected by the high-resolution CBR anisotropy experiments planned for the next decade, and such experiments may finally settle the question of whether or not our Hubble volume is baryon symmetric. copyright 1997 The American Physical Society

  18. Non-primordial origin of the cosmic background radiation and pregalactic density fluctuations

    International Nuclear Information System (INIS)

    Froehlich, H.E.; Mueller, V.; Oleak, H.

    1984-01-01

    Assumptions of a tepid Universe and a smaller primordial contribution to the 3 K background are made to show that Pop III stars may be responsible for the 3 K background and cosmic ray entropy. The 3 K background would be caused by thermalized stellar radiation produced by metallized intergalactic dust formed in first generation stars. A range of mass scales and amplification factors of density perturbations in the early Universe is examined below the Jeans mass for gravitational instabilities. The density perturbations that could have been present at small enough mass scales could have survived and generated sonic modes that propagated through the plasma era and, when combined with additional gravitationally unstable entropy disturbances after recombination, triggered the formation of Pop III stars. 13 references

  19. The cosmic microwave background radiation and the dog in the night

    Science.gov (United States)

    Partridge, R. B.

    The spectrum and angular distribution of the cosmic microwave background radiation (CMBR) are characterized, summarizing the results of recent observations. The emphasis is on null experiments which have established upper limits on anisotropies and spectral distortion. The benefits and pitfalls of null experiments are recalled; the generally observed isotropy of the CMBR and the possible ways anisotropy could be introduced are discussed; and data from searches for anisotropy on arcmin, degree, and arcsec scales are presented in tables and graphs and analyzed in detail. The observed CMBR spectrum is shown to be generally consistent with a black body at temperature 2.75 + or - 0.04 K at wavelengths from 0.1 to 12 cm, although some recent data (Kogut et al., 1988) seem to confirm the presence of distortion due to the Suniaev-Zel'dovich effect at wavelength 3.0 cm.

  20. Measurement of the intensity of the cosmic background radiation at 3.0 cm

    International Nuclear Information System (INIS)

    Friedman, S.D.

    1984-01-01

    The intensity of the cosmic background radiation (CBR) has been measured at a wavelength of 3.0 cm as part of a program to measure th Rayleigh-Jeans spectrum of the CBR at five wavelengths between 0.33 cm and 12 cm. The instrument used is a dual-antenna Dicke-switched radiometer with a double-sideband noise temperature of 490 K and a sensitivity of 46 mK/Hz/sup 1/2/. The entire radiometer is mounted on bearings. The atmospheric emission was measured by rotating the radiometer, and thus directing one antenna to zenith angles of +- 30 0 and +- 40 0 . 61 references, 24 figures, 18 tables

  1. Performance studies of the ATLAS transition radiation tracker barrel using SR1 cosmics data

    CERN Document Server

    Wall, R

    The ATLAS experiment at the Large Hadron Collider (LHC) is designed to measure Nature at the energy scale often associated with electroweak symmetry breaking. When it comes online in 2008, the LHC and ATLAS will work to discover, among other things, the Higgs boson and any other signatures for physics beyond the Standard Model. As part of the ATLAS Inner Detector, the Transition Radiation Tracker will be an important part of ATLAS’s ability to make precise measurements of particle properties. This paper summarizes work done to study and categorize the performance of the TRT, using a combination of cosmic ray test data from the SR1 facility and Monte Carlo. In general, it was found that the TRT is working well, with module-level eciencies around 90 % and module-level noise just above 2 %. Reasonably good agreement was observed with Monte Carlo, though there are some apparently pathological dierences between the two that deserve further attention.

  2. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    Science.gov (United States)

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  3. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  4. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    Science.gov (United States)

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  5. Hot gas in clusters of galaxies, cosmic microwave background radiation and cosmology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Presence of the hot (kTe ~ 3 - 10 KeV) rarefied gas in the clusters of galaxies (most massive gravitationally bound objects in the Universe) leads to the appearance of  "shadows"  in the angular distribution of the Cosmic Microwave Background (CMB) Radiation and permits to measure the peculiar velocities of these clusters relative to the unique coordinate frame where CMB is isotropic. I plan to describe the physics leading to these observational effects. Planck spacecraft, ground based South Pole and Atacama Cosmology Telescopes discovered recently more than two thousand of unknown before Clusters of Galaxies at high redshifts detecting these "shadows" and traces of kinematic effect, demonstrating the correlation of the hot gas velocities with mass concentrations on large scales. Giant ALMA interferometer in Atacama desert resolved recently strong shocks between merging clusters of galaxies. Newly discovered clusters of galaxies permit to study the rate of growth of the large scale structur...

  6. Effect of heavy charged particles of galactic cosmic radiation on seeds

    International Nuclear Information System (INIS)

    Maksimova, E.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The puppose of the experiments was to measure the yield of abberrant cells and its dependence on the exposure time and the site where particles hit the object. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. This is indicative of a significant contribution of galactic cosmic radiation to the radiobiological effect. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed was established. The most sensitive target was the root meristem

  7. Measurement of the large-scale anisotropy of the cosmic background radiation at 3mm

    International Nuclear Information System (INIS)

    Epstein, G.L.

    1983-12-01

    A balloon-borne differential radiometer has measured the large-scale anisotropy of the cosmic background radiation (CBR) with high sensitivity. The antenna temperature dipole anistropy at 90 GHz (3 mm wavelength) is 2.82 +- 0.19 mK, corresponding to a thermodynamic anistropy of 3.48 +- mK for a 2.7 K blackbody CBR. The dipole direction, 11.3 +- 0.1 hours right ascension and -5.7 0 +- 1.8 0 declination, agrees well with measurements at other frequencies. Calibration error dominates magnitude uncertainty, with statistical errors on dipole terms being under 0.1 mK. No significant quadrupole power is found, placing a 90% confidence-level upper limit of 0.27 mK on the RMS thermodynamic quadrupolar anistropy. 22 figures, 17 tables

  8. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    International Nuclear Information System (INIS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2011-01-01

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  9. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  10. Secondary UV radiation from biota as a proof of radiation hormesis and Gurwitsch phenomena

    International Nuclear Information System (INIS)

    Goraczko, W.

    1997-01-01

    High (large) and low (small) doses of ionizing radiation consistently induce opposite physiologic effects in biological systems. The effects of low doses cannot be inferred by interpolation between the result from groups exposed to high doses and controls irradiated only by Natural Background Radiation. Stimulation NBR ('bio-positive') effects by low-level doses of ionizing radiation is called radiation hormesis. It is still a controversial idea; however it was found that some biological objects (yeast, sees, animals) after γ-irradiation by low-level doses (10-50 times more NBR) can increase their development. The results of the researches demonstrate that the excitation of living systems by ionizing radiation (high energy, low doses) produces among other hydrogen peroxide which initiates prolonged secondary emission that can influence biota and activate many important processes in biological systems. On the other hand it is well known that after water irradiation by ionizing radiation as the product of radiolysis concentration of hydrogen peroxide has been received. The spectral analysis of this secondary emission confirmed the contribution of the UV component to the total emission. This secondary radiation can play a very important role in the intercellular communication. The influence of hydrogen peroxide on glycine has been examined. I have measured secondary emission from Gly using the Single Photon Counting device SPC. The data obtained made possible at least a partial understanding of the radiation hormesis phenomenon and suggest closer relationship to mitogenetic radiation. I propose deexcitation processes in biomolecules as a common denominator of UV and ionizing radiation interacting with living cells, underlying both radiation hormesis and mitogenetic effect. Based on the above experiments and other authors' reports it is postulated that low-level doses of ionizing radiation through radiolysis products (among others hydrogen peroxide) generate UV

  11. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hoon [Basic Science Research Institute, Ewha Womans University, Seoul 03760 (Korea, Republic of); Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr [Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-10-20

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  12. Cosmic radiation and mortality from cancer among male German airline pilots: extended cohort follow-up

    International Nuclear Information System (INIS)

    Hammer, Gaël Paul; Blettner, Maria; Langner, Ingo; Zeeb, Hajo

    2012-01-01

    Commercial airline pilots are exposed to cosmic radiation and other specific occupational factors, potentially leading to increased cancer mortality. This was analysed in a cohort of 6,000 German cockpit crew members. A mortality follow-up for the years 1960–2004 was performed and occupational and dosimetry data were collected for this period. 405 deaths, including 127 cancer deaths, occurred in the cohort. The mortality from all causes and all cancers was significantly lower than in the German population. Total mortality decreased with increasing radiation doses (rate ratio (RR) per 10 mSv: 0.85, 95 % CI: 0.79, 0.93), contrasting with a non-significant increase of cancer mortality (RR per 10 mSv: 1.05, 95 % CI: 0.91, 1.20), which was restricted to the group of cancers not categorized as radiogenic in categorical analyses. While the total and cancer mortality of cockpit crew is low, a positive trend of all cancer with radiation dose is observed. Incomplete adjustment for age, other exposures correlated with duration of employment and a healthy worker survivor effect may contribute to this finding. More information is expected from a pooled analysis of updated international aircrew studies.

  13. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    International Nuclear Information System (INIS)

    Tveten, U.; Haldorsen, T.; Reitan, J.

    2000-01-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated dose rate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years reflect the

  14. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.; Haldorsen, T.; Reitan, J

    2000-07-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated doserate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years

  15. Gravitational perturbation of the cosmic background radiation by density concentrations. [Swiss cheese model universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Cambridge Univ. (UK). Inst. of Theoretical Astronomy

    1976-05-01

    The gravitational effect of density concentrations in the Universe on the temperature distribution of the cosmic blackbody background radiation is considered, using the Swiss cheese model universe, and supposing each hole to contain an expanding, homogeneous dust sphere at its centre. The temperature profile across such a hole differs in an essential way from that obtained earlier by Rees et al (Nature; 217:511 (1968)). The evolution of this effect with the expansion of the Universe is considered for 'relatively increasing' density contrasts emerging from the same initial singular state as the rest of the Universe. This effect becomes comparable to the bremsstrahlung and Compton effects on the isotropy of the background radiation for masses of about 10/sup 19/ times the mass of the sun, and exceeds these other effects as about Msup(2/3) for larger masses. If large-scale condensations of the Universe can be found for z approximately 1 to 5, delineated, maybe, by the clustering of quasars, etc., then this effect may be observable.

  16. Effect of the Great Attractor on the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, E [Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics; Gorski, K M [Los Alamos National Lab., NM (USA); Dekel, A [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1990-06-07

    ANISOTROPY in the cosmic microwave background radiation (CMB) is expected as a result of fluctuations in gravitational potential caused by large-scale structure in the Universe. The background radiation is redshifted as it climbs out of gravitational wells. Here we present a map of the anisotropy in CMB temperature {Delta}T/T of our region of the Universe as viewed by a distant observer, predicted on the basis of the gravitational potential field. We calculate this field in the vicinity of the Local Group of galaxies from the observed peculiar (non-Hubble) velocities of galaxies, under the assumption that the peculiar motions are induced by gravity. If the cosmological density parameter {Omega} is 1, the gravitational potential field of the Great Attractor and surrounding regions produces a maximum Sachs-Wolfe anisotropy of {Delta}T/T=(1.7{plus minus}0.3) x 10{sup -5} on an angular scale of 1deg. Doppler and adiabatic contributions to this anisotropy are expected to be somewhat larger. If similar fluctuations in the gravitational potential are present elsewhere in the Universe, the anisotropy present when the CMB was last scattered should be visible from the Earth, and should be detectable in current experiments. A fundamental test of whether gravity is responsible for the generation of structure in the Universe can be made by looking for the imprint in the CMB of deep potential wells similar to those found in our neighbourhood, (author).

  17. The excess flux in the cosmic submillimeter background radiation and the primordial deuterium abundance

    International Nuclear Information System (INIS)

    Dermer, C.D.; Guessoum, N.; National Aeronautics and Space Administration, Greenbelt, MD

    1989-01-01

    Recent measurements of the cosmic background radiation (CBR) show an enhanced flux in the submillimeter regime, compared to the spectrum of a 2.7 K blackbody. Thermal Comptonization of the relic radiation by a hot nonrelativistic plasma has long been known to produce distortions in the CBR spectrum, similar to what has now been observed. Heating of the primeval plasma to temperatures T ∼ 10 6 - 10 8 K could result from the injection of subcosmic ray protons at epoch z ∼ 10--100. The intensity of the subcosmic ray flux that provide conditions needed to explain the submillimeter excess by thermal Comptonization also leads to the production of cosmologically significant amounts of deuterium in collisions between subcosmic ray protons and primordial protons and α-particles. However, the amount of lithium produced through α-α reactions is in conflict with the observed Li abundance. If lithium is depleted, for example, by processing through Population II stars, arguments for the baryon content of the universe based on primordial deuterium and He abundances are weakened. 12 refs., 1 fig., 1 tab

  18. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    International Nuclear Information System (INIS)

    Rule, D.W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account of atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%--30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions has been considered. Effective X-ray production cross sections and mutliplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results

  19. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    Science.gov (United States)

    Rule, D. W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.

  20. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  1. Case study on the effect of cosmic radiation in embedded systems in aircraft

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Pereira, Marlon A.; Federico, Claudio A.; Goncalez, Odair L.

    2014-01-01

    High-energy neutrons generated from the interaction of cosmic radiation with atoms of the atmosphere, can cause adverse effects on avionics devices. These effects are referred to as 'Single Event Effects' (SEE) and may occur especially in aircraft onboard computers, from change the logic state of memory cells or functional interruptions, which could compromise flight safety. The effects of the SEE must first be evaluated and entered into the safety analysis process in order to determine the susceptibility to failures by SEE devices. SEE rate can be evaluated separately for thermal neutrons and fast neutrons with energy above 10 MeV. This paper presents an exploratory study of susceptibility to radiation to a specific type of SRAM memory, during periods of maximum and minimum solar, in situations of equatorial and polar flight in the typical flight altitude of existing aircraft and, at higher altitudes, near the maximum of Pfotzer. This study was conducted using estimates of particle flows employing the EXPACS QARM codes and evaluating the expected rate of SEE due to thermal neutrons and fast neutrons separately. The distribution in energy and the flow of neutrons inside the airplane are influenced by the total mass of the aircraft and this influence are also discussed

  2. Radiation Protection Concepts and Quantities for the Occupational Exposure to Cosmic Radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.

    1999-01-01

    For the purposes of dose limitation and dose control, the harm, or detriment, of exposure to radiation is assessed by the quantity effective dose. Effective dose is evaluated by the application of factors to the averaged absorbed dose in the organs and tissues of the body. Radiation monitoring instruments are generally calibrated in terms of the quantity ambient dose equivalent which is defined in a simple spherical phantom. The relationship of these quantities is described. Requirements for the radiation protection of aircraft crew are given in the European Union Council Directive 96/29/EURATOM. There are requirements to assess the exposure of aircraft crew, to inform them of health risks, to reduce higher doses, and to control the dose to the foetus. There are no explicit dose limits, other than a dose objective to be applied to the exposure of the foetus, and no requirements for designation of areas or classification of workers. There are significant differences between the exposure condition of aircraft crew and workers in most other industries where there is occupational exposure to radiation. There are greater ranges of radiation types and energy, and there are different dose distributions and characteristics of the working populations. However, the field intensity is predictable and, with the exception of rare solar events, there is no risk of significant unexpected exposures. Dose assessment is anticipated to be by folding staff roster information with estimates of route doses, since there is little variability of dose rate within an aircraft. Route doses, which may be either an agreed average value for a given airport pairing and aircraft type, or be flight specific, will be closely linked to measured values. Requirements as to the accuracy of dose assessment should be applied which are broadly similar to those used in individual monitoring generally. (author)

  3. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    George, E. M.; Reichardt, C. L.; Aird, K. A.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Montroy, T. E.; Padin, S.; Plagge, T.; Pryke, C.; Ruhl, J. E.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Spieler, H. G.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2015-01-28

    We present measurements of secondary cosmic microwave background (CMB) anisotropies and cosmic infrared background (CIB) fluctuations using data from the South Pole Telescope (SPT) covering the complete 2540 deg(2) SPT-SZ survey area. Data in the three SPT-SZ frequency bands centered at 95, 150, and 220 GHz, are used to produce six angular power spectra (three single-frequency auto-spectra and three cross-spectra) covering the multipole range 2000 < ℓ < 11, 000 (angular scales 5' gsim θ gsim 1'). These are the most precise measurements of the angular power spectra at ℓ > 2500 at these frequencies. The main contributors to the power spectra at these angular scales and frequencies are the primary CMB, CIB, thermal and kinematic Sunyaev-Zel'dovich effects (tSZ and kSZ), and radio galaxies. We include a constraint on the tSZ power from a measurement of the tSZ bispectrum from 800 deg(2) of the SPT-SZ survey. We measure the tSZ power at 143  GHz to be $D^{\\rm tSZ}_{3000} = 4.08^{+0.58}_{-0.67}\\,\\mu {\\rm K}^2{}$ and the kSZ power to be $D^{\\rm kSZ}_{3000} = 2.9 \\pm 1.3\\, \\mu {\\rm K}^2{}$. The data prefer positive kSZ power at 98.1% CL. We measure a correlation coefficient of $\\xi = 0.113^{+0.057}_{-0.054}$ between sources of tSZ and CIB power, with ξ < 0 disfavored at a confidence level of 99.0%. The constraint on kSZ power can be interpreted as an upper limit on the duration of reionization. When the post-reionization homogeneous kSZ signal is accounted for, we find an upper limit on the duration Δz < 5.4  at 95% CL.

  4. Cosmic Rays in Thunderstorms

    Science.gov (United States)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  5. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  6. Gamma radiation associated to stellar formation in the galaxy (cosmic ray astronomy)

    International Nuclear Information System (INIS)

    Casse, Michel.

    1980-05-01

    The gamma ray sky revealed by the COS-B satellite is very peculiar: a few 'gamma ray stars' lying along the galactic plane emerge from a bright milky way. A possible interpretation of this sky is to invoke the existence of regions in which stars, cosmic rays and interstellar matter are very concentrated. A genetic link is established between clouds, stars and cosmic rays: the partial fragmentation of a cloud give birth to stars, the most massive stars accelerate cosmic rays through their supersonic stellar winds, cosmic ray interact in turn with the cloud material to copiously produce high energy gamma rays: a gamma ray source is born

  7. Cosmic radiation monitoring equipment for the Ministry of Posts and Telecommunications; Yuseisho muke uchu denpa kanshi shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The equipment analyzes radio waves transmitted by a geostationary satellite toward the earth and collates the received waves to the registered satellite data for the exposure of illegality or unlawfulness, if any. A feature of the equipment is that it operates only one antenna to catch waves belonging in three different frequency bands, that is, L, Ku, and Ka. Another feature is that it follows a procedure which is automatically executed by computers, the procedure including the analysis of the spectrum of the continuously arriving waves for the isolation of the carrier wave for the determination of the position where the satellite rests and for the extraction of wave data. Cosmic radiation monitoring is manually performed in Germany, Britain, etc., and the equipment introduced here is the first computer-aided automatic cosmic radiation monitoring system in the world. (translated by NEDO)

  8. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Kubančák, Ján; Šlegl, Jakub; Tolochek, R. V.; Ivanova, O. A.; Shurshakov, V. A.

    2017-01-01

    Roč. 106, č. 12 (2017), s. 262-266 ISSN 1350-4487 R&D Projects: GA ČR GJ15-16622Y Institutional support: RVO:61389005 Keywords : BION-M1 * cosmic radiation * low earth orbit * passive detector * thermoluminescent detector * plastic nuclear track detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  9. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  10. Exciton distribution function and secondary radiation in polar semiconductors

    International Nuclear Information System (INIS)

    Trallero Giner, C.; Sotolongo Costa, O.

    1985-07-01

    An explicit non-equilibrium distribution function for excitons in the ground state n=1 in the case when the fundamental interaction is with acoustical phonons is calculated for polar semiconductors. Using it, a general expression for the secondary radiation cross-section (valid for Raman, hot and thermalized luminescence processes), is obtained. The results are applied to explain the temperature dependence of the 1LO and 2LO luminescence lines half-width in CdS single crystals. The relative contributions of 3LO Raman and luminescence intensities and the variation of the secondary emission spectrum as function of exciton life-time are studied. Comparison with experimental results yields quantitative agreement. (author)

  11. Studying the high energy cosmic radiation: contributions to its detection and to the exploration of its origin

    International Nuclear Information System (INIS)

    Lamanna, Giovanni

    2009-01-01

    The Astro-particle Physics is a discipline where scientists from both the astrophysics and the particle physics communities meets to investigate the Universe aiming to answer to fundamental questions in the field of physics, cosmology and astrophysics. The high energy astrophysics domain, which explores the extremes sources where the larger collective transfer of energy take place, studies the most energetic cosmic radiation as privileged messengers of the history of the Universe. My research path, summarized in this work, is made of personal contributions in the development of new detection technologies, in the data analysis, perspectives and phenomenological studies about the scientific purposes of large experiments: e.g. AMS, ANTARES, HESS, CTA, POLAR. My contributions are the results of research activities in coherence with two main scientific goals in the context of the astro-particle physics domain: - The implication of the high energy cosmic radiation measurement for the investigation on the nature and distribution of the dark matter; - The investigation of the origin of the galactic cosmic radiation for the understanding of the most energetic processes in the Universe. (author)

  12. Radiative Transfer Simulations of Cosmic Reionization With Pop II and III Stars

    Science.gov (United States)

    Trac, Hy; Cen, Renyue

    2008-03-01

    We have simulated 3 large volume, high resolution realizations of cosmic reionization using a hybrid code that combines a N-body algorithm for dark matter, prescriptions for baryons and star formation, and a radiative transfer algorithm for ionizing photons. Our largest simulation, with 24 billion particles in a 100 Mpc/h box, simultaneously provides (1) the mass resolution needed to resolve dark matter halos down to a virial temperatures of 104 K and (2) the volume needed to fairly sample highly biased sources and large HII regions. We model the stellar initial mass function (IMF) by following the spatially dependent gas metallicity evolution, and distinguish between the first generation (Population III) stars and the second generation (Population II) stars. The Population III stars, with a top-heavy IMF, produce an order of magnitude more ionizing photons at high redshifts z>~10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5measurements from SDSS. The values for the Thomson optical depth are consistent within 1-σ of the current best-fit value from the WMAP Year 3 data release.

  13. Simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation anisotropy

    International Nuclear Information System (INIS)

    Wang, Y.

    1996-01-01

    We present two simple analytical methods for computing the gravity-wave contribution to the cosmic background radiation (CBR) anisotropy in inflationary models; one method uses a time-dependent transfer function, the other methods uses an approximate gravity-mode function which is a simple combination of the lowest order spherical Bessel functions. We compare the CBR anisotropy tensor multipole spectrum computed using our methods with the previous result of the highly accurate numerical method, the open-quote open-quote Boltzmann close-quote close-quote method. Our time-dependent transfer function is more accurate than the time-independent transfer function found by Turner, White, and Lindsey; however, we find that the transfer function method is only good for l approx-lt 120. Using our approximate gravity-wave mode function, we obtain much better accuracy; the tensor multipole spectrum we find differs by less than 2% for l approx-lt 50, less than 10% for l approx-lt 120, and less than 20% for l≤300 from the open-quote open-quote Boltzmann close-quote close-quote result. Our approximate graviton mode function should be quite useful in studying tensor perturbations from inflationary models. copyright 1996 The American Physical Society

  14. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    Science.gov (United States)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  15. A measurement of the medium-scale anisotropy in the cosmic microwave background radiation

    Science.gov (United States)

    Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Inman, C. A.; Kowitt, M. S.; Meyer, S. S.; Page, L. A.; Puchalla, J. L.; Silverberg, R. F.

    1994-01-01

    Observations from the first flight of the Medium Scale Anisotropy Measurement (MSAM) are analyzed to place limits on Gaussian fluctuations in the cosmic microwave background radiation (CMBR). This instrument chops a 30 min beam in a three-position pattern with a throw of +/- 40 min; the resulting data is analyzed in statistically independent single- and double-difference sets. We observe in four spectral channels at 5.6, 9.0, 16.5, and 22.5/cm, allowing the separation of interstellar dust emission from CMBR fluctuations. The dust component is correlated with the IRAS 100 micron map. The CMBR component has two regions where the signature of an unresolved source is seen. Rejecting these two source regions, we obtain a detection of fluctuations which match CMBR in our spectral bands of 0.6 x 10(exp -5) is less than Delta (T)/T is less than 2.2 x 10(exp -5) (90% CL interval) for total rms Gaussian fluctuations with correlation angle 0.5 deg, using the single-difference demodulation. Fore the double difference demodulation, the result is 1.1 x 10(exp -5) is less than Delta(T)/T is less than 3.1 x 10(exp -5) (90% CL interval) at a correlation angle of 0.3 deg.

  16. An Analysis of Recent Measurements of the Temperature of the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Smoot, G.; Levin, S. M.; Witebsky, C.; De Amici, G.; Rephaeli, Y.

    1987-07-01

    This paper presents an analysis of the results of recent temperature measurements of the cosmic microwave background radiation (CMBR). The observations for wavelengths longer than 0.1 cum are well fit by a blackbody spectrum at 2.74{+ or -}0.0w K; however, including the new data of Matsumoto et al. (1987) the result is no longer consistent with a Planckian spectrum. The data are described by a Thomson-distortion parameter u=0.021{+ or -}0.002 and temperature 2.823{+ or -}0.010 K at the 68% confidence level. Fitting the low-frequency data to a Bose-Einstein spectral distortion yields a 95% confidence level upper limit of 1.4 x 10{sup -2} on the chemical potential mu{sub 0}. These limits on spectral distortions place restrictions on a number of potentially interesting sources of energy release to the CMBR, including the hot intergalactic medium proposed as the source of the X-ray background.

  17. Measurement of anisotropy in the cosmic background radiation on a large angular scale at 33 GHz

    International Nuclear Information System (INIS)

    Gorenstein, M.V.

    1978-11-01

    Results of a measurement of anisotropy in the 3 0 K cosmic background radiation on a large-angular-scale are presented. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (0.89 cm wavelength) flown on board a U-2 aircraft to 20-km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern celestial hemisphere with an rms sensitivity of +- 46m 0 K/√Hz. The measurements show clear evidence of anisotropy that is readily interpreted as due to the motion of the earth relative to the sources of the radiation; the anisotropy is well fit by a cosine distribution of amplitude 3.61 +- 0.54 millireverse arrowreverse arrow-degrees Kelvin (m 0 K), one part in 800 of 3 0 K, implying a velocity of 361 +- 54 km/sec toward the direction 11.23 +- 0.46 hours right ascension, and 19.0 +- 7.5 0 declination. A simultaneous fit to a combined hypothesis of dipole (cos theta) and quadrupole (cos 2 theta) angular distributions places a 1 m 0 K limit on the amplitude of most components of quadruple anisotropy with 90% confidence. Additional analysis places a 0.5 m 0 K limit on uncorrelated fluctuations (sky-roughness) in the 3 0 K background on an angular scale of the antenna beam width, about 7 0 . This thesis describes the equipment development through three engineering flights and the data acquisition in eleven additional flights. The astrophysical results are then presented from the statistical analysis of the reduced data

  18. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan; Pastor, Sergio

    2011-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N eff . This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η ν = η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in , solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν e −ν-bar e asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2 H/H density ratio and 4 He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2 H/H abundance plays a relevant role in constraining the allowed regions in the η ν −η ν e in plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N eff as a function of the mixing parameter θ 13 , and point out the upper bound N eff ∼ eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe

  19. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Science.gov (United States)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos Neff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on Neff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, ην = ηνe+ηνμ+ηντ and the initial electron neutrino asymmetry ηνein, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the νe-bar nue asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial 2H/H density ratio and 4He mass fraction. Note that taking the baryon fraction as measured by WMAP, the 2H/H abundance plays a relevant role in constraining the allowed regions in the ην-ηνein plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to Neff as a function of the mixing parameter θ13, and point out the upper bound Nefflesssim3.4. Comparing these results with the forthcoming measurement of Neff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  20. Influence of clouds on the cosmic radiation dose rate on aircraft

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Goncalez, Odair L.; Cortes-Giraldo, Miguel A.; Quesada, Jose Manuel M.; Palomo, Francisco R.; Pinto, Marcos Luiz de A.

    2014-01-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. The paper presents first-order calculation about the influence of Cumulonimbus clouds on the flux and dose rate due to cosmic neutrons in the atmosphere, at aircraft flight altitudes. The simulations show variations of the order of 5.5 % in the neutrons flux and 3.6 % of the dose rate due to the presence of the cloud. Such variations can extend up to ∼1.5 km from the edge of the cloud. The spectrum of neutrons within a cloud formation was observed undergo changes due to the neutron absorption and scattering processes with the water content inside the cloud. To accomplish these simulations, it is important to have a proper knowledge of the data libraries and nuclear models to be applied, since the simulation processes are strongly dependent on these factors. These results emphasise the importance of conducting more detailed studies on this topic, since the influence of clouds can change the dose and flux on aircraft overflying such formations, as well as could explain some of the fluctuations in the experimental dose rate data obtained in aircraft flights. Future studies should extend such simulations to different types of

  1. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA,F-91191 Gif-sur-Yvette (France); Department of Physics, Indian Institute of Technology,Kharagpur, West Bengal - 721302 (India); Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA,F-91191 Gif-sur-Yvette (France)

    2015-09-11

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.

  2. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Buch, Jatan; Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco, E-mail: jbuch.iitkgp@gmail.com, E-mail: marco.cirelli@cea.fr, E-mail: gaelle.giesen@cea.fr, E-mail: marco.taoso@cea.fr [Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette (France)

    2015-09-01

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field.

  3. PPPC 4 DM secondary: a Poor Particle Physicist Cookbook for secondary radiation from Dark Matter

    International Nuclear Information System (INIS)

    Buch, Jatan; Cirelli, Marco; Giesen, Gaëlle; Taoso, Marco

    2015-01-01

    We enlarge the set of recipes and ingredients at disposal of any poor particle physicist eager to cook up signatures from weak-scale Dark Matter models by computing two secondary emissions due to DM particles annihilating or decaying in the galactic halo, namely the radio signals from synchrotron emission and the gamma rays from bremsstrahlung. We consider several magnetic field configurations and propagation scenarios for electrons and positrons. We also provide an improved energy loss function for electrons and positrons in the Galaxy, including synchrotron losses in the different configurations, bremsstrahlung losses, ionization losses and Inverse Compton losses with an updated InterStellar Radiation Field

  4. Non-invasive detection of soil water content at intermediate field scale using natural neutrons from cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Sascha; Rivera Villarreyes, Carlos; Baroni, Gabriele [Universitaet Potsdam, Institut fuer Erd und Umweltwissenschaften (Germany)

    2011-07-01

    The amount of water in the subsurface is a key factor influencing soil hydrology, run-off, evapotranspiration and plant development. A new measurement method is the so called cosmic ray method, recently introduced for soil moisture measurements by Zreda and coworkers. Secondary neutron fluxes, product of the interaction of primary cosmic-rays at the land surface, are strongly moderated by the presence of water in or above soil (soil moisture, snow and biomass water). Neutron counts at the ground/air interface represent a valuable observation at intermediate spatial scale which can be used to quantify stored water while distinguishing different water holding compartments at the land surface. We have performed such measurements in an agricultural field, in comparison with classical soil moisture measurement at a number of point locations. We discuss how to extract soil moisture values from the neutron counts, drawbacks of the method, but also that the results show a temporal development supported by the accompanying data.

  5. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  6. Study of the contribution of the different components of atmospheric cosmic radiation in dose received by the aircraft crew

    International Nuclear Information System (INIS)

    Pereira, Marlon A.; Prado, Adriane C.M.; Federico, Claudio A.; Goncalez, Odair L.

    2014-01-01

    The crews and aircraft passengers are exposed to atmospheric cosmic radiation. The flow of this radiation is modulated by the solar cycle and space weather, varying with the geomagnetic latitude and altitude. This paper presents a study of the contributions of radiation in total ambient dose equivalent of the crews depending on flight altitude up to 20 km, during maximum and minimum solar and in equatorial and polar regions. The results of calculations of the particle flows generated by the EXPACS and QARM codes are used. The particles evaluated that contributing significantly in the ambient dose equivalent are neutrons, protons, electrons, positrons, alphas, photons, muons and charged pions. This review allows us to characterize the origin of the dose received by crews and also support a project of a dosimetric system suitable for this ionizing radiation field in aircraft and on the ground

  7. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  8. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  9. Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA

    International Nuclear Information System (INIS)

    Roubicek, P.

    1982-01-01

    Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)

  10. Occupational cosmic radiation exposure in Portuguese airline pilots: study of a possible correlation with oxidative biological markers.

    Science.gov (United States)

    Silva, Rodrigo; Folgosa, Filipe; Soares, Paulo; Pereira, Alice S; Garcia, Raquel; Gestal-Otero, Juan Jesus; Tavares, Pedro; Gomes da Silva, Marco D R

    2013-05-01

    Several studies have sought to understand the health effects of occupational exposure to cosmic radiation. However, only few biologic markers or associations with disease outcomes have so far been identified. In the present study, 22 long- and 26 medium-haul male Portuguese airline pilots and 36 factory workers who did not fly regularly were investigated. The two groups were comparable in age and diet, were non-smokers, never treated with ionizing radiation and other factors. Cosmic radiation exposure in pilots was quantified based on direct monitoring of 51 flights within Europe, and from Europe to North and South America, and to Africa. Indirect dose estimates in pilots were performed based on the SIEVERT (Système informatisé d'évaluation par vol de l'exposition au rayonnement cosmique dans les transports aériens) software for 6,039 medium- and 1,366 long-haul flights. Medium-haul pilots had a higher cosmic radiation dose rate than long-haul pilots, that is, 3.3 ± 0.2 μSv/h and 2.7 ± 0.3 μSv/h, respectively. Biological tests for oxidative stress on blood and urine, as appropriate, at two time periods separated by 1 year, included measurements of antioxidant capacity, total protein, ferritin, hemoglobin, creatinine and 8-hydroxy-2-deoxyguanosine (8OHdG). Principal components analysis was used to discriminate between the exposed and unexposed groups based on all the biological tests. According to this analysis, creatinine and 8OHdG levels were different for the pilots and the unexposed group, but no distinctions could be made among the medium- and the long-haul pilots. While hemoglobin levels seem to be comparable between the studied groups, they were directly correlated with ferritin values, which were lower for the airline pilots.

  11. Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia; Sarikas, Srdjan [Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, Complesso Universitario di Monte S. Angelo, I-80126 Napoli (Italy); Pastor, Sergio, E-mail: mangano@na.infn.it, E-mail: miele@na.infn.it, E-mail: pastor@ific.uv.es, E-mail: pisanti@na.infn.it, E-mail: sarikas@na.infn.it [Instituto de Física Corpuscular (CSIC-Universitat de València), Ed. Institutos de Investigación, Apdo. correos 22085, E-46071 Valencia (Spain)

    2011-03-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N{sub eff}. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N{sub eff} from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, η{sub ν} = η{sub ν{sub e}}+η{sub ν{sub μ}}+η{sub ν{sub τ}} and the initial electron neutrino asymmetry η{sub ν{sub e}{sup in}}, solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the ν{sub e}−ν-bar {sub e} asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial {sup 2}H/H density ratio and {sup 4}He mass fraction. Note that taking the baryon fraction as measured by WMAP, the {sup 2}H/H abundance plays a relevant role in constraining the allowed regions in the η{sub ν}−η{sub ν{sub e}{sup in}} plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N{sub eff} as a function of the mixing parameter θ{sub 13}, and point out the upper bound N{sub eff}∼<3.4. Comparing these results with the forthcoming measurement of N{sub eff} by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.

  12. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  13. Tolerance, immunocompetence, and secondary disease in fully allogeneic radiation chimeras

    International Nuclear Information System (INIS)

    Rayfield, L.S.; Brent, L.

    1983-01-01

    The aim of this study was to ascertain the extent to which secondary disease and mortality in fully allogeneic chimeras (C57BL leads to CBA) is caused (if at all) by a delayed graft-versus-host reaction. Adult CBA males were thymectomized, irradiated, and reconstituted with T-lymphocyte-depleted C57BL or CBA bone marrow cells (BMC), followed three weeks after irradiation by implantation under the kidney capsule of thymic lobes from C57BL or CBA fetal or adult donors. These mice were observed for the development of secondary disease for periods in excess of 250 days, and they were examined at 5 weeks or 4 months for T lymphocyte reactivity and tolerance to alloantigens, using the cell-mediated lympholysis assay (CML). The following results were obtained. First, removal of T lymphocytes with anti-Thy 1 antibody and complement from allogeneic bone marrow did not prevent wasting and eventual death, although it prolonged the lifespan of mice substantially. Second, T lymphocytes generated from bone marrow-derived precursor cells became tolerant of the histocompatibility antigens of the thymus donor strain but remained normally reactive to third-party antigens. Third, allogeneic radiation chimeras did not survive as well as animals reconstituted with syngeneic cells, even when they were demonstrably tolerant in CML. Fourth, C57BL BMC maturing in a CBA host equipped with a C57BL thymus graft did not become tolerant of host antigens, indicating that extra-thymic tolerance does not occur in fully allogeneic--as opposed to semiallogeneic--chimeras. It is argued that the function of B lymphocytes and/or accessory cells is impaired in fully allogeneic radiation chimeras, and that the mortality observed was directly related to the resulting immunodeficiency. The relevance of the results described in this paper to clinical bone marrow transplantation is discussed

  14. Secondary radiation from supervoltage accelerators - its implications in patient protection

    International Nuclear Information System (INIS)

    Bhatnagar, J.P.

    1977-01-01

    If the collimator and compensator of a supervoltage accelerator are made of high atomic number material they will tend to interact with the high energy photon beam predominantly by pair production. Associated with pair-production is a cascade formation resulting in a variety of radiations which may be serious from the point of view of patient protection, particularly if the field of treatment is close to some superficially located critical organ such as the lens of the eye or the gonads. Gonadal doses of about 15% of the mid-depth dose were measured on a young male patient undergoing treatment of the prostate by a 42MV X-ray beam from a Siemen's betatron. A lead block 1.5 cm thick placed over the patient's thighs covering the scrotum reduced the gonadal dose to less than 2% of the mid-depth dose. A similar set of measurements made on a specially constructed scrotum-penis phantom confirmed these results, and showed that the lead block must be placed close to the phantom to be effective. Comparative measurements made just outside a cobalt 60 beam showed that the doses were far smaller than those outside the 42MeV X-ray beam. Recommendations are therefore made for the thickness and positioning of lead shielding required to protect critical organs from secondary radiation in radiotherapy. (U.K.)

  15. Acceleration and propagation of cosmic radiation. Production, oscillation and detection of neutrinos

    International Nuclear Information System (INIS)

    Lagage, P.-O.

    1987-06-01

    In recent years, the old problem of cosmic-ray acceleration and propagation has become alive again, with the discovery of the diffusive shock acceleration mechanism, and with the first measurements of the cosmic-ray antiproton flux, which appears to be higher than expected. I have shown that the new acceleration mechanism was slow and I have calculated the maximum energy that can be reached by particles accelerated in various astrophysical sites. I have also studied in detail a cosmic-ray propagation model which takes into account the antiproton measurements. Neutrino astronomy is a field much more recent and in rapid expansion, thanks to a convergence of interests between astrophysicists and elementary particle physicists. Several large neutrino detectors already exist; really huge ones are in project. I have studied the possible impact of the high energy (> 1 TeV) neutrino astronomy on models of cosmic-ray sources such as Cygnus X3. Comparing the low energy (∼ 10 MeV) cosmic-ray antineutrinos with other sources of neutrinos and antineutrinos (sun, supernova, earth...), I have pointed out that the antineutrino background resulting from all the nuclear power-stations of the planet was sizeable. This background is a nuisance for some astrophysical applications but could be useful for studies on vacuum or matter neutrino oscillations (MSW effect). I have also examined the MSW effect in another context: the travel through the earth of neutrinos from the supernova explosion SN1987a [fr

  16. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lee

    2017-10-01

    Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics

  17. Cosmic radiation shielding properties of COLUMBUS and REMSIM multi-layer external shells

    Science.gov (United States)

    Durante, Marco; Manti, Lorenzo; Rusek, Adam; Belluco, Maurizio; Lobascio, Cesare

    The European module COLUMBUS has been recently installed on the International Space Station. Future plans for exploration involve the use of inflatable modules, such as the REMSIM concept proposed in a previous ESA funded study. We studied the radiation shielding properties of COLUMBUS and REMSIM external shell using 1 GeV/n Feor H-ions accelerated at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory (Long Island, NY, USA). COLUMBUS has a 22 mm rigid multi-layer shell with Al, Nextel and Kevlar, as materials of the double bumper for meteoroids and debris protection, MLI for thermal reasons and again Al as pressure shell. Inside the module, astronauts are further protected by secondary structures, including racks, a number of electronic devices and payload equipment. This internal equipment has been simulated using Al and Kevlar, bringing the total thickness to about 15 g/cm2. REMSIM consists of a thermal multi-layer (MLI), four Nextel layers used to provide shock of the impacting micro-meteoroids, a ballistic restraint multi-layer of Kevlar used to absorb debris cloud's kinetic energy, a Kevlar structural restraint to support pressure loads incurred from inflating the module. To contain air inside the module, REMSIM adopts three layers of airtight material separated by two layers of Kevlar (air bladder). A final layer of Nomex provide protection against punctures and fire. In the flight configuration there are also spacer elements (foam) needed to guarantee correct spacing between consecutive bumper layers. These spacers were not included in the tests, making the total thickness about 1.1 cm. The internal equipment in REMSIM was not been defined, but due to its application for exploration missions it was decided to exploit water, valuable resource used for drinking, washing and technical usage, as a radiation shielding. In this test, we have included about 8 cm of water. Measured dose attenuation shows that the Columbus module reduces the

  18. Study of production by cosmic radiation of krypton and xenon in the Saint-Severin meteorite

    International Nuclear Information System (INIS)

    Lavielle, B.

    1987-01-01

    The concentrations of Kr and Xe isotropes have been measured by a high sensitivity mass spectrometry technique in 11 samples from a core of the Saint-Severin meteorite. On the basis of our results, we were able to show the role of the shielding depth on the production of Kr and Xe by cosmic ray bombardment. More-over, the experimental results for krypton were compared with calculated values obtained by the Reedy and Arnold model (1972) adapted to cosmic ray irradiation of small spherical objects. Our elaboration of a new systematics of nuclear reactions has lead to a good agreement between experiments and calculations within this model [fr

  19. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  20. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    Energy Technology Data Exchange (ETDEWEB)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J. [Space Geophysics Division, National Institute for Space Research, São José dos Campos, SP, 12227-010 (Brazil); Munakata, K.; Kato, C. [Physics Department, Shinshu University, Matsumoto, Nagano, 390-8621 (Japan); Kuwabara, T. [Graduate School of Science, Chiba University, Chiba City, Chiba 263-8522 (Japan); Kozai, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Al Jassar, H. K.; Sharma, M. M. [Physics Department, Kuwait University, Kuwait City, 13060 (Kuwait); Tokumaru, M. [Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi, 464-8601 (Japan); Duldig, M. L.; Humble, J. E. [School of Physical Sciences, University of Tasmania, Hobart, Tasmania, 7001 (Australia); Evenson, P. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Sabbah, I. [Department of Natural Sciences, College of Health Sciences, Public Authority for Applied Education and Training, Kuwait City, 72853 (Kuwait)

    2016-10-20

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  1. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    International Nuclear Information System (INIS)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Rockenbach, M.; Schuch, N. J.; Munakata, K.; Kato, C.; Kuwabara, T.; Kozai, M.; Al Jassar, H. K.; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-01-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  2. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  3. A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Rays

    NARCIS (Netherlands)

    Scholten, O.; Werner, K.; Caballero, Rogelio; D'Olivo, Juan Carlos; Medina-Tanco, Gustavo; Nellen, Lukas; Sánchez, Federico A.; Valdés-Galicia, José F.

    2008-01-01

    In an air shower induced by a cosmic ray, due to the high velocities, most of the particles are concentrated in the relatively thin shower front, which, for obvious reasons, is called the 'pancake'. This pancake, which for the present discussion is assumed to be charge neutral, contains large

  4. Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation

    DEFF Research Database (Denmark)

    Mitchell, J.W.; Barbier, L.M.; Christian, E.R.

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16-17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 ...

  5. Let's start learning radiation. Supplementary material on radiation for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Yoko; Yamashita, Kiyonobu; Shimada, Mayuka

    2015-01-01

    The Japan Atomic Energy Agency has been organizing training programs for engineers in Asian countries introducing nuclear technology. In 2012, we launched a course ‘Basic Radiation Knowledge for School Education’ as we thought disseminating accurate knowledge on radiation to school students and public would also be important in those countries after Fukushima-Daiichi nuclear power station accident. Ministry of Education, Culture, Sports, Science and Technology - Japan published supplemental learning material on radiation for secondary school students and teachers in Japanese in October 2011. Since the learning material is designed to give a clear explanation of radiation and covers various topics, we thought it would also be beneficial for young students in the world if a learning material in English was available. Therefore, we made a new learning material in English using the topics covered in supplemental learning material on radiation in Japanese as a reference. This learning material has been favourably evaluated by the International Atomic Energy Agency (IAEA) and will be widely used as a practical educational tool in many countries around the world through the IAEA. (author)

  6. Secondary malignancy among seminoma patients treated with adjuvant radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Clifford K.S.; Lai, Peter P; Michalski, Jeff M; Perez, Carlos A

    1995-11-01

    Purpose: Early-stage testicular seminoma is among the most radiosensitive tumors, with an overall cure rate of over 90%. Among those cured of the disease by orchiectomy and postoperative irradiation, there is a risk of having a second malignancy. We conducted a study to determine the relative risk of the occurrence of secondary malignancy. Methods and Materials: From 1964 through 1988, 128 patients with histologically confirmed early-stage seminoma of the testis underwent orchiectomy and postoperative irradiation at the Radiation Oncology Center, Mallinckrodt Institute of Radiology, and affiliate hospitals. The follow-up periods ranged from 5 to 29 years, with a median of 11.7 years. The expected rate of developing a second cancer was computed by the standardized incidence ratio using the Connecticut Tumor Registry Database. The rate is based on the number of person-years at risk, taking into account age, gender, and race. Results: Nine second nontesticular malignancies were found; the time of appearance in years is indicated in brackets: two squamous cell carcinomas of the lung [3, 11], one adenocarcinoma of the rectum [15], one chronic lymphocytic leukemia [2], one adenocarcinoma of the pancreas [14], one diffuse histiocytic lymphoma of the adrenal gland [7], one sarcoma of the pelvis [5], and two transitional cell carcinomas of the renal pelvis and ureter [14, 17]. One patient who developed a contralateral testicular tumor was excluded from risk assessment. The actuarial risk of second nontesticular cancer is 3%, 5%, and 20%, respectively, at 5, 10, and 15 years of follow-up. When compared with the general population, the overall risk of second nontesticular cancer in the study group did not reach the 0.05 significance level, with an observed/expected (O/E) ratio of 2.09 (95% confidence interval, 0.39-3.35). When analyzed by the latency period after radiation treatment, during the period of 11 to 15 years, the risk was higher (O/E ratio of 4.45, 95% confidence

  7. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  8. The mass composition of cosmic rays measured with LOFAR

    NARCIS (Netherlands)

    Hörandel, Jörg R.; Bonardi, A.; Buitink, S.; Corstanje, A.; Falcke, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Winchen, T.

    2017-01-01

    High-energy cosmic rays, impinging on the atmosphere of the Earth initiate cascades of secondary particles, the extensive air showers. The electrons and positrons in the air shower emit electromagnetic radiation. This emission is detected with the LOFAR radio telescope in the frequency range from 30

  9. An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    Science.gov (United States)

    Shea, M. A.; Smart, D. F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979.

  10. Update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    International Nuclear Information System (INIS)

    Shea, M.A.; Smart, D.F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979

  11. Non-Gaussian signatures in the cosmic background radiation from warm inflation

    International Nuclear Information System (INIS)

    Gupta, S.; Heavens, A.F.; Berera, A.; Matarrese, S.

    2002-01-01

    We calculate the bispectrum of the gravitational field fluctuations generated during warm inflation, where dissipation of the vacuum potential during inflation is the mechanism for structure formation. The bispectrum is nonzero because of the self-interaction of the scalar field. We compare the predictions with those of standard, or 'supercooled', inflationary models, and consider the detectability of these levels of non-Gaussianity in the bispectrum of the cosmic microwave background. We find that the levels of non-Gaussianity for warm and supercooled inflation are comparable, and overridden by the contribution to the bispectrum due to other physical effects. We also conclude that the resulting bispectrum values will be undetectable in the cosmic microwave background for both the MAP and Planck Surveyor satellites

  12. A measurement of the carbon isotopic composition in primary cosmic radiation

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N.Y.; Jacobsson, L.; Joensson, G.; Kristiansson, K.

    1975-01-01

    The isotopic composition is measured in a stack of nuclear emulsions exposed in a balloon flight from Fort Churchill. The masses of the carbon nuclei have been determined from photometric track width measurements in the residual range interval 1 13 C/( 12 C + 13 C) = 0.10 +- 0.04 at the measuring point. The result indicates that 13 C will only be present in the cosmic ray source matter in small amounts. (orig./BJ) [de

  13. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Turek, Karel

    2004-01-01

    Roč. 109, č. 4 (2004), s. 375-381 ISSN 0144-8420 R&D Projects: GA AV ČR KSK4055109 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : track-etched detectors * cosmic rays * aircraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  14. Radiobiological studies on eggs of the rice weevil (Tribolium confusum) after exposure to heavy primary particles of the cosmic radiation

    International Nuclear Information System (INIS)

    Geyer, B.

    1982-01-01

    The thesis explains the radiation effects observed during the holometabolism of Tribolium confusum after exposure of the eggs to heavy primary particles of cosmic radiation, i.e. to atomic nuclei of relatively high energy with a mass greater than helium atoms. The first section describes the technical layout of the BIOSTACK experiment and the fixation of the Tribolium eggs and the positioning of the nuclear track detectors. This part is followed by the description of methods used to detect the eggs hit by the heavy nuclei, and their isolation and subsequent growth. Terrestrial irradiation of eggs with x-rays served as a control, as well as unirradiated egg cultures. The amount of larvae produced from incubated eggs hit by heavy nuclei was 66%, that of eggs exposed to cosmic background radiation was 69%, and that produced by the control culture kept on the earth was 87%. Investigations of egg samples during various stages of embryogenesis showed differences in the histological findings of the various groups, especially between the two groups of the BIOSTACK experiment. The letality of larvae in the period from emergence up to pupal stage was relatively high (50%) in the group hit by heavy nuclei, especially when compared to the other BIOSTACK experimental group, where this percentage was 10%, and to the terrestrial control group (3%). Also, vitality of larvae of the first group was considerably reduced. In the pupal stage, the letality observed in all three test groups was relatively low with 2-4%. From the animals produced from eggs hit by heavy nuclei, only 25% were still alive after 4 months, from the other space flight group these were 75%, and from the terrestrial control group 93%. Also, the animals from the first group showed a significant increase in bodily anomalies. (orig./MG) [de

  15. Renal complications secondary to radiation treatment of upper abdominal malignancies

    International Nuclear Information System (INIS)

    Willett, C.G.; Tepper, J.E.; Orlow, E.L.; Shipley, W.U.

    1986-01-01

    A retrospective review of all patients undergoing radiotherapy for carcinoma of the colon, pancreas, stomach, small bowel and bile ducts, lymphomas of the stomach, and other GI sites and retroperitoneal sarcomas was completed to assess the effects of secondary irradiation on the kidney. Eighty-six adult patients were identified who received greater than 50% unilateral kidney irradiation to doses of at least 2600 cGy and survived for 1 year or more. Following treatment, the clinical course, blood pressure, addition of anti-hypertensive medications, serum creatinine and creatinine clearance were determined. The percent change in creatinine clearance from pre-treatment values was analyzed. Of the thirteen patients with pre-radiotherapy hypertension, four required an increase in the number of medications for control and nine required no change in medication. Two patients developed hypertension in follow-up, one controlled with medication and the other malignant hypertension. Acute or chronic renal failure was not observed in any patient. The serum creatinine for all 86 patients prior to radiation therapy was below 2 mg/100 ml; in follow-up it rose to between 2.2-2.9 mg/100 ml. in five patients. The mean creatinine clearance for all 86 patients prior to radiotherapy was 77 ml/minute and for 16 patients with at least 5 years of follow-up it was 62 ml/minute. The mean percent decrease in creatinine clearance appeared to correspond to the percentage of kidney irradiated: for 38 patients with only 50% of the kidney irradiated the mean percent decrease was 10%, whereas for 31 patients having 90 to 100% of the kidney treated the decrease was 24%

  16. Secondary cosmic-ray e+- from 1 to 100 GeV in the upper atmosphere and interstellar space, and interpretation of a recent e+ flux measurement

    International Nuclear Information System (INIS)

    Orth, C.D.; Buffington, A.

    1976-01-01

    Secondary fluxes of cosmic-ray e from the decay of mesons produced by nuclear interactions are calculated for depths under 10 g cm -2 of atmosphere or interstellar space for energies from 1 to 100 GeV. Secondary meson spectra applicable for energies > or =5 GeV are obtained from the recently measured spectra of Carey et al. using Monte Carlo techniques. An analytic model is presented which identifies all essential parameters and enables easy calculation of efluxes for various parameter values. This model is used to interpret the e + measurement of Buffington, Orth, and Smoot. We find the mean thickness of interstellar and source material to be 4.3 (+1.8,-1.2) g cm -2 for cosmic-ray e + above 4 GeV. This result is difficult to reconcile with the recently proposed two-containment-volume propagation models of Cowsik and Wilson; Rengarajan, Stephens, and Verma; and Meneguzzi: all of the models predict a result near 1.8 g cm -2 at these energies due to the energy dependence of the measured (Li+Be+B)/(C+O) ratio. Single-containment-volume (galactic) models invoking an energy-dependent leakage lifetime are compatible with the e + data, but lack a mechanism to explain the energy dependence

  17. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  18. Hyperreninemic hypertension secondary to radiation nephritis in a child

    International Nuclear Information System (INIS)

    Hulbert, W.C. Jr.; Ettinger, L.J.; Wood, B.P.; Anderson, V.M.; Putnam, T.C.; Rabinowitz, R.

    1985-01-01

    Radiation injury to the kidney, first reported almost eighty years ago, may vary from subclinical changes in renal blood flow or enzyme activity to clinically significant hypertension and/or renal failure. A child with radiation-induced hyperreninemic hypertension was cured by nephrectomy. The microscopic, subclinical, and clinical changes of irradiation injury are reviewed. The etiology of radiation-induced hypertension, methods of radioprotection, and early detection of radiation renal damage are discussed

  19. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  20. Cosmic ray propagation in a diffusion model: a new estimation of the diffusion parameters and of the secondary antiprotons flux

    International Nuclear Information System (INIS)

    Maurin, D.

    2001-02-01

    Dark matter is present at numerous scale of the universe (galaxy, cluster of galaxies, universe in the whole). This matter plays an important role in cosmology and can not be totally explained by conventional physic. From a particle physic point of view, there exists an extension of the standard model - supersymmetry - which predicts under certain conditions the existence of new stable and massive particles, the latter interacting weakly with ordinary matter. Apart from direct detection in accelerators, various indirect astrophysical detection are possible. This thesis focuses on one particular signature: disintegration of these particles could give antiprotons which should be measurable in cosmic rays. The present study evaluates the background corresponding to this signal i. e. antiprotons produced in the interactions between these cosmic rays and interstellar matter. In particular, uncertainties of this background being correlated to the uncertainties of the diffusion parameter, major part of this thesis is devoted to nuclei propagation. The first third of the thesis introduces propagation of cosmic rays in our galaxy, emphasizing the nuclear reaction responsibles of the nuclei fragmentation. In the second third, different models are reviewed, and in particular links between the leaky box model and the diffusion model are recalled (re-acceleration and convection are also discussed). This leads to a qualitative discussion about information that one can infer from propagation of these nuclei. In the last third, we finally present detailed solutions of the bidimensional diffusion model, along with constrains obtained on the propagation parameters. The latter is applied on the antiprotons background signal and it concludes the work done in this thesis. The propagation code for nuclei and antiprotons used here has proven its ability in data analysis. It would probably be of interest for the analysis of the cosmic ray data which will be taken by the AMS experiment on

  1. Preliminary test Results for a 25K Sorption Cryocooler Designed for the UCSB Long Duration Balloon Cosmic Microwave Background Radiation Experiment

    Science.gov (United States)

    Wade, L. A.; Levy, A. R.

    1996-01-01

    A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.

  2. Beryllium isotopes in primary cosmic radiation and light nuclei fragmentation observed in plastic detectors

    International Nuclear Information System (INIS)

    Fukui, Katsura.

    1975-01-01

    Plastic sheets consisting of 50 layers of Daicel and Kodak cellulose nitrate were flown from Fort Churchill, Canada in 1971 for the study of isotopic components of light nuclei, especially beryllium, in primary cosmic rays. In this plastic stack, 59 Be normals and 24 Be albedos as well as 109 Li normals and 53 Li albedos were identified. The center of mass and the standard deviation for Be 7 and Be 9+10 may be derived from the mass spectrum. (orig./WL) [de

  3. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    Science.gov (United States)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  4. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J

    2002-07-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  5. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J.

    2002-01-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  6. Cosmic ray riddle solved?

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Physicists from Japan and the United States have discovered a possible answer to the puzzle of the origin of high energy cosmic rays that bombard Earth from all directions in space. Using data from the Japanese/US X-ray astronomical satellite ASCA, physicists have found strong evidence for the production of cosmic particles in the shock wave of a supernova remnant, the expanding fireball produced by the explosion of a star. Primary cosmic rays, mostly electrons and protons, travel near the speed of light. Each second, approximately 4 such particles cross one square centimetre of space just outside the Earth's atmosphere. Subsequently, collisions of these primary particles with atoms in the upper atmosphere produce slower secondary particles. Ever since the discovery of cosmic rays early this century, scientists have debated the origin of these particles and how they can be accelerated to such high speeds. Supernova remnants have long been thought to provide the high energy component, but the evidence has been lacking until now. The international team of investigators used the satellite to determine that cosmic rays are generated profusely in the remains of the supernova of 1006 AD - which appeared to medieval viewers to be as bright as the Moon - and that they are accelerated to high velocities by an iterative process first suggested by Enrico Fermi in 1949. Using solid-state X-ray cameras, the ASCA satellite records simultaneous images and spectra of X-rays from celestial sources, allowing astronomers to distinguish different types of X-ray emission. The tell-tale clue to the discovery was the detection of two diametrically opposite regions in the rapidly expanding supernova remnant, the debris from the stellar explosion. The two regions glow intensely from the synchrotron radiation produced when fast-moving electrons are bent by a magnetic field. The remainder of the supernova remnant, in contrast, emits ordinary ''thermal'' X

  7. Comparison of the response of various TLDs to cosmic radiation and ion beams: Current results of the HAMLET project

    International Nuclear Information System (INIS)

    Bilski, P.; Berger, T.; Hajek, M.; Reitz, G.

    2011-01-01

    HAMLET is an European Commission research project aiming at optimal scientific exploitation of the data produced within the space experiment MATROSHKA. During phase 1 of this experiment a human phantom equipped with several thousands of radiation detectors (mainly TLDs) was exposed outside the International Space Station for 1.5 years. Besides the measurements realized in Earth orbit, the HAMLET project includes also a ground-based program of intercomparison of detector response to high-energy ion beams. Within the paper, the relative response of main glow-curve peaks of various TLDs (mostly based on LiF) used in frame of the MATROSHKA experiment by three laboratories (DLR Cologne, ATI Vienna and IFJ Krakow) for radiation in space and several ion beams, has been compared. For LiF:Mg,Ti detectors a very good agreement between results obtained by the three laboratories was observed, both for space and accelerator-based exposures. This should be considered a remarkable result, taking into account that the studied TLDs originated from six different batches, manufactured by two producers exploiting different production techniques and were processed by three laboratories, using significantly different protocols (annealing, readout, calibration, glow-curve analysis). Another type of TL detectors, LiF:Mg,Cu,P, was found to show response to cosmic radiation lower than that of LiF:Mg,Ti by 5%–18%.

  8. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994. Revised Version

    International Nuclear Information System (INIS)

    Tveten, U.

    1999-02-01

    The present report is a revised version of an earlier report (IFE/KR/E-96/008). The revision has been carried out since a completely new version of the computational tool has recently been released. All calculations have been redone. The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institute for Energy Technology (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). Originating from the Norwegian project, a number of similar projects have been started in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the the Scandinavian Airlines System (SAS). The result presented in this report (radiation dose rates for the different types of aircraft in the different years) were calculated with the most recent computer program for this purpose, the CARI-5E from the United States Civil Aviation Authority. The other major sources of information used as basis for this work is the collection of old SAS time tables found the the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Association in Norway

  9. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994. Revised Version

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U

    1999-02-01

    The present report is a revised version of an earlier report (IFE/KR/E-96/008). The revision has been carried out since a completely new version of the computational tool has recently been released. All calculations have been redone. The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institute for Energy Technology (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). Originating from the Norwegian project, a number of similar projects have been started in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the the Scandinavian Airlines System (SAS). The result presented in this report (radiation dose rates for the different types of aircraft in the different years) were calculated with the most recent computer program for this purpose, the CARI-5E from the United States Civil Aviation Authority. The other major sources of information used as basis for this work is the collection of old SAS time tables found the the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Association in Norway.

  10. A beam radiation monitoring and protection system for AGS secondary beams

    International Nuclear Information System (INIS)

    Levine, G.S.

    1978-01-01

    A commercially available radiation monitor using a scintillation detector was modified for charged particle beam monitoring. The device controls access to secondary beams of the AGS and limits beam intensity

  11. Correlations Between Secondary Cosmic Ray Ratesand Strong Electric Fields at Lomnický štít

    Czech Academy of Sciences Publication Activity Database

    Kudela, Karel; Chum, Jaroslav; Kollárik, M.; Langer, R.; Strhárský, I.; Baše, Jiří

    2017-01-01

    Roč. 122, č. 20 (2017), s. 10700-10710 ISSN 2169-897X R&D Projects: GA ČR(CZ) GC15-07281J; GA MŠk EF15_003/0000481 Grant - others:AV ČR(CZ) BAS-17-04 Program:Bilaterální spolupráce Institutional support: RVO:68378289 ; RVO:61389005 Keywords : cosmic rays * thunderstorms * electric field Subject RIV: DG - Athmosphere Sciences, Meteorology; BL - Plasma and Gas Discharge Physics (UFA-U) OBOR OECD: Meteorology and atmospheric sciences; Fluids and plasma physics (including surface physics) (UFA-U) Impact factor: 3.454, year: 2016

  12. Measurement of antiproton production in $p$–He collisions at LHCb to constrain the secondary cosmic antiproton flux

    CERN Document Server

    Graziani, Giacomo

    2018-01-01

    The flux of cosmic ray antiprotons is a powerful tool for indirect detection of dark matter. The sensitivity is limited by the uncertainty on the predicted antiproton flux from scattering of primary rays on the interstellar medium. This is, in turn, limited by the knowledge of production cross-sections, notably in p–He scattering. Thanks to its internal gas target, the LHCb experiment performed the first measurement of antiproton production from collisions of LHC proton beams on He nuclei at rest. The results and prospects are presented.

  13. Radiation protection in the secondary schools - new forms of education

    International Nuclear Information System (INIS)

    Hola, O.

    2011-01-01

    The author of this paper presents new approaches to learning in secondary schools of the Slovak Republic in the field of nuclear physics, the use of new knowledge in nuclear medicine and the phenomena of radioactivity in the environment.

  14. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  15. Measurement and calculation of cosmic radiation exposure during a pole-to-pole flight sequence

    International Nuclear Information System (INIS)

    Taylor, Graeme C.; Ojjeh, Captain Aziz

    2010-01-01

    Cosmic ray dosimetry measurements were carried out on board a Global Express business jet operated by TAG Aviation (UK) during a pole-to-pole flight sequence that took place in November 2008. One Hawk TEPC and two EPDN2s were flown, and the TEPC measurements compared to calculated values from the route dose codes AVIDOS, CARI 6M, EPCARD versions 3.2 and 3.34, QARM and SIEVERT (online version). The largest difference between measured and calculated doses for the total flight sequence was found to be 13%. Agreement between the readings of the TEPC and the EPDN2s (once a calibration factor from the CERN High Energy Reference Field had been applied) was reasonably good given the relatively large uncertainties associated with the EPDN2 measurements.

  16. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  17. Interpretation of the cosmic microwave background radiation anisotropy detected by the COBE Differential Microwave Radiometer

    Science.gov (United States)

    Wright, E. L.; Meyer, S. S.; Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kogut, A.; Lineweaver, C.; Mather, J. C.; Smoot, G. F.

    1992-01-01

    The large-scale cosmic background anisotropy detected by the COBE Differential Microwave Radiometer (DMR) instrument is compared to the sensitive previous measurements on various angular scales, and to the predictions of a wide variety of models of structure formation driven by gravitational instability. The observed anisotropy is consistent with all previously measured upper limits and with a number of dynamical models of structure formation. For example, the data agree with an unbiased cold dark matter (CDM) model with H0 = 50 km/s Mpc and Delta-M/M = 1 in a 16 Mpc radius sphere. Other models, such as CDM plus massive neutrinos (hot dark matter (HDM)), or CDM with a nonzero cosmological constant are also consistent with the COBE detection and can provide the extra power seen on 5-10,000 km/s scales.

  18. Measurement of the isotopic composition of the primary cosmic radiation for the elements B-Ne

    International Nuclear Information System (INIS)

    Bjarle, C.; Herrstroem, N-Y.; Jacobsson, L.; Joensson, G.; Kristiansson, K.

    1977-05-01

    The results are given from an investigation of the isotopic composition of primary cosmic ray B, C, N and O. Preliminary result is also given from an investigation of Ne. The mass measurements are made in nuclear emulsions exposed at about 3 g/cm 2 atmospheric depth. The results for B-O represented as quotients extrapolated to the top of the atmosphere, are: 11 B/B=0.61+-0.10; 13 C/C=0.06+-0.03; 15 N/N=0.33+-0.09; 17 O/O=0.05+-0.03; 18 O/O=0.08+-0.03. The preliminary result from the Ne-measurements shows that nuclei with masses larger than 20 exist among the primary neon nuclei. (Auth.)

  19. Radiating black holes in Einstein-Yang-Mills theory and cosmic censorship

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Dadhich, Naresh

    2010-01-01

    Exact nonstatic spherically symmetric black-hole solutions of the higher dimensional Einstein-Yang-Mills equations for a null dust with Yang-Mills gauge charge are obtained by employing Wu-Yang ansatz, namely, HD-EYM Vaidya solution. It is interesting to note that gravitational contribution of Yang-Mills (YM) gauge charge for this ansatz is indeed opposite (attractive rather than repulsive) that of Maxwell charge. It turns out that the gravitational collapse of null dust with YM gauge charge admits strong curvature shell focusing naked singularities violating cosmic censorship. However, there is significant shrinkage of the initial data space for a naked singularity of the HD-Vaidya collapse due to presence of YM gauge charge. The effect of YM gauge charge on structure and location of the apparent and event horizons is also discussed.

  20. A NIRS's product. Japanese internet system for the calculation of aviation route doses 'JISCARD'. The program which informs us of cosmic radiation doses in an aircraft

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    2008-01-01

    The radiation dose during one round aviation from Japan to Western countries is about 0.1 mSv. A web tool called JISCARD (Japanese Internet System for the Calculation of Aviation Route Doses) has been developed by National Institute of Radiological Sciences for giving the information on the irradiation of cosmic ray during the aviation. 'Route dose' (the effective dose by cosmic ray irradiation) of going and coming each can be shown for major international airlines from/to Japan. 'JISCARD Mobile' for mobile phones is also available. Global distribution of daily cosmic ray intensity at cruising altitude (11 km) of aircrafts is shown on the page 'Related Information'. Explanation of the terminology is also compiled. (K.Y.)

  1. Cosmic and terrestrial single-event radiation effects in dynamic random access memories

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1996-01-01

    A review of the literature on single-event radiation effects (SEE) on MOS integrated-circuit dynamic random access memories (DRAM's) is presented. The sources of single-event (SE) radiation particles, causes of circuit information loss, experimental observations of SE information upset, technological developments for error mitigation, and relationships of developmental trends to SE vulnerability are discussed

  2. Cosmic rays and terrestrial life: A brief review

    Science.gov (United States)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  3. Retinopathy secondary to radiation therapy for squamous cell carcinoma

    International Nuclear Information System (INIS)

    Groomer, A.E.; Gutwein, D.E.

    1989-01-01

    This report discusses a case of radiotherapy-induced retinopathy following treatment of squamous cell carcinoma. Treatment of the carcinoma with external beam radiotherapy to the supraorbital region and base of the skull was followed by the onset of retinopathy. The sensory retina, as well as other central nervous system tissues, is highly resistant to radiation damage; however, the retinal vasculature is extremely sensitive to radiation damage, producing a retinopathy that is characteristic of other vascular occlusive diseases. Management is discussed

  4. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    International Nuclear Information System (INIS)

    Szabó, J.; Pálfalvi, J.K.

    2012-01-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008–2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  5. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  6. Understanding radiation and risk: the importance of primary and secondary education

    International Nuclear Information System (INIS)

    Tada, Junichiro

    1999-01-01

    In Japan's primary and secondary schools, radiation and radioactivity are taught as part of the curriculum dealing with social science subjects. Students learn much about the hazardous features of radiation, but lack the scientific understanding necessary to build a more balanced picture. Although the same point applies to education covering the harmful effects of volcanic eruptions, earthquakes, electrical storms and so on, public understanding of these events is relatively high and students are generally able to make informed judgments about the risks involved. By contrast, their limited understanding of radiation often contributes to fears that it is evil or even supernatural. To correct this distortion, it is important that primary and secondary education includes a scientific explanation of radiation. Like heat and light, radiation is fundamental to the history of the universe; and scientific education programs should give appropriate emphasis to this important subject. Students would then be able to make more objective judgments about the useful and hazardous aspects of radiation. (author)

  7. Effects of cosmic radiation on devices and embedded systems in aircrafts

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairlelisgoncalez@gmail.com, E-mail: adriane.acm@hotmail.com, E-mail: evaldocarlosjr@gmail.com [Instituto de Estudos Avancados (IEAV/DCTA), Sao Jose dos Campos, SP (Brazil)

    2013-07-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  8. Effects of cosmic radiation on devices and embedded systems in aircrafts

    International Nuclear Information System (INIS)

    Prado, Adriane C.M.; Federico, Claudio A.; Pereira Junior, Evaldo C.F.; Goncalez, Odair L.

    2013-01-01

    Modern avionics systems use new electronic technologies devices that, due to their high degree of sophistication and miniaturization, are more susceptible to the effects of ionizing radiation, particularly the effect called 'Single Event Effect' (SEE) produced by neutron. Studies regarding the effects of radiation on electronic systems for space applications, such as satellites and orbital stations, have already been in progress for several years. However, tolerance requirements and specific studies, focusing on testing dedicated to avionics, have caused concern and gained importance in the last decade as a result of the accidents attributed to SEE in aircraft. Due to the development of a higher ceiling, an increase in airflow and a greater autonomy of certain aircrafts, the problem regarding the control of ionizing radiation dose received by the pilots, the crew and sensitive equipment became important in the areas of occupational health, radiation protection and flight safety. This paper presents an overview of the effects of ionizing radiation on devices and embedded systems in aircrafts, identifying and classifying these effects in relation to their potential risks in each device class. The assessment of these effects in avionics is a very important and emerging issue nowadays, which is being discussed by groups of the international scientific community; however, in South America, groups working in this area are still unknown. Consequently, this work is a great contribution and significantly valuable to the area of aeronautical engineering and flight safety associated to the effects of radiation on electronic components embedded in aircraft. (author)

  9. Evaluation of the secondary radiation impact on personnel during the dismantling of contaminated nuclear equipment

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2013-01-01

    Full Text Available The article contains a numerical analysis of the secondary radiation contribution to the total radiation affecting the operational personnel during the dismantling activities of the contaminated equipment at a nuclear power plant. This study considers a widely applicable Monte Carlo particle transport code MCNPX and real Ignalina nuclear power plant records. A simplified albedo method is investigated in order to analyze the selected geometrical design cases. Additionally, the impact of the secondary radiation on the personnel dose was analyzed. The numerical MCNPX simulation allowed ascertaining the optimal distance between the source and the wall for the working personnel in closed rooms with contaminated equipment. The developed dose rate maps of the secondary radiation showed cross-sectional distribution of the dose rate inside the enclosed area.

  10. Risk of secondary malignancies after radiation therapy for breast cancer: Comprehensive results.

    Science.gov (United States)

    Burt, Lindsay M; Ying, Jian; Poppe, Matthew M; Suneja, Gita; Gaffney, David K

    2017-10-01

    To assess risks of secondary malignancies in breast cancer patients who received radiation therapy compared to patients who did not. The SEER database was used to identify females with a primary diagnosis of breast cancer as their first malignancy, during 1973-2008. We excluded patients with metastatic disease, age breast cancer recurrence, or who developed a secondary malignancy within 1 year of diagnosis. Standardized incidence ratios and absolute excess risk were calculated using SEER*Stat, version 8.2.1 and SAS, version 9.4. There were 374,993 patients meeting the inclusion criteria, with 154,697 who received radiation therapy. With a median follow-up of 8.9 years, 13% of patients (49,867) developed a secondary malignancy. The rate of secondary malignancies was significantly greater than the endemic rate in breast cancer patients treated without radiation therapy, (O/E 1.2, 95% CI 1.19-1.22) and with radiation therapy (O/E 1.33, 95% CI 1.31-1.35). Approximately 3.4% of secondary malignancies were attributable to radiation therapy. The increased risk of secondary malignancies in breast cancer patients treated with radiation therapy compared to those without was significant regardless of age at breast cancer diagnosis (p breast cancer patients both with and without radiation therapy compared to the general population. There was an increased risk in specific sites for patients treated with radiation therapy. This risk was most evident in young patients and who had longer latency periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    International Nuclear Information System (INIS)

    Aniceto, Pedro; Pani, Paolo; Rocha, Jorge V.

    2016-01-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  12. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Pedro [CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Pani, Paolo [Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma 1,Piazzale Aldo Moro 5, 00185 Roma (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Fonamental, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-05-19

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  13. Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements

    Science.gov (United States)

    Joyce, C. J.; Schwadron, N. A.; Townsend, L. W.; deWet, W. C.; Wilson, J. K.; Spence, H. E.; Tobiska, W. K.; Shelton-Mur, K.; Yarborough, A.; Harvey, J.; Herbst, A.; Koske-Phillips, A.; Molina, F.; Omondi, S.; Reid, C.; Reid, D.; Shultz, J.; Stephenson, B.; McDevitt, M.; Phillips, T.

    2016-09-01

    We provide an analysis of the galactic cosmic ray radiation environment of Earth's atmosphere using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) together with the Badhwar-O'Neil model and dose lookup tables generated by the Earth-Moon-Mars Radiation Environment Module (EMMREM). This study demonstrates an updated atmospheric radiation model that uses new dose tables to improve the accuracy of the modeled dose rates. Additionally, a method for computing geomagnetic cutoffs is incorporated into the model in order to account for location-dependent effects of the magnetosphere. Newly available measurements of atmospheric dose rates from instruments aboard commercial aircraft and high-altitude balloons enable us to evaluate the accuracy of the model in computing atmospheric dose rates. When compared to the available observations, the model seems to be reasonably accurate in modeling atmospheric radiation levels, overestimating airline dose rates by an average of 20%, which falls within the uncertainty limit recommended by the International Commission on Radiation Units and Measurements (ICRU). Additionally, measurements made aboard high-altitude balloons during simultaneous launches from New Hampshire and California provide an additional comparison to the model. We also find that the newly incorporated geomagnetic cutoff method enables the model to represent radiation variability as a function of location with sufficient accuracy.

  14. Technique for forecasting the radiation damages of digital large-scale integrated circuits under cosmic ray ions effect; Metodika prognozirovaniya radiatsionnykh sbolev tsifrovykh bis pri vozdejstv ii ionov kosmicheskikh luchej

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoturov, V M [and others

    1994-12-31

    Rated experimental methods for forecasting the frequency of radiation failures of digital LSIC and SLSIC of the space vehicle electronic board equipment under effect of cosmic ray ions are considered.

  15. Tomographic imaging of matter using primary and secondary X-and gamma-radiation

    International Nuclear Information System (INIS)

    Holloway, I.E.

    1991-04-01

    Gamma rays may interact with matter by a variety of processes, many of which give rise to secondary radiations. This thesis examines the possibility of performing tomographic imaging by means of these secondary photons using low-cost apparatus. The techniques are compared with each other and with transmission tomography, which plays such an important role in modern diagnostic imaging. The progress of industrial tomography is reviewed as are techniques of investigation using gamma ray scattering in both industry and medicine. Some new applications of a simple gamma ray computerized tomography (CT) scanner have been performed. A method of determining the spatial distribution of pure beta emitters in matter by performing tomographic imaging using the bremsstrahlung radiation produced by the beta particles has been demonstrated. This technique has been shown to permit imaging at depths in material greatly exceeding the range of beta particles in matter. All the imaging techniques using secondary radiation have displayed two principal limitations: long scanning times and poor quantitative accuracy. The low scanning rate results from the small number of secondary photons that are detected. The major contributing factors to poor accuracy are attenuation and the noise produced by unwanted in-scattering. The possible applications for secondary photon imaging have been briefly outlined and some suggestions for future work are included. Although techniques based upon imaging using secondary radiation will not be able to compete with transmission CT in the vast majority of applications, they may prove valuable in a range of specialised fields. (author)

  16. The effect of early radiation in N-body simulations of cosmic structure formation

    DEFF Research Database (Denmark)

    Adamek, Julian; Brandbyge, Jacob; Fidler, Christian

    2017-01-01

    Newtonian N-body simulations have been employed successfully over the past decades for the simulation of the cosmological large-scale structure. Such simulations usually ignore radiation perturbations (photons and massless neutrinos) and the impact of general relativity (GR) beyond the background...

  17. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    International Nuclear Information System (INIS)

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  18. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  19. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  20. Study of radiation background at various high altitude locations in preparation for rare event search in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D., E-mail: rupamoy@gmail.com, E-mail: dey_s2001@yahoo.com, E-mail: sanjay@jcbose.ac.in, E-mail: atanu.maulik@jcbose.ac.in, E-mail: sibaji.raha@jcbose.ac.in, E-mail: syam.debapriyo@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Block-EN, Sector-V, Kolkata-700091 (India)

    2017-04-01

    Various phenomenological models presented over the years have hinted at the possible presence of strangelets, which are nuggets of Strange Quark Matter (SQM), in cosmic rays. One way to search for such rare events is through the deployment of large area Nuclear Track Detector (NTD) arrays at high mountain altitudes. Before the deployment of any such array can begin, a detailed study of the radiation background is essential. Also, a proper understanding of the response of detectors exposed to extreme weather conditions is necessary. With that aim, pilot studies were carried out at various high altitude locations in India such as Darjeeling (2200 m a.m.s.l), Ooty (2200 m a.m.s.l) and Hanle (4500 m a.m.s.l). Small arrays of CR-39 as well as high threshold Polyethylene Terephthalate (PET) detectors were given open air exposures for periods ranging from three months to two years. The findings of such studies are reported in this paper.

  1. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  2. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  3. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  4. The impact of cosmic-origin background radiation on human survival in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Podolská, Kateřina; Rychtaříková, J.

    2017-01-01

    Roč. 59, č. 2 (2017), s. 132-149 ISSN 0011-8265 Institutional support: RVO:68378289 Keywords : mortality * incidence * solid cancer * lifetime attributable risk * age at exposure * solar activity * natural background radiation dose Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences https://www.czso.cz/documents/10180/46203818/clanek+3_Podolska-Rychtarikova.pdf/1454147e-8a44-40ca-b76c-d1fe6e7b822c?version=1.0

  5. Spontaneous acalculous gallbladder perforation in a man secondary to chemotherapy and radiation: A rare case report.

    Science.gov (United States)

    Zhang, Jungang; Shen, Guoliang; Shi, Ying; Zhang, Chengwu; Hong, Defei; Jin, Li; Yang, Hongguo; Sun, Wei; Cai, Hanhui; Hu, Zhiming; Wu, Weiding

    2018-05-01

    Gallbladder perforation is a serious clinical condition and associated with high morbidity and mortality. A definitive diagnosis is contentious before surgery. We herein report a case of perforation of the gallbladder neck secondary to chemotherapy and radiation for nasopharyngeal carcinoma patient. Gallbladder perforation secondary to chemotherapy and radiation. To decrease the mortality associated with gallbladder perforation, Laparoscopic cholecystectomy and peritoneal lavage were performed followed for gallbladder perforation patient because of chemotherapy and radiation. The patient recovered fully without serious complication and discharged on the 10th postoperative day. A pathological examination of the resected gallbladder revealed cholecystitis in the thinning of the neck. Early diagnosis and surgical intervention of gallbladder perforation in relation to asopharyngeal carcinoma chemotherapy and radiation are of prime importance. The laparoscopic procedure is safe and feasible in the selected patients.

  6. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    Science.gov (United States)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  7. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  8. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    International Nuclear Information System (INIS)

    Sin, M. W.; Kim, M. H.

    2002-01-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values

  9. Development of approximate shielding calculation method for high energy cosmic radiation on LEO satellites

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M. W.; Kim, M. H. [Kyunghee Univ., Yongin (Korea, Republic of)

    2002-10-01

    To calculate total dose effect on semi-conductor devices in satellite for a period of space mission effectively, two approximate calculation models for a comic radiation shielding were proposed. They are a sectoring method and a chord-length distribution method. When an approximate method was applied in this study, complex structure of satellite was described into multiple 1-dimensional slabs, structural materials were converted to reference material(aluminum), and the pre-calculated dose-depth conversion function was introduced to simplify the calculation process. Verification calculation was performed for orbit location and structure geometry of KITSAT-1 and compared with detailed 3-dimensional calculation results and experimental values. The calculation results from approximate method were estimated conservatively with acceptable error. However, results for satellite mission simulation were underestimated in total dose rate compared with experimental values.

  10. Canadian-based aircrew exposure from cosmic radiation on commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    McCall, M.J.; Green, A.R.; Lewis, B.J.; Bennett, L.G.I.; Pierre, M. [Royal Military College of Canada, Kingston, Ontario (Canada); Schrewe, U. [Physikalisch Technische Bundesanstalt, Braunschweig (Germany); O' Brien, K. [Northern Arizona Univ., Flagstaff, Arizona (United States); Feldsberger, E. [University of Graz (Austria)

    2000-07-01

    As part of a continuing study on the occupational exposure of Canadian-based aircrew, a Tissue Equivalent Proportional Counter (TEPC) was used to monitor this exposure on 64 flight routes spanning a range of geomagnetic latitudes between 40{sup o}S and 85{sup o}N. The microdosimetric data obtained from these flights were compared to that obtained from several terrestrial sources and were used to characterize the radiation field at jet altitudes. From 20 000 ambient dose equivalent rates obtained at various altitudes and geomagnetic latitudes, a correlation was developed to allow for the interpolation of the dose rate for any global position, altitude and date. By integration of this dose rate function over a great circle flight path, a predictive code was developed to provide a total ambient dose equivalent prediction for a given flight. (author)

  11. An empirical approach to the measurement of the cosmic radiation field at jet aircraft altitudes

    CERN Document Server

    Green, A R; Lewis, B J; Kitching, F; McCall, M J; Desormeaux, M; Butler, A A

    2005-01-01

    Researchers at the Royal Military College of Canada have accumulated extensive dose measurements performed at jet altitudes on over 160 flights and with a wide variety of detectors including a tissue equivalent proportional counter (TEPC), a smart wide energy neutron detection instrument (SWENDI), bubble detectors, thermoluminescent detectors (TLD) and an ion chamber. The summation of the individual low and high LET results from the latter equipment compared successfully to those from the TEPC on each flight. The data from these numerous worldwide flights have been encapsulated into a program that calculates the radiation dose for any flight in the world at any period in the solar cycle. This experimentally based program, Predictive Code for AIRcrew Exposure (PCAIRE) has been designed to be used by the airline industry to meet national dosimetry requirements. In Canada, for example, such a code can be used, supported by periodic measurements. With this latter requirement in mind and a desire to decrease equip...

  12. RESPONSE OF THE GREEK EARLY WARNING SYSTEM REUTER-STOKES IONIZATION CHAMBERS TO TERRESTRIAL AND COSMIC RADIATION EVALUATED IN COMPARISON WITH SPECTROSCOPIC DATA AND TIME SERIES ANALYSIS.

    Science.gov (United States)

    Leontaris, F; Clouvas, A; Xanthos, S; Maltezos, A; Potiriadis, C; Kiriakopoulos, E; Guilhot, J

    2018-02-01

    The Telemetric Early Warning System Network of the Greek Atomic Energy Commission consists mainly of a network of 24 Reuter-Stokes high-pressure ionization chambers (HPIC) for gamma dose rate measurements and covers all Greece. In the present work, the response of the Reuter-Stokes HPIC to terrestrial and cosmic radiation was evaluated in comparison with spectroscopic data obtained by in situ gamma spectrometry measurements with portable hyper pure Germanium detectors (HPGe), near the Reuter-Stokes detectors and time series analysis. For the HPIC detectors, a conversion factor for the measured absorbed dose rate in air (in nGy h-1) to the total ambient dose equivalent rate Ḣ*(10), due to terrestrial and cosmic component, was deduced by the field measurements. Time series analysis of the mean monthly dose rate (measured by the Reuter-Stokes detector in Thessaloniki, northern Greece, from 2001 to 2016) was performed with advanced statistical methods (Fast Fourier Analysis and Zhao Atlas Marks Transform). Fourier analysis reveals several periodicities (periodogram). The periodogram of the absorbed dose rate in air values was compared with the periodogram of the values measured for the same period (2001-16) and in the same location with a NaI (Tl) detector which in principle is not sensitive to cosmic radiation. The obtained results are presented and discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Cosmic strings and cosmic structure

    International Nuclear Information System (INIS)

    Albrecht, A.; Brandenberger, R.; Turok, N.

    1987-01-01

    The paper concerns the application of the theory of cosmic strings to explain the structure of the Universe. The formation of cosmic strings in the early Universe is outlined, along with the Big Bang theory, Grand Unified theories, and the first three minutes after the Big Bang. A description is given of the shaping of the Universe by cosmic strings, including the evolution of the string. The possibility for direct observation of cosmic strings is discussed. (U.K.)

  14. Resistance of lichens to simulated galactic cosmic radiation: limits of survival capacity and biosignature detection

    Science.gov (United States)

    de la Torre Noetzel, Rosa; Miller, Ana Z.; Cubero, Beatriz; Raguse, Marina; Meessen, Joachim

    2016-04-01

    Space constitutes an extremely harmful environment for survival of terrestrial organisms. Amongst extremophiles on Earth, lichens are one of the most resistant organisms to harsh terrestrial environments, as well as some species of microorganisms, such as bacteria (Moeller et al., 2010), criptoendolithic cyanobacteria and lithic fungi (de los Ríos et al. 2004). To study the survival capacity of lichens to the harmful radiation environment of space, we have selected the lichen Circinaria gyrosa, an astrobiological model defined by its high capacity of resistance to space conditions (De la Torre et al. 2010) and to a simulated Mars environment (Sanchez et al., 2012). Samples were irradiated with four types of space-relevant ionizing radiation in the STARLIFE campaign: helium and iron ion doses (up to 2,000 Gy), X-ray doses (up to 5,000 Gy) and ultra-high γ-ray doses (from 6 to 113 kGy). Results on resistance of C. gyrosa to space-relevant ionizing radiation and its post-irradiation viability were obtained by: (i) chlorophyll a fluorescence of photosystem II (PS II); (ii) epifluorescence microscopy; (iii) confocal laser-scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence showed no significant changes on the viability of C. gyrosa with increasing doses of helium and iron ions as well as X-rays. In contrast, γ-irradiation elicited significant dose-correlated effects as revealed by all applied techniques. Relevant is the presence of whewellite-like crystals, detected by FESEM on C. gyrosa thalli after high irradiation doses, which has been also identified in previous Mars simulation studies (Böttcher et al., 2014). These studies contribute to the better understanding of the adaptability of extremophile organisms to harsh environments, as well as to estimate the habitability of a planet's surface, like Mars; they will be important for planning experiments on the search of life

  15. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  16. Real-Time Online Monitoring of the Ion Range by Means of Prompt Secondary Radiations

    International Nuclear Information System (INIS)

    Krimmer, J.; Balleyguier, L.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Della Negra, R.; Deng, S.M.; Ley, J.L.; Mathez, H.; Pinto, M.; Ray, C.; Richard, M.H.; Reithinger, V.; Roellinghoff, F.; Testa, E.; Zoccarato, Y.; Baudot, J.; Winter, M.; Brons, S.; Chabot, M.; Force, P.; Joly, B.; Insa, C.; Lambert, D.; Lestand, L.; Magne, M.; Montarou, G.; Freud, N.; Letang, J.M.; Lojacono, X.; Maxim, V.; Prostk, R.; Herault, J.; La Tessa, C.; Pleskac, R.; Vanstalle, M.; Parodi, K.; Prieels, D.; Smeets, J.; Rinaldi, I.

    2013-06-01

    Prompt secondary radiations such as gamma rays and protons can be used for ion-range monitoring during ion therapy either on an energy-slice basis or on a pencil-beam basis. We present a review of the ongoing activities in terms of detector developments, imaging, experimental and theoretical physics issues concerning the correlation between the physical dose and hadronic processes. (authors)

  17. Intravesical instillation of Formalin for hemorrhagic cystitis secondary to radiation for gynecologic malignancies

    International Nuclear Information System (INIS)

    Behnam, K.; Patil, U.B.; Mariano, E.

    1983-01-01

    Our experience with the use of Formalin instillation in intractable gross hematuria secondary to radiation cystitis in patients with gynecological malignancies is reported. This study indicates coagulative effect of low concentration of Formalin with minimal side effects as a method to control hemorrhage

  18. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  19. Investigation of Contributions of Cosmic Radiation to Background Dose with Altitude at Ahmadu Bello University, Zaria, Nigeria

    International Nuclear Information System (INIS)

    Uwaechia, F.C.; Zakari, Y.I.; Ibeanu, I.G.E.

    2014-01-01

    This study investigated the contributions of cosmic radiation to background dose at Ahmadu Bello University, Zaria, Nigeria using two portable survey meters (Rados -120 and FH 40F2 ). The work was conducted in two phases (dry and rainy seasons).The recorded gamma dose rates were observed to proportionally increase with increase in altitude, that is from ground floor (altitude 3.52 m above sea level) to the eight floor (altitude 30.08 m above sea level). In a similar manner, there were observed variations in the seasonal results-the dry season data were consistently higher than the rainy season data. The mean measured indoor and outdoor gamma dose rates for the two seasons (rainy and dry seasons) were 210.0nSv/h and 279.4nSv/h, and 231.3nSv/h and 368.8nSv/h at the ground floor and the eight floor, respectively. The rainy season result repeated itself on a particular very heavy rainy day with a mean measured gamma dose rate of 204.4nSv/h and 267.4nSv/h at the ground floor and eight floor, respectively. The annual indoor and outdoor mean effective dose for a 1000hour working period was calculated as 0.32 μSv and 0.35 μSv at the ground floor and 0.68 μSv and 0.76 μSv the 8 th floor, respectively (for inside and outside the building).

  20. Temperature properties in the tropical tropopause layer and their correlations with Outgoing Longwave Radiation: FORMOSAT-3/COSMIC observations

    Science.gov (United States)

    Wang, Kaiti; Wu, Yi-chao; Lin, Jia-Ting; Tan, Pei-Hua

    2018-06-01

    The properties of temperature at the level of lapse rate minimum (LRM) in the tropical tropopause layer between 20°S and 20°N are investigated using 3-year radio occultation observations based on the FORMOSAT-3/COSMIC mission from November of 2006 to October of 2009. The correlations between this LRM temperature and Outgoing Longwave Radiation (OLR) are analyzed by 5° × 5° grids in longitude and latitude. Two primary regions, one from 60°E to 180°E and the other from 90°W to 30°E, are found to have higher correlations and can be associated with regions of lower OLR values. The patterns of this spatial distributions of regions with higher correlations begin to change more obviously when the altitude ascends to the level of Cold Point Tropopause (CPT). This correlation at the LRM altitude in annual and seasonal scales also shows spatial distributions associated with OLR intensities. The altitudinal dependence of the correlations between temperature and OLR is further analyzed based on grids of high correlations with significance at LRM altitude, for the two primary regions. The results show that for the different time scales in this analysis (3-year, annual, and seasonal), the correlations all gradually decrease above the LRM levels but maintain a significant level to as high as 2.5-3.5 km. Below the LRM level, the correlation decreases with a slower rate as the altitude descends and still keeps significant at the deep 5 km level. These suggest that the vertical temperature profiles could be affected by the convection mechanism for a wide range of altitudes in the troposphere even above LRM altitude. Applying the same analysis on one complete La Niña event during the survey period also reveals similar features.

  1. Evaluation of secondary exposure doses to transportation and medical personnel in the radiation emergency medicine

    International Nuclear Information System (INIS)

    Kato, Hideki; Suzuki, Shoichi; Koga, Sukehiko; Mukoyama, Takashi; Tomatsu, Hirotaka; Suzuki, Yusuke

    2009-01-01

    Radionuclide contamination is one of the accidents that might occur while carrying out a periodical inspection of nuclear power stations during normal reactor operation. When such an accident occurs, rescue and medical personnel, involved in transporting and treating affected workers run the risk of exposure to secondary radiation. In this study, the ambient dose equivalent rate at a certain distance from the surface of the human body contaminated with typical radioactive corrosion products was calculated. Further, the relationships among the adhesion area, contamination density, and secondary exposure dose were clarified. The secondary exposure dose and permissible working hours in a radiation emergency medicine were estimated by presenting these relationships in the form of a chart and by specifying the contamination levels. (author)

  2. Study of solar activity by measuring cosmic rays with a water Cherenkov detector

    International Nuclear Information System (INIS)

    Bahena Bias, Angelica; Villasenor, Luis

    2011-01-01

    We report on an indirect study of solar activity by using the Forbush effect which consists on the anti-correlation between the intensity of solar activity and the intensity of secondary cosmic radiation detected at ground level at the Earth. We have used a cylindrical water Cherenkov detector to measure the rate of arrival of secondary cosmic rays in Morelia Mich., Mexico, at 1950 m.a.s.l. We describe the analysis required to unfold the effect of atmospheric pressure and the search for Forbush decreases in our data, the latter correspond to more than one year of continuous data collection.

  3. Closure of laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy or radiation damage of cranial nerve after radiotherapy of nasopharyngeal carcinoma.

    Science.gov (United States)

    Qu, Shenhong; Su, Zhengzhong; He, Xiaoguang; Li, Min; Li, Tianying

    2006-09-01

    Closure of the laryngotracheal cavity and tracheostomy is especially suitable for intractable aspiration secondary to radiation encephalopathy or damage of cranial nerve after radiation for nasopharyngeal carcinoma (NPC). To investigate the clinical value, technique, indications and contraindications of closure of the laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy (REP) or radiation damage of cranial nerve after radiotherapy of NPC. Thirty patients, suffering from intractable aspiration secondary to radiotherapy for nasopharyngeal carcinoma, were treated with closure of the laryngotracheal cavity and tracheostomy and were observed for at least 1 year. Intractable aspiration and dyspnea were completely eradicated in all patients. The quality of their life was greatly improved.

  4. Understanding radiation and risk: the importance of primary and secondary education

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Junichiro [Japan Synchrotron Radiation Research Institute (SPring-8), Mikaduki, Hyogo (Japan)

    1999-09-01

    In Japan's primary and secondary schools, radiation and radioactivity are taught as part of the curriculum dealing with social science subjects. Students learn much about the hazardous features of radiation, but lack the scientific understanding necessary to build a more balanced picture. Although the same point applies to education covering the harmful effects of volcanic eruptions, earthquakes, electrical storms and so on, public understanding of these events is relatively high and students are generally able to make informed judgments about the risks involved. By contrast, their limited understanding of radiation often contributes to fears that it is evil or even supernatural. To correct this distortion, it is important that primary and secondary education includes a scientific explanation of radiation. Like heat and light, radiation is fundamental to the history of the universe; and scientific education programs should give appropriate emphasis to this important subject. Students would then be able to make more objective judgments about the useful and hazardous aspects of radiation. (author)

  5. Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment

    International Nuclear Information System (INIS)

    Pioch, Christian Dieter

    2012-01-01

    Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.

  6. Measurement of the diffuse atmospheric and cosmic γ-radiation in the energy range 1-10 MeV by a balloon carried Compton-telescope

    International Nuclear Information System (INIS)

    Lichti, G.

    1975-01-01

    The operation and design of a low-energy γ-compton telescope, developed and constructed at the Max-Planck-Institut fuer extraterrestrische Physik, are reported on. For energies of about 1 MeV, the telescope has an energy resolution of 30% (FWHM) and an angular resolution of +- 20 0 . In spite of the low efficiency of only about 0.5%, the vertical γ-flux could be measured for the first time in two balloon flights, and the extragalactic origin of the diffuse component of the cosmic γ-radiation could be demonstrated. The energy spectrum of this radiation was measured. The result is compared with measurements of other experiments, and theoretical models to describe the origin of this radiation are discussed. (orig.) [de

  7. Separation of the Galactic Cosmic Rays and Inner Earth Radiation Belt Contributions to the Daily Dose Onboard the International Space Station in 2005-2011

    Science.gov (United States)

    Lishnevskii, A. E.; Benghin, V. V.

    2018-03-01

    The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth's inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station's passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005-2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly.

  8. A map of the cosmic microwave background radiation from the Wilkinson Microwave Anisotropy Probe (WMAP), showing the large-scale fluctuations (the quadrupole and octopole) isolated by an analysis done partly by theorists at CERN.

    CERN Multimedia

    2004-01-01

    A recent analysis, in part by theorists working at CERN, suggests a new view of the cosmic microwave background radiation. It seems the solar system, rather than the universe, causes the radiation's large-scale fluctuations, similar to the bass in a song.

  9. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T

    International Nuclear Information System (INIS)

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  10. Cosmic rays

    International Nuclear Information System (INIS)

    Tkachev, I.I.

    2014-01-01

    In this talk I will review results of cosmic ray observations at the highest energies. This year the new results on energy spectra, composition and the study of arrival directions of cosmic ray primaries came from the Telescope Array collaboration. I present these results in comparison with measurements done by other recent experiments and discuss their implications for the search of cosmic ray sources. Some related results in gamma-ray astronomy and selected recent advances in theory are also covered. (author)

  11. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  12. The estimation of the dose from cosmic radiation received by the population living at mainland of China

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu

    1989-11-01

    The measurement of ionization distribution caused by the cosmic ray ionizing components in the air, the survey of population distribution in geography and the investigation of total passengers taking air liners at the mainland of China have been completed. By taking the data from the census of the year 1986 and the population distribution of the mainland, considering the cosmic ray distribution with the height and referring the distribution of neutron flux density in cosmic ray, the population-weighted mean annual effective dose equivalent, which is obtained from 2017 counties and 353 cities, for inhabitants living in every provinces and municipalities directly under Central Government has been calculated. The collective dose equivalent produced by the external exposure of cosmic ray is also estimated when people are taking air liners. The results which are effected by the population distribution show that the annual effective dose equivalant received by the population of China from the cosmic ray is 28% lower than the population of the world. The most of Chinese people are living at the north hemisphere area having lower elevation and geomagnetic latitude, and 53.6% among them is in the area of elevation below 100 m and 91% is in the area of geomagnetic latitude below 30 deg N

  13. Preliminary results of the experiment on the identification of cosmic hadrons usinq the X-ray transition radiation XTR-detectors

    International Nuclear Information System (INIS)

    Avakyan, R.A.; Avakyan, K.M.; Alikhanyan, A.I.

    1974-01-01

    The spectrum of cosmic hadrons with an energy of 300 GeV or more at the height of 3250 m above the sea level has been studied. The objective has been to determine the Nsub(π)/Nsub(p) ratio at the given energies. The device consists of a 830 g/cm 2 scintillation calorimeter and an X-ray transition radiation detector, comprising three sections of laminated medium each having 200 layers, and multi-filament proportional counters. The lower limit of the Nsub(π)/Nsub(p) ratio has been obtained, it is equal to 0.37+-0.16

  14. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  15. Simulating Cosmic Reionisation

    NARCIS (Netherlands)

    Pawlik, Andreas Heinz

    2009-01-01

    The first stars formed a few hundred million years after the Big Bang, when the Universe was only a small fraction of its present age. Their radiation transformed the previously cold and neutral hydrogen that filled intergalactic space into the hot and ionised cosmic plasma that is observed today.

  16. The Cosmic Background Explorer

    Science.gov (United States)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  17. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    Science.gov (United States)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  18. Long-term risk of secondary skin cancers after radiation therapy for Hodgkin’s lymphoma

    International Nuclear Information System (INIS)

    Daniëls, Laurien A.; Krol, Augustinus D.G.; Schaapveld, Michael; Putter, Hein; Jansen, Patty M.; Marijt, Erik W.A.; Leeuwen, Flora E. van; Creutzberg, Carien L.

    2013-01-01

    Purpose: Survivors of Hodgkin’s lymphoma (HL) are at risk of secondary tumors. We investigated the risk of secondary skin cancers after radiotherapy compared to treatment without radiation and to an age-matched population. Material and methods: We conducted a retrospective cohort study of 889 HL patients treated between 1965 and 2005. Data on secondary skin cancers and treatment fields were retrieved. Incidence rates were compared to observed rates in the Dutch population. Results: 318 skin cancers were diagnosed in 86 patients, showing significantly higher risks of skin cancers, the majority being BCC. The standardized incidence ratio (SIR) of BCC in HL survivors was significantly increased (SIR 5.2, 95% CI 4.0–6.6), especially in those aged <35 years at diagnosis (SIR 8.0, 95% CI 5.8–10.7). SIR increased with longer follow-up to 15.9 (95% CI 9.1–25.9) after 35 years, with 626 excess cases per 10,000 patients per year. Most (57%) skin cancers developed within the radiation fields, with significantly increased risk in patients treated with radiotherapy compared to chemotherapy alone (p = 0·047, HR 2·75, 95% CI 1·01–7.45). Conclusion: Radiotherapy for HL is associated with a strongly increased long-term risk of secondary skin cancers, both compared to the general population and to treatment with chemotherapy alone

  19. INVESTIGATION OF SECONDARY MIXED RADIATION FIELD AROUND A MEDICAL LINEAR ACCELERATOR.

    Science.gov (United States)

    Tulik, Piotr; Tulik, Monika; Maciak, Maciej; Golnik, Natalia; Kabat, Damian; Byrski, Tomasz; Lesiak, Jan

    2017-09-29

    The aim of this study is to investigate secondary mixed radiation field around linac, as the first part of an overall assessment of out-of-field contribution of neutron dose for new advanced radiation dose delivery techniques. All measurements were performed around Varian Clinic 2300 C/D accelerator at Maria Sklodowska-Curie Memorial, Cancer Center and Institute of Oncology, Krakow Branch. Recombination chambers REM-2 and GW2 were used for recombination index of radiation quality Q4 determination (as an estimate of quality factor Q), measurement of total tissue dose Dt and calculation of gamma and neutron components to Dt. Estimation of Dt and Q4 allowed for the ambient dose equivalent H*(10) per monitor unit (MU) calculations. Measurements around linac were performed on the height of the middle of the linac's head (three positions) and on the height of the linac's isocentre (five positions). Estimation of secondary radiation level was carried out for seven different configurations of upper and lower jaws position and multileaf collimator set open or closed in each position. Study includes the use of two photon beam modes: 6 and 18 MV. Spatial distribution of ambient dose equivalent H*(10) per MU on the height of the linac's head and on the standard couch height for patients during the routine treatment, as well as relative contribution of gamma and neutron secondary radiation inside treatment room were evaluated. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  1. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Directory of Open Access Journals (Sweden)

    Stefano G. Masciullo

    2012-11-01

    Full Text Available The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID in stereotactic body radiation therapy (SBRT with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT, estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED on the target (BED = 76Gy10. Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05. Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002, secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001. This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged.

  2. Secondary and multiple primary cancers relating radiation therapy for cancer of the oral region

    International Nuclear Information System (INIS)

    Horiuchi, Junichi; Shibuya, Hitoshi; Takeda, Masamune; Takagi, Minoru.

    1985-01-01

    Secondary and multiple primary cancers relating radiation therapy for squamous cell carcinoma (s.c.c.) of the oral region including lip, oral cavity and oropharynx were analyzed. Out of 1,197 patients with s.c.c. treated with radiation during about 30 years from 1955 to 1983 June, 56 patients (4.7 %) were regarded as double or multiple cancer. The multiple cancer (s.c.c.) was observed frequently in the multicentric zone such as hypopharynx, esophagus and bronchus as well as in other sites of the oral cavity; 67.7 % (42 out of 62 sites). Frequency of synchronous double cancers was increased in recent ten years; 47.1 % (16/34). Careful examination to the above mentioned multicentric zone leads to early detection of secondary cancer and could be expected cure of the disease. Although possibility of radiation-induced cancer could not be ruled out as for 17 patients with late recurrence (more than 8 years), different histologic diagnosis from s.c.c. was obtained in only one (malignant fibrous histiocytoma). Therefore, it was difficult to discriminate radiation-induced cancer from late recurrence in the present study. (author)

  3. Coronary cineangiography and ionizing radiation exposure to patients: analysis of primary and secondary beam

    International Nuclear Information System (INIS)

    Ramirez, Alfredo; Leyton, Fernando; Silva, Ana Maria; Farias, Eric

    2001-01-01

    The purpose of this work was to determine the level of exposure dose to patients during coronariographies in different areas of body. This study has presented the medical surveillance of 18 cases and the radiation monitoring of these patients by TLD in thyroid and pelvis (secondary beam) and, in the right and left scapular region (primary beam) for each one of these procedures. The ionizing radiation received was 215 ± 200 mGy in left scapular region (range 1-710) and 255±213 mGy in the right scapular region (range 22-635) p=NS. In the pelvic region the ionizing radiation was 0,22±0,06 mGy and in the thyroid region was 3,62±2,44 mGy

  4. Cosmic ray physics in space: the role of Sergey Vernov's scientific school

    Science.gov (United States)

    Panasyuk, M. I.

    2011-04-01

    Cosmic rays were discovered almost 100 years ago. Since then the scientific world has learned a lot from their nature: the particles nascent in the Universe, both in our Galaxy and outside, the basic mechanisms of their acceleration, transfer in the interstellar environment and the interaction of the primary cosmic rays with the atmosphere surrounding the Earth. Before 1957, i.e., the beginning of the Space Era, researchers' capabilities were limited to experiments performed on the ground, underground and in near-ground atmosphere to flight altitudes of aerostats, airplanes and rockets, i.e., where only secondary radiation is in existence, this is the result of the interaction of cosmic rays with the Earth's atmosphere. The launching of spacecraft allowed the scientists to commence exploring the Universe's primordial matter itself outside the atmosphere, i.e., the primary cosmic rays. Sergey Vernov, the Russian scientist, was among them.

  5. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  6. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Rodman, C; Almeida-Porada, G; George, S K; Moon, J; Soker, S; Pardee, T; Beaty, M; Guida, P; Sajuthi, S P; Langefeld, C D; Walker, S J; Wilson, P F; Porada, C D

    2017-06-01

    Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.

  7. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  8. The discrimination between cosmic positrons and protons with the Transition Radiation Detector of the AMS experiment on the International Space Station

    International Nuclear Information System (INIS)

    Millinger, Mark

    2012-01-01

    The aim of this thesis is the development and validation of a particle identification method with the Transition Radiation Detector (TRD) of the Alpha Magnetic Spectrometer AMS-02 to allow for the determination of the positron fraction in the cosmic lepton flux. Independent measurements indicate that a significant amount of about 23% of the energy density in the universe consists of an unknown mass contribution, the so-called Dark Matter. The Neutralino, as the most popular Dark Matter particle candidate, may produce an additional signal in the spectrum of cosmic rays. The fraction of positrons in the cosmic lepton flux possibly contains such a Dark Matter signal at high particle momenta. The currently most precise measurements in the region of this excess are provided by the satellite-borne PAMELA and Fermi detectors. Momentumdependent systematic uncertainties, especially the mis-identification of protons as positrons, could imitate the signal. However, if this positron excess is produced by Dark Matter the fraction should decrease above a theoretical energy threshold to the expectations, based on particle propagation. The energy region measured up to now does not show such a progress. Due to its significantly increased event statistics and its capability to measure up to higher particle energies, this signature could be observed with AMS-02. The number of events, which can be recorded by a detector, is limited by the combination of aperture and observable solid angle, quantified by the geometrical acceptance, and the observation time. As the cosmic particle flux follows a power-law in particle momentum with exponent γ ∼ -3, the observable momentum interval is thus constrained by statistics. Due to its large geometrical acceptance of about 0.5 m 2 sr, its long observation time of at least 9 years and its high proton suppression factor of >or similar 10 6 AMS-02 will record large and clean lepton samples and thus provide a precise measurement of the cosmic

  9. The discrimination between cosmic positrons and protons with the Transition Radiation Detector of the AMS experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Millinger, Mark

    2012-10-08

    The aim of this thesis is the development and validation of a particle identification method with the Transition Radiation Detector (TRD) of the Alpha Magnetic Spectrometer AMS-02 to allow for the determination of the positron fraction in the cosmic lepton flux. Independent measurements indicate that a significant amount of about 23% of the energy density in the universe consists of an unknown mass contribution, the so-called Dark Matter. The Neutralino, as the most popular Dark Matter particle candidate, may produce an additional signal in the spectrum of cosmic rays. The fraction of positrons in the cosmic lepton flux possibly contains such a Dark Matter signal at high particle momenta. The currently most precise measurements in the region of this excess are provided by the satellite-borne PAMELA and Fermi detectors. Momentumdependent systematic uncertainties, especially the mis-identification of protons as positrons, could imitate the signal. However, if this positron excess is produced by Dark Matter the fraction should decrease above a theoretical energy threshold to the expectations, based on particle propagation. The energy region measured up to now does not show such a progress. Due to its significantly increased event statistics and its capability to measure up to higher particle energies, this signature could be observed with AMS-02. The number of events, which can be recorded by a detector, is limited by the combination of aperture and observable solid angle, quantified by the geometrical acceptance, and the observation time. As the cosmic particle flux follows a power-law in particle momentum with exponent {gamma} {approx} -3, the observable momentum interval is thus constrained by statistics. Due to its large geometrical acceptance of about 0.5 m{sup 2}sr, its long observation time of at least 9 years and its high proton suppression factor of >or similar 10{sup 6} AMS-02 will record large and clean lepton samples and thus provide a precise measurement

  10. The estimation of the dose from cosmic radiation received by the population living at mainland areas of China

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu

    1989-01-01

    According to the distribution of cosmic ray ionization with altitude and latitude as well as the census information in all of our country (the end of the year 1986), the population-weighted mean annual effective dose equivalent received by the population living at mainland areas of China is estimated to be about 278 μSv, in which the ionizing component and the neutron component are 252 μSv and 26 μSv, respectively

  11. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  12. Radiation recall gastritis secondary to erlotinib in a patient with pancreatic cancer.

    Science.gov (United States)

    Graziani, Casey; Hegde, Sanjay; Saif, Muhammad Wasif

    2014-12-01

    Radiation recall refers to chemotherapy-triggered inflammation in healthy areas previously exposed to irradiation. Chemotherapeutics known to be associated with radiation recall phenomenon include anthracyclines, taxanes and antimetabolites, such as gemcitabine and capecitabine. Case reports detailing radiation recall dermatitis and pneumonitis associated with erlotinib have been previously described in the literature, however, there are no reported cases describing radiation gastritis associated with erlotinib. We report a patient with pancreatic cancer who developed gastrointestinal bleeding secondary to radiation recall gastritis related to erlotinib exposure. A 57-year-old Hispanic male with pancreatic cancer initially received 7 cycles of FOLFIRINOX followed by capecitabine with radiation therapy for 28 fractions for a total of 5,040 cGy. Re-staging with computed tomography demonstrated stable disease. The patient was then treated with erlotinib and capecitabine for approximately two months before restaging demonstrated progressive disease. Shortly after discontinuing erlotinib and capecitabine, the patient reported maroon colored stools. Laboratory studies demonstrated a precipitous drop in hemoglobin and hematocrit from pre-treatment baseline, ultimately requiring transfusion with packed red blood cells. Subsequent esophagogastroduodenoscopy demonstrated findings consistent with radiation gastritis, with oozing in the gastric body and antrum, which was treated therapeutically with argon plasma coagulation. The patient's gastrointestinal bleed was difficult to control. Over the course of a two-month period - the patient required multiple admissions, repeat therapeutic esophagogastroduodenoscopies and transfusions. Radiation recall from erlotinib is rare but can potentially arise in any site that has been previously irradiated. There may be an association between the pathogenesis of radiation recall and erlotinib's up-regulation of the angiogenic growth factor

  13. LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection

    Science.gov (United States)

    Hazumi, M.; Borrill, J.; Chinone, Y.; Dobbs, M. A.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; Holzapfel, W. L.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Karatsu, K.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, N.; Koga, K.; Komatsu, E.; Lee, A. T.; Matsuhara, H.; Matsumura, T.; Mima, S.; Mitsuda, K.; Morii, H.; Murayama, S.; Nagai, M.; Nagata, R.; Nakamura, S.; Natsume, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ohta, I.; Otani, C.; Richards, P. L.; Sakai, S.; Sato, N.; Sato, Y.; Sekimoto, Y.; Shimizu, A.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takagi, Y.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Watanabe, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.

    2012-09-01

    LiteBIRD [Lite (Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection] is a small satellite to map the polarization of the cosmic microwave background (CMB) radiation over the full sky at large angular scales with unprecedented precision. Cosmological inflation, which is the leading hypothesis to resolve the problems in the Big Bang theory, predicts that primordial gravitational waves were created during the inflationary era. Measurements of polarization of the CMB radiation are known as the best probe to detect the primordial gravitational waves. The LiteBIRD working group is authorized by the Japanese Steering Committee for Space Science (SCSS) and is supported by JAXA. It has more than 50 members from Japan, USA and Canada. The scientific objective of LiteBIRD is to test all the representative inflation models that satisfy single-field slow-roll conditions and lie in the large-field regime. To this end, the requirement on the precision of the tensor-to-scalar ratio, r, at LiteBIRD is equal to or less than 0.001. Our baseline design adopts an array of multi-chroic superconducting polarimeters that are read out with high multiplexing factors in the frequency domain for a compact focal plane. The required sensitivity of 1.8μKarcmin is achieved with 2000 TES bolometers at 100mK. The cryogenic system is based on the Stirling/JT technology developed for SPICA, and the continuous ADR system shares the design with future X-ray satellites.

  14. Simulation of cosmic ray interaction at Saturne

    International Nuclear Information System (INIS)

    Michel, R.

    1996-01-01

    Accelerator experiments provide the basis for the development of physical models describing the production of cosmogenic nuclides by cosmic ray particles. Here, experiments are presented by which the irradiation of stony and iron meteoroids in space by galactic cosmic ray protons was successfully simulated; two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at LNS. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements in which the depth-dependent production of radioactive and stable nuclides was analyzed by model calculations based on depth-dependent spectra of primary and secondary particles calculated by the HERMES code system and on experimental and theoretical thin-target cross sections. Due to the results of the two simulation experiments at LNS a consistent modelling of cosmogenic nuclide production rates in stony and iron meteorites was achieved for the first time which allows to interpret the observed abundances of cosmogenic nuclides in stony and iron meteorites with respect to their exposure histories and to describe the history of the cosmic radiation itself. (author)

  15. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  16. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  17. Coalescence of DNA Double Strand Breaks Induced by Galactic Cosmic Radiation is Modulated by Genetics in 15 Inbred Strains of Mice

    Science.gov (United States)

    Penninckx, Sebastien; Ray, Shayoni; Staatz, Kevin; Degorre, Charlotte; Guiet, Elodie; Viger, Louise; Snijders, Antoine M.; Mao, Jian-Hua; Karpen, Gary; Costes, Sylvain V.

    2018-01-01

    In this manuscript we address the challenges associated with the ability to predict radiation sensitivity associated with exposure to either cosmic radiation or X-rays in a population study, by monitoring DNA damage sensing protein 53BP1 forming small nuclear radiation-induced foci (RIF) as a surrogate biomarker of DNA double strand breaks (DSB). 76 primary skin fibroblasts were isolated from 10 collaborative cross strains and five reference inbred mice (C57Bl/6, BALB/CByJ, B6C3, C3H and CBA/CaJ) and exposed to three different charged nuclei of increasing LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and X-ray. Our data brings strong evidence against the classic "contact-first" model where DSBs are assumed to be immobile and repaired at the lesion site. In contrast, our model suggests nearby DSBs move into single repair unit characterized by large RIF before the repair machinery kicks in. Such model has the advantage of being much more efficient molecularly but is poorly suited to deal with cosmic radiation, where energy is concentrated along the particle trajectory, inducing a large density of DSBs along each particle track. In accordance with this model, RIF quantification after X-ray exposition showed a saturated dose response for early time points post-irradiation for all strains. Similarly, the high-LET response showed that RIF number matched the number of track per cell, not the number of expected DSB per cell (1). At the temporal level, we noted that the percentage of unrepaired high-LET tracks over a 48 hour time-course increased with LET, confirming that the DNA repair process becomes more difficult as more DSB coalesce into single RIF. There was also good agreement between persistent RIF levels measured in-vitro in the primary skin cultures and survival levels of T-cells and B-cells collected in blood samples from 10 CC strains 24 hours after 0.1 Gy whole-body dose of X-ray. This suggests that persistent RIF 24 hour post-IR is a good surrogate in

  18. 100th anniversary of the discovery of cosmic radiation: the role of Günther and Tegetmeyer in the development of the necessary instrumentation

    Directory of Open Access Journals (Sweden)

    R. G. A. Fricke

    2012-11-01

    Full Text Available The year 2012 marks the 100th anniversary of the discovery of cosmic radiation by the Austrian physicist Victor Franz Hess (1883–1964, obtained onboard manned balloons, one of them launched up to an altitude of 5.3 km. His discovery earned him the Nobel Prize in 1936. The discovery follows in the context of the investigation of atmospheric electricity and of the newly discovered radioactivity, in particular with respect to γ rays. Starting from simple ionization chambers, the instruments were developed during an interplay between functional requirements, scientific progress and available manufacturing technologies.

    The authors of this contribution take this anniversary as an opportunity to describe the instrumentation used by Hess, as well as further developments in the instrumentation which took place in the decades following Hess' discovery. This manuscript also discusses details of the company who manufactured Hess' instrument, ''Günther & Tegetmeyer'' based in Braunschweig, Germany. This company did not only build instruments for Hess and the research on cosmic rays, but also for other scientific disciplines and for well-known researchers and discoverers.

  19. Collimation system for a laboratory of primary and secondary ionizing radiation calibration

    International Nuclear Information System (INIS)

    Oliveira, S.R.; David, M.G.

    2003-01-01

    This work is part of a cooperation plan between the LNMRI/IRD and the LCR/UERJ, for the a primary calibration at the IRD and a secondary laboratory at the LCR, both calibrated for mammographic beams which will be part a Calibration National Network. For the mounting of the primary laboratory, the first step was to install two additional collimators in order to guarantee that the beam area over the ionization chamber to satisfy the calibration international standards. So, the collimators were constructed obeying the geometric rules, the first being of conic format and the second of the cylindrical format, therefore avoiding the effects of the scattering radiation on the edges. By using this collimation system it was possible to verify the uniformity of the radiation field incident the ionization chamber to be over 98% of the total area, guaranteeing better precision of the measurement

  20. Guidelines for Member States concerning radiation measurement standards and Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    In the early nineteen-sixties an acute need developed for higher dosimetric accuracy in radiation therapy, particularly in developing countries. This need led to the establishment of a number of dosimetry laboratories around the world, specializing in the calibration of radiation therapy dosimeters. In order to co-ordinate the provision of guidance and assistance to such laboratories, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) set up a Network of Secondary Standard Dosimetry Laboratories (SSDLs) under their joint aegis, as described in the IAEA booklet 'SSDLs: Development and Trends' (1985). This publication includes detailed criteria for the establishment of these laboratories. The present guidelines deal with the functions and status of SSDLs, in particular with the need for recognition and support by the competent national authorities. (author)

  1. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  2. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  3. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  4. Recording of heavy ion tracks in silicates. Application to the determination of the abundance of ultra-heavy elements in old solar cosmic radiation

    International Nuclear Information System (INIS)

    Duraud, J.-P.

    1978-12-01

    The aim of this thesis is to determine the abundance A(Z) and energy spectrum of the elements of atomic number Z present in cosmic radiation, by means of fossil traces recorded in moon and meteorite minerals. The difficulties due amongst other things to natural annealing are examined in detail in part one, of this paper, the outcome being a thorough study of the processes responsible for the formation, chemical attack and annealing of heavy ion tracks. Part two describes an original approach used here and consisting of a combined analysis as a function of annealing for a given track, of the microscopic structure of the latent track and its attack rate. Part three uses the new rules established beforehand to propose a new method of studying the UH ion (Z>30) to VH ion (20 [fr

  5. Experimental study on the effect of radiation in the secondary palate formation

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Dental Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1977-11-15

    The author observed the effect of X-ray irradiation on the secondary palate formation of the rat fetuses. The mothers were exposed to X-radiation on the 10 1/2th, 11 1/2th, and 12 1/2th day of gestation with respectively 150, 200, 250, 300, and 350 rads. The fetuses were removed from mothers on 15 1/2th, 16 1/2th, and 18 1/2th day of gestation. Morphological changes in palate formation were examined and histochemical preparations were made. 1. In control fetuses, the secondary palates were fully developed on the 15 1/2th, to 18 1/2th day of gestation. But in experimental fetuses, many cleft palates were observed in accordance with increase of X-radiation dose. 2. Frequency of incidence of horizontal position of both palatal shelves in cleft palate was highest. 3. According to the dislocation of palatal processes, the stain ability of palatal crest was varied. 4. The thickened area of palatal epithelium of palatal crest showed intense methyl green-pyronin and PAS reaction 5. Mesenchymal cell condensation was appeared under the thickened epithelium of palatal process and this mesenchymal tissue showed strong colloidal iron reaction. 6. The stain ability of alizarin red S and alkaline phosphatase reaction of tectal ridge were decreased in accordance with increase of irradiation doses.

  6. Experimental study on the effect of radiation in the secondary palate formation

    International Nuclear Information System (INIS)

    You, Dong Soo

    1977-01-01

    The author observed the effect of X-ray irradiation on the secondary palate formation of the rat fetuses. The mothers were exposed to X-radiation on the 10 1/2th, 11 1/2th, and 12 1/2th day of gestation with respectively 150, 200, 250, 300, and 350 rads. The fetuses were removed from mothers on 15 1/2th, 16 1/2th, and 18 1/2th day of gestation. Morphological changes in palate formation were examined and histochemical preparations were made. 1. In control fetuses, the secondary palates were fully developed on the 15 1/2th, to 18 1/2th day of gestation. But in experimental fetuses, many cleft palates were observed in accordance with increase of X-radiation dose. 2. Frequency of incidence of horizontal position of both palatal shelves in cleft palate was highest. 3. According to the dislocation of palatal processes, the stain ability of palatal crest was varied. 4. The thickened area of palatal epithelium of palatal crest showed intense methyl green-pyronin and PAS reaction 5. Mesenchymal cell condensation was appeared under the thickened epithelium of palatal process and this mesenchymal tissue showed strong colloidal iron reaction. 6. The stain ability of alizarin red S and alkaline phosphatase reaction of tectal ridge were decreased in accordance with increase of irradiation doses.

  7. Application of the ICRP recommendations to revised secondary radiation protection standards

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Corley, J.P.

    1988-01-01

    In 1977, the International Commission on Radiological Protection (ICRP) issued Publication No. 26 containing its recommendations for major changes in the conceptual basis for radiation protection. The new recommendations consider total risk (to the whole body) instead of controlling (critical-organ) risk. Subsequent publications and explanatory statements most useful for providing clarification of the intent of the new recommendations have not resolved practical problems encountered in attempting to apply them to either occupational or public exposures. Some of the problems that still exist in applying these recommendations for estimating doses to members of the public include the following: allowance for age differences within an exposed population group, definition of 50-y dose versus lifetime (70-y) dose, definition of negligible risk levels for individual and collective doses, and derivation of appropriate concentration guidelines. The United States is in the process of adopting the revised recommendations of the ICRP. In addition to adopting versions of the primary radiation protection standards, both the U.S. Nuclear Regulatory Commission and the U.S. Department of Energy have developed draft secondary standards that are similar to the Derived Air Concentration values given by the ICRP. This paper presents a brief history of the development of these revised secondary standards, discusses their technical bases, provides a comparison of them, and discusses their limitations and potential misapplication

  8. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  9. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  10. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  11. Very High Radiation Detector for the LHC BLM System Based on Secondary Electron Emission

    CERN Document Server

    Dehning, B; Holzer, EB; Kramer, D

    2007-01-01

    Beam Loss Monitoring (BLM) system plays a vital role in the active protection of the LHC accelerators elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production...

  12. Research on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient.

    Science.gov (United States)

    Li, Yuxing; Li, Yaan; Chen, Xiao; Yu, Jing

    2017-12-26

    As the sound signal of ships obtained by sensors contains other many significant characteristics of ships and called ship-radiated noise (SN), research into a denoising algorithm and its application has obtained great significance. Using the advantage of variational mode decomposition (VMD) combined with the correlation coefficient for denoising, a hybrid secondary denoising algorithm is proposed using secondary VMD combined with a correlation coefficient (CC). First, different kinds of simulation signals are decomposed into several bandwidth-limited intrinsic mode functions (IMFs) using VMD, where the decomposition number by VMD is equal to the number by empirical mode decomposition (EMD); then, the CCs between the IMFs and the simulation signal are calculated respectively. The noise IMFs are identified by the CC threshold and the rest of the IMFs are reconstructed in order to realize the first denoising process. Finally, secondary denoising of the simulation signal can be accomplished by repeating the above steps of decomposition, screening and reconstruction. The final denoising result is determined according to the CC threshold. The denoising effect is compared under the different signal-to-noise ratio and the time of decomposition by VMD. Experimental results show the validity of the proposed denoising algorithm using secondary VMD (2VMD) combined with CC compared to EMD denoising, ensemble EMD (EEMD) denoising, VMD denoising and cubic VMD (3VMD) denoising, as well as two denoising algorithms presented recently. The proposed denoising algorithm is applied to feature extraction and classification for SN signals, which can effectively improve the recognition rate of different kinds of ships.

  13. Research on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Yuxing Li

    2017-12-01

    Full Text Available As the sound signal of ships obtained by sensors contains other many significant characteristics of ships and called ship-radiated noise (SN, research into a denoising algorithm and its application has obtained great significance. Using the advantage of variational mode decomposition (VMD combined with the correlation coefficient for denoising, a hybrid secondary denoising algorithm is proposed using secondary VMD combined with a correlation coefficient (CC. First, different kinds of simulation signals are decomposed into several bandwidth-limited intrinsic mode functions (IMFs using VMD, where the decomposition number by VMD is equal to the number by empirical mode decomposition (EMD; then, the CCs between the IMFs and the simulation signal are calculated respectively. The noise IMFs are identified by the CC threshold and the rest of the IMFs are reconstructed in order to realize the first denoising process. Finally, secondary denoising of the simulation signal can be accomplished by repeating the above steps of decomposition, screening and reconstruction. The final denoising result is determined according to the CC threshold. The denoising effect is compared under the different signal-to-noise ratio and the time of decomposition by VMD. Experimental results show the validity of the proposed denoising algorithm using secondary VMD (2VMD combined with CC compared to EMD denoising, ensemble EMD (EEMD denoising, VMD denoising and cubic VMD (3VMD denoising, as well as two denoising algorithms presented recently. The proposed denoising algorithm is applied to feature extraction and classification for SN signals, which can effectively improve the recognition rate of different kinds of ships.

  14. The amplitude and spectral index of the large angular scale anisotropy in the cosmic microwave background radiation

    Science.gov (United States)

    Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan

    1994-01-01

    In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.

  15. Selective internal radiation therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma

    International Nuclear Information System (INIS)

    Welsh, James S.; Kennedy, Andrew S.; Thomadsen, Bruce

    2006-01-01

    Introduction: Selective internal radiation therapy (SIRT) is a relatively new commercially available microbrachytherapy technique for treatment of malignant hepatic lesions using 9 Y embedded in resin microspheres, which are infused directly into the hepatic arterial circulation. It is FDA approved for liver metastases secondary to colorectal carcinoma and is under investigation for treatment of other liver malignancies, such as hepatocellular carcinoma and neuroendocrine malignancies. Materials/Methods: A modest number of clinical trials, preclinical animal studies, and dosimetric studies have been reported. Here we review several of the more important results. Results: High doses of beta radiation can be selectively delivered to tumors, resulting in impressive local control and survival rates. Ex vivo analyses have shown that microspheres preferentially cluster around the periphery of tumor nodules with a high tumor:normal tissue ratio of up to 200:1. Toxicity is usually mild, featuring fatigue, anorexia, nausea, abdominal discomfort, and slight elevations of liver function tests. Conclusions: Selective internal radiation therapy represents an effective means of controlling liver metastases from colorectal adenocarcinoma. Clinical trials have demonstrated improved local control of disease and survival with relatively low toxicity. Investigations of SIRT for other hepatic malignancies and in combination with newer chemotherapy agents and targeted biologic therapies are under way or in planning. A well-integrated team involving interventional radiology, nuclear medicine, medical oncology, surgical oncology, medical physics, and radiation oncology is essential for a successful program. Careful selection of patients through the combined expertise of the team can maximize therapeutic efficacy and reduce the potential for adverse effects

  16. Secondary Breast Cancer Risk by Radiation Volume in Women With Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Jessica L. [Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Surgery, University of British Columbia, Vancouver, British Columbia (Canada); Connors, Joseph M. [Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Tyldesley, Scott [Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Surgery, University of British Columbia, Vancouver, British Columbia (Canada); Savage, Kerry J. [Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Campbell, Belinda A. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Zheng, Yvonne Y.; Hamm, Jeremy [Department of Cancer Surveillance and Outcomes, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Pickles, Tom, E-mail: TPickles@bccancer.bc.ca [Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia (Canada); Department of Surgery, University of British Columbia, Vancouver, British Columbia (Canada)

    2017-01-01

    Purpose: To determine whether the risk of secondary breast cancer (SBC) is reduced in women with Hodgkin lymphoma (HL) treated with smaller field radiation therapy (SFRT) versus mantle field radiation therapy (MRT). Methods and Materials: We used the BC Cancer Agency (BCCA) Lymphoid Cancer Database to identify female patients treated for HL between January 1961 and December 2009. Radiation therapy volumes were categorized as MRT or SFRT, which included involved field, involved site, or involved nodal radiation therapy. SBC risk estimates were compared using competing risk analysis and Fine and Gray multivariable model: MRT ± chemotherapy, SFRT ± chemotherapy, or chemotherapy-only. Results: Of 734 eligible patients, 75% of the living patients have been followed up for more than 10 years, SBC has developed in 54, and 15 have died of breast cancer. The 20-year estimated risks (competing risk cumulative incidence) for SBC differed significantly: MRT 7.5% (95% confidence interval [CI] 4.4%-11.5%), SFRT 3.1% (95% CI 1.0%-7.7%), and chemotherapy-only 2.2% (95% CI 1.0%-4.8%) (P=.01). Using a Fine and Gray model to control for death and patients lost to follow-up, MRT was associated with a higher risk of SBC (hazard ratio [HR] = 2.9; 95% CI 1.4%-6.0%; P=.004) compared with chemotherapy-only and with SFRT (HR = 3.3; 95% CI 1.3%-8.4%; P=.01). SFRT was not associated with a greater risk of SBC compared with chemotherapy-only (HR = 0.87; 95% CI 0.28%-2.66%; P=.80). Conclusion: This study confirms that large-volume MRT is associated with a markedly increased risk of SBC; however, more modern small-volume RT is not associated with a greater risk of SBC than chemotherapy alone.

  17. High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Porter, T. A.; Moskalenko, I. V. [W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Jóhannesson, G., E-mail: tporter@stanford.edu [Science Institute, University of Iceland, IS-107 Reykjavik (Iceland)

    2017-09-01

    High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions from the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.

  18. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  19. Case study on the effect of cosmic radiation in embedded systems in aircraft; Estudo de caso sobre o efeito da radiacao cosmica em sistemas embarcados em aeronaves

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Adriane C.M.; Pereira, Marlon A., E-mail: adriane.acm@hotmail.com, E-mail: marlon@ieav.cta.br [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio A.; Goncalez, Odair L., E-mail: claudiofederico@ieav.cta.br, E-mail: odairl@ieav.cta.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2014-07-01

    High-energy neutrons generated from the interaction of cosmic radiation with atoms of the atmosphere, can cause adverse effects on avionics devices. These effects are referred to as 'Single Event Effects' (SEE) and may occur especially in aircraft onboard computers, from change the logic state of memory cells or functional interruptions, which could compromise flight safety. The effects of the SEE must first be evaluated and entered into the safety analysis process in order to determine the susceptibility to failures by SEE devices. SEE rate can be evaluated separately for thermal neutrons and fast neutrons with energy above 10 MeV. This paper presents an exploratory study of susceptibility to radiation to a specific type of SRAM memory, during periods of maximum and minimum solar, in situations of equatorial and polar flight in the typical flight altitude of existing aircraft and, at higher altitudes, near the maximum of Pfotzer. This study was conducted using estimates of particle flows employing the EXPACS QARM codes and evaluating the expected rate of SEE due to thermal neutrons and fast neutrons separately. The distribution in energy and the flow of neutrons inside the airplane are influenced by the total mass of the aircraft and this influence are also discussed.

  20. Search for positron anisotropies in cosmic rays with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Machate, Fabian [1. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station has observed a significant excess of cosmic ray positrons over the background expected from secondary production at energies above 10 GeV. Nearby pulsars and annihilating dark matter particles as a primary source of electrons and positrons have been discussed as an explanation. A possible way of distinguishing between pulsar and dark matter origin is the measurement of dipole anisotropies in the positron flux or the positron to electron ratio. Any anisotropy will be reduced by diffusion in galactic magnetic fields to below the percent level. AMS-02 is the leading space-based experiment for cosmic ray detection and well suited for this search. A new analysis procedure for anisotropies using an event sample with large acceptance is presented. It relies on the ability of the Transition Radiation Detector (TRD) to separate positrons from the proton background.

  1. First cosmic-ray images of bone and soft tissue

    Science.gov (United States)

    Mrdja, Dusan; Bikit, Istvan; Bikit, Kristina; Slivka, Jaroslav; Hansman, Jan; Oláh, László; Varga, Dezső

    2016-11-01

    More than 120 years after Roentgen's first X-ray image, the first cosmic-ray muon images of bone and soft tissue are created. The pictures, shown in the present paper, represent the first radiographies of structures of organic origin ever recorded by cosmic rays. This result is achieved by a uniquely designed, simple and versatile cosmic-ray muon-imaging system, which consists of four plastic scintillation detectors and a muon tracker. This system does not use scattering or absorption of muons in order to deduct image information, but takes advantage of the production rate of secondaries in the target materials, detected in coincidence with muons. The 2D image slices of cow femur bone are obtained at several depths along the bone axis, together with the corresponding 3D image. Real organic soft tissue, polymethyl methacrylate and water, never seen before by any other muon imaging techniques, are also registered in the images. Thus, similar imaging systems, placed around structures of organic or inorganic origin, can be used for tomographic imaging using only the omnipresent cosmic radiation.

  2. Implementation of radioecological education in secondary school by a 'Radiation and man' elective course

    International Nuclear Information System (INIS)

    Kostadinova, B.; Boyanova, L.; Tsakovski, S.; Pavlova, P.

    2004-01-01

    The paper presents the results of a didactic investigation within the period 1998-2000 carried out at the Chair of Chemistry Didactics at Sofia University 'St. Kliment Ohridski'. The proposed system, which includes a program, supplied with appropriate literature, visualization aids and control tools was approbated in three variants, as follows: Elective training; Presentation of seminars or discussion lessons; Inclusion of several topics in the existing physics educational section 'From Atoms to Space', which is enough to provide substantial radioecological information corresponding to the amount planned in the 'Radiation and Man' educational program. The project was carried out at two secondary schools: 'Vassil Levski' in Velingrad and 'Yane Sandanski' in Sandanski. These schools were chosen mainly because of their location - outside the city of Sofia and far from the 30 km zone around the Kozloduy NPP. The project implementation started in the middle of the 2001/2002 school year second term and ended before the end of the term. The current paper summarizes results from teaching of the elective course to secondary school students (10 th grade). Questionnaires and results evaluation scheme are worked out. The data are treated by correlation and cluster analysis

  3. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    International Nuclear Information System (INIS)

    Lihavainen, Heikki; Asmi, Eija; Aaltonen, Veijo; Makkonen, Ulla; Kerminen, Veli-Matti

    2015-01-01

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was −97 ± 66 mW m −2 K −1 (mean ± STD) when using measurements of the aerosol optical depth (f AOD ) and −63 ± 40 mW m −2 K −1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (f σ ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution. (letter)

  4. Disinfection of secondary effluent by gamma radiation inactivation efficiency and regrowth

    International Nuclear Information System (INIS)

    Sekiguchi, M.; Sawai, T.; Shimokawa, T.; Sawai, T.

    1992-01-01

    Inactivation efficiencies of several microorganisms in secondary effluents (SE) from sewage treatment plants by gamma radiation were investigated. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae inoculated in SE were very sensitive but Streptcoccus sp. was resistant to gamma radiation. In addition, no significant difference was found between the combined sewer system and the separate sewer system in regards to the inactivation efficiencies of the bacteria inoculated in the SE. The number of total bacteria in SE was rapidly decreased in the dose range of 0 to 0.2-0.3 kGy but the number gradually fell over the dose range. Moreover, the number of total coliforms almost exponentially decreased with increasing dose, and fell to undetectable levels at about 0.5 kGy. Because of the decrease of the initial bacteria number in SE, adequate filtrating treatments were effective in lowering the irradiation dose for disinfection. Further, the effects of filtrating treatment on bacteria regrowth in SE are discussed. (author)

  5. Cost of palliative radiation to the bone for patients with bone metastases secondary to breast or prostate cancer

    Directory of Open Access Journals (Sweden)

    Hess Gregory

    2012-10-01

    Full Text Available Abstract Background To estimate the costs (paid amounts of palliative radiation episodes of care (REOCs to the bone for patients with bone metastases secondary to breast or prostate cancer. Methods Claims-linked medical records from patients at 98 cancer treatment centers in 16 US states were analyzed. Inclusion criteria included a primary neoplasm of breast or prostate cancer with a secondary neoplasm of bone metastases; ≥2 visits to ≥1 radiation center during the study period (1 July 2008 through 31 December 2009 on or after the metastatic cancer diagnosis date; radiation therapy to ≥1 bone site; and ≥1 complete REOC as evidenced by a >30-day gap pre- and post-radiation therapy. Results The total number of REOCs was 220 for 207 breast cancer patients and 233 for 213 prostate cancer patients. In the main analysis (which excluded records with unpopulated costs the median number of fractions per a REOC for treatment of metastases was 10. Mean total radiation costs (i.e., radiation direct cost + cost of radiation-related procedures and visits per REOC were $7457 for patients with breast cancer and $7553 for patients with prostate cancer. Results were consistent in sensitivity analyses excluding patients with unpopulated costs. Conclusions In the US, current use of radiation therapy for bone metastases is relatively costly and the use of multi-fraction schedules remains prevalent.

  6. Exploiting different active silicon detectors in the International Space Station: ALTEA and DOSTEL galactic cosmic radiation (GCR) measurements

    Science.gov (United States)

    Narici, Livo; Berger, Thomas; Burmeister, Sönke; Di Fino, Luca; Rizzo, Alessandro; Matthiä, Daniel; Reitz, Günther

    2017-08-01

    The solar system exploration by humans requires to successfully deal with the radiation exposition issue. The scientific aspect of this issue is twofold: knowing the radiation environment the astronauts are going to face and linking radiation exposure to health risks. Here we focus on the first issue. It is generally agreed that the final tool to describe the radiation environment in a space habitat will be a model featuring the needed amount of details to perform a meaningful risk assessment. The model should also take into account the shield changes due to the movement of materials inside the habitat, which in turn produce changes in the radiation environment. This model will have to undergo a final validation with a radiation field of similar complexity. The International Space Station (ISS) is a space habitat that features a radiation environment inside which is similar to what will be found in habitats in deep space, if we use measurements acquired only during high latitude passages (where the effects of the Earth magnetic field are reduced). Active detectors, providing time information, that can easily select data from different orbital sections, are the ones best fulfilling the requirements for these kinds of measurements. The exploitation of the radiation measurements performed in the ISS by all the available instruments is therefore mandatory to provide the largest possible database to the scientific community, to be merged with detailed Computer Aided Design (CAD) models, in the quest for a full model validation. While some efforts in comparing results from multiple active detectors have been attempted, a thorough study of a procedure to merge data in a single data matrix in order to provide the best validation set for radiation environment models has never been attempted. The aim of this paper is to provide such a procedure, to apply it to two of the most performing active detector systems in the ISS: the Anomalous Long Term Effects in Astronauts (ALTEA

  7. Galactic cosmic radiation leads to cognitive impairment and increased aβ plaque accumulation in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jonathan D Cherry

    Full Text Available Galactic Cosmic Radiation consisting of high-energy, high-charged (HZE particles poses a significant threat to future astronauts in deep space. Aside from cancer, concerns have been raised about late degenerative risks, including effects on the brain. In this study we examined the effects of (56Fe particle irradiation in an APP/PS1 mouse model of Alzheimer's disease (AD. We demonstrated 6 months after exposure to 10 and 100 cGy (56Fe radiation at 1 GeV/µ, that APP/PS1 mice show decreased cognitive abilities measured by contextual fear conditioning and novel object recognition tests. Furthermore, in male mice we saw acceleration of Aβ plaque pathology using Congo red and 6E10 staining, which was further confirmed by ELISA measures of Aβ isoforms. Increases were not due to higher levels of amyloid precursor protein (APP or increased cleavage as measured by levels of the β C-terminal fragment of APP. Additionally, we saw no change in microglial activation levels judging by CD68 and Iba-1 immunoreactivities in and around Aβ plaques or insulin degrading enzyme, which has been shown to degrade Aβ. However, immunohistochemical analysis of ICAM-1 showed evidence of endothelial activation after 100 cGy irradiation in male mice, suggesting possible alterations in Aβ trafficking through the blood brain barrier as a possible cause of plaque increase. Overall, our results show for the first time that HZE particle radiation can increase Aβ plaque pathology in an APP/PS1 mouse model of AD.

  8. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  9. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-01

    Ο KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. Ο Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. Ο Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation Ο Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established

  10. Cosmic Ether

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    A prerelativistic approach to particle dynamics is explored in an expanding Robertson-Walker cosmology. The receding galactic background provides a distinguished frame of reference and a unique cosmic time. In this context the relativistic, purely geometric space-time concept is criticized. Physical space is regarded as a permeable medium, the cosmic ether, which effects the world-lines of particles and rays. We study in detail a Robertson-Walker universe with linear expansion factor and negatively curved, open three-space; we choose the permeability tensor of the ether in such a way that the semiclassical approximation is exact. Galactic red-shifts depend on the refractive index of the ether. In the local Minkowskian limit the ether causes a time variation of mass, which scales inversely proportional to cosmic time. In the globally geodesic rest frames of galactic observers the ether manifests itself in an unbounded speed of signal transfer, in bifurcations of world-lines, and in time inversion effects.

  11. Cosmic Topology

    Science.gov (United States)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  12. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Alexandra D., E-mail: alexdjensen@gmx.de [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Nikoghosyan, Anna V.; Lossner, Karen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Haberer, Thomas; Jäkel, Oliver [Heidelberg Ion Beam Therapy Centre, Heidelberg (Germany); Münter, Marc W.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  13. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  14. Topics on Cosmic Rays. v.1

    International Nuclear Information System (INIS)

    Bellandi Filho, J.; Pemmaraju, A.

    1984-01-01

    Some theoretical and experimental results concerning with cosmic radiation works or with related ones, mainly of the Brazil-Japan Collaboration, are presented in honor of the 60th aniversary of C.M.G. Lattes. (L.C.) [pt

  15. Secondary malignancies in patients with stage IA-IIIA Hodgkin's lymphoma after radiation (chemoradiation) therapy using accelerated dose fractionation

    International Nuclear Information System (INIS)

    Sinajko, V.V.; Minajlo, I.I.; Veyakin, I.V.

    2010-01-01

    The incidence of secondary malignancies was investigated in 367 patients with stage IA-IIIA Hodgkin's lymphoma after radiation therapy using accelerated fractionation. For 20 years of the observation 24 of them developed 27(7.4%) tumors, besides their frequency did not depend on the disease stage and method of treatment.

  16. Characteristics of secondary radiation from fixed dentures under γ-therapy of cancerous new growth of maxillofacial region

    International Nuclear Information System (INIS)

    Gadjiyev, D.K.

    2002-01-01

    Literary data and own clinical investigations evidence that during carrying out of remote γ-therapy of cancerous new growth in head and neck regions it is possible secondary influence of rays on oral cavity tissues: parodont, mucous membrane of oral cavity, lachrymal glands, receptor mechanism. It is connected with high irradiation dose of these tissues as a result of secondary radiation from natural teeth and fixed metal dentures. Taking into consideration the secondary irradiation factor from metal dentures, we carried out experimental investigations at the Department of Radiation Researches of Azerbaijan National Academy of Sciences with the purpose of dose detection are produced by inverse scattering and secondary electron irradiation from modern dental metal materials: gold-alloy, cobalt- chromium alloy, silver-palladium alloy, titanium nitride alloy, metallic-ore ceramics, stainless steel. Standard metallic samples of these materials by area 100 mm 2 and thickness 25 mm have been irradiated by GUT-Co-400 device with I Gy dose at F=60 cm. Secondary irradiation intensity has been determined by photometry. Plate from stainless steel is as an standard. The results of carried out investigation shown the strengthening of scattering irradiation from 12 to 38 % with electrons track length from 0.8 to 1.9 mm are dependence from metal atomic weight. Tooth plastic protective kappa with thickness 3 mm for teeth of upper and lower jaws has been proposed with the purpose of prophylaxis of negative secondary irradiation influence to the tissue of oral cavity from metal dentures

  17. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    Science.gov (United States)

    Martišíková, Mária; Jakubek, Jan; Granja, Carlos; Hartmann, Bernadette; Opálka, Lukáš; Pospíšil, Stanislav; Jäkel, Oliver

    2011-11-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient`s condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2-30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  18. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    International Nuclear Information System (INIS)

    Martišíková, Mária; Hartmann, Bernadette; Jäkel, Oliver; Jakubek, Jan; Granja, Carlos; Opálka, Lukáš; Pospíšil, Stanislav

    2011-01-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient's condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2–30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  19. Spectrum of cosmic fireballs

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, G [Consiglio Nazionale delle Ricerche, Bologna (Italy). Lab. TESRE; Horstman, H M [Bologna Univ. (Italy). Ist. di Astronomia

    1981-03-01

    A progress report on cosmic fireballs is presented. The main new results are: (a) the phenomenon should be almost universal, and most explosive ..gamma..-ray sources should show the characteristic fireball spectrum; (b) even if the radiation density is insufficient, pair production in electron-proton or electron-electron scattering might start the fireball; (c) some computed fireball spectra are shown. They all have in common a 1/E low-energy behaviour, a 100 keV flattening, and a approx.0.5 MeV cut-off.

  20. Cosmic Connections

    CERN Document Server

    Ellis, Jonathan Richard

    2003-01-01

    A National Research Council study on connecting quarks with the cosmos has recently posed a number of the more important open questions at the interface between particle physics and cosmology. These questions include the nature of dark matter and dark energy, how the Universe began, modifications to gravity, the effects of neutrinos on the Universe, how cosmic accelerators work, and whether there are new states of matter at high density and pressure. These questions are discussed in the context of the talks presented at this Summer Institute.

  1. Estimation of the Contribution of Primary and Secondary Radiation to a Pinhole Volume from a Water Phantom

    International Nuclear Information System (INIS)

    Gamage, Kelum-A.-A.; Joyce, Malcolm-J.; Taylor, Graeme-C.

    2013-06-01

    The imaging of mixed radiation fields with organic liquid scintillation detectors became feasible as a result of recent advances in digital pulse-shape discrimination methods. The use of a liquid scintillator has significant benefits over other techniques for imaging radiation environments as the acquired data can be analysed to provide separate information about the gamma and neutron emissions from a source (or sources) in a single scan in near real-time. This method has significant potential for the location of radioactive sources in radiation environments in the nuclear industry, nuclear decommissioning and homeland security applications. A further application of the mixed-field imaging system would be to detect, locate and study the secondary radiation produced during proton therapy. Proton therapy uses a particle accelerator to target a tumour within the body with a beam of protons. The presence of materials in the beam path as well as the patient, leads to the production of secondary particles such as neutrons and gamma rays. In this paper the contribution of scattered and secondary radiation from a water phantom to a pinhole volume, as a result of three neutron sources and two gamma sources, is separately estimated using the PTRAC particle tracking option available in MCNP. A spherical tally volume, 2 cm in diameter, was placed equidistantly from a radioactive source and 30*30*15 cm 3 water phantom. Monte Carlo simulations have been carried out to investigate the level of primary and secondary radiation contributing to the pinhole volume from interactions in the phantom. This can be used as a simple method to visualise the results expected from the mixed-field imaging system. The results have shown that the percentage of neutrons reflected from the phantom with energies above 1 MeV goes up with mean energy of the source. (authors)

  2. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  3. ETRAN, Electron Transport and Gamma Transport with Secondary Radiation in Slab by Monte-Carlo

    International Nuclear Information System (INIS)

    1992-01-01

    A - Nature of physical problem solved: ETRAN computes the transport of electrons and photons through plane-parallel slab targets that have a finite thickness in one dimension and are unbound in the other two-dimensions. The incident radiation can consist of a beam of either electrons or photons with specified spectral and directional distribution. Options are available by which all orders of the electron-photon cascade can be included in the calculation. Thus electrons are allowed to give rise to secondary knock-on electrons, continuous Bremsstrahlung and characteristic x-rays; and photons are allowed to produce photo-electrons, Compton electrons, and electron- positron pairs. Annihilation quanta, fluorescence radiation, and Auger electrons are also taken into account. If desired, the Monte- Carlo histories of all generations of secondary radiations are followed. The information produced by ETRAN includes the following items: 1) reflection and transmission of electrons or photons, differential in energy and direction; 2) the production of continuous Bremsstrahlung and characteristic x-rays by electrons and the emergence of such radiations from the target (differential in photon energy and direction); 3) the spectrum of the amounts of energy left behind in a thick target by an incident electron beam; 4) the deposition of energy and charge by an electron beam as function of the depth in the target; 5) the flux of electrons, differential in energy, as function of the depth in the target. B - Method of solution: A programme called DATAPAC-4 takes data for a particular material from a library tape and further processes them. The function of DATAPAC-4 is to produce single-scattering and multiple-scattering data in the form of tabular arrays (again stored on magnetic tape) which facilitate the rapid sampling of electron and photon Monte Carlo histories in ETRAN. The photon component of the electron-photon cascade is calculated by conventional random sampling that imitates

  4. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    International airlines are collaborating with physicists to assess whether aircrew are at risk from cosmic radiation as routine monitoring will soon become mandatory. Recently, an international team of physicists has joined forces with NASA and several European airlines to study in detail how the radiation field varies inside the atmosphere depending on the altitude, latitude and solar activity. Astronauts are subjected to the full intensity of high-energy cosmic rays and solar particles (together with the secondary particles produced in the spacecraft walls), and the biological risks in space are the subject of ongoing investigations. A typical return mission to Mars, for example, could result in a total ''dose equivalent'' of up to 0.5 sievert. The dose equivalent takes into account the harm caused by a particular type of radiation. Current estimates suggest that a person who receives a 1 sievert dose of ionizing radiation incurs a few per cent increase in the risk of contracting fatal cancer in his or her lifetime, although the risk level depends on sex and age. The radiation we observe at aircraft altitudes of typically 10-12 km is due to very high-energy particles mainly protons and helium nuclei, together with a small amount of heavy nuclei penetrating the atmosphere and colliding with air atoms. These collisions give rise to the production of more particles, such as protons, neutrons and various mesons. A cascade of particles is then produced by successive interactions as they penetrate deeper into the atmosphere. As a result, the flux of particles increases in the upper atmosphere and reaches a maximum at about 20 km above sea level. Below this point, the number of particles decreases due to energy losses and various particle interactions. Happily, at the Earth's surface we are protected by the air above us, which provides the same degree of shielding as a layer of water 10 m thick. The small amount of radiation that eventually reaches us in the form of

  5. Impact of Massive Neutrinos and Dark Radiation on the High-redshift Cosmic Web. I. Lyα Forest Observables

    Science.gov (United States)

    Rossi, Graziano

    2017-11-01

    With upcoming high-quality data from surveys such as the Extended Baryon Oscillation Spectroscopic Survey or the Dark Energy Spectroscopic Instrument, improving the theoretical modeling and gaining a deeper understanding of the effects of neutrinos and dark radiation on structure formation at small scales are necessary, to obtain robust constraints free from systematic biases. Using a novel suite of hydrodynamical simulations that incorporate dark matter, baryons, massive neutrinos, and dark radiation, we present a detailed study of their impact on Lyα forest observables. In particular, we accurately measure the tomographic evolution of the shape and amplitude of the small-scale matter and flux power spectra and search for unique signatures along with preferred scales where a neutrino mass detection may be feasible. We then investigate the thermal state of the intergalactic medium (IGM) through the temperature-density relation. Our findings suggest that at k˜ 5 h {{Mpc}}-1 the suppression on the matter power spectrum induced by \\sum {m}ν =0.1 {eV} neutrinos can reach ˜ 4 % at z˜ 3 when compared to a massless neutrino cosmology, and ˜ 10 % if a massless sterile neutrino is included; surprisingly, we also find good agreement (˜ 2 % ) with some analytic predictions. For the 1D flux power spectrum {P}{ F }1{{D}}, the highest response to free-streaming effects is achieved at k˜ 0.005 {[{km}/{{s}}]}-1 when \\sum {m}ν =0.1 {eV}; this k-limit falls in the Lyα forest regime, making the small-scale {P}{ F }1{{D}} an excellent probe for detecting neutrino and dark radiation imprints. Our results indicate that the IGM at z˜ 3 provides the best sensitivity to active and sterile neutrinos.

  6. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  7. Dust in cosmic plasma environments

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1979-01-01

    Cosmic dust is invariably immersed in a plasma and a radiative environment. Consequently, it is charged to some electrostatic potential which depends on the properties of the environment as well as the nature of the dust. This charging affects the physical and dynamical properties of the dust. In this paper the basic aspects of this dust-plasma interaction in several cosmic environments - including planetary magnetospheres, the heliosphere and the interstellar medium - are discussed. The physical and dynamical consequences of the interaction, as well as the pertinent observational evidence, are reviewed. Finally, the importance of the surface charge during the condensation process in plasma environments is stressed. (Auth.)

  8. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  9. Considerations on scattering and leak radiation for effective determination of secondary shielding in X-rays rooms of megavoltage

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    This paper addresses the development of a algorithm capable of analyzing the thickness of the secondary shielding due to the production of secondary beams. The production of this beam requires consideration of scattering angle, as well as factors normally used for screening of medical facilities using radiographic techniques. Besides the beam emanated from scattering radiation, is is necessary to evaluate the contribution of leakage radiation, originating from equipment used for the production of the primary beam. A view of the mutual contribution of these radiation to the formation of the secondary beam has shown the need of using shieldings in adjacent walls of the room. The code was validated by comparison with an example case provided by NCRP-151 Report. In this report calculations for determining the secondary barrier for small angles are presented, that deserves greater attention for shielding and statements related to radiotherapy procedures of Modulated intensity. The results are consistent with those provided in the report, which makes the code can be used as a practical tool for the determination of effective shielding beams of megavoltage X-rays

  10. Atmospheric and biospheric effects of cosmic

    International Nuclear Information System (INIS)

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  11. Cosmic rays and the interstellar medium

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    It is inevitable that there is a close connection between cosmic rays and the ISM insofar as the propagation of cosmic rays is conditioned by the magnetic field in the ISM and the cosmic rays interact with the gas (and photon fluxes) in this medium. This paper deals with both topics. Propagation effects manifest themselves as an anisotropy in arrival directions and a review is given of anisotropy measurements and their interpretation. The status of studies of cosmic ray interactions is examined whit particular reference to the information about the ISM itself which comes from observations of the flux of secondary γ-rays produced by cosmic ray interactions with gas, the situation regarding molecular as in the Inner Galaxy being of particular concern

  12. Highest energy cosmic rays

    International Nuclear Information System (INIS)

    Nikolskij, S.

    1984-01-01

    Primary particles of cosmic radiation with highest energies cannot in view of their low intensity be recorded directly but for this purpose the phenomenon is used that these particles interact with nuclei in the atmosphere and give rise to what are known as extensive air showers. It was found that 40% of primary particles with an energy of 10 15 to 10 16 eV consist of protons, 12 to 15% of helium nuclei, 15% of iron nuclei, the rest of nuclei of other elements. Radiation intensity with an energy of 10 18 to 10 19 eV depends on the direction of incoming particles. Maximum intensity is in the direction of the centre of the nearest clustre of galaxies, minimal in the direction of the central area of our galaxy. (Ha)

  13. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  14. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  15. Secondary standards laboratories for ionizing radiation calibrations: the national laboratory interests

    International Nuclear Information System (INIS)

    Roberson, P.L.; Campbell, G.W.

    1984-11-01

    The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary. 1 ref., 2 tabs

  16. Ambient dose equivalent measurements in secondary radiation fields at proton therapy facility CCB IFJ PAN in Krakow using recombination chambers

    Directory of Open Access Journals (Sweden)

    Jakubowska Edyta A.

    2016-03-01

    Full Text Available This work presents recombination methods used for secondary radiation measurements at the Facility for Proton Radiotherapy of Eye Cancer at the Institute for Nuclear Physics, IFJ, in Krakow (Poland. The measurements of H*(10 were performed, with REM-2 tissue equivalent chamber in two halls of cyclotrons AIC-144 and Proteus C-235 and in the corridors close to treatment rooms. The measurements were completed by determination of gamma radiation component, using a hydrogen-free recombination chamber. The results were compared with the measurements using rem meter types FHT 762 (WENDI-II and NM2 FHT 192 gamma probe and with stationary dosimetric system.

  17. A link between solar events and congenital malformations: Is ionizing radiation enough to explain it?

    Science.gov (United States)

    Overholt, Andrew C.; Melott, Adrian L.; Atri, Dimitra

    2015-03-01

    Cosmic rays are known to cause biological effects directly and through ionizing radiation produced by their secondaries. These effects have been detected in airline crews and other specific cases where members of the population are exposed to above average secondary fluxes. Recent work has found a correlation between solar particle events and congenital malformations. In this work we use the results of computational simulations to approximate the ionizing radiation from such events as well as longer-term increases in cosmic ray flux. We find that the amounts of ionizing radiation produced by these events are insufficient to produce congenital malformations under the current paradigm regarding muon ionizing radiation. We believe that further work is needed to determine the correct ionizing radiation contribution of cosmogenic muons. We suggest that more extensive measurements of muon radiation effects may show a larger contribution to ionizing radiation dose than currently assumed.

  18. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    International Nuclear Information System (INIS)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio

    2016-01-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  19. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arimura, Takeshi, E-mail: arimura-takeshi@medipolis.org [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ogino, Takashi [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Yoshiura, Takashi [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio [Medipolis Proton Therapy and Research Center, Ibusuki (Japan)

    2016-05-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  20. Antivascular Endothelial Growth Factor Bevacizumab for Radiation Optic Neuropathy: Secondary to Plaque Radiotherapy

    International Nuclear Information System (INIS)

    Finger, Paul T.; Chin, Kimberly J.

    2012-01-01

    Purpose: To evaluate the intravitreal antivascular endothelial growth factor, bevacizumab, for treatment of radiation optic neuropathy (RON). Methods and Materials: A prospective interventional clinical case series was performed of 14 patients with RON related to plaque radiotherapy for choroidal melanoma. The RON was characterized by optic disc edema, hemorrhages, microangiopathy, and neovascularization. The entry criteria included a subjective or objective loss of vision, coupled with findings of RON. The study subjects received a minimum of two initial injections of intravitreal bevacizumab (1.25 mg in 0.05 mL) every 6–8 weeks. The primary objectives included safety and tolerability. The secondary objectives included the efficacy as measured using the Early Treatment Diabetic Retinopathy Study chart for visual acuity, fundus photography, angiography, and optical coherence tomography/scanning laser ophthalmoscopy. Results: Reductions in optic disc hemorrhage and edema were noted in all patients. The visual acuity was stable or improved in 9 (64%) of the 14 patients. Of the 5 patients who had lost vision, 2 had relatively large posterior tumors, 1 had had the vision decrease because of intraocular hemorrhage, and 1 had developed optic atrophy. The fifth patient who lost vision was noncompliant. No treatment-related ocular or systemic side effects were observed. Conclusions: Intravitreal antivascular endothelial growth factor bevacizumab was tolerated and generally associated with improved vision, reduced papillary hemorrhage, and resolution of optic disc edema. Persistent optic disc neovascularization and fluorescein angiographic leakage were invariably noted. The results of the present study support additional evaluation of antivascular endothelial growth factor medications as treatment of RON.

  1. Antivascular Endothelial Growth Factor Bevacizumab for Radiation Optic Neuropathy: Secondary to Plaque Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Finger, Paul T., E-mail: pfinger@eyecancer.com [New York Eye Cancer Center, New York, NY (United States); Chin, Kimberly J. [New York Eye Cancer Center, New York, NY (United States)

    2012-02-01

    Purpose: To evaluate the intravitreal antivascular endothelial growth factor, bevacizumab, for treatment of radiation optic neuropathy (RON). Methods and Materials: A prospective interventional clinical case series was performed of 14 patients with RON related to plaque radiotherapy for choroidal melanoma. The RON was characterized by optic disc edema, hemorrhages, microangiopathy, and neovascularization. The entry criteria included a subjective or objective loss of vision, coupled with findings of RON. The study subjects received a minimum of two initial injections of intravitreal bevacizumab (1.25 mg in 0.05 mL) every 6-8 weeks. The primary objectives included safety and tolerability. The secondary objectives included the efficacy as measured using the Early Treatment Diabetic Retinopathy Study chart for visual acuity, fundus photography, angiography, and optical coherence tomography/scanning laser ophthalmoscopy. Results: Reductions in optic disc hemorrhage and edema were noted in all patients. The visual acuity was stable or improved in 9 (64%) of the 14 patients. Of the 5 patients who had lost vision, 2 had relatively large posterior tumors, 1 had had the vision decrease because of intraocular hemorrhage, and 1 had developed optic atrophy. The fifth patient who lost vision was noncompliant. No treatment-related ocular or systemic side effects were observed. Conclusions: Intravitreal antivascular endothelial growth factor bevacizumab was tolerated and generally associated with improved vision, reduced papillary hemorrhage, and resolution of optic disc edema. Persistent optic disc neovascularization and fluorescein angiographic leakage were invariably noted. The results of the present study support additional evaluation of antivascular endothelial growth factor medications as treatment of RON.

  2. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  3. Primordial non-Gaussianity with μ-type and y -type spectral distortions: exploiting Cosmic Microwave Background polarization and dealing with secondary sources

    Energy Technology Data Exchange (ETDEWEB)

    Ravenni, Andrea; Liguori, Michele; Bartolo, Nicola [Dipartimento di Fisica e Astronomia ' G. Galilei' , Università degli Studi di Padova, via Marzolo 8, Padova, I-35131 Italy (Italy); Shiraishi, Maresuke, E-mail: ravenni@pd.infn.it, E-mail: liguori@pd.infn.it, E-mail: bartolo@pd.infn.it, E-mail: shiraishi-m@t.kagawa-nct.ac.jp [Department of General Education, National Institute of Technology, Kagawa College, 355 Chokushi-cho, Takamatsu, Kagawa, 761-8058 Japan (Japan)

    2017-09-01

    Cross-correlations between Cosmic Microwave Background (CMB) temperature and y -spectral distortion anisotropies have been previously proposed as a way to measure the local bispectrum parameter f {sub NL}{sup loc}. in a range of scales inaccessible to either CMB ( T , E ) bispectra or μ T correlations. This is useful e.g. to test scale dependence of primordial non-Gaussianity. Unfortunately, the primordial y T signal is strongly contaminated by the late-time correlation between the Integrated Sachs Wolfe and Sunyaev-Zel'dovich (SZ) effects. Moreover, SZ itself generates a large noise contribution in the y -parameter map. We consider two original ways to address these issues. In order to remove the bias due to the SZ-CMB temperature coupling, while also providing additional signal, we include in the analysis the cross-correlation between y -distortions and CMB polarization . In order to reduce the noise, we propose to clean the y -map by subtracting a SZ template, reconstructed via cross-correlation with external tracers (CMB and galaxy-lensing signals). We combine this SZ template subtraction with the previously suggested solution of directly masking detected clusters. Our final forecasts show that, using y -distortions, a PRISM-like survey can achieve 1σ( f {sub NL}{sup loc}.) = 300, while an ideal experiment will achieve 1σ( f {sub NL}{sup loc}.) = 130 with improvements of a factor between 2.1 and 3.8, depending on the considered survey, from adding the y E signal, and a further 20–30 % from template cleaning. These forecasts are much worse than current f {sub NL}{sup loc}. boundaries from Planck , but we stress that they refer to completely different scales.

  4. Estimated risk for secondary cancer in the contra-lateral breast following radiation therapy of breast cancer

    International Nuclear Information System (INIS)

    Johansen, Safora; Danielsen, Turi; Olsen, Dag Rune

    2008-01-01

    Purpose. To facilitate a discussion about the impact of dose heterogeneity on the risk for secondary contralateral breast (CB) cancer predicted with linear and non linear models associated with primary breast irradiation. Methods and materials. Dose volume statistics of the CB calculated for eight patients using a collapsed cone algorithm were used to predict the excess relative risk (ERR) for cancer induction in CB. Both linear and non-linear models were employed. A sensitivity analysis demonstrating the impact of different parameter values on calculated ERR for the eight patients was also included in this study. Results. A proportionality assumption was established to make the calculations with a linear and non-linear model comparable. ERR of secondary cancer predicted by the linear model varied considerably between the patients, while the predicted ERR for the same patients using the non-linear model showed very small variation. The predicted ERRs by the two models were indistinguishable for small doses, i.e. below ∼3 Gy. The sensitivity analysis showed that the quadratic component of the radiation-induction pre-malignant cell term is negligible for lower dose level. The ERR is highly sensitive to the value of agr1 and agr2. Conclusions. Optimization of breast cancer radiation therapy, where also the risk for radiation induced secondary malignancies in the contralateral breast is taken into account, requires robust and valid risk assessment. The linear dose-risk model does not account for the complexity in the mechanisms underlying the development of secondary malignancies following exposure to radiation; this is particularly important when estimating risk associated with highly heterogeneous dose distributions as is the case in the contralateral breast of women receiving breast cancer irradiation

  5. A survey on evaluation function for contaminations and doses in the primary and the secondary radiation emergency hospitals

    International Nuclear Information System (INIS)

    Yamada, Yuji; Akashi, Makoto; Shiraishi, Kunio; Suzuki, Toshikazu; Ishigure, Nobuhito; Endo, Akira; Sanada, Tetsuya; Nakayama, Kazushige; Shizuma, Kiyoshi; Takada, Chie; Momose, Takumaro; Hoshi, Masaharu; Yamaguchi, Takenori

    2009-01-01

    The questionnaire on evaluation function for contaminations and doses was sent to the primary and the secondary radiation emergency hospitals in Japan by the network council for physical dosimetry in National Institute of Radiological Sciences (NIRS) designated as the tertiary hospital. The recovery percentage from the 88 hospitals was 70%. It turned out that six primary hospitals in 37 hospitals did not have even the basic instruments on radiation measurement such as GM counter and personal dosimeter. 64% of the secondary hospitals have the whole body counter, but its operation frequency including exercise was considerably low. It is thought that the main cause originates in a chronic manpower shortage and the budget shortfall seen by all the primary and the secondary hospitals. And also peculiar difficulty of correspondence to the radiation emergency medical treatment and the few experience might promote the problem. Thus the anxiety of the site staff had been appeared to the result of the questionnaire survey in shape like the opinion and the demand, etc. It will be necessary to advance the enhancement of training and to make the manual for the contaminations and the doses evaluation in the hospitals. (author)

  6. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U., Theor. Phys.; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  7. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  8. Natural radiation

    International Nuclear Information System (INIS)

    Feliciano, Vanusa Maria Delage

    2016-01-01

    Cosmic radiation, as well as cosmogenic radiation, terrestrial radiation, radon and thorium are introduced in this chapter 3. The distribution of natural radiation sources is treated, where the percentage distribution of the contribution relative to exposure to radiation from natural and artificial sources is also included

  9. Synthesis of ideas on cosmic ray origin and propagation

    International Nuclear Information System (INIS)

    Wolfendale, A.W.

    1986-01-01

    An attempt is made, based largely on ideas reported at this Advanced Studies Institute, to synthesise ideas which have been put forward on cosmic ray origin and propagation. The conclusions drawn are as follows. The bulk of cosmic rays detected at earth appear to be of Galactic origin, many probably having come from supernova remnants, at least at the lowest energies. Only above 10/sup 19/ eV does an extragalactic origin appear likely and here the VIRGO cluster at the centre of our Supercluster is a likely source. Although extragalactic cosmic rays are not present to a large extent their energy density could well be significant and the case is made for its being about 10/sup -4/ eV cm/sup -3/. Concerning the controversy about continuous or ''quick'' particle acceleration, it appears necessary to separate origin and acceleration. The interesting model put forward by Schlickeiser involving what might be called pseudo-continuous acceleration appears to require that the bulk of the particle acceleration occurs in a very large Galactic halo, the secondaries being produced only in the gas disk. Problems are likely, however, with the expected fluxes of X-rays and radio synchrotron radiation

  10. Ionizing secondary radiation generated by analog radiological and digital coronary cine angiographic equipment. Influence of external protection devices

    International Nuclear Information System (INIS)

    Ramirez N, Alfredo; Farias Ch, Eric; Silva J, Ana Maria; Leyton L, Fernando; Oyarzun C, Carlos; Ugalde P, Hector; Dussaillant, Gaston; Cumsille G, Angel

    2000-01-01

    Exposure to ionizing radiation is a know hazard of radiological procedures. Aim: to compare the emission of secondary ionizing radiation from two coronary angiographic equipments, one with digital and the other with analog image generation. To evaluate the effectiveness of external radiological protection devices. Material and methods: environmental and fluoroscopy generated radiation in the cephalic region of the patient was measured during diagnostic coronary angiographies. Ionizing radiation generated in anterior left oblique protection (ALO) and anterior right oblique protection (ARO) were measured with and without leaded protections. In 19 patients (group 1), a digital equipment was used and in 21 (group 2), an analog equipment. Results: header radiation for group 1 and 2 was 1194±337 and 364±222 μGray/h respectively (p≤0.001). During fluoroscopy and with leaded protection generated radiation for groups 1 and 2 was 612±947 and 70±61μGray/h respectively (p≤0.001). For ALO projection, generated for groups 1 and 2 was 105±47 and 71±192 μGray/h respectively (p≤0.001). During filming the radiation for ALO projection for groups 1 and 2 was 7252±9569 and 1671±2038 μGray/h respectively (p=0.03). Out of the protection zone, registered radiation during fluoroscopy for groups 1 and 2 was 2800±1741 and 1318±954 μGray/h respectively (p≤0.001); during filming, the figures were 15500±5840 and 18961±10599 μGray/h respectively (NS). Conclusions: digital radiological equipment has a lower level of ionizing radiation emission than the analog equipment

  11. Cosmic odyssey

    International Nuclear Information System (INIS)

    Heidmann, J.

    1989-01-01

    The immensity of the cosmos, the richness of the universe, the limits of space and time: these are the themes of Cosmic Odyssey, which takes the reader on imaginary journeys through the past, present and future of our universe. After a first look at the starry night sky, the enigmas posed since ancient times by the universe are reviewed. There then follows a broadbrush view of the universe as we understand it today. Following this, a trio of chapters take us to ultimate questions about its nature. The author explores in turn the relativistic universe, the quantum universe and the inflationary universe. Finally the journey returns to questions that touch on our own presence in the universe. Cosmology, the science of understanding the nature of the universe as a whole, has gone through an extraordinary revolution in its approach. This book explains in detail the link between particle physics and cosmology, the very early universe, the significance of Grand Unified Theory and superstrings, the magical qualities of the inflationary universe, and the seemingly bleak scenarios for the farthest future. (author)

  12. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  13. Cosmic ray synergies

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    In laboratories, cosmic rays have been the subject of scientific research for many years. A more recent development is their appearance in schools, as educational tools. A recent workshop at CERN, organised by ASPERA in collaboration with EPPOG and EPPCN, had the goal of bringing together ideas and initiatives with a view to setting up a future common project.   Presentation at the workshop on 15 October. In research, as in education, you can sometimes get things done more rapidly and easily by joining forces. For roughly the past decade, physicists have been taking their particle detectors to secondary schools. “The challenge now is to bring all of these existing projects together in a network,” says Arnaud Marsollier, in charge of communication for the ASPERA network and organiser of the workshop. The workshop held on Friday, 15 October was attended by representatives of major European educational projects and members of the European Particle Physics Communication Network...

  14. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  15. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T; Un nouvel outil internet: le systeme d'information et d'evaluation par vol, de l'exposition au rayonnement cosmique dans les transports aeriens SIEVERT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  16. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  17. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of Planck’s constant

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.

  18. Isotherms clustering in cosmic microwave background

    International Nuclear Information System (INIS)

    Bershadskii, A.

    2006-01-01

    Isotherms clustering in cosmic microwave background (CMB) has been studied using the 3-year WMAP data on cosmic microwave background radiation. It is shown that the isotherms clustering could be produced by the baryon-photon fluid turbulence in the last scattering surface. The Taylor-microscale Reynolds number of the turbulence is estimated directly from the CMB data as Re λ ∼10 2

  19. The effects of low solar activity upon the cosmic radiation and the interplanetary magnetic field over the past 10,000 years, and implications for the future. (Invited)

    Science.gov (United States)

    McCracken, K. G.; McDonald, F. B.; Beer, J.; Abreu, J.; Steinhilber, F.

    2009-12-01

    The paleo-cosmic ray records based on the radionuclides 10Be and 14 C show that the Sun has experienced twenty two extended periods of low activity (similar to, or longer than the Maunder Minimum) in the past 10,000 years, and many more periods of reduced activity for 2 or more solar cycles similar to the period 1880-1910. The 10,000 yr record shows that solar activity has exhibited three persistent periodicities that modulate the amplitude of the Hale (11/22 year) cycle. They are the Gleissberg (~85 yr); the de Vries (~208 yr); and the Hallstatt (~2200 yr) periodicities. It is possible that the Sun is entering a somewhat delayed Gleissberg repetition of the 1880-1910 period of reduced activity or a de Vries repetition of the Dalton Minimum of 1800-1820; or a combination of both. The historic record shows that the cosmic ray intensity at sunspot minimum increases substantially during periods of reduced solar activity- during the Dalton minimum it was twice the present-day sunspot minimum intensity at 2GeV/nucleon ; and 10 times greater at 100 MeV/nucleon. The Hale cycle of solar activity continued throughout the Spoerer (1420-1540) and Maunder Minima, and it appears possible that the local interstellar cosmic ray spectrum was occasionally incident on Earth. Using the cosmic ray transport equation to invert the paleo-cosmic ray record shows that the magnetic field was Dalton Minimum.

  20. Code of practice for the safe use of ionizing radiation in secondary schools (1986)

    International Nuclear Information System (INIS)

    1987-01-01

    The code of practice is intended for schools and indicates the basic philosophy behind the current approach to the control of hazards associated with the use of ionizing radiation. The purpose of this code is to provide guidance on safe and proper practices in the use of radiation. It covers modes of radiation exposure, shielding, dose limits, responsibility, general rules, x-ray generators, general control of radioactive sources, sealed sources and unsealed sources