WorldWideScience

Sample records for second-harmonic generation

  1. Second-harmonic generation in second-harmonic fiber Bragg gratings.

    Science.gov (United States)

    Steel, M J; de Sterke, C M

    1996-06-20

    We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.

  2. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  3. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  4. Plasma wave and second harmonic generation

    International Nuclear Information System (INIS)

    Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.

    1978-01-01

    An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)

  5. Symmetry properties of second harmonics generated by antisymmetric Lamb waves

    Science.gov (United States)

    Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen

    2018-03-01

    Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.

  6. Transmit beamforming for optimal second-harmonic generation.

    Science.gov (United States)

    Hoilund-Kaupang, Halvard; Masoy, Svein-Erik

    2011-08-01

    A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.

  7. Second-harmonic generation of practical Bessel beams

    Science.gov (United States)

    Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung

    2009-11-01

    A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.

  8. Enhanced resonant second harmonic generation in plasma based on density transition

    Directory of Open Access Journals (Sweden)

    Kant Niti

    2015-06-01

    Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.

  9. Multi-order nonlinear diffraction in second harmonic generation

    DEFF Research Database (Denmark)

    Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw

    We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....

  10. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Spatial mode discrimination using second harmonic generation

    DEFF Research Database (Denmark)

    Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David

    2007-01-01

    Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...

  12. Second-harmonic generation circular dichroism spectroscopy from tripod-like chiral molecular films

    International Nuclear Information System (INIS)

    Wang Xiao-Ou; Chen Li-An; Chen Li-Xue; Sun Xiu-Dong; Li Jun-Qing; Li Chun-Fei

    2010-01-01

    The second-harmonic generation (SHG) circular dichroism in the light of reflection from chiral films of tripod-like chiral molecules is investigated. The expressions of the second-harmonic generation circular dichroism are derived from our presented three-coupled-oscillator model for the tripod-like chiral molecules. Spectral dependence of the circular dichroism of SHG from film surface composed of tripod-like chiral molecules is simulated numerically and analysed. Influence of chiral parameters on the second-harmonic generation circular dichroism spectrum in chiral films is studied. The result shows that the second-harmonic generation circular dichroism is a sensitive method of detecting chirality compared with the ordinary circular dichroism in linear optics. All of our work indicates that the classical molecular models are very effective to explain the second-harmonic generation circular dichroism of chiral molecular system. The classical molecular model theory can give us a clear physical picture and brings us very instructive information about the link between the molecular configuration and the nonlinear processes

  13. Second harmonic generation in a bounded magnetoplasma

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1975-01-01

    An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma

  14. Squeezing and entanglement in doubly resonant, type II, second-harmonic generation

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2003-01-01

    We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...

  15. Second harmonic generation in a molecular magnetic chain

    Science.gov (United States)

    Cavigli, L.; Sessoli, R.; Gurioli, M.; Bogani, L.

    2006-05-01

    A setup for the determination of all the components of the second harmonic generation tensor in molecular materials is presented. It allows overcoming depletion problems, which one can expect to be common in molecular systems. A preliminary characterization of the nonlinear properties of the single chain magnet CoPhOMe is carried out. We observe a high second harmonic signal, comparable to that of urea, and show that the bulk contributions are dominant over the surface ones.

  16. Second harmonic inversion for ultrasound contrast harmonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)

    2011-06-07

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  17. Second harmonic inversion for ultrasound contrast harmonic imaging

    International Nuclear Information System (INIS)

    Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier

    2011-01-01

    Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.

  18. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  19. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  20. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  1. Resonant second harmonic generation in potassium vapor

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA

    1995-06-01

    Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model

  2. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2015-06-15

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.

  3. Efficient second- and third-harmonic radiation generation from relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.; Suk, H.

    2015-01-01

    We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case

  4. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  5. High level harmonic radiation: atto-second impulse generation, application to coherent radiation

    International Nuclear Information System (INIS)

    Kovacev, Milutin

    2003-01-01

    The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated

  6. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation

    Science.gov (United States)

    Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco

    2015-05-01

    Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

  7. Surface structure enhanced second harmonic generation in organic nanofibers

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana

    Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...

  8. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  9. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin

    2018-01-01

    This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.

  10. Transient regime in second harmonic generation

    Science.gov (United States)

    Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine

    2013-09-01

    The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.

  11. Experimental demonstration of efficient and robust second harmonic generation using the adiabatic temperature gradient method

    Science.gov (United States)

    Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.

    2018-03-01

    We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.

  12. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  13. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  14. Kerr-like behaviour of second harmonic generation in the far-off resonant regime

    Science.gov (United States)

    Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan

    2018-05-01

    We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.

  15. Theory of second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  16. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    Science.gov (United States)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  17. Prediction of Metastasis Using Second Harmonic Generation

    Science.gov (United States)

    2016-07-01

    small but statistically significant difference in average F/B of treated US patients versus untreated Dutch patients. Fig. 1. Display of all...predictive ability of models incorporating F/B using a multivariate linear model, but this time applying the analysis to the entire ER+ and ER- cohort. As...AWARD NUMBER: W81XWH-15-1-0040 TITLE: Prediction of Metastasis Using Second Harmonic Generation PRINCIPAL INVESTIGATOR: Edward Brown

  18. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  19. Second harmonic generation: Effects of the multiple reflections of the fundamental and the second harmonic waves on the Maker fringes

    Science.gov (United States)

    Tellier, Gildas; Boisrobert, Christian

    2007-11-01

    The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.

  20. Cumulative Second Harmonic Generation in Lamb Waves for the Detection of Material Nonlinearities

    International Nuclear Information System (INIS)

    Bermes, Christian; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin

    2007-01-01

    An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation, and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT), which yields the amplitudes at different frequencies as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for the alloy aluminum 1100-H14

  1. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...

  2. Vector model for polarized second-harmonic generation microscopy under high numerical aperture

    International Nuclear Information System (INIS)

    Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian

    2010-01-01

    Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases

  3. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang

    2015-01-01

    The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)

  4. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  5. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    Science.gov (United States)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  6. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  7. Theory of surface second-harmonic generation in silica nanowires

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2010-01-01

    , while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...

  8. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    International Nuclear Information System (INIS)

    Kant, Niti; Gupta, Devki Nandan; Suk, Hyyong

    2011-01-01

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  9. Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2011-08-15

    A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.

  10. Second harmonic generation from photonic structured GaN nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Soya, Takahiro; Inose, Yuta; Kunugita, Hideyuki; Ema, Kazuhiro; Yamano, Kouji; Kikuchi, Akihiko; Kishino, Katsumi, E-mail: t-soya@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2009-11-15

    We observed large enhancement of reflected second harmonic generation (SHG) using the one-dimensional photonic effect in regularly arranged InGaN/GaN single-quantum-well nanowalls. Using the effect when both fundamental and SH resonate with the photonic mode, we obtained enhancement of about 40 times compared with conditions far from resonance.

  11. Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    1999-01-01

    Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...

  12. Quantum properties of transverse pattern formation in second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Scotto, P.; Zambrini, R.

    2002-01-01

    these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...

  13. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T. -C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  14. Second-harmonic generation of Lamb modes in a solid layer supported by a semi-infinite substrate

    International Nuclear Information System (INIS)

    Deng Mingxi

    2004-01-01

    Using a second-order perturbation approximation and a modal expansion analysis approach, this study develops an effective technique for studying the generation of second harmonics of Lamb modes propagating in the composite structure consisting of a solid layer supported by a semi-infinite substrate. The nonlinearity in the elastic wave motion process can result in the generation of second harmonics of primary Lamb mode propagation in the composite structure, and this nonlinearity may be treated as a second-order perturbation of the elastic response of the primary waves. There are second-order bulk and surface/interface driving sources in the composite structure wherever the primary Lamb modes propagate. These driving sources can be thought of as the forcing functions of a finite series of double-frequency Lamb modes (DFLMs) in terms of the approach of modal expansion analysis for waveguide excitation. The fields of the second harmonics of the primary Lamb modes can be regarded as superpositions of the fields of a finite series of DFLMs. Although Lamb modes are dispersive, the field of one DFLM component can have a cumulative growth effect when its phase velocity exactly or approximately equals that of a primary Lamb mode. The formal solutions for the second harmonics of Lamb modes have been obtained. The numerical simulations clearly show the physical process of the generation of second harmonics of Lamb modes in the composite structure. The complicated problems of second-harmonic generation of Lamb modes have been exactly determined within the second-order perturbation approximation

  15. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  16. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  17. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  18. Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation

    International Nuclear Information System (INIS)

    Zolotoverkh, I I; Lariontsev, E G

    2000-01-01

    The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)

  19. Influence of temperature rise distribution in second harmonic generation crystal on intensity distributions of output second harmonic wave

    International Nuclear Information System (INIS)

    Li Wei; Feng Guoying; Li Gang; Huang Yu; Zhang Qiuhui

    2009-01-01

    Second-harmonic generation (SHG) of high-intensity laser with an SHG crystal for type I angle phase matching has been studied by the use of a split-step algorithm based on the fast Fourier transform and a fourth-order Runge-Kutta (R-K) integrator. The transverse walk-off effect, diffraction, the second-order and the third-order nonlinear effects have been taken into consideration. Influences of a temperature rise distribution of the SHG crystal on the refractive indices of ordinary wave and extraordinary wave have been discussed. The rules of phase mismatching quantity, intensity distribution of output beam and frequency conversion efficiency varying with the temperature rise distribution of the SHG crystal have been analyzed quantitatively. The calculated results indicate that in a high power frequency conversion system, the temperature rise distribution of SHG crystal would result in the phase mismatching of fundamental and harmonic waves, leading to the variation of intensity distribution of the output beam and the decrease of the conversion efficiency. (authors)

  20. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    Science.gov (United States)

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  1. Time-domain analysis of second-harmonic generation of primary Lamb wave propagation in an elastic plate

    International Nuclear Information System (INIS)

    Deng Ming-Xi; Xiang Yan-Xun

    2010-01-01

    Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform

  2. Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent.

    Science.gov (United States)

    Ascenti, Giorgio; Zimbaro, Giovanni; Mazziotti, Silvio; Chimenz, Roberto; Fede, Carmelo; Visalli, Carmela; Scribano, Emanuele

    2004-06-01

    Contrast-enhanced voiding urosonography (VUS) is largely accepted both for the diagnosis and follow-up of vesicoureteric reflux (VUR) in children. To evaluate the usefulness of contrast-enhanced second-harmonic VUS in the diagnosis and grading of VUR, using a second-generation contrast agent. Eighty consecutive children were prospectively studied with contrast-enhanced second-harmonic VUS. All children received a second-generation contrast medium, constituted by phospholipid-stabilized microbubbles of sulphur-hexafluoride (SonoVue, Bracco, Milan, Italy). US monitoring of the bladder, of the retrovesical space and of the kidneys was performed using, alternatively, both tissue-harmonic and contrast-harmonic modes. In those young boys where VUR was depicted at VUS, examination was completed with transperineal, sagittal urethral exploration during micturition. VUR was graded in five steps and diagnoses were compared with voiding cystourethrography (VCUG). VUR was diagnosed in 52 reno-ureteral units with VUS. In 49 of these reno-ureteral units, VCUG confirmed the presence of VUR. In comparison to VUS, sensitivity and negative predictive value of VCUG were inferior. The grade of VUR detected at VUS was higher than that detected at VCUG in three units. In no case was the grade of VUR detected at VCUG higher than the one detected at VUS. The differences between VUS and VCUG in grading VUR were statistically significant (p=0.02). Imaging of the normal posterior urethra was skilfully demonstrated with US in 15 young boys with VUR. No statistically significant differences were found between tissue-harmonic and contrast-harmonic mode (p=0.102). Contrast-enhanced second-harmonic VUS is a sensitive and easy technique for the evaluation of VUR. A second-generation US contrast medium such as SonoVue, if available, should be the first choice as the dose required for one examination is much lower and consequently significant reduction of contrast agent cost is possible. Copyright

  3. Green bright squeezed light from a cw periodically poled KTP second harmonic generator

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchhave, Preben

    2002-01-01

    We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using qu...... reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found. (C)2002 Optical Society of America....... quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise...

  4. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    International Nuclear Information System (INIS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-01-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ (3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of the

  5. Second Harmonic Generation of Unpolarized Light

    Science.gov (United States)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  6. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin

    2015-01-01

    for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient singlepass concept, we generate 3.7 W...... successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other......Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...

  7. Second harmonic generation in anisotropic Langmuir-Blodgett films of N-docosyl-4-nitroaniline

    DEFF Research Database (Denmark)

    Geisler, T.; Rosenkilde, S.; Ramanujam, P.S.

    1992-01-01

    Langmuir-Blodgett (LB) films of N-docosyl-4-nitroaniline have been made and their nonlinear optical properties studied by second harmonic generation (SHG) measurements. A significant enhancement of the intensity of the second harmonic of the 1.064-mu-m YAG was observed when a two layer Y-type film...... structure. Both of these observations are not common for Y-type LB films and the usual assumption of C(infinity nu) symmetry is therefore not valid. The results make us suggest that these LB films possess C(s) and C2-nu symmetry for mono- and multilayers, respectively. Theoretical expressions...

  8. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    Science.gov (United States)

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  9. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2010-01-01

    -matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum...

  10. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  11. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  12. Geometric effect on second harmonic generation from gold grating

    Science.gov (United States)

    Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin

    2018-05-01

    We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.

  13. Influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures

    International Nuclear Information System (INIS)

    Deng Mingxi; Wang Ping; Lv Xiafu

    2006-01-01

    This paper describes influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures. The nonlinearity in the elastic wave propagation is treated as a second-order perturbation of the linear elastic response. Due to the kinematic nonlinearity and the elastic nonlinearity of materials, there are second-order bulk and surface/interface driving sources in layered planar structures through which Lamb waves propagate. These driving sources can be thought of as forcing functions of a series of double frequency lamb waves (DFLWs) in terms of the approach of modal expansion analysis for waveguide excitation. The total second-harmonic fields consist of a summation of DFLWs in the corresponding stress-free layered planar structures. The interfacial properties of layered planar structures can be described by the well-known finite interfacial stiffness technique. The normal and tangential interfacial stiffness constants can be coupled with the equation governing the expansion coefficient of each DFLW component. On the other hand, the normal and tangential interfacial stiffness constants are associated with the degree of dispersion between Lamb waves and DFLWs. Theoretical analyses and numerical simulations indicate that the efficiency of second-harmonic generation by Lamb wave propagation is closely dependent on the interfacial properties of layered structures. The potential of using the effect of second-harmonic generation by Lamb wave propagation to characterize the interfacial properties of layered structures are considered. Some experimental results are presented

  14. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    International Nuclear Information System (INIS)

    Feller, M.B.

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described

  15. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Marla Beth [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  16. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

  17. Second- and third-harmonic generation as a local probe for nanocrystal-doped polymer materials with a suppressed optical breakdown threshold

    Science.gov (United States)

    Konorov, S. O.; Fedotov, A. B.; Ivanov, A. A.; Alfimov, M. V.; Zabotnov, S. V.; Naumov, A. N.; Sidorov-Biryukov, D. A.; Podshivalov, A. A.; Petrov, A. N.; Fornarini, L.; Carpanese, M.; Ferrante, G.; Fantoni, R.; Zheltikov, A. M.

    2003-09-01

    Second- and third-harmonic generation processes are shown to allow the detection of absorptive agglomerates of nanocrystals in transparent materials and the visualization of optical breakdown in nanocomposite materials. Correlations between laser-induced breakdown and the behavior of the second- and third-harmonic signals produced in SiC/PMMA nanocomposite films are studied. The potential of second- and third-harmonic generation for the on-line visualization of laser breakdown in nanocomposite polymer materials is revealed, with the ablative material removal being monitored by the decay of the second- and third-harmonic signals. The second and third harmonics generated around the optical breakdown threshold by 75-fs pulses of 1.25-μm Cr:forsterite laser radiation are respectively more than two and four orders of magnitude more intense than the second and third harmonics produced under identical conditions by 40-ps pulses of a Nd:YAG laser. The breakdown threshold for PMMA films doped with 10-20-nm SiC nanocrystals forming absorptive agglomerates are demonstrated to be more than an order of magnitude lower than the breakdown threshold for crystalline SiC and about an order of magnitude lower than that for nondoped PMMA films.

  18. Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation

    International Nuclear Information System (INIS)

    Olsen, M.K.

    2004-01-01

    The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal

  19. Field-controllable second harmonic generation at a graphene oxide heterointerface

    Science.gov (United States)

    Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy

    2018-03-01

    We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.

  20. Second harmonic generation spectroscopy on Si surfaces and interfaces

    DEFF Research Database (Denmark)

    Pedersen, Kjeld

    2010-01-01

    Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...

  1. Direct-substitution method for studying second harmonic generation in arbitrary optical superlattices

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available In this paper, we present the direct-substitution (DS method to study the second-harmonic generation (SHG in arbitrary one-dimensional optical superlattices (OS. Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What’s more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems. Keywords: Second-harmonic generation, Direct-substitution, Fibonacci

  2. Integrated GaN photonic circuits on silicon (100) for second harmonic generation

    OpenAIRE

    Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.

    2014-01-01

    We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...

  3. Effect of composition and temperature on the second harmonic generation in silver phosphate glasses

    Science.gov (United States)

    Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.

    2018-01-01

    We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.

  4. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures

    DEFF Research Database (Denmark)

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank

    2016-01-01

    We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maxima...

  5. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, David J.; Dettmar, Christopher M. [Purdue University, West Lafayette, IN 47907 (United States); Becker, Michael [Argonne National Laboratory, Argonne, IL 60439 (United States); Mulichak, Anne M. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Cherezov, Vadim [The Scripps Research Institute, La Jolla, CA 92037 (United States); Ginell, Stephan L. [Argonne National Laboratory, Argonne, IL 60439 (United States); Battaile, Kevin P.; Keefe, Lisa J. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Fischetti, Robert F. [Argonne National Laboratory, Argonne, IL 60439 (United States); Simpson, Garth J., E-mail: gsimpson@purdue.edu [Purdue University, West Lafayette, IN 47907 (United States)

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.

  6. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    International Nuclear Information System (INIS)

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β 2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed

  7. Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation

    International Nuclear Information System (INIS)

    Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.

    2011-01-01

    This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.

  8. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    Science.gov (United States)

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  9. Optical second harmonic generation from V-shaped chromium nanohole arrays

    Science.gov (United States)

    Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey

    2014-02-01

    We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.

  10. Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6 Cladding Waveguides

    Directory of Open Access Journals (Sweden)

    Jia Yuechen

    2013-11-01

    Full Text Available We report on the second harmonic generation of violet light of a nonlinear cladding waveguide in BiB3O6 crystal produced by femtosecond laser inscription. Under continuous-wave pump laser at 800 nm, the guided second harmonic wave at 400 nm with a conversion efficiency of ~0.32% has been realized through the Type I birefringence phase matching configuration.

  11. The diffraction and walk off in the second harmonic generation

    International Nuclear Information System (INIS)

    He Yujuan; Cai Bangwei; Zhang Bin

    2000-01-01

    Taking the second harmonic generation of Gaussian beam in a KDP crystal of type I matching for example, the effects of diffraction and walk off on doubling conversion efficiency have been worked out. The result indicates that the effect of diffraction is very small and can even by neglected. When the input Gaussian beam size is very small, the effect of walk off is very deleterious on doubling conversion. Along with the enlarging of beam size, the effect of walk off is much smaller and can even be neglected

  12. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  13. Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal

    Science.gov (United States)

    2016-08-26

    OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...photoluminescence mapping, Raman spectroscopy and atomic -force microscopy. (b) Image produced via scanning and gathering the SH light produced by the 3R-MoS2...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra

  14. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...

  15. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity.

    Science.gov (United States)

    Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv

    2006-08-01

    Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.

  16. Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films

    DEFF Research Database (Denmark)

    Balzer, F.; Rubahn, Horst-Günter

    2000-01-01

    Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....

  17. Interaction of nitrate, barium, strontium and cadmium ions with fused quartz/water interfaces studied by second harmonic generation.

    Science.gov (United States)

    Hayes, Patrick L; Malin, Jessica N; Konek, Christopher T; Geiger, Franz M

    2008-01-31

    Inorganic anions and cations are ubiquitous in environmental chemistry. Here, we use second harmonic generation to track the interaction of the environmentally important metal cations barium, strontium, and cadmium and the nitrate anion with fused quartz/water interfaces at pH 7. Using a dynamic flow system, we assess the extent of reversibility in the binding process and report the absolute number density of adsorbed cations, their charge densities, and their free energies of adsorption. We also present resonantly enhanced second harmonic generation experiments that show that nitrate is surface active and report the free energies and binding constants for the adsorption process. The second harmonic generation spectrum of surface-bound nitrate shows a new adsorption band that cuts further into the solar spectrum than nitrate in the aqueous or solid state. The results that we obtain for all four inorganic ions and the implications for tropospheric and aquatic chemistry as well as geochemistry are discussed in the context of fundamental science as well as pollutant transport models.

  18. A structure and second-harmonic generation of crystals Li B3O5

    International Nuclear Information System (INIS)

    Burak, Ya.V.

    1997-01-01

    Projections of atoms of nonlinear optical crystals Li B 3 O 5 onto planes perpendicular to directions of the phase matching of type-1 and type-2 for second-harmonic generation (SHG) in a YAG:Nd laser are constructed. Analyses of the interdependence of orientations of (B 3 O 7 ) 5 -complexes and of the effectiveness of SHG are conducted

  19. Second-harmonic and sum-frequency generation for surface studies

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-07-01

    Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions

  20. Far- and near-field second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Pedersen, K.; Skettrup, Torben

    1998-01-01

    Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....

  1. Development of the RTP crystal applications for Q-switching operation and second harmonics generation

    International Nuclear Information System (INIS)

    Alnayli, R.Sh.

    2010-01-01

    Complete text of publication follows. A dialed theoretical studies on performances of the ideal RTP crystal for the electro optical applications as Q-switching laser operation and for nonlinear optics application as second harmonics generation are accomplished in this paper. Single or pair RTP crystal of excellent quality with dimensions 5 x 5 x 7.5 mm 3 have proposed as element model to combined Q-switching operation and frequency doublers for 1.06 μm wave length laser. In order to get and interpolate the optimum conditions to combined both of these operations by application this RTP model. The main am of this work was investigated the most influent parameters on the performance of the electro optical Q-switching laser operation such as, the voltage requirement, contrast and extinction ratios, the birefringence effective and withstand threshold on the other hand the influences of the ray walk off, thermal effective on the efficiency of the second harmonics generation as well are investigated. The results were satisfied for the goals of this paper.

  2. Harmonic generation effect in high-Tc films

    International Nuclear Information System (INIS)

    Khare, Neeraj; Shrivastava, S.K.; Padmanabhan, V.P.N.; Khare, Sangeeta; Gupta, A.K.

    1997-01-01

    Harmonic generation in thick BPSCCO and thin YBCO films are reported. The application of an ac field (H ac > H c1 ) of frequency f causes the generation of odd harmonics of frequency (2n+1)f. The application of dc field in addition to the ac field causes the appearance of even harmonics also in the BPSCCO film. However, the appearance of even harmonics is not observed in YBCO film with high J c ∼ 1.6x10 6 A/cm 2 and appearance of second harmonic with small magnitude is observed in YBCO film with low J c ∼ 2x10 3 A/cm 2 . The variation of amplitudes of these harmonics are studied as a function of magnitude of ac and dc field and the results are explained in the framework of critical state model. A high-T c film magnetometer based on the measurement of the amplitude of second harmonic has been developed whose field sensitivity is ∼ 1.5x10 -8 T. (author)

  3. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    Science.gov (United States)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  4. Generation of second harmonic in off-diagonal magneto-impedance in Co-based amorphous ribbons

    International Nuclear Information System (INIS)

    Buznikov, N A; Yoon, S S; Jin, L; Kim, C O; Kim, C G

    2006-01-01

    The off-diagonal magneto-impedance in Co-based amorphous ribbons was measured using a pick-up coil wound around the sample. The ribbons were annealed in air or in vacuum in the presence of a weak magnetic field. The evolution of the first and second harmonics in the pick-up coil voltage as a function of the current amplitude was studied. At low current amplitudes, the first harmonic dominates in the frequency spectrum of the voltage, and at sufficiently high current amplitudes, the amplitude of the second harmonic becomes higher than that of the first harmonic. For air-annealed ribbons, the asymmetric two-peak behaviour of the field dependences of the harmonic amplitudes was observed, which is related to the coupling between the amorphous phase and surface crystalline layers appearing after annealing. For vacuum-annealed samples, the first harmonic has a maximum at zero external field, and the field dependence of the second harmonic exhibits symmetric two-peak behaviour. The experimental results are interpreted in terms of a quasi-static rotational model. It is shown that the appearance of the second harmonic in the pick-up coil voltage is related to the anti-symmetrical distribution of the transverse field induced by the current. The calculated dependences are in qualitative agreement with the experimental data

  5. Characterization of the second-harmonic response of a silver-air interface

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, K A [Division de FIsica Aplicada, Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, Baja California, 22800 (Mexico); Torre, R [Dipartimento di Fisica and European Laboratory for Non-linear Spectroscopy (LENS), Polo Scientifico, Universita di Firenze, Via Carrara n.1, Sesto Fiorentino, 50019 (Italy); INFM CRS-SOFT, Universita La Sapienza, Rome (Italy)

    2005-07-01

    We present an experimental study of second-harmonic generation in the light reflected from a flat silver surface. It is discussed that the harmonic generation from such a surface may be expressed in terms of the three unique elements of its effective surface susceptibility tensor. A method is proposed to determine the susceptibilities by measuring the second-harmonic power with different polarization conditions. By employing a picosecond light source and photon-counting techniques, we determine the susceptibilities and compare our results with previous work.

  6. Characterization of the second-harmonic response of a silver-air interface

    International Nuclear Information System (INIS)

    O'Donnell, K A; Torre, R

    2005-01-01

    We present an experimental study of second-harmonic generation in the light reflected from a flat silver surface. It is discussed that the harmonic generation from such a surface may be expressed in terms of the three unique elements of its effective surface susceptibility tensor. A method is proposed to determine the susceptibilities by measuring the second-harmonic power with different polarization conditions. By employing a picosecond light source and photon-counting techniques, we determine the susceptibilities and compare our results with previous work

  7. Atto second high harmonic sources

    International Nuclear Information System (INIS)

    Nam, Chang Hee

    2008-01-01

    High harmonic generation is a powerful method to produce attosecond pulses. The high harmonics, emitted from atoms driven by intense femtosecond laser pulses, can from an attosecond pulse train with equally spaced harmonic spectrum or an isolated single attosecond pulse with broad continuum spectrum. Using high power femtosecond laser technology developed at CXRC, we have investigated the spectral and temporal characteristics of high harmonics obtained from gaseous atoms. The spectral structure of harmonics could be manipulated by controlling laser chirp, and continuous tuning of harmonic wavelengths was achieved. For rigorous temporal characterization of attosecond harmonic pulses a cross correlation technique was applied to the photoionization process by harmonic and IR femtosecond pulses and achieved the complete temporal reconstruction of attosecond pulse trains, revealing the detailed temporal structure of the attosecond chirp by material dispersion. The duration of attosecond high harmonic pulses is usually much longer than that of transform limited pulses due to the inherent chirp originating from the harmonic generation process. The attosecond chirp compensation in the harmonic generation medium itself was demonstrated, thereby realizing the generation of near transform limited attosecond pulses. The interference of attosecond electron wave packets, generated from an atom by attosecond harmonic pulses, will be also presented

  8. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    International Nuclear Information System (INIS)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.; Sibilia, C.

    2009-01-01

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  9. Second-harmonic generation imaging of collagen in ancient bone.

    Science.gov (United States)

    Thomas, B; McIntosh, D; Fildes, T; Smith, L; Hargrave, F; Islam, M; Thompson, T; Layfield, R; Scott, D; Shaw, B; Burrell, C L; Gonzalez, S; Taylor, S

    2017-12-01

    Second-harmonic generation imaging (SHG) captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  10. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    Science.gov (United States)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  11. Discrimination of collagen in normal and pathological dermis through polarization second harmonic generation

    Science.gov (United States)

    Su, Ping-Jung; Chen, Wei-Liang; Hong, Jin-Bon; Li, Tsung-Hsien; Wu, Ruei-Jr; Chou, Chen-Kuan; Lin, Sung-Jan; Dong, Chen-Yuan

    2010-02-01

    We used polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution for medical diagnosis of pathological skin dermis, and found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. We find that the histograms of the d33/d31 ratio for the pathological skins to contain two peak values and to be wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers.

  12. Second harmonic generation in generalized Thue-Morse ferroelectric superlattices

    International Nuclear Information System (INIS)

    Wang Longxiang; Yang Xiangbo; Chen Tongsheng

    2009-01-01

    In this paper the second harmonic generation (SHG) in generalized Thue-Morse (GTM(m, n)) ferroelectric superlattices is studied. Under the small-signal approximation, the SHG spectra in both real and reciprocal spaces are investigated. It is found that: (1) only when the structure parameters l, l A , and l B are all chosen to be proper, can SHG in GTM(m, n) ferroelectric superlattices be generated; (2) for Family A of generalized Thue-Morse, GTM(m, 1) ferroelectric systems, with the increase of parameter m, the intense peaks of SHG concentrate on the long wavelength 1.4-1.5μm (the fundamental beam (FB) wavelength is within 0.8-1.5μm), but for Family B of generalized Thue-Morse, GTM(1, n) ferroelectric superlattices, with the increase of parameter n, the intense peaks of SHG concentrate on the middle wavelength 1.1-1.2μm; and (3) for GTM(m, 1) ferroelectric superlattices, the bigger the m, the stronger the relative integral intensity (RII) of SHG would be, but for GTM(1, n) ferroelectric systems, the bigger the n, the weaker the RII of SHG would be.

  13. Low-temperature anomalies of photoinduced second harmonic generation in skutterudites

    International Nuclear Information System (INIS)

    Viennois, R; Kityk, I V; Terki, F; Charar, S; Muntzer, A; Kasperczyk, J; Ravot, D; Tedenac, J C

    2003-01-01

    Photoinduced second harmonic generation (PISHG) was found in skutterudite compounds of CeFe 4 Sb 12 and Ce 0.7 Fe 3.5 Ni 0.5 Sb 12 . Measurements versus temperature, pump-probe delaying time and external magnetic field were performed. The studied compounds belong to moderate heavy fermion compounds (HFC) in the ground state. The PISHG signals appear at 6.8 and 4.9 K for CeFe 4 Sb 12 and Ce 0.7 Fe 3.5 Ni 0.5 Sb 12 , respectively. We suspect that these signals are due to anharmonic electron-phonon interactions creating a charge density non-centrosymmetry. The observed effects are caused either by a possible phase transition or by drastic changes in the electron structure of the HFC with decreasing temperature

  14. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  15. More efficient second harmonic generation of whispering gallery modes by selective out-coupling

    OpenAIRE

    Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.

    2017-01-01

    We demonstrate second harmonic generation (SHG) in an $x$-cut congruent lithium niobate (LN) whispering gallery mode resonator. We first show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A scheme based on our earlier work in Ref. [1] is then implemented experimentally to verify this. Thereby we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively out-coupling using a LN prism...

  16. Second-harmonic generation imaging of collagen in ancient bone

    Directory of Open Access Journals (Sweden)

    B. Thomas

    2017-12-01

    Full Text Available Second-harmonic generation imaging (SHG captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.

  17. 1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2009-01-01

    More than 1.5 W of green light at 531 nm is generated by singlepass second harmonic generation in periodically poled MgO:LiNbO3. The pump laser is a high power tapered laser with a distributed Bragg reflector etched in the ridge section of the laser to provide wavelength selectivity. The output...... power of the single-frequency tapered laser is 9.3 W in continuous wave operation. A conversion efficiency of 18.5 % was achieved in the experiments....

  18. Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference

    Directory of Open Access Journals (Sweden)

    A. V. Kudryavtsev

    2016-09-01

    Full Text Available The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG field. The model is applied to the calculation of second harmonic (SH field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering in 2D semiconductors that is extremely important for characterization of these unique materials.

  19. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.

    Science.gov (United States)

    Meyn, J P; Fejer, M M

    1997-08-15

    We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.

  20. Second-harmonic imaging of poled silica waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Pedersen, Kjeld; Bozhevolnyi, Sergey I.

    2000-01-01

    Electric-field poled silica-based waveguides are characterized by measurements of second-harmonic generation (SHG) and of the linear electro-optic effect (LEO). A SHG scanning technique allowing for high-resolution imaging of poled devices is demonstrated. Scans along the direction of the poling...

  1. Total internal reflection second-harmonic generation: probing the alkane water interface

    International Nuclear Information System (INIS)

    Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.

    1994-01-01

    Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)

  2. Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....

  3. Generation of the second harmonics of Bessel light beams in a KTP crystal

    International Nuclear Information System (INIS)

    Belyi, V N; Kazak, N S; Kondratyuk, N V; Khilo, N A; Shagov, A A

    1998-01-01

    Theoretical and experimental investigations were made of the characteristic features of doubling the frequency of Bessel light beams by the oe - e interaction in a KTP crystal. All possible and scalar interactions of plane-wave components of Bessel beams were observed experimentally. The spatial structure of the second harmonic in the far zone consisted of a central spot and a concentric ring. The diffraction divergence of the central beam was weak ( ∼ 1.7 mrad). The energy conversion efficiency was ∼ 21% for a Bessel beam, which was three times higher than the efficiency of conversion of the initial laser beam. A theoretical model was based on representation of the field of the second harmonic as a superposition of Bessel beams, which provided a correct description of the observed spatial and energy characteristics of the second harmonic. (nonlinear optical phenomena and devices)

  4. Guided-wave phase-matched second-harmonic generation in KTiOPO4 waveguide produced by swift heavy-ion irradiation

    Science.gov (United States)

    Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2014-11-01

    We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.

  5. Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.

    Science.gov (United States)

    Park, Choul Yong; Lee, Jimmy K; Chuck, Roy S

    2015-08-01

    To describe the horizontal arrangement of human corneal collagen bundles by using second harmonic generation (SHG) imaging. Human corneas were imaged with an inverted two photon excitation fluorescence microscope. The excitation laser (Ti:Sapphire) was tuned to 850 nm. Backscatter signals of SHG were collected through a 425/30-nm bandpass emission filter. Multiple, consecutive, and overlapping image stacks (z-stacks) were acquired to generate three dimensional data sets. ImageJ software was used to analyze the arrangement pattern (irregularity) of collagen bundles at each image plane. Collagen bundles in the corneal lamellae demonstrated a complex layout merging and splitting within a single lamellar plane. The patterns were significantly different in the superficial and limbal cornea when compared with deep and central regions. Collagen bundles were smaller in the superficial layer and larger in deep lamellae. By using SHG imaging, the horizontal arrangement of corneal collagen bundles was elucidated at different depths and focal regions of the human cornea.

  6. Optically induced second-harmonic generation in CdI sub 2 -Cu layered nanocrystals

    CERN Document Server

    Voolless, F; Hydaradjan, W

    2003-01-01

    A large enhancement (up to 0.40 pm V sup - sup 1) of the second-order optical susceptibility was observed in CdI sub 2 -Cu single-layered nanocrystals for the Nd:YAG fundamental laser beam lambda = 1.06 mu m. The Cu impurity content and nanolayer thickness of the cleaved layers (about several nanometres) play a crucial role in the observed effect. The temperature dependence of the optical second-harmonic generation (SHG) together with its correlation with Raman spectra of low-frequency modes indicate a key role for the UV-induced anharmonic electron-phonon interactions in the observed effect. The maximal output UV-induced SHG was achieved for a Cu content of about 0.5% and at liquid helium temperatures.

  7. Second harmonic generation microscopy of the living human cornea

    Science.gov (United States)

    Artal, Pablo; Ávila, Francisco; Bueno, Juan

    2018-02-01

    Second Harmonic Generation (SHG) microscopy provides high-resolution structural imaging of the corneal stroma without the need of labelling techniques. This powerful tool has never been applied to living human eyes so far. Here, we present a new compact SHG microscope specifically developed to image the structural organization of the corneal lamellae in living healthy human volunteers. The research prototype incorporates a long-working distance dry objective that allows non-contact three-dimensional SHG imaging of the cornea. Safety assessment and effectiveness of the system were firstly tested in ex-vivo fresh eyes. The maximum average power of the used illumination laser was 20 mW, more than 10 times below the maximum permissible exposure (according to ANSI Z136.1-2000). The instrument was successfully employed to obtain non-contact and non-invasive SHG of the living human eye within well-established light safety limits. This represents the first recording of in vivo SHG images of the human cornea using a compact multiphoton microscope. This might become an important tool in Ophthalmology for early diagnosis and tracking ocular pathologies.

  8. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  9. Double resonant excitation of the second harmonic of terahertz raditation in dielectricgraphene layered metamaterials

    DEFF Research Database (Denmark)

    Rapoport, Yu; Grimalsky, V.; Lavrinenko, Andrei

    2017-01-01

    to the interfaces, and generation of the p-type second harmonic wave occurs. The original concept is proposed to employ the double resonance arrangement for the effective generation of the second harmonic. The double resonant case can be realized when a high-permittivity dielectric is at the input of the structure...

  10. Properties of the second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring

    International Nuclear Information System (INIS)

    Duque, C.M.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities

  11. Properties of the second and third harmonics generation in a quantum disc with inverse square potential. A modeling for nonlinear optical responses of a quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.M. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave, Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)

    2013-06-15

    The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities.

  12. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.

  13. Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-09-01

    Full Text Available Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL and second harmonic generation (SHG were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°.

  14. Optical klystron and harmonic generation free electron laser

    Directory of Open Access Journals (Sweden)

    Qika Jia

    2005-06-01

    Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.

  15. Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping

    KAUST Repository

    Lin, Chih-Pin

    2015-08-27

    We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.

  16. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  17. Second harmonic generation microscopy investigation of the crystalline ultrastructure of three barley starch lines affected by hydration

    DEFF Research Database (Denmark)

    Cisek, Richard; Tokarz, Danielle; Steup, Martin

    2015-01-01

    Second harmonic generation (SHG) microscopy is employed to study changes in crystalline organization due to altered gene expression and hydration in barley starch granules. SHG intensity and susceptibility ratio values (R’SHG) are obtained using reduced Stokes-Mueller polarimetric microscopy...... by ordered hydrogen and hydroxyl bond networks which increase with hydration of starch granules....

  18. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    Science.gov (United States)

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  19. Modeling of second-harmonic generation of circumferential guided wave propagation in a composite circular tube

    Science.gov (United States)

    Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun

    2018-05-01

    This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.

  20. Image Formation in Second-Harmonic Near-Field Microscopy

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Lozovski, Valeri Z.; Pedersen, Kjeld

    1999-01-01

    contributions in the effective current, i.e., the currents generated by the self-consistent fields at the fundamental and second-harmonic frequencies. The self-consistent problem for both frequencies is solved exactly by use of the diagram technique adapted from quantum electrodynamics. Preliminary numerical...

  1. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua; Fu, Limin; Zhao, Yunfeng; Ai, Xicheng; Zhang, Jianping; Han, Yu; Guo, Zhixin

    2011-01-01

    the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown

  2. First and second harmonic generation of the XAl{sub 2}Se{sub 4} (X=Zn,Cd,Hg) defect chalcopyrite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik, E-mail: tarik_ouahrani@yahoo.fr [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Ecole Preparatoire en Sciences et Techniques, Depertement de Physique EPST-T, Tlemcen 13000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Universite de Mascara, 29000 Mascara (Algeria); Lasri, B. [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Universite Dr Tahar Moulay de Saida, B.P. 138, Cite el Nasr, Saida 20000 (Algeria); Reshak, Ali H. [School of Complex systems, FFPW- South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Bouhemadou, A. [Department of Physics, Faculty of Sciences, University of Setif, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-09-15

    The chemical bonding of the ZnAl{sub 2}Se{sub 4}, CdAl{sub 2}Se{sub 4} and HgAl{sub 2}Se{sub 4} defect chalcopyrites has been studied in the framework of the quantum theory of atoms in molecules (AIM). The GW quasi-particle approximation is used to correct the DFT-underestimation of energy gap, and as a consequence the linear and nonlinear optical properties are significantly enhanced. The second harmonic generation (SHG) displays certain dependence with the ionicity degree decrease through the dependency of the SHG on the band gap. The occurrence of the AIM saddle point is characterized and some clarifying features in relationship with the density topology are exposed, which enable to understand the relation with the second harmonic generation effect.

  3. Nanotwin Detection and Domain Polarity Determination via Optical Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh

    2016-07-13

    We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

  4. Polymer poling characterization using second harmonic generation (SHG)

    Science.gov (United States)

    Tellier, Gildas; Averty, Dominique; Blart, Errol; Boisrobert, Christian; Gundel, Hartmut; Le Tacon, Sylvain; Monnereau, Cyrille; Odobel, Fabrice; Seveno, Raynald

    2006-04-01

    Several polymer molecules have structures which are suitable for the non-linear optic applications. We report on the design and fabrication of a high performance electro-optic modulator made of polymer thin films. The polymer we study contains a chromophore based on Disperse Red One covalently grafted to a host-matrix. The polymer materials are deposited in thin layers on a glass substrate by chemical solution deposition, either by spin-coating or by dip-coating. The thickness of the films is ranging from a hundred nanometers to several micrometers. Initially, the polymer molecules are randomly oriented and the films are isotropic, hence no electro-optic effect can be observed. In order to break the symmetry and align the chromophores, the films are submitted to the so-called corona poling process. As a result, their structure become non-centrosymmetric and the second-order susceptibility is no longer zero. The corona poling method consists of applying a high electric field to the polymer by means of a needle electrode, placed above the polymer film which is posed on a grounded sample support electrode. Thermal regulation of the support electrode allows to control the temperature during the poling of the films. Once the poling process has been established, a chemical cross-linking function is thermally activated in order to fix the orientation of the chromophores in the polymer matrix. The orientation and its stability in time is evaluated with a Second Harmonic Generation measurement set-up using the Makers Fringes configuration. We studied the influence of the poling temperature, the distance between the corona needle electrode and the sample, the high voltage applied, and the duration of the poling process on the efficiency of chromophore orientation in order to optimize the poling procedure. Finally, aging of poled polymer samples has been investigated at elevated temperatures, confirming the stability of the cross-linking process.

  5. Entanglement characteristics of subharmonic modes reflected from a cavity for type-II second-harmonic generation

    International Nuclear Information System (INIS)

    Zhai Zehui; Li Yongming; Gao Jiangrui

    2004-01-01

    Quantum fluctuation and quantum entanglement of the pump fields reflected from an optical cavity for type-II second-harmonic generation are theoretically analyzed. The correlation spectra of quadrature components between the reflected subharmonic fields are interpreted in terms of pump parameter, intracavity losses, and normalized frequency. High correlation of both amplitude and phase quadratures can be accessed in a triple resonant cavity before the pitchfork bifurcation occurs. The two reflected subharmonic fields are in an entangled state with quantum correlation of phase quadratures and anticorrelation of amplitude quadratures. The proposed system can be exploited as a source for generating entangled states of continuous variables

  6. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation

    Science.gov (United States)

    Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng

    2018-04-01

    III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.

  7. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy

    Science.gov (United States)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto

    2009-02-01

    The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.

  8. Characterization of muscle contraction with second harmonic generation microscopy

    Science.gov (United States)

    Prent, Nicole

    Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no

  9. Second harmonic generation reveals matrix alterations during breast tumor progression

    Science.gov (United States)

    Burke, Kathleen; Tang, Ping; Brown, Edward

    2013-03-01

    Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.

  10. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  11. Application of Fourier transform-second-harmonic generation imaging to the rat cervix.

    Science.gov (United States)

    Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C

    2013-07-01

    We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  12. Investigation of structural phase transition in strontium titanate single crystal by methods of generation of coherent and incoherent second optical harmonics

    International Nuclear Information System (INIS)

    Mishina, E.D.; Morozov, A.I.; Sigov, A.S.; Sherstyuk, N.Eh.; Aktsipetrov, O.A.; Lemanov, V.V.; Rasing, Th.

    2002-01-01

    The surface phase transition in the SrTiO 3 crystal is studied through the method of the second optical harmonic generation. The peculiarities in the nonlinear-optical response are identified at the temperature of T* = 145 K, which by 40 K exceeds the T c temperature of the structural phase transition in the crystal volume. The phenomenon of the nonlinear critical opalescence, caused by availability of the point defects, is studied. The second harmonic field and critical opalescence intensity are calculated on the basis of the phenomenological model of the nonlinear-optical processes with application of the Landau phase transition theory [ru

  13. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Science.gov (United States)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-08-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  14. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    OpenAIRE

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  15. First-principles prediction of optical second-order harmonic generation in the endohedral N-C{sub 60} compound

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P.; Strubbe, David A.; Louie, Steven G.; George, Thomas F. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Biochemistry and Department of Physics and Astronomy, Office of the Chancellor and Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2011-08-15

    Non-linear-optical properties in C{sub 60} have attracted enormous attention for over two decades. The endohedral complex N-C{sub 60}, with its remarkable thermal stability and spin-quartet ground state, is a candidate for future room-temperature quantum computing, but there has been no investigation of its non-linear-optical properties. Here, a first-principles calculation shows that N-C{sub 60} is a promising material for nanoscale and ultrafast modulations. Excitation by a pump laser pulse of the nitrogen-atom vibration inside the C{sub 60} cage transiently breaks inversion symmetry and can enable second-harmonic generation (SHG) from a probe pulse. Unlike the SHG observed in C{sub 60} thin films, this harmonic signal is switched on and off periodically every 345 fs. For an fcc crystal of N-C{sub 60}, the second-order susceptibility {chi}{sup (2)} is on the order of 10{sup -8} esu, similar to commercially used nonlinear materials.

  16. Dual aperture dipole magnet with second harmonic component

    Science.gov (United States)

    Praeg, Walter F.

    1985-01-01

    An improved dual aperture dipole electromagnet includes a second-harmonic frequency magnetic guide field winding which surrounds first harmonic frequency magnetic guide field windings associated with each aperture. The second harmonic winding and the first harmonic windings cooperate to produce resultant magnetic waveforms in the apertures which have extended acceleration and shortened reset portions of electromagnet operation.

  17. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields

    Science.gov (United States)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.

    2017-09-01

    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  18. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  19. Noise Analysis of Second-Harmonic Generation in Undoped and MgO-Doped Periodically Poled Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2008-01-01

    Full Text Available Noise characteristics of second-harmonic generation (SHG in periodically poled lithium niobate (PPLN using the quasiphase matching (QPM technique are analyzed experimentally. In the experiment, a0.78 μm second-harmonic (SH wave was generated when a 1.56 μm fundamental wave passed through a PPLN crystal (bulk or waveguide. The time-domain and frequency-domain noise characteristics of the fundamental and SH waves were analyzed. By using the pump-probe method, the noise characteristics of SHG were further analyzed when a visible light (532 nm and an infrared light (1090 nm copropagated with the fundamental light, respectively. The noise characterizations were also investigated at different temperatures. It is found that for the bulk and waveguide PPLN crystals, the SH wave has a higher relative noise level than the corresponding fundamental wave. For the same fundamental wave, the SH wave has lower noise in a bulk crystal than in a waveguide, and in MgO-doped PPLN than in undoped PPLN. The 532 nm irradiation can lead to higher noise in PPLN than the 1090 nm irradiation. In addition, increasing temperature of device can alleviate the problem of noise in conjunction with the photorefractive effect incurred by the irradiation light. This is more significant in undoped PPLN than in MgO-doped one.

  20. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    Science.gov (United States)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  1. High order harmonic generation from plasma mirror

    International Nuclear Information System (INIS)

    Thaury, C.

    2008-09-01

    When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)

  2. Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation

    Science.gov (United States)

    Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.

    2006-01-01

    Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.

  3. Bulk quadrupole and interface dipole contribution for second harmonic generation in Si(111)

    International Nuclear Information System (INIS)

    Reitböck, Cornelia; Stifter, David; Alejo-Molina, Adalberto; Hingerl, Kurt; Hardhienata, Hendradi

    2016-01-01

    The second harmonic generation (SHG) response was measured for arbitrarily oriented linear input polarization on Si(111) surfaces in rotational anisotropy experiments. We show for the first time, using the simplified bond hyperpolarizability model (SBHM), that the observed angular shifts of the nonlinear peaks and symmetry features—related to changes in the input polarization—help to identify the corresponding interface dipolar and bulk quadrupolar SHG sources, yielding excellent agreement with the experiment. Additionally, we evaluate for the s-in/p-out (sp) and p-in/p-out (pp)-polarization SHG intensities the contributions from the individual Si bonds. Furthermore, a relation between the four parameters arising from SBHM and six coefficients of the phenomenological SHG theory needed to reproduce experimental data is established. (paper)

  4. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    Science.gov (United States)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  5. Sum frequency and second harmonic generation from the surface of a liquid microjet

    International Nuclear Information System (INIS)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-01-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena

  6. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie, E-mail: sylvie.roke@epfl.ch [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Jena, Kailash C. [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001 (India); Brown, Matthew A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zurich (Switzerland)

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  7. Sum frequency and second harmonic generation from the surface of a liquid microjet

    Science.gov (United States)

    Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie

    2014-11-01

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  8. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    George, H.

    2010-01-01

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  9. Dynamics of harmonic generation in atoms and molecules

    International Nuclear Information System (INIS)

    Boutu, W.

    2007-09-01

    Harmonics are generated when an ultra-short laser impulse with an energy of 10 14 W/cm 2 is focused on a gas jet. A radiation in the UV X range is then emitted in the direction of the incident laser beam. This radiation has a periodical spectral structure composed of odd harmonics of the fundamental frequency. The first part of this work is dedicated to the optimization of the harmonic radiation. We have studied an alternative and cheaper solution to the flexible mirror, we have used a set of concentric phase plates in order to control the spatial phase of the beam and create an enlarged square profile near the focusing spot. We show how different parameters like phase shift or luminous-flux density or jet position have an impact on the harmonic signal. This second part of this work deals with the generation of high order harmonics in N 2 and CO 2 molecules. The experimental setting is based on the RABITT method (reconstruction of the atto-second burst by interference of 2-photon transitions). We have observed the presence of a spectral minimum linked to a phenomena of quantum interferences between the molecule and the electron wave packet. Moreover, a shift in the spectral phase appears at the place of the interference. (A.C.)

  10. Intense harmonic generation from various ablation media

    International Nuclear Information System (INIS)

    Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.

    2006-01-01

    Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2

  11. Second Harmonic Generation characterization of SOI wafers: Impact of layer thickness and interface electric field

    Science.gov (United States)

    Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.

    2018-05-01

    In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.

  12. Bismuth-, Tin-, and Lead-Containing Metal-Organic Materials: Synthesis, Structure, Photoluminescence, Second Harmonic Generation, and Ferroelectric Properties

    Science.gov (United States)

    Wibowo, Arief Cahyo

    Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination

  13. Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells

    International Nuclear Information System (INIS)

    Zheng-Fei, Zhuang; Han-Ping, Liu; Zhou-Yi, Guo; Xiao-Yuan, Deng; Shuang-Mu, Zhuo; Bi-Ying, Yu

    2010-01-01

    This paper first demonstrates second-harmonic generation (SHG) in the intact cell nucleus, which acts as an optical indicator of DNA malignancy in prostate glandular epithelial cells. Within a scanning region of 2.7 μm×2.7 μm in cell nuclei, SHG signals produced from benign prostatic hyperplasia (BPH) and prostate carcinoma (PC) tissues (mouse model C57BL/6) have been investigated. Statistical analyses (t test) of a total of 405 measurements (204 nuclei from BPH and 201 nuclei from PC) show that SHG signals from BPH and PC have a distinct difference (p < 0.05), suggesting a potential optical method of revealing very early malignancy in prostate glandular epithelial cells based upon induced biochemical and/or biophysical modifications in DNA. (geophysics, astronomy and astrophysics)

  14. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70 degree with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs

  15. Quantitative evaluation of skeletal muscle defects in second harmonic generation images

    Science.gov (United States)

    Liu, Wenhua; Raben, Nina; Ralston, Evelyn

    2013-02-01

    Skeletal muscle pathologies cause irregularities in the normally periodic organization of the myofibrils. Objective grading of muscle morphology is necessary to assess muscle health, compare biopsies, and evaluate treatments and the evolution of disease. To facilitate such quantitation, we have developed a fast, sensitive, automatic imaging analysis software. It detects major and minor morphological changes by combining texture features and Fourier transform (FT) techniques. We apply this tool to second harmonic generation (SHG) images of muscle fibers which visualize the repeating myosin bands. Texture features are then calculated by using a Haralick gray-level cooccurrence matrix in MATLAB. Two scores are retrieved from the texture correlation plot by using FT and curve-fitting methods. The sensitivity of the technique was tested on SHG images of human adult and infant muscle biopsies and of mouse muscle samples. The scores are strongly correlated to muscle fiber condition. We named the software MARS (muscle assessment and rating scores). It is executed automatically and is highly sensitive even to subtle defects. We propose MARS as a powerful and unbiased tool to assess muscle health.

  16. Absorption, fluorescence and second harmonic generation in Cr3+-doped BiB3O6 glasses

    Science.gov (United States)

    Kuznik, W.; Fuks-Janczarek, I.; Wojciechowski, A.; Kityk, I. V.; Kiisk, V.; Majchrowski, A.; Jaroszewicz, L. R.; Brik, M. G.; Nagy, G. U. L.

    2015-06-01

    Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr3+ energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.

  17. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism

    Science.gov (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  18. Effects of external magnetic field on harmonics generated in laser interaction with underdense plasma

    International Nuclear Information System (INIS)

    Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.

    2010-01-01

    Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.

  19. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  20. Theory of enhanced second-harmonic generation by the quadrupole-dipole hybrid exciton

    International Nuclear Information System (INIS)

    Roslyak, Oleksiy; Birman, Joseph L

    2008-01-01

    We report calculated substantial enhancement of the second-harmonic generation (SHG) in cuprous oxide crystals, resonantly hybridized with an appropriate organic material (DCM2:CA:PS 'solid state solvent'). The quadrupole origin of the inorganic part of the quadrupole-dipole hybrid provides inversion symmetry breaking and the organic part contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG, compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide. It is also inversely proportional to the line-width of the hybrid and bulk excitons. The enhancement may be regulated by adjusting the organic blend (mutual concentration of the DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in the case of optical pumping or populating the minimum of the lower branch of the hybrid in the case of electrical pumping)

  1. Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers.

    Science.gov (United States)

    Lin, Kuang-I; Ho, Yen-Hung; Liu, Shu-Bai; Ciou, Jian-Jhih; Huang, Bo-Ting; Chen, Christopher; Chang, Han-Ching; Tu, Chien-Liang; Chen, Chang-Hsiao

    2018-02-14

    Edge morphology and lattice orientation of single-crystal molybdenum disulfide (MoS 2 ) monolayers, a transition metal dichalcogenide (TMD), possessing a triangular shape with different edges grown by chemical vapor deposition are characterized by atomic force microscopy and transmission electron microscopy. Multiphoton laser scanning microscopy is utilized to study one-dimensional atomic edges of MoS 2 monolayers with localized midgap electronic states, which result in greatly enhanced optical second-harmonic generation (SHG). Microscopic S-zigzag edge and S-Mo Klein edge (bare Mo atoms protruding from a S-zigzag edge) terminations and the edge-atom dependent resonance energies can therefore be deduced based on SHG images. Theoretical calculations based on density functional theory clearly explain the lower energy of the S-zigzag edge states compared to the corresponding S-Mo Klein edge states. Characterization of the atomic-scale variation of edge-enhanced SHG is a step forward in this full-optical and high-yield technique of atomic-layer TMDs.

  2. Research of second harmonic generation images based on texture analysis

    Science.gov (United States)

    Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan

    2014-09-01

    Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.

  3. Probing the longitudinal electric field of Bessel beams using second-harmonic generation from nano-objects

    Science.gov (United States)

    Turquet, Léo; Kakko, Joona-Pekko; Karvonen, Lasse; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri; Kauranen, Martti; Bautista, Godofredo

    2017-08-01

    Non-diffractive Bessel beams are receiving significant interest in optical microscopy due to their remarkably large depth of field. For example, studies have shown the superiority of Bessel beams over Gaussian beams for volumetric imaging of three-dimensionally thick or extended samples. However, the vectorial aspects of the focal fields of Bessel beams are generally obscured when traditional methods are used to characterize their three-dimensional point-spread function in space, which contains contributions from all optical field components. Here, we show experimentally the three-dimensional spatial distribution and enhanced depth of field of the longitudinal electric field components of a focused linearly-polarized Bessel beam. This is done through second-harmonic generation from well-defined vertically-aligned gallium-arsenide nanowires, whose second-order response is primarily driven by the longitudinal fields at the beam focus.

  4. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  5. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    Vincenti, H.

    2012-12-01

    When an ultra intense femtosecond laser (I > 10 16 W.cm -2 ) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get

  6. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  7. Frequency dependence of quantum path interference in non-collinear high-order harmonic generation

    International Nuclear Information System (INIS)

    Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi

    2016-01-01

    High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)

  8. Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-05-01

    CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)

  9. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  10. Optimization of high harmonic generation by genetic algorithm

    International Nuclear Information System (INIS)

    Constance Valentin; Olga Boyko; Gilles Rey; Brigitte Mercier; Evaggelos Papalazarou; Laure Antonucci; Philippe Balcou

    2006-01-01

    Complete test of publication follows. High Harmonic Generation (HHG) is very sensitive to pulse shape of the fundamental laser. We have first used an Acousto-Optic Programmable Dispersive Filter (AOPDF) in order to modify the spectral phase and second, a deformable mirror in order to modify the wavefront. We have optimized harmonic signal using a genetic algorithm coupled with both setups. We show the influence of macroscopic parameters for optimization process. Genetic algorithms have been already used to modify pulse shapes of the fundamental laser in order to optimize high harmonic signals, in order to change the emission wavelength of one harmonic or to modify the fundamental wavefront to optimize harmonic signals. For the first time, we present a systematic study of the optimization of harmonic signals using the AOPDF. Signal optimizations by a factor 2 to 10 have been measured depending of parameters of generation. For instance, one of the interesting result concerns the effect of macroscopic parameters as position of the entrance of the cell with respect to the focus of the IR laser when we change the pulse shapes. For instance, the optimization is higher when the cell entrance is above the focus where the intensity gradients are higher. Although the spectral phase of the IR laser is important for the response of one atom, the optimization depends also of phase-matching and especially of the effect intensity gradients. Other systematic studies have been performed as well as measurements of temporal profiles and wavefronts of the IR beam. These studies allow bringing out the behaviour of high harmonic generation with respect to the optimization process.

  11. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    Science.gov (United States)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  12. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing; Yue, Weisheng; Gosztola, David J.; Wiederrecht, Gary P.; Wurtz, Gré gory; Zayats, Anatoly V.

    2016-01-01

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time

  13. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo

    2018-01-04

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  14. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A.; Wee, Andrew T. S.; Qiu, Cheng-Wei; Yang, Joel K.W.

    2018-01-01

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  15. Experimental investigation of the generation of harmonic photons from the interaction of free electrons with intense laser radiation

    International Nuclear Information System (INIS)

    Englert, T.J.

    1983-01-01

    An experimental investigation of the generation of second harmonic photons through the interaction of free electrons with an intense laser beam has been performed. Second harmonic photons with a wavelength of 530nm generated from the interaction of free electrons with 1060nm photons from a neodymium-glass laser are implied by observing Doppler shifted photons with wavelengths of 490nm and 507nm. The observed photon wavelengths results from a Doppler shift of the laser photon wavelengths as viewed in the rest frame of the electrons combined with a Doppler shift of the second harmonic photons emitted from 1600eV and 500eV electrons. Comparison of experimental results with those predicted by cross sections, derived using classical and quantum electrodynamics, shows reasonable agreement with both theories. Although second harmonic photons are created, the dynamics of second harmonic photon generation (accelerated electron motion due to the electromagnetic field or actual two-photon interaction with the electron) cannot be resolved without further experiment

  16. Coherence properties of the harmonic generation in intense laser field

    International Nuclear Information System (INIS)

    Salieres, P.

    1995-01-01

    In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences

  17. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  18. Effect of Thermal Annealing and Second Harmonic Generation on Bulk Damage Performance of Rapid-Growth KDP Type I Doublers at 1064 nm

    International Nuclear Information System (INIS)

    Runkel, M; Maricle, S; Torres, R; Auerbach, J; Floyd, R; Hawley-Fedder, R; Burnham, A K

    2000-01-01

    This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1 ω) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.4X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes. The damage probabilities at the 1 ω NIF redline fluence (scaled to 10 ns via t 0.5 ) for S/1 tests for the unannealed samples ranged from 20 percent in one sample to 90-100 percent for the other 5 samples. Thermal annealing reduced the damage probabilities to less than 35 percent for 3 of the poor-performing crystals, while two pyramidal samples remained in the 80 to 90 percent range. Second harmonic generation in the annealed crystal increased the S/1 damage probabilities on all the crystals and ranged from 40 to 100 percent. In contrast, R/1 testing of an unannealed crystal resulted in a damage probability at the NIF redline fluence of 16%. Annealing increased the damage performance to the extent that all test sites survived NIF redline fluences without damage. Second harmonic generation in the R/1 test yielded a damage probability of less than 2

  19. Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes

    Science.gov (United States)

    Ogata, Yoichi; Anh Tuan, Nguyen; Miyauchi, Yoshihiro; Mizutani, Goro

    2011-08-01

    We have fabricated Pt nanowires with boomerang-like cross-sectional shapes on the MgO(110) faceted template and observed their optical second-harmonic generation (SHG) response. In the TEM images the Pt nanowires on the MgO substrate had macroscopic C2v symmetry, however, their structure had microscopic imperfections. In the SHG response, as a function of the sample rotation angle around the substrate normal, we found contributions from the nonlinear susceptibility elements χ113, χ223, χ311, χ322, and χ333 originating from the broken symmetry in the 3; [110] direction of the MgO substrate. The indices 1 and 2 denote the [001] and [11¯0] directions, respectively. Under C2v symmetry no SHG is expected in the s-in/s-out polarization configuration, however, a finite SHG was observed in this polarization configuration. We suggest that the SHG in the forbidden configuration might originate from the imperfections in the nanowire structure.

  20. High-order harmonic generation in a laser plasma: a review of recent achievements

    International Nuclear Information System (INIS)

    Ganeev, R A

    2007-01-01

    A review of studies of high-order harmonic generation in plasma plumes is presented. The generation of high-order harmonics (up to the 101st order, λ = 7.9 nm) of Ti:sapphire laser radiation during the propagation of short laser pulses through a low-excited, low-ionized plasma produced on the surfaces of different targets is analysed. The observation of considerable resonance-induced enhancement of a single harmonic (λ = 61.2 nm) at the plateau region with 10 -4 conversion efficiency in the case of an In plume can offer some expectations that analogous processes can be realized in other plasma samples in the shorter wavelength range. Recent achievements of single-harmonic enhancement at mid- and end-plateau regions are discussed. Various methods for the optimization of harmonic generation are analysed, such as the application of the second harmonic of driving radiation and the application of prepulses of different durations. The enhancement of harmonic generation efficiency during the propagation of femtosecond pulses through a nanoparticle-containing plasma is discussed. (topical review)

  1. High throughput second harmonic imaging for label-free biological applications

    KAUST Repository

    Macias Romero, Carlos; Didier, Marie E P; Jourdain, Pascal; Marquet, Pierre; Magistretti, Pierre J.; Tarun, Orly B.; Zubkovs, Vitalijs; Radenovic, Aleksandra; Roke, Sylvie

    2014-01-01

    Second harmonic generation (SHG) is inherently sensitive to the absence of spatial centrosymmetry, which can render it intrinsically sensitive to interfacial processes, chemical changes and electrochemical responses. Here, we seek to improve the imaging throughput of SHG microscopy by using a wide-field imaging scheme in combination with a medium-range repetition rate amplified near infrared femtosecond laser source and gated detection. The imaging throughput of this configuration is tested by measuring the optical image contrast for different image acquisition times of BaTiO3 nanoparticles in two different wide-field setups and one commercial point-scanning configuration. We find that the second harmonic imaging throughput is improved by 2-3 orders of magnitude compared to point-scan imaging. Capitalizing on this result, we perform low fluence imaging of (parts of) living mammalian neurons in culture.

  2. Harmonic arbitrary waveform generator

    Science.gov (United States)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.

  3. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    Science.gov (United States)

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  4. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....

  5. An Improved Second-Order Generalized Integrator Based Quadrature Signal Generator

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Qin, Zian

    2016-01-01

    The second-order generalized integrator based quadrature signal generator (SOGI-QSG) is able to produce in-quadrature signals for many applications, such as frequency estimation, grid synchronization, and harmonic extraction. However, the SOGI-QSG is sensitive to input dc and harmonic components...

  6. Surface and interface states of Bi{sub 2}Se{sub 3} thin films investigated by optical second-harmonic generation and terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2016-02-01

    We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.

  7. New results of the high-gain harmonic generation free-electron laser experiment

    International Nuclear Information System (INIS)

    Doyuran, A.; Babzien, M.; Shaftan, T.; Biedron, S.G.; Yu, L.H.; Ben-Zvi, I.; DiMauro, L.F.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Skaritka, J.; Rakowsky, G.; Wang, X.J.; Woodle, M.; Yakimenko, V.; Jagger, J.; Sajaev, V.; Vasserman, I.

    2001-01-01

    We report on the experimental investigation of high-gain harmonic generation carried out at the Accelerator Test Facility at Brookhaven National Laboratory. A seed CO 2 laser at a wavelength of 10.6 μm was used to generate FEL output at a 5.3-μm wavelength. The duration of the output pulse was measured using a second-harmonic intensity autocorrelator, and the coherence length was measured using an interferometer. We also measured the energy distribution of the electron beam after it exited the second undulator, observing behavior consistent with that is expected at saturation. The intensity of the harmonic components of the output at 2.65 and 1.77 μm was determined relative to that of the 5.3-μm fundamental. Finally, using a corrector magnet upstream of the radiator, steering effects on the trajectories of the electron and light beams were studied

  8. Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.

    Science.gov (United States)

    Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto

    2017-02-08

    The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.

  9. Optical Second Harmonic Spectroscopy of Boron-Reconstructed Si(001)

    International Nuclear Information System (INIS)

    Lim, D.; Downer, M. C.; Ekerdt, J. G.; Arzate, N.; Mendoza, Bernardo S.; Gavrilenko, V. I.; Wu, R. Q.

    2000-01-01

    Optical second harmonic generation (SHG) spectroscopy is used to probe Si(001) following thermal decomposition of diborane at the surface. Incorporation of boron (B) at second layer substitutional sites at H-free Si(001) intensifies and redshifts the E 1 SHG spectral peak, while subsequent H termination further intensifies and blueshifts E 1 , in sharp contrast to the effect of bulk B doping or nonsubstitutional B. Ab initio pseudopotential and semiempirical tight binding calculations independently reproduce these unique trends, and attribute them to the surface electric field associated with charge transfer to electrically active B acceptors, and rehybridization of atomic bonds. (c) 2000 The American Physical Society

  10. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    International Nuclear Information System (INIS)

    Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki

    2014-01-01

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°

  11. Optical second harmonic generation phase measurement at interfaces of some organic layers with indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ngah Demon, Siti Zulaikha [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Department of Physics, Centre of Defence Foundation Studies, National Defence University of Malaysia, 53 000 Kuala Lumpur (Malaysia); Miyauchi, Yoshihiro [Department of Applied Physics, School of Applied Sciences, National Defense Academy of Japan, 239-8686 Kanagawa (Japan); Mizutani, Goro, E-mail: mizutani@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan); Matsushima, Toshinori; Murata, Hideyuki [School of Materials Science, Japan Advanced Institute of Science and Technology, 923-1292 Ishikawa (Japan)

    2014-08-30

    Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ{sub interface} with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.

  12. Understanding fifth-harmonic generation in CLBO

    Science.gov (United States)

    Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.

    2018-02-01

    We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.

  13. Control and metrology of high harmonic generation on plasma mirrors

    International Nuclear Information System (INIS)

    Monchoce, Sylvain

    2014-01-01

    When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh

  14. Higher-order quasi-phase matched second harmonic generation in periodically poled MgO-doped stoichiometric LiTaO3

    International Nuclear Information System (INIS)

    Yu, Nan Ei; Kurimura, Sunao; Kitamura, Kenji

    2005-01-01

    A periodically poled device was investigated by using fourth-order quasi-phase-matched (QPM) second harmonic generation (SHG) in MgO-doped stoichiometric lithium tantalate (LiTaO 3 ). The effective nonlinear coefficient was found be 2.4 pm/V by using fourth-order QPM SHG at the fundamental wavelength of 1064 nm. For first-order QPM SHG, the effective value of d 33 could be 9.2 pm/V. Using the sensitive higher-order QPM SHG method, we investigated the relationship between the domain duty ratio and the conversion efficiency.

  15. Efficient second harmonics generation of a laser-diode-pumped Nd:YAG laser and its applications. Laser diode reiki Nd:YAG laser no kokoritsu daini kochoha hassei to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Oka, M. (Sony Corp., Tokyo (Japan))

    1991-08-10

    Stabilization of the second harmonics in a laser-diode-pumped Nd:YAG laser and its application are described. The laser is a quantum noise limiting laser, in which a mode competing noise is generated from an interaction between the laser medium Nd:YAG and the type II nonlinear optical crystal KTiOPO{sub 4} when generating a second harmonics in the resonator. However, the quantum noise limiting second harmonics was obtained by means of inserting (1/4) wave length plate in the resonator to release the bond between two intersecting inherent polarization modes. This stabilized green laser is of a single lateral mode is nearly free of aberration. Therefore, an optical disc prototype having three times as much of the currently used density was made using an objective lens having high number of openings to collect lights, which was verified capable of regeneration at a high signal to noise ratio. In addition, higher output is possible by means of parallelizing the excitation, and high output is realized from edge excitation at a fiber bundle. 18 refs., 3 figs.

  16. Development of blue lasers, from second harmonic generation using a Nd:YAG laser emitting at 946 nm

    International Nuclear Information System (INIS)

    Nogueira, Gustavo Bernardes

    2010-01-01

    Blue lasers have attracted much attention for applications such as blue-ray, displays and as pumped source for the Ti:sapphire laser. A Nd:YAG crystal with diffusion bonded end-caps was used together with a pump wavelength of 802,3 nm, detuned from the absorption peak at 808 nm in order to minimize the thermal lens effect by providing for a better temperature distribution inside the crystal. Using different input mirror radii, the best relation between pump waist and laser was achieved in a linear cavity and resulted in 6.75W cw (continuous wave) laser power at 946 nm and slope efficiency of 48%. In a second step, a second harmonic generation crystal for blue emission at 473 nm was inserted into different types of resonators, and the blue output power at 473 nm was measured as a function of absorbed pump power. (author)

  17. Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces

    International Nuclear Information System (INIS)

    Stoker, D. S.; Keto, J. W.; Baek, J.; Wang, W.; Becker, M. F.; Kovar, D.

    2006-01-01

    We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG (z-scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN-sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χ xxxx (3) (3ω;ω,ω,ω)=1.52±0.25x10 -13 esu. The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects

  18. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    Science.gov (United States)

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  19. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Science.gov (United States)

    Akilbekova, Dana; Bratlie, Kaitlin M

    2015-01-01

    The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG) microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  20. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  1. Spatial properties of odd and even low order harmonics generated in gas.

    Science.gov (United States)

    Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph

    2015-01-14

    High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.

  2. Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma

    International Nuclear Information System (INIS)

    Kaur, Sukhdeep; Sharma, A. K.; Yadav, Sushila

    2010-01-01

    Resonant third harmonic generation by a Gaussian laser beam in a rippled density plasma is studied. The laser ponderomotive force induces second harmonic longitudinal velocity on electrons that couples with the static density ripple to produce a density perturbation at 2ω,2k+q, where ω and k are the frequency and wave number of the laser and q is the ripple wave number of the laser. This density perturbation beats with electron oscillatory velocity at ω,k-vector to produce a nonlinear current driving the third harmonic generation. In the regime of quadratic nonlinearity, the self-focusing of the laser enhances the third harmonic power. However, at higher intensity, plasma density is significantly reduced on the axis, detuning the third harmonic resonance and weakening the harmonic yield. Self-focusing causes enhancement in the efficiency of harmonic generation.

  3. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  4. Current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistors by electric field-induced optical second-harmonic generation measurement

    International Nuclear Information System (INIS)

    Katsuno, Takashi; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu; Manaka, Takaaki; Iwamoto, Mitsumasa

    2014-01-01

    Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.

  5. Chiral crystal of a C2v-symmetric 1,3-diazaaulene derivative showing efficient optical second harmonic generation

    KAUST Repository

    Ma, Xiaohua

    2011-03-01

    Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 ± 5) à - 10-30 esu] and DPAPNA [(263 ± 20) à - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.

  6. A large enhancement of photoinduced second harmonic generation in CdI2--Cu layered nanocrystals.

    Science.gov (United States)

    Miah, M Idrish

    2009-02-12

    Photoinduced second harmonic generation (PISHG) in undoped as well as in various Cu-doped (0.05-1.2% Cu) CdI2 nanocrystals was measured at liquid nitrogen temperature (LNT). It was found that the PISHG increases with increasing Cu doping up to approximately 0.6% and then decreases almost to that for the undoped CdI2 for doping higher than approximately 1%. The values of the second-order susceptibility ranged from 0.50 to 0.67 pm V(-1) for the Cu-doped nanocrystals with a thickness of 0.5 nm. The Cu-doping dependence shown in a parabolic fashion suggests a crucial role of the Cu agglomerates in the observed effects. The PISHG in crystals with various nanosizes was also measured at LNT. The size dependence demonstrated the quantum-confined effect with a maximum PISHG for 0.5 nm and with a clear increase in the PISHG with decreasing thickness of the nanocrystal. The Raman scattering spectra at different pumping powers were taken for thin nanocrystals, and the phonon modes originating from interlayer phonons were observed in the spectra. The results were discussed within a model of photoinduced electron-phonon anharmonicity.

  7. Simulation of Second Harmonic Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2010-01-01

    A non-linear ultrasound imaging simulation software should be capable of simulating the non-linear fields for any kind of transducer, focusing, apodization, and attenuation. At present, a major issue is the overlong simulation time of the non-linear software. An Angular Spectrum Approach (ASA......) using a quasi-linear approximation for solving the Westervelt equation can simulate the second harmonic pressure at any distance. Therefore, it shortens the execution time compared with the operator splitting method. The purpose of this paper is to implement the monochromatic solution for the second...... harmonic component based on ASA and Field II, and to compare with results from the simulation program Abersim. A linear array transducer with a center frequency of 4 MHz and 64 active elements is used as the transmitting source. The initial plane is 5 mm away from the transducer surface...

  8. Strong nonlinear harmonic generation in a PZT/Aluminum resonator

    Energy Technology Data Exchange (ETDEWEB)

    Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)

    2009-11-01

    In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.

  9. High-order harmonics generation from overdense plasmas

    International Nuclear Information System (INIS)

    Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.

    2006-01-01

    Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon

  10. Polarization-sensitive second harmonic generation microscopy of α-quartz like GeO2 (α-GeO2) polycrystal

    International Nuclear Information System (INIS)

    Kawamura, Ibuki; Imakita, Kenji; Kitao, Akihiro; Fujii, Minoru

    2014-01-01

    The usefulness of polarized second harmonic generation (SHG) microscopy to determine crystallographic orientations of domains in polycrystalline films was demonstrated. Orientation of α-quartz like GeO 2 (α-GeO 2 ) domains in polycrystalline films were investigated by using polarized SHG and Raman microscopy. It was found that the SHG intensity of a α-GeO 2 polycrystalline film depends strongly on measurement points and excitation and detection polarizations, while the Raman intensity was almost uniform in the whole mapping area. Analyses of the SHG mappings in different polarization conditions allowed us to determine not only the size and shape of crystalline domains, but also the crystallographic orientations. (paper)

  11. Enhanced Cerenkov second-harmonic generation in a planar nonlinear waveguide that reproduces a one-dimensional photonic bandgap structure

    International Nuclear Information System (INIS)

    Pezzetta, D.; Sibilia, C.; Bertolotti, M.; Ramponi, R.; Osellame, R.; Marangoni, M.; Haus, J. W.; Scalora, M.; Bloemer, M. J.; Bowden, C. M.

    2002-01-01

    Second-harmonic generation in the Cerenkov configuration is investigated under conditions for which the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The fundamental mode of the guide at the fundamental frequency is tuned at the photonic band-edge resonance, thus producing great confinement and enhancement of the electromagnetic field inside the structure. The conversion efficiency achieved in both the forward and the backward directions is at least 1 order of magnitude greater than that of a conventional Cerenkov emission in a waveguide of the same length. An analysis of the tolerances of the grating period on the conversion efficiency is presented

  12. Limitations and improvements for harmonic generation measurements

    International Nuclear Information System (INIS)

    Best, Steven; Croxford, Anthony; Neild, Simon

    2014-01-01

    A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, β, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized

  13. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  14. First, Second Quantization and Q-Deformed Harmonic Oscillator

    International Nuclear Information System (INIS)

    Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim

    2015-01-01

    Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)

  15. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  16. Second-harmonic generation from sub-monolayer molecular adsorbates using a c-w diode laser: Maui surface experiment

    International Nuclear Information System (INIS)

    Boyd, G.T.; Shen, Y.R.; Hansch, T.W.

    1985-06-01

    Optical second-harmonic generation (SHG) can be an extremely sensitive tool for surface studies. The technique is capable of probing adsorbed molecules at various interfaces. It is based on the idea that SHG is forbidden in a medium with inversion symmetry, but necessarily allowed at a surface. To see such a surface nonlinear optical effect, high laser intensity is often needed. Thus, in the experiments reported so far, pulsed lasers were used exclusively. From the consideration for practical applications, however, the technique would look much more attractive if the bulky pulsed laser can be replaced by a simple inexpensive c-w diode laser. This paper describes the first demonstration of surface SHG with a c-w laser. 3 refs., 1 fig

  17. Development of a second-harmonic buncher for the RILAC

    International Nuclear Information System (INIS)

    Kohara, S.; Goto, A.; Miyazawa, Y.; Chiba, T.; Hemmi, M.; Chiba, Y.; Ikezawa, E.; Kase, M.; Yano, Y.

    1994-01-01

    A second-harmonic buncher has been constructed and installed on the injection beam line of the RIKEN variable-frequency heavy-ion linac (RILAC) to increase beam intensity. It has a good impedance matching to power feed line without adjusting device in the required wide frequency range. Beam intensity was increased by 50% with both the fundamental-frequency and the second-harmonic bunchers. Its structure, rf characteristics and beam test are described. (author)

  18. Human sperm steer with second harmonics of the flagellar beat.

    Science.gov (United States)

    Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens

    2017-11-10

    Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.

  19. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  20. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    Science.gov (United States)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  1. Photoinduced second harmonic generation of LaFe4Sb12near spin fluctuated critical points

    International Nuclear Information System (INIS)

    Nouneh, K.; Viennois, R.; Kityk, I.V.; Terki, F.; Charar, S.; Benet, S.; Paschen, S.

    2004-01-01

    The temperature dependence of the resistivity, the Seebeck coefficient and photoinduced second harmonic generation (PISHG) are studied near the quantum critical point in the skutterudite compound LaFe 4 Sb 12 , possessing increased spin fluctuations. We observed a large maximum of the PISHG at a temperature of about 15 K. The PISHG signal increases substantially below 35 K. We found a correlation between the temperature dependences of PISHG, resistivity and Seebeck coefficient. We proposed a phenomenological explanation for the occurrence of the PISHG signal in LaFe 4 Sb 12 implying strong spin fluctuations exist in this system, which may present some interest for the study of other spin fluctuation systems. Physical insight into the phenomenon observed is grounded in the participation of anharmonic electron-phonon and electron-paramagnon interactions stimulated by inducing light in the interactions with the photoexcited dipole moments. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    Science.gov (United States)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P 0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  3. Quantitative Characterization of Collagen in the Fibrotic Capsule Surrounding Implanted Polymeric Microparticles through Second Harmonic Generation Imaging.

    Directory of Open Access Journals (Sweden)

    Dana Akilbekova

    Full Text Available The collagenous capsule formed around an implant will ultimately determine the nature of its in vivo fate. To provide a better understanding of how surface modifications can alter the collagen orientation and composition in the fibrotic capsule, we used second harmonic generation (SHG microscopy to evaluate collagen organization and structure generated in mice subcutaneously injected with chemically functionalized polystyrene particles. SHG is sensitive to the orientation of a molecule, making it a powerful tool for measuring the alignment of collagen fibers. Additionally, SHG arises from the second order susceptibility of the interrogated molecule in response to the electric field. Variation in these tensor components distinguishes different molecular sources of SHG, providing collagen type specificity. Here, we demonstrated the ability of SHG to differentiate collagen type I and type III quantitatively and used this method to examine fibrous capsules of implanted polystyrene particles. Data presented in this work shows a wide range of collagen fiber orientations and collagen compositions in response to surface functionalized polystyrene particles. Dimethylamino functionalized particles were able to form a thin collagenous matrix resembling healthy skin. These findings have the potential to improve the fundamental understanding of how material properties influence collagen organization and composition quantitatively.

  4. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kaishang, E-mail: zhoukaishang@sinap.ac.cn; Feng, Chao, E-mail: fengchao@sinap.ac.cn; Wang, Dong, E-mail: wangdong@sinap.ac.cn

    2016-10-21

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the “water window” and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  5. Scanning second-harmonic optical microscopy of self-assembled InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S. I.; Pedersen, K.

    2001-01-01

    Microscopy provides a suitable technique for local probing of small ensembles of (or even individual) QD's, and when combined with the detection of second-harmonic (SH) generation the technique becomes suitable to reveal tiny changes of symmetry originating either in the material structures or in...

  6. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities...... and limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  7. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  8. Variable speed DFIG wind energy system for power generation and harmonic current mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)

    2009-06-15

    This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)

  9. Generation of more than 300 mW diffraction-limited light at 405 nm by second-harmonic generation of a tapered diode laser with external cavity feedback

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Holm, J.; Sumpf, B.

    2007-01-01

    We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from...... fundamental laser power to second harmonic power is 35 %, while it is 64 % from coupled fundamental power to extracted blue light. Thermal effects and gray tracking set an upper limit on the amount of generated blue light....

  10. Comparison of fundamental, second harmonic, and superharmonic imaging: a simulation study.

    Science.gov (United States)

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Verweij, Martin D; Demi, Libertario; Voormolen, Marco M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    In medical ultrasound, fundamental imaging (FI) uses the reflected echoes from the same spectral band as that of the emitted pulse. The transmission frequency determines the trade-off between penetration depth and spatial resolution. Tissue harmonic imaging (THI) employs the second harmonic of the emitted frequency band to construct images. Recently, superharmonic imaging (SHI) has been introduced, which uses the third to the fifth (super) harmonics. The harmonic level is determined by two competing phenomena: nonlinear propagation and frequency dependent attenuation. Thus, the transmission frequency yielding the optimal trade-off between the spatial resolution and the penetration depth differs for THI and SHI. This paper quantitatively compares the concepts of fundamental, second harmonic, and superharmonic echocardiography at their optimal transmission frequencies. Forward propagation is modeled using a 3D-KZK implementation and the iterative nonlinear contrast source (INCS) method. Backpropagation is assumed to be linear. Results show that the fundamental lateral beamwidth is the narrowest at focus, while the superharmonic one is narrower outside the focus. The lateral superharmonic roll-off exceeds the fundamental and second harmonic roll-off. Also, the axial resolution of SHI exceeds that of FI and THI. The far-field pulse-echo superharmonic pressure is lower than that of the fundamental and second harmonic. SHI appears suited for echocardiography and is expected to improve its image quality at the cost of a slight reduction in depth-of-field.

  11. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.

    Science.gov (United States)

    Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S

    2015-09-01

    To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.

  12. Second harmonic generation microscopy differentiates collagen type I and type III in COPD

    Science.gov (United States)

    Suzuki, Masaru; Kayra, Damian; Elliott, W. Mark; Hogg, James C.; Abraham, Thomas

    2012-03-01

    The structural remodeling of extracellular matrix proteins in peripheral lung region is an important feature in chronic obstructive pulmonary disease (COPD). Multiphoton microscopy is capable of inducing specific second harmonic generation (SHG) signal from non-centrosymmetric structural proteins such as fibrillar collagens. In this study, SHG microscopy was used to examine structural remodeling of the fibrillar collagens in human lungs undergoing emphysematous destruction (n=2). The SHG signals originating from these diseased lung thin sections from base to apex (n=16) were captured simultaneously in both forward and backward directions. We found that the SHG images detected in the forward direction showed well-developed and well-structured thick collagen fibers while the SHG images detected in the backward direction showed striking different morphological features which included the diffused pattern of forward detected structures plus other forms of collagen structures. Comparison of these images with the wellestablished immunohistochemical staining indicated that the structures detected in the forward direction are primarily the thick collagen type I fibers and the structures identified in the backward direction are diffusive structures of forward detected collagen type I plus collagen type III. In conclusion, we here demonstrate the feasibility of SHG microscopy in differentiating fibrillar collagen subtypes and understanding their remodeling in diseased lung tissues.

  13. High-harmonic generation in a dense medium

    International Nuclear Information System (INIS)

    Strelkov, V.V.; Platonenko, V.T.; Becker, A.

    2005-01-01

    The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics

  14. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    Science.gov (United States)

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  15. Monitoring the interfacial electric field in pure and doped SrTiO3 surfaces by means of phase-resolved optical second harmonic generation

    Science.gov (United States)

    Rubano, Andrea; Mou, Sen; Paparo, Domenico

    2018-05-01

    Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.

  16. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Leißner, Till [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark); Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek, E-mail: fiutowski@mci.sdu.dk [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Brewer, Jonathan R. [Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark)

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  17. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  18. In vivo Quantification of the Structural Changes of Collagens in a Melanoma Microenvironment with Second and Third Harmonic Generation Microscopy

    Science.gov (United States)

    Wu, Pei-Chun; Hsieh, Tsung-Yuan; Tsai, Zen-Uong; Liu, Tzu-Ming

    2015-03-01

    Using in vivo second harmonic generation (SHG) and third harmonic generation (THG) microscopies, we tracked the course of collagen remodeling over time in the same melanoma microenvironment within an individual mouse. The corresponding structural and morphological changes were quantitatively analyzed without labeling using an orientation index (OI), the gray level co-occurrence matrix (GLCM) method, and the intensity ratio of THG to SHG (RTHG/SHG). In the early stage of melanoma development, we found that collagen fibers adjacent to a melanoma have increased OI values and SHG intensities. In the late stages, these collagen networks have more directionality and less homogeneity. The corresponding GLCM traces showed oscillation features and the sum of squared fluctuation VarGLCM increased with the tumor sizes. In addition, the THG intensities of the extracellular matrices increased, indicating an enhanced optical inhomogeneity. Multiplying OI, VarGLCM, and RTHG/SHG together, the combinational collagen remodeling (CR) index at 4 weeks post melanoma implantation showed a 400-times higher value than normal ones. These results validate that our quantitative indices of SHG and THG microscopies are sensitive enough to diagnose the collagen remodeling in vivo. We believe these indices have the potential to help the diagnosis of skin cancers in clinical practice.

  19. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  20. Progress in KNbO/sub 3/ crystal growth and its use in second harmonic generation with a cw-Ga/sub 1-x/Al/sub x/As laser

    International Nuclear Information System (INIS)

    Looser, H.; Gunter, P.; Wu, X.; Arend, H.

    1987-01-01

    KNbO/sub 3/ is especially well suited for second harmonic generation of dye and Ga/sub 1-x/Al/sub x/As lasers with wavelength λ ≅ 860 nm. Using its high nonlinear optical coefficient, d/sub 32/ = 20.3 pm/V, noncritical type l phase matching is possible for fundamental wavelengths of 840-990 nm with crystal temperatures between -40 and 210 0 C. With a pulsed laser diode the authors previously reported 0.35-mW second harmonic peak power from 0.8-W fundamental frequency distributed among eight modes. In this paper, this work is extended to high-power monomode cw laser diodes. Other device parameters such as temperature stability and influence of the crystal homogeneity on the efficiency are discussed

  1. Coherent harmonics generated by a super-short electron pulse

    International Nuclear Information System (INIS)

    Ding Wu

    1996-01-01

    A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics

  2. Self excitation of second harmonic ion-acoustic waves in a weakly magnetized plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, I.; Yagishita, T.; Nakamura, Y.

    1994-01-01

    Electrostatic ion-acoustic waves in a weakly magnetized plasma are investigated experimentally. It is observed that finite amplitudes ion acoustic waves excite a new second harmonic wave train behind the initial ion waves excite a new second harmonic wave train behind the initial ion waves in a parallel magnetic field. The excitation of higher harmonic waves can be explained by non-linearity of finite amplitude ion-acoustic waves. The newly excited second harmonics waves satisfy a dispersion relation of the ion-acoustic waves. (author). 3 refs, 5 figs

  3. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  4. Calculation of optical second-harmonic susceptibilities and optical activity for crystals

    International Nuclear Information System (INIS)

    Levine, Z.H.

    1994-01-01

    A new generation of nearly first-principles calculations predicts both the linear and second-harmonic susceptibilities for a variety of insulating crystals, including GaAs, GaP, AlAs, AlP, Se, α-quartz, and c-urea. The results are typically in agreement with experimental measurements. The calculations have been extended to optical activity, with somewhat less success to date. The theory, based on a simple self-energy correction to the local density approximation, and results are reviewed herein

  5. Microwave second-harmonic response of ceramic MgB2 samples

    International Nuclear Information System (INIS)

    Agliolo Gallitto, A.; Bonsignore, G.; Li Vigni, M.

    2005-01-01

    Nonlinear microwave response of different ceramic MgB 2 samples has been investigated by the technique of second-harmonic emission. The second-harmonic signal has been investigated as a function of temperature, DC magnetic field and input microwave power. The attention has mainly been devoted to the response at low magnetic fields, where nonlinear processes arising from motion of Abrikosov fluxons are ineffective. The results show that different mechanisms are responsible for the nonlinear response in the different ranges of temperature. At low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to T c , a further contribution to the harmonic emission is present; it can be ascribed to modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic signal

  6. Experimental measurements of competition between fundamental and second harmonic emission in a quasi-optical gyrotron

    International Nuclear Information System (INIS)

    Alberti, S.; Pedrozzi, M.; Tran, M.Q.; Hogge, J.P.; Tran, T.M.; Muggli, P.; Joedicke, B.; Mathews, H.G.

    1990-04-01

    A quasi-optical gyrotron (QOG) designed for operation at the fundamental (Ω ce ≅100 GHz) exhibits simultaneous emission at Ω ce and 2Ω ce (second harmonic). For a beam current of 4 A, 20% of the total RF power is emitted at the second harmonic. The experimental measurements show that the excitation of the second harmonic is only possible when the fundamental is present. The frequency of the second harmonic is locked by the frequency of the fundamental. Experimental evidence shows that when the second harmonic is not excited, total efficiency is enhanced. (author) 6 refs., 5 figs., 1 tab

  7. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  8. Theoretical description of high-order harmonic generation in solids

    International Nuclear Information System (INIS)

    Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K

    2013-01-01

    We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)

  9. Second harmonic generation spectroscopy in the Reststrahl band of SiC using an infrared free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Paarmann, Alexander, E-mail: alexander.paarmann@fhi-berlin.mpg.de; Razdolski, Ilya; Melnikov, Alexey; Gewinner, Sandy; Schöllkopf, Wieland; Wolf, Martin [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2015-08-24

    The Reststrahl spectral region of silicon carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigation of the Reststrahl region of SiC, employing an infrared free-electron laser to perform second harmonic generation (SHG) spectroscopy. We observe two distinct resonance features in the SHG spectra, one attributed to resonant enhancement of the nonlinear susceptibility χ{sup (2)} and the other due to a resonance in the Fresnel transmission. Our work clearly demonstrates high sensitivity of mid-infrared SHG to phonon-driven phenomena and opens a route to studying nonlinear effects in nanophotonic structures based on SPhPs.

  10. Laser-induced nonlinear crystalline waveguide on glass fiber format and diode-pumped second harmonic generation

    Science.gov (United States)

    Shi, Jindan; Feng, Xian

    2018-03-01

    We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.

  11. Detecting order and lateral pressure at biomimetic interfaces using a mechanosensitive second-harmonic-generation probe.

    Science.gov (United States)

    Licari, Giuseppe; Beckwith, Joseph S; Soleimanpour, Saeideh; Matile, Stefan; Vauthey, Eric

    2018-04-04

    A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.

  12. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  13. Characterization of quasi-phase-matching gratings in quadratic media through double-pass second-harmonic power measurements

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Baldi, Pascal

    2004-01-01

    A new scheme for nondestructive characterization of quasi-phase-matching grating structures and temperature gradients through inverse Fourier theory using second-harmonic-generation experiments is proposed. By inserting a mirror to reflect the signals back through the sample, we show how...

  14. Linear conversion theory on the second harmonic emission from a plasma filament

    International Nuclear Information System (INIS)

    Tan Weihan; Gu Min

    1989-01-01

    The linear conversion theory of laser produced plasma filaments is studied. By calculations for the energy flux of the second harmonic emission on the basis of the planar wave-plasma interaction model, it has been found that there exists no 2ω 0 harmonic emission in the direction perpendicular to the incident laser, in contradiction with the experiments. A linear conversion theory is proposed on the second harmonic emission from a plasma filament and discovered the intense 2ω 0 harmonic emission in the direction perpendicular to the incident laser, which is in agreement with the experiments. (author)

  15. Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T

    2014-05-20

    The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Harmonic operation of high gain harmonic generation free electron laser

    International Nuclear Information System (INIS)

    Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin

    2008-01-01

    In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)

  17. Direct detection of second harmonic and its use in alanine/EPR dosimetry

    International Nuclear Information System (INIS)

    Chen, F.; Guzman, C.S.; Graeff, C.F.O.; Baffa, O.

    2001-01-01

    In this work, the possible use of the second harmonic EPR signal from irradiated alanine for low radiation dose (∼1 Gy) was explored, aiming applications to HDR brachytherapy and teletherapy. The second harmonic signal was directly detected after overmodulation. A batch of DL-alanine/paraffin small cylindrical pellets was made. A VARIAN E-4 X-Band EPR spectrometer with optimized operation parameters like microwave power and modulation amplitude to obtain a signal with the highest amplitude was used. The modulation frequency and modulation amplitude were 100 kHz and 1.25 mT (to overmodulate the signal) respectively. The second harmonic signal was directly detected at twice the modulation frequency. One group of dosimeters was irradiated with a 192 Ir brachytherapy source and the other in a 10 MeV X-rays linear accelerator, both group at a dose range: 0.5 - 15 Gy. The second harmonic signal showed better resolution than the first harmonic one making possible a more easy localization of the signal. Moreover, for both types of radiation, the dose-response curve showed a good linear behavior for the dose range indicated. (author)

  18. Recent progress of below-threshold harmonic generation

    International Nuclear Information System (INIS)

    Xiong, Wei-Hao; Peng, Liang-You; Gong, Qihuang

    2017-01-01

    The harmonics generated from the interaction of a strong laser field with atoms and molecules in the gas phase can be applied as coherent light sources and detecting techniques for structures and dynamics in matter. In the last three decades, the most prevailing experimental and theoretical studies have been focused on the high-order harmonic generation due to its applications in attosecond science. However, low-order harmonics near the ionization threshold of the target have been less explored, partially because the spectrum in this region is more complicated from both the theoretical and experimental point of view. After several pioneering investigations in the mid 1990s, near threshold harmonics (NTHs) begun to draw a great attention again because of the development of high repetition rate cavity enhanced harmonics about 10 years ago. Very recently, NTHs have attracted a lot of experimental and theoretical studies due to their potential applications as light sources and complicated mechanisms. In this topical review, we will summarize the progress of NTHs, including the early and recent experimental measurements in atoms and molecules, as well as the relevant theoretical explorations of these harmonics. (topical review)

  19. Ultrafast Optical Modulation of Second- and Third-Harmonic Generation from Cut-Disk-Based Metasurfaces

    KAUST Repository

    Sartorello, Giovanni

    2016-06-06

    We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump-probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response. © 2016 American Chemical Society.

  20. The IPNS second harmonic RF upgrade

    International Nuclear Information System (INIS)

    Middendorf, M.E.; Brumwell, F.R.; Dooling, J.C.; Horan, D.; Kustom, R.L.; Lien, M.K.; McMichael, G.E.; Moser, M.R.; Nassiri, A.; Wang, S.

    2008-01-01

    The intense pulsed neutron source (IPNS) rapid cycling synchrotron (RCS) is used to accelerate protons from 50 MeV to 450 MeV, at a repetition rate of 30 Hz. The original ring design included two identical rf systems, each consisting of an accelerating cavity, cavity bias supply, power amplifiers and low-level analog electronics. The original cavities are located 180 degrees apart in the ring and provide a total peak accelerating voltage of ∼21 kV over the 2.21-MHz to 5.14-MHz revolution frequency sweep. A third rf system has been constructed and installed in the RCS. The third rf system is capable of operating at the fundamental revolution frequency for the entire acceleration cycle, providing an additional peak accelerating voltage of up to ∼11 kV, or at the second harmonic of the revolution frequency for the first ∼4 ms of the acceleration cycle, providing an additional peak voltage of up to ∼11 kV for bunch shape control. We describe here the hardware implementation and operation to date of the third rf cavity in the second harmonic mode.

  1. A prototype imaging second harmonic interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.; Bretz, N.L.

    1997-01-01

    We have built a prototype imaging second harmonic interferometer, which is intended to test critical elements of a design for a tangential array interferometer on C-Mod 6 . The prototype uses a pulsed, 35 mJ, 10 Hz multimode, Nd:YAG laser, LiB 3 O 5 doublers, a fan beam created by a cylindrical lens, four retroreflector elements, and a CCD camera as a detector. The prototype also uses a polarization scheme in which the interference information is eventually carried by two second harmonic beams with crossed polarization. These are vector summed and differenced, and separated, by a Wollaston prism, to give two spots on the CCD. There is a pair of these spots for each retroreflector used. The phase information is directly available as the ratio of the difference to sum the intensities of the two spots. We have tested a single channel configuration of this prototype, varying the phase by changing the pressure in an air cell, and we have obtained a 5:1 light to dark ratio, and a clear sinusoidal variation of the ratio as a function of pressure change. copyright 1997 American Institute of Physics

  2. Bunching phase and constraints on echo enabled harmonic generation

    Science.gov (United States)

    Hemsing, E.

    2018-05-01

    A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.

  3. Texture analysis applied to second harmonic generation image data for disease classification and development of a multi-view second harmonic generation imaging platform

    Science.gov (United States)

    Wen, Lianggong

    Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites

  4. Static third-harmonic lines in widely variable fiber continuum generation

    Science.gov (United States)

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.

    2014-01-01

    An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.

  5. Second Harmonic Generation Reveals Subtle Fibrosis Differences in Adult and Pediatric Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Liu, Feng; Zhao, Jing-Min; Rao, Hui-Ying; Yu, Wei-Miao; Zhang, Wei; Theise, Neil D; Wee, Aileen; Wei, Lai

    2017-11-20

    Investigate subtle fibrosis similarities and differences in adult and pediatric nonalcoholic fatty liver disease (NAFLD) using second harmonic generation (SHG). SHG/two-photon excitation fluorescence imaging quantified 100 collagen parameters and determined qFibrosis values by using the nonalcoholic steatohepatitis (NASH) Clinical Research Network (CRN) scoring system in 62 adult and 36 pediatric NAFLD liver specimens. Six distinct parameters identified differences among the NASH CRN stages with high accuracy (area under the curve, 0835-0.982 vs 0.885-0.981, adult and pediatric). All portal region parameters showed similar changes across early stages 0, 1C, and 2, in both groups. Parameter values decreased in adults with progression from stage 1A/B to 2 in the central vein region. In children, aggregated collagen parameters decreased, but nearly all distributed collagen parameters increased from stage 1A/B to 2. SHG analysis accurately reproduces NASH CRN staging in NAFLD, as well as reveals differences and similarities between adult and pediatric collagen deposition not captured by currently available quantitative methods. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    International Nuclear Information System (INIS)

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  7. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  8. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images

    Science.gov (United States)

    Paesen, Rik; Smolders, Sophie; Vega, José Manolo de Hoyos; Eijnde, Bert O.; Hansen, Dominique; Ameloot, Marcel

    2016-02-01

    Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.

  9. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    Science.gov (United States)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  10. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  11. Coherent bremsstrahlung generation of harmonics in a laser-produced plasma

    International Nuclear Information System (INIS)

    Silin, Viktor P

    1999-01-01

    Foundations of a theory of generation of the harmonics of a laser pump in a fully ionised plasma are proposed. This theory makes it possible to describe the relationships governing harmonic generation in an analytical form. For an elliptically polarised pump field with a low degree of circular polarisation A, the range of plasma parameters is established in which the number of harmonics is found to be of the order of A -1 . Anomalous polarisation properties of the harmonics are predicted. In this case, their polarisation is seen to be nearly perpendicular to the pump polarisation and the degree of circular polarisation increases with the harmonic order number. The harmonic-order-dependent intensity of the pump field which results in circular polarisation of a harmonic is determined making allowance for thermal plasma motion. The conditions under which increasing the low degree of circular pump polarisation increases the efficiency of harmonic generation are established. The nonlinear dependence of the pump polarisation on its intensity under the conditions of collisional absorption in a plasma are identified and an instability of the circular polarisation is revealed. For a plane-polarised pump, it is shown how the maximum power of a harmonic and the pump power corresponding to this maximum scale up with the harmonic order number. The conditions under which the number of harmonics generated is limited owing to the relativistic nature of electron motion in the pump field are established. This effect appears for an unexpectedly weak relativity. (invited paper)

  12. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    International Nuclear Information System (INIS)

    Gokce, B.; Gundogdu, K.; Aspnes, D. E.

    2012-01-01

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  13. Control of the oxidation kinetics of H-terminated (111)Si by using the carrier concentration and the strain: a second-harmonic-generation investigation

    Energy Technology Data Exchange (ETDEWEB)

    Gokce, B.; Gundogdu, K. [North Carolina State University, Raleigh, NC (United States); Aspnes, D. E. [Kyung Hee University, Seoul (Korea, Republic of)

    2012-05-15

    We discuss recent results regarding the effects of strain, carrier type and concentration on the oxidation of H-terminated (111)Si. Second-harmonic-generation data show that this is a two-stage process where the H of the 'up' bonds of the outermost Si layer is replaced by OH, followed by O insertion into the 'back' bonds. These data provide additional detailed information about both stages. In particular, directional control of the in-plane surface chemistry by using the applied uniaxial stress provides new opportunities for interface control.

  14. Absolute non-linear optical coefficients measurements of CsLiB 6O 10 single crystals by second harmonic generation

    Science.gov (United States)

    Sifi, A.; Klein, R. S.; Maillard, A.; Kugel, G. E.; Péter, A.; Polgár, K.

    2003-10-01

    We present absolute measurements of the effective non-linear optical coefficients deff of cesium lithium borate crystals (CsLiB 6O 10, CLBO) by second harmonic generation using a continuous Nd-YAG laser source. The experiments were carried out at room temperature, on crystals cut perpendicular to type I or type II phase matching directions, with two different crystal lengths along the propagation direction. The d36 and d14 non-linear coefficients involved in deff developments are deduced and are shown to be equal as it is predicted by the Kleinman symmetry. Two different compositions prepared by the Czochralski technique from melt with compositions of 1:1:6 and 1:1:5.5 molar ratios of Cs 2O, Li 2O and B 2O 3 are comparatively studied.

  15. Plasmon-enhanced second harmonic generation in semiconductor quantum dots close to metal nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrea V. Bragas

    2011-03-01

    Full Text Available We report the enhancement of the optical second harmonic signal in non-centrosymmetric semiconductor CdS quantum dots, when they are placed in close contact with isolated silver nanoparticles. The intensity enhancement is about 1000. We also show that the enhancement increases when the incoming laser frequency $omega$ is tuned toward the spectral position of the silver plasmon at $2omega$, proving that the silver nanoparticle modifies the nonlinear emission.Received: 8 March 2011, Accepted: 30 May 2011; Edited by: L. Viña; Reviewed by: R. Gordon, Department of Electrical and Computer Engineering, University of Victoria, British Columbia, Canada; DOI: 10.4279/PIP.030002Cite as: P. M. Jais, C. von Bilderling, A. V. Bragas, Papers in Physics 3, 030002 (2011

  16. Observation of second harmonics in laser-electron scattering using low energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Iinuma, Masataka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)]. E-mail: iinuma@hiroshima-u.ac.jp; Matsukado, Koji [Venture Business Laboratory, Hiroshima University, 1-313 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Endo, Ichita [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Hashida, Masaki [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, Kenji [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Kohara, Akitsugu [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Matsumoto, Fumihiko [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Nakanishi, Yoshitaka [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Sakabe, Shuji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Shimizu, Seiji [Institute for chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tauchi, Toshiaki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yamamoto, Ken [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Takahashi, Tohru [ADSM, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2005-10-17

    We observed photon generation in the second harmonic region in collisions of 10 keV free electrons and the intense laser beam with the peak intensity of 4.0x10{sup 15} W/cm{sup 2}. Observed photon yield was 3 orders of magnitude higher than expectation from the nonlinear Compton scattering. The observation indicates necessity of further investigation for the interaction between the intense laser field and the low energy electron beam.

  17. Studies of harmonic generation in free electron lasers

    International Nuclear Information System (INIS)

    Goldammer, K.

    2007-01-01

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  18. Studies of harmonic generation in free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, K.

    2007-11-12

    Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It

  19. Designs of two and three cavity gyroklystron amplifiers operating at fundamental, second, and fourth harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Lawson, W.; Latham, P.E.; Cheng, J.; Castle, M.

    1995-01-01

    Two and three cavity, co-axial, relativistic gyroklystron amplifiers are investigated for driving future linear colliders. Detailed designs of gyroklystrons operating at fundamental (8.568 GHz), second (17.136 GHz), and fourth harmonic (34.272 GHz) frequencies are presented. Numerical simulations predict over 40% efficiency, 45-50 dB gain, and 100-160 MW power level for the fundamental and second harmonic designs. It is shown that introducing a penultimate (buncher) cavity significantly improves efficiency and gain of the second harmonic amplifier. The fourth harmonic design has a modest efficiency of 10-15%

  20. High-order harmonic generation in laser plasma plumes

    CERN Document Server

    Ganeev, Rashid A

    2013-01-01

    This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...

  1. Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field

    International Nuclear Information System (INIS)

    Chen, W-J; Chen, W-F; Pan, C-L; Lin, R-Y; Lee, C-K

    2013-01-01

    We investigate generation of the third harmonic (TH; λ = 355 nm) signal by two-colour excitation (λ = 1064 nm and its second harmonic, λ = 532 nm) in argon gas, with emphasis on the influence of relative phases and intensities of the two-colour pump on the third-order nonlinear frequency conversion process. Perturbative nonlinear optics predicts that the TH signal will oscillate periodically with the relative phases of the two-colour driving laser fields due to the interference of TH signals from a direct third-harmonic-generation (THG) channel and a four-wave mixing (FWM) channel. For the first time, we show unequivocal experimental evidence of this effect. A modulation level as high as 0.35 is achieved by waveform control of the two-colour laser field. The modulation also offers a promising way to retrieve the relative phase value of the two-colour laser field. (letter)

  2. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    Science.gov (United States)

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  3. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  4. Second harmonic electromagnetic emission via Langmuir wave coalescence

    International Nuclear Information System (INIS)

    Willes, A.J.; Robinson, P.A.; Melrose, D.B.

    1996-01-01

    The coalescence of Langmuir waves to produce electromagnetic waves at twice the plasma frequency is considered. A simplified expression for the rate of production of second harmonic electromagnetic waves is obtained for a broad class of Langmuir spectra. In addition, two different analytic approximations are considered. The validity of the commonly used head-on approximation is explored, in which the two coalescing Langmuir waves are assumed to approach from opposite directions. This approximation breaks down at low Langmuir wavenumbers, and for narrow Langmuir wave spectra. A second, more general, approximation is introduced, called the narrow-spectrum approximation, which requires narrow spectral widths of the Langmuir spectra. The advantages of this approximation are that it does not break down at low Langmuir wavenumbers, and that it remains valid for relatively broad Langmuir wave spectra. Finally, the applicability of these approximations in treating harmonic radiation in type III solar radio bursts is discussed. copyright 1996 American Institute of Physics

  5. Analytic model of bunched beams for harmonic generation in the low-gain free electron laser regime

    Directory of Open Access Journals (Sweden)

    G. Penn

    2006-06-01

    Full Text Available One scheme for harmonic generation employs free electron lasers (FELs with two undulators: the first uses a seed laser to modulate the energy of the electron beam; following a dispersive element which acts to bunch the beam, the second undulator radiates at a higher harmonic. These processes are currently evaluated using extensive calculations or simulation codes which can be slow to evaluate and difficult to set up. We describe a simple algorithm to predict the output of a harmonic generation beam line in the low-gain FEL regime, based on trial functions for the output radiation. Full three-dimensional effects are included. This method has been implemented as a Mathematica® package, named CAMPANILE, which runs rapidly and can be generalized to include effects such as asymmetric beams and misalignments. This method is compared with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX project, a design concept for an ultrafast x-ray facility, where multiple stages upshift the input laser frequency by factors of up to 200.

  6. Interplay between absorption, dispersion and refraction in high-order harmonic generation

    International Nuclear Information System (INIS)

    Dachraoui, H; Helmstedt, A; Bartz, P; Michelswirth, M; Mueller, N; Pfeiffer, W; Heinzmann, U; Auguste, T; Salieres, P

    2009-01-01

    We report a detailed experimental and theoretical study on high-order harmonic generation of a femtosecond Ti-sapphire laser focused at an intensity of around 10 15 W cm -2 onto a high-pressure (50-210 mbar) neon gas cell of variable length (1-3 mm). Using thorough three-dimensional simulations, we discuss the interplay between the different factors influencing the harmonic-generation efficiency, i.e. phase matching determined by the electronic and atomic dispersions, re-absorption of the harmonics by the medium and refraction of the generating laser beam. Generically, we find that, in our generation conditions, the emission yield of harmonics from the plateau region of the spectrum is absorption limited, whereas the emission from harmonics in the cut-off is strongly reduced due to both electron dispersion and ionization-induced refraction of the laser beam. A good agreement between the numerical results and the experimental data is obtained for the harmonic yield dependence on the various generation parameters (gas pressure, medium length and laser intensity).

  7. Switching kinetics of a relaxor ferroelectric Sr0.75Ba0.25Nb2O6 observed by the second harmonic generation method

    International Nuclear Information System (INIS)

    Volk, Tatyana; Isakov, Dmitry; Belsley, Michael Scott; Ivleva, Lyudmila

    2009-01-01

    In this work we present a study of the ferroelectric switching kinetic process in strontium-barium niobate (SBN). The kinetics of polarization deduced from the dynamics of the diffuse second harmonic generation is in good qualitative agreement with thekinetics observed by more traditional polarization methods. Our work highlights the specific characteristics of polarization reversal in SBN, which is fundamentally different from that which occurs in model ferroelectrics. The presented optical measurements of the polarization processes provide several experimental advantages over traditional electrical measurements. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities

    Science.gov (United States)

    Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.

    1988-01-01

    56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.

  9. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    Science.gov (United States)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  10. Phase-matched third harmonic generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.; Fisch, N.J.

    1993-01-01

    Relativistic third harmonic generation in a plasma is investigated. The growth of a third harmonic wave is limited by the difference between the phase velocity of the pump and driven waves. This phase velocity mismatch results in a third harmonic amplitude saturation and oscillation. In order to overcome this saturation, the authors describe a phase-matching scheme based on a resonant density modulation. The limitations of this scheme are analyzed

  11. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  12. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  13. Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering.

    Science.gov (United States)

    Beams, Ryan; Cancado, Luiz Gustavo; Krylyuk, Sergiy; Kalish, Irina; Kalanyan, Berc; Singh, Arunima K; Choudhary, Kamal; Bruma, Alina; Vora, Patrick M; Tavazza, Francesca; Davydov, Albert V; Stranick, Stephan J

    2016-10-05

    We study the crystal symmetry of few-layer 1T' MoTe 2 using the polarization dependence of the second harmonic generation (SHG) and Raman scattering. Bulk 1T' MoTe 2 is known to be inversion symmetric; however, we find that the inversion symmetry is broken for finite crystals with even numbers of layers, resulting in strong SHG comparable to other transition metal dichalcogenides. Group theory analysis of the polarization dependence of the Raman signals allows for the definitive assignment of all the Raman modes in 1T' MoTe 2 and clears up a discrepancy in the literature. The Raman results were also compared with density-functional theory simulations and are in excellent agreement in the layer-depenent variations of the Raman modes. The experimental measurements also determine the relationship between the crystal axes and the polarization-dependence of the SHG and Raman scattering, which now allows the anisotropy of polarized SHG or Raman signal to independently determine the crystal orientation.

  14. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.

  15. Harmonic sums and polylogarithms generated by cyclotomic polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-05-15

    The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)

  16. Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy

    Directory of Open Access Journals (Sweden)

    Chunqiang Li

    2016-01-01

    Full Text Available Atherosclerosis has been recognized as a chronic inflammation disease, in which many types of cells participate in this process, including lymphocytes, macrophages, dendritic cells (DCs, mast cells, vascular smooth muscle cells (SMCs. Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions. The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques. Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation (SHG were developed to image mast cells, SMCs and collagen in plaque ex vivo using endogenous optical signals. Mast cells were imaged with two-photon tryptophan autofluorescence, SMCs were imaged with two-photon NADH autofluorescence, and collagen were imaged with SHG. This development paves the way for further study of mast cell degranulation, and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases (MMPs which participate in the degradation of collagen.

  17. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  18. Wiggler magnetic field assisted third harmonic generation in expanding clusters

    Science.gov (United States)

    Vij, Shivani

    2018-04-01

    A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.

  19. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  20. High-order harmonic generation from a two-dimensional band structure

    Science.gov (United States)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  1. Spectral and spatial characteristics of third-harmonic generation in conical light beams

    International Nuclear Information System (INIS)

    Peet, V.E.; Shchemeljov, S.V.

    2003-01-01

    Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed

  2. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    Science.gov (United States)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  3. Harmonic development of tide-generating potential of terrestrial planets

    Science.gov (United States)

    Kudryavtsev, Sergey M.

    2008-08-01

    The aim of this study is to obtain high-accurate harmonic developments of the tide-generating potential (TGP) of Mercury, Venus and Mars. The planets’ TGP values have been first calculated on the base of DE/LE-406 numerical planetary/lunar ephemerides over a long period of time and then processed by a new spectral analysis method. According to this method the development is directly made to Poisson series where both amplitudes and arguments of the series’ terms are high-degree polynomials of time. A new harmonic development of Mars TGP is made over the time period 1900 AD 2100 AD and includes 767 second-order Poisson series’ terms of minimum amplitude equal to 10-7 m2 s-2. Analogous series composing both Mercury and Venus TGP harmonic models are built over the time period 1000 AD 3000 AD and include 1,061 and 693 terms, respectively. A modification of the standard HW95 format for representation of the terrestrial planets’ TGP is proposed. The number of terms in the planets’ TGP models transformed to the modified HW95 format is 650 for Mercury, 422 for Venus, and 480 for Mars. The quality of the new developments of the terrestrial planets’ TGP is better than that of the similar developments obtained earlier.

  4. Characterization of excitation beam on second-harmonic generation in fibrillous type I collagen.

    Science.gov (United States)

    Chang, Ying; Deng, Xiaoyuan

    2010-09-01

    Following our established theoretical model to deal with the second-harmonic generation (SHG) excited by a linearly polarized focused beam in type I collagen, in this paper, we further quantitatively characterize the differences between SHG emissions in type I collagen excited by collimated and focused beams. The effects of the linear polarization angle (α) and the fibril polarity characterized by the hyperpolarizability ratio ρ on SHG emission has been compared under collimated and focused beam excitation, respectively. In particular, SHG emission components along the i axis [Formula: see text] (i = x,y,z), the induced SHG emission deviation angle γ(ij), and the detected SHG signals (I(2ω,ij)) in the ij plane by rotating the applied polarizer angle φ(ij) have been investigated (i = x, x, y; j = y, z, z). Results show that under our simulation model, SHG emission in the xy plane, such as I(2ω,x) ,I(2ω,y) ,γ(xy) and I(2ω,xy) varying as polarization angle (α) under collimated and focused light, presents no significant difference. The reverse of the fibril polarity has induced great impact on I(2ω,x) ,γ(xy) and I(2ω,xy) in both collimated and focused light. I(2ω,x) and γ(xy) show similarity, but I(2ω,xy) at α = 30° demonstrates a slight difference in focused light to that in collimated light. Under focused light, the reverse of fibril polarity causes obvious changes of the collected SHG intensity I(2ω,xz) and I(2ω,yz) at a special polarization angle α = 60° and γ(xz), γ(yz) along α.

  5. Local field enhanced second-harmonic response of organic nanofibers

    DEFF Research Database (Denmark)

    Leißner, Till; Kostiučenko, Oksana; Fiutowski, Jacek

    Organic CNHP4 nanofibers showing a strong second-harmonic (SH) response have been successfully implemented as active components in a metal-organic hybrid system. Using nondestructive roll-on transfer technique nanofibers were transferred from the growing mica substrates onto electron...

  6. A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure

    Science.gov (United States)

    Judd, Nicolas; Smith, Jason; Jain, Manu; Mukherjee, Sushmita; Icaza, Michael; Gallagher, Ryan; Szeligowski, Richard; Wu, Binlin

    2018-02-01

    A clear distinction between oncocytoma and chromophobe renal cell carcinoma (chRCC) is critically important for clinical management of patients. But it may often be difficult to distinguish the two entities based on hematoxylin and eosin (H and E) stained sections alone. In this study, second harmonic generation (SHG) signals which are very specific to collagen were used to image collagen fibril structure. We conduct a pilot study to develop a new diagnostic method based on the analysis of collagen associated with kidney tumors using convolutional neural networks (CNNs). CNNs comprise a type of machine learning process well-suited for drawing information out of images. This study examines a CNN model's ability to differentiate between oncocytoma (benign), and chRCC (malignant) kidney tumor images acquired with second harmonic generation (SHG), which is very specific for collagen matrix. To the best of our knowledge, this is the first study that attempts to distinguish the two entities based on their collagen structure. The model developed from this study demonstrated an overall classification accuracy of 68.7% with a specificity of 66.3% and sensitivity of 74.6%. While these results reflect an ability to classify the kidney tumors better than chance, further studies will be carried out to (a) better realize the tumor classification potential of this method with a larger sample size and (b) combining SHG with two-photon excited intrinsic fluorescence signal to achieve better classification.

  7. Phase-dependent quantum interference between different pathways in bichromatic harmonic generation

    International Nuclear Information System (INIS)

    Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao

    2009-01-01

    This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)

  8. Nonlinear harmonic generation and proposed experimental verification in SASE FELs

    CERN Document Server

    Freund, H P; Milton, S V

    2000-01-01

    Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.

  9. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  10. Harmonics: Generation and Suppression in AC System Networks ...

    African Journals Online (AJOL)

    However, reactive power flow in electrical networks has adverse effects depending on their magnitude and the nature of the supply network. How these harmonics are generated by nonlinear loads and the means by which they can be kept low are the focus of this paper. Keywords: non-linear loads, harmonics, reactive ...

  11. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  12. Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic damping throughout a distribution network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...

  13. Synthesis of Variable Harmonic Impedance in Inverter-Interfaced Distributed Generation Unit for Harmonic Damping Throughout a Distribution Network

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe

    2012-01-01

    This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop...... at the dominant harmonic frequencies. Thus, the harmonic voltage drop on the grid-side inductance and the harmonic resonances throughout a distribution feeder with multiple shunt-connected capacitors can be effectively attenuated. Simulation and laboratory test results validate the performance of the proposed...

  14. Second harmonic generation for collagen I characterization in rectal cancer patients with and without preoperative radiotherapy

    Science.gov (United States)

    Blockhuys, Stéphanie; Agarwal, Nisha Rani; Hildesjö, Camilla; Jarlsfelt, Ingvar; Wittung-Stafshede, Pernilla; Sun, Xiao-Feng

    2017-10-01

    Rectal cancer is treated with preoperative radiotherapy (RT) to downstage the tumor, reduce local recurrence, and improve patient survival. Still, the treatment outcome varies significantly and new biomarkers are desired. Collagen I (Col-I) is a potential biomarker, which can be visualized label-free by second harmonic generation (SHG). Here, we used SHG to identify Col-I changes induced by RT in surgical tissue, with the aim to evaluate the clinical significance of RT-induced Col-I changes. First, we established a procedure for quantitative evaluation of Col-I by SHG in CDX2-stained tissue sections. Next, we evaluated Col-I properties in material from 31 non-RT and 29 RT rectal cancer patients. We discovered that the Col-I intensity and anisotropy were higher in the tumor invasive margin than in the inner tumor and normal mucosa, and RT increased and decreased the intensity in inner tumor and normal mucosa, respectively. Furthermore, higher Col-I intensity in the inner tumor was related to increased distant recurrence in the non-RT group but to longer survival in the RT group. In conclusion, we present a new application of SHG for quantitative analysis of Col-I in surgical material, and the first data suggest Col-I intensity as a putative prognostic biomarker in rectal cancer.

  15. Optical Second Harmonic Generation in the BaTiO3 phase of magnetically aligned multiferroic nanofibers

    Science.gov (United States)

    Gasperi, Katia

    Multiferroic materials enable the exploration of electrical control of magnetic properties and vice versa. Their increasing interest is especially due to their potential applications in the industry of information storage. Thanks to recent progress in nanotechnology, they have also been found to have many other applications such as transducers and sensors, and they already occupy a unique place in the biomedical field. The objective of this project is to study multiferroic nanofibers made of cobalt ferrite CoFe2O 4 (CFO) and barium titanate BaTiO3 (BTO) with a specific focus in the characterization of the ferroelectric phase. We researched the state of knowledge concerning the size effects on phase transition for nanoparticles and polycrystals BTO. The ferroelectric phase transition of BTO occurs when it changes from a tetragonal (anisotropic) crystal structure to a cubic (isotropic) structure. This change suggests that optical second harmonic generation (SHG) is a good measurement technique for monitoring the phase transition of the BTO half of the nanofibers. We designed and prepared a temperature dependent SHG experiment on magnetically aligned fibers in transmission with the possibility to investigate the polarization dependence of the signal. We also prepared interdigital electrodes on glass for the future study of the fibers in an external electric field.

  16. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    Science.gov (United States)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  17. Study of interface layer effect in organic solar cells by electric-field-induced optical second-harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Dai; Sumiyoshi, Ryota; Chen, Xiangyu; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp

    2014-03-03

    By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we studied the effect of the use of bathocuproine (BCP) interface layer. The EFISHG measurements of indium–zinc–oxide (IZO)/C{sub 60}/Al diodes showed that the BCP layer inserted between C{sub 60} and Al formed an electrostatic field |E{sub i}| = 2.5 × 10{sup 4} V/cm in the C{sub 60} layer, pointing in a direction from the Al to the IZO. Accordingly, in the IZO/pentacene/C{sub 60}/BCP/Al organic solar cells (OSCs), holes (electrons) move to the IZO (Al) electrode, enhancing the short-circuit current. The EFISHG measurement is capable of directly probing internal fields in the layers used for OSCs, and is helpful for studying the contribution of the interface layer in OSCs. - Highlights: • Internal field in organic solar cells (OSCs) were directly probed. • Interface layer formed internal electric field, enhancing the OSC performance. • Maxwell–Wagner effect accounts for the internal electric field formation.

  18. Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases

    CERN Document Server

    Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru

    2004-01-01

    Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.

  19. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  20. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  1. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  2. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing.

    Science.gov (United States)

    Hase, E; Sato, K; Yonekura, D; Minamikawa, T; Takahashi, M; Yasui, T

    2016-11-01

    This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R 2 = 0.37) with Young's modulus obtained from the tensile testing. Our results indicate that SHG microscopy may be a potential indicator of tendon healing.Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577-585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1. © 2016 Yasui et al.

  3. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  4. Second harmonic study of acid-base equilibrium at gold nanoparticle/aqueous interface

    Science.gov (United States)

    Ma, Jianqiang; Mandal, Sarthak; Bronsther, Corin; Gao, Zhenghan; Eisenthal, Kenneth B.

    2017-09-01

    Interfacial acid-base equilibrium of the capping molecules is a key factor to stabilize gold nanoparticles (AuNP) in solution. In this study we used Second Harmonic (SH) generation to measure interfacial potential and obtained a surface pKa value of 3.3 ± 0.1 for the carboxyl group in mercaptoundecanoic acid (MUA) molecule at an AuNP/aqueous interface. This pKa value is smaller than its bulk counterpart and indicates that the charged carboxylate group is favored at the AuNP surface. The SH findings are consistent with the effects of the noble metal (gold) surface on a charge in solution, as predicted by the method of images.

  5. High-resolution second-harmonic microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2003-01-01

    , and the spatial resolution at the pump wavelength of 790 nm is determined to be better than 0.7 m. SHSOM images of positively poled silica waveguides were obtained for different polarization combinations of the incident pump beam and the detected second-harmonic radiation. Calibration of the SHSOM with a Ga...

  6. Collection and spectral control of high-order harmonics generated with a 50 W high-repetition rate Ytterbium femtosecond laser system

    International Nuclear Information System (INIS)

    Cabasse, A; Hazera, Ch; Quintard, L; Cormier, E; Petit, S; Constant, E

    2016-01-01

    We generate high-order harmonics with a 50 W, Yb femtosecond fiber laser system operating at 100 kHz in a tight focusing configuration. We achieve a high photon flux even with pulses longer than 500 fs. We collect the diverging extreme ultraviolet (XUV) harmonic beam in a 35 mrad wide solid angle by using a spectrometer designed to handle the high thermal load under vacuum and refocus the XUV beam onto a detector where the beam is characterised or can alternatively be used for experiments. This setup is designed for a 50 eV XUV bandwidth and offers the possibility to perform XUV-IR pump probe experiments with both temporal and spectral resolution. The high-order harmonics were generated and optimized at 100 kHz by using several gas target geometries (a gas jet and a semi-infinite gas cell) and several gases (argon, krypton, xenon) that provide XUV beams with different characteristics. After the spectrometer and for high-order harmonic generation (HHG) in xenon, we detect more than 4 × 10 10 photons per second over four harmonics, that is a useful XUV power on target of 0.1 μW. This corresponds to the emission of more than 1 μW per harmonic at the source and we achieved a similar flux with both the semi-infinite cell and the jet. In addition, we observe a strong spectral selectivity when generating harmonics in a semi-infinite gas cell as few harmonics clearly dominate the neighbouring harmonics. We attribute this spectral selectivity to phase matching effects. (paper)

  7. The large second-harmonic generation of LiCs{sub 2}PO{sub 4} is caused by the metal-cation-centered groups

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Guo, Guo-Cong; Hong, Maochun; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2018-04-03

    We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs{sub 2}PO{sub 4} (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal-cation-centered groups CsO{sub 6} and LiO{sub 4}, not by the nonmetal-cation-centered groups PO{sub 4} expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation

    Science.gov (United States)

    Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.

    2016-08-01

    We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.

  9. Harmonic generation with multiple wiggler schemes

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)

    1995-02-01

    In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.

  10. Second harmonic ion cylotron resonance heating by the fast magnetosonic wave on the PLT tokamak

    International Nuclear Information System (INIS)

    Thompson, H.R. Jr.

    1984-01-01

    Second harmonic ion cyclotron resonance heating by the fast magnetosonic wave, and the propagation of the fast wave from the fundamental of the ion cyclotron frequency to its second harmonic was investigated in a hydrogen plasma on the PLT tokamak. The theory of fast magnetosonic wave propagation was extended to include the effects of density gradients, plasma current, and impurity ion species. The damping of the fast wave at the second harmonic is calculated, where the theory has been extended to include the full radial dependence of the fast wave fields. Power deposition profiles and eigenmode Q's are calculated using this theory. The effects of the interaction between the ion Bernstein wave and the fast magnetosonic wave are calculated, and enhanced fast wave damping is predicted. The antenna loading is calculated including the effects of overlap of the fast wave eigenmodes. During the second harmonic heating experiments, the antenna loading was characterized as a function of the plasma parameters, and efficient coupling of the RF power to the plasma at high density was observed. At very low densities, fast wave eigenmodes were identified on PLT, and their Q's are measured. Eigenmodes with different toroidal directions of propagation were observed to exhibit large splitting in density due to the plasma current. Efficient bulk heating, with centrally peaked profiles, is observed at the second harmonic, and a tail, which decreases monotonically with energy, is observed on the ion distribution

  11. Second and third harmonic generations of a quantum ring with Rashba and Dresselhaus spin-orbit couplings: Temperature and Zeeman effects

    Science.gov (United States)

    Zamani, Ali; Azargoshasb, Tahereh; Niknam, Elahe

    2017-10-01

    In current article, the Zeeman effect is considered in the presence of simultaneous Rashba and Dresselhaus spin-orbit interactions (SOI) and under such circumstances the second and third harmonic generations (SHG and THG) of a GaAs quantum ring are investigated at finite temperature. The effective Hamiltonian is derived in cylindrical coordinate while the angular part is eliminated because of axial symmetry and the energy eigenvalues and eigenvectors of two lowest levels are obtained numerically. Eventually, the optical properties of such system are studied hiring compact density matrix approach. The results show that, an increase in the magnetic field, leads to blue shift in resonant peaks of both SHG and THG. Furthermore, by reducing the temperature, all the resonant peaks of both SHG and THG experience a red shift. Finally, the effect of the structure dimension is studied and results illustrate that variation of size leads to both red and blue shifts in resonant peaks.

  12. Generation of even harmonics in a relativistic laser plasma of atomic clusters

    International Nuclear Information System (INIS)

    Krainov, V.P.; Rastunkov, V.S.

    2004-01-01

    It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer

  13. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    Science.gov (United States)

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  14. On the second spherical harmonics of the cosmics ray angular distribution

    International Nuclear Information System (INIS)

    Kota, J.

    1974-12-01

    In order to describe the semi-diurnal variation of the cosmic ray intensity the convection-diffusion theory has been extended by considering the second moments of cosmic ray angular distribution and those of the statistical Boltzmann equation. The quadrupole moment of the directional distribution has been represented by a symmetric traceloss tensor whose elements correspond to the five independent spherical harmonics of second order. The results are basically in agreement with the earlier published ones. However, by contrast with these earlier results, in the present model a different particle flux is predicted from the directions along the magnetic field and normal to the ecliptic plane, respectively, and the interplanetary magnetic field lines are being bent and diverging. The second harmonics of the anisotropy depend on the global feature of the mean free path between the sun and the earth. Arguments are also brought forward that a sunward stream along the interplanetary magnetic field lines gives rise to a distribution of the pitch angle type. (Sz.Z.)

  15. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    Science.gov (United States)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  16. Enhanced high-order harmonic generation from Argon-clusters

    NARCIS (Netherlands)

    Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.

    2017-01-01

    High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and

  17. Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.

    Science.gov (United States)

    Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina

    2014-02-01

    The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.

  18. A New Second-Order Generalized Integrator Based Quadrature Signal Generator With Enhanced Performance

    DEFF Research Database (Denmark)

    Xin, Zhen; Qin, Zian; Lu, Minghui

    2016-01-01

    Due to the simplicity and flexibility of the structure of the Second-Order Generalized Integrator based Quadrature Signal Generator (SOGI-QSG), it has been widely used over the past decade for many applications such as frequency estimation, grid synchronization, and harmonic extraction. However......, the SOGI-QSG will produce errors when its input signal contains a dc component or harmonic components with unknown frequencies. The accuracy of the signal detection methods using it may hence be compromised. To overcome the drawback, the First-Order System (FOS) concept is first used to illustrate...

  19. High-harmonic spectroscopy of oriented OCS molecules: emission of even and odd harmonics.

    Science.gov (United States)

    Kraus, P M; Rupenyan, A; Wörner, H J

    2012-12-07

    We study the emission of even and odd high-harmonic orders from oriented OCS molecules. We use an intense, nonresonant femtosecond laser pulse superimposed with its phase-controlled second harmonic field to impulsively align and orient a dense sample of molecules from which we subsequently generate high-order harmonics. The even harmonics appear around the full revivals of the rotational dynamics. We demonstrate perfect coherent control over their intensity through the subcycle delay of the two-color fields. The odd harmonics are insensitive to the degree of orientation, but modulate with the degree of axis alignment, in agreement with calculated photorecombination dipole moments. We further compare the shape of the even and odd harmonic spectra with our calculations and determine the degree of orientation.

  20. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  1. Effect of annealing on the second harmonic amplitude of Giant Magneto-Impedance (GMI) voltage of a Co-Fe-Si-B amorphous wire

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S.K. [National Metallurgical Laboratory, Jamshedpur 831007 (India)], E-mail: skp@nmlindia.org; Panda, A.K.; Mitra, A. [National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2008-02-15

    Second harmonic amplitude (V{sub 2f}) of Giant Magneto-Impedance (GMI) voltage of (Fe{sub 6}Co{sub 94}){sub 72.5}Si{sub 12.5}B{sub 15} amorphous wires has been studied systematically for as-cast and Joule-heated states. Joule heating was carried out at current densities (J) of 20-40 A/mm{sup 2} for a period of 1-300 min. The amplitude of the second harmonic voltage (V{sub 2f}) initially increased with J, attained maximum and then decreased. The maximum amplitude of V{sub 2f} was observed for the sample annealed at J=25 A/mm{sup 2} for 5 min. The second harmonic peak shifted towards the higher field side with the increase of annealing current density and annealing period (t{sub p}). Few-fold increase in the amplitude of the second harmonic voltage (V{sub 2f}) was observed due to the presence of a small dc bias current (I{sub b}) of amplitude 1 mA. The asymmetry in V{sub 2f} was also observed in a Joule-heated sample. The observed asymmetry has been correlated with the bias field generated between the surface crystallized layer and the amorphous core. A small bias current of amplitude of 1 mA was applied along the direction of the applied field to minimize the asymmetry.

  2. Below-threshold harmonic generation from strong non-uniform fields

    Science.gov (United States)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  3. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  4. Rb2Na(NO33: A Congruently Melting UV-NLO Crystal with a Very Strong Second-Harmonic Generation Response

    Directory of Open Access Journals (Sweden)

    Guohong Zou

    2016-04-01

    Full Text Available Crystals of congruently melting noncentrosymmetric (NCS mixed alkali metal nitrate, Rb2Na(NO33, have been grown through solid state reactions. The material possesses layers with NaO8 hexagonal bipyramids and NO3 triangular units. Rb+ cations are residing in the interlayer space. Each NaO8 hexagonal bipyramid shares its corners and edges with two and three NO3 units, respectively, in order to fulfill a highly dense stacking in the unit cell. The NaO8 groups share their six oxygen atoms in equatorial positions with three different NO3 groups to generate a NaO6-NO3 layer with a parallel alignment. The optimized arrangement of the NO3 groups and their high density in the structure together produce a strong second-harmonic generation (SHG response. Powder SHG measurements indicate that Rb2Na(NO33 has a strong SHG efficiency of five times that of KH2PO4 (KDP and is type I phase-matchable. The calculated average nonlinear optical (NLO susceptibility of Rb2Na(NO33 turns out to be the largest value among the NLO materials composed of only [NO3]− anion. In addition, Rb2Na(NO33 exhibits a wide transparency region ranging from UV to near IR, which suggests that the compound is a promising NLO material.

  5. Transition from out-of-plane to in-plane contribution for the optical second harmonic generation response from a silver metallic nanoparticle film

    Energy Technology Data Exchange (ETDEWEB)

    El Harfouch, Yara; Benichou, Emmanuel; Pu, Lin; Bachelier, Guillaume; Russier-Antoine, Isabelle; Jonin, Christian; Brevet, Pierre-Francois, E-mail: Emmanuel.Benichou@lasim.univ-lyon1.fr [Laboratoire de Spectrometrie Ionique et Moleculaire, Universite Claude Bernard Lyon 1-CNRS (UMR 5579), Batiment Alfred Kastler, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)

    2011-06-29

    The time evolution of the second harmonic generation (SHG) intensity during the formation of a silver spherical nanoparticle film at the water/1,2-dichloroethane interface is reported. The 5 nm diameter silver nanoparticles were initially dispersed in the water phase and their precipitation at the interface was triggered with the addition of sodium chloride. The time evolution of the SHG intensity exhibited two distinct regimes. First, an intensity increase was observed during the film formation with the deposition and the reorganization of the nanoparticles at the interface. Then, a slow decrease of the intensity due to rearrangements within the film was observed. Polarization-resolved experiments were also performed and showed that the initial dominant out-of-plane contribution of the quadratic nonlinearity underwent a reorientational change towards a dominant in-plane contribution associated with a smoother but still discontinuous metallic film.

  6. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  7. Nonlinear wave chaos: statistics of second harmonic fields.

    Science.gov (United States)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  8. Laser light absorption and harmonic generation due to self-generated magnetic fields

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1977-01-01

    It is shown that self-generated magnetic fields can play a significant role in laser light absorption. Even normally incident light will then be resonantly absorbed. Computer simulations and theoretical estimates for this absorption and the concomitant harmonic generation are given for parameters characteristic of some recent experiments

  9. Next generation data harmonization

    Science.gov (United States)

    Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg

    2015-05-01

    Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.

  10. Optimization of multi-color laser waveform for high-order harmonic generation

    Science.gov (United States)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  11. Quantification of collagen distributions in rat hyaline and fibro cartilages based on second harmonic generation imaging

    Science.gov (United States)

    Zhu, Xiaoqin; Liao, Chenxi; Wang, Zhenyu; Zhuo, Shuangmu; Liu, Wenge; Chen, Jianxin

    2016-10-01

    Hyaline cartilage is a semitransparent tissue composed of proteoglycan and thicker type II collagen fibers, while fibro cartilage large bundles of type I collagen besides other territorial matrix and chondrocytes. It is reported that the meniscus (fibro cartilage) has a greater capacity to regenerate and close a wound compared to articular cartilage (hyaline cartilage). And fibro cartilage often replaces the type II collagen-rich hyaline following trauma, leading to scar tissue that is composed of rigid type I collagen. The visualization and quantification of the collagen fibrillar meshwork is important for understanding the role of fibril reorganization during the healing process and how different types of cartilage contribute to wound closure. In this study, second harmonic generation (SHG) microscope was applied to image the articular and meniscus cartilage, and textural analysis were developed to quantify the collagen distribution. High-resolution images were achieved based on the SHG signal from collagen within fresh specimens, and detailed observations of tissue morphology and microstructural distribution were obtained without shrinkage or distortion. Textural analysis of SHG images was performed to confirm that collagen in fibrocartilage showed significantly coarser compared to collagen in hyaline cartilage (p < 0.01). Our results show that each type of cartilage has different structural features, which may significantly contribute to pathology when damaged. Our findings demonstrate that SHG microscopy holds potential as a clinically relevant diagnostic tool for imaging degenerative tissues or assessing wound repair following cartilage injury.

  12. Optical High Harmonic Generation in C60

    Science.gov (United States)

    Zhang, Guoping

    2005-03-01

    C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).

  13. Generation of µW level plateau harmonics at high repetition rate.

    Science.gov (United States)

    Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A

    2011-09-26

    The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America

  14. Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-05-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.

  15. Application of organic compounds for high-order harmonic generation of ultrashort pulses

    Science.gov (United States)

    Ganeev, R. A.

    2016-02-01

    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  16. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    Science.gov (United States)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  17. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    Science.gov (United States)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  18. Phase-locked high-order-harmonic and sub-100-as pulse generation from stretched molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin; Yang Guang

    2006-01-01

    High harmonic generation from diatomic molecules in a linearly polarized intense laser field is investigated and the emission time of the harmonics is discussed with the time-frequency analysis method. It is shown that high harmonic generation from molecules at equilibrium distance is similar to that from atoms. Only the harmonics in the cutoff are synchronized, i.e., well phase-locked, whereas the other harmonics are not phase-locked. For the molecule stretched well beyond its equilibrium distance, the harmonics exhibit distinct time-frequency characteristics. The harmonic spectrum can be extended to I p +8U p , where I p and U p are the ionization and ponderomotive potential, and the harmonics with energies below I p +3.17U p are not phase-locked and the harmonics with energies beyond I p +3.17U p are well phase-locked. Thus a large range of harmonics which are well phase-locked are produced, and a train of clean attosecond (as) pulses with a single 90-as pulse in each half optical cycle can be generated with a multicycle laser pulse. Using a few-cycle laser pulse, an isolated attosecond pulse with a duration of about 95 as is obtained

  19. Second harmonics HOE recording in Bayfol HX

    Science.gov (United States)

    Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther; Wewer, Brita

    2015-05-01

    Volume Holographic Optical Elements (vHOEs) provide superior optical properties over DOEs (surface gratings) due to high diffraction efficiencies in the -1st order and their excellent Bragg selectivity. Bayer MaterialScience is offering a variety of customized instant-developing photopolymer films to meet requirements for a specific optics design of a phase hologram. For instance, the photopolymer film thickness is an ideal means to adjust the angular and the spectral selectivity while the index modulation can be adopted with the film thickness to achieve a specific required dynamic range. This is especially helpful for transmission type holograms and in multiplex recordings. The selection of different substrates is helpful to achieve the overall optical properties for a targeted application that we support in B2B-focused developments. To provide further guidance on how to record volume holograms in Bayfol HX, we describe in this paper a new route towards the recording of substrate guided vHOEs by using optimized photopolymer films. Furthermore, we discuss special writing conditions that are suitable to create higher 2nd harmonic intensities and their useful applications. Due to total internal reflection (TIR) at the photopolymer-air interface in substrate guided vHOEs, hologram recording with those large diffraction angles cannot usually be done with two free-space beams. Edge-lit recording setups are used to circumvent this limitation. However, such setups require bulky recording blocks or liquid bathes and are complex and hard to align. A different approach that we present in this paper is to exploit 2nd harmonic grating generation in a freespace recording scheme. Those 2nd harmonic components allow the replay of diffraction angles that are normally only accessible with edge-lit writing configurations. Therefore, this approach significantly simplifies master recordings for vHOEs with edge-lit functionalities, which later can be used in contact copy schemes for

  20. Second-Order Harmonic Reduction Technique for Photovoltaic Power Conditioning Systems Using a Proportional-Resonant Controller

    Directory of Open Access Journals (Sweden)

    Hae-Gwang Jeong

    2013-01-01

    Full Text Available This paper proposes a second-order harmonic reduction technique using a proportional-resonant (PR controller for a photovoltaic (PV power conditioning system (PCS. In a grid-connected single-phase system, inverters create a second-order harmonic at twice the fundamental frequency. A ripple component unsettles the operating points of the PV array and deteriorates the operation of the maximum power point tracking (MPPT technique. The second-order harmonic component in PV PCS is analyzed using an equivalent circuit of the DC/DC converter and the DC/AC inverter. A new feed-forward compensation technique using a PR controller for ripple reduction is proposed. The proposed algorithm is advantageous in that additional devices are not required and complex calculations are unnecessary. Therefore, this method is cost-effective and simple to implement. The proposed feed-forward compensation technique is verified by simulation and experimental results.

  1. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    Science.gov (United States)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  2. Harmonic generation and flux quantization in granular superconductors

    International Nuclear Information System (INIS)

    Lam, Q.H.; Jeffries, C.D.

    1989-01-01

    Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops

  3. High-Harmonic Generation in Solids with and without Topological Edge States

    DEFF Research Database (Denmark)

    Bauer, Dieter; Hansen, Kenneth Christian Klochmann

    2018-01-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...

  4. A Case Study of Harmonic Impact on a Motor-Generator Set System

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Pil-Bum [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Motor-Generator Sets are usually used to supply power to a Control Element Drive Mechanism Control System (CEDMCS) at nuclear power plants with pressurized water reactors. Two Motor-Generator Sets, which have 100% capacity, are operated in parallel to improve the reliability of the power supply to the CEDMCS. Fig. 1 presents a diagram of a Motor- Generator Set system. The system of a Motor-Generator Set is composed of electrical equipment, such as a motor, a fly-wheel, and a generator, an exciter and protection-control device, such as a protective relay, synchro check relay, and an auto voltage regulator. In general, the harmonic impact of electrical equipment increases the deterioration of the equipment, the motor, and the generator’s lifetime, which can also be caused by vibration and over-heating and maloperation of the protection-control device. In this paper, we came to understand the harmonic impact on the Motor-Generator Set system through a study of delaying parallel operation by non-operation of the synchro check relay and the fault of under voltage protective relay. Thus, KHNP has established and applied the measures of harmonic reduction by the CEDMCS, such as limiting the voltage harmonic distortion to less than 10%, which is described in IEEE Std 519.

  5. Enhancement of high-order harmonic generation in the presence of noise

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, I; Altun, Z [Department of Physics, Marmara University, 34722 Ziverbey, Istanbul (Turkey); Topcu, T, E-mail: ilhan.yavuz@marmara.edu.tr [Department of Physics, Auburn University, AL 36849-5311 (United States)

    2011-07-14

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  6. Enhancement of high-order harmonic generation in the presence of noise

    International Nuclear Information System (INIS)

    Yavuz, I; Altun, Z; Topcu, T

    2011-01-01

    We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.

  7. Contrast-enhanced harmonic endoscopic ultrasound

    DEFF Research Database (Denmark)

    Săftoiu, A; Dietrich, C F; Vilmann, P

    2012-01-01

    Second-generation intravenous blood-pool ultrasound contrast agents are increasingly used in endoscopic ultrasound (EUS) for characterization of microvascularization, differential diagnosis of benign and malignant focal lesions, and improving staging and guidance of therapeutic procedures. Although...... initially used as Doppler signal enhancers, second-generation microbubble contrast agents are now used with specific contrast harmonic imaging techniques, which benefit from the highly nonlinear behavior of the microbubbles. Contrast-specific modes based on multi-pulse technology are used to perform...... contrast-enhanced harmonic EUS based on a very low mechanical index (0.08 - 0.12). Quantification techniques based on dynamic contrast-enhanced ultrasound have been recommended for perfusion imaging and monitoring of anti-angiogenic treatment, mainly based on time-intensity curve analysis. Most...

  8. Automated multiscale morphometry of muscle disease from second harmonic generation microscopy using tensor-based image processing.

    Science.gov (United States)

    Garbe, Christoph S; Buttgereit, Andreas; Schürmann, Sebastian; Friedrich, Oliver

    2012-01-01

    Practically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field. They strongly challenge spatial resolution and require advanced imaging techniques and strategies for detecting morphological changes. We use a combined second harmonic generation (SHG) microscopy and automated image processing approach to quantify morphology in an animal model of inherited Duchenne muscular dystrophy (mdx mouse) with age. Multiphoton XYZ image stacks from tissue slices reveal vast morphological deviation in muscles from old mdx mice at different scales of cytoskeleton architecture: cell calibers are irregular, myofibrils within cells are twisted, and sarcomere lattice disruptions (detected as "verniers") are larger in number compared to samples from healthy mice. In young mdx mice, such alterations are only minor. The boundary-tensor approach, adapted and optimized for SHG data, is a suitable approach to allow quick quantitative morphometry in whole tissue slices. The overall detection performance of the automated algorithm compares very well with manual "by eye" detection, the latter being time consuming and prone to subjective errors. Our algorithm outperfoms manual detection by time with similar reliability. This approach will be an important prerequisite for the implementation of a clinical image databases to diagnose and monitor specific morphological alterations in chronic (muscle) diseases. © 2011 IEEE

  9. Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation

    Science.gov (United States)

    Vuillemin, Nelly; Mahou, Pierre; Débarre, Delphine; Gacoin, Thierry; Tharaux, Pierre-Louis; Schanne-Klein, Marie-Claire; Supatto, Willy; Beaurepaire, Emmanuel

    2016-07-01

    Second-harmonic generation (SHG) is the most specific label-free indicator of collagen accumulation in widespread pathologies such as fibrosis, and SHG-based measurements hold important potential for biomedical analyses. However, efficient collagen SHG scoring in histological slides is hampered by the limited depth-of-field of usual nonlinear microscopes relying on focused Gaussian beam excitation. In this work we analyze theoretically and experimentally the use of Bessel beam excitation to address this issue. Focused Bessel beams can provide an axially extended excitation volume for nonlinear microscopy while preserving lateral resolution. We show that shaping the focal volume has consequences on signal level and scattering directionality in the case of coherent signals (such as SHG) which significantly differ from the case of incoherent signals (two-photon excited fluorescence, 2PEF). We demonstrate extended-depth SHG-2PEF imaging of fibrotic mouse kidney histological slides. Finally, we show that Bessel beam excitation combined with spatial filtering of the harmonic light in wave vector space can be used to probe collagen accumulation more efficiently than the usual Gaussian excitation scheme. These results open the way to SHG-based histological diagnoses.

  10. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  11. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    International Nuclear Information System (INIS)

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-01-01

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  12. Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles

    International Nuclear Information System (INIS)

    Elouga Bom, L. B.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T.; Ganeev, R. A.

    2009-01-01

    We studied high-order harmonic generation from plasma that contains an abundance of indium oxide nanoparticles. We found that harmonics from nanoparticle-containing plasma are considerably more intense than from plasma produced on the In 2 O 3 bulk target, with high-order harmonic energy ranging from 6 μJ (for the ninth harmonic) to 1 μJ (for the 17th harmonic) in the former case. The harmonic cutoff from nanoparticles was at the 21st order, which is lower than that observed using indium oxide solid target. By comparing the harmonic spectra obtained from solid and nanoparticle indium oxide targets, we concluded that intense harmonics in the latter case are dominantly generated from neutral atoms of the In 2 O 3 nanoparticles

  13. Ellipticity and the offset angle of high harmonics generated by homonuclear diatomic molecules

    International Nuclear Information System (INIS)

    Odzak, S; Milosevic, D B

    2011-01-01

    In our recent paper (2010 Phys. Rev. A 82 023412) we introduced a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field and have shown that the nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we now develop a theoretical approach for calculating ellipticity and the offset angle of high harmonics. We show that the emitted harmonics generated by aligned molecules are elliptically polarized even if the applied field is linearly polarized. Using examples of N 2 , O 2 and Ar 2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment and explain them by the destructive two-centre interference. Taking into account that the aligned molecules are an anisotropic medium for high harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy, for both components of the T-matrix element. We propose that the measurement of the elliptic dichroism may reveal further information about the molecular structure.

  14. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  15. High-order harmonic generation in a capillary discharge

    Science.gov (United States)

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  16. Linking high harmonics from gases and solids.

    Science.gov (United States)

    Vampa, G; Hammond, T J; Thiré, N; Schmidt, B E; Légaré, F; McDonald, C R; Brabec, T; Corkum, P B

    2015-06-25

    When intense light interacts with an atomic gas, recollision between an ionizing electron and its parent ion creates high-order harmonics of the fundamental laser frequency. This sub-cycle effect generates coherent soft X-rays and attosecond pulses, and provides a means to image molecular orbitals. Recently, high harmonics have been generated from bulk crystals, but what mechanism dominates the emission remains uncertain. To resolve this issue, we adapt measurement methods from gas-phase research to solid zinc oxide driven by mid-infrared laser fields of 0.25 volts per ångström. We find that when we alter the generation process with a second-harmonic beam, the modified harmonic spectrum bears the signature of a generalized recollision between an electron and its associated hole. In addition, we find that solid-state high harmonics are perturbed by fields so weak that they are present in conventional electronic circuits, thus opening a route to integrate electronics with attosecond and high-harmonic technology. Future experiments will permit the band structure of a solid to be tomographically reconstructed.

  17. Generating transverse response explicitly from harmonic oscillators

    Science.gov (United States)

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  18. High-frequency harmonic imaging of the eye

    Science.gov (United States)

    Silverman, Ronald H.; Coleman, D. Jackson; Ketterling, Jeffrey A.; Lizzi, Frederic L.

    2005-04-01

    Purpose: Harmonic imaging has become a well-established technique for ultrasonic imaging at fundamental frequencies of 10 MHz or less. Ophthalmology has benefited from the use of fundamentals of 20 MHz to 50 MHz. Our aim was to explore the ability to generate harmonics for this frequency range, and to generate harmonic images of the eye. Methods: The presence of harmonics was determined in both water and bovine vitreous propagation media by pulse/echo and hydrophone at a series of increasing excitation pulse intensities and frequencies. Hydrophone measurements were made at the focal point and in the near- and far-fields of 20 MHz and 40 MHz transducers. Harmonic images of the anterior segment of the rabbit eye were obtained by a combination of analog filtering and digital post-processing. Results: Harmonics were generated nearly identically in both water and vitreous. Hydrophone measurements showed the maximum second harmonic to be -5 dB relative to the 35 MHz fundamental at the focus, while in pulse/echo the maximum harmonic amplitude was -15dB relative to the fundamental. Harmonics were absent in the near-field, but present in the far-field. Harmonic images of the eye showed improved resolution. Conclusion: Harmonics can be readily generated at very high frequencies, and at power levels compliant with FDA guidelines for ophthalmology. This technique may yield further improvements to the already impressive resolutions obtainable in this frequency range. Improved imaging of the macular region, in particular, may provide significant improvements in diagnosis of retinal disease.

  19. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    Science.gov (United States)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  20. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation

    International Nuclear Information System (INIS)

    Chiara Corsi; Angela Pirri; Emiliano Sali

    2006-01-01

    Complete test of publication follows. For low gas densities and negligible ionization, the so-called atomic dipole phase, connected with the electronic dynamics involved in the generation process, is the main source of phase modulation and incoherence of high-order harmonics. To accurately determine these laser-intensity-induced phase shifts is therefore of great importance, both for the possible spectroscopic applications of harmonics and for the controlled generation of attosecond pulses. In a semiclassical description, only two electronic trajectories contribute to generate plateau harmonics during each pump optical half-cycle. Electrons appearing in the continuum by tunnel ionization may follow two different quantum paths, namely a long (l) and a short (s) trajectory before recombination. According to the SFA approximation, the harmonic of q th order acquires a phase proportional to the electronic classical action, and simply given by: ψ 0 j (r,t) -α q j I(r,t) with j = l, s where α q j are non-linear phase coefficients, roughly proportional to the time that the originating electron spends in the continuum before recombination. The space and time variation of the laser intensity (I(r,t), causes just a little phase modulation for the s-trajectory harmonic component, while the l-trajectory component becomes strongly chirped and spatially defocused; this gives rise to two spatially-separated regions having different temporal coherence. Here we report the first direct measurement of such atomic dipole phase in the process of high-order harmonic generation. Differently from previous measurements based in the most natural way, i.e., by interferometry. Two phase-locked pump pulses generate two phase-locked harmonic pulses in two nearby positions in a gas jet; one of them is used as a fixed phase reference while the generating intensity of the other is varied. The shift of the XUV interference fringes observed in the far field then gives a direct estimate of the

  1. Comparative analysis of gyrotron backward-wave oscillators operating at different cyclotron harmonics

    International Nuclear Information System (INIS)

    Yeh, Y.S.; Chang, T.H.; Wu, T.S.

    2004-01-01

    A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO

  2. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  3. Evaluation of lymph node perfusion using continuous mode harmonic ultrasonography with a second-generation contrast agent.

    Science.gov (United States)

    Rubaltelli, Leopoldo; Khadivi, Yeganeh; Tregnaghi, Alberto; Stramare, Roberto; Ferro, Federica; Borsato, Simonetta; Fiocco, Ugo; Adami, Fausto; Rossi, Carlo Riccardo

    2004-06-01

    To evaluate the contribution of continuous mode contrast-enhanced harmonic ultrasonography (CE-HUS) with a second-generation contrast agent to the characterization of superficial lymphadenopathies with respect to conventional ultrasonographic techniques (B-mode and power Doppler). Fifty-six lymph nodes from 45 patients were studied both by conventional techniques and by CE-HUS. The dimensions, intranodal architecture, margins, and location of vessels were evaluated. Subsequently, all the lymph nodes were examined by CE-HUS, and enhancement of echogenicity was evaluated. The diagnoses obtained by means of fine-needle aspiration cytologic examination, surgical biopsy, or both were compared with those obtained by ultrasonography. Of the lymph nodes examined, 30 were benign and 26 were malignant (18 metastases and 8 non-Hodgkin lymphomas). The study using CE-HUS showed intense homogeneous enhancement in 28 of 30 reactive lymph nodes; perfusion defects in 17, of which 15 were neoplastic and 2 were inflammatory; intense but inhomogeneous speckled enhancement in the early arterial phase in 5 cases of lymphoma; and, last, scarce or absent intranodal enhancement in 4 metastases. The specificity, sensitivity, and accuracy of conventional techniques in differentiation between benign and malignant lymph nodes were 76%, 80%, and 78% versus 93%, 92%, and 92.8% for CE-HUS. The increase in correct diagnoses was significant (P = .05) when conventional ultrasonography was tested against CE-HUS. Superficial lymph nodes can be characterized as being neoplastic or benign with a high degree of diagnostic accuracy on the basis of the perfusion characteristics evaluated by CE-HUS. This technique has been shown to afford a higher degree of accuracy than currently obtainable by any other ultrasonographic technique.

  4. Comparative study of wavelets of the first and second generation

    International Nuclear Information System (INIS)

    Ososkov, G.A.; Shitov, A.B.; Stadnik, A.V.

    2001-01-01

    In order to compare efficiency a comprehensive set of benchmarking tests is developed, which is used to compare abilities of continuous wavelet transform of the vanishing momenta type as well as the second generation wavelets constructed on the basis of the lifting scheme. It is based on processing of various types of pure and contaminated harmonic signals, delta-function, study of the signal phase dependence and the gain-frequency characteristics. The results of a comparative multiscale analysis allow one to reveal advantages and flaws of the considered types of wavelets

  5. Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System

    Directory of Open Access Journals (Sweden)

    Shoudao Huang

    2016-09-01

    Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.

  6. Automatic computation and solution of generalized harmonic balance equations

    Science.gov (United States)

    Peyton Jones, J. C.; Yaser, K. S. A.; Stevenson, J.

    2018-02-01

    Generalized methods are presented for generating and solving the harmonic balance equations for a broad class of nonlinear differential or difference equations and for a general set of harmonics chosen by the user. In particular, a new algorithm for automatically generating the Jacobian of the balance equations enables efficient solution of these equations using continuation methods. Efficient numeric validation techniques are also presented, and the combined algorithm is applied to the analysis of dc, fundamental, second and third harmonic response of a nonlinear automotive damper.

  7. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  8. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    Science.gov (United States)

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  9. Four New Applications of Second-Order Generalized Integrator Quadrature Signal Generator

    DEFF Research Database (Denmark)

    Xin, Zhen; Zhao, Rende; Wang, Xiongfei

    2016-01-01

    The Second-Order Generalized Integrator (SOGI) was used as a building block for the SOGI-Quadrature-Signal Generator (SOGI-QSG) which has been widely used for grid synchronization, frequency estimation, and harmonic extraction over the past decade. This paper further investigates its integration...... and differentiation characteristics, with four new integrators and differentiators proposed. Theoretical analysis shows that the proposed SOGI-QSG based integration and differentiation methods can effectively overcome the drawbacks of the pure integrator and differentiator. The proposed four new methods...

  10. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers.

    Science.gov (United States)

    Claude, Charles

    1995-01-01

    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and

  11. A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer

    Science.gov (United States)

    Cheng, Yu-Hsiang; Lin, Chih-Feng; Shih, Ting-Fang; Sun, Chi-Kuang

    2013-03-01

    Oral cancer is one of the most frequently diagnosed human cancers and leading causes of cancer death all over the world, but the prognosis and overall survival rate are still poor because of delay in diagnosis and lack of early intervention. The failure of early diagnosis is due to insufficiency of proper diagnostic and screening tools and most patients are reluctant to undergo biopsy. Optical virtual biopsy techniques, for imaging cells and tissues at microscopic details capable of differentiating benign from malignant lesions non-invasively, are thus highly desirable. A novel multi-harmonic generation microscope, excited by a 1260 nm Cr:forsterite laser, with second and third harmonic signals demonstrating collagen fiber distribution and cell morphology in a sub-micron resolution, was developed for clinical use. To achieve invivo observation inside the human oral cavity, a small objective probe with a suction capability was carefully designed for patients' comfort and stability. By remotely changing its focus point, the same objective can image the mucosa surface with a low magnification, illuminated by side light-emitting diodes, with a charge-coupled device (CCD) for site location selection before the harmonic generation biopsy was applied. Furthermore, the slow galvanometer mirror and the fast resonant mirror provide a 30 fps frame rate for high-speed real-time observation and the z-motor of this system is triggered at the same rate to provide fast 3D scanning, again ensuring patients' comfort. Focusing on the special cytological and morphological changes of the oral epithelial cells, our preliminary result disclosed excellent consistency with traditional histopathology studies.

  12. Third-harmonic generation by a Gaussian electromagnetic beam in a magnetoplasma

    International Nuclear Information System (INIS)

    Sodha, M.S.; Umesh, G.

    1978-01-01

    This paper presents an investigation of nonlinear third-harmonic generation in a weakly collisional magnetoplasma due to simultaneous propagation of both the right and left circularly polarized modes, having a Gaussian intensity distribution; self-focusing has been taken into account. At moderate powers, the self-focusing is seen to enhance the harmonic output by two orders of magnitude; at high powers, propagation occurs in an almost uniform waveguide devoid of plasma, and the harmonic output is, consequently, decreased. In the vicinity (ω/sub c//ω=0.7) of the electron cyclotron resonance, the harmonic output of the extraordinary mode is enhanced by an order of magnitude; the present theory is not applicable at resonance

  13. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  14. Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider.

    Science.gov (United States)

    Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki

    2015-12-15

    We report the generation of five phase-locked harmonics, f₁:2403  nm, f₂:1201  nm, f₃:801  nm, f₄:600  nm, and f₅:480  nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.

  15. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    Science.gov (United States)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  16. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  17. Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography

    NARCIS (Netherlands)

    F. Sozzi (Fabiola); D. Poldermans (Don); J.J. Bax (Jeroen); A. Elhendy (Abdou); E.C. Vourvouri (Eleni); R. Valkema (Roelf); J. de Sutter; A.F.L. Schinkel (Arend); A. Borghetti; J.R.T.C. Roelandt (Jos)

    2001-01-01

    textabstractOBJECTIVE: To determine whether, compared with fundamental imaging, second harmonic imaging can improve the accuracy of dobutamine stress echocardiography for identifying viable myocardium, using nuclear imaging as a reference. PATIENTS: 30 patients with chronic left

  18. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    Science.gov (United States)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  19. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  20. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  1. Probing two-centre interference in molecular high harmonic generation

    International Nuclear Information System (INIS)

    Vozzi, C; Calegari, F; Benedetti, E; Berlasso, R; Sansone, G; Stagira, S; Nisoli, M; Altucci, C; Velotta, R; Torres, R; Heesel, E; Kajumba, N; Marangos, J P

    2006-01-01

    Two-centre interference in the recombination step of molecular high harmonic generation (HHG) has been probed in CO 2 and O 2 . We report the order dependence of characteristic enhancements or suppressions of high harmonic production in aligned samples of both molecules. In CO 2 , a robust destructive interference was seen consistent with the known separation of the oxygen atoms that are active in HHG. In O 2 , a harmonic enhancement was found indicating constructive interference. A good agreement was found with a simple two-centre interference model that includes the angular distribution function of the sample. The effective momentum of the electron wave was determined from the spectral position of these interferences. Ellipticity-dependent studies in CO 2 clearly show how the destructive interference can be 'switched off' by increasing the degree of ellipticity and thus shifting the effective resonance condition

  2. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    Science.gov (United States)

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  3. High-Harmonic Generation in Solids with and without Topological Edge States

    Science.gov (United States)

    Bauer, Dieter; Hansen, Kenneth K.

    2018-04-01

    High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.

  4. White light emission and second harmonic generation from secondary group participation (SGP) in a coordination network.

    Science.gov (United States)

    He, Jun; Zeller, Matthias; Hunter, Allen D; Xu, Zhengtao

    2012-01-25

    We describe a white emitting coordination network solid that can be conveniently applied as a thin film onto a commercial UV-LED lamp for practical white lighting applications. The solid state material was discovered in an exercise of exploring molecular building blocks equipped with secondary groups for fine-tuning the structures and properties of coordination nets. Specifically, CH(3)SCH(2)CH(2)S- and (S)-CH(3)(OH)CHCH(2)S- (2-hydroxylpropyl) were each attached as secondary groups to the 2,5- positions of 1,4-benzenedicarboxylic acid (bdc), and the resultant molecules (L1 and L2, respectively) were crystallized with Pb(II) into the topologically similar 3D nets of PbL1 and PbL2, both consisting of interlinked Pb-carboxyl chains. While the CH(3)S- groups in PbL1 are not bonded to the Pb(II) centers, the hydroxy groups in PbL2 participate in coordinating to Pb(II) and thus modify the bonding features around the Pb(II), but only to a slight and subtle degree (e.g., Pb-O distances 2.941-3.116 Å). Interestingly, the subtle change in structure significantly impacts the properties, i.e., while the photoluminescence of PbL1 is yellowish green, PbL2 features bright white emission. Also, the homochiral side group in PbL2 imparts significant second harmonic generation, in spite of its seemingly weak association with the main framework (the NLO-phore). In a broad perspective, this work showcases the idea of secondary group participation (SGP) in the construction of coordination networks, an idea that parallels that of hemilabile ligands in organometallics and points to an effective strategy in developing advanced functions in solid state framework materials. © 2011 American Chemical Society

  5. Third harmonic frequency generation by type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal.

    Science.gov (United States)

    Gapontsev, Valentin P; Tyrtyshnyy, Valentin A; Vershinin, Oleg I; Davydov, Boris L; Oulianov, Dmitri A

    2013-02-11

    We present a method of third harmonic generation at 355 nm by frequency mixing of fundamental and second harmonic radiation of an ytterbium nanosecond pulsed all-fiber laser in a type-I phase-matched LiB(3)O(5) (LBO) crystal where originally orthogonal polarization planes of the fundamental and second harmonic beams are aligned by an optically active quartz crystal. 8 W of ultraviolet light at 355 nm were achieved with 40% conversion efficiency from 1064 nm radiation. The conversion efficiency obtained in a type-I phase-matched LBO THG crystal was 1.6 times higher than the one achieved in a type-II LBO crystal at similar experimental conditions. In comparison to half-wave plates traditionally used for polarization alignment the optically active quartz crystal has much lower temperature dependence and requires simpler optical alignment.

  6. Second generation X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Fajardo, M.; Zeitoun, P.; Faivre, G.; Sebban, S.; Mocek, Tomáš; Hallou, A.; Aubert, D.; Balcou, P.; Burgy, F.; Douillet, D.; Mercere, P.; Morlens, A.S.; Rousseau, J. P.; Valentin, C.; Kazamias, S.; de Lachéze-Murel, G.; Lefrou, T.; Merdji, H.; Le Pape, S.; Ravet, M.F.; Delmotte, F.; Gautier, J.

    2006-01-01

    Roč. 99, 1-3 (2006), s. 142-152 ISSN 0022-4073 Grant - others:NEST-ADVENTURE FP6 EC(XE) project 012841 (TUIXS) Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * amplification * high harmonic generation * optical field ionization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.599, year: 2006

  7. Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma

    International Nuclear Information System (INIS)

    Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.

    2017-01-01

    Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear

  8. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    International Nuclear Information System (INIS)

    Huang, Z.

    2009-01-01

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp

  9. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    International Nuclear Information System (INIS)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; Manweiler, Jerry W.; Spence, Harlan E.

    2017-01-01

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

  10. Theory of third-harmonic generation using Bessel beams, and self-phase-matching

    International Nuclear Information System (INIS)

    Tewari, S.P.; Huang, H.; Boyd, R.W.

    1996-01-01

    Taking Bessel beams (J 0 beam) as a representation of a conical beam, and a slowly varying envelope approximation (SVEA) we obtain the results for the theory of third-harmonic generation from an atomic medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width of the efficiency curve of the third-harmonic generation observed in experiments. copyright 1996 The American Physical Society

  11. Angular non-critical phase-matching second-harmonic-generation characteristics of RECOB (RE = Tm, Y, Gd, Sm, Nd and La) crystals.

    Science.gov (United States)

    Liu, Yanqing; Wang, Zhengping; Yu, Fapeng; Qi, Hongwei; Yang, Xiuqin; Yu, Xiaoqiang; Zhao, Xian; Xu, Xinguang

    2017-05-15

    For the first time, the angular non-critical phase-matching (A-NCPM) second-harmonic-generation (SHG) characteristics of a family of monoclinic oxoborate crystals, RECa 4 O(BO 3 ) 3 (RECOB, RE = Tm, Y, Gd, Sm, Nd and La), were comprehensively investigated. For all of the realizable A-NCPM SHG styles, the feature parameters including PM wavelength, angular, wavelength and temperature acceptance bandwidths, have been derived from the theory and verified by the experiments. We discovered that the closer the ion radius between RE 3+ and Ca 2+ , the smaller the birefringence, and the better the A-NCPM SHG properties. As a result, for the Type-I SHG on Y-axis which has the largest effective nonlinear optical coefficient (d eff ) among the three realizable A-NCPM styles, NdCOB crystal presents the longest PM wavelength (927 nm), the largest angular acceptance bandwidth (Δθ⋅l 1/2 = 84.3 mrad·cm 1/2 , Δϕ⋅l 1/2 = 58.8 mrad·cm 1/2 ), and the broadest wavelength acceptance bandwidth (8.7 nm). This discovery will contribute to the design of new NCPM materials, at the same time the parameter formula will be helpful for the theoretical prediction of NCPM performance.

  12. Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy.

    Directory of Open Access Journals (Sweden)

    Markus Rehberg

    Full Text Available Second and Third Harmonic Generation (SHG and THG microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.

  13. Optical second-harmonic and reflectance-anisotropy spectroscopy of molecular adsorption at Si(001) step-edges

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Robert; Kwon, Jinhee; Downer, Michael C. [University of Texas at Austin, Department of Physics, Austin, TX 78712-1081 (United States)

    2008-07-01

    Reflectance-anisotropy spectroscopy (RAS) and spectroscopic second harmonic generation (SHG) are used to probe a single-domain reconstructed stepped Si(001) surface offcut 6 toward[110] before and after dissociative adsorption of H{sub 2} at the D{sub B} step edges. Preliminary analysis with a simplified bond hyperpolarizability model supports the mutual consistency of RA and SHG spectra and suggests that hydrogen termination redistributes oscillator strength from the chemically active step dangling bond into the step back bonds. The data provide a benchmark for first-principles calculations of the optical response of stepped Si surfaces to step edge molecular adsorption. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  15. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  16. A Compact Band-Pass Filter with High Selectivity and Second Harmonic Suppression.

    Science.gov (United States)

    Hadarig, Ramona Cosmina; de Cos Gomez, Maria Elena; Las-Heras, Fernando

    2013-12-03

    The design of a novel band-pass filter with narrow-band features based on an electromagnetic resonator at 6.4 GHz is presented. A prototype is manufactured and characterized in terms of transmission and reflection coefficient. The selective passband and suppression of the second harmonic make the filter suitable to be used in a C band frequency range for radar systems and satellite/terrestrial applications. To avoid substantial interference for this kind of applications, passive components with narrow band features and small dimensions are required. Between 3.6 GHz and 4.2 GHz the band-pass filter with harmonic suppression should have an attenuation of at least 35 dB, whereas for a passband, less than 10% is sufficient.

  17. Detection of second harmonic of phase dependence of superconducting current in Nb/Au/YBCO heterojunctions

    CERN Document Server

    Komissinskij, F V; Ilichev, E V; Ivanov, Z G

    2001-01-01

    The results of the experimental study on the current phase dependence (CPD) of the heterotransitions, consisting of the niobium and the YBa sub 2 Cu sub 3 O sub x (YBCO) film with an additional interlayer from gold (Nb/Au/YBCO) are presented. The CPD measurement is carried out through the radiofrequency superconducting quantum interferometer. The CPD second harmonic is determined in the Nb/Au/YBCO heterotransitions. Possible causes of its appearance are discussed within the frames of the d +- s combined symmetry of the YBCO order parameter. One of the causes of the CPD second harmonic appearance is the twinning of the YBCO films (001). The second cause of existing the anomalously high critical current consists in the availability of the Nb/Au boundary with the transparence of approx 10 sup - sup 1 in the Nb/Au/YBCO

  18. Gas jet structure influence on high harmonic generation

    OpenAIRE

    Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

    2011-01-01

    Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

  19. Second-harmonic scanning optical microscopy of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.

    2001-01-01

    Second-harmonic (SH) optical imaging of self-assembled InAlGaAs quantum dots (QD's) grown on a GaAs(0 0 1) substrate has been accomplished at room temperature by use of respectively a scanning far-field optical microscope in reflection mode and a scanning near-field optical microscope...... in transmission mode. In both cases the SH signal peaks at a pump wavelength of similar to 885 nm in correspondence to the maximum in the photoluminescence spectrum of the QD sample. SH near-field optical images exhibit spatial signal variations on a subwavelength scale that depend on the pump wavelength. We...

  20. Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas

    International Nuclear Information System (INIS)

    Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M

    2002-01-01

    The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities

  1. Quasi-phase-matching of only even-order high harmonics.

    Science.gov (United States)

    Diskin, Tzvi; Cohen, Oren

    2014-03-24

    High harmonic spectrum of a quasi-monochromatic pump that interacts with isotropic media consists of only odd-order harmonics. Addition of a secondary pump, e.g. a static field or the second harmonic of the primary pump, can results with generation of both odd and even harmonics of the primary pump. We propose a method for quasi-phase matching of only the even-order harmonics of the primary pump. We formulate a theory for this process and demonstrate it numerically. We also show that it leads to attosecond pulse trains with constant carrier envelop phase and high repetition rate.

  2. Variation of Rainfall in Three Nigerian Stations, Using harmonic ...

    African Journals Online (AJOL)

    This work is on the variation of rainfall using harmonic analysis for Portharcourt, Kano and Makurdi data, for the three stations the period of study covered 1977 to 2010, for which the time series plot, the amplitude, the first, second and third harmonics were generated. Portharcourt has a gently increasing trend with ...

  3. Application of mid-infrared pulses for quasi-phase-matching of high-order harmonics in silver plasma.

    Science.gov (United States)

    Ganeev, Rashid A; Husakou, Anton; Suzuki, Masayuki; Kuroda, Hiroto

    2016-02-22

    We demonstrate the quasi-phase-matching of a group of harmonics generated in Ag multi-jet plasma using tunable pulses in the region of 1160 - 1540 nm and their second harmonic emission. The numerical treatment of this effect includes microscopic description of the harmonic generation, propagation of the pump pulse, and the propagation of the generated harmonics. We obtained more than 30-fold growth of harmonics at the conditions of quasi-phase-matching in the region of 35 nm using eight-jet plasma compared with the case of imperforated plasma.

  4. High-order harmonic generation: A coherent ultrashort emission in the XUV range

    International Nuclear Information System (INIS)

    Salieres, Pascal; Hergott, Jean-Francois; Le Deroff, Laurent; Merdji, Hamed; Carre, Bertrand; Auguste, Thierry; Monot, Pascal; D'Oliveira, Pascal; Joyeux, Denis; Phalippou, Daniel

    2000-01-01

    We review the recent progress in theoretical and experimental understanding of harmonic generation by intense laser pulses. We present investigations on the spatial and temporal coherence properties of the harmonic emission, showing that they can be controlled. Finally, we give some examples of current applications of this XUV source, in particular in the diagnostic of dense plasmas

  5. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  6. Hybrid code simulation on mode conversion in the second harmonic ICRF heating

    International Nuclear Information System (INIS)

    Sakai, K.; Takeuchi, S.; Matsumoto, M.; Sugihara, R.

    1985-01-01

    ICRF second harmonic heating of a single-species plasma is studied by using a 1-1/2 dimensional quasi-neutral hybrid code. Mode conversion, transmission and reflection of the magnetosonic waves are confirmed, both for the high- and low-field-side excitations. The ion heating by waves propagating perpendicularly to the static magnetic field is also observed

  7. Second harmonic generation of frequency-locked pulsed dye laser for selective photoionization of T1-203 isotope

    International Nuclear Information System (INIS)

    Lim, Gwon; Jeong, Do Young; Ko, Kwang Hoon; Kim, Jae Woo; Kim, Taek Soo; Rho, Sipyo; Kim, Cheol Jung

    2003-01-01

    We have constructed the frequency-locked pulsed dye laser system. It is composed with a GIM-type oscillator and 3 stage longitudinally pumped amplifiers. The pump laser is the second harmonic of pulse Nd:YAG laser at the repetition rate of 6 kHz. Frequency-locking of dye laser oscillator is actively controlled by the feedback loop between a photoionization signal of T1-203 isotope and a wavelength tuning control. The tuning mirror rotates the order of micro degree per a step of step motor. Feedback system for frequency locking is operated with a PC-based control interface, including the data analysis of photoionization signals and the wavelength control using step pumping method for a medical application. Therefor, the dye laser has to be locked at 583.66 nm for SHG or BBO crystal. With the frequency-locking system, the photoionization experiment has been done for more than 10 hours.

  8. High harmonic generation in H and HD by intense femtosecond ...

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... We have argued that for these conditions the harmonic generation due to the transitions in the electronic ... (XUV) or soft X-ray range and generation of very high-energy attosecond (as) pulses have been widely ..... [3] Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994).

  9. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  10. Analysis of carrier transport and carrier trapping in organic diodes with polyimide-6,13-Bis(triisopropylsilylethynyl)pentacene double-layer by charge modulation spectroscopy and optical second harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Applied Physics, Institute of Nanosensor and Biotechnology, Dankook University, Jukjeon-dong, Gyeonggi-do 448-701 (Korea, Republic of); Taguchi, Dai, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp; Iwamoto, Mitsumasa, E-mail: elim@dankook.ac.kr, E-mail: taguchi.d.aa@m.titech.ac.jp, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-08-18

    We studied the carrier transport and carrier trapping in indium tin oxide/polyimide (PI)/6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/Au diodes by using charge modulation spectroscopy (CMS) and time-resolved electric field induced optical second harmonic generation (TR-EFISHG) measurements. TR-EFISHG directly probes the spatial carrier behaviors in the diodes, and CMS is useful in explaining the carrier motion with respect to energy. The results clearly indicate that the injected carriers move across TIPS-pentacene thorough the molecular energy states of TIPS-pentacene and accumulate at the PI/TIPS-pentacene interface. However, some carriers are trapped in the PI layers. These findings take into account the capacitance-voltage and current-voltage characteristics of the diodes.

  11. Harmonic Structure Predicts the Enjoyment of Uplifting Trance Music.

    Science.gov (United States)

    Agres, Kat; Herremans, Dorien; Bigo, Louis; Conklin, Darrell

    2016-01-01

    An empirical investigation of how local harmonic structures (e.g., chord progressions) contribute to the experience and enjoyment of uplifting trance (UT) music is presented. The connection between rhythmic and percussive elements and resulting trance-like states has been highlighted by musicologists, but no research, to our knowledge, has explored whether repeated harmonic elements influence affective responses in listeners of trance music. Two alternative hypotheses are discussed, the first highlighting the direct relationship between repetition/complexity and enjoyment, and the second based on the theoretical inverted-U relationship described by the Wundt curve. We investigate the connection between harmonic structure and subjective enjoyment through interdisciplinary behavioral and computational methods: First we discuss an experiment in which listeners provided enjoyment ratings for computer-generated UT anthems with varying levels of harmonic repetition and complexity. The anthems were generated using a statistical model trained on a corpus of 100 uplifting trance anthems created for this purpose, and harmonic structure was constrained by imposing particular repetition structures (semiotic patterns defining the order of chords in the sequence) on a professional UT music production template. Second, the relationship between harmonic structure and enjoyment is further explored using two computational approaches, one based on average Information Content, and another that measures average tonal tension between chords. The results of the listening experiment indicate that harmonic repetition does in fact contribute to the enjoyment of uplifting trance music. More compelling evidence was found for the second hypothesis discussed above, however some maximally repetitive structures were also preferred. Both computational models provide evidence for a Wundt-type relationship between complexity and enjoyment. By systematically manipulating the structure of chord

  12. Selective suppression of high-order harmonics within phase-matched spectral regions.

    Science.gov (United States)

    Lerner, Gavriel; Diskin, Tzvi; Neufeld, Ofer; Kfir, Ofer; Cohen, Oren

    2017-04-01

    Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

  13. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  14. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    Science.gov (United States)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  15. Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial

    Science.gov (United States)

    Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.

    2012-09-01

    We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.

  16. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  17. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    2014-07-11

    Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...

  18. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.

  19. Suppression of the Second Harmonic Subgroup Injected by an AC EAF: Design Considerations and Performance Estimation of a Shunt APF

    Directory of Open Access Journals (Sweden)

    Emre Durna

    2018-04-01

    Full Text Available This paper proposes a design methodology for an active power filter (APF system to suppress the second harmonic subgroup injected by an AC electric arc furnace (EAF to the utility grid. The APF system is composed of identical parallel units connected to the utility grid via a specially-designed coupling transformer. Each APF converter is a three-phase three-wire two-level voltage source converter (VSC. The number of parallel APF units, coupling transformer MVA rating, and turns ratio are optimized in the view of the ratings of commercially-available high voltage (HV IGBTs. In this research work, line current waveforms sampled at 25.6-kS/s on the medium voltage (MV side of a 65-MVA EAF transformer are then used to extract the second harmonic subgroup, 95-, 100-, and 105-Hz current components, by multiple synchronous reference frame (MSRF analysis, which was previously proposed to decompose EAF current interharmonics and harmonics in real-time. By summing up this digital data of the second harmonic subgroup, the reference current signal for the APF system is produced in real-time. A detailed model of the APF system is then run on EMTDC/PSCAD to follow the produced reference current signal according to hysteresis band control philosophy. The simulation results show that the proposed APF system can successfully suppress the second harmonic subgroup of an AC EAF.

  20. Dynamic and structural studies of molecular or atomic systems through the generation of high order harmonics

    International Nuclear Information System (INIS)

    Higuet, J.

    2010-10-01

    High harmonic generation is a well known phenomenon explained by a three step model: because of the high intensity field generated by an ultrashort laser pulse, an atom or a molecule can be tunnel ionized. The ejected electron is then accelerated by the intense electric field, and eventually can recombine on its parent ion, leading to the emission of a XUV photon. Because of the generating process in itself, this light source is a promising candidate to probe the electronic structure of atoms and molecules, with an atto-second/sub-nanometer potential resolution (1 as=10 -18 s). In this work, we have studied the sensitivity of the emitted light (in terms of amplitude, but also phase and polarization) towards the electronic structure of the generating medium. We have first worked on atomic medium, then on molecules (N 2 , CO 2 , O 2 ). Comparing the experimental results with numerical simulations shows the necessity to model finely the generation process and to go beyond commonly used approximations. We have also shown the possibility to perform high harmonic spectroscopy in order to measure dynamics of complex molecules, such as Nitrogen Dioxide (NO 2 ). This technic has obtained complementary results compared to classical spectroscopy and has revealed dynamics of the electronic wave packet along a conical intersection. In this experiment, we have adapted conventional optical spectroscopy technic to the XUV spectral area, which significantly improved the signal over noise ratio. (author)

  1. Relaxor ferroelectricity, ferromagnetic and optical second harmonic properties in lanthanum lithium niobate (La0.05Li0.85NbO3) nanoparticles

    Science.gov (United States)

    Díaz-Moreno, Carlos A.; Ding, Yu; Li, Chunqiang; Portelles, Jorge; Heiras, J.; Hurtado-Macias, A.; Farias, J. R.; González-Hernández, J.; Yacamán, M. J.; López, Jorge

    2017-07-01

    Relaxor ferroelectricity, ferromagnetism and Second Harmonic Generation properties were founded and studied as a function of a reduction heat treatment at 650 °C in a Ar-5%H2 atmosphere in stoichiometric La0.05Li0.85NbO3 nanoparticles of 40 nm. A diffuse dielectric anomaly related with relaxor behavior from 25 °C to 800 °C in a frequency range from 100 Hz to 1 MHz was founded. It also shows ferromagnetic anhysterestic type and ferroelectric hysteresis loops at room temperature with a magnetic spin remnant of 2.5 × 10-3 emu/g and polarization saturation of 0.235 μC/cm2, remnant polarization of 0.141 μC/cm2, coercive field of 1.35 kV/cm, respectively. It shows very good second harmonic generation signal at 450 nm and 500 nm. High Resolution Transmission Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy, indicate an ABO3 perovskite structure, new electronic binding energy structure for La (5s, 4d), Li (1s), Nb (4s, 3d, 4p) and oxygen (1s, 2s) and new vibrations modes on octahedron NbO6 related to multiferroic single phase nanoparticles, respectively.

  2. Relaxor ferroelectricity, ferromagnetic and optical second harmonic properties in lanthanum lithium niobate (La0.05Li0.85NbO3) nanoparticles

    International Nuclear Information System (INIS)

    Díaz-Moreno, Carlos A.; Ding, Yu; Li, Chunqiang; Portelles, Jorge; Heiras, J.; Hurtado-Macias, A.; Farias, J.R.; González-Hernández, J.; Yacamán, M.J.

    2017-01-01

    Relaxor ferroelectricity, ferromagnetism and Second Harmonic Generation properties were founded and studied as a function of a reduction heat treatment at 650 °C in a Ar-5%H 2 atmosphere in stoichiometric La 0.05 Li 0.85 NbO 3 nanoparticles of 40 nm. A diffuse dielectric anomaly related with relaxor behavior from 25 °C to 800 °C in a frequency range from 100 Hz to 1 MHz was founded. It also shows ferromagnetic anhysterestic type and ferroelectric hysteresis loops at room temperature with a magnetic spin remnant of 2.5 × 10 −3 emu/g and polarization saturation of 0.235 μC/cm 2 , remnant polarization of 0.141 μC/cm 2 , coercive field of 1.35 kV/cm, respectively. It shows very good second harmonic generation signal at 450 nm and 500 nm. High Resolution Transmission Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy, indicate an ABO 3 perovskite structure, new electronic binding energy structure for La (5s, 4d), Li (1s), Nb (4s, 3d, 4p) and oxygen (1s, 2s) and new vibrations modes on octahedron NbO 6 related to multiferroic single phase nanoparticles, respectively.

  3. Accurate calculation of high harmonics generated by relativistic Thomson scattering

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2008-01-01

    The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays

  4. Generation of high harmonic free electron laser with phase-merging effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika; Zhao, Zhouyu

    2017-03-01

    An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.

  5. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  6. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhemin [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Technology, Tsinghua University, Beijing 100084 (China); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2016-04-28

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  7. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    Science.gov (United States)

    Shi, Zhemin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  8. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  9. Hue shifts produced by temporal asymmetries in chromatic signals depend on the alignment of the first and second harmonics.

    Science.gov (United States)

    Stockman, Andrew; Henning, G Bruce; West, Peter; Rider, Andrew T; Ripamonti, Caterina

    2017-08-01

    When M- or L-cone-isolating sawtooth waveforms flicker at frequencies between 4 and 13.3 Hz, there is a mean hue shift in the direction of the shallower sawtooth slope. Here, we investigate how this shift depends on the alignment of the first and second harmonics of sawtooth-like waveforms. Below 4 Hz, observers can follow hue variations caused by both harmonics, and reliably match reddish and greenish excursions. At higher frequencies, however, the hue variations appear as chromatic flicker superimposed on a steady light, the mean hue of which varies with second-harmonic alignment. Observers can match this mean hue against a variable-duty-cycle rectangular waveform and, separately, set the alignment at which the mean hue flips between reddish and greenish. The maximum hue shifts were approximately frequency independent and occurred when the peaks or troughs of the first and second harmonics roughly aligned at the visual input-consistent with the hue shift's being caused by an early instantaneous nonlinearity that saturates larger hue excursions. These predictions, however, ignore phase delays introduced within the chromatic pathway between its input and the nonlinearity that produces the hue shifts. If the nonlinearity follows the substantial filtering implied by the chromatic temporal contrast-sensitivity function, phase delays will alter the alignment of the first and second harmonics such that at the nonlinearity, the waveforms that produce the maximum hue shifts might well be those with the largest differences in rising and falling slopes-consistent with the hue shift's being caused by a central nonlinearity that limits the rate of hue change.

  10. Third-harmonic generation for photoionization studies

    International Nuclear Information System (INIS)

    Compton, R.N.; Miller, J.C.

    1982-01-01

    Our group at Oak Ridge National Laboratory (ORNL) has studied resonantly enhanced multiphoton ionization (MPI) of alkali atoms, rare gases, and small molecules using tightly focused dye laser beams (power densities of 10 9 to 10 11 W/cm 2 ). In the case of alkali atoms, some ionization signals appear as a result of gas density effects (dimers or quasi-collisions) as previously discovered by Collins and his collaborators. These have been termed hybrid-resonances. By contrast, in the case of the rare gases, certain resonance ionization signals disappear with increasing gas density. The disappearance of the ionization signals in the rare gases is due to the interference of excitation of the third-harmonic and fundamental laser beam. At low pressure (10 -7 to 10 -5 torr) we have studied (1) mass spectra, (2) kinetic energy released in ionic fragmentation, and (3) photoelectron kinetic energy spectra using time-of-flight mass analysis and a 160 0 spherical sector electrostatic energy analyzer. These experiments, combined with two-color dye laser experiments, can often offer an unambiguous and detailed description of the MPI and subsequent fragmentation events. The major part of this talk will be devoted to the production and the use of vacuum ultraviolet (VUV) light from third-harmonic generation (THG) in the rare gases

  11. On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam

    Science.gov (United States)

    Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon

    2018-05-01

    We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.

  12. Third harmonic generation of shear horizontal guided waves propagation in plate-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-04-15

    The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.

  13. Effect of second harmonic in pulse-width-modulation-based DAC for feedback of digital fluxgate magnetometer

    Science.gov (United States)

    Belyayev, Serhiy; Ivchenko, Nickolay

    2018-04-01

    Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.

  14. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  15. High gain harmonic generation free electron lasers enhanced by pseudoenergy bands

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2017-08-01

    Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.

  16. Relative strength of second harmonic and 3/2 omega emissions from long-scale-length laser produced plasmas

    International Nuclear Information System (INIS)

    Sinha, B.K.; Kumbhare, S.R.

    1988-01-01

    Experiments were conducted on the planar slab targets of carbon, aluminum, and copper, using a 1.0641 μm laser, at laser intensities varying from 2 x 10/sup 12/ to 1 x 10/sup 14/ W/cm/sup 2/. The laser had a fluorescent linewidth of 4.5 A. Spectral profiles of parametrically modulated second harmonic as well as 3/2/ω/sub 0/ emissions have been measured for the long-scale-length plasmas so generated. Relative strengths of three emissions with respect to peak signal intensity and spectral energy content as a function of laser intensity are graphically reported. Results are discussed on the basis of two plasmon and parametric decay instabilities

  17. Determination of the spectral dependence of reduced scattering and quantitative second-harmonic generation imaging for detection of fibrillary changes in ovarian cancer

    Science.gov (United States)

    Campbell, Kirby R.; Tilbury, Karissa B.; Campagnola, Paul J.

    2015-03-01

    Here, we examine ovarian cancer extracellular matrix (ECM) modification by measuring the wavelength dependence of optical scattering measurements and quantitative second-harmonic generation (SHG) imaging metrics in the range of 800-1100 nm in order to determine fibrillary changes in ex vivo normal ovary, type I, and type II ovarian cancer. Mass fractals of the collagen fiber structure is analyzed based on a power law correlation function using spectral dependence measurements of the reduced scattering coefficient μs' where the mass fractal dimension is related to the power. Values of μs' are measured using independent methods of determining the values of μs and g by on-axis attenuation measurements using the Beer-Lambert Law and by fitting the angular distribution of scattering to the Henyey-Greenstein phase function, respectively. Quantitativespectral SHG imaging on the same tissues determines FSHG/BSHG creation ratios related to size and harmonophore distributions. Both techniques probe fibril packing order, but the optical scattering probes structures of sizes from about 50-2000 nm where SHG imaging - although only able to resolve individual fibers - builds contrast from the assembly of fibrils. Our findings suggest that type I ovarian tumor structure has the most ordered collagen fibers followed by normal ovary then type II tumors showing the least order.

  18. Ellipticity dependence of high harmonics generated using 400 nm driving lasers

    Science.gov (United States)

    Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu

    2011-05-01

    High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  19. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    Science.gov (United States)

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  20. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  1. High-order harmonic generation in clusters irradiated by an infrared laser field of moderate intensity

    International Nuclear Information System (INIS)

    Zaretsky, D F; Korneev, Ph; Becker, W

    2010-01-01

    Extending the Lewenstein model of high-order harmonic generation (HHG) in a laser-irradiated atom, a model of HHG in a cluster is formulated. The constituent atoms of the cluster are assumed to be partly ionized. An electron freed through tunnelling may recombine either with its parent ion or with another ion in the vicinity. Harmonics due to the former process are coherent within the same cluster and may be coherent between different clusters, while harmonics due to the latter process are incoherent. Depending on the density of available ions, the incoherent mechanism may dominate the total harmonic yield, and the harmonic spectrum, which extends to higher energies, has a less distinct cutoff and an enhanced low-energy part.

  2. Analysis of interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide diodes by electroluminescence spectroscopy and electric-field-induced optical second-harmonic generation measurement

    Science.gov (United States)

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-03-01

    By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.

  3. Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2018-03-01

    Generation of high harmonics in a monolayer graphene initiated by a strong coherent radiation field, taking into account electron-electron Coulomb interaction, is investigated. A microscopic theory describing the nonlinear optical response of graphene is developed. The Coulomb interaction of electrons is treated in the scope of dynamic Hartree-Fock approximation. The closed set of integrodifferential equations for the single-particle density matrix of a graphene quantum structure is solved numerically. The obtained solutions show the significance of many-body Coulomb interaction on the high harmonic generation process in graphene.

  4. Nonlinear processes in laser-produced dense plasma (observation of the fractional harmonics)

    International Nuclear Information System (INIS)

    Lyu, K.S.

    1988-01-01

    One of the main issues of laser plasma physics interactions is harmonic generation. The harmonic emission spectrum provides clues as to which non-linear processes take place in the plasma. Several effects contribute to a given line as judged from the complexity of the actual spectra. Unfolding of them has not been done satisfactorily yet. Harmonic lines with half integer or integer orders have been observed, but the physics are far from complete. In this dissertation research, we observed the usual second harmonic generation and a set of fractional harmonics which we believe have been observed for the first time in plasma physics. The plasma was produced by a high power laser and we have characterized its properties from the analysis of the radiation spectra, including the harmonic lines, as measured using the methods of transient spectroscopy. We produced the plasma with a Nd:glass laser which had a 65 nsec pulse width (FWHM) with a total energy of up to 6 Joules. The targets were steel alloys, copper, and aluminum. The harmonic generation from the plasma with a planar metal target was not strong. But, it became stronger when we made a dead hole (cavity) at the laser spot on the target surface. The second harmonic line appears first before the time of the peak of laser pulse. The fractional harmonics, which are related to the laser wavelength by rational number other than integers or half integers, appear near or after the time of the laser peak and weaker in UV wavelength range but stronger if some atomic emission line are near by. To understand the plasma evolution better, we developed computer simulation codes. The codes contain all relevant processes necessary to compute the plasma evolution

  5. Second Harmonic Generation, Electrooptical Pockels Effect, and Static First-Order Hyperpolarizabilities of 2,2′-Bithiophene Conformers: An HF, MP2, and DFT Theoretical Investigation

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available The static and dynamic electronic (hyperpolarizabilities of the equilibrium conformations of 2,2′-bithiophene (anti-gauche and syn-gauche were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF, Møller-Plesset second-order perturbation theory (MP2, and density functional theory methods. The properties were evaluated for the second harmonic generation (SHG, and electrooptical Pockels effect (EOPE nonlinear optical processes at the typical λ=1064 nm of the Nd:YAG laser. The anti-gauche form characterized by the S–C2–C2′–S dihedral angle of 137° (MP2/6-311G** is the global minimum on the potential energy surface, whereas the syn-gauche rotamer (S–C2–C2′–S = 48°, MP2/6-311G** lies ca. 0.5 kcal/mol above the anti-gauche form. The structural properties of the gauche structures are rather similar to each other. The MP2 electron correlation effects are dramatic for the first-order hyperpolarizabilities of the 2,2′-bithiophenes, decreasing the HF values by ca. a factor of three. When passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more intense SHG and EOPE signals.

  6. Enhancement in the structure quality of ZnO nanorods by diluted Co dopants: Analyses via optical second harmonic generation

    International Nuclear Information System (INIS)

    Liu, Chung-Wei; Hsiao, Chih-Hung; Chang, Shoou-Jinn; Brahma, Sanjaya; Chang, Feng Ming; Wang, Peng Han; Lo, Kuang-Yao

    2015-01-01

    We report a systematic study about the effect of cobalt concentration in the growth solution over the crystallization, growth, and optical properties of hydrothermally synthesized Zn 1−x Co x O [0 ≤ x ≤ 0.40, x is the weight (wt.) % of Co in the growth solution] nanorods. Dilute Co concentration of 1 wt. % in the growth solution enhances the bulk crystal quality of ZnO nanorods, and high wt. % leads to distortion in the ZnO lattice that depresses the crystallization, growth as well as the surface structure quality of ZnO. Although, Co concentration in the growth solution varies from 1 to 40 wt. %, the real doping concentration is limited to 0.28 at. % that is due to the low growth temperature of 80 °C. The enhancement in the crystal quality of ZnO nanorods at dilute Co concentration in the solution is due to the strain relaxation that is significantly higher for ZnO nanorods prepared without, and with high wt. % of Co in the growth solution. Second harmonic generation is used to investigate the net dipole distribution from these coatings, which provides detailed information about bulk and surface structure quality of ZnO nanorods at the same time. High quality ZnO nanorods are fabricated by a low-temperature (80 °C) hydrothermal synthesis method, and no post synthesis treatment is needed for further crystallization. Therefore, this method is advantageous for the growth of high quality ZnO coatings on plastic substrates that may lead toward its application in flexible electronics

  7. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  8. Third harmonic generation of high power far infrared radiation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Urban, M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-04-01

    We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.

  9. Third harmonic generation of high power far infrared radiation in semiconductors

    International Nuclear Information System (INIS)

    Urban, M.

    1996-04-01

    In this work we investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 μm and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 μm laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. (author) figs

  10. Direct detection of second harmonic and its use in alanine/EPR dosimetry; Deteccao direta do segundo harmonico e seu uso na dosimetria alanina/RPE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Guzman, C.S.; Graeff, C.F.O.; Baffa, O. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica]. E-mail: chen@dfm.ffclrp.usp.br

    2001-07-01

    In this work, the possible use of the second harmonic EPR signal from irradiated alanine for low radiation dose ({approx}1 Gy) was explored, aiming applications to HDR brachytherapy and teletherapy. The second harmonic signal was directly detected after overmodulation. A batch of DL-alanine/paraffin small cylindrical pellets was made. A VARIAN E-4 X-Band EPR spectrometer with optimized operation parameters like microwave power and modulation amplitude to obtain a signal with the highest amplitude was used. The modulation frequency and modulation amplitude were 100 kHz and 1.25 mT (to overmodulate the signal) respectively. The second harmonic signal was directly detected at twice the modulation frequency. One group of dosimeters was irradiated with a {sup 192} Ir brachytherapy source and the other in a 10 MeV X-rays linear accelerator, both group at a dose range: 0.5 - 15 Gy. The second harmonic signal showed better resolution than the first harmonic one making possible a more easy localization of the signal. Moreover, for both types of radiation, the dose-response curve showed a good linear behavior for the dose range indicated. (author)

  11. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  12. Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance

    Science.gov (United States)

    Torrezan, Antonio C.; Han, Seong-Tae; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Griffin, Robert G.; Barnes, Alexander B.

    2012-01-01

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic resonance experiments with sensitivity enhanced by dynamic nuclear polarization. The gyrotron operates in the whispering-gallery mode TE11,2 and has generated 16 W of output power with a 13-kV 100-mA electron beam. The start oscillation current measured over a range of magnetic field values is in good agreement with theoretical start currents obtained from linear theory for successive high-order axial modes TE11,2,q. The minimum start current is 27 mA. Power and frequency tuning measurements as a function of the electron cyclotron frequency have also been carried out. A smooth frequency tuning range of 1 GHz was obtained for the operating second-harmonic mode either by magnetic field tuning or beam voltage tuning. Long-term CW operation was evaluated during an uninterrupted period of 48 h, where the gyrotron output power and frequency were kept stable to within ±0.7% and ±6 ppm, respectively, by a computerized control system. Proper operation of an internal quasi-optical mode converter implemented to transform the operating whispering-gallery mode to a Gaussian-like beam was also verified. Based on the images of the gyrotron output beam taken with a pyroelectric camera, the Gaussian-like mode content of the output beam was computed to be 92% with an ellipticity of 12%. PMID:23761938

  13. Influence of micro- and macro-processes on the high-order harmonic generation in laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ganeev, R. A., E-mail: rashid-ganeev@mail.ru [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495 (Japan); Physical Department, Voronezh State University, Voronezh 394006 (Russian Federation)

    2016-03-21

    We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.

  14. Third harmonic generation by Bloch-oscillating electrons in a quasioptical array

    International Nuclear Information System (INIS)

    Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.

    1999-01-01

    We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics

  15. High order harmonic generation in noble gases using plasmonic field enhancement

    International Nuclear Information System (INIS)

    Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej

    2013-01-01

    Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2011-01-01

    By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.

  17. Anharmonic phonons and second-order phase-transitions by the stochastic self-consistent harmonic approximation

    Science.gov (United States)

    Mauri, Francesco

    Anharmonic effects can generally be treated within perturbation theory. Such an approach breaks down when the harmonic solution is dynamically unstable or when the anharmonic corrections of the phonon energies are larger than the harmonic frequencies themselves. This situation occurs near lattice-related second-order phase-transitions such as charge-density-wave (CDW) or ferroelectric instabilities or in H-containing materials, where the large zero-point motion of the protons results in a violation of the harmonic approximation. Interestingly, even in these cases, phonons can be observed, measured, and used to model transport properties. In order to treat such cases, we developed a stochastic implementation of the self-consistent harmonic approximation valid to treat anharmonicity in the nonperturbative regime and to obtain, from first-principles, the structural, thermodynamic and vibrational properties of strongly anharmonic systems. I will present applications to the ferroelectric transitions in SnTe, to the CWD transitions in NbS2 and NbSe2 (in bulk and monolayer) and to the hydrogen-bond symmetrization transition in the superconducting hydrogen sulfide system, that exhibits the highest Tc reported for any superconductor so far. In all cases we are able to predict the transition temperature (pressure) and the evolution of phonons with temperature (pressure). This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore1.

  18. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses

    International Nuclear Information System (INIS)

    Akoezbek, N.; Iwasaki, A.; Chin, S.L.; Becker, A.; Scalora, M.; Bowden, C.M.

    2002-01-01

    It is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch. A rich spatiotemporal propagation dynamics of the third-harmonic pulse is predicted. Potential applications of this phenomenon to other parametric processes are discussed

  19. Relaxor ferroelectricity, ferromagnetic and optical second harmonic properties in lanthanum lithium niobate (La{sub 0.05}Li{sub 0.85}NbO{sub 3}) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Moreno, Carlos A., E-mail: cdiazmoreno@utep.edu [Department of Physics of University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968 (United States); Ding, Yu; Li, Chunqiang [Department of Physics of University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968 (United States); Portelles, Jorge [Facultad de Física, Universidad de La Habana, San lázaro y L, 10400 (Cuba); Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, km 107 Carretera Tijuana-Ensenada, Ensenada, B.C. 22860 (Mexico); Heiras, J. [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, km 107 Carretera Tijuana-Ensenada, Ensenada, B.C. 22860 (Mexico); Hurtado-Macias, A. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua, C.P. 31109 (Mexico); Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Farias, J.R. [Instituto de Ingeniería y Tecnología, UACJ, Avenida del Charro #450 N. Cd. Juárez, Chihuahua, C.P. 32310 (Mexico); González-Hernández, J. [Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro 76130, Qro (Mexico); Yacamán, M.J. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); and others

    2017-07-01

    Relaxor ferroelectricity, ferromagnetism and Second Harmonic Generation properties were founded and studied as a function of a reduction heat treatment at 650 °C in a Ar-5%H{sub 2} atmosphere in stoichiometric La{sub 0.05}Li{sub 0.85}NbO{sub 3} nanoparticles of 40 nm. A diffuse dielectric anomaly related with relaxor behavior from 25 °C to 800 °C in a frequency range from 100 Hz to 1 MHz was founded. It also shows ferromagnetic anhysterestic type and ferroelectric hysteresis loops at room temperature with a magnetic spin remnant of 2.5 × 10{sup −3} emu/g and polarization saturation of 0.235 μC/cm{sup 2}, remnant polarization of 0.141 μC/cm{sup 2}, coercive field of 1.35 kV/cm, respectively. It shows very good second harmonic generation signal at 450 nm and 500 nm. High Resolution Transmission Electron Microscopy, X-ray Photoelectron Spectroscopy and Raman spectroscopy, indicate an ABO{sub 3} perovskite structure, new electronic binding energy structure for La (5s, 4d), Li (1s), Nb (4s, 3d, 4p) and oxygen (1s, 2s) and new vibrations modes on octahedron NbO{sub 6} related to multiferroic single phase nanoparticles, respectively.

  20. Optimal conditions for the generation of the third harmonic of focused radiation in a self-interaction regime

    International Nuclear Information System (INIS)

    Kulagin, I A; Usmanov, T

    1998-01-01

    A method developed for the analysis of the interaction of wave beams in a self-interaction regime is used to determine the changes in the optimal conditions for third-harmonic generation with changes in the degree of focusing of the fundamental-frequency radiation in isotropic media. Conditions under which a redistribution of the intensities and phases of the interacting wave beams reduces the efficiency of third-harmonic generation are identified. It is shown that, under strong focusing conditions, there may be additional extrema in the dependence of the intensity of the harmonic on the density of the medium. (nonlinear optical phenomena)