WorldWideScience

Sample records for secondary beam monitors

  1. Beam-ripple monitor with secondary electrons

    International Nuclear Information System (INIS)

    Sato, Shinji; Kanazawa, Mitsutaka; Noda, Koji; Takada, Eiichi; Komiyama, Akihito; Ichinohe, Ken-ichi; Sano, Yoshinobu

    1997-01-01

    To replace the scintillation-ripple monitor, we have developed a new monitor with a smaller destructive effect on the beam. In this monitor, we use secondary electrons emitted from an aluminum foil with a thickness of 2 μm. The signals of secondary electrons are amplified by an electron multiplier having a maximum gain of 10 6 . By using the new monitor, we could clearly observe the beam ripple with a beam intensity of 3.6x10 8 pps (particle per second). This monitor can also be used as an intensity monitor in the range of 10 4 - 10 9 pps. (author)

  2. A beam radiation monitoring and protection system for AGS secondary beams

    International Nuclear Information System (INIS)

    Levine, G.S.

    1978-01-01

    A commercially available radiation monitor using a scintillation detector was modified for charged particle beam monitoring. The device controls access to secondary beams of the AGS and limits beam intensity

  3. A multiwire secondary emission profile monitor for small emittance beams

    International Nuclear Information System (INIS)

    Chehab, R.; Bonnard, J.; Humbert, G.; Leblond, B.; Saury, J.L.

    1985-01-01

    A secondary emission monitor using two multiwire grids separated by a positively biased collector has been constructed and tested with a 1 GeV electron beam at the Orsay Linac. The monitor installed just before the electron-positron converter has 8 gold-plated-tungsten wires of 0.1 mm diameter equally spaced 0.2 mm apart in each plane. Each wire is connected with an integrator using a low-bias current operational amplifier. The wire planes and the collector are moved into the beam by a stepping motor : that allows beam-position verification. We measured narrow profiles for 1 Amp peak current pulses of 30 nanoseconds width. Profiles are displayed on a scope and allow emittance determination by the three gradient method. Such a monitor is very useful to control the electron beam position and dimensions on the converter, because the positron source dimensions are rather bigger than those of the incident beam and the geometrical acceptance of the positron Linac is limited

  4. Secondary Electron Emission Beam Loss Monitor for LHC

    CERN Document Server

    Dehning, B; Holzer, E B; Kramer, Daniel

    2008-01-01

    Beam Loss Monitoring (BLM) system is a vital part of the active protection of the LHC accelerators' elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. ...

  5. High-stable secondary-emission monitor for accelerated electron beam current

    International Nuclear Information System (INIS)

    Prudnikov, I.A.; Saksaganskij, G.L.; Bazhanov, E.B.; Zabrodin, B.V.

    1977-01-01

    A secondary-emission monitor for a 10 to 30 MeV electron beam (beam current is 10 -4 to 10 -2 A) is described. The monitor comprises a measuring electrode unit, titanium discharge-type pump, getter made of porous titanium, all enclosed in a metal casing. The measuring unit comprises three electrodes made of 20 μm aluminium foil. The secondary emission coefficient (5.19%+-0.06% for the electron energy of 20 MeV) is maintained stable for a long time. The monitor detects pulses of up to some nanoseconds duration. It is reliable in operation, and is recommended for a wide practical application

  6. Multiwire secondary-emission monitor and the emittance measurement of the AGS beam

    International Nuclear Information System (INIS)

    Weng, W.T.; Chiang, I.H.; Smith, G.A.; Soukas, A.

    1983-01-01

    For CBA injection the transverse emittances and the Twiss parameters of the AGS beam have to be well defined to minimize the phase space dilution in CBA. Althoug there exists a profile monitor device at U165, there are three reasons why construction of multiwire profile monitor system at three locations from U500 to U168 is required: (1) the dispersion function is not zero at U165 which makes it harder to interpret the measurement; (2) the original single wire device takes five minutes to traverse the whole beam; (3) a three station multiwire system can provide the profile information at all locations in one pulse which makes on-line analysis possible. In summary, a set of three stations of Multiwire Secondary Emission Monitor (MSEM) has been built and installed in the fast external beam line for the measurement of beam profiles. Each unit consists of two planes each with 30 nickel wires having a diameter of 5 mils. The signal is linear within the range of 10 10 to 10 13 incident protons on the wire and the resolution of the signal is well within a few percent. A least-square fitting routine has been used to extract the emittance and phase space parameters of the beam. The emittances obtained at various intensities will help us to understand the AGS acceleration process and to choose the optimal injection scheme for CBA

  7. Beam profile measurement of ES-200 using secondary electron emission monitor

    Directory of Open Access Journals (Sweden)

    E Ebrahimi Basabi

    2015-09-01

    Full Text Available Up to now, different designs have been introduced for measurement beam profile accelerators. Secondary electron emission monitors (SEM are one of these devices which have been used for this purpose. In this work, a SEM has been constructed to measure beam profile of ES-200 accelerator, a proton electrostatic accelerator which is installed at SBU. Profile grid for both planes designed with 16 wires which are insulated relative to each other. The particles with maximum energy of 200 keV and maximum current of 400 μA are stopped in copper wires. Each of the wires has an individual current-to-voltage amplifier. With a multiplexer, the analogue values are transported to an ADC. The ADCs are read out by a microcontroller and finally profile of beam shows by a user interface program

  8. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions

    Science.gov (United States)

    Gwosch, K.; Hartmann, B.; Jakubek, J.; Granja, C.; Soukup, P.; Jäkel, O.; Martišíková, M.

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient’s geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations

  9. SLIM (secondary emission monitor for low interception monitoring) an innovative non-destructive beam monitor for the extraction lines of a hadrontherapy centre

    International Nuclear Information System (INIS)

    Gibson, P.N.; Holzwarth, U.; Abbas, K.

    2005-01-01

    Real time monitoring of hadron therapy beam intensity and profile is a critical issue for the optimisation of dose delivery to carcinogenic tissue, patient safety and operation of the accelerator complex. For this purpose an innovative beam monitor, SLIM (Secondary electron emission for Low Interception Monitoring) is being developed in the framework of the EC-funded SUCIMA (Silicon Ultra-fast Cameras for electrons and gamma sources In Medical Application) project. The detector system is based on the secondary emission of electrons by a non-perturbative, sub-micron thick Al foil placed directly in the extracted beam path. The secondary electrons, accelerated by an electrostatic focusing system, are detected by a monolithic silicon position-sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The results of the laboratory tests of the first system prototype with thermoionic electrons emitted from a hot Tungsten wire are presented together with the measurements performed on a low intensity hadron beam at the Cyclotron of the Joint Research Centre in Ispra. (author)

  10. Secondary beam monitors for the NuMI facility at FNAL

    International Nuclear Information System (INIS)

    Kopp, S.; Bishai, M.; Dierckxsens, M.; Diwan, M.; Erwin, A.R.; Harris, D.A.; Indurthy, D.; Keisler, R.; Kostin, M.; Lang, M.; MacDonald, J.; Marchionni, A.; Mendoza, S.; Morfin, J.; Naples, D.; Northacker, D.; Pavlovic, Z.; Phelps, L.; Ping, H.; Proga, M.; Vellissaris, C.; Viren, B.; Zwaska, R.

    2006-01-01

    The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers' construction, calibration, and commissioning in the beam

  11. Beam profile monitor

    International Nuclear Information System (INIS)

    Krausse, G.J.; Gram, P.A.M.

    1978-05-01

    A system used to monitor secondary beam profiles at the LAMPF Linac for channel tune-up and diagnostics is described. The multiwire proportional chamber design is discussed, and descriptions and drawings of the gate card, the amplifier/multiplexer card, the output amplifier card, and the overall system are given

  12. Secondary beams at GANIL

    International Nuclear Information System (INIS)

    Doubre, H.

    1992-01-01

    GANIL, a user's facility since 1983, can deliver a broad spectrum of heavy-ion beams, from He to U, to well-equipped experimental areas. Their very large intensities are to be exploited to produce secondary beams, either using the fragmentation method (beams at energy per nucleon larger than 30 MeV/u), or the ISOL method. With the latter one, these ions have to be re-accelerated. The project of a cyclotron as a post-accelerator is described. (author) 11 refs.; 7 figs.; 3 tabs

  13. Simple beam profile monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

    2012-12-19

    An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

  14. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  15. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Rome (Italy); Battistoni, G; Muraro, S [Istituto Nazionale di Fisica Nucleare - Sezione di Milano, Milano, Milano (Italy); Collamati, F; Faccini, R; Camillocci, E Solfaroli [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Italy, Dipartiment, Rome, Rome (Italy); Collini, F [Istituto Nazionale di Fisica Nucleare - Sezione di Pisa, Pisa, Pisa (Italy); De Lucia, E; Piersanti, L; Toppi, M [Laboratori Nazionali di Frascati, Frascati (rome), Rome (Italy); Frallicciardi, P [Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Rome, Rome (Italy); Marafini, M [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Museo Storico dell, Rome, Rome (Italy); Patera, V; Sciubba, A; Traini, G [Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Dipartimento di Sc, Rome, Rome (Italy); and others

    2016-06-15

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  16. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    International Nuclear Information System (INIS)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R; Pinci, D; Russomando, A; Voena, C; Battistoni, G; Muraro, S; Collamati, F; Faccini, R; Camillocci, E Solfaroli; Collini, F; De Lucia, E; Piersanti, L; Toppi, M; Frallicciardi, P; Marafini, M; Patera, V; Sciubba, A; Traini, G

    2016-01-01

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here. Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.

  17. Secondary emission monitor (SEM) grids.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    A great variety of Secondary Emission Monitors (SEM) are used all over the PS Complex. At other accelerators they are also called wire-grids, harps, etc. They are used to measure beam density profiles (from which beam size and emittance can be derived) in single-pass locations (not on circulating beams). Top left: two individual wire-planes. Top right: a combination of a horizontal and a vertical wire plane. Bottom left: a ribbon grid in its frame, with connecting wires. Bottom right: a SEM-grid with its insertion/retraction mechanism.

  18. Beam position monitoring

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Beam monitoring in accelerators is reviewed, with emphasis on the engineering aspects of the problem. Guidelines for monitor design are given. Advantages and disadvantages of various electrode designs and signal processing methods are reviewed

  19. Beam intensity monitoring for the external proton beam at LAMPF

    International Nuclear Information System (INIS)

    Barrett, R.J.; Anderson, B.D.; Willard, H.B.; Anderson, A.N.; Jarmie, N.

    1975-07-01

    Three different intensity monitors were tested in the external proton beam at LAMPF, and together cover the entire range of beam currents available. A 800 kg Faraday cup was installed and used to measure the absolute intensity to better than 1 percent for beam currents up to several nanoamperes. A high gain ion chamber was used as part of the calibration procedure for the Faraday cup, and was found to be useful when monitoring very small beam intensities, being reliable down to the few picoampere level. A secondary emission monitor was also tested, calibrated, and found to be trustworthy only for beams of greater than 50 pA intensity. (auth)

  20. Neutral beam monitoring

    International Nuclear Information System (INIS)

    Fink, J.H.

    1979-01-01

    A neutral beam generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange partially neutralizes the high energy beam, is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are identified. (U.K.)

  1. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  2. Photon beam position monitor

    Science.gov (United States)

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  3. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  4. Beam Position Monitor Engineering

    International Nuclear Information System (INIS)

    Smith, Stephen R.

    1996-07-01

    The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision. accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake-fields and transmission-line and cavity effects in vacuum-to-air feed through. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time-domain and frequency domain approaches to the applicable parts of interesting problems

  5. Electrostatic beam-position monitor

    CERN Multimedia

    CERN PhotoLab

    1969-01-01

    Electrostatic beam-position monitor installed in its final location (bake-out cover removed). The ISR will contain about 110 of these monitors. Their accuracy is better than 1 mm, their band width about 1 MHz.

  6. Monitor of SC beam profiles

    CERN Document Server

    CERN PhotoLab

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  7. Ion beam monitoring

    International Nuclear Information System (INIS)

    McKinney, C.R.

    1980-01-01

    An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)

  8. Electron beam spectrum monitor using synchrotron light

    International Nuclear Information System (INIS)

    Reagan, D.; Hostetler, T.E.

    1979-03-01

    This instrument shows the positions, widths, and shapes of momentum spectra of SLAC beams. It uses synchrotron light produced when the beam is deflected by a magnet. Some of the light is focused on the face of an image splitter consisting of acrylic light pipes. The light pipes illuminate twelve photomultiplier tubes. Pulses from the PM tubes are integrated, multiplexed, and displayed on an oscilloscope. The resolution of the instrument is usually better than 0.2%. It has some advantages over the secondary emitter foil spectrum monitors (SEM's) currently in use at SLAC. It need never be put out of service to avoid disturbing the beam. It is as sensitive as the most sensitive SLAC SEM. (Its performance has been optimized for high-current beams; it can easily be made much more sensitive.) It provides information on a pulse-to-pulse basis and, with better cables, could indicate electron beam pulse shapes

  9. ATLAS diamond Beam Condition Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Gorisek, A. [CERN (Switzerland)]. E-mail: andrej.gorisek@cern.ch; Cindro, V. [J. Stefan Institute (Slovenia); Dolenc, I. [J. Stefan Institute (Slovenia); Frais-Koelbl, H. [Fotec (Austria); Griesmayer, E. [Fotec (Austria); Kagan, H. [Ohio State University, OH (United States); Korpar, S. [J. Stefan Institute (Slovenia); Kramberger, G. [J. Stefan Institute (Slovenia); Mandic, I. [J. Stefan Institute (Slovenia); Meyer, M. [CERN (Switzerland); Mikuz, M. [J. Stefan Institute (Slovenia); Pernegger, H. [CERN (Switzerland); Smith, S. [Ohio State University, OH (United States); Trischuk, W. [University of Toronto (Canada); Weilhammer, P. [CERN (Switzerland); Zavrtanik, M. [J. Stefan Institute (Slovenia)

    2007-03-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm{sup 2} area and 500{mu}m thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented.

  10. ATLAS diamond Beam Condition Monitor

    International Nuclear Information System (INIS)

    Gorisek, A.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Griesmayer, E.; Kagan, H.; Korpar, S.; Kramberger, G.; Mandic, I.; Meyer, M.; Mikuz, M.; Pernegger, H.; Smith, S.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at z=+/-183.8cm. Timing of signals from the two stations will provide almost ideal separation of beam-beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of 1cm 2 area and 500μm thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test beam setup at KEK. Results from the test beams and bench measurements are presented

  11. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    International Nuclear Information System (INIS)

    Barr, D.

    2000-01-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  12. Versatile secondary beam for the meson area

    International Nuclear Information System (INIS)

    Kirk, T.

    1982-03-01

    A new secondary beam design is outlined for the Meson M6 Beamline that combines versatility with economy. The beamline described will transport charged particles of either sign to 800 GeV/c and bring the beam to a focus in one of three potential experimental areas. The plan makes maximal use of existing civil construction

  13. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  14. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  15. ATLAS diamond Beam Condition Monitor

    CERN Document Server

    Gorišek, A; Dolenc, I; Frais-Kölbl, H; Griesmayer, E; Kagan, H; Korpar, S; Kramberger, G; Mandic, I; Meyer, M; Mikuz, M; Pernegger, H; Smith, S; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2007-01-01

    The ATLAS experiment has chosen to use diamond for its Beam Condition Monitor (BCM) given its radiation hardness, low capacitance and short charge collection time. In addition, due to low leakage current diamonds do not require cooling. The ATLAS Beam Condition Monitoring system is based on single beam bunch crossing measurements rather than integrating the accumulated particle flux. Its fast electronics will allow separation of LHC collisions from background events such as beam gas interactions or beam accidents. There will be two stations placed symmetrically about the interaction point along the beam axis at . Timing of signals from the two stations will provide almost ideal separation of beam–beam interactions and background events. The ATLAS BCM module consists of diamond pad detectors of area and thickness coupled to a two-stage RF current amplifier. The production of the final detector modules is almost done. A S/N ratio of 10:1 has been achieved with minimum ionizing particles (MIPs) in the test bea...

  16. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  17. Proton beam monitor chamber calibration

    International Nuclear Information System (INIS)

    Gomà, C; Meer, D; Safai, S; Lorentini, S

    2014-01-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences—of the order of 3%—were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth—i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers—rather than cylindrical chambers—for the reference dosimetry of pseudo-monoenergetic proton beams. (paper)

  18. Beam loss monitor system for machine protection

    CERN Document Server

    Dehning, B

    2005-01-01

    Most beam loss monitoring systems are based on the detection of secondary shower particles which depose their energy in the accelerator equipment and finally also in the monitoring detector. To allow an efficient protection of the equipment, the likely loss locations have to be identified by tracking simulations or by using low intensity beams. If superconducting magnets are used for the beam guiding system, not only a damage protection is required but also quench preventions. The quench levels for high field magnets are several orders of magnitude below the damage levels. To keep the operational efficiency high under such circumstances, the calibration factor between the energy deposition in the coils and the energy deposition in the detectors has to be accurately known. To allow a reliable damage protection and quench prevention, the mean time between failures should be high. If in such failsafe system the number of monitors is numerous, the false dump probability has to be kept low to keep a high operation...

  19. The ATLAS Beam Conditions Monitor

    International Nuclear Information System (INIS)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz', M; Zavrtanik, M; Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P; Frais-Koelbl, H; Griesmayer, E; Niegl, M; Kagan, H; Tardif, D; Trischuk, W

    2008-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10 15 charged particles per cm 2 over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = ±184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware

  20. The ATLAS Beam Conditions Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Cindro, V; Dolenc, I; Kramberger, G; Macek, B; Mandic, I; Mikuz' , M; Zavrtanik, M [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Dobos, D; Gorisek, A; Pernegger, H; Weilhammer, P [CERN, Geneva (Switzerland); Frais-Koelbl, H; Griesmayer, E; Niegl, M [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H [Ohio State University, Columbus (United States); Tardif, D; Trischuk, W [University of Toronto, Toronto (Canada)], E-mail: william@physics.utoronto.ca

    2008-02-15

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to build their own beam monitoring devices. The ATLAS Beam Conditions Monitor (BCM) consists of two stations (forward and backward) of detectors each with four modules. The sensors are required to tolerate doses up to 500 kGy and in excess of 10{sup 15} charged particles per cm{sup 2} over the lifetime of the experiment. Each module includes two diamond sensors read out in parallel. The stations are located symmetrically around the interaction point, positioning the diamond sensors at z = {+-}184 cm and r = 55 mm (a pseudo- rapidity of about 4.2). Equipped with fast electronics (2 ns rise time) these stations measure time-of-flight and pulse height to distinguish events resulting from lost beam particles from those normally occurring in proton-proton interactions. The BCM also provides a measurement of bunch-by-bunch luminosities in ATLAS by counting in-time and out-of-time collisions. Eleven detector modules have been fully assembled and tested. Tests performed range from characterisation of diamond sensors to full module tests with electron sources and in proton testbeams. Testbeam results from the CERN SPS show a module median-signal to noise of 11:1 for minimum ionising particles incident at a 45-degree angle. The best eight modules were installed on the ATLAS pixel support frame that was inserted into ATLAS in the summer of 2007. This paper describes the full BCM detector system along with simulation studies being used to develop the logic in the back-end FPGA coincidence hardware.

  1. A Beam Quality Monitor for LHC Beams in the SPS

    CERN Document Server

    Papotti, G

    2008-01-01

    The SPS Beam Quality Monitor (BQM) system monitors the longitudinal parameters of the beam before extraction to the LHC to prevent losses and degradation of the LHC luminosity by the injection of low quality beams. It is implemented in two priority levels. At the highest level the SPS-LHC synchronization and global beam structure are verified. If the specifications are not met, the beam should be dumped in the SPS before extraction. On the second level, individual bunch position, length and stability are checked for beam quality assessment. Tolerances are adapted to the mode of operation and extraction to the LHC can also be inhibited. Beam parameters are accessed by acquiring bunch profiles with a longitudinal pick up and fast digital oscilloscope. The beam is monitored for instabilities during the acceleration cycle and thoroughly checked a few ms before extraction for a final decision on extraction interlock. Dedicated hardware and software components implementing fast algorithms are required. In this pape...

  2. Beam Loss Monitors at LHC

    CERN Document Server

    Dehning, B.

    2016-01-01

    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.

  3. A beam profile monitor for a tagged photon beam

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.)

  4. A beam profile monitor for a tagged photon beam

    Energy Technology Data Exchange (ETDEWEB)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Noeldeke, G.; Schneider, W.; Zucht, B.

    1990-10-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10{sup 10} electrons/s and 10{sup 7} photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range (at the expense of measuring time) to meet the requirements set by the actual beam size. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA are given. (orig.).

  5. A beam position monitor for low current dc beams

    International Nuclear Information System (INIS)

    Adderley, P.; Barry, W.; Heefner, J.; Kloeppel, P.; Rossmanith, R.; Wise, M.; Jachim, S.

    1989-01-01

    The 4 GeV recirculating linac, CEBAF, if presently under construction and will produce a CW beam with average current between.1 and 200 μA. In order to measure beam position, the beam current will be amplitude modulated at a frequency of 10 MHz. The modulation is detected by an inductive loop type monitor with electronics sensitive only to the modulation frequency. The first test with beam from the CEBAF injector indicate that beam position can be measured with an accuracy of .1 mm at a modulated beam current of 1 μA. 1 ref., 6 figs., 1 tab

  6. Beam profile monitors for a tagged photon beam facility

    International Nuclear Information System (INIS)

    Arends, J.; Breuer, M.; Dahmen, H.D.; Detemple, P.; Schneider, W.; Urban, D.; Zucht, B.

    1991-01-01

    A beam profile monitor for electron and photon beams is described, which operates at the low intensities encountered in a tagged bremsstrahlung beam environment, typically 10 10 electrons/s and 10 7 photons/s. The method is based on a wire scanner and utilizes the presence of a tagging spectrometer. The accuracy of the measurements can be tuned in a wide range to meet the requirements set by the actual beam parameters. Examples of measured electron and photon beam profiles at the tagged photon beam of the PHOENICS experiment at the electron stretcher ring ELSA in Bonn are given. (orig.)

  7. Beam monitoring at NA2

    CERN Multimedia

    1978-01-01

    Claus Goessling working on the beam Cerenkov counter of NA2. The muon beam enters from left the hall EHN2 and the last element of the beam transport. On background is the access door on the Jura side.

  8. High intensity beam profile monitors for the LAMPF primary beam lines

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; van Dyck, O.; Lee, D.; Harvey, A.; Bridge, J.; Cainet, J.

    1979-01-01

    Two types of beam profile monitors are in use at LAMPF to measure the properties of the 800 MeV, 500 μA proton beam external to the linac. Both types use secondary electron emission from a wire to produce a current signal proportional to the amount of proton beam that intercepts the wire. The wire scanner system uses a pair of orthogonal wires which are passed through the beam and the harp system uses two fixed planes of parallel wires. Most of the harps are not retractable and are exposed continuously to the primary beam. The high beam intensities available lead to a number of technical problems for instruments that intercept the beam or are close to primary beam targets. The thermal, electrical, radiation-damage, and material selection problems encountered, and some solutions which have been implemented are discussed

  9. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  10. SNS project-wide beam current monitors

    International Nuclear Information System (INIS)

    Kesselman, M.; Witkover, R.; Doolittle, L.; Power, J.

    2000-01-01

    A consortium of national laboratories is constructing the Spallation Neutron Source [1] (SNS) to be installed at Oak Ridge National Laboratory. There are signal similarities that exist in the beam diagnostic instrumentation that could permit common designs. This paper will focus on the beam current monitoring requirements, and the methods under consideration to measure beam current in various locations throughout the SNS facility

  11. Electron beam emittance monitor for the SSC

    International Nuclear Information System (INIS)

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements

  12. Self-tracking optical beam monitor

    International Nuclear Information System (INIS)

    Miyahara, T.; Mitsuhashi, T.

    1992-01-01

    A new optical beam monitor with a self-tracking system was constructed and tested at an undulator beam line of the Photon Factory. The monitor has a feedback system to receive a constant part of the radiation and gives a large range of linearity. The beam position is read out through a linear encoder to detect the self-tracking movement of a pair of photocathodes. The monitor except the feedback system is totally bakeable and UHV compatible and can be installed at a VUV or a soft x-ray beam line

  13. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  14. Absolute beam current monitoring in endstation c

    International Nuclear Information System (INIS)

    Bochna, C.

    1995-01-01

    The first few experiments at CEBAF require approximately 1% absolute measurements of beam currents expected to range from 10-25μA. This represents errors of 100-250 nA. The initial complement of beam current monitors are of the non intercepting type. CEBAF accelerator division has provided a stripline monitor and a cavity monitor, and the authors have installed an Unser monitor (parametric current transformer or PCT). After calibrating the Unser monitor with a precision current reference, the authors plan to transfer this calibration using CW beam to the stripline monitors and cavity monitors. It is important that this be done fairly rapidly because while the gain of the Unser monitor is quite stable, the offset may drift on the order of .5μA per hour. A summary of what the authors have learned about the linearity, zero drift, and gain drift of each type of current monitor will be presented

  15. The optics of secondary polarized proton beams

    International Nuclear Information System (INIS)

    Carey, D.C.

    1990-05-01

    Polarized protons can be produced by the parity-violating decay of either lambda or sigma hyperons. A secondary bema of polarized protons can then be produced without the difficult procedure of accelerating polarized protons. The preservation of the polarization while the protons are being transmitted to a final focus places stringent limitations on the optics of the beam line. The equations of motion of a polarized particle in a magnetic field have been solved to first order for quadrupole and dipole magnets. The lowest order terms indicate that the polarization vector will be restored to its original direction upon passage through a magnetic system if the momentum vector is unaltered. Higher-order terms may be derived by an expansion in commutators of the rotation matrix and its longitudinal derivative. The higher-order polarization rotation terms then arise from the non-commutivity of the rotation matrices by large angles in three-dimensional space. 5 refs., 3 figs

  16. Beam profile monitors in the NLCTA

    International Nuclear Information System (INIS)

    Nantista, C.; Adolphsen, C.; Brown, R.L.; Fuller, R.; Rifkin, J.

    1997-05-01

    The transverse current profile in the Next Linear Collider Test Accelerator (NLCTA) electron beam can be monitored at several locations along the beam line by means of profile monitors. These consist of insertable phosphor screens, light collection and transport systems, CID cameras, a frame-grabber, and PC and VAX based image analysis software. In addition to their usefulness in tuning and steering the accelerator, the profile monitors are utilized for emittance measurement. A description of these systems and their performance is presented

  17. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1985-09-01

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1 to 10 g/cm 2 ) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage and accumulator rings. 14 refs

  18. Carbon buildup monitoring using RBS: Correlation with secondary electrons

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Rosales, P.; Martinez-Quiroz, E.; Murillo, G.; Fernandez, M.C.

    2006-01-01

    The RBS technique is applied to solve the problem of on-line monitoring of the carbon deposited on a thin backed foil under ion bombardment. An iterative method is used to reliably extract quantities such as number of projectiles and target thickness in spite of beam energy changes and detector unstabilities. Experimental values for secondary electron yields are also deduced. Results are reported for the thickness variation of thin carbon foils bombarded with carbon ions of energies between 8.95 and 13 MeV. A linear correlation of this variation is found with both, the ion fluence at target and the number of secondary electrons emitted. The correlation exists even though a wide range of beam currents, beam energies and bombarding times was used during the experiment. The measured electron yields show evidence for a change in the emission process between the original foils and the deposited layer, possibly due to a texture change

  19. Beam position monitor for energy recovered linac beams

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Thomas; Evtushenko, Pavel

    2017-06-06

    A method of determining the beam position in an energy recovered linac (ERL). The method makes use of in phase and quadrature (I/Q) demodulation techniques to separate the pickup signal generated by the electromagnetic fields generated by the first and second pass beam in the energy recovered linac. The method includes using analog or digital based I/Q demodulation techniques in order to measure the relative amplitude of the signals from a position sensitive beam pickup such as a button, strip line or microstripline beam position monitor.

  20. Photoelectric effect photon beam position monitors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Stability of the electron orbit is of critical importance at the NSLS. Many experimenters utilizing the NSLS photon beams can take full advantage of the small transverse dimensions of the source only if the electron orbit variation is kept below 10 to 20% of the transverse electron bunch size. Clearly the first step in a program to stabilize the orbit is to develop position monitors with the required sensitivity, reliability and dynamic range. Of great importance are monitors detecting the photon beams themselves, and also monitors measuring the position of the electron beam. In this section the authors discuss photon beam position monitors utilizing the photoelectric effects, and in the following section the use of capacitively coupled pick-up electrodes to detect electron beam position will be described. In what follows they shall proceed to consider two generic types of monitor geometries (1) Gap monitors, which are designed with the idea that the fringes of the synchrotron radiation will be measured, and the hot or fundamental beam will pass through the monitor unimpeded. (2) Area monitors, which are comprised of two triangular elements nested together similar to the electrodes of a split ion chamber or the diodes described by Siddons and Kraner or Mitsuhashi et al

  1. Beam position monitor system for storage rings

    International Nuclear Information System (INIS)

    Nakamura, M.; Hinkson, J.A.

    1985-05-01

    Beam position monitors (BPM) for synchrotron light storage rings usually consist of beam pickup electrodes, coaxial relays and a narrowband receiver. While accurate, these systems are slow and of limited use in the commissioning of an accelerator. A beam position monitor is described which is intended to be a principal diagnostic during debug and routine running of a storage ring. It is capable of measuring the position of a single bunch on the first or nth orbit to an accuracy of a few percent. Stored beam position is more accurately measured with averaging techniques. Beam position changes can be studied in a bandwidth from DC to a few MHz. The beam monitor electronics consist of a separate amplification, detection, and sampling channel for each beam pickup electrode. Fast switches in each channel permit selection of the nth turn for measurement (single bunch mode). A calibration pulse is injected into each channel after beam measurement to permit gain offsets to be measured and removed from the final data. While initially more costly than the usual beam position monitor system, this sytem will pay for itself in reduced storage ring debug and trouble shooting time. 5 refs., 5 figs

  2. Monitor tables for electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Christ, G.; Dohm, O.S.

    2007-01-01

    The application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units. The present paper summarizes and discusses the main aspects concerning the preparation of tables of monitor units for electron beams. The measurement equipment and procedures for measuring basic beam data needed for tables of monitor units for electron beams are described for a standard radiation therapy linac. The design of tables of monitor units for standard electron applicators is presented; this design can be extended for individual electron inserts, to variable applicator surface distances, to oblique beam incidence, and the use of bolus material. Typical data of an Elekta linac are presented in various tables. (orig.)

  3. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  4. Characterization and monitoring of transverse beam tails

    International Nuclear Information System (INIS)

    Seeman, J.T.; Decker, F.J.; Hsu, I.; Young, C.

    1991-05-01

    Low emittance electron beams accelerated to high energy in a linac experience transverse effects (wakefield, filamentation, optics) which produce non-Gaussian projected transverse beam distributions. Characterizations of the beam shapes are difficult because the shapes are asymmetric and change with betatron phase. In this note several methods to describe beam distributions are discussed including an accelerator physics model of these tails. The uses of these characterizations in monitoring the beam emittances in the SLC are described in this paper. First, two dimensional distributions from profile monitor screens are reviewed showing correlated tails. Second, a fitting technique for non-Gaussian one dimensional distributions is used to extract the core from the tail areas. Finally, a model for tail propagation in the linac is given. 3 refs., 6 figs

  5. Studies of beam position monitor stability

    International Nuclear Information System (INIS)

    Tenenbaum, P.

    1998-05-01

    The authors present the result s from two studies of the time stability between the mechanical center of a beam position monitor and its electrical/electronic center. In the first study, a group of 93 BPM processors was calibrated via Test Pulse Generator once per hour in order to measure the contribution of the readout electronics to offset drifts. In the second study, a triplet of stripline BPMs in the Final Focus Test Beam, separated only by drift spaces, was read out every 6 minutes during 1 week of beam operation. In both cases offset stability was observed to be on the order of microns over time spans ranging from hours to days, although during the beam study much worse performance was also observed. Implications for the beam position monitor system of future linear collider systems are discussed

  6. Modified M20 Beam Position Monitor Testing

    Science.gov (United States)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  7. Advanced Light Source beam position monitor

    International Nuclear Information System (INIS)

    Hinkson, J.

    1991-01-01

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics

  8. Embedded Collimator Beam Position Monitors

    CERN Document Server

    Bertarelli, A; Dallocchio, A; Gasior, M; Gentini, L; Nosych, A

    2011-01-01

    The LHC col­li­ma­tion sys­tem is cru­cial for safe and re­li­able op­er­a­tion of pro­ton beams with 350 MJ stored en­er­gy. Cur­rent­ly the col­li­ma­tor set-up is per­formed by ob­serv­ing beam loss­es when ap­proach­ing the colli­ma­tor jaws to the beam. For all 100 LHC mov­able col­li­ma­tors the pro­ce­dure may take sev­er­al hours and since it has to be re­peat­ed whenev­er the beam con­fig­u­ra­tion changes sig­nif­i­cant­ly, the col­li­ma­tor setup has an im­por­tant im­pact on the over­all ma­chine op­er­a­tion efficien­cy. To re­duce the col­li­ma­tor setup time by two or­ders of magni­tude the next gen­er­a­tion of the LHC col­li­ma­tors will be equipped with but­ton beam po­si­tion mon­i­tors (BPMs) em­bed­ded into the collimator jaws. This paper de­scribes the BPM de­sign and pre­sents proto­type re­sults ob­tained with beam in the CERN-SPS.

  9. Monitoring external beam radiotherapy using real-time beam visualization

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Cesare H. [Department of Mechanical Engineering and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Naczynski, Dominik J.; Yu, Shu-Jung S.; Xing, Lei, E-mail: lei@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States)

    2015-01-15

    Purpose: To characterize the performance of a novel radiation therapy monitoring technique that utilizes a flexible scintillating film, common optical detectors, and image processing algorithms for real-time beam visualization (RT-BV). Methods: Scintillating films were formed by mixing Gd{sub 2}O{sub 2}S:Tb (GOS) with silicone and casting the mixture at room temperature. The films were placed in the path of therapeutic beams generated by medical linear accelerators (LINAC). The emitted light was subsequently captured using a CMOS digital camera. Image processing algorithms were used to extract the intensity, shape, and location of the radiation field at various beam energies, dose rates, and collimator locations. The measurement results were compared with known collimator settings to validate the performance of the imaging system. Results: The RT-BV system achieved a sufficient contrast-to-noise ratio to enable real-time monitoring of the LINAC beam at 20 fps with normal ambient lighting in the LINAC room. The RT-BV system successfully identified collimator movements with sub-millimeter resolution. Conclusions: The RT-BV system is capable of localizing radiation therapy beams with sub-millimeter precision and tracking beam movement at video-rate exposure.

  10. Realization of a scanning ion beam monitor

    International Nuclear Information System (INIS)

    Pautard, C.

    2008-07-01

    During this thesis, a scanning ion beam monitor has been developed in order to measure on-line fluence spatial distributions. This monitor is composed of an ionization chamber, Hall Effect sensors and a scintillator. The ionization chamber set between the beam exit and the experiment measures the ion rate. The beam spot is localized thanks to the Hall Effect sensors set near the beam sweeping magnets. The scintillator is used with a photomultiplier tube to calibrate the ionization chamber and with an imaging device to calibrate the Hall Effect sensors. This monitor was developed to control the beam lines of a radiobiology dedicated experimentation room at GANIL. These experiments are held in the context of the research in hadron-therapy. As a matter of fact, this new cancer treatment technique is based on ion irradiations and therefore demands accurate knowledge about the relation between the dose deposit in biological samples and the induced effects. To be effective, these studies require an on-line control of the fluence. The monitor has been tested with different beams at GANIL. Fluence can be measured with a relative precision of ±4% for a dose rate ranging between 1 mGy/s and 2 Gy/s. Once permanently set on the beam lines dedicated to radiobiology at GANIL, this monitor will enable users to control the fluence spatial distribution for each irradiation. The scintillator and the imaging device are also used to control the position, the spot shape and the energy of different beams such as those used for hadron-therapy. (author)

  11. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  12. A machine protection beam position monitor system

    International Nuclear Information System (INIS)

    Medvedko, E.; Smith, S.; Fisher, A.

    1998-01-01

    Loss of the stored beam in an uncontrolled manner can cause damage to the PEP-II B Factory. We describe here a device which detects large beam position excursions or unexpected beam loss and triggers the beam abort system to extract the stored beam safely. The bad-orbit abort trigger beam position monitor (BOAT BPM) generates a trigger when the beam orbit is far off the center (>20 mm), or rapid beam current loss (dI/dT) is detected. The BOAT BPM averages the input signal over one turn (136 kHz). AM demodulation is used to convert input signals at 476 MHz to baseband voltages. The detected signal goes to a filter section for suppression of the revolution frequency, then on to amplifiers, dividers, and comparators for position and current measurements and triggering. The derived current signal goes to a special filter, designed to perform dI/dT monitoring at fast, medium, and slow current loss rates. The BOAT BPM prototype test results confirm the design concepts. copyright 1998 American Institute of Physics

  13. Beam monitoring in the transport channel

    International Nuclear Information System (INIS)

    Kalinin, A.S.; Levichev, E.B.; Samorukov, M.M.; Yupinov, Yu.L.

    1983-01-01

    Monitoring system for a single beam of charged particles, measuring peak current, centre of gravity displacement from equilibrium trajectory and cross section quadrupolar moment is described. Magnetoinduction sensors are used in the system. Beam parameter determination is made using a computer. The measurement accuracy is expected to be not worse than +-1mm in the current range (0.01-1)A at the beam duration more than 50 ns. The system is designed for the operation under conditions of background radiation and electromagnetic noise. The system described is developed for beam monitoring in electron-optical channel, connecting the ''Fakel'' LEA injector and small storage ring ''Plamja 1'', which is a part of storage ring complex-sources of synchrotron radiation

  14. FMIT direct-current beam monitor

    International Nuclear Information System (INIS)

    Brousseau, A.T.; Chamberlin, D.D.

    1981-01-01

    The prototype injector section for the Fusion Materials Irradiation Test (FMIT) Facility being developed at the Los Alamos National Laboratory requires that beam parameters be noninterceptively monitored. This report describes the application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam

  15. Flying wire beam profile monitor at the J-PARC MR

    International Nuclear Information System (INIS)

    Igarashi, Susumu; Arakawa, Dai; Hashimoto, Yoshinori; Teshima, Masaki; Toyama, Takeshi; Hanamura, Kotoku

    2008-01-01

    A flying wire beam profile monitor has been assembled and installed at the main ring of the Japan Proton Accelerator Research Complex. The monitor is to measure the horizontal beam profile using a carbon fiber of 7 μmφ. The fiber crosses the beam with the speed of 10 m/s. Secondary particles from the beam-wire scattering is detected using a scintillation counter. The scintillator signal as a function of the wire position is to be reconstructed as a beam profile. The high scanning speed and the minimum material are necessary for the accurate beam profile measurement. The monitor has been operated in the beam commissioning run of the main ring. The beam profile data have been successfully acquired after the reduction of the beam background. (author)

  16. Multigigahertz beam-current and position monitor

    International Nuclear Information System (INIS)

    Carlson, R.L.; Stout, L.E.

    1985-01-01

    A self-integrating magnetic-loop device having a risetime of less than 175 ps has been developed to monitor the temporal behavior of the electron beam current and position within each 3.3-ns micropulse generated by the PHERMEX rf linear accelerator. Beam current is measured with a 2-GHz bandwidth by combining these loops in a four-port hybrid summer. Another application of these loops uses two 180 0 hybrids to give 2-GHz time-resolved beam position to an accuracy of 1 mm. These sensors are nonintrusive to the propagating beam and allow ultrafast beam measurements previously restricted to the technique of recording the Cerenkov-light emission from an intercepting Kapton foil using a streak camera

  17. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    Directory of Open Access Journals (Sweden)

    Toppi M.

    2016-01-01

    Full Text Available Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  18. The AGS Booster Beam Position Monitor system

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 x 10 10 to 1.5 x 10 13 particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with ± 0.1 mm resolution. The design goal of ± 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 degree C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs

  19. Noise reduction in the beam current monitor

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1982-02-01

    A simple noise reduction system using a pulse transformer and a pair of L C low pass filters has been introduced to the beam current monitor of a current transformer type at the INS electron linac. With this system, the pick-up noise has been reduced to be 1% of the noise without noise reduction. Signal deformation caused by this system is relatively small and the beam current pulse down to 20 mA is successfully monitored in the actual accelerator operation. (author)

  20. Beam based measurement of beam position monitor electrode gains

    Directory of Open Access Journals (Sweden)

    D. L. Rubin

    2010-09-01

    Full Text Available Low emittance tuning at the Cornell Electron Storage Ring (CESR test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ∼0.1%.

  1. Beam based measurement of beam position monitor electrode gains

    Science.gov (United States)

    Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.

    2010-09-01

    Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.

  2. RHIC beam position monitor assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, the 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  3. RHIC Beam Position Monitor Assemblies

    International Nuclear Information System (INIS)

    Cameron, P.R.; Grau, M.C.; Ryan, W.A.; Shea, T.J.; Sikora, R.E.

    1993-01-01

    Design calculations, design details, and fabrication techniques for the RHIC BPM Assemblies are discussed. The 69 mm aperture single plane detectors are 23 cm long short-circuited 50 ohm strip transmission lines subtending 80 degrees. They are mounted on the sextupole end of the Corrector-Quadrupole-Sextupole package and operate at liquid helium temperature. The 69 cm aperture was selected to be the same as that of the beampipe in the CQS package, dc 23 cm length is a compromise between mechanical stability and electrical sensitivity to the long low-intensity proton and heavy ion bunches to be found in RHIC during commissioning, and the 80 degree subtended angle maximizes linear aperture. The striplines are aligned after brazing to maintain electrical-to-mechanical centers within 0.1 mm radius, eliminating the need for individual calibration. Because the cryogenic feedthrus isolate the UHV beam vacuum only from the HV insulating vacuum, and do not see liquid helium, a replaceable mini-ConFlat design was chosen to simplify fabrication, calibration, and maintenance

  4. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  5. Beam losses monitor for superconducting accelerators

    International Nuclear Information System (INIS)

    Kurochkin, I.A.; Lapitskij, S.N.; Mokhov, N.V.; Seleznev, V.S.

    1991-01-01

    A special beam losses monitor (BLM) for SC accelerators -colliders as an integral part od SC magnet (quadrupole or/and corrector) design is proposed. The main BLM parameters calculated under the real UNK and SSC conditions are presented in comparison with the traditional BLM ones which is planned to be used at SSC now. 9 refs.; 4 figs.; 2 tabs

  6. The CMS Beam Halo Monitor electronics

    International Nuclear Information System (INIS)

    Tosi, N.; Fabbri, F.; Montanari, A.; Torromeo, G.; Dabrowski, A.E.; Orfanelli, S.; Grassi, T.; Hughes, E.; Mans, J.; Rusack, R.; Stifter, K.; Stickland, D.P.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data

  7. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  8. Beam current monitors in the NLCTA

    International Nuclear Information System (INIS)

    Nantista, C.; Adolphsen, C.

    1997-05-01

    The current profile along the 126 ns, multi-bunch beam pulse in the Next Linear Collider Test Accelerator (NLCTA) is monitored with fast toroids (rise time ∼ 1 ns). Inserted at several positions along the beam line, they allow one to track current transmission as a function of position along the bunch train. Various measurements, such as rise time, current, width, and slope, are made on the digitized signals, which can be corrected in software by means of stored frequency response files. The design and implementation of these devices is described

  9. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  10. Precision intercomparison of beam current monitors at CEBAF

    International Nuclear Information System (INIS)

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, R.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-01-01

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 μA. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current

  11. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  12. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  13. Secondary beam course for the medical use at HIMAC

    International Nuclear Information System (INIS)

    Kanazawa, Mitsutaka; Kitagawa, Atsushi; Torikoshi, Masami

    2003-01-01

    To verify the ion range in the cancer treatment, a positron emitter beam is a promising tool. For this purpose we have constructed an irradiation system with secondary beam, where a spot scanning technique was adopted. To measure the three dimensional dose distributions, multi-pad ionization chamber was used. Concerning the experiments with positron camera, wash-out effect of injected positron emitters were measured with rabbit. In this report current status of the beam experiments of the irradiation system are presented. (author)

  14. CNGS beam monitor with the LVD detector

    International Nuclear Information System (INIS)

    Aglietta, M.; Antonioli, P.; Bari, G.; Castagnoli, C.; Fulgione, W.; Galeotti, P.; Garbini, M.; Ghia, P.L.; Giusti, P.; Kemp, E.; Malguin, A.S.; Menghetti, H.; Pesci, A.; Pless, I.A.; Porta, A.; Ryasny, V.G.; Ryazhskaya, O.G.; Saavedra, O.; Sartorelli, G.; Selvi, M.; Vigorito, C.; Votano, L.; Yakushev, V.F.; Zatsepin, G.T.; Zichichi, A.

    2004-01-01

    The importance of an adequate CNGS beam monitor at the Gran Sasso Laboratory has been stressed in many papers. Since the number of internal ν μ CC and NC interactions in the various detectors will not allow to collect statistics rapidly, one should also be able to detect the ν μ CC interactions in the upstream rock. In this study, we have investigated the performances of the LVD detector as a monitor for the CNGS neutrino beam. Thanks to its wide area (13x11 m 2 orthogonal to the beam direction) LVD can detect about 120 muons per day originated by ν μ CC interactions in the rock. The LVD total mass is ∼2 kt. This allows to get 30 more CNGS events per day as internal (NC+CC) ν μ interactions, for a total of ∼150 events/day. A 3% statistical error can be reached in 7 days. Taking into account the time characteristics of the CNGS beam, the cosmic muon background can be reduced to a negligible level, of the order of 1.5 events/day

  15. APCAL1: Beam Position Monitor Program

    Energy Technology Data Exchange (ETDEWEB)

    Early, R.A.

    1979-12-01

    APCAL1 is an applications program operational on the PEP MODCOMP IV computer for the purpose of converting beam position monitor (BPM) button voltage readings to x,y coordinates. Calibration information and the BPM readings are read from the MODCOMP IV data base. Corresponding x,y coordinates are written in the data base for use by other programs. APCAL1 is normally activated by another program but can be activated by a touch panel for checkout purposes.

  16. The CMS Beam Halo Monitor Detector System

    CERN Document Server

    CMS Collaboration

    2015-01-01

    A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...

  17. Monitoring the beam position in the SLC interaction region

    Energy Technology Data Exchange (ETDEWEB)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-03-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e/sup +/ and e/sup -/) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50 ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam.

  18. Monitoring the beam position in the SLC interaction region

    International Nuclear Information System (INIS)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-03-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e + and e - ) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50 ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam

  19. Monitoring the beam position in the SLC interaction region

    International Nuclear Information System (INIS)

    Denard, J.C.; Bowden, G.B.; Oxoby, G.J.; Pellegrin, J.L.; Ross, M.C.

    1987-01-01

    The Stanford Linear Collider requires special Beam Position Monitors near the Interaction Point (IP) to bring the two beams (e/sup +/ and /sup e-/) into collision. These beams pass through two monitors on each side of the IP with a short time separation (about 20 and 50ns). The mechanics of the monitors as well as the electronics will be described. In order to bring beams of several microns diameter into collision at the IP, these monitors measure beam deflection induced by the presence of the opposite beam

  20. A high resolution wire scanner beam profile monitor with a microprocessor data acquisition system

    International Nuclear Information System (INIS)

    Cutler, R.I.; Mohr, D.L.; Whittaker, J.K.; Yoder, N.R.

    1983-01-01

    A beam profile monitor has been constructed for the NBS-LANL Racetrack Microtron. The monitor consists of two perpendicular 30 μm diameter carbon wires that are driven through an electron beam by a pneumatic actuator. A long-lifetime, electroformed nickel bellows is used for the linear-motion vacuum feedthrough. Secondary emission current from the wires and a signal from a transducer measuring the position of the wires are simultaneously digitized by a microprocessor to yield beam current density profiles in two dimensions. The wire scanner is designed for use with both pulsed and cw beams

  1. Statistical process control for electron beam monitoring.

    Science.gov (United States)

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Method and apparatus for real time imaging and monitoring of radiotherapy beams

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA; Macey, Daniel J [Birmingham, AL; Weisenberger, Andrew G [Yorktown, VA

    2011-11-01

    A method and apparatus for real time imaging and monitoring of radiation therapy beams is designed to preferentially distinguish and image low energy radiation from high energy secondary radiation emitted from a target as the result of therapeutic beam deposition. A detector having low sensitivity to high energy photons combined with a collimator designed to dynamically image in the region of the therapeutic beam target is used.

  3. Secondary electrons detectors for beam tracking: micromegas and wire chamber

    International Nuclear Information System (INIS)

    Pancin, J; Chaminade, T; Drouart, A; Kebbiri, M; Riallot, M; Fernandez, B; Naqvi, F

    2009-01-01

    SPIRAL2 or FAIR will be able to deliver beams of radioactive isotopes of low energy (less than 10 MeV/n). The emittance of these new beams will impose the use of beam tracking detectors to reconstruct the exact impact position of the nuclei on the experimental target. However, due to their thickness, the classical detectors will generate a lot of energy and angular straggling. A possible alternative is the SED principle (Secondary Electron Detector). It consists of an emissive foil placed in beam and a detector for the secondary electrons ejected by the passing of the nuclei through the foil. An R and D program has been initiated at CEA Saclay to study the possibility to use low pressure gaseous detectors as SED for beam tracking. Some SED have been already used on the VAMOS spectrometer at GANIL since 2004. We have constructed new detectors on this model to measure their performances in time and spatial resolution, and counting rate. Other detector types are also under study. For the first time, a test with different micromegas detectors at 4 Torr has been realized. A comparison on the time resolution has been performed between wire chamber and micromegas at very low pressure. The use of micromegas could be promising to improve the counting rate capability and the robustness of beam tracking detectors.

  4. Uranium concentration monitor manual, secondary intermediate evaporator

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Slice, R.W.; Strittmatter, R.B.

    1985-08-01

    This manual describes the design, operation, and measurement control procedures for the automated uranium concentration monitor on the secondary intermediate evaporator at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration in the return loop of time recirculating evaporator for purposes of process monitoring and control. A detector installed near the bottom of the return loop is used to acquire spectra of gamma rays from the evaporator solutions during operation. Pulse height analysis of each spectrum gives the information required to deduce the concentration of uranium in the evaporator solution in near-real time. The visual readout of concentration is updated at the end of every assay cycle. The readout includes an alphanumeric display of uranium concentration and an illuminated, colored LED (in an array of colored LEDs) indicating whether the measured concentration is within (or above or below) the desired range. An alphanumeric display of evaporator solution acid molarity is also available to the operator. 9 refs., 16 figs., 4 tabs

  5. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  6. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-01-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  7. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 10 13 protons and carbon to gold ions at 50-3 x 10 9 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  8. Self triggered single pulse beam position monitor

    International Nuclear Information System (INIS)

    Rothman, J.L.; Blum, E.B.

    1993-01-01

    A self triggered beam position monitor (BPM) has been developed for the NSLS injection system to provide single pulse orbit measurements in the booster synchrotron, linac, and transport lines. The BPM integrates the negative going portion of 3 nS wide bipolar pickup electrode signals. The gated, self triggering feature confines critical timing components to the front end, relaxing external timing specifications. The system features a low noise high speed FET sampler, a fiber optic gate for bunch and turn selection, and an inexpensive interface to a standard PC data acquisition system

  9. Beam current monitors at the UNILAC

    International Nuclear Information System (INIS)

    Schneider, N.

    1998-01-01

    One of the most basic linac operation tools is a beam current transformer. Using outstanding materials, the latest low-noise amplifiers, and some good ideas, a universal current monitoring system has been developed and installed at the UNILAC at GSI. With a dynamic range of 112 dB, covering the low-current range down to 100 nA peak to peak at S/N=1, as well as 25 mA pulses, provided for high-current injection to the SIS synchrotron, a well-accepted diagnostic instrument could be placed at the disposal of the operaters

  10. AN INVESTIGATION OF THE BEAM MONITOR FOR THE CLUSTER KLYSTRON

    International Nuclear Information System (INIS)

    ZHAO, Y.

    2001-01-01

    The cluster klystron project required a beam monitor to check the quality of the hollow beam shape. Since the power density of the beam is very large, a common phosphorescent screen doesn't work. We investigated varies types of monitors. The related problems were also discussed

  11. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  12. A beam monitor using silicon pixel sensors for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: zwang@mails.ccnu.edu.cn; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming, E-mail: sphy2007@126.com; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-21

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II{sup -}, as the anode array. Topmetal-II{sup -} is a charge sensor designed in a CMOS 0.35 µm technology. Each Topmetal-II{sup -} sensor has 72×72 pixels and the pixel size is 83×83 µm{sup 2}. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 µm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  13. Performance of the CMS Beam Halo Monitor

    CERN Document Server

    CMS Collaboration

    2015-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of radiation hard synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes for a direction sensitive measurement. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and received data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed i...

  14. The CMS Beam Halo Monitor Electronics

    CERN Document Server

    AUTHOR|(CDS)2080684; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D.P.; Stifter, K.

    2016-01-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes. The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few ns resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is readout by IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providi...

  15. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  16. Characterization of the Li beam probe with a beam profile monitor on JET.

    Science.gov (United States)

    Nedzelskiy, I S; Korotkov, A; Brix, M; Morgan, P; Vince, J

    2010-10-01

    The lithium beam probe (LBP) is widely used for measurements of the electron density in the edge plasma of magnetically confined fusion experiments. The quality of LBP data strongly depends on the stability and profile shape of the beam. The main beam parameters are as follows: beam energy, beam intensity, beam profile, beam divergence, and the neutralization efficiency. For improved monitoring of the beam parameters, a beam profile monitor (BPM) from the National Electrostatics Corporation (NEC) has been installed in the Li beam line at JET. In the NEC BPM, a single grounded wire formed into a 45° segment of a helix is rotated by a motor about the axis of the helix. During each full revolution, the wire sweeps twice across the beam to give X and Y profiles. In this paper, we will describe the properties of the JET Li beam as measured with the BPM and demonstrate that it facilitates rapid optimization of the gun performance.

  17. Experimental verification of secondary effects of prestressed beam at ULS

    Directory of Open Access Journals (Sweden)

    Peter Pažma

    2016-03-01

    Full Text Available The paper deals with secondary effects of prestressing at ultimate limit state when statically indeterminate structure has changed its structural form due to development of plastic hinges in critical cross-sections. The article presents results of an experimental program which was carried out at Slovak University of Technology in Bratislava on two span continuous beams post-tensioned by two single-strand tendons subjected to experimental load which has changed structural system into kinematic mechanism.

  18. Cryogenic beam loss monitoring for the LHC

    International Nuclear Information System (INIS)

    Kurfürst, C.

    2013-01-01

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. The advantage is that the dose measured by the Cryogenic Beam Loss Monitor (CryoBLM) would more precisely correspond to the dose deposited in the superconducting coil. The main challenges of this placement are the low temperature of 1.9 K and the integrated dose of 2 MGy in 20 years. Furthermore the CryoBLM should work in a magnetic field of 2 T and at a pressure of 1.1 bar, withstanding a fast pressure rise up to 20 bar in case of a magnet quench. The detector response should be linear between 0.1 and 10 mGy/s and faster than 1 ms. Once the detectors are installed in the LHC magnets, no access will be possible. Hence the detectors need to be available, reliable and stable for 20 years. Following intense research it became clear that no existing technology was proven to work in such conditions. The candidates under investigation in this work are diamond and silicon detectors and an ionisation chamber, using the liquid helium itself as particle detection medium

  19. Real-Time Online Monitoring of the Ion Range by Means of Prompt Secondary Radiations

    International Nuclear Information System (INIS)

    Krimmer, J.; Balleyguier, L.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; De Rydt, M.; Dedes, G.; Della Negra, R.; Deng, S.M.; Ley, J.L.; Mathez, H.; Pinto, M.; Ray, C.; Richard, M.H.; Reithinger, V.; Roellinghoff, F.; Testa, E.; Zoccarato, Y.; Baudot, J.; Winter, M.; Brons, S.; Chabot, M.; Force, P.; Joly, B.; Insa, C.; Lambert, D.; Lestand, L.; Magne, M.; Montarou, G.; Freud, N.; Letang, J.M.; Lojacono, X.; Maxim, V.; Prostk, R.; Herault, J.; La Tessa, C.; Pleskac, R.; Vanstalle, M.; Parodi, K.; Prieels, D.; Smeets, J.; Rinaldi, I.

    2013-06-01

    Prompt secondary radiations such as gamma rays and protons can be used for ion-range monitoring during ion therapy either on an energy-slice basis or on a pencil-beam basis. We present a review of the ongoing activities in terms of detector developments, imaging, experimental and theoretical physics issues concerning the correlation between the physical dose and hadronic processes. (authors)

  20. Performance studies of the vibration wire monitor on the test stand with low energy electron beam

    International Nuclear Information System (INIS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    2015-01-01

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic. (author)

  1. A multi-wire beam profile monitor in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W. [and others

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  2. UHV photoelectron x-ray beam position monitor

    International Nuclear Information System (INIS)

    Johnson, E.D.; Oversluizen, T.

    1989-01-01

    As part of our research program to develop viable beam position monitors for both the X-ray and VUV beamlines at the NSLS, we have constructed vertical photon beam position monitors which are presently mounted in two front-ends in the X-ray ring. These area-type detectors are located before the safety shutters and are, therefore, able to monitor the beam position even during injection. The features of this type of monitor which contribute to its long-term stability, position sensitivity, and immunity to horizontal beam motion have been examined and will be discussed. 6 refs., 4 figs

  3. Analytical N beam position monitor method

    Directory of Open Access Journals (Sweden)

    A. Wegscheider

    2017-11-01

    Full Text Available Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β^{*}-leveling on luminosity will require many operational optics. A fast measurement of the β-function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs. A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  4. Analytical N beam position monitor method

    Science.gov (United States)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  5. Direct energy recovery from helium ion beams by a beam direct converter with secondary electron suppressors

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Yamamoto, Y.; Toku, H.; Kobayashi, A.; Okazaki, T.

    1989-01-01

    A 5-yr study of beam direct energy conversion was performed at the Kyoto University Institute of Atomic Energy to clarify the essential features of direct energy recovery from monoenergetic ion beams so that the performance characteristics of energy recovery can be predicted reasonably well by numerical calculations. The study used an improved version of an electrostatically electron-suppressed beam direct converter. Secondary electron suppressor grids were added, and a helium ion beam was used with typical parameters of 15.4 keV, 90 mA, and 100 ms. This paper presents a comparison of experimental results with numerical results by the two-dimensional Kyoto University Advanced Dart (KUAD) code, including evaluation of atomic processes

  6. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  7. Development of picosecond pulsed electron beam monitor. 2

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.

    1994-01-01

    A picosecond pulsed electron beam monitor for a 35 MeV linear accelerator has been developed. The monitor consists of an electric SMA connector and aluminium pipe(inner diameter of 50mm). The following characteristics of this monitor were obtained, (a) the rise time is less than 17.5 ps (b) linearity of the monitor output voltage is proportional to the peak current of beam. It is shown that this monitor can be successfully used for bunch measurements of picosecond pulsed electron beam of 35 MeV linac. (author)

  8. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    Science.gov (United States)

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  9. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    International Nuclear Information System (INIS)

    Mohos, I.; Dietrich, J.

    1998-01-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Juelich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network

  10. 500 MHz narrowband beam position monitor electronics for electron synchrotrons

    Science.gov (United States)

    Mohos, I.; Dietrich, J.

    1998-12-01

    Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.

  11. Development, Production and Testing of 4500 Beam Loss Monitors

    CERN Document Server

    Holzer, E B; Dehning, B; Ferioli, G; Grishin, V; Jimenez, T M; Koshelev, A; Kramer, Daniel; Larionov, A; Taborelli, M; Seleznev, V; Sleptsov, M; Sytin, A; Wevers, I

    2008-01-01

    Beam-loss monitoring (BLM) [1] is a key element in the LHC machine protection. 4250 nitrogen filled ionization chambers (IC) and 350 secondary emission monitors (SEM) have been manufactured and tested at the Institute for High Energy Physics (IHEP) in Protvino, Russia, following their development at CERN. Signal speed and robustness against aging were the main design criteria. Each monitor is permanently sealed inside a stainless-steel cylinder. The quality of the welding was a critical aspect during production. The SEMs are requested to hold a vacuum of $10^{-7}$ bar. Impurity levels from thermal and radiationinduced desorption should remain in the range of parts per million in the ICs. To avoid radiation aging (up to $2·10^{8}$ Gy in 20 years) production of the chambers followed strict UHV requirements. IHEP designed and built the UHV production stand. Due to the required dynamic range of $10^{8}$, the leakage current of the monitors has to stay below 2 pA. Several tests during and after production were ...

  12. Beam-profile monitor using a sodium-vapour

    CERN Multimedia

    1972-01-01

    Beam-profile monitor using a sodium-vapour curtain at 45 degrees to the ISR beam in Ring I (sodium generator is in white cylinder just left of centre). Electrons produced by ionization of the sodium vapour give an image of the beam on a fluorescent screen that is observed by a TV camera (at upper right).

  13. The first experience with LHC beam gas ionization monitor

    CERN Document Server

    Sapinski, M; Dehning, B; Guerrero, A; Patecki, M; Versteegen, R

    2012-01-01

    The Beam Gas Ionization Monitors (BGI) are used to measure beam emittance on LHC. This paper describes the detectors and their operation and discusses the issues met during the commissioning. It also discusses the various calibration procedures used to correct for non-uniformity of Multi-Channel plates and to correct the beam size for effects affecting the electron trajectory after ionization.

  14. Charged particle beam monitoring by means of synchrotron radiation

    International Nuclear Information System (INIS)

    Panasyuk, V.S.; Anevskij, S.I.

    1984-01-01

    Optical methods for monitoring the number of accelerated electrons and electron energy by means of beam synchrotron radiation (SR) as well as peculiarities of SR characteristics of beams with a small radius of the orbit are considered. Optical methods for charged particle beam monitoring are shown to ensure operative and precise monitoring the number of particles and particle energy. SR sources with large axial dimensions of an electron beam have specific spectral angular and polarization characteristics. If electron angular distribution at deflection from the median plane is noticeably wider than angular distribution of SR of a certain electron, relative SR characteristics of these soUrces are calculated with high accuracy

  15. Beam conditions monitors at CMS and LHC using diamond sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria; Lohmann, Wolfgang [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Brandenburgische Technische Universitaet Cottbus, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Castro-Carballo, Maria-Elena; Lange, Wolfgang; Novgorodova, Olga [Desy-Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Walsh, Roberval [Desy-Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-07-01

    The Fast Beam Conditions Monitor (BCM1F) is a particle detector based on diamonds. Eight modules comprising a single crystal diamond, front-end electronics and an optical link are installed on both sides of the interaction point inside the tracker of the CMS detector. The back-end uses ADCs, TDCs and scalers to measure the amplitudes, arrival time and rates of beam-halo particles and collision products. These data are used to protect the inner tracker from adverse beam conditions, perform a fast monitoring of the luminosity and e.g. beam-gas interactions. Recently two additional BCM1F modules have been installed at other positions of the LHC to supplement the beam-loss monitors by a flux measurement with nanosecond time resolution. In the talk essential parameters of the system are presented and examples of beam conditions monitoring are reported.

  16. A beam position monitor using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, Toshiaki; Ueda, Toru; Yoshida, Yoichi; Kozawa, Takahiro; Uesaka, Mitsuru; Miya, Kenzo; Tagawa, Seiichi; Kobayashi, Hitoshi.

    1994-01-01

    A beam position monitor for an electron accelerator has been developed by using an amorphous magnetic core. The position is detected by the difference of leakage inductances of four pickup coils wound on the amorphous magnetic core. The accuracy of the beam position monitor is less than 1 mm for the various electron pulses from nanosecond to microsecond. (author)

  17. A photon beam position monitor for SSRL beamline 9

    International Nuclear Information System (INIS)

    Cerino, J.A.; Rabedeau, T.; Bowen, W.

    1995-10-01

    We present here the concept of a simple one dimensional photon beam position monitor for use with high power synchrotron radiation beams. It has micron resolution, reasonable linearity in an inexpensive design. Most important, is its insensitivity to diffusely scattered low energy radiation from components upstream of the monitor

  18. A beam profile monitor for heavy ion beams at high impact energies

    International Nuclear Information System (INIS)

    Hausmann, A.; Stiebing, K.E.; Bethge, K.; Froehlich, O.; Koehler, E.; Mueller, A.; Rueschmann, G.

    1994-01-01

    A beam profile monitor for heavy ion beams has been developed for the use in experiments at the Heavy Ion Synchrotron SIS at Gesellschaft fuer Schwerionenforschung Darmstadt (GSI). Four thin scintillation fibres are mounted on one wheel and scan the ion beam sequentially in two linearly independent directions. They are read out via one single photomultiplier common to all four fibres into one time spectrum, which provides all information about beam position, beam extension, time structure and lateral homogeneity of the beam. The system operates in a wide dynamic range of beam intensities. ((orig.))

  19. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    Science.gov (United States)

    Martišíková, Mária; Jakubek, Jan; Granja, Carlos; Hartmann, Bernadette; Opálka, Lukáš; Pospíšil, Stanislav; Jäkel, Oliver

    2011-11-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient`s condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2-30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  20. Measurement of secondary radiation during ion beam therapy with the pixel detector Timepix

    International Nuclear Information System (INIS)

    Martišíková, Mária; Hartmann, Bernadette; Jäkel, Oliver; Jakubek, Jan; Granja, Carlos; Opálka, Lukáš; Pospíšil, Stanislav

    2011-01-01

    In ion beam therapy the finite range of the ion beams in tissue and the presence of the Bragg-peak are exploited. Unpredictable changes in the patient's condition can alter the range of the ion beam in the body. Therefore it is desired to verify the actual ion range during the treatment, preferably in a non-invasive way. Positron emission tomography (PET) has been used successfully to monitor the applied dose distributions. This method however suffers from limited applicability and low detection efficiency. In order to increase the detection efficiency and to decrease the uncertainties, in this study we investigate the possibility to measure secondary charged particles emerging from the patient during irradiation. An initial experimental study to register the particle radiation coming out of a patient phantom during the therapy was performed at the Heidelberg Ion Beam Therapy Center (HIT) in Germany. A static narrowly-focused beam of carbon ions was directed into a head phantom. The emerging secondary radiation was measured with the position-sensitive Timepix detector outside of the phantom. The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). Together with the USB-based readout interface, Timepix can operate as an active nuclear emulsion registering single particles online with 2D-track visualization. In this contribution we measured the signal behind the head phantom and investigated its dependence on the beam energy (corresponding to beam range in water 2–30 cm). Furthermore, the response was measured at four angles between 0 and 90 degrees. At all investigated energies some signal was registered. Its pattern corresponds to ions. Differences in the total amount of signal for different beam energies were observed. The time-structure of the signal is correlated with that of the incoming beam, showing that we register products of prompt processes. Such

  1. AIP Diffraction measurements using the LHC Beam Loss Monitoring System

    CERN Document Server

    Kalliokoski, Matti

    2017-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in di ff raction studies are discussed.

  2. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  3. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  4. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm -2 μm). This article considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam (FFTB) at Stanford Linear Accelerator Center, is a few nm

  5. A beam profile monitor for small electron beams

    International Nuclear Information System (INIS)

    Norem, J.

    1991-01-01

    Measurement of beam properties at the foci of high energy linacs is difficult due to the small size of the waists in proposed and existing accelerators (1 nm - 2 μ). This paper considers the use of bremsstrahlung radiation from thin foils to measure the size and phase space density these beams using nonimaging optics. The components of the system are described, and the ultimate resolution, evaluated theoretically for the case of the Final Focus Test Beam at Stanford Linear Accelerator Center, is a few nm. 13 refs., 4 figs. 1 tab

  6. LAMPF experimental-area beam current monitors

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1975-01-01

    This paper summarizes the design and operational performance of a wide- range current monitor system used to measure charged-particle currents in the experimental areas of the Clinton P. Anderson Meson Physics Facility (LAMPF), a proton accelerator. The major features of the system are high sensitivity, wide dynamic range, and the ability to withstand high levels of radiation. The current pulses detected are from 50 μs to 1 ms in duration at repetition rates of from 1 to 120 Hz. The pulse amplitude varies from 1 μA to 17 mA of protons or H - ions. Both real-time and integrated outputs are available, and the minimum detectable currents are 1 μA at the video output and 50 nA at the integrated output. The basic system is comprised of toroids, preamplifiers, signal conditioners, voltage-to-frequency converters, and digital accumulators. The entire system is spread out over 1 km of beam pipe. Provision is made for calibration and for sending the outputs to remote users. The system is normally controlled by a small digital computer, which allows the system to be quite flexible in operation. The design features of the toroids and the associated electronics are discussed in detail, with emphasis on the steps taken to reduce noise and make the toroids temperature and radiation resistant

  7. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  8. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, K. [Fermilab; Backfish, M. [Fermilab; Moretti, A. [Fermilab; Tollestrup, A. V. [Fermilab; Watts, A. [Fermilab; Zwaska, R. M. [Fermilab; Abrams, R. [MUONS Inc., Batavia; Cummings, M. A.; Dudas, A. [MUONS Inc., Batavia; Johnson, R. P. [MUONS Inc., Batavia; Kazakevich, G. [MUONS Inc., Batavia; Neubauer, M. [MUONS Inc., Batavia; Liu, Q. [Case Western Reserve U.

    2017-05-01

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  9. Capacitive beam position monitors and automatic beam centering in the transfer lines of Ganil

    International Nuclear Information System (INIS)

    Gudewicz, P.; Petit, E.

    1991-01-01

    A non-interceptive beam position monitor, made of four capacitive electrodes, has been designed at GANIL in order to allow a permanent measurement of the ion beam position over a large intensity range (50 enA to 10 eμA). Signal processing is based on a 10 kHz heterodyne and on an amplitude to phase conversion in order to measure the beam position. An immediate application of these monitors is the automatic beam centering. For this, two algorithms have been developed using the information on the center of gravity given by the beam position monitors which is then fed back to the steerers, an iterative method and a variational method. Both methods have been used on a section of beam line and have given similar and encouraging results. The next step is to center the beam on the completely equipped line. (author) 4 refs., 2 figs., 1 tab

  10. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-01-01

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the imaging optics was in good agreement with the design value

  11. Slaw extracted proton beam formation and monitoring for the ''QUARTZ'' setup

    International Nuclear Information System (INIS)

    Bushnin, Yu.B.; Gres', V.N.; Davydenko, Yu.P.

    1982-01-01

    The version of optical mode of the beam channel providing with simultaneous operating the experimental setups FODS and ''QUARTZ'' at consecutive usage of the slow extracted proton beam is reported. The ''QUARTZ'' setup beam diagnostics system comprises two subsystems: for measuring beam profile beam timing structure and beam intensity and operates in the beam extraction duration from 20 ns to few seconds at beam intensity from 10 10 to 5x10 12 protons/pulse. The ''QUARTZ'' setup represents a focusing crystal-diffraction spectrometer with 5-meter focal distance and Ge(Li) special construction detector. High efficiency target is applied in the setup. The ''QUARTZ'' setup is designed for studying exotic atoms produced by negative charged heavy particles (π, K, μ, P tilde) and atomic nuclei. Precise energy measurement of X ray transitions in such atoms is performed. For measuring beam geometric parameters 32-channel secondary emission chambers are used. As detector of beam intensity and timing structure of slow extracted beam the secondary emission chamber is employed. The principle circuit of current integrator is given. As data transmission line a 50-pair telephone cable is used. Information conversion into digital form and its subsequent processing is performed in the CAMAC system and the SM-3 computer. The proton beam full intensity measuring system provides with accuracy not worse than +-4.5% in the 10 10 -10 12 proton/sec range. The implemented optical mode of the beam channel and proton beam monitoring system permitted to begin fulfillment of the experimental program on the ''QUARTZ'' setup

  12. Automatic control and monitoring of the MIT fission converter beam

    International Nuclear Information System (INIS)

    Wilson, B.A.; Riley, K.J.; Harling, O.K.

    2000-01-01

    An automated control and monitoring system for the new MIT high intensity epithermal neutron irradiation facility has been designed and constructed. The neutron beam is monitored with fission counters located at the periphery of the beam near the patient position. Control of the beam is accomplished with redundant Programmable Logic Controllers (PLCs). These industrial controllers open and close the three shutters of the Fission Converter Beam. The control system uses a series of robust components to assure that the prescribed fluence is delivered. This paper discusses the design and implementation of this system. (author)

  13. Non-destructive beam profile monitor at HIMAC

    International Nuclear Information System (INIS)

    Sato, S.; Araki, N.; Hosaka, M.

    1995-01-01

    Non-destructive profile monitors (NDPM), based on micro-channel plate (MCP), have been developed and installed in both the synchrotron ring and high-energy beam transport (HEBT) line at HIMAC. Beam test using these monitors have been carried out since April of 1995 to investigate a change of vertical beam size in synchrotron and a possibility of observing beam with high energy by one pass. In this paper the measurement system is mainly reported, and the preliminary results are also briefly presented. (author)

  14. The LEP injection monitors: Design and first results with beam

    International Nuclear Information System (INIS)

    Burtin, G.; Colchester, R.; Fischer, C.; Halvarsson, B.; Hemery, J.Y.; Jung, R.; Levitt, S.; Vouillot, J.M.

    1989-01-01

    The LEP injection monitors comprise of split foil monitors, luminescent screens and beam stoppers. The monitors are described with particular emphasis on their special features. These include: their low loss factors, their protection against synchrotron radiation and the screen read-out with a CCD chip. The results obtained during the positron injection tests in LEP in July 1988 are reported. 8 figs

  15. Beam position monitor readout and control in the SLC linac

    International Nuclear Information System (INIS)

    Bogart, J.; Phinney, N.; Ross, M.; Yaffe, D.

    1985-04-01

    A beam position monitoring system has been implemented in the first third of the SLC linac which provides a complete scan of the trajectory on a single beam pulse. The data is collected from the local micro-computers and viewed with an updating display at a console or passed on to application programs. The system must operate with interlaced beams so the scans are also interlaced, providing each user with the ability to select the beam, the update rate, and the attenuation level in the digitizing hardware. In addition each user calibrates the hardware for his beam. A description of the system architecture will be presented. 6 refs., 4 figs

  16. Secondary beam line phase space measurement and modeling at LAMPF

    International Nuclear Information System (INIS)

    Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.

    1979-01-01

    Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described

  17. Fast-scan, beam-profile monitor

    International Nuclear Information System (INIS)

    Waugh, A.F.

    1977-01-01

    A minimodular, data-acquisition system can be used to rapidly interrogate a 45-point matrix of beam-current sampling targets over the 3- x 12-in. rectangular, output beam cross section of a 50-A, neutral-beam ion source. This system, operating at a throughput rate of 12 μs per channel, can make several complete scans during the 10- to 25-ms-duration beam pulse. Data obtained are available in both analog and digital form. The analog signal is used to create an immediately interpretable CRT display of the beam-current density profile that shows how well the source is aimed. The digital data are held in buffer memory until transfer to a minicomputer for software processing and plotting

  18. Beam position monitor data acquisition for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems

  19. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  20. Coronary cineangiography and ionizing radiation exposure to patients: analysis of primary and secondary beam

    International Nuclear Information System (INIS)

    Ramirez, Alfredo; Leyton, Fernando; Silva, Ana Maria; Farias, Eric

    2001-01-01

    The purpose of this work was to determine the level of exposure dose to patients during coronariographies in different areas of body. This study has presented the medical surveillance of 18 cases and the radiation monitoring of these patients by TLD in thyroid and pelvis (secondary beam) and, in the right and left scapular region (primary beam) for each one of these procedures. The ionizing radiation received was 215 ± 200 mGy in left scapular region (range 1-710) and 255±213 mGy in the right scapular region (range 22-635) p=NS. In the pelvic region the ionizing radiation was 0,22±0,06 mGy and in the thyroid region was 3,62±2,44 mGy

  1. Operation of the NuMI Beam Monitoring System

    International Nuclear Information System (INIS)

    Zwaska, Robert M.; Indurthy, Dharma; Keisler, Ryan; Kopp, Sacha; Mendoza, Steven; Pavlovich, Zarko; Proga, Marek; Bishai, Mary; Diwan, Milind; Viren, Brett; Harris, Debbie; Marchionni, Alberto; Morfin, Jorge; McDonald, Jeffrey; Naples, Donna; Northacker, David; Erwin, Albert; Ping, Huican; Velissaris, Cristos

    2006-01-01

    The NuMI (Neutrinos at the Main Injector) facility produces an intense neutrino beam for experiments. The NuMI Beam Monitoring system consists of four arrays of ion chambers that measure the intensity and distribution of the remnant hadron and tertiary muon beams produced in association with the neutrinos. The ion chambers operate in an environment of high particle fluxes and high radiation

  2. A high resolution, single bunch, beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.

    1992-01-01

    We developed a beam monitoring system which could be used to measure beam profile, size and stability at the final forms of a beamline or collider. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTR

  3. Calibration of beam position monitor for the SPring-8 synchrotron

    International Nuclear Information System (INIS)

    Aoki, Tsuyoshi; Yonehara, Hiroto; Suzuki, Hiromitsu

    1995-01-01

    Beam position monitors (BPMs) for SPring-8 synchrotron were already designed and manufactured. 80-BPMs were successfully calibrated for the beam position measurement. In this paper, we introduce the structure of BPMs, the electronics of signal detection system and the calibration system, and the results of calibration are reported. (author)

  4. Magnet power supply and beam line control for a secondary beam line K6

    International Nuclear Information System (INIS)

    Suzuki, Y.; Takasaki, M.; Minakawa, M.; Ishii, H.; Kato, Y.; Ieiri, M.; Tanaka, K.H.; Noumi, H.; Yamanoi, Y.

    1992-01-01

    K6 is a secondary separated-beam line with momentum range up to 2.0 GeV/c in the north experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS). On the construction, newly developed magnet power supplies (MPSs), in each of them a microprocessor is embedded, are introduced. The features of the MPS are as follows: 1, The MPS is connected to an upper-level beam line controller (BLC) by GPIB highway for exchanging simple messages. 2, All the operations of the MPS are supervised by the microprocessor, which has its individual parameters and fault messages. It reduces the load of the upper-level controller. 3, The MPS has functions to inspect itself and to report the result. It saves much time and labor of maintenance. (author)

  5. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  6. Measurement of an electron-beam size with a beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Iida, K.; Nakamura, N.; Sakai, H.; Shinoe, K.; Takaki, H.; Fujisawa, M.; Hayano, H.; Nomura, M.; Kamiya, Y.; Koseki, T.; Amemiya, Y.; Aoki, N.; Nakayama, K.

    2003-01-01

    We present a non-destructive and real-time beam profile monitor using Fresnel zone plates (FZPs) and the measurement of an electron-beam size with this monitor in the KEK-Accelerator Test Facility (ATF) damping ring. The monitor system has the structure of a long-distance X-ray microscope, where two FZPs constitute an X-ray imaging optics. The synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is sufficiently high to measure the horizontal and vertical beam sizes of the ATF damping ring. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the X-ray imaging optics in the monitor system was in good agreement with the design value

  7. Spill control and intensity monitoring for the Bevatron--Bevalac external particle beams

    International Nuclear Information System (INIS)

    Barale, J.J.; Crebbin, K.C.

    1975-03-01

    Time-intensity modulation in beam spill can be of primary concern in some experiments. The major source of this beam structure is from main-guide field-magnet power supply ripple. If the time constants are appropriate, then final control of beam structure can be accomplished by closed loop control of the intensity of beam spill. The response characteristics of the feedback system will determine the final structure. At high beam fluxes signal to noise ratio of beam detectors, in the feedback loop, can be improved by at least four orders of magnitude by using photomultiplier tubes and a water Cherenkov counter in place of the normal secondary emission monitor. At beam fluxes below 10 10 particles per second (PPS), a plastic scintillator and photomultiplier tube are used in the feedback system. A plastic scintillator and photomultiplier are also used in the beam as intensity monitors. At intensities below about 10 7 PPS standard counting techniques are used. For intensities between 10 6 to 110 9 PPS, the photomultiplier is used as a current source driving an integrating circuit which is then calibrated to read the number of particles per pulse. (U.S.)

  8. The SPS Beam quality monitor, from design to operation

    CERN Document Server

    Papotti, G; Follin, F; Shaposhnikova, E

    2011-01-01

    The SPS Beam Quality Monitor is a system that monitors longitudinal beam parameters on a cycle-by-cycle basis and prevents extraction to the LHC in case the specifications are not met. This avoids losses, unnecessary stress of machine protection components and luminosity degradation, additionally helping efficiency during the filling process. The system has been operational since the 2009 LHC run, checking the beam pattern, its correct position with respect to the LHC references, individual bunch lengths and stability. In this paper the algorithms used, the hardware implementation and the operational aspects are presented.

  9. Accurate Profile Measurement of the low Intensity Secondary Beams in the CERN Experimental Areas

    CERN Document Server

    AUTHOR|(CDS)2084531; Tranquille, Gerard

    2018-02-23

    The CERN accelerators deliver a wide spectrum of secondary beams to the Experimental Areas. These beams are composed of hadrons, leptons, and heavy ions that can vary greatly in momentum (1 GeV/c to 400 GeV/c) and intensity (10^2 to 10^8 particles per second). The profile, position, and intensity of these beams are measured utilising particle detectors. However, the current systems show several problems that limit the quality of this kind of monitoring. The aim of this doctoral thesis is to investigate the best detector technology that could replace the existing monitors and build a first prototype of it. A review of the existing detection techniques has led to the choice of Scintillating Fibres (SciFi) read-out with Silicon Photomultipliers (SiPM). This detection technology has the potential to perform better in terms of material budget, range of intensities measured, and active area size. In addition, it has particle counting capabilities, which could extend its application to momentum spectrometry or Time...

  10. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    Egberts, J.

    2012-01-01

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author) [fr

  11. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  12. The development of beam current monitors in the APS

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The Advanced Photon Source (APS) is a third-generation 7-GeV synchrotron radiation source. The precision measurement of beam current is a challenging task in high energy accelerators, such as the APS, with a wide range of beam parameters and complicated noise, radiation, and thermal environments. The beam pulses in the APS injector and storage ring have charge ranging from 50pC to 25nC with pulse durations varying from 30ps to 30ns. A total of nine non- intercepting beam current monitors have been installed in the APS facility (excluding those in the linac) for general current measurement. In addition, several independent current monitors with specially designed redundant interlock electronics are installed for personnel safety and machine protection. This paper documents the design and development of current monitors in the APS,. discusses the commissioning experience in the past year, and presents the results of recent operations

  13. Study of an integrated electronic monitor for neutron beams

    International Nuclear Information System (INIS)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C.; Sarrabayrouse, G.

    1994-01-01

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.)

  14. Study of an integrated electronic monitor for neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes

    1994-12-31

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.). 11 refs.

  15. Fast beam condition monitor for CMS. Performance and upgrade

    International Nuclear Information System (INIS)

    Leonard, Jessica L.; Bell, Alan; Burtowy, Piotr

    2014-05-01

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  16. Fast Beam Condition Monitor for CMS: performance and upgrade

    CERN Document Server

    INSPIRE-00009152; Bell, Alan; Burtowy, Piotr; Dabrowski, Anne; Hempel, Maria; Henschel, Hans; Lange, Wolfgang; Lohmann, Wolfgang; Odell, Nathaniel; Penno, Marek; Pollack, Brian; Przyborowski, Dominik; Ryjov, Vladimir; Stickland, David; Walsh, Roberval; Warzycha, Weronika; Zagozdzinska, Agnieszka

    2014-11-21

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  17. Beam-current monitor for FMIT

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Brousseau, A.T.

    1981-03-01

    The application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam is described

  18. Beam determination of quadrupole misalignments and beam position monitor biases in the SLC linac

    International Nuclear Information System (INIS)

    Lavine, T.L.; Seeman, J.T.; Atwood, W.B.; Himel, T.M.; Petersen, A.; Adolphsen, C.E.

    1988-09-01

    Misalignments of magnetic quadrupoles and biases in beam position monitors (BPMs) in the Stanford Linear Collider (SLC) linac can lead to a situation in which the beam is off-center in the disk-loaded waveguide accelerator structure. The off-center beam produces wakefields which can limit SLC performance by causing unacceptably large emittance growth. We present a general method for determining quadrupole misalignments and BPM biases in the SLC linac by using beam trajectory measurements. The method utilizes both electron and positron beams on opposite rf cycles in the same linac lattice to determine simultaneously magnetic quadrupole misalignments and BPM biases. The two-beam trajectory data may be acquired without interrupting SLC colliding beam operations. 2 refs., 5 figs

  19. Video-based beam position monitoring at CHESS

    Science.gov (United States)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  20. Proposal for secondary ion beams and update of data taking schedule for 2009-2013

    CERN Document Server

    Abgrall, N; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Ferrero, A; Fodor, Z; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Guber, F; Hasegawa, T; Haungs, A; Hess, M; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kim, J H; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kurepin, A; Lacey, R; Laszlo, A; Lehmann, S; Lungwitz, B; Lyubushkin, V V; Maevskaya, A; Majka, Z; Malakhov, A I; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Meurer, C; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Petridis, A; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shileev, K; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Yi, J G; Yoo, I K; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the proposal for secondary ion beams and the updated data taking schedule of the NA61 Collaboration. The modification of the original NA61 plans is necessary in order to reach compatibility between the current I-LHC and NA61 schedules. It assumes delivery of primary proton beam in 2009-2012 and of primary lead beam in 2011-2013. The primary lead beam will be fragmented into a secondary beam of lighter ions. The modified H2 beam line will serve as a fragment separator to produce the light ion species for NA61 data taking. The expected physics performance of the NA61 experiment with secondary ion beams will be sufficient to reach the primary NA61 physics goals.

  1. Production of and studies with secondary radioactive ion beams at Lise

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1990-01-01

    The doubly achromatic spectrometer LISE, installed at GANIL has delivered secondary radioactive beams for the past 6 years. Essentially, it consists of by two dipole magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like fragment-beams emitted at 0 0 . Important features of LISE and selected experimental results will be discussed. LISE was substantially upgraded, recently, by adding a Wien-filter, providing secondary radioactive beams of still increased intensity and isotopic purity. (6 figs)

  2. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  3. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  4. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  5. Nonlinearities in the response of beam position monitors

    International Nuclear Information System (INIS)

    Assmann, R.; Dehning, B.; Matheson, J.; Prochnow, J.

    2000-01-01

    At the LEP e + /e - collider at CERN, Geneva, a Spectrometer is used to determine the beam energy with a relative accuracy of 10 -4 .The Spectrometer measures the change in bending angle in a dipole magnet, the beam trajectory being obtained using beam position monitors (BPMs), which must have an accuracy close to 1 μm in order to achieve the desired precision. The BPMs used feature an aluminum block with an elliptical aperture and capacitive pickup electrodes. The response depends on the electrode geometry and also on the shape of the monitor aperture. In addition, the size of the beam itself contributes if the beam is off-center. The beam size varies according to the beta and dispersion functions at the Spectrometer, so that each BPM may exhibit a systematic shift of the measured beam position. We have investigated the implications of such shifts on the performance of the Spectrometer. We present analytical results, a computer model of the BPM response, and comparison with measurements. The model suggests strategies such as beam-based alignment to minimize the systematic effects arising from the BPMs

  6. Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab

    2017-10-22

    The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of the tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.

  7. The LANSCE Low Momentum Beam Monitor

    CERN Document Server

    Merl, R

    2004-01-01

    A diagnostic has been developed at the Los Alamos Neutron Science Center (LANSCE) for the purpose of identifying low momentum beam tails in the linear accelerator. These tails must be eliminated in order to maintain the transverse and longitudinal beam size. Instead of the currently used phosphor camera system, this instrument consists of a Multi Wire Proportional Chamber (MWPC) front end coupled to an EPICS compliant VME-based electronics package. Low momentum tails are detected with a resolution of 5 mm in the MWPC at a high dispersion point near a bending magnet. While phosphor is typically not sensitive in the nano amp range, the MWPC is sensitive down to about a pico amp. The electronics package processes the signals from each of the MWPC wires to generate an array of beam currents at each of the lower energies. The electronics has an analog front end with a high-speed analog to digital converter for each wire. Data from multiple wires are processed with an embedded digital signal processor and results p...

  8. Thickness optimization and activity induction in beam slit monitor for Indus

    International Nuclear Information System (INIS)

    Petwal, V.C.; Pramod, R.; Dwivedi, Jishnu; Senecha, V.K.

    2009-01-01

    A large number of beam slit monitors are planned to be installed in the TL-2 and TL-3 of Indus for probing the 450 MeV and 700 MeV electron beams. The beam slit monitor consists of 2 pairs of metallic blades, mounted in orthogonal direction and shall be installed inside the beam chamber. These shutters provide current signals, on interception with electron beam, which can be used to determine precisely beam position, shape and size. The physical dimensions of the shutter blades are of crucial importance due to the requirement of high resolution, accuracy and space constraints. As part of design study of beam slit monitors, Monte Carlo simulation using MCNP code has been performed to investigate the radiological characteristics of the suitable blade materials e.g. Cu, Ta, W, and Inermet. The thickness has been optimised to absorb 90% of electron beam. The power density profiles along thickness and radial direction have been simulated to carry out thermal design. The high energy electron beam on interception with shutter blade develops cascading shower, containing secondary particles such as photons, photoneutrons, pions, and muons etc, which induce radioactivity in shutter material as well in the surrounding components. The state of the art Monte Carlo Code FLUKA has been used to estimate the amount of the activity induced in the shutter blade. In the first step, the FLUKA calculations are compared with data reported in IAEA TRS 188 for Cu, W target in the energy range 15 - 35 MeV, which shows good agreement. In second step, these calculations are extended to estimate induced activity in the shutter blade at actual electron energy 450 MeV and 700 MeV. (author)

  9. Ionization beam profile monitor for operation under hard environmental conditions

    International Nuclear Information System (INIS)

    Teterev, Yu.G.; Kaminski, G.; Phi Thanh Huong; Kaminski, G.; Kozik, E.

    2010-01-01

    The design and the performance of the Ionization Beam Profile Monitor (IBPM) operating on the residual gas ionization principle are described. The main advantage of the constructed device is the non-contact measuring method. Operating under hard environmental conditions it delivers the information about the primary beam position, profile and intensity in 'on-line' regime. It was found out that the device is capable to operate in vacuum in the range of 10 -6 /10 -3 mbar without the loss of the resolution power at the beam current as low as a few nA. The IBPM is prospective for beam profile monitoring due to long time. Emergency situations do not lead to decrease of its operability.

  10. Beam monitors and transverse feedback system of TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Ieiri, T.; Ishii, H.; Kishiro, J.; Mizumachi, Y.; Mori, K.; Nakajima, K.; Ogata, A.; Shintake, T.; Tejima, M.

    1987-01-01

    The construction of 30 GeV TRISTAN Main Ring (MR) started in 1983 soon after the commissioning of 8 GeV Accumulation Ring (AR). The authors prepared 392 position monitors, 6 synchrotron radiation monitors, 9 screen monitors, 2 DCCT's, 3 scrapers, 12 bunch monitors, transverse feedback systems for two beams and DC separators. Since the required monitoring devices of AR and MR are almost the same, the experiences in AR were very useful in the design of MR monitors. However, machine parameters of two rings are very different and the authors had to review the performance of each item. From the monitor point of view the most important is the difference of revolution frequency; 794.6 kHz for AR and 99.33 kHz for MR. This means that average beam current of MR is 1/8 as small as AR current with the same bunch number and intensity. Therefore, the sensitivity of each monitor must be better in MR. The second difference is that MR should be used as a collider from the beginning. Therefore they must prepare for multi-beam and multi-bunch operation

  11. Multi-channel electronics for secondary emission grid profile monitor of TTF linac

    International Nuclear Information System (INIS)

    Reingardt-Nikoulin, P.; Gaidash, V.; Mirzojan, A.; Kocharyan, V.; Noelle, D.

    2004-01-01

    According to the TTF beam experimental program, a measurement f the time dependence of the energy spread within the bunch train should be done by means of a standard device for profile measurements, that is Secondary Emission Grid (SEMG). SEMG on the high-energy TTF beam is placed in the focal plane of the magnet spectrometer. It should measure the total energy spread in the range from 0.1% up to a few percents for any single or any group of electron bunches in the bunch train of TTF Linac. SEMG profile measurements with new high sensitive electronics are described. Beam results of SEMG Monitor test are given for two modifications of an electronic preamplifier

  12. Development of Beam Conditions Monitor for the ATLAS experiment

    CERN Document Server

    Dolenc Kittelmann, Irena; Mikuž, M

    2008-01-01

    If there is a failure in an element of the accelerator the resulting beam losses could cause damage to the inner tracking devices of the experiments. This thesis presents the work performed during the development phase of a protection system for the ATLAS experiment at the LHC. The Beam Conditions Monitor (BCM) system is a stand-alone system designed to detect early signs of beam instabilities and trigger a beam abort in case of beam failures. It consists of two detector stations positioned at z=±1.84m from the interaction point. Each station comprises four BCM detector modules installed symmetrically around the beam pipe with sensors located at r=55 mm. This structure will allow distinguishing between anomalous events (beam gas and beam halo interactions, beam instabilities) and normal events due to proton-proton interaction by measuring the time-of-flight as well as the signal pulse amplitude from detector modules on the timescale of nanoseconds. Additionally, the BCM system aims to provide a coarse instan...

  13. SLIM (SEM for Low Interception Monitoring) An Innovative Non-Destructive Beam Monitor for the Extraction Lines of a Hadrontherapy Centre

    CERN Document Server

    Badano, L; Pezzetta, M; Molinari, G

    2003-01-01

    Real time monitoring of hadrontherapy beam intensity and profile is a critical issue for the optimisation of the dose delivery to the patient carcinogenic tissue, the patient safety and the operation of the accelerator complex. For this purpose an innovative beam monitor, based on the secondary emission of electrons by a nonperturbative, sub-micron thick Al target placed directly in the extracted beam path, is being proposed. The secondary electrons, accelerated by an electrostatics focusing system, are detected by a monolithic silicon position sensitive sensor, which provides the beam intensity and its position with a precision of 1 mm at 10 kHz frame rate. The conceptual design and the engineering study optimised for hadrontherapy, together with the results of the preliminary tests of the first system prototype, will be presented.

  14. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Boorman, G; Molloy, S; Ross, M; Aryshev, A; Honda, Y; Terunuma, N; Urakawa, J; Kim, E S; Kim, Y I; Heo, A E; Lyapin, A; Swinson, C J; Frisch, J; McCormick, D M; Nelson, J; Smith, T; White, G R

    2010-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (CBPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance.

  15. Design of the AGS Booster beam position monitor system

    International Nuclear Information System (INIS)

    Beadle, E.; Brennan, J.M.; Ciardullo, D.J.; Savino, J.; Stanziani, V.; Thomas, R.; Van Zwienen, W.; Witkover, R.L.; Schulte, E.

    1989-01-01

    The AGS Booster beam position monitor system must cover a wide range of beam intensity and bunch length for proton and heavy ion acceleration. The detector is designed to maintain 0.1 mm local tolerance following 300 degree C bakeout. The electronics will be located in the tunnel, communicating via fiber optic links to avoid ground loops. The design will be described and test results for prototype units presented. 5 refs., 4 figs

  16. The beam loss monitoring system for HLS storage ring

    CERN Document Server

    Li Yu Xiong; Li Wei; Li Jue Xin; Liu Zu Ping; Shao Bei Bei

    2001-01-01

    A beam loss monitoring system has been established at HLS. This paper gives its principle and scientific grounds. Study on the ring's TBA structure and utilization of Monte-Carlo calculation to the shower electrons is important in its design. The system composition and performance are also introduced. The detector BLMs, data acquisition devices and host PC are linked via CAN bus. This system is helpful to analyze beam loss distribution and regulate the machine operation parameters.

  17. Superconducting beam charge monitors for antiproton storage rings

    OpenAIRE

    Tympel, Volker; Neubert, Ralf; Seidel, Paul; Geithner, René; Golm, Jessica; Stöhlker, Thomas; Kurian, Febian; Sieber, Thomas; Schwickert, Marcus; Fernandes, Miguel

    2017-01-01

    A Cryogenic Current Comparator (CCC) is a new type of instruments for monitoring charged beams like ions or antiprotons. Using superconducting effects is it possible to create a nondestructive, contactless and easy to calibrate beam measurement system with a high current resolution in amplitude and time. The Meissner effect enables an effective magnetic shielding of the system. The screening current enables creation of DC-transformers and therefore a DC-current measurement system. The combina...

  18. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  19. Wide dynamic range beam profile monitor

    International Nuclear Information System (INIS)

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1

  20. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sojeong, E-mail: sojung8681@postech.ac.kr; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-11

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  1. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  2. Electronics and Calibration system for the CMS Beam Halo Monitor

    CERN Document Server

    Tosi, Nicolò; Fabbri, Franco L; Finkel, Alexey; Orfanelli, Stella; Loos, R; Montanari, Alessandro; Rusack, R; Stickland, David P

    2014-01-01

    In the context of increasing luminosity of LHC, it will be important to accurately measure the Machine Induced Background. A new monitoring system will be installed in the cavern of the Compact Muon Solenoid (CMS) experiment for measuring the beam background at high radius. This detector is composed of synthetic quartz Cherenkov radiators, coupled to fast photomultiplier tubes (PMT). The readout chain of this detector will make use of many components developed for the Phase 1 upgrade to the CMS Hadron Calorimeter electronics, with a dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal will be digitized by a charge integrating ASIC (QIE10), providing both the signal rise time and the charge integrated over one bunch crossing. The backend electronics will record bunch-by-bunch histograms, which will be published to CMS and the LHC using the newly designed CMS beam instrumentation specific DAQ. A calibration monitoring system has been designed to generate triggered pulses of...

  3. Performance of an rf beam monitor on the NBS-Los Alamos racetrack microtron

    International Nuclear Information System (INIS)

    Young, L.M.; Cutler, R.I.

    1985-01-01

    A prototype rf beam-position, current, and phase monitor has been used on the 100-keV injector beamline of the racetrack microtron (RTM) where performance was measured with the chopped and bunched beam. This monitor works with both a pulsed beam and a cw beam. The pulsed beam consists of beam pulses with a FWHM of 40 ns. The rf beam monitor was tested with beam currents from approx. 50 to 600 μA. The rf beam monitor will be described and its performance will be reported. 6 refs., 5 figs

  4. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  5. Experimental Results from a Microwave Cavity Beam Position Monitor

    International Nuclear Information System (INIS)

    Balakin, V.; Bazhan, A.; Lunev, P.; Solyak, N.; Vogel, V.; Zhogolev, P.; Lisitsyn, A.; Yakimenko, V.

    1999-01-01

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required

  6. CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2

    CERN Document Server

    Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R

    2011-01-01

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.

  7. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  8. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  9. Design of the AGS Booster Beam Position Monitor electronics

    International Nuclear Information System (INIS)

    Ciardullo, D.J.; Smith, G.A.; Beadle, E.R.

    1991-01-01

    The operational requirements of the AGS Booster Beam Position Monitor system necessitate the use of electronics with wide dynamic range and broad instantaneous bandwidth. Bunch synchronization is provided by a remote timing sequencer coupled to the local ring electronics via digital fiber-optic links. The Sequencer and local ring circuitry work together to provide single turn trajectory or average orbit and intensity information, integrated over 1 to 225 bunches. Test capabilities are built in for the purpose of enhancing BPM system accuracy. This paper describes the design of the Booster Beam Position Monitor electronics, and presents performance details of the front end processing, acquisition and timing circuitry

  10. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  11. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  12. TFTR neutral beam control and monitoring for DT operations

    International Nuclear Information System (INIS)

    O'Connor, T.; Kamperschroer, J.; Chu, J.

    1995-01-01

    Record fusion power output has recently been obtained in TFTR with the injection of deuterium and tritium neutral beams. This significant achievement was due in part to the controls, software, and data processing capabilities added to the neutral beam system for DT operations. Chief among these improvements was the addition of SUN workstations and large dynamic data storage to the existing Central Instrumentation Control and Data Acquisition (CICADA) system. Essentially instantaneous look back over the recent shot history has been provided for most beam waveforms and analysis results. Gas regulation controls allowing remote switchover between deuterium and tritium were also added. With these tools, comparison of the waveforms and data of deuterium and tritium for four test conditioning pulses quickly produced reliable tritium setpoints. Thereafter, all beam conditioning was performed with deuterium, thus saving the tritium supply for the important DT injection shots. The lookback capability also led to modifications of the gas system to improve reliability and to control ceramic valve leakage by backbiasing. Other features added to improve the reliability and availability of DT neutral beam operations included master beamline controls and displays, a beamline thermocouple interlock system, a peak thermocouple display, automatic gas inventory and cryo panel gas loading monitoring, beam notching controls, a display of beam/plasma interlocks, and a feedback system to control beam power based on plasma conditions

  13. The new SLS beam size monitor, first results

    CERN Document Server

    Saa Hernandez, A; Rohrer, M; Schlott, V; Streun, A; Andersson, A; Breunlin, J

    2013-01-01

    An extremely small vertical beam size of 3.6 µm, corresponding to a vertical emittance of 0.9 pm, only about five times bigger than the quantum limit, has been achieved at the storage ring of the Swiss Light Source (SLS). The measurement was performed by means of a beam size monitor based on the imaging of the vertically polarized synchrotron radiation in the visible and UV spectral ranges. However, the resolution limit of the monitor was reached during the last measurement campaign and prevented further emittance minimization. In the context of the work package SLS Vertical Emittance Tuning of the TIARA collaboration, a new improved monitor was built. It provides larger magnification, an increase of resolution and enables two complementary methods of measurement: imaging and interferometry. In this paper we present the design, installation, commissioning, performance studies and first results obtained with the new monitor.

  14. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  15. Performance of the CEBAF Arc Beam Position Monitors

    International Nuclear Information System (INIS)

    A.S. Hofler; B.A. Bowling; C.S. Higgins; P.K. Kloeppel; G.A. Krafft; K.L. Mahoney

    1993-01-01

    The first three quarters of the first CEBAF arc have been instrumented with beam position monitors. Thirty-seven monitors (of 450) have been installed and their noise measured. Resolution of 100 mu-m was obtained at the lowest operating current of 1 mu-A. The update time of the system is 1 sec, limited by computer interfacing with a potential bandwidth of greater than 10 kHz

  16. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  17. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  18. A high resolution, single bunch, beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.

    1992-01-01

    Efficient linear colliders require very small beam spots to produce high luminosities with reasonable input power, which limits the number of electrons which can be accelerated to high energies. The small beams, in turn, require high precision and stability in all accelerator components. Producing, monitoring and maintaining beams of the required quality has been, and will continue to be, difficult. A beam monitoring system which could be used to measure beam profile, size and stability at the final focus of a beamline or collider has been developed and is described here. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTB. The primary alternatives to this technique are those proposed by P. Chen / J. Buon, which analyses the energy and angular distributions of ion recoils to determine the aspect ratio of the electron bunch, and a method proposed by Shintake, which measures intensity variation of compton backscattered photons as the beam is moved across a pattern of standing waves produced by a laser

  19. Beam monitoring in radiotherapy and hadron-therapy

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2012-01-01

    Radiotherapy techniques have evolved over the past twenty years. For photon beams, the development of tools such as multi leaf collimators, machines such as Cyberknife or tomo-therapy, have improved the conformation of treatments to the tumor volume and lowered maximum dose to healthy tissue. In another register, the use of proton-therapy is expanding in all countries and the development of carbon ions beams for hadron-therapy is also increasing. If techniques improve, the control requirements for the monitoring of the dose administered to patients are always the same. This document presents, first, the ins and outs of the different techniques of external beam radiotherapy: photon treatments, protons and hadrons. Starting from the basis of clinical requirements, it sets the variables to be measured in order to ensure the quality of treatment for the different considered modalities. It then describes some implementations, based on precise and rigorous specifications, for the monitoring and measurement of beams delivered by external beam radiotherapy equipments. Two instrumental techniques are particularly highlighted, plastic scintillators dosimetry for the control of megavoltage photon beams and ionization chamber dosimetry applied to proton-therapy or radiobiology experiments conducted at the GANIL facility. Analyzes and perspectives, based on the recent developments of treatment techniques, are delivered in conclusion and can serve as guide for future instrumental developments. (author)

  20. Real-time beam monitoring in scanned proton therapy

    Science.gov (United States)

    Klimpki, G.; Eichin, M.; Bula, C.; Rechsteiner, U.; Psoroulas, S.; Weber, D. C.; Lomax, A.; Meer, D.

    2018-05-01

    When treating cancerous tissues with protons beams, many centers make use of a step-and-shoot irradiation technique, in which the beam is steered to discrete grid points in the tumor volume. For safety reasons, the irradiation is supervised by an independent monitoring system validating cyclically that the correct amount of protons has been delivered to the correct position in the patient. Whenever unacceptable inaccuracies are detected, the irradiation can be interrupted to reinforce a high degree of radiation protection. At the Paul Scherrer Institute, we plan to irradiate tumors continuously. By giving up the idea of discrete grid points, we aim to be faster and more flexible in the irradiation. But the increase in speed and dynamics necessitates a highly responsive monitoring system to guarantee the same level of patient safety as for conventional step-and-shoot irradiations. Hence, we developed and implemented real-time monitoring of the proton beam current and position. As such, we read out diagnostic devices with 100 kHz and compare their signals against safety tolerances in an FPGA. In this paper, we report on necessary software and firmware enhancements of our control system and test their functionality based on three exemplary error scenarios. We demonstrate successful implementation of real-time beam monitoring and, consequently, compliance with international patient safety regulations.

  1. Noninteractive beam position and size monitor for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1979-01-01

    The Ion Beam Fusion development program at Argonne National Laboratory requires noninteractive size measurements of a pulsed, 30 mA, Xe +1 particle beam. Pulses of 100 μs duration will be produced by the 1.5 MV preaccelerator; therefore, fast response diagnostics are required. Techniques of utilizing residual gas ionization to profile particle beams have been reported before. This paper discusses the development of vertical and horizontal beam profile monitors that are synchronously clocked to interface with oscilloscopes and computers. Modern integrated circuitry is utilized which boosts performance to a point where pulses as short as 20 μs can be analyzed. A small, simple ionization chamber is shown which provides sixteen channels of position resolution over 12 cm of aperture

  2. Noise estimation of beam position monitors at RHIC

    International Nuclear Information System (INIS)

    Shen, X.; Bai, M.

    2014-01-01

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  3. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  4. Longitudinal Beam measurements at the LHC: The LHC Beam Quality Monitor

    CERN Document Server

    Papotti, G; Follin, F; Wehrle, U

    2011-01-01

    The LHC Beam Quality Monitor is a system that measures individual bunch lengths and positions, similarly to the twin system SPS Beam Quality Monitor, from which it was derived. The pattern verification that the system provides is vital during the injection process to verify the correctness of the injected pattern, while the bunch length measurement is fed back to control the longitudinal emittance blow up performed during the energy ramp and provides a general indication of the health of the RF system. The algorithms used, the hardware implementation and the system integration in the LHC control infrastructure are presented in this paper, along with possible improvements.

  5. LHC Beam Loss Monitoring System Verification Applications

    CERN Document Server

    Dehning, B; Zamantzas, C; Jackson, S

    2011-01-01

    The LHC Beam Loss Mon­i­tor­ing (BLM) sys­tem is one of the most com­plex in­stru­men­ta­tion sys­tems de­ployed in the LHC. In ad­di­tion to protecting the col­lid­er, the sys­tem also needs to pro­vide a means of di­ag­nos­ing ma­chine faults and de­liv­er a feed­back of loss­es to the control room as well as to sev­er­al sys­tems for their setup and analysis. It has to trans­mit and pro­cess sig­nals from al­most 4’000 mon­i­tors, and has near­ly 3 mil­lion con­fig­urable pa­ram­e­ters. The system was de­signed with re­li­a­bil­i­ty and avail­abil­i­ty in mind. The spec­i­fied op­er­a­tion and the fail-safe­ty stan­dards must be guar­an­teed for the sys­tem to per­form its func­tion in pre­vent­ing su­per­con­duc­tive mag­net de­struc­tion caused by par­ti­cle flux. Main­tain­ing the ex­pect­ed re­li­a­bil­i­ty re­quires ex­ten­sive test­ing and ver­i­fi­ca­tion. In this paper we re­port our most re­cent ad­di­t...

  6. Beam position monitors for the high brightness lattice

    International Nuclear Information System (INIS)

    Ring, T.

    1985-06-01

    Engineering developments associated with the high brightness lattice and the projected change in machine operating parameters will inherently affect the diagnostics systems and devices installed at present in the storage ring. This is particularly true of the beam position monitoring (BPI) system. The new sixteen unit cell lattice with its higher betatron tune values and the limited space available in the redesigned machine straights for fitting standard BPI vessels forces a fundamental re-evaluation of the beam position monitor system. The design aims for the new system are based on accepting the space limitations imposed while still providing the monitor points required to give good radial and vertical closed orbit plots. The locations of BPI's in the redesigned machine straights is illustrated. A description of the new BPI assemblies and their calibration is given. The BPI's use capacitance button type pick-ups; their response is described. (U.K.)

  7. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  8. Control of secondary electrons from ion beam impact using a positive potential electrode

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  9. Secondary magnetic field harmonics dependence on vacuum beam chamber geometry

    Directory of Open Access Journals (Sweden)

    S. Y. Shim

    2013-08-01

    Full Text Available The harmonic magnetic field properties due to eddy currents have been studied with respect to the geometry of the vacuum beam chamber. We derived a generalized formula enabling the precise prediction of any field harmonics generated by eddy currents in beam tubes with different cross-sectional geometries. Applying our model to study the properties of field harmonics in beam tubes with linear dipole magnetic field ramping clearly proved that the circular cross section tube generates only a dipole field from eddy currents. The elliptic tube showed noticeable magnitudes of sextupole and dipole fields. We demonstrate theoretically that it is feasible to suppress the generation of the sextupole field component by appropriately varying the tube wall thickness as a function of angle around the tube circumference. This result indicates that it is possible to design an elliptical-shaped beam tube that generates a dipole field component with zero magnitude of sextupole. In a rectangular-shaped beam tube, one of the selected harmonic fields can be prevented if an appropriate wall thickness ratio between the horizontal and vertical tube walls is properly chosen. Our generalized formalism can be used for optimization of arbitrarily complex-shaped beam tubes, with respect to suppression of detrimental field harmonics.

  10. Beam-phase monitoring with non-destructive pickup

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.

    1995-01-01

    An intensity and phase-sensitive capacitive pickup was installed at the entrance to the PII linac. This device is based on an extension of the design of the Beam Current Monitor developed as part of the ATLAS radiation safety system. The purpose of the pickup is to allow the arrival phase of the beam from the ECR source at the entrance to the PII linac to be set to a standard which reproduces previous tune conditions and establishes a standard. The new pickups and associated electronics demonstrated sensitivity well below 1 electrical nanoamp but can handle beam currents of many electrical microamps as well. In addition to phase information, beam current is also measured by the units thus providing a continuous, non-intercepting current readout as well. From the very first use of PII, we established a few open-quotes reference tunesclose quotes for the linac and scaled those tunes for any other beam desired. For such scaling to work properly, the velocity and phase of the beam from the ion source must be fixed and reproducible. In last year's FWP the new ATLAS Master Oscillator System was described. The new system has the ability of easily adjusting the beam arrival phase at the entrance to each of the major sections of the facility - PII, Booster, ATLAS. Our present techniques for establishing the beam arrival phase at the entrance of each of the linac sections are cumbersome and, sometimes, intellectually challenging. The installation of these capacitative pickups at the entrance to each of the linac sections will make the determination and setting of the beam arrival phase direct, simple, and dynamic. This should dramatically shorten our setup time for open-quotes old-tuneclose quotes configurations and increase useful operating hours. Permanent electronics for the PII entrance pickup is under construction

  11. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  12. Beam Loss Monitoring for Run 2 of the LHC

    CERN Document Server

    Kalliokoski, Matti; Dehning, Bernd; Domingues Sousa, Fernando; Effinger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Holzer, Eva Barbara; Jackson, Stephen; Kolad, Blazej; Nebot Del Busto, Eduardo; Picha, Ondrej; Roderick, Chris; Sapinski, Mariusz; Sobieszek, Marcin; Zamantzas, Christos

    2015-01-01

    The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss...

  13. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Novgorodova, Olga; Penno, Marek; Walsh, Roberval; Dabrowski, Anne; Guthoff, Moritz; Loos, R; Ryjov, Vladimir; Burtowy, Piotr; Lokhovitskiy, Arkady; Odell, Nathaniel; Przyborowski, Dominik; Stickland, David P; Zagozdzinska, Agnieszka

    2014-01-01

    The CMS beam condition monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be discussed, including results from the January 201...

  14. Upgraded Fast Beam Conditions Monitor for CMS online luminosity measurement

    CERN Document Server

    Leonard, Jessica Lynn

    2014-01-01

    The CMS beam and radiation monitoring subsystem BCM1F during LHC Run I consisted of 8 individual diamond sensors situated around the beam pipe within the tracker detector volume, for the purpose of fast monitoring of beam background and collision products. Effort is ongoing to develop the use of BCM1F as an online bunch-by-bunch luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. To prepare for the expected increase in the LHC luminosity and the change from 50 ns to 25 ns bunch separation, several changes to the system are required, including a higher number of sensors and upgraded electronics. In particular, a new real-time digitizer with large memory was developed and is being integrated into a multi-subsystem framework for luminosity measurement. Current results from Run II preparation will be shown, including results from the January 201...

  15. Small-sized monitor of beam current and profile for the proton pulse electrostatic accelerator

    International Nuclear Information System (INIS)

    Getmanov, V.N.

    1985-01-01

    Design and principle of operation of current monitor and beam profile of range-coordinate type are described. Monitor operation peculiarities are discussed using diagnostics of a beam of 330-420 keV electrostatic pulse proton accelerator with a beam current of up to 20 mA, at a current density of up to 23 mA x cm -2 and wth pulse duraton of about 20 μs. The monitor consists of a vacuum-dense foil of 3.0+-0.1 μm in thickness (or 0.81+-0.0x- mg x cm -2 ) two grid electrodes, each containing 12 wires, and as solid copper bottom. Foil serves for chopping off background particles with a path lesser 3.0 μm and stands thermal pulse load up to 0.5 J/cm -2 . Grid electrode wires are oriented perpendicularly to lach other and form a two-coordinate secondary-emisson roughness indicator. The bothhom is used for measuring an absolute value of beam current

  16. Beam position dependence of a wall-current monitor

    International Nuclear Information System (INIS)

    Tamiya, K.; Asami, A.; Suwada, T.; Urano, T.; Kobayashi, H.

    1995-01-01

    It was pointed out recently that there exists an appreciable beam position dependence in the wall-current monitor widely used in electron accelerators. Detailed study of this dependence is performed on a test bench varying the pulse width and the frequency of the input signal simulating the beam. The results of experiments show that when the pulse width becomes shorter more appreciable becomes the dependence, and it approaches to that of calculated from the method of images. A unified analysis is under way. (author)

  17. Coupling Impedance of the CERN SPS beam position monitors

    CERN Document Server

    Salvant, B; Boccard, C; Caspers, Friedhelm; Grudiev, A; Jones, R; Métral, E; Rumolo, G; Zannini, C; Spataro, B; Alesini, D; Migliorati, M; Roncarolo, F; Calaga, R

    2010-01-01

    A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPMs) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic (EM) simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine.

  18. Design, test, and calibration of an electrostatic beam position monitor

    Directory of Open Access Journals (Sweden)

    Maurice Cohen-Solal

    2010-03-01

    Full Text Available The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  19. Design, test, and calibration of an electrostatic beam position monitor

    Science.gov (United States)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  20. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  1. On-line chemistry monitoring for the secondary side

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Babcock and Wilcox (B and W) has developed a computerized water chemistry data acquisition and management system for nuclear plant secondary coolant systems. The Integrated Water Chemistry Monitoring System (IWCMS) provides on-line monitoring of conditions and rapid trend analysis of sampled data. So far it has been installed at GPU Three Mile Island unit 1 and at Toledo Edison Davis-Besse. The IWCMS meets the following utility needs for monitoring power plant chemistry: control of chemistry conditions to minimize corrosion and extend component/system life; continuous analysis of data from on-line detectors and grab samples; expediting of transient recovery actions with trend, alarm and evaluation capability; provision for rapid sharing of useful operational chemistry information; concentration of attention on evaluation instead of data manipulation. The system is composed of three functional parts: data acquisition hardware; PC-based computer system and customised system software. (author)

  2. An MLC-based version for the ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators

    International Nuclear Information System (INIS)

    Nelli, Flavio Enrico

    2016-01-01

    A very simple method to measure the effect of the backscatter from secondary collimators into the beam monitor chambers in linear accelerators equipped with multi-leaf collimators (MLC) is presented here. The backscatter to the monitor chambers from the upper jaws of the secondary collimator was measured on three beam-matched linacs by means of three methods: this new methodology, the ecliptic method, and assessing the variation of the beam-on time per monitor unit with dose rate feedback disabled. This new methodology was used to assess the backscatter characteristics of asymmetric over-traveling jaws. Excellent agreement between the backscatter values measured using the new methodology introduced here and the ones obtained using the other two methods was established. The experimental values reported here differ by less than 1 % from published data. The sensitivity of this novel technique allowed differences in backscatter due to the same opening of the jaws, when placed at different positions on the beam path, to be resolved. The introduction of the ecliptic method has made the determination of the backscatter to the monitor chambers an easy procedure. The method presented here for machines equipped with MLCs makes the determination of backscatter to the beam monitor chambers even easier, and suitable to characterize linacs equipped with over-traveling asymmetric secondary collimators. This experimental procedure could be simply implemented to fully characterize the backscatter output factor constituent when detailed dosimetric modeling of the machine’s head is required. The methodology proved to be uncomplicated, accurate and suitable for clinical or experimental environments.

  3. First Experiences of Beam Presence Detection Based on Dedicated Beam Position Monitors

    CERN Document Server

    Jalal, A; Gasior, M; Todd, B

    2011-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BP...

  4. A beam position monitor system for electron cooler in HIRFL-CSR

    International Nuclear Information System (INIS)

    Li Guohong; Li Jie; Yang Xiaodong; Yan Tailai; Ma Xiaoming

    2010-01-01

    The efficient electron cooling requires that the ion beam and electron beam are parallel and overlapped. In order to measure the positions of ion beam and electron beam simultaneously, a beam position monitor system is developed for the HIRFL-CSR electron cooler device, which probe consists of four capacitive cylinder linear-cut poles. One can get the both beam positions from the picking up signals of four poles by using Fourier transform (FFT) method. The measurement results show that the beam position monitor system is accurate. This system is suitable for investigating the relation between electron cooling processing and the angle of ion beam and electron beam. (authors)

  5. Characterization of beam position monitors in two-dimensions

    International Nuclear Information System (INIS)

    Power, J.; Gilpatrick, D.; Neri, F.; Shurter, B.

    1992-01-01

    We describe characterization of a beam position measuring system. We used an automatic test fixture to map the response in two dimensions of dual-axis beam position monitors (BPMs) and their associated ratio-signal processing electronics and applied signals to a thin wire whose position is controlled by stepper motor actuators on x-y stages. The wire may be moved within a circular area of up to 50 mm in diameter with 5-μm accuracy. The resulting signals picked up by a BPM are recorded for each point on a grid within the mapping area. We present a comparison of the theoretical with the actual response, as well as techniques employed to calculate suitable correction functions that accurately predict the beam position over at least 80% of the probe's inner aperture. (Author) 4 figs., 5 refs

  6. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  7. Current Status of the Beam Position Monitoring System at TLS

    Science.gov (United States)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  8. Consideration of fluctuation in secondary beam intensity of heavy ion beam probe measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, A.; Iguchi, H.; Lee, S.; Hamada, Y.

    1997-01-01

    Heavy ion beam probes have capability to detect local electron density fluctuation in the interior of plasmas through the detected beam intensity fluctuation. However, the intensity fluctuation should suffer a certain degree of distortion from electron density and temperature fluctuations on the beam orbits, and as a result the signal can be quite different from the local density fluctuation. This paper will present a condition that the intensity fluctuation can be regarded as being purely local electron density fluctuation, together with discussion about the contamination of the fluctuation along the beam orbits to the beam intensity fluctuation. (author)

  9. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, T. [Fermilab; Diamond, J. [Fermilab; Liu, N. [Fermilab; Prieto, P. S. [Fermilab; Slimmer, D. [Fermilab; Watts, A. [Fermilab

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  10. Performance of a reentrant cavity beam position monitor

    Directory of Open Access Journals (Sweden)

    Claire Simon

    2008-08-01

    Full Text Available The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs. In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10  μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL and the International Linear Collider (ILC. Its other features are a small size of the rf cavity, a large aperture (78 mm, and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH, at Deutsches Elektronen-Synchrotron (DESY and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4  μm over a dynamic range ±5  mm in single bunch.

  11. Performance of a reentrant cavity beam position monitor

    International Nuclear Information System (INIS)

    Simon, C.; Luong, M.; Chel, S.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.; Baboi, N.; Mildner, N.; Nolle, D.

    2008-01-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryo-module, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10 μm and has the possibility to perform bunch to bunch measurements for the X-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryo-module. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4 μm over a dynamic range ± 5 mm in single bunch. (authors)

  12. Performance of a reentrant cavity beam position monitor

    Science.gov (United States)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  13. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  14. Scintillator materials for x-ray detectors and beam monitors

    Czech Academy of Sciences Publication Activity Database

    Martin, T.; Koch, A.; Nikl, Martin

    2017-01-01

    Roč. 42, č. 6 (2017), s. 451-456 ISSN 0883-7694 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : scintillator * X-ray detector * beam monitor * synchrotron * thin film Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 5.199, year: 2016

  15. Beam Position Monitoring in the CSU Accelerator Facility

    Science.gov (United States)

    Einstein, Joshua; Vankeuren, Max; Watras, Stephen

    2014-03-01

    A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.

  16. Beam feasibility study of a collimator with in-jaw beam position monitors

    Science.gov (United States)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  17. A beam monitor based on MPGD detectors for hadron therapy

    Directory of Open Access Journals (Sweden)

    Altieri P. R.

    2018-01-01

    Full Text Available Remarkable scientific and technological progress during the last years has led to the construction of accelerator based facilities dedicated to hadron therapy. This kind of technology requires precise and continuous control of position, intensity and shape of the ions or protons used to irradiate cancers. Patient safety, accelerator operation and dose delivery should be optimized by a real time monitoring of beam intensity and profile during the treatment, by using non-destructive, high spatial resolution detectors. In the framework of AMIDERHA (AMIDERHA - Enhanced Radiotherapy with HAdron project funded by the Ministero dell’Istruzione, dell’Università e della Ricerca (Italian Ministry of Education and Research the authors are studying and developing an innovative beam monitor based on Micro Pattern Gaseous Detectors (MPDGs characterized by a high spatial resolution and rate capability. The Monte Carlo simulation of the beam monitor prototype was carried out to optimize the geometrical set up and to predict the behavior of the detector. A first prototype has been constructed and successfully tested using 55Fe, 90Sr and also an X-ray tube. Preliminary results on both simulations and tests will be presented.

  18. On- and off-line monitoring of ion beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Katia, E-mail: katia.parodi@lmu.de

    2016-02-11

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  19. DATA ACQUISITION FOR SNS BEAM LOSS MONITOR SYSTEM

    International Nuclear Information System (INIS)

    YENG, Y.; GASSNER, D.; HOFF, L.; WITKOVER, R.

    2003-01-01

    The Spallation Neutron Source (SNS) beam loss monitor system uses VME based electronics to measure the radiation produced by lost beam. Beam loss signals from cylindrical argon-filled ion chambers and neutron detectors will be conditioned in analog front-end (AFE) circuitry. These signals will be digitized and further processed in a dedicated VME crate. Fast beam inhibit and low-level, long-term loss warnings will be generated to provide machine protection. The fast loss data will have a bandwidth of 35kHz. While the low level, long-term loss data will have much higher sensitivity. This is further complicated by the 3 decade range of intensity as the Ring accumulates beam. Therefore a bandwidth of 100kHz and dynamic range larger than 21 bits data acquisition system will be required for this purpose. Based on the evaluation of several commercial ADC modules in preliminary design phase, a 24 bits Sigma-Delta data acquisition VME bus card was chosen as the SNS BLM digitizer. An associated vxworks driver and EPICS device support module also have been developed at BNL. Simulating test results showed this system is fully qualified for both fast loss and low-level, long-term loss application. The first prototype including data acquisition hardware setup and EPICS software (running database and OPI clients) will be used in SNS Drift Tube Linac (DTL) system commissioning

  20. Resolution of a High Performance Cavity Beam Position Monitor System

    International Nuclear Information System (INIS)

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Ross, M.; Khainovski, O.; Kolomensky, Y.; Loscutoff, P.; Slater, M.; Thomson, M.; Ward, D.; Boogert, S.; Vogel, V.; Meller, R.; Lyapin, A.; Malton, S.; Miller, D.; Frisch, J.; Hinton, S.; May, J.; McCormick, D.; Smith, S.; Smith, T.; White, G.; Orimoto, T.; Hayano, H.; Honda, Y.; Terunuma, N.; Urakawa, J.

    2005-01-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns

  1. Geometric beam coupling impedance of LHC secondary collimators

    Science.gov (United States)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  2. Production of secondary radioactive beams from 44 MeV/u Ar projectiles

    International Nuclear Information System (INIS)

    Bimbot, R.; Della Negra, S.; Aguer, P.; Bastin, G.; Anne, R.; Delagrange, H.; Hubert, F.

    1985-01-01

    Secondary beams have been produced through interaction of a 1760 MeV Ar beam with a 99 mg/cm 2 Be target. An achromatic spectrometer is used to select the magnetic rigidity corresponding to a given beam, and to transport this beam over a distance of about 18 m. The beam purity is studied using a solid state ΔE-E telescope. Beams of 38 S and 39 Cl are produced with a purity of about 80% and production rates of 1.5 10 -6 Isub(o) and 5.10 -5 Isub(o) respectively. Here Isub(o) denotes the primary beam intensity. Beams of 38 Ar, 39 Ar and 41 Kr are produced with about the same abundances as 39 Cl but with lower purities. It is shown that, by setting properly the experimental parameters, the beam production can be improved by a factor 2 to 5. This could lead to intensities of about 2.10 6 pps for 38 S and of 10 7 to 10 8 pps for the four other beams. The possibility of purifying these beams by placing a degrader between the two dipoles of the spectrometer is shown experimentally

  3. Beam position and total current monitor for heavy ion fusion beams

    International Nuclear Information System (INIS)

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 μs. For accurate beam transport, the center of charge must be located to within ± 100 μm. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information

  4. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    Science.gov (United States)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  5. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Opalka, Lukas [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Martisikova, Maria; Gwosch, Klaus [German Cancer Research Center, Heidelberg (Germany); Jakubek, Jan [Advacam, Prague (Czech Republic)

    2016-07-07

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  6. Imaging and characterization of primary and secondary radiation in ion beam therapy

    International Nuclear Information System (INIS)

    Granja, Carlos; Opalka, Lukas; Martisikova, Maria; Gwosch, Klaus; Jakubek, Jan

    2016-01-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  7. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  8. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  9. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Science.gov (United States)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  10. A real-time intercepting beam-profile monitor for a medical cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Hendriks, C.; Uittenbosch, T.; Cameron, D.; Kellogg, S.; Gray, D.; Buckley, K.; Schaffer, P.; Verzilov, V.; Hoehr, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada)

    2013-11-15

    There is a lack of real-time continuous beam-diagnostic tools for medical cyclotrons due to high power deposition during proton irradiation. To overcome this limitation, we have developed a profile monitor that is capable of providing continuous feedback about beam shape and current in real time while it is inserted in the beam path. This enables users to optimize the beam profile and observe fluctuations in the beam over time with periodic insertion of the monitor.

  11. The Beam Profile Monitoring System for the CERN IRRAD Proton Facility

    CERN Document Server

    Ravotti, F; Glaser, M; Matli, E; Pezzullo, G; Gan, K K; Kagan, H; Smith, S; Warner, J D

    2017-01-01

    GeV/c proton beam is used. During beam steering and irradiation, the intensity and the transverse profile of the proton beam are monitored online with custom-made Beam Profile Monitor (BPM) devices. In this work, we present the design and the architecture of the IRRAD BPM system, some results on its performance with the proton beam, as well as its planned grades.

  12. Development of KOMAC Beam Monitoring System Using EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young-Gi; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The beam loss signals must be digitized and the sampling has to be synchronized to a reference signal which is an external trigger for beam operation. The digitized data must be accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. In order to satisfy the requirement, an Input /Output Controller (IOC), which runs Linux on a CPU module with PCI express based Analog to Digital Converter (ADC) modules, has been adopted. An associated linux driver and EPICS device support module also have been developed. The IOC meets the requirements and the development and maintenance of the software for the IOC is considerably efficient. The data acquisition system running EPICS will be used in increasing phase of KOrea Multi-purpose Accelerator Complex (KOMAC) beam power. The beam monitoring system integrates BLM and BPM signals into control system and offers real-time data to operators. The IOC, which is implemented with Linux and PCI driver, has supported data acquisition as a very flexible solution.

  13. Development of KOMAC Beam Monitoring System Using EPICS

    International Nuclear Information System (INIS)

    Song, Young-Gi; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2014-01-01

    The beam loss signals must be digitized and the sampling has to be synchronized to a reference signal which is an external trigger for beam operation. The digitized data must be accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. In order to satisfy the requirement, an Input /Output Controller (IOC), which runs Linux on a CPU module with PCI express based Analog to Digital Converter (ADC) modules, has been adopted. An associated linux driver and EPICS device support module also have been developed. The IOC meets the requirements and the development and maintenance of the software for the IOC is considerably efficient. The data acquisition system running EPICS will be used in increasing phase of KOrea Multi-purpose Accelerator Complex (KOMAC) beam power. The beam monitoring system integrates BLM and BPM signals into control system and offers real-time data to operators. The IOC, which is implemented with Linux and PCI driver, has supported data acquisition as a very flexible solution

  14. Beam position monitor R&D for keV ion beams

    CERN Document Server

    Naveed, S; Nosych, A; Søby,L

    2013-01-01

    Beams of cooled antiprotons at keV energies shall be provided by the Ultra-low energy Storage Ring (USR) at the Facility for Low energy Antiproton and Ion Research (FLAIR) and the Extra Low ENergy Antiproton ring (ELENA) at CERN's Antiproton Decelerator (AD) facility. Both storage rings put challenging demands on the beam position monitoring (BPM) system as their capacitive pick-ups should be capable of determining the beam position of beams at low intensities and low velocities, close to the noise level of state-of-the-art electronics. In this contribution we describe the design and anticipated performance of BPMs for low-energy ion beams with a focus on the ELENA orbit measurement systems. We also present the particular challenges encountered in the numerical simulation of pickup response at very low beta values. Finally, we provide an outlook on how the implementation of faster algorithms for the simulation of BPM characteristics could potentially help speed up such studies considerably.

  15. First experiences of beam presence detection based on dedicated beam position monitors

    International Nuclear Information System (INIS)

    Jalal, A.; Gabourin, S.; Gasior, M.; Todd, B.

    2012-01-01

    High intensity particle beam injection into the LHC is only permitted when a low intensity pilot beam is already circulating in the LHC. This requirement addresses some of the risks associated with high intensity injection, and is enforced by a so-called Beam Presence Flag (BPF) system which is part of the interlock chain between the LHC and its injector complex. For the 2010 LHC run, the detection of the presence of this pilot beam was implemented using the LHC Fast Beam Current Transformer (FBCT) system. However, the primary function of the FBCTs, that is reliable measurement of beam currents, did not allow the BPF system to satisfy all quality requirements of the LHC Machine Protection System (MPS). Safety requirements associated with high intensity injections triggered the development of a dedicated system, based on Beam Position Monitors (BPM). This system was meant to work first in parallel with the FBCT BPF system and eventually replace it. At the end of 2010 and in 2011, this new BPF implementation based on BPMs was designed, built, tested and deployed. This paper reviews both the FBCT and BPM implementation of the BPF system, outlining the changes during the transition period. The paper briefly describes the testing methods, focuses on the results obtained from the tests performed during the end of 2010 LHC run and shows the changes made for the BPM BPF system deployment in LHC in 2011. Whilst the system has been proved to work with a threshold of 6*10 8 charges, it has been implemented with a threshold of 2*10 9 charges to protect the LHC. (authors)

  16. Setup for fission and evaporation cross-section measurements in reactions induced by secondary beams

    International Nuclear Information System (INIS)

    Hassan, A.A.; Luk'yanov, S.M.; Kalpakchieva, R.; Skobelev, N.K.; Penionzhkevich, Yu.Eh.; Dlouhy, Z.; Radnev, S.; Poroshin, N.V.

    2002-01-01

    A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of α-particle and fission fragment energy spectra. By measuring the α-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30% of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion-fission reactions and of reactions leading to evaporation residue production

  17. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  18. Summary of the 2014 Beam-Halo Monitoring Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  19. Beam profile monitor system for the bevalac transfer line

    International Nuclear Information System (INIS)

    Stover, G.

    1985-01-01

    Incorporated in the current Bevalac transfer line upgrade project is a proposal for a new electronic beam monitoring system. It will be designed to amplify, convert, and transmit the signals of twelve 16 by 16 multi-wire grids to a central computer located in the Bevatron control room. Each station will contain interface amplifiers and a local microprocessor to convert wire grid currents into digitized values which will then be transmitted via a serial data channel to the main computer. The system will have a large dynamic range (1 nano to 1 milli-ampere of beam current), be designed for distributed operation, and will be easily expandable. This paper describes the basic electronic hardware and software components of the proposed system

  20. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  1. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  2. Suppression secondary electrons from target surface under pulsed ion beams bombardment

    International Nuclear Information System (INIS)

    Yang Zhen; Peng Yufei; Long Jidong; Lan Chaohui; Dong Pan; Shi Jinshui

    2012-01-01

    The producing mechanism of secondary electrons from target surface under ion beams bombardment is discussed. Several methods to suppress the secondary electrons in special vacuum devices and their advantages and disadvantages are introduced. The ways of using self-bias and curved surface target are proposed and verified in the experiment. The results show that the secondary electrons can be effectively suppressed when the self-bias is larger than 80 V. The secondary electron yield decreases by using curved surface target instead of flat target. The secondary electron yield calculated from the experimental data is about 0.67, which is slightly larger than the value (0.58) from the literature due to the impurities of the ion beam and target surface. The effect of suppressing the electron countercurrent by the self-bias method is analyzed. The result shows that the self-bias method can not only suppress the secondary electrons from target surface under ion beams bombardment, but also suppress the electron countercurrent resulting from the instability of the pulsed power source. (authors)

  3. Long radiation detector system for beam loss monitoring

    International Nuclear Information System (INIS)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described

  4. Numerical simulation of the PEP-II beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, N; Martin, D; Ng, C -K; Smith, S [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Weiland, T

    1996-08-01

    We use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, we find that internal resonant modes are a major source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given. (author)

  5. Long radiation detector system for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described.

  6. Numerical simulation of the PEP-II beam position monitor

    International Nuclear Information System (INIS)

    Kurita, N.; Martin, D.; Ng, C.K.; Smith, S.; Weiland, T.

    1995-09-01

    The authors use MAFIA to analyze the PEP-II button-type beam position monitor (BPM). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM is determined. Thus the issues of signal sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, they find that internal resonant modes are a major-source of high value narrow-band impedances. The effects of these resonances on coupled-bunch instabilities are discussed. An estimate of the power dissipation in the ceramic vacuum seal under high current operation is given

  7. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  8. Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests

    Science.gov (United States)

    Vignati, A.; Monaco, V.; Attili, A.; Cartiglia, N.; Donetti, M.; Fadavi Mazinani, M.; Fausti, F.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Cirio, R.; Boscardin, M.; Paternoster, G.; Ficorella, F.

    2017-12-01

    To fully exploit the physics potentials of particle therapy in delivering dose with high accuracy and selectivity, charged particle therapy needs further improvement. To this scope, a multidisciplinary project (MoVeIT) of the Italian National Institute for Nuclear Physics (INFN) aims at translating research in charged particle therapy into clinical outcome. New models in the treatment planning system are being developed and validated, using dedicated devices for beam characterization and monitoring in radiobiological and clinical irradiations. Innovative silicon detectors with internal gain layer (LGAD) represent a promising option, overcoming the limits of currently used ionization chambers. Two devices are being developed: one to directly count individual protons at high rates, exploiting the large signal-to-noise ratio and fast collection time in small thicknesses (1 ns in 50 μm) of LGADs, the second to measure the beam energy with time-of-flight techniques, using LGADs optimized for excellent time resolutions (Ultra Fast Silicon Detectors, UFSDs). The preliminary results of first beam tests with therapeutic beam will be presented and discussed.

  9. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Science.gov (United States)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  10. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Directory of Open Access Journals (Sweden)

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  11. Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams

    NARCIS (Netherlands)

    Castaldo, V.; Withagen, J.; Hagen, C.; Kruit, P.; Van Veldhoven, E.

    2011-01-01

    In recent years, novel ion sources have been designed and developed that have enabled focused ion beam machines to go beyond their use as nano-fabrication tools. Secondary electrons are usually taken to form images, for their yield is high and strongly dependent on the surface characteristics, in

  12. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  13. GEM-based thermal neutron beam monitors for spallation sources

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Caniello, R.; Cazzaniga, C.; Grosso, G.; Murtas, F.; Tardocchi, M.; Vassallo, E.; Gorini, G.; Horstmann, C.; Kampmann, R.; Nowak, G.; Stoermer, M.

    2013-01-01

    The development of new large area and high flux thermal neutron detectors for future neutron spallation sources, like the European Spallation Source (ESS) is motivated by the problem of 3 He shortage. In the framework of the development of ESS, GEM (Gas Electron Multiplier) is one of the detector technologies that are being explored as thermal neutron sensors. A first prototype of GEM-based thermal neutron beam monitor (bGEM) has been built during 2012. The bGEM is a triple GEM gaseous detector equipped with an aluminum cathode coated by 1μm thick B 4 C layer used to convert thermal neutrons to charged particles through the 10 B(n, 7 Li)α nuclear reaction. This paper describes the results obtained by testing a bGEM detector at the ISIS spallation source on the VESUVIO beamline. Beam profiles (FWHM x =31 mm and FWHM y =36 mm), bGEM thermal neutron counting efficiency (≈1%), detector stability (3.45%) and the time-of-flight spectrum of the beam were successfully measured. This prototype represents the first step towards the development of thermal neutrons detectors with efficiency larger than 50% as alternatives to 3 He-based gaseous detectors

  14. Performance of the upgraded NSLS beam position monitors

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Keane, J.

    1997-01-01

    The design and initial performance of the original NSLS beam position monitor were described by J. Bittner and R. Biscardi in 1989. The receiver, which processes signals from four button type pick-up electrodes by time-division multiplexing, operates at the third harmonic of the ring rf frequency (158.66 MHz). It has an output bandwidth of about 2 kHz and a dynamic signal range of approximately 36 dB. A total of 92 receivers have been installed in the NSLS X-ray and VUV storage rings for orbit monitoring and for real time feedback. As part of a continuous effort to improve the NSLS storage ring performance, the BPMs as well as other instrumentation systems have also been undergoing upgrades over the past two years to improve their performance. In the BPM, the front end has been modified to prevent saturation of the rf multiplexing switch, the detector operating point was changed to improve output signal linearity, the dynamic range was increased to over 60 dB, and the gain calibration was standardized to 0.5 volts/mm (i.e. 2 microm/mV). This paper describes the BPM modifications and presents some performance data and measurements on stored beam

  15. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  16. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  17. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  18. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  19. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  20. Monitoring beam position in the TRISTAN AR-to-MR transport lines

    International Nuclear Information System (INIS)

    Ieiri, Takao; Arinaga, Mitsuhiro

    1994-01-01

    A beam-position monitor (BPM) has been installed in the transport lines between the Accumulation Ring (AR) and the Main Ring (MR) of TRISTAN. This monitor can detect the beam position and its charge every passage of the beam. Variations of the beam position have been observed during the routine operation. An investigation into the AR extraction components has been carried out in order to clarify a source of the variations. (author)

  1. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    International Nuclear Information System (INIS)

    Feygelman, Vladimir; Mandelzweig, Yuri; Baral, Ed

    2015-01-01

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactory dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.

  2. LHCB: A LHCb-VELO module as beam quality monitor for proton therapy beam at the Clatterbridge Centre for Oncology

    CERN Multimedia

    Casse, G; Patel, G D; Smith, N A; Kacperek, A; Marsland, B

    2010-01-01

    The progress in detector technology, driven by the needs of particle tracking and vertexing in the present LHC and its upgrade (sLHC), has led to the design of silicon sensors with low mass, high granularity, high speed and unprecedented radiation hardness. The sensors designed for such a harsh environment can be profitably used for instrumenting the control systems of therapeutic hadron beams. The high granularity and readout clock speed are well suited for monitoring continuous beam currents. The low mass allows reduced interference with the beam whilst monitoring its profile with high precision. The high resolution and sensitivity to minimum ionising particles allows monitoring of the beam spot position by measurement of the halo in real time, without any interference with the beam spot used in therapy.

  3. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Saito, Haruo; Takai, Yoshihiro; Mitsuya, Masatoshi; Sakakida, Hideharu; Yamada, Shogo; Kohzuki, Masahiro

    2002-01-01

    Information on electron energy is important in planning radiation therapy using electrons. The Geske 3405 electron beam energy monitor (Geske monitor, PTW Nuclear Associates, Carle Place, NY, USA) is a device containing nine ionization chambers for checking the energy of the electron beams produced by radiotherapy accelerators. We wondered whether this might increase the likelihood of ionization chamber trouble. In spite of the importance of the stability of such a quality assurance (QA) device, there are no reports on the stability of values measured with a Geske monitor. The purpose of this paper was therefore to describe the stability of a Geske monitor. It was found that the largest coefficient of variation (CV) of the Geske monitor measurements was approximately 0.96% over a 21-week period. In conclusion, the stability of Geske monitor measurements of the energy of electron beams from a linear accelerator was excellent. (author)

  4. X-ray beam-position feedback system with easy-to-use beam-position monitor.

    Science.gov (United States)

    Park, Jae Yeon; Kim, Yesul; Lee, Sangsul; Lim, Jun

    2018-05-01

    X-ray beam-position stability is indispensable in cutting-edge experiments using synchrotron radiation. Here, for the first time, a beam-position feedback system is presented that utilizes an easy-to-use X-ray beam-position monitor incorporating a diamond-fluorescence screen. The acceptable range of the monitor is above 500 µm and the feedback system maintains the beam position within 3 µm. In addition to being inexpensive, the system has two key advantages: it works without a scale factor for position calibration, and it has no dependence on X-ray energy, X-ray intensity, beam size or beam shape.

  5. Comparison of the secondary electrons produced by proton and electron beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar [Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), P.O. Box 15875-4413, Hafez Avenue, Tehran (Iran, Islamic Republic of)

    2016-05-15

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  6. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  7. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    Science.gov (United States)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  8. Development of nanometer resolution C-Band radio frequency beam position monitors in the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Slaton, T.; Mazaheri, G.

    1998-08-01

    Using a 47 GeV electron beam, the Final Focus Test Beam (FFTB) produces vertical spot sizes around 70 nm. These small beam sizes introduce an excellent opportunity to develop and test high resolution Radio Frequency Beam Position Monitors (RF-BPMs). These BPMs are designed to measure pulse to pulse beam motion (jitter) at a theoretical resolution of approximately 1 nm. The beam induces a TM 110 mode with an amplitude linearly proportional to its charge and displacement from the BPM's (cylindrical cavity) axis. The C-band (5,712 MHz) TM 110 signal is processed and converted into beam position for use by the Stanford Linear Collider (SLC) control system. Presented are the experimental procedures, acquisition, and analysis of data demonstrating resolution of jitter near 25 nm. With the design of future e + e - linear colliders requiring spot sizes close to 3 nm, understanding and developing RF-BPMs will be essential in resolving and controlling jitter

  9. Analysis of charged particle induced reactions for beam monitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Surendra Babu, K. [IOP, Academia Sinica, Taipe, Taiwan (China); Lee, Young-Ouk [Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute (Korea, Republic of); Mukherjee, S., E-mail: smukherjee_msuphy@yahoo.co.in [Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-07-15

    The reaction cross sections for different residual nuclides produced in the charged particle (p, d, {sup 3}He and {alpha}) induced reactions were calculated and compared with the existing experimental data which are important for beam monitoring and medical diagnostic applications. A detailed literature compilation and comparison were made on the available data sets for the above reactions. These calculations were carried out using the statistical model code TALYS up to 100 MeV, which contains Kalbach's latest systematic for the emission of complex particles and complex particle-induced reactions. All optical model calculations were performed by ECIS-03, which is built into TALYS. The level density, optical model potential parameters were adjusted to get the better description of experimental data. Various pre-equilibrium models were used in the present calculations with default parameters.

  10. Statistical analysis of RHIC beam position monitors performance

    Science.gov (United States)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  11. Statistical analysis of RHIC beam position monitors performance

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2004-04-01

    Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  12. Fast beam conditions monitor BCM1F for the CMS experiment

    International Nuclear Information System (INIS)

    Bell, A.; Castro, E.; Hall-Wilton, R.

    2009-10-01

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  13. Fast beam conditions monitor BCM1F for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A. [CERN, Geneva (Switzerland); Geneva Univ. (Switzerland); Castro, E. [DESY Zeuthen (Germany); Hall-Wilton, R. [CERN, Geneva (Switzerland); Wisconsin Univ., Madison, WI (US)] (and others)

    2009-10-15

    The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first beams of the LHC are described. (orig.)

  14. New Acquisition System for the PSR Beam Pulse Charge Monitor

    International Nuclear Information System (INIS)

    Sellyey, William C.; Lewis, Paul S.

    2004-01-01

    A Pearson 1010 current monitor toroid has been in use for many years to measure the charge per bunch being delivered from the LANSCE Proton Storage Ring (PSR) to the Lujan Center's spallation neutron source. Improved electronics have been developed to process the toroid's signal. The new system generates a calibrated measurement of charge per pulse and is network-enabled to provide remote access to charge, current and other data via EPICS. It is experimentally demonstrated that accurate charge measurements can be made on calibration pulses that contain frequency components well above what is contained in a typical beam pulse. The new electronics consists of a National Instruments (NI) PXI-1002 chassis that contains a PXI-8176 controller, a PXI-5112 100-MS/s digitizer, and a PXI-6602 scalar and digital I/O module. The 8176 runs under the NI Real Time operating system and was programmed to integrate proton pulse waveforms acquired by the 5112 digitizer. For each beam pulse a 50-kHz pulse stream proportional to the pulse charge is generated by the 6602 and this real time information is distributed to all experimental areas

  15. Diode readout electronics for beam intensity and position monitors for FELs

    International Nuclear Information System (INIS)

    Herrmann, S; Hart, P; Freytag, M; Pines, J; Weaver, M; Sapozhnikov, L; Nelson, S; Koglin, J; Carini, G A; Tomada, A; Haller, G

    2014-01-01

    LCLS uses Intensity-Position Monitors (IPM) to measure intensity and position of the FEL x-ray pulses. The primary beam passes through a silicon nitride film and four diodes, arranged in quadrants, detect the backscattered x-ray photons. The position is derived from the relative intensity of the four diodes, while the sum provides beam intensity information. In contrast to traditional synchrotron beam monitors, where diodes measure a DC current signal, the LCLS beam monitors have to cope with the pulsed nature of the FEL, which requires a large single shot dynamic range. A key component of these beam monitors is the readout electronics. The first generation of beam monitors showed some limitations. A new scheme with upgraded electronics, firmware and software was implemented resulting in a more robust and reliable measuring tool.

  16. Development of a Beam Trajectory Monitoring System Using e+/e- Pair Production Events

    Science.gov (United States)

    Kimura, Shota; Emoto, Yusaku; Fujihara, Kento; Ito, Hiroshi; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    In particle therapy, it is important to monitor the Bragg-peak position. It was simulated by GEANT4 Monte Carlo Simulation Code that the distribution of secondary generated gamma rays on the carbon beam therapy and the proton beam therapy. This simulation shows that gamma rays whose energy is 10 MeV or more are intensively generated at the Bragg-peak position. We are developing the system to monitor the Bragg-peak position which can measure pair production events occurred in the detector by gamma rays from irradiation points. The momentum direction of the gamma ray can be determined by measuring passing points and energy of e+ and e- generated by pair production. This system has 5 parts. The first is the conversion part. This part consists of several layers. Each layer is composed of a La-GPS ((Gd0.75La0.24Ce0.01)2Si2O7) scintillator plate and wavelength-shifting fibre (WLSF) sheets. The scintillator plate is sandwiched between sheets, where the directions of the sheets are in orthogonally x and y directions. In this part, gamma rays are converted to e+ e- pairs and the position where the conversion occured is determined. The second is the tracking part. This part consists of 2 layers of scintillating fibre tracker. Each layer has 6 scintillating fibre sheets for x, x', u, u', v, and v'. The third is the energy measurement part. It measures the energy of e+ and e- by scintillator array and Silicon Photomultipliers. The fourth is the veto counter for bremsstrahlung gamma rays from e+ and e-. The fifth is the beam monitor. By experiment, the number of photoelectrons of La-GPS with a WLSF (B-3(300)MJ, Kuraray) sheet and scintillating fibre (SCSF-78, Kuraray) when charged particle passed was measured as 9.7 and 7.6 respectively.

  17. Development of a Beam Trajectory Monitoring System Using e+/e− Pair Production Events

    Directory of Open Access Journals (Sweden)

    KIMURA Shota

    2018-01-01

    Full Text Available In particle therapy, it is important to monitor the Bragg-peak position. It was simulated by GEANT4 Monte Carlo Simulation Code that the distribution of secondary generated gamma rays on the carbon beam therapy and the proton beam therapy. This simulation shows that gamma rays whose energy is 10 MeV or more are intensively generated at the Bragg-peak position. We are developing the system to monitor the Bragg-peak position which can measure pair production events occurred in the detector by gamma rays from irradiation points. The momentum direction of the gamma ray can be determined by measuring passing points and energy of e+ and e− generated by pair production. This system has 5 parts. The first is the conversion part. This part consists of several layers. Each layer is composed of a La-GPS ((Gd0.75La0.24Ce0.012Si2O7 scintillator plate and wavelength-shifting fibre (WLSF sheets. The scintillator plate is sandwiched between sheets, where the directions of the sheets are in orthogonally x and y directions. In this part, gamma rays are converted to e+ e- pairs and the position where the conversion occured is determined. The second is the tracking part. This part consists of 2 layers of scintillating fibre tracker. Each layer has 6 scintillating fibre sheets for x, x’, u, u’, v, and v’. The third is the energy measurement part. It measures the energy of e+ and e− by scintillator array and Silicon Photomultipliers. The fourth is the veto counter for bremsstrahlung gamma rays from e+ and e-. The fifth is the beam monitor. By experiment, the number of photoelectrons of La-GPS with a WLSF (B-3(300MJ, Kuraray sheet and scintillating fibre (SCSF-78, Kuraray when charged particle passed was measured as 9.7 and 7.6 respectively.

  18. Experimental Observations of In-Situ Secondary Electron Yield Reduction in the PEP-II Particle Accelerator Beam Line

    International Nuclear Information System (INIS)

    Pivi, Mauro

    2010-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  19. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    International Nuclear Information System (INIS)

    Pivi, M

    2008-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II

  20. Selection of K+ mesons in a secondary beam of Saturne (1961)

    International Nuclear Information System (INIS)

    Van Rossum, L.

    1961-01-01

    The electronic device is described which permitted the determination of the number of K + mesons produced in a secondary beam of the 'Saturne' proton synchrotron. The selective criteria and the tests which allowed the identification of the K + mesons, are analysed in detail. For the ratio π + / K + = 400, and with a momentum of 600 MeV/c, less than 5 p. 100 of the detected particles corresponded to spurious events. (authors) [fr

  1. Measurement of charged particle yields from therapeutic beams in view of the design of an innovative hadrontherapy dose monitor

    CERN Document Server

    Battistoni, G; Bini, F; Collamati, F; Collini, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Frallicciardi, P M; La Tessa, C; Marafini, M; Mattei, I; Miraglia, F; Morganti, S; Ortega, P G; Patera, V; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Schuy, C; Sciubba, A; Senzacqua, M; Solfaroli Camillocci, E; Vanstalle, M; Voena, C

    2015-01-01

    Particle Therapy (PT) is an emerging technique, which makes use of charged particles to efficiently cure different kinds of solid tumors. The high precision in the hadrons dose deposition requires an accurate monitoring to prevent the risk of under-dosage of the cancer region or of over-dosage of healthy tissues. Monitoring techniques are currently being developed and are based on the detection of particles produced by the beam interaction into the target, in particular: charged particles, result of target and/or projectile fragmentation, prompt photons coming from nucleus de-excitation and back-to-back γ s, produced in the positron annihilation from β + emitters created in the beam interaction with the target. It has been showed that the hadron beam dose release peak can be spatially correlated with the emission pattern of these secondary particles. Here we report about secondary particles production (charged fragments and prompt γ s) performed at different beam and energies that have a particular relevan...

  2. Spatial and temporal beam profile monitor with nanosecond resolution for CERN's Linac4 and Superconducting Proton Linac

    CERN Document Server

    Hori, M

    2008-01-01

    The Linac4, now being developed at CERN, will provide 160-MeV H- beams of high intensity . Before this beam can be injected into the CERN Proton Synchrotron Booster or future Superconducting Proton Linac for further acceleration, some sequences of 500-ps-long micro-bunches must be removed from it, using a beam chopper. These bunches, if left in the beam, would fall outside the longitudinal acceptance of the accelerators and make them radioactive. We developed a monitor to measure the time structure and spatial profile of this chopped beam, with respective resolutions and . Its large active area and dynamic range also allows investigations of beam halos. The ion beam first struck a carbon foil, and secondary electrons emerging from the foil were accelerated by a series of parallel grid electrodes. These electrons struck a phosphor screen, and the resulting image of the scintillation light was guided to a thermoelectrically cooled, charge-coupled device camera. The time resolution was attained by applying high-...

  3. Radiation monitoring and beam dump system of the OPAL silicon microvertex detector

    CERN Document Server

    Braibant, S

    1997-01-01

    The OPAL microvertex silicon detector radiation monitoring and beam dump system is described. This system was designed and implemented in order to measure the radiation dose received at every beam crossing and to induce a fast beam dump if the radiation dose exceeds a given threshold.

  4. A study on the secondary electrons in a clinical electron beam

    International Nuclear Information System (INIS)

    Krithivas, G.; Rao, S.N.

    1989-01-01

    The central axis dose of a 12 MeV clinical electron beam is investigated in terms of an axial component due to primary electrons in the central ray and a lateral component due to secondary electrons originating from multiple scattering of electrons in the off-axis rays. To this effect secondary electron fluence measurements in a polystyrene medium irradiated with a collimated beam are made with a sensitive diode detector. This leads to a construction of secondary electron depth-dose profiles for beam sizes of diameters ranging from 1.7 to 17.4 cm. The results indicate that the lateral electrons account for 25% of the dose in the therapeutic region. For these electrons, the depth of dose maximum is correlated with diffusion depth and maximum lateral excursion in the medium. Dose component due to backscatter electrons at depths is also investigated using a thin-window parallel-plate ion chamber. The role of lateral and backscatter electrons in characterising central axis per cent depth-dose is discussed. (author)

  5. Proceedings of the RCNP cascade project workshop 'heavy ion secondary beam course'

    International Nuclear Information System (INIS)

    1991-10-01

    In the Research Center for Nuclear Physics (RCNP), Osaka University, as one of the experimental facilities utilizing the heavy ion beam from the ring cyclotron, the construction of the heavy ion secondary beam course has been in progress. This course can supply the unstable nuclei produced by a heavy ion reaction as a secondary beam, and is expected to become the powerful experimental facility for elucidating the condition of atomic nuclei in the extreme condition and their reaction mode. At present, the arrangement is advanced aiming at the utilization from the end of fiscal year 1991. Toward the start of joint utilization experiment, in order to examine the expected physics, concrete experimental plan and the preparation plan accompanying them, the workshop including the introduction of the course was held. On December 15, 1990, the workshop with the theme on the nuclear reaction by unstable nucleus beam was held, and on January 26, 1991, that with the theme on the spectroscopy of unstable nuclei was held. In each meeting, there were more than 20 participants. In this report, the gists of 18 papers are collected. (K.I.)

  6. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  7. Development and Optimisation of the SPS and LHC beam diagnostics based on Synchrotron Radiation monitors

    CERN Document Server

    AUTHOR|(CDS)2081364; Roncarolo, Federico

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams.
 Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing t...

  8. A Fast Non Intercepting Linac Electron Beam Position and Current Monitor

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Wille, Mads

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating...

  9. LHC Collimators with Embedded Beam Position Monitors: a New Adbanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  10. LHC Collimators with Embedded Beam Position Monitors: A New Advanced Mechanical Design

    CERN Document Server

    Dallocchio, A; Boccard, C; Carra, F; Gasior, M; Gentini, L; Timmins, M A

    2011-01-01

    The LHC collimation system, ensuring both functions of beam cleaning and machine protection, is potentially submitted to high-energy beam impacts. Currently the collimators setup is performed by monitoring beam losses generated by the collimator jaws when approaching the particle beam. This procedure is applied to all LHC collimators (almost one hundred), taking several hours, and needs to be repeated if beam settings change significantly. Furthermore, during the beam-based alignment, the LHC tertiary collimators are potentially exposed to abnormal losses entailing possible damage to their tungsten jaws. To improve the efficiency of the machine operation and better control the particle beam a new advanced design embedding Beam Position Monitors (BPM) into the movable collimator jaws has been developed. This paper describes the mechanical design of various types of future collimators with embedded BPMs. Experimental measurements performed on a simplified functional prototype installed in the CERN SPS showed th...

  11. Applying EVM principles to Tevatron Beam Position Monitor Project

    International Nuclear Information System (INIS)

    Banerjee, Bakul

    2005-01-01

    At Fermi National Accelerator Laboratory (Fermilab), the Tevatron high energy particle collider must meet the increasing scientific demand of higher beam luminosity. To achieve this higher luminosity goal, U. S. Department of Energy (DOE) sponsored a major upgrade of capabilities of Fermilab's accelerator complex that spans five years and costs over fifty million dollars. Tevatron Beam Position Monitor (BPM) system upgrade is a part of this project, generally called RunII upgrade project. Since the purpose of the Tevatron collider is to detect the smashing of proton and anti-protons orbiting the circular accelerator in opposite directions, capability to detect positions of both protons and antiprotons at a high resolution level is a desirable functionality of the monitoring system. The original system was installed during early 1980s, along with the original construction of the Tevatron. However, electronic technology available in 1980s did not allow for the detection of significantly smaller resolution of antiprotons. The objective of the upgrade project is to replace the existing BPM system with a new system utilizing capabilities of modern electronics enhanced by a front-end software driven by a real-time operating software. The new BPM system is designed to detect both protons and antiprotons with increased resolution of up to an order of magnitude. The new system is capable of maintaining a very high-level of data integrity and system reliability. The system consists of 27 VME crates installed at 27 service buildings around the Tevatron ring servicing 236 beam position monitors placed underground, inside the accelerator tunnel. Each crate consists of a single Timing Generator Fanout module, custom made by Fermilab staff, one MVME processor card running VxWorks 5.5, multiple Echotek Digital Receiver boards complimented by custom made Filter Board. The VxWorks based front-end software communicates with the Main Accelerator Control software via a special

  12. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    Science.gov (United States)

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  13. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  14. Triple GEM gas detectors as real time fast neutron beam monitors for spallation neutron sources

    International Nuclear Information System (INIS)

    Murtas, F; Claps, G; Croci, G; Tardocchi, M; Pietropaolo, A; Cippo, E Perelli; Rebai, M; Gorini, G; Frost, C D; Raspino, D; Rhodes, N J; Schooneveld, E M

    2012-01-01

    A fast neutron beam monitor based on a triple Gas Electron Multiplier (GEM) detector was developed and tested for the ISIS spallation neutron source in U.K. The test on beam was performed at the VESUVIO beam line operating at ISIS. The 2D fast neutron beam footprint was recorded in real time with a spatial resolution of a few millimeters thanks to the patterned detector readout.

  15. Monitoring the extracted proton beam at the SPS

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Fluorescent screens in front of the target positions allow a precise adjustement in front of them. A similar photo was recorded at the beam dump at the beam injection into the SPS, see Weekly Bulletin of April 1976.

  16. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Guaglio, G.

    2005-12-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  17. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  18. Digital beam position monitor for the HAPPEX experiment

    International Nuclear Information System (INIS)

    Sherlon Kauffman; John Musson; Hai Dong; Lisa Kaufman; Arne Freyberger

    2005-01-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high precision (1um), high bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a RF receiver daughter board and a digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 3 MHz and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with resolution of 1um, 100 kHz output bandwidth, and overall latency of 1us. The results are available in both the analog and digital format

  19. Current control of the electron beam formed in the magnetron gun with a secondary-emission cathode

    International Nuclear Information System (INIS)

    Dovbnya, A.N.; Reshetnyak, N.G.; Zakutin, V.V.; Chertishchev, I.A.; Romas'ko, V.P.; Dovbnyan, N.A.

    2013-01-01

    Data are reported on electron beam generation and beam current control in two types of secondary-emission cathode magnetron guns. The influence of the magnetic field value and field distribution on the formation of the beam and its parameters has been investigated in the electron energy range between 20 and 150 keV. The influence of local magnetic field variations on the cathode and the electron beam characteristics has been studied. The possibility to control the electron beam current in various ways has been demonstrated

  20. External beam monitoring of the Cyclone 30 cyclotron of IPEN-CNEN-SP

    International Nuclear Information System (INIS)

    Matsuda, Hylton

    2002-01-01

    Due to the increasing demand for cyclotron radioisotopes and the high cost of equipment and materials involved in the process, it becomes evident the importance of external beam monitoring of the cyclotron. In this way, the beam of the Cyclone 30 cyclotron of IPEN-CNEN/S P was characterized throughout the evaluation of its current intensity, profile (position, focus and geometry), alignment and homogeneity, by measuring currents, temperatures and pressures of irradiation systems. For this purpose, techniques and conventional devices, thermocouples and pressure sensors associated to electronic of instrumentation, and technology and flexibility of micro controllers allowed observing the beam behavior during irradiations in real time. The ion beam energy was also evaluated using activation analysis technique of monitor reactions in nat Cu. The beam monitoring systems have been contributing to prevent material damages and they have already been used in routine irradiations, bringing important advantages in the process of beam optimization of the Cyclone 30. (author)

  1. Electron beam halo monitor for a compact x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2013-03-01

    Full Text Available An electron beam halo monitor using diamond-based detectors, which are operated in the ionization mode, has been developed for the SPring-8 Angstrom compact free-electron laser (SACLA to protect its undulator magnets from radiation damage. Diamond-based detectors are inserted in a beam duct to measure the intensity of the beam halo directly. To suppress the degradation of the electron beam due to the installation of the beam halo monitor, rf fingers with aluminum windows are newly employed. We evaluated the effect of radiation from the Al windows on the output signal both experimentally and by simulation. The operational results of the beam halo monitor employed in SACLA are presented.

  2. Comparative test results of various beam loss monitors in preparation for LHC

    OpenAIRE

    Bosser, Jacques; Ferioli, G

    1999-01-01

    Beam loss detectors will play an important role in the protection of the superconducting LHC magnets. Different types of detectors have been tested in the SPS ring and secondary beam lines with a view to their possible use for this application. This paper describes the measurements made with: microcalorimeters at cryogenic temperatures, PIN diodes, ionisation chambers, scintillators, and ACEMs. Measurements made using proton beams showing their relative sensitivities, linearities in counting ...

  3. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  4. Fast-scan monitor examines neutral-beam ion-density profile

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    All of the magnetic mirror confinement fusion experiments at LLL and at other laboratories depend on pulsed, energetic neutral-beam injection for fueling and imparting energy to the trapped plasma for density build-up and stability studies. It is vital to be able to monitor how well the injected ion beam is aimed and focused. To do this, we have designed an ion-beam current-density profile monitor that uses a commercial minimodular data acquisition system. Our prototype model monitors a single 20-kV, 50-A, 10-ms beam. However, the method is applicable to any number of beams with similar sampling target arrays. Also, the electronics can be switched to monitor any one of several target collectors

  5. Study of Anti-Neutrino Beam with Muon Monitor in the T2K experiment

    Science.gov (United States)

    Hiraki, Takahiro

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed.

  6. Study of anti-neutrino beam with Muon Monitor in the T2K experiment

    International Nuclear Information System (INIS)

    Hiraki, Takahiro

    2015-01-01

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed. (author)

  7. An X-ray beam position monitor based on the photoluminescence of helium gas

    Science.gov (United States)

    Revesz, Peter; White, Jeffrey A.

    2005-03-01

    A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.

  8. The rapid secondary electron imaging system of the proton beam writer at CIBA

    International Nuclear Information System (INIS)

    Udalagama, C.N.B.; Bettiol, A.A.; Kan, J.A. van; Teo, E.J.; Watt, F.

    2007-01-01

    The recent years have witnessed a proliferation of research involving proton beam (p-beam) writing. This has prompted investigations into means of optimizing the process of p-beam writing so as to make it less time consuming and more efficient. One such avenue is the improvement of the pre-writing preparatory procedures that involves beam focusing and sample alignment which is centred on acquiring images of a resolution standard or sample. The conventional mode of imaging used up to now has utilized conventional nuclear microprobe signals that are of a pulsed nature and are inherently slow. In this work, we report the new imaging system that has been introduced, which uses proton induced secondary electrons. This in conjunction with software developed in-house that uses a National Instruments DAQ card with hardware triggering, facilitates large data transfer rates enabling rapid imaging. Frame rates as much as 10 frames/s have been achieved at an imaging resolution of 512 x 512 pixels

  9. Micro-strip Metal Foil Detectors for the Beam Profile Monitoring

    CERN Document Server

    Pugatch, V M; Fedorovitch, O A; Mikhailenko, A V; Prystupa, S V; Pylypchenko, Y

    2005-01-01

    The Micro-strip Metal Foil Detectors (MMFD) designed and used for the Beam Profile Monitoring (BPM) are discussed. Fast particles hitting a metal strip initiate Secondary Electron Emission (SEE) which occurs at 10 - 50 nm surface layers of a strip. The SEE yield is measured by a sensitive Charge Integrator with built-in current-to-frequency converter (1 Hz per 1 fA). The MMFD (deposited onto the 20 μm thick Si-wafer) with 32 Al strips (10 μm wide, 32 μm pitch) has been used for the BPM of the 32 MeV alpha-particle beam at the MPIfK (Heidelberg) Tandem generator for Single-Event-Upset studies of the BEETLE micro-chip. Similar MMFD (0.5 μm thick Ni-strips) with totally removed Si-wafer (by plasma-chemistry, at the working area of 8 x 10 mm2) has been applied for the on-line X-ray BPM at the HASYLAB (DESY). The number of photons (11.3 GeV, mean X-ray energy 18 keV) producing out of a strip a single SEE was evaluated as (1.5 ±0.5)* 104. MMFD has demonstrated stable...

  10. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    Science.gov (United States)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  11. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  12. Summary Of Session 4: How Do We Monitor Beam Quality?

    Energy Technology Data Exchange (ETDEWEB)

    Karantzoulis, E

    2001-07-01

    Up to the end of the 80's beam quality was mainly believed to be connected only to the intensity i.e. beam quantity. However, with the new colliders already functioning or programmed, new and more (also in safety) demanding production machines (e.g. isotope) and the many new 3rd generation synchrotron radiation sources that accommodate many experimental lines, the beam quality (BQ) issue has to be re-examined, re-evaluated and re-defined. (author)

  13. Summary Of Session 4: How Do We Monitor Beam Quality?

    Energy Technology Data Exchange (ETDEWEB)

    Karantzoulis, E

    2001-07-01

    Up to the end of the 80's beam quality was mainly believed to be connected only to the intensity i.e. beam quantity. However, with the new colliders already functioning or programmed, new and more (also in safety) demanding production machines (e.g. isotope) and the many new 3rd generation synchrotron radiation sources that accommodate many experimental lines, the beam quality (BQ) issue has to be re-examined, re-evaluated and re-defined. (author)

  14. Summary Of Session 4: How Do We Monitor Beam Quality?

    International Nuclear Information System (INIS)

    Karantzoulis, E.

    2001-01-01

    Up to the end of the 80's beam quality was mainly believed to be connected only to the intensity i.e. beam quantity. However, with the new colliders already functioning or programmed, new and more (also in safety) demanding production machines (e.g. isotope) and the many new 3rd generation synchrotron radiation sources that accommodate many experimental lines, the beam quality (BQ) issue has to be re-examined, re-evaluated and re-defined. (author)

  15. Reduction of the energy of secondary beams down to the Coulomb barrier

    International Nuclear Information System (INIS)

    Yang Yong Feng; Mittig, W.; Roussel-Chomaz, P.; Lewitowicz, M.; Sida, J.L.; Alamanos, N.; Auger, F.; Gillibert, A.; Volant, C.; Cabot, C.; Borcea, C.

    1993-01-01

    With the doubly achromatic spectrometer LISE at GANIL, the energy of a secondary 11 Be beam produced by the reaction of 63 MeV/nucleon 18 O with a 9 Be target has been reduced to Coulomb barrier energies using various thick targets and a thinner target plus a thick degrader. The experimental results were compared with calculations performed with the program INTENSITY and with simple analytical expressions. It was found that in the present device, the thick target method is more convenient and efficient than the achromatic degrader

  16. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  17. Mass spectrum of secondary ions knocked-out from copper surface by argon ion beam

    International Nuclear Information System (INIS)

    Koval', A.G.; Bobkov, V.V.; Klimovskij, Yu.A.; Fogel', Ya.M.

    1976-01-01

    The mass-spectrum of secondary ions was studied within a mass range of 1-400. The ions were knocked-out by the beam of ions Ar + from the copper surface with different content of oxygen and sulphur solved in the volume. The studies were conducted at three temperatures of the target. The atomic and molecular ions of the metal matrix, volumetric impurities of metal and ions of chemical compounds molecules of the metal under study with gas particles adsorbed on its surface and atoms of the metal volumetric admixtures may be observed in the mass spectrum. Detection of secondary ions of the copper multi-atomic complexes and ions of these complexes compounds with the adsorbed molecules is of interest

  18. X-ray beam monitor made by thin-film CVD single-crystal diamond.

    Science.gov (United States)

    Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M; Kachkanov, V; Tartoni, N; Benetti, M; Cannatà, D; Di Pietrantonio, F

    2012-11-01

    A novel beam position monitor, operated at zero bias voltage, based on high-quality chemical-vapor-deposition single-crystal Schottky diamond for use under intense synchrotron X-ray beams was fabricated and tested. The total thickness of the diamond thin-film beam monitor is about 60 µm. The diamond beam monitor was inserted in the B16 beamline of the Diamond Light Source synchrotron in Harwell (UK). The device was characterized under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of approximately 2 µm × 3 µm square. Time response, linearity and position sensitivity were investigated. Device response uniformity was measured by a raster scan of the diamond surface with the micro-focused beam. Transmissivity and spectral responsivity versus beam energy were also measured, showing excellent performance of the new thin-film single-crystal diamond beam monitor.

  19. Visible-light beam size monitors using synchrotron radiation at CESR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T., E-mail: sw565@cornell.edu [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Rubin, D.L.; Conway, J.; Palmer, M.; Hartill, D. [Cornell Laboratory for Accelerator-Based Science and Education, Cornell University, Ithaca, NY 14853 (United States); Campbell, R.; Holtzapple, R. [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)

    2013-03-01

    A beam profile monitor utilizing visible synchrotron radiation (SR) from a bending magnet has been designed and installed in Cornell Electron-Positron Storage Ring (CESR). The monitor employs a double-slit interferometer to measure both the horizontal and vertical beam sizes over a wide range of beam currents. By varying the separation of the slits, beam sizes ranging from 50 to 500 μm can be measured with a resolution of approximately 5 μm. To measure larger beam size (>500 μm), direct imaging can be employed by rotating the double slits away from SR beam path. By imaging the π-polarized component of SR, a small vertical beam size (∼70 μm) was measured during an undulator test run in CESR, which was consistent with the interferometer measurement. To measure the bunch length, a beam splitter is inserted to direct a fraction of light into a streak camera setup. This beam size monitor measures the transverse and longitudinal beam sizes simultaneously, which is successfully used for intrabeam scattering studies. Detailed error analysis is discussed.

  20. Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization

    International Nuclear Information System (INIS)

    Chien, R.; Sogard, M.R.

    1990-01-01

    In this paper, we will describe a method using laser nonresonant multiphoton ionization to measure beam flux in molecular beam epitaxy (MBE) systems. The results were obtained in a test chamber where a focused excimer laser beam was used to photoionize a small fraction of the atomic and molecular beams. The constituents of the beams were identified by a time-of-flight mass spectrometer. Ion signal strength was found to be directly correlated to the temperature of the atomic beam oven. Good stability and sensitivity on gallium, aluminum, and silicon atomic beams was demonstrated. Arsenic was also detected. We demonstrated very sensitive detection of contaminant atomic and molecular constituents of our system. We have also detected the presence of short-term fluctuations in the gallium flux from an effusion source. These fluctuations, previously suspected, can be in excess of ±10%

  1. NPP Temelin automatic monitoring and diagnostic system of secondary side of the unit 1

    International Nuclear Information System (INIS)

    Heidenreich, S.; Pisl, M.; Drab, F.

    1997-01-01

    Two measuring and evaluating systems by SKODA PRAHA are described, designed for the Temelin nuclear power plant: a permanent secondary side diagnostic system for technology monitoring in the period of startup and operation; and the system of physical and power starting-up for monitoring during the first and repeated startup. The purposes of both systems are outlined. The scope of diagnostics covered and the functioning of the secondary side system is dealt with in some detail. (A.K.)

  2. Commissioning and operational scenarios of the LHC beam loss monitor system

    International Nuclear Information System (INIS)

    Holzer, E.B.

    2007-01-01

    One of the most critical elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. It must prevent quenches in the super conducting magnets and damage of machine components due to beam losses. The contribution will discuss the commissioning procedures of the BLM system and envisaged operational scenarios. About 4000 monitors will be installed around the ring. When the loss rate exceeds a predefined threshold value, a beam abort is requested. Magnet quench and damage levels vary as a function of beam energy and loss duration. Consequently, the beam abort threshold values vary accordingly. By measuring the loss pattern, the BLM system helps to identify the loss mechanism. Furthermore, it will be an important tool for commissioning, machine setup and studies. Special monitors will be used for the setup and control of the collimators. (author)

  3. Stability study of the higher order mode beam position monitors at the Accelerating cavities at FLASH

    CERN Document Server

    Shi, L; Jones., R M

    2014-01-01

    erating cavities at FLASH linac, DESY, are equipped with electronics for beam position monitoring, which are based on HOM signals from special couplers. These monitors provide the beam position without additional vacuum components and at low cost. Moreover, they can be used to align the beam in the cavities to reduce the HOM effects on the beam. However, the HOMBPM (Higher Order Mode based Beam Position Monitor) shows an instability problem over time. In this paper, we will present the status of studies on this issue. Several methods are utilized to calibrate the HOMBPMs. These methods include DLR (Direct Linear Regression), and SVD (Singular Value Decomposition). We found that SVD generally is more suitable for HOMBPM calibration. We focus on the HOMBPMs at 1.3 GHz cavities. Techniques developed here are applicable to 3.9 ...

  4. A new measurement method for electrode gain in an orthogonally symmetric beam position monitor

    International Nuclear Information System (INIS)

    Zou Junying; Wu Fangfang; Yang Yongliang; Sun Baogen; Zhou Zeran; Luo Qing; Lu Ping; Xu Hongliang

    2014-01-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light Source (HLS Ⅱ) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismaching tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%. (authors)

  5. Bunch-length and beam-timing monitors in the SLC final focus

    International Nuclear Information System (INIS)

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.F.

    1998-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC), two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beam line vault by a 160-ft long X-Band waveguide. The authors describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations

  6. Modeling PWR systems for monitoring primary-to-secondary leakage using tritium tracer

    International Nuclear Information System (INIS)

    Peiffer, D.G.

    1992-01-01

    This paper discusses several techniques available for monitoring primary to secondary leakage, focusing on the advantages and disadvantages of each. A mathematical model of Millstone 2 describes the behavior of tritium activity in the secondary plant water when a leak exists. Real data from Millstone 2 illustrate the accuracy and reliability of the model and use of the model to measure the mass of water in the secondary system

  7. Measurement of back-scattered radiation from micro multileaf collimator into the beam monitor chamber from a dual energy linear accelerator

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2007-01-01

    Full Text Available Measurements designed to find the collimator backscatter into the beam monitor chamber from Micro Multileaf collimator of 6 MV photon beams of the Siemens Primus linear accelerator were made with the help of dose rate feedback control. The photons and electrons backscattered from the upper and lower secondary collimator jaws give rise to a significant increase in the ion charge measured by monitor chamber. This increase varies between the different accelerators. The output measurements were carried out in air at the isocenter. The effect of collimator backscatter was investigated by measuring the pulse width, number of beam pulses per monitor unit, monitor unit rate and dose for different mMLC openings. These measurements were made with and without dose rate feedback control, i.e., with constant electron beam current in the accelerator. Monitor unit rate (MU/min was almost constant for all field sizes. The maximum variation between the open and the closed feedback control circuits was 2.5%. There was no difference in pulse width and negligible difference in pulse frequency. Maximum value of backscattered radiation from the micro Multileaf collimator into the beam monitor chamber was found to be 0.5%.

  8. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  9. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    Science.gov (United States)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  10. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  11. Position monitor of SR beam on XAFS experimental station in BSRF

    International Nuclear Information System (INIS)

    Chen Xianneng; Xie Yaning; Hu Tiandou; Jin Yalan; Huang Daxian

    1995-01-01

    A monitor of density and position of SR (Synchrotron Radiation) beam is built on XAFS (X-ray Absorption Fine Structure) experimental station in BSRF (Beijing Synchrotron Radiation Facility). It is composed of the beam slit and its drivers, weak current amplifiers, computing amplifier for coordinate of the beam position and display with RS-232 interface. The equipment can be used for other measurement fields related with current and voltage

  12. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  13. Design and Construction of a Beam Position Monitor Prototype for the Test Beam Line of the CTF3

    CERN Document Server

    Garcia Garrigos, Juan Jose

    2008-01-01

    A prototype of Beam Position Monitor (BPM) for the Test Beam Line (TBL) of the 3rd CLIC Test Facility (CTF3) at CERN has been designed and constructed at IFIC in collaboration with the CERN CTF3 team. The design is a scaled version of the BPMs of the CTF3 linac. The design goals are a resolution of 5 μm, an overall precision of 50 μm, in a circular vacuum chamber of 24 mm, in a frequency bandwidth between 10 kHz and 100MHz.The BPMis an inductive type BPM. Beam positions are derived from the image current created by a high frequency electron bunch beam into four electrodes surrounding the vacuum chamber. In this work we describe the mechanical design and construction, the description of the associated electronics together with the first calibration measurements performed in a wire test bench at CERN.

  14. Beam monitor system for an x-ray free electron laser and compact laser

    Directory of Open Access Journals (Sweden)

    Y. Otake

    2013-04-01

    Full Text Available A beam-monitor system for XFEL/SPring 8, “SACLA,” has been constructed. In order to maintain a stable self-amplified spontaneous emission (SASE interaction, the straightness and overlap of the axes to within 3  μm between the electron beams and the radiated x rays for an undulator section of about 100 m length is necessary. This straightness means relative alignment to an experimental target sample. Furthermore, a temporal stability of 30 fs in order to maintain a constant peak beam current is also necessary to conduct stable SASE lasing. The monitor system was developed to satisfy these spatial and temporal stability and resolution criteria. The system comprises spatial monitors, such as cavity-type beam-position monitors and screen monitors, as well as temporal measurement instruments, such as current monitors, waveguide spectrometers, coherent synchrotron-radiation detectors, a streak camera, and an rf deflector. Commissioning of SACLA started from March 2011, and the monitors performed sufficient roles to tune the beams for lasing. The achieved overall performances of the system, including data acquisition, are: the beam position monitor has a spatial resolution of 600 nm in rms; the bunch-length monitors show ability to observe bunch lengths from 1 ns in an injector with velocity bunching to less than 30 fs after three-stage bunch compressors. The less than 3  μm spatial resolution of the screen monitor was also confirmed during practical beam operation. Owing to these fulfilled performances, such as the high spatial and temporal resolutions, stable lasing of SACLA has been achieved.

  15. A beam intensity monitor for the evaluation beamline for soft x-ray optical elements

    International Nuclear Information System (INIS)

    Imazono, Takashi; Moriya, Naoji; Harada, Yoshihisa; Sano, Kazuo; Koike, Masato

    2012-01-01

    Evaluation Beamline for Soft X-Ray Optical Elements (BL-11) at the SR Center of Ritsumeikan University has been operated to measure the wavelength and angular characteristics of soft x-ray optical components in a wavelength range of 0.65-25 nm using a reflecto-diffractometer (RD). The beam intensity monitor that has been equipped in BL-11 has observed the signal of the zero-th order light. For the purpose of more accurate evaluation of the performance of optical components, a new beam intensity monitor to measure the intensity of the first order light from the monochromator in BL-11 has been developed and installed in just front of RD. The strong positive correlation between the signal of the beam monitor and a detector equipped in the RD is shown. It is successful that the beam intensity of the first order light can be monitored in real time.

  16. The APS x-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of third generation synchrotron radiation sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS x-ray undulators will increase the brilliance in the 3-40 KeV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve sub-micron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper

  17. The APS X-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of thirs generation synchrotron sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS X-ray undulators will increase the brilliance in the 3-40 keV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve submicron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper. (orig.)

  18. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  19. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  20. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  1. Renewal of beam position monitor electronics of the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Sasaki, Shigeki; Fujita, Takahiro

    2007-01-01

    Signal processing electronics for the beam position monitors (BPM) of the SPring-8 Storage Ring were renewed during the summer shutdown period of 2006. The configurations of the electronics of before and after the alteration are described. The evaluation of the performance of the electronics is shown with the data taken by using the actual beams. (author)

  2. Development of nanometer resolution C-Band radio frequency beam position monitors in the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Slaton, T.; Mazaheri, G. [Stanford Univ., CA (US). Stanford Linear Accelerator Center; Shintake, T. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1998-08-01

    Using a 47 GeV electron beam, the Final Focus Test Beam (FFTB) produces vertical spot sizes around 70 nm. These small beam sizes introduce an excellent opportunity to develop and test high resolution Radio Frequency Beam Position Monitors (RF-BPMs). These BPMs are designed to measure pulse to pulse beam motion (jitter) at a theoretical resolution of approximately 1 nm. The beam induces a TM{sub 110} mode with an amplitude linearly proportional to its charge and displacement from the BPM's (cylindrical cavity) axis. The C-band (5,712 MHz) TM{sub 110} signal is processed and converted into beam position for use by the Stanford Linear Collider (SLC) control system. Presented are the experimental procedures, acquisition, and analysis of data demonstrating resolution of jitter near 25 nm. With the design of future e{sup +}e{sup -} linear colliders requiring spot sizes close to 3 nm, understanding and developing RF-BPMs will be essential in resolving and controlling jitter.

  3. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  4. The beam intensity and positron monitoring system of the Daresbury Electron Synchrotron (NINA)

    International Nuclear Information System (INIS)

    Poole, D.E.; Ring, T.; Peters, D.G.; Allen, J.

    1976-01-01

    The beam sensing system of NINA has been redesigned and rebuilt to provide comprehensive monitoring of beam intensity and position. The reasons for the change are stated, and the requirements and performance specification for the new system are listed. The report falls under the following heads: the sensing head; the head electronics unit; the line receiver unit; performance of installed monitors; display system and computer interface. The performance of the new system is summarized. (U.K.)

  5. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  6. Development of a Laser-based Emittance Monitor for Negative Hydrogen Beams

    CERN Document Server

    AUTHOR|(CDS)2078368; Schmauss, Bernhard; Gibson, Stephen; Boorman, Gary; Bosco, Alessio

    High energy particle accelerators are designed to collide charged particle beams and thus study the collision products. Maximising the collision rate, to generate sufficient statistics for precise measurements of rare processes, is one of the key parameters for optimising the overall collider performance. The CERN Large Hadron Collider (LHC) Injectors Upgrade (LIU) includes the construction of LINAC4, a completely new machine working as a first linear acceleration stage for the LHC beam. By accelerating a negative hydrogen beam (H-) instead of protons, it aims to double the beam brightness via a more efficient transfer to the first circular accelerator and subsequently boost the LHC collision rate. To achieve this, a precise knowledge of the transverse beam characteristics in terms of beam emittance is essential. This thesis work covers the development of a laser-based monitor meant to measure non-destructively the LINAC4 beam transverse profile and emittance. This included the implementation of dif...

  7. Log-ratio circuit for beam position monitoring

    International Nuclear Information System (INIS)

    Wells, F.D.; Shafer, R.E.; Gilpatrick, J.D.; Shurter, R.B.

    1990-01-01

    A synopsis is given of work in progress on a new signal processing technique for obtaining real-time normalized beam position information from sensing electrodes in accelerator beam pipes. The circuit employs wideband logarithmic amplifiers in a configuration that converts pickup electrode signals to position signals that are substantially independent of beam current. The circuit functions as a ratio detector that computes the logarithm of (A/B) as (Log A-Log B), and presents the result in a video (real-time analog) format representing beam position. It has potential benefits of greater dynamic range and better linearity than other techniques currently used and it may be able to operate at substantially higher frequencies. 4 refs., 8 figs

  8. 1 nA beam position monitoring system

    International Nuclear Information System (INIS)

    Ursic, R.; Flood, R.; Piller, C.

    1997-01-01

    A system has been developed at Jefferson Lab for measuring transverse position of very low current beams delivered to the Experimental Hall B of the Continuous Electron Beam Accelerator Facility (CEBAF). At the heart of the system is a position sensitive cavity operating at 1497 MHz. The cavity utilizes a unique design which achieves a high sensitivity to beam position at a relatively low cavity Q. The cavity output RF signal is processed using a down-converter and a commercial lock-in amplifier operating at 100 kHz. The system interfaces with a VME based EPICS control system using the IEEE, 488 bus. The main features of the system are simple and robust design, and wide dynamic range capable of handling beam currents from 1 nA to 1000 nA with an expected resolution better than 100 μm. This paper outlines the design of the system

  9. A high resolution beam profile monitor using Bremsstrahlung

    International Nuclear Information System (INIS)

    Norem, J.

    1988-01-01

    The development of efficient high energy linear colliders in the 1 TeV range requires final focus systems capable of producing beam spot sizes on the order of 1--20 nm, about three orders of magnitude smaller than those produced at the SLC. Although beam line designs exist which can, in principle, produce the required optics, the construction of quadrupoles with the size and precision required will be challenging. Field errors in these quads must be small and should be verified experimentally, which is difficult with existing technology. This paper describes a proposal to use bremsstrahlung from heavy targets to measure high energy beam profiles and positions with a resolution approaching a few nm. The method is also applicable to tests of other final focus systems (flat beams, plasma lenses) at lower energies. 6 refs., 3 figs., 1 tab

  10. Configuration of the Beam Loss Monitors for the LHC arcs

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    A revised configuration for a beam loss detection system is given for the arcs of the LHC. The last modifications of the LHC arc layout have been taken into account, LHC optics version 6.2. A set of 6 Loss Detectors will be placed outside the cryostat around each short straight section. Quench alarm thresholds are estimated for each detector in all possible LHC arc layout configurations. Threshold values are proposed for top and injection energy beam loss.

  11. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  12. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  13. Monitoring of the tensor polarization of high energy deuteron beams; Monitoring tenzornoj polyarizatsii dejtronnykh puchkov vysokoj ehnergii

    Energy Technology Data Exchange (ETDEWEB)

    Zolin, L S; Litvinenko, A G; Pilipenko, Yu K; Reznikov, S G; Rukoyatkin, P A; Fimushkin, V V

    1998-12-01

    The method of determining the tensor component of high energy polarized deuteron beams, based on measuring of the tensor analyzing power in the deuteron stripping reaction, is discussed. This method is convenient for monitoring during long time runs on the tensor polarized deuteron beams. The method was tested in the 5-days run at the LHE JINR accelerator with the 3 and 9 GeV/c tensor polarized deuterons. The results made it possible to estimate the beam polarization stability in time 5 refs., 4 figs., 1 tab.

  14. Study on the computerization of PWR secondary side chemistry monitoring

    International Nuclear Information System (INIS)

    Yang, Kyung Rin; Koo, Je Hyoo; Lee, Eun Hee; Hong, Kwang Bum; Kang, Hee Suck

    1991-01-01

    Samples of the secondary system in the Yong Gwang 1 Plant were sampled and analysed once a month at 13 sampling points. The main components of materials in the secondary system and corrosion products consisted of iron. Therefore, iron component was used with the index of corrosion products. The weight of iron which was accumulated in the bottom of stea generator can be calculated from the iron concentration and flow rates. That is, the weight of iron which was flowed into the steam generator belonging to the feedwater and the weight of iron which was discharged out from the steam generator was calculated. From these data, the weight of iron which was accumulated in the steam generator was calculated. According to the calculation, it was found that the amount of accumulated iron was 2.01 kg / year for the steam generator A, 1.73 kg / year for the steam generator B and 1.84 kg / year for the steam generator C. (Author)

  15. Monte Carlo simulation tool for online treatment monitoring in hadrontherapy with in-beam PET: A patient study.

    Science.gov (United States)

    Fiorina, E; Ferrero, V; Pennazio, F; Baroni, G; Battistoni, G; Belcari, N; Cerello, P; Camarlinghi, N; Ciocca, M; Del Guerra, A; Donetti, M; Ferrari, A; Giordanengo, S; Giraudo, G; Mairani, A; Morrocchi, M; Peroni, C; Rivetti, A; Da Rocha Rolo, M D; Rossi, S; Rosso, V; Sala, P; Sportelli, G; Tampellini, S; Valvo, F; Wheadon, R; Bisogni, M G

    2018-05-07

    Hadrontherapy is a method for treating cancer with very targeted dose distributions and enhanced radiobiological effects. To fully exploit these advantages, in vivo range monitoring systems are required. These devices measure, preferably during the treatment, the secondary radiation generated by the beam-tissue interactions. However, since correlation of the secondary radiation distribution with the dose is not straightforward, Monte Carlo (MC) simulations are very important for treatment quality assessment. The INSIDE project constructed an in-beam PET scanner to detect signals generated by the positron-emitting isotopes resulting from projectile-target fragmentation. In addition, a FLUKA-based simulation tool was developed to predict the corresponding reference PET images using a detailed scanner model. The INSIDE in-beam PET was used to monitor two consecutive proton treatment sessions on a patient at the Italian Center for Oncological Hadrontherapy (CNAO). The reconstructed PET images were updated every 10 s providing a near real-time quality assessment. By half-way through the treatment, the statistics of the measured PET images were already significant enough to be compared with the simulations with average differences in the activity range less than 2.5 mm along the beam direction. Without taking into account any preferential direction, differences within 1 mm were found. In this paper, the INSIDE MC simulation tool is described and the results of the first in vivo agreement evaluation are reported. These results have justified a clinical trial, in which the MC simulation tool will be used on a daily basis to study the compliance tolerances between the measured and simulated PET images. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  17. Improved design and in-situ measurements of new beam position monitors for Indus-2

    Science.gov (United States)

    Kumar, M.; Babbar, L. K.; Holikatti, A. C.; Yadav, S.; Tyagi, Y.; Puntambekar, T. A.; Senecha, V. K.

    2018-01-01

    Beam position monitors (BPM) are important diagnostic devices used in particle accelerators to monitor position of the beam for various applications. Improved version of button electrode BPM has been designed using CST Studio Suite for Indus-2 ring. The new BPMs are designed to replace old BPMs which were designed and installed more than 12 years back. The improved BPMs have higher transfer impedance, resonance free output signal, equal sensitivity in horizontal and vertical planes and fast decaying wakefield as compared to old BPMs. The new BPMs have been calibrated using coaxial wire method. Measurement of transfer impedance and time domain signals has also been performed in-situ with electron beam during Indus-2 operation. The calibration and beam based measurements results showed close agreement with the design parameters. This paper presents design, electromagnetic simulations, calibration result and in-situ beam based measurements of newly designed BPMs.

  18. Beam Extinction Monitoring in the Mu2e Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Prebys, Eric [Fermilab; Bartoszek, Larry [Technicare; Gaponenko, Andrei [Fermilab; Kasper, Peter [Fermilab

    2015-06-01

    The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. The precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.

  19. Advances in beam position monitoring methods at GSI synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul; Reiter, Andreas; Forck, Peter; Kowina, Piotr; Lang, Kevin; Miedzik, Piotr [GSI, Darmstadt (Germany)

    2016-07-01

    At the GSI synchrotron facilities, capacitive beam pick-up signals for position evaluation are immediately digitized within the acquisition electronics due to availability of reliable, fast and high resolution ADCs. The signal processing aspects are therefore fully dealt with in the digital domain. Novel digital techniques for asynchronous and synchronous (bunch-by-bunch) beam position estimation have been developed at GSI SIS-18 and CRYRING as part of FAIR development program. This contribution will highlight the advancements and its impact on the operational ease and high availability of the BPM systems.

  20. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  1. A very sensitive nonintercepting beam average velocity monitoring system for the TRIUMF 300-keV injection line

    International Nuclear Information System (INIS)

    Yin, Y.; Laxdal, R.E.; Zelenski, A.; Ostroumov, P.

    1997-01-01

    A nonintercepting beam velocity monitoring system has been installed in the 300-keV injection line of the TRIUMF cyclotron to reproduce the injection energy for beam from different ion sources and to monitor any beam energy fluctuations. By using a programmable beam signal leveling method the system can work with a beam current dynamic range of 50 dB. Using synchronous detection, the system can detect 0.5 eV peak-to-peak energy modulation of the beam, sensitivity is 1.7x10 -6 . The paper will describe the principle and beam measurement results. copyright 1997 American Institute of Physics

  2. Local in-depth analysis of ceramic materials by neutral beam secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Borchardt, G.; Scherrer, H.; Weber, S.; Scherrer, S.

    1980-01-01

    Local microanalysis of non-conducting surfaces by means of modern physical methods which use charged low-energy primary particles brings about severe problems because of the electrostatic charge accumulated on the sample surface. This is also true of secondary ion mass spectrometry (SIMS) where ions are usually used as primary particles. In the present work the basic features for production of neutral primary beams in commercial SIMS instruments by a simple technique are described. With suitably high sputtering rates, surface analyses and in-depth profiles can be made in reasonable measuring times. Results are given for chemical concentration distributions in the near-surface regions of an oxide glass and for the isotopic diffusion of Si-30 in a crystalline silicate with olivine structure (Co 2 SiO 4 ). (orig.)

  3. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2014-02-01

    Full Text Available Collimators with embedded beam position monitor (BPM button electrodes will be installed in the Large Hadron Collider (LHC during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  4. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    Science.gov (United States)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  5. Prototype photon position monitors for undulator beams at the advanced light source

    International Nuclear Information System (INIS)

    Warwick, T.; Shu, D.; Rodricks, B.; Johnson, E.D.

    1992-01-01

    Design criteria are described, and test results are presented, for prototype ALS undulator beam position monitors. The design is based on monitors presently in use at NSLS, with modifications to account for the widely varying and large K values of the undulators to be installed at the ALS. In particular, we have modified the design to simplify the thermal engineering and we have explored techniques to suppress the response of the monitors to soft photons, so that the beam position can be determined by measuring the higher energy photons which are better collimated

  6. Method and apparatus to monitor a beam of ionizing radiation

    Science.gov (United States)

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  7. Development and optimization of the LHC and the SPS beam diagnostics based on synchrotron radiation monitoring

    International Nuclear Information System (INIS)

    Trad, Georges

    2015-01-01

    Measuring the beam transverse emittance is fundamental in every accelerator, in particular for colliders, where its precise determination is essential to maximize the luminosity and thus the performance of the colliding beams. Synchrotron Radiation (SR) is a versatile tool for non-destructive beam diagnostics, since its characteristics are closely related to those of the source beam. At CERN, being the only available diagnostics at high beam intensity and energy, SR monitors are exploited as the proton beam size monitor of the two higher energy machines, the Super Proton Synchrotron (SPS) and the Large Hadron Collider (LHC). The thesis work documented in this report focused on the design, development, characterization and optimization of these beam size monitors. Such studies were based on a comprehensive set of theoretical calculations, numerical simulations and experiments. A powerful simulation tool has been developed combining conventional softwares for SR simulation and optics design, thus allowing the description of an SR monitor from its source up to the detector. The simulations were confirmed by direct observations, and a detailed performance studies of the operational SR imaging monitor in the LHC, where different techniques for experimentally validating the system were applied, such as cross-calibrations with the wire scanners at low intensity (that are considered as a reference) and direct comparison with beam sizes de-convoluted from the LHC luminosity measurements. In 2015, the beam sizes to be measured with the further increase of the LHC beam energy to 7 TeV will decrease down to ∼190 μm. In these conditions, the SR imaging technique was found at its limits of applicability since the error on the beam size determination is proportional to the ratio of the system resolution and the measured beam size. Therefore, various solutions were probed to improve the system's performance such as the choice of one light polarization, the reduction of

  8. Coronary cineangiography and ionizing radiation exposure to patients: analysis of primary and secondary beam; Cineangiografia coronaria y radiacion ionizante a pacientes. Analisis en haz primario y secundario

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Alfredo; Leyton, Fernando; Silva, Ana Maria; Farias, Eric [Universidad de Chile, Santiago (Chile). Hospital Clinico; Gamarra, Jorge; Oyarzun, Carlos [Comision Chilena de Energia Nuclear (CCHEN), Santiago (Chile)

    2001-07-01

    The purpose of this work was to determine the level of exposure dose to patients during coronariographies in different areas of body. This study has presented the medical surveillance of 18 cases and the radiation monitoring of these patients by TLD in thyroid and pelvis (secondary beam) and, in the right and left scapular region (primary beam) for each one of these procedures. The ionizing radiation received was 215 {+-} 200 mGy in left scapular region (range 1-710) and 255{+-}213 mGy in the right scapular region (range 22-635) p=NS. In the pelvic region the ionizing radiation was 0,22{+-}0,06 mGy and in the thyroid region was 3,62{+-}2,44 mGy.

  9. An Innovative Beam Halo Monitor system for the CMS experiment at the LHC: Design, Commissioning and First Beam Results

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00344917; Dabrowski, Anne

    The Compact Muon Solenoid (CMS) is a multi-purpose experiment situated at the Large Hadron Collider (LHC). The CMS has the mandate of searching new physics and making precise measurements of the already known mechanisms by using data produced by collisions of high-energy particles. To ensure high quality physics data taking, it is important to monitor and ensure the quality of the colliding particle beams. This thesis presents the research and design, the integration and the first commissioning results of a novel Beam Halo Monitor (BHM) that was designed and built for the CMS experiment. The BHM provides an online, bunch-by-bunch measurement of background particles created by interactions of the proton beam with residual gas molecules in the vacuum chamber or with collimator material upstream of the CMS, separately for each beam. The system consists of two arrays of twenty direction-sensitive detectors that are distributed azimuthally around the outer forward shielding of the CMS experiment. Each detector is ...

  10. Design, construction and characterization of special ionization chambers for X radiation beams monitoring

    International Nuclear Information System (INIS)

    Yoshizumi, Maira Tiemi

    2010-01-01

    X radiation equipment may show fluctuations in the radiation beam intensity, as they are connected to the power net. These intensity variations can, in turn, modify the air kerma rate produced by this radiation beam. In a calibration laboratory, where radiation detectors (from clinics and hospital services) are calibrated, variations in the radiation beam intensity may cause an error in the absorbed dose determination. The monitor ionization chambers are used to verify the radiation beam intensity constancy, and to provide a correction for possible fluctuations. In this work, monitor ionization chambers for X radiation beams were designed, assembled and characterized. The developed ionization chambers have an innovative design, ring-shaped, with aluminium or graphite electrodes. These ring-shaped ionization chambers have the advantage of not interfering in the direct radiation beams. A double-volume ionization chamber with graphite electrodes was also developed. This ionization chamber is similar to the commercial monitor ionization chamber used in the Calibration Laboratory of the Instituto de Pesquisas Energeticas e Nucleares. All developed ionization chambers were tested in several standardized radiation beams and their performances were compared with those of commercial ionization chambers. The results show that two of the four ionization chambers developed showed performance comparable to that of the commercial ionization chambers tested. Besides presenting good results, the ionization chambers were designed and manufactured using low cost materials, which are easily found on the Brazilian market. (author)

  11. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration

  12. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  13. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  14. The beam based alignment technique for the measurements of beam position monitors offsets and beam offsets from quadrupoles in the Pohang Light Source

    International Nuclear Information System (INIS)

    Kim, K.H.; Huang, J.Y.; Ko, I.S.

    1999-01-01

    The beam based alignment (BBA) technique is applied to the 2-GeV storage ring of the Pohang Light Source to measure the offsets of beam position monitors. This measurement is particularly necessary for beam position monitors (BPMs) plugged into a long (∼10 m) aluminum chamber, since the mechanical deformation of the vacuum chamber is experienced after repeated heating for the outgassing process, and the BPM positions are changed accordingly. A part of the excitation current of each quadrupole magnet is shunted through an electronic shunt circuit. Then, the closed orbit receives a perturbation due to the current reduction. Using two quadrupole magnets, we can measure the offset of each BPM. Also, the BBA technique is applied to measure the beam offsets from the center of quadrupole magnets, and gives information to the survey team about which quadrupole magnets should be aligned mostly. In this process, we introduce the merit function to reduce various errors such as BPM characteristic changes and the lattice imperfection. By minimizing the merit function, we can get the beam offset as the maximized expectation value. This paper presents the BBA technique used and experimental results taken from the 2-GeV Pohang Light Source (PLS) storage ring. When the BPM offset is measured, it is observed that a 3% of the shunt current is suitable. (author)

  15. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  16. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Novak, W.; Reed, L.; Yang, X.F.

    1993-01-01

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  17. Air Quality Monitoring with Routine Utilization of Ion Beam Analysis

    International Nuclear Information System (INIS)

    Wegrzynek, D.

    2013-01-01

    Full text: Information on source contributions to ambient air particulate concentrations is a vital tool for air quality management. Traditional gravimetric analysis of airborne particulate matter is unable to provide information on the sources contributing to air particulate concentrations. Ion beam analysis is used to identify the elemental composition of air particulates for source apportionment and determining the relative contribution of biogenic and anthropogenic sources to air particulate pollution. The elemental composition is obtained by proton induced X-ray emission technique (PIXE), which is an ion beam analysis (IBA) technique. The element concentrations are deduced from the X ray spectra produced when the particulate collected on a filter is bombarded with a high-energy proton beam. As part of the UNDP/IAEA/RCA Project RAS/8/082 ‘Better Management of the Environment, Natural Resources and Industrial Growth through Isotope and Radiation Technology,’ a collaborative alliance was formed between the Institute of Geological and Nuclear Sciences Limited and the Wellington Regional Council, New Zeland [1]. The purpose of the project was to examine the elemental composition of air particulate matter and determine the origins through source apportionment techniques. In New Zealand PM 10 and PM 2.5 fractions have been collected at the industrial area of Seaview, Wellington over two years using a GENT stacked filter unit sampler. Concentrations of elements with atomic mass above neon were determined using ion beam analysis and elemental carbon concentrations were determined using a reflectometer. Specific ambient source elemental 'fingerprints' were then determined by factor analysis and the relative contributions of various local and regional sources were assessed. The significant factors (sources) were determined to be sea salt, soil, industry, and combustion sources. Local industry was found to contribute to ambient lead concentrations. (author)

  18. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines

    CERN Document Server

    Aoyagi, H; Kitamura, H

    2001-01-01

    The X-ray beam position monitors had been designed and installed for SPring-8 insertion device beamlines. These monitors are being utilized for photon beam diagnostics. The beam from the standard undulator in SPring-8 has the total power of 11 kW and the power density of 470 kW/mrad sup 2 , typically. Each monitor has four CVD diamond blades coated with metal for detector heads. We have already introduced three styles of monitors to match various insertion devices in SPring-8. A standard style, or a fixed-blade style, is used mainly for a standard in-vacuum undulator beamlines. A horizontal-blade-drive style and a four-blade-drive style are used for beamlines of a wiggler and a twin helical undulator that have wide power distributions, and for figure-8 undulators that have asymmetric power distributions, respectively. This report describes the design and the structure of these monitors and the beam-tests for the photon beam diagnostics in detail.

  19. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    F. J. Cullinan

    2015-11-01

    Full Text Available The Compact Linear Collider (CLIC requires beam position monitors (BPMs with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3 at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3  ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  20. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Science.gov (United States)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  1. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  2. Experiment study on four button electrode used to monitor position of high current electron-beam

    International Nuclear Information System (INIS)

    Xu Tiezheng; Wang Huacen; Xie Yutong; Zhang Wenwei

    2004-01-01

    The button electrode is one that widely used in high energy accelerators, such as storage ring, and the button electrode has many merit like high accuracy, high resolution, resisting magnetic field, simple machinery, without magnetic core and low cost, etc. It's helpful that the button electrode is used as the beam position monitor in the linear induction accelerator. The experimental facilities have been designed and set up and it can simulate the beam of linear induction accelerator. The button electrode beam position monitor experiment have been done on the experimental facilities. The result of the experiment prove that the button electrode has an accuracy of 0.5 mm, and can reflect the wave of electron-beam accurately

  3. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Scarpelli, Andrea [Univ. of Ferrara (Italy)

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  4. Analog front end circuit design of CSNS beam loss monitor system

    International Nuclear Information System (INIS)

    Xiao Shuai; Guo Xian; Tian Jianmin; Zeng Lei; Xu Taoguang; Fu Shinian

    2013-01-01

    The China Spallation Neutron Source (CSNS) beam loss monitor system uses gas ionization chamber to detect beam losses. The output signals from ionization chamber need to be processed in the analog front end circuit, which has been designed and developed independently. The way of transimpedance amplifier was used to achieve current-voltage (I-V) conversion measurement of signal with low repetition rate, low duty cycle and low amplitude. The analog front end circuit also realized rapid response to the larger beam loss in order to protect the safe operation of the accelerator equipment. The testing results show that the analog front end circuit meets the requirements of beam loss monitor system. (authors)

  5. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    International Nuclear Information System (INIS)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-01-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems

  6. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boriano, A. [Dipartimento di Fisica Sperimentale e INFN, Via P.Giuria 1, 1-10125 Turin (Italy); Bourhaleb, F. [Fondazione TERA, Via Puccini 1, 1-28100 Novara (Italy); Cirio, R. [Dipartimento di Fisica Sperimentale e INFN, Via P.Giuria 1, 1-10125 Turin (Italy)] (and others)

    2006-01-15

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  7. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    International Nuclear Information System (INIS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape

  8. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    Science.gov (United States)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  9. A pixel chamber to monitor the beam performances in hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, R.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Marchetto, F. E-mail: marchetto@to.infn.it; Peroni, C.; Sanz Freire, C.J.; Simonetti, L

    2004-03-01

    In this paper we describe the design, construction, and tests of a parallel plate ionization chamber with the anode segmented in (32x32) square pixels. The performance of the read out and data acquisition systems is also discussed. The design of the chamber has been finalized to be used as a beam monitor for therapeutical treatments. Position and flux resolution obtained with a carbon ion beam are presented.

  10. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    International Nuclear Information System (INIS)

    2010-01-01

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B 4 C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 ± 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  11. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  12. Monitoring of energetic characteristics of electron beams during formation of high-power pulsed bremsstrahlung

    International Nuclear Information System (INIS)

    Ivaschenko, D.M.; Mordasov, N.G.; Chlenov, A.M.

    2005-01-01

    A method and a device for monitoring the dynamic and integrated characteristics of high-power electron and bremsstrahlung beams of the pulse accelerators are proposed. The transfer functions for various types of a target in operating conditions of the pulse accelerator UIN-10 are presented. Possibilities if the integrated diagnostics of acceleration rate of the electron beams with simultaneous testing of the bremsstrahlung parameters as a local field point beyond the converting target are shown [ru

  13. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise

    Czech Academy of Sciences Publication Activity Database

    Stolarczyk, L.; Trinkl, S.; Romero-Exposito, M.; Mojzeszek, N.; Ambrožová, Iva; Domingo, C.; Davídková, Marie; Farah, J.; Klodowska, M.; Kneževic, Z.; Liszka, M.; Majer, M.; Miljanic, S.; Ploc, Ondřej; Schwarz, M.; Harrison, R. M.; Olko, P.

    2018-01-01

    Roč. 63, č. 8 (2018), č. článku 085017. ISSN 0031-9155 Institutional support: RVO:61389005 Keywords : passive detectors * neutron dosimetry * gamma radiation dosimetry * water phantom measurements * secondary radiation measurements * pencil beam scanning proton radiotherapy Subject RIV: FP - Other Medical Disciplines OBOR OECD: Radiology, nuclear medicine and medical imaging Impact factor: 2.742, year: 2016

  14. Monitoring elastic strain and damage by neutron and synchrotron beams

    International Nuclear Information System (INIS)

    Withers, P.J.

    2001-01-01

    Large-scale neutron and synchrotron X-ray facilities have been providing important information for physicists and chemists for many decades. Increasingly, materials engineers are finding that they can also provide them with important information non-destructively. Highly penetrating neutron and X-ray synchrotron beams provide the materials engineer with a means of obtaining information about the state of stress and damage deep within materials. In this paper the principles underlying the elastic strain measurement and damage characterization techniques are introduced. (orig.)

  15. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  16. Performance of the Lancelot Beam Position Monitor at the Diamond Light Source

    Science.gov (United States)

    Chagani, H.; Garcia-Nathan, T. B.; Jiang, C.; Kachatkou, A.; Marchal, J.; Omar, D.; Tartoni, N.; van Silfhout, R. G.; Williams, S.

    2017-12-01

    The Lancelot beam position and profile monitor records the scattered radiation off a thin, low-density foil, which passes through a pinhole perpendicular to the path of the beam and is detected by a Medipix3RX sensor. This arrangement does not expose the detector to the direct beam at synchrotrons and results in a negligible drop in flux downstream of the module. It allows for magnified images of the beam to be acquired in real time with high signal-to-noise ratios, enabling measurements of tiny displacements in the position of the centroid of approximately 1 μm. It also provides a means for independently measuring the photon energy of the incident monoenergetic photon beam. A constant frame rate of up to 245 Hz is achieved. The results of measurements with two Lancelot detectors installed in different environments at the Diamond Light Source are presented and their performance is discussed.

  17. A new beam profile monitor and time of flight system for CologneAMS

    Energy Technology Data Exchange (ETDEWEB)

    Pascovici, G. [CologneAMS, University of Cologne (Germany); Dewald, A., E-mail: dewald@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Institute of Nuclear Physics, University of Cologne (Germany); Heinze, S., E-mail: heinze@ikp.uni-koeln.de [CologneAMS, University of Cologne (Germany); Fink, L.; Mueller-Gatermann, C.; Schiffer, M.; Feuerstein, C. [CologneAMS, University of Cologne (Germany); Pfeiffer, M.; Jolie, J.; Thiel, S.; Zell, K.O.; Arnopolina, O. [Institute of Nuclear Physics, University of Cologne (Germany); Blanckenburg, F. von [GFZ, German Research Centre for Geosciences, Potsdam (Germany)

    2013-01-15

    A complex beam detector consisting of a high-resolution beam profile monitor (BPM) and a time of flight (TOF) spectrometer with tracking capabilities was designed especially for the special needs of the Cologne center for accelerator mass spectrometry (CologneAMS). The beam detector assembly is designed to match the beam specifications of the 6 MV Tandetron AMS setup and its data acquisition system. It will have a reconfigurable structure, either as a fast TOF subsystem with a ca. 10 cm{sup 2} equivalent active area, or as a more complex BPM-TOF detector with beam tracking capabilities and a larger active area (16 cm{sup 2}). The purpose of this detector is to suppress background during spectrometry of heavy ions (U, Cm, Pu, Am etc.) and to suppress isobaric interferences such as {sup 36}S in {sup 36}Cl spectra.

  18. Design and performance of a high resolution, low latency stripline beam position monitor system

    Science.gov (United States)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  19. Microprocessor based beam loss monitor system for the AGS

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1979-01-01

    An array of 120 long radiation monitors (LRM) have been installed around the AGS. Each monitor is an extended coaxial ion chamber, 5 meters long, made from hollow core coaxial transmission cable pressured with argon. The LRM's are each connected to a low current preamplifier and voltage-to-frequency converter (VFC). The digital output of each channel is fed to a 16 bit counter chip which bridges the bus of an 8085 microprocessor. This circuit is connected to the AGS PD-10 for data taking or may function as a stand-alone unit. Various operating modes can be selected for data readout. System design and operating performance are described

  20. Real-time electron-beam dose monitoring

    International Nuclear Information System (INIS)

    McKeown, J.

    1995-01-01

    A new technique to monitor the integrated dose that a product receives in an irradiation facility is determined by collecting the charge that passes through the product. The technique allows the absorbed dose to be monitored as the irradiation is taking place, i.e. on-line and in real time. The procedure will also provide a means of directly measuring the electron energy, independent of the accelerator control system. The irradiation plant operator can immediately detect a problem of inadequate electron energy and take appropriate action. Examples taken on the IMPELA trademark accelerator at the Iotron Irradiation Facility in Vancouver are presented

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  2. Summary Report of Working Group 5: Beam and Radiation Generation, Monitoring, and Control

    International Nuclear Information System (INIS)

    Church, Mike; Kim, Kiyong

    2010-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  3. Evaluation of secondary electron filter for removing contaminant electrons from high-energy 6 MV x-ray beam

    International Nuclear Information System (INIS)

    Kumagai, Kozo

    1988-01-01

    When using high energy X-rays, the dose increases at the skin surface and build-up region of beam contamination of secondary electrons coming out from the inner surface of the lineac head. At our radiotherapy department, many cases of external otitis from severe skin reactions, particularly resulting from whole brain irradiation of primary and metastatic brain tumors with a 6 MV X-ray lineac, have been encountered. An investigation was made of the physical aspects of a 6 MV X-ray beam using three electron filters, lead lucite, lead glass and lucite to remove secondary electrons. Transparent materials for filters should be preferable for locating the light field. The following results were obtained: 1) For removing secondary electrons, a lead lucite filter was found best. 2) The lead lucite filter proved most effective for removing secondary electrons from the area of treatment. It reduced the dose of irradiation to the skin surface and build-up region, and furthermore improved the depth dose relative to that without filters. 3) From a clinical standpoint, skin reactions such as external otitis remarkably decreased using a lead lucite filter. 4) It thus appears necessary to use a high energy X-ray with newly designed filters to reduce beam contamination of secondary electrons. (author)

  4. The Study of a Beam Profile Monitor based on Faraday Cup Array

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. M.; Park, S. H.; Kim, S. G.; Kwon, H. J.; Cho, Y. S. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The metal can then be discharged to measure a small current equivalent to the number of impinging ions. The beam current can be measured and used to determine the number of ions or electrons hitting the cup. Recently, beam profile monitor (BPM) based on Faraday cup array (FCA), which represented beam position through the spatial and temporal distribution of the beam current, has been studied due to advantages of measure of wide-range ion beam current. FCA system is divided into a FC, an electrical circuit and display parts. We have studied FCA to monitor beam profile on an electrostatic accelerator with wide-range ion current. In this paper, we represented basic characteristics and designs for the fabricated FCA. FCA system, which consisted of FC system, electronic readout system, and output display, was suggested to measure ion beam current, efficiently. FC system consisted of a collimator, suppressor, tiny FC, insulator frame, and circuit board divided into elec PCB, cap PCB, and con PCB. FC size was 4 mm diameters and FCA system was considered as 8 x 8 array and whole size of 8 x 8 mm''2. FCA system was set-up in vacuum chamber and an integrator and output display parts were formed out of chamber to minimize number of feed-through.

  5. Electron beam energy monitoring using thermoluminescent dosimeters and electron back scattering

    International Nuclear Information System (INIS)

    Nelson, Vinod; Gray, Alison

    2013-01-01

    Periodic checks of megavoltage electron beam quality are a fundamental requirement in ensuring accurate radiotherapy treatment delivery. In the present work, thermoluminescent dosimeters (TLDs) positioned on either side of a lead sheet at the surface of a water equivalent phantom were used to monitor electron beam quality using the electron backscattering method. TLD100 and TLD100H were evaluated as upstream detectors and TLD200, TLD400 and TLD500 were evaluated as downstream detectors. The evaluation assessed the test sensitivity and correlation, long and short term reproducibility, dose dependence and glow curve features. A prototype of an in-air jig suitable for use in postal TLD dose audits was also developed and an initial evaluation performed. The results indicate that the TLD100-TLD200 combination provides a sensitive and reproducible method to monitor electron beam quality. The light weight and easily fabricated in-air jig was found to produce acceptable results and has the potential to be used by radiation monitoring agencies to carry out TLD postal quality assurance audits, similar to audits presently being conducted for photon beams. -- Highlights: ► Monitoring electron beam quality via electron backscattering was investigated. ► Different thermoluminescent materials were evaluated as detectors. ► A TLD100-TLD200 combination produced the most sensitive and reproducible results. ► An in-air jig was evaluated to allow measurements via postal dose audits

  6. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    International Nuclear Information System (INIS)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio

    2016-01-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  7. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arimura, Takeshi, E-mail: arimura-takeshi@medipolis.org [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ogino, Takashi [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Yoshiura, Takashi [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio [Medipolis Proton Therapy and Research Center, Ibusuki (Japan)

    2016-05-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  8. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    International Nuclear Information System (INIS)

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  9. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C., E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  10. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    International Nuclear Information System (INIS)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C.

    2017-01-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  11. Monitoring the electron beam position at the TESLA test facility free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kamps, T

    2000-06-14

    The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam-to-slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM. (orig.)

  12. Characteristics of flattening filter free beams at low monitor unit settings

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871, Japan and Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu [Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan); Sumida, Iori; Yoshioka, Yasuo; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Isohashi, Fumiaki [Oncology Center, Osaka University Hospital, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Purpose: Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams.Methods: A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm{sup 2} field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm{sup 2} beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software.Results: The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ≥2 MU and improved with increasing MU. The variations in flatness of FFF beams ≥2 MU were

  13. Characteristics of flattening filter free beams at low monitor unit settings

    International Nuclear Information System (INIS)

    Akino, Yuichi; Ota, Seiichi; Inoue, Shinichi; Mizuno, Hirokazu; Sumida, Iori; Yoshioka, Yasuo; Ogawa, Kazuhiko; Isohashi, Fumiaki

    2013-01-01

    Purpose: Newer linear accelerators (linacs) have been equipped to deliver flattening filter free (FFF) beams. When FFF beams are used for step-and-shoot intensity-modulated radiotherapy (IMRT), the stability of delivery of small numbers of monitor units (MU) is important. The authors developed automatic measurement techniques to evaluate the stability of the dose profile, dose linearity, and consistency. Here, the authors report the performance of the Artiste™ accelerator (Siemens, Erlangen, Germany) in delivering low-MU FFF beams.Methods: A 6 MV flattened beam (6X) with 300 MU/min dose rate and FFF beams of 7 (7XU) and 11 MV (11XU), each with a 500 MU/min dose rate, were measured at 1, 2, 3, 5, 8, 10, and 20 MU settings. For the 2000 MU/min dose rate, the 7 (7XUH) and 11 MV (11XUH) beams were set at 10, 15, 20, 25, and 30 MU because of the limits of the minimum MU settings. Beams with 20 × 20 and 10 × 10 cm 2 field sizes were alternately measured ten times in intensity modulated (IM) mode, with which Siemens linacs regulate beam delivery for step-and-shoot IMRT. The in- and crossplane beam profiles were measured using a Profiler™ Model 1170 (Sun Nuclear Corporation, Melbourne, FL) in multiframe mode. The frames of 20 × 20 cm 2 beams were identified at the off-axis profile. The 6X beam profile was normalized at the central axis. The 7 and 11 MV FFF beam profiles were rescaled to set the dose at the central axis at 145% and 170%, respectively. Point doses were also measured using a Farmer-type ionization chamber and water-equivalent solid phantom to evaluate the linearity and consistency of low-MU beam delivery. The values displayed on the electrometer were recognized with a USB-type camera and read with open-source optical character recognition software.Results: The symmetry measurements of the 6X, 7XU, and 11XU beam profiles were better than 2% for beams ≥2 MU and improved with increasing MU. The variations in flatness of FFF beams ≥2 MU were ±5%. The

  14. Techniques for Primary-to-Secondary Leak Monitoring in PWR Plants

    International Nuclear Information System (INIS)

    Sohn, Wook; Chi, Jun Hwa; Kang, Duck Won; Tae, Jeong Woo

    2006-01-01

    Historically, corrosion and mechanical damage have made steam generator tubes in PWR plants see various types of degradation from both the primary and secondary sides of the tubes. Since the tube degradation can lead to through-wall failure, the plant personnel should make efforts to prevent the failure. One of such preventive efforts is to monitor primary-to-secondary leakage (PSL) that usually precedes the tube rupture. Thus the objective of PSL monitoring is to make operators to determine when to shutdown the plant in order to minimize the likelihood of propagation of leaks to tube rupture under normal and faulted conditions This paper addresses briefly the status of techniques for PSL monitoring used in PWR plants

  15. M.C. simulation of GEM neutron beam monitor with 10B

    International Nuclear Information System (INIS)

    Wang Yanfeng; Sun Zhijia; Liu Ben; Zhou Jianrong; Yang Guian; Dong Jing; Xu Hong; Zhou Liang; Huang Guangming; Yang Lei; Li Yi

    2010-01-01

    The neutron beam monitor based on GEM detector has been carefully studied with the Monte-Carlo method in this article. The simulation framework is including the ANSYS and the Garfield, which was used to compute the electric field of GEM foils and simulate the movement of electrons in gas mixture respectively. The GEM foils' focus and extract coefficients have been obtained. According to the primary results, the performing of the monitor is improved. (authors)

  16. Monitoring roof beam lateral displacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole conclusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  17. Monitoring roof beam lateral displacement at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Terrill, L.J.; Lewis, R.E.

    1996-01-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole occlusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance

  18. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    Science.gov (United States)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  19. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    International Nuclear Information System (INIS)

    Islam, M R; Collums, T L; Monson, J; Benton, E R; Zheng, Y

    2013-01-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy −1  for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy −1  for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body. (paper)

  20. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  1. Beam position monitoring in the AGS Linac to Booster transfer line

    International Nuclear Information System (INIS)

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper provides a system overview and report results from the commissioning experience

  2. A beam-profile monitor for the BNL Accelerator Test Facility (ATF)

    International Nuclear Information System (INIS)

    Russell, D.P.; McDonald, K.T.

    1989-01-01

    A beam-profile monitor has been designed to diagnose the 5-MeV high-brightness electron beam from the rf gun of the BNL Accelerator Test Facility (ATF). The monitor consists of a phosphor screen viewed by a CCD camera. The video images are digitized and stored by a framegrabber and analyzed by an IBM PC-AT to extract the emittance. Details of the hardware configuration are presented, along with the spatial resolution of the system measured as a function of phosphor-screen thickness. The strategies which will be used to measure the transverse and longitudinal emittances are briefly mentioned. The system should be capable of measuring a transverse geometric emittance of around 1 mm-mrad, as will be typical of the ATF beam. 6 refs., 2 figs

  3. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1994-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  4. Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Winklmeier, F; The ATLAS collaboration

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  5. A System for Monitoring and Tracking the LHC Beam Spot within the ATLAS High Level Trigger

    CERN Document Server

    Bartoldus, R; The ATLAS collaboration; Cogan, J; Salnikov, A; Strauss, E; Winklmeier, F

    2012-01-01

    The parameters of the beam spot produced by the LHC in the ATLAS interaction region are computed online using the ATLAS High Level Trigger (HLT) system. The high rate of triggered events is exploited to make precise measurements of the position, size and orientation of the luminous region in near real-time, as these parameters change significantly even during a single data-taking run. We present the challenges, solutions and results for the online determination, monitoring and beam spot feedback system in ATLAS. A specially designed algorithm, which uses tracks registered in the silicon detectors to reconstruct event vertices, is executed on the HLT processor farm of several thousand CPU cores. Monitoring histograms from all the cores are sampled and aggregated across the farm every 60 seconds. The reconstructed beam values are corrected for detector resolution effects, measured in situ from the separation of vertices whose tracks have been split into two collections. Furthermore, measurements for individual ...

  6. Design and commissioning of the APS beam charge and current monitors

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100 pC to 10 nC with pulse width varying from 30 ps to 30 ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented. copyright 1995 American Institute of Physics

  7. Two-dimensional beam-profile monitor using the Reticon MC510A array camera

    International Nuclear Information System (INIS)

    Gottschalk, B.

    1981-08-01

    A quantitative two-dimensional beam profile may be obtained from a scintillator viewed by a Reticon camera which uses a 32 x 32 array of photodiodes as its sensing element. In this note, CAMAC-oriented data acquisition electronics which allow one either to transmit the profile to a computer, or to use the monitor in a stand-alone mode are described

  8. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Stover, G.; Fowler, K.

    1987-03-01

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  9. Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring

    International Nuclear Information System (INIS)

    Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.

    2000-01-01

    We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a 'keV-photon detector', which will allow diagnostic quality visualization of the patient, and a 'MeV-photon detector', that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT

  10. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  11. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    Energy Technology Data Exchange (ETDEWEB)

    Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P. [Diamond Light Source Ltd, Oxfordshire (United Kingdom)

    2016-07-27

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experiments are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.

  12. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    International Nuclear Information System (INIS)

    Bloomer, Chris; Rehm, Guenther; Dolbnya, Igor P.

    2016-01-01

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experiments are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.

  13. A metrology system for a high resolution cavity beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Walston, Sean, E-mail: walston2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Boogert, Stewart [Royal Holloway, University of London, Egham (United Kingdom); Chung, Carl; Fitsos, Pete [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Frisch, Joe [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gronberg, Jeff [Lawrence Livermore National Laboratory, 7000 East Ave., L-181, Livermore, CA 94550 (United States); Hayano, Hitoshi [High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken (Japan); Hinton, Shantell [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Honda, Yosuke [High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken (Japan); Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter [University of California and Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Lyapin, Alexey; Malton, Stephen [University College London, London (United Kingdom); May, Justin; McCormick, Douglas [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Meller, Robert [Cornell University, Ithaca, NY (United States); Miller, David [University College London, London (United Kingdom); Orimoto, Toyoko [University of California and Lawrence Berkeley National Laboratory, Berkeley, CA (United States); California Institute of Technology, Pasadena, CA (United States); Ross, Marc [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Fermi National Accelerator Laboratory, Batavia, IL (United States); and others

    2013-11-11

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved–ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  14. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  15. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Mikuz, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)], E-mail: Marko.Mikuz@ijs.si; Cindro, V.; Dolenc, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Frais-Koelbl, H. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Gorisek, A. [CERN, Geneva (Switzerland); Griesmayer, E. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Kagan, H. [Ohio State University, Columbus (United States); Kramberger, G.; Mandic, I. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia); Niegl, M. [University of Applied Sciences Wiener Neustadt and Fotec, Wiener Neustadt (Austria); Pernegger, H. [CERN, Geneva (Switzerland); Trischuk, W. [University of Toronto, Toronto (Canada); Weilhammer, P. [CERN, Geneva (Switzerland); Zavrtanik, M. [Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana (Slovenia)

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z={+-}183.8cm and r{approx}55mm ({eta}{approx}4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14{+-}2.

  16. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    International Nuclear Information System (INIS)

    Mikuz, M.; Cindro, V.; Dolenc, I.; Frais-Koelbl, H.; Gorisek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandic, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-01-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r∼55mm (η∼4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p-p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2

  17. Commissioning results of the APS storage ring rf beam position monitors

    International Nuclear Information System (INIS)

    Kahana, E.; Chung, Y.

    1996-01-01

    The commissioning of the 360 rf beam position monitors (BPMs) in the Advanced Photon Source (APS) storage ring (SR) is nearing completion. After using the single-turn capability of the BPM electronics in the early ring commissioning phase, resolution measurements versus current and bandwidth were successfully performed. In the standard Sr vacuum chamber geometry, the resolution was measured with beam as 0.16 micromA/√(Hz). For the insertion device vacuum chamber geometry, the resolution was measured to be 0.1 micromA/√(Hz). Since the photon beam stability requirement for the users is only 4.5 microns rms in the vertical direction, investigations of rf BPM offset versus current and bunch pattern have also been initiated. Both single bunch and multibunch beam patterns with varying intensity were used to determine offset stability for both the global and the local orbit feedback applications

  18. Development of an S-band cavity Beam Position Monitor for ATF2

    Science.gov (United States)

    Heo, A.; Kim, E.-S.; Kim, H.; Son, D.; Honda, Y.; Tauchi, T.

    2013-04-01

    We have developed an S-band cavity Beam Position Monitor (BPM) in order to measure the position of an electron beam in the final focus area at ATF2, which is the test facility for the final focus design for the International Linear Collider (ILC). The lattice of the ILC Beam Delivery System (BDS) has been modified, requiring a larger physical aperture of 40 mm in the final focus area. The beam orbit measurement in this area is now covered with high resolution S-Band cavity BPMs. In this paper we summarize the design of the cavity BPM and the first experimental results. The calibration slopes were measured as 0.87 counts/μm in the x-coordinate direction and 1.16 counts/μm in the y-coordinate direction.

  19. A metrology system for a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Hinton, Shantell; Honda, Yosuke; Khainovski, Oleg; Kolomensky, Yury; Loscutoff, Peter; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2013-11-01

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will likely be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved-ideally using a beam-based stability measurement. We developed a high resolution RF cavity Beam Position Monitor (BPM) system. A triplet of these BPMs, installed in the extraction line of the KEK Accelerator Test Facility (ATF) and tested with its ultra-low emittance beam, achieved a position measurement resolution of 15 nm. A metrology system for the three BPMs was subsequently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame. We have demonstrated that the three BPMs behave as a rigid-body at the level of less than 5 nm.

  20. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  1. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  2. Event-synchronized data acquisition system for the SPring-8 linac beam position monitors

    Science.gov (United States)

    Masuda, T.; Fukui, T.; Tanaka, R.; Taniuchi, T.; Yamashita, A.; Yanagida, K.

    2005-05-01

    By the summer of 2003, we had completed the installation of a new non-destructive beam position monitor (BPM) system to facilitate beam trajectory and energy correction for the SPring-8 linac. In all, 47 BPM sets were installed on the 1-GeV linac and three beam-transport lines. All of the BPM data acquisition system was required to operate synchronously with the electron beam acceleration cycle. We have developed an event-synchronized data acquisition system for the BPM data readout. We have succeeded in continuously taking all the BPMs data from six VME computers synchronized with the 10 pps operation of the linac to continuously acquire data. For each beam shot, the data points are indexed by event number and stored in a database. Using the real-time features of the Solaris operating system and distributed database technology, we currently have achieved about 99.9% efficiency in capturing and archiving all of the 10 Hz data. The linac BPM data is available for off-line analysis of the beam trajectory, but also for real-time control and automatic correction of the beam trajectory and energy.

  3. Development of a beam current monitor by using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, T.; Ueda, T.; Yoshida, Y.; Miya, K.; Tagawa, S.; Kobayashi, H.

    1993-01-01

    The high performance amorphous magnetic core monitor (ACM) for the measurement of electron beam currents has been developed. This monitor is composed of an amorphous magnetic core, radiation shields, a winding, magnetic absorbers, a ceramic vacuum duct and a SMA connecter. The ACM showed the very fast rise and fall times (< 1 ns), the high sensitivity (5 V/A at 50 Ω load), the good linearity, and good S/N ratio due to the high permeability of the amorphous magnetic core. The monitor works as a primary transformer. The time-response was simulated by an electric circuit analysis code. (orig.)

  4. A novel calorimetry technique for monitoring electron beam curing of polymer resins

    International Nuclear Information System (INIS)

    Chen, J.H.; Johnston, A.; Petrescue, L.; Hojjati, M.

    2006-01-01

    This paper describes the development of a calorimetry-based technique for monitoring of the curing of electron beam (EB) curable resins, including design of the calorimeter hardware and the development of an analytical model for calculating resin cure rates and radiation dose. Factors affecting the performance of the calorimeter were investigated. Experimental trials monitoring the curing of epoxy resin were conducted under single pass and multiple passes of EB irradiation. Results show that the developed calorimeter is a simple, inexpensive and reasonably accurate technique for monitoring the EB curing of cationic epoxies

  5. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mikael [Hevesy Laboratory, Risoe-DTU National Laboratory, DK-4000 Roskilde (Denmark)

    2009-07-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  6. Development of Beam Diagnostic Tools for Monitoring Cyclotron Beams at Production Intensities

    International Nuclear Information System (INIS)

    Jensen, Mikael

    2009-01-01

    This final report for the IAEA-CRP on “Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes” reports the progress made as part of the Danish participation in the above CRP. Some of the work is the result of international, multi-institutional collaboration and/or research student education, and credit is hereby given to my former students Helge Thisgaard and Jesper Jørgensen, Katie Gagnon, student of Tom Ruth at Triumf, Canada, and, last but not least, to Tom himself. The people at the Edmonton PET centre, for beam time. David Schlyer and Rick Carson of BNL for access to the Tandem accelerator calibration shots. (author)

  7. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  8. Beam, background and luminosity monitoring in LHCb and upgrade of the LHCb fast readout control

    CERN Document Server

    Alessio, Federico; Le Gac, R

    2011-01-01

    The work described in this thesis was developed, implemented and completely put in operations during the first year of physics data taking at the LHC. It is shown here that it is aimed at studying beam and background characteristics, monitor the global timing of the experiment, monitor online the luminosity at LHCb and monitor most the experimental conditions which can affect the LHCb physics data quality. The many functionalities of the presented systems are outlined in great detail and some selected topics of analysis are presented in order to validate the good performance. The various systems in fact showed high reliability, completeness and robustness and hence it heavily contributed to the global efficiency of the LHCb experiment and also contributed directly to the commissioning and running of the LHC machine for first physics runs. Some important concepts are also brought to attention in this thesis as possible solutions to be taken into account at the LHC. A scintillator system for beam, background an...

  9. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  10. Isotope separation of relativistic projectile fragments as well as cross section measurements on 8,9,11Li secondary beams

    International Nuclear Information System (INIS)

    Blank, B.

    1991-06-01

    In the framework of this thesis the method of the 'momentum-loss achromate' was for the first time tested at relativistic energies. This experiment is presented in chapter 2 of the thesis. In a second experiment the method was then used, in order to make secondary beams of 8,9,11 Li available. With these secondary beams cross section measurements were performed, from which beside information on the nuclear radii of these nuclei also further information on the internal structure of the lithium isotopes can be derived. This experiment is described in chapter 3 of the thesis. In the framework of these two experiments for the applied heavy ions energy-loss measurements were performed. The results of these measurements are presented in chapter 4. (orig.) [de

  11. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Thomas, E-mail: weber.th@gmx.de [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald [Forschungszentrum Jülich, Institute of Energy and Climate Research, Jülich (Germany); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Mitteau, Raphael; Eaton, Russell [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m{sup 2} are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  12. Digital beam position and phase monitor for P-LINAC for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed

    2013-07-01

    For the planned P-LINAC for the FAIR facility, Beam Position Monitors (BPM) will be installed at 14 locations along the LINAC. The digital signal processing to derive the transverse beam position and the beam phase will be implemented by ''Libera Single Pass H''. The specification for position measurement is 0.1 mm spatial resolution and phase accuracy is 1 degree with respect to 325 MHz acceleration frequency. The results from the Libera digital signal processing were compared with the time-domain approach and the FFT analytic calculations. The first test was performed at the GSI UNILAC with a Ne4+ beam at 1.4 MeV / u. A single BPM was used to act as a ''Bunch arrival monitor'' to characterize the dependence of beam arrival time on bunch shape. The signals were sampled at 117.440 MHz with a 16-bit ADC to produce I and Q data streams. The first experimental results are reported.

  13. Improvements in electron beam monitoring and heat flux flatness at the JUDITH 2-facility

    International Nuclear Information System (INIS)

    Weber, Thomas; Bürger, Andreas; Dominiczak, Karsten; Pintsuk, Gerald; Banetta, Stefano; Bellin, Boris; Mitteau, Raphael; Eaton, Russell

    2015-01-01

    Highlights: • Monitoring of the much faster electron beam motion by IR camera through a synchronized frame triggering. • Estimation of the heat flux generated by electron beam guns based on calorimetry and FEM simulations. • Consideration of the inclined electron beam loading of rectangular-shaped objects. - Abstract: Three beryllium-armoured small-scale mock-ups and one semi-prototype for the ITER first wall were tested by the electron beam facility JUDITH 2 at Forschungszentrum Jülich. Both testing campaigns with cyclic loads up to 2.5 MW/m"2 are carried out in compliance with the extensive quality and management specifications of ITER Organization (IO) and Fusion for Energy (F4E). Several dedicated calibration experiments were performed before the actual testing in order to fulfil the testing requirements and tolerances. These quality requests have been the motivation for several experimental setup improvements. The most relevant results of these activities, being the electron beam monitoring and the heat flux flatness verification, will be presented.

  14. Smart x-ray beam position monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Kuzay, T.

    1996-01-01

    In third-generation synchrotron radiation sources, such as the Advanced Photon Source (APS), the sensitivity and reliability requirements for the x-ray beam position monitors (XBPMs) are much higher than for earlier systems. Noise and contamination signals caused by radiation emitted from the bending magnet become a major problem. The regular XBPM calibration process can only provide signal correction for one set of conditions for the insertion devices (ID). During normal operation, parameters affecting the ID-emitted beam, such as the gap of the ID magnets and the beam current, are the variables. A new smart x-ray beam position monitor system (SBPM) has been conceived and designed for the APS. It has a built in self-learning structure with EEPROM memory that is large enough to open-quote open-quote remember close-quote close-quote a complete set of calibration data covering all the possible operating conditions. During the self-learning mode, the monitor system initializes a series of automatic scan motions with information for different ID setups and records them into the database array. During normal operation, the SBPM corrects the normalized output according to the ID setup information and the calibration database. So that, with this novel system, the SBPM is always calibrating itself with the changing ID set up conditions. copyright 1996 American Institute of Physics

  15. Lise: a recoil spectrometer at GANIL for the production and study of secondary radioactive beams. Present status and future

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1989-01-01

    The doubly achromatic spectrometer LISE, installed at the intermediate-energy heavy-ion facility GANIL is now operating since five years. Essentially, it is composed by two dipole-magnets selecting (in A/Z) and refocusing (achromatically) the projectile-like radioactive fragment-beams emitted at 0 0 . We shall review some of the essential properties of LISE. Some selected examples will be used to demonstrate experimental results which have been obtained so far (discovery of numerous new nuclei up to the drip-lines, half-life measurements, β-γ and delayed-particle spectroscopy, spin-aligned beams, total reaction cross-sections). We shall also discuss several improvements, in particular a cross-field electrostatic/electromagnetic post separator, which are expected to provide in the near future secondary beams of still increased intensity and isotopic purity

  16. Closed-orbit correction using the new beam position monitor electronic of Elsa Bonn

    CERN Document Server

    Dietrich, J; Keil, J

    2000-01-01

    RF and digital electronics, developed at the Forschungszentrum Jülich/IKP were integrated to form the new beam position monitor (BPM) system at the Electron Stretcher Accelerator (ELSA) of the University of Bonn. With this system the preservation of the polarization level during acceleration was currently improved by a good correction of the closed-orbit. All BPM offsets relative to the magnetic quadrupole centers were determined by the method of beam-based alignment. The optics functions measured by the BPM system are in good agreement with theoretical predictions.

  17. Beam position monitoring system for the proposed asymmetric B Factory at SLAC

    International Nuclear Information System (INIS)

    Pellegrin, J.L.

    1992-10-01

    The beam position monitor system of the B Factory is drastically different from the actual PEP system. We present a description of the new configuration and list the features which have been adopted to make this system a highly reliable diagnostic tool. An electrode geometry is suggested, based on the maximum-acceptable power extracted from the beam, and the measurement resolution is estimated by assuming some practical bandwidth and the noise level. Finally, an estimate of the system precision is made by adding up what is expected to be the most significant systematic errors

  18. Design of the Beam Loss Monitoring System for the LHC Ring

    CERN Document Server

    Holzer, E B; Effinger, E; Ferioli, G; González, J L; Gschwendtner, E; Guaglio, Gianluca; Hodgson, M; Prieto, V; Zamantzas, C

    2004-01-01

    The beam loss monitoring (BLM) system of the LHC is one of the most critical elements for the protection of the LHC. It must prevent the super conducting magnets from quenches and the machine components from damages, caused by beam losses. It helps in the identification of the loss mechanism by measuring the loss pattern. Special detectors will be used for the setup and control of the collimators. Furthermore, it will be an important tool during machine setup and studies. The specification requirements of the BLM system include a very high reliability.

  19. Commissioning and first operation of the pCVD diamond ATLAS Beam Conditions Monitor

    CERN Document Server

    Dobos, D

    2009-01-01

    The main aim of the ATLAS Beam Conditions Monitor is to protect the ATLAS Inner Detector silicon trackers from high radiation doses caused by LHC beam incidents, e.g. magnet failures. The BCM uses in total 16 1x1 cm2 500 μm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors. They are arranged in 8 positions around the ATLAS LHC interaction point. Time difference measurements with sub nanosecond resolution are performed to distinguish between particles from a collision and spray particles from a beam incident. An abundance of the latter leads the BCM to provoke an abort of the LHC beam. A FPGA based readout system with a sampling rate of 2.56 GHz performs the online data analysis and interfaces the results to ATLAS and the beam abort system. The BCM diamond sensors, the detector modules and their readout system are described. Results of the operation with the first LHC beams are reported and results of commissioning and timing measurements (e.g. with cosmic muons) in preparation for first ...

  20. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)