WorldWideScience

Sample records for seasonal spring peaks

  1. Seasonal spring peaks of suicide in victims with and without prior history of hospitalization for mood disorders.

    Science.gov (United States)

    Postolache, Teodor T; Mortensen, Preben B; Tonelli, Leonardo H; Jiao, Xiaolong; Frangakis, Constantin; Soriano, Joseph J; Qin, Ping

    2010-02-01

    Seasonal spring peaks of suicide are highly replicated, but their origin is poorly understood. As the peak of suicide in spring could be a consequence of decompensation of mood disorders in spring, we hypothesized that prior history of mood disorders is predictively associated with suicide in spring. We analyzed the monthly rates of suicide based upon all 37,987 suicide cases in the Danish Cause of Death Registry from 1970 to 2001. History of mood disorder was obtained from the Danish Psychiatric Central Register and socioeconomical data from the Integrated Database for Labour Market Research. The monthly rate ratio of suicide relative to December was estimated using a Poisson regression. Seasonality of suicide between individuals with versus without hospitalization for mood disorders was compared using conditional logistic regression analyses with adjustment for income, marital status, place of residence, and method of suicide. A statistically significant spring peak in suicide was observed in both groups. A history of mood disorders was associated with an increased risk of suicide in spring (for males: RR=1.18, 95% CI 1.07-1.31; for females: RR=1.20, 95% CI 1.10-1.32). History of axis II disorders was not analyzed. Danish socioeconomical realities have only limited generalizability. The results support the need to further investigate if exacerbation of mood disorders in spring triggers seasonal peaks of suicide. Identifying triggers for seasonal spring peaks in suicide may lead to uncovering novel risk factors and therapeutic targets for suicide prevention. 2009 Elsevier B.V. All rights reserved.

  2. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems.

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M; Ooi, Ying W

    2018-05-01

    Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO 2 concentration and δ 13 C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non-evergreen-dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring-ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982-2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO 2 concentration and δ 13 C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (p POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring-ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget. © 2017

  3. From Fall to Spring, or Spring to Fall? Seasonal Cholera Transmission Cycles and Implications for Climate Change

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Huq, A.; Colwell, R.; Islam, S.; WE Reason

    2010-12-01

    Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and the annual recurrence of this infectious disease in endemic areas continues to be of considerable interest to scientists and public health workers. Despite major advances in the ecological, and microbiological understanding of Vibrio cholerae, the causative agent, the role of underlying macro-scale hydroclimatic processes in propagating the disease in different seasons and years is not well understood. The incidence of cholera in the Bengal Delta region, the ‘native homeland’ of cholera, shows distinct biannual peaks in the southern floodplains, as opposed to single annual peaks in coastal areas and the northern parts of Bangladesh, as well as other cholera-endemic regions in the world. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the spatio-temporal variability of incidence peaks with seasonal processes and extreme events. At a seasonal scale, the cycles indicate a spring-fall transmission pattern, contrary to the prevalent notion of a fall-spring transmission cycle. We show that the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating transmission to fall by flooding. This seasonal interpretation of the progression of cholera has important implications, for formulating effective cholera intervention and mitigation efforts through improved water management and understanding the impacts of changing climate patterns on seasonal cholera transmission. (Water Environental Research Education Actionable Solutions Network)

  4. Seasonal variations in house dust mite influence the circadian peak expiratory flow amplitude

    NARCIS (Netherlands)

    Postma, DS; vanderHeide, S; deReus, DM; Koeter, GH; vanAalderen, WMC; Meijer, G.

    1996-01-01

    The aim of the study was to investigate whether seasonal differences in house dust mite (HDM) allergen exposure influence the circadian peak expiratory flow (PEF) amplitude in asthmatic children. Asthmatic children (n = 25) with a solitary allergy to HDM were studied in spring and in autumn. All

  5. Seasonal change of residence time in spring water and groundwater at a mountainous headwater catchment

    Science.gov (United States)

    Nagano, Kosuke; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sakakibara, Koichi; Sato, Yutaro

    2017-04-01

    Determination of water age in headwater is important to consider water pathway, source and storage in the catchment. Previous studies showed that groundwater residence time changes seasonally. These studies reported that mean residence time of water in dry season tends to be longer than that in rainy season, and it becomes shorter as precipitation and discharge amount increases. However, there are few studies to clarify factors causing seasonal change in mean residence time in spring water and groundwater based on observed data. Therefore, this study aims to reveal the relationship between mean residence time and groundwater flow system using SFconcentration in spring and 10 minutes interval hydrological data such as discharge volume, groundwater level and precipitation amount in a headwater catchment in Fukushima, Japan. The SF6 concentration data in spring water observed from April 2015 to November 2016 shows the mean residence time of springs ranged from zero to 14 years. We also observed a clear negative correlation between discharge rate and residence time in the spring. The residence time in shallow groundwater in rainy season was younger as compared with that in low rainfall period. Therefore, the shallow groundwater with young residence time seems to contribute to the spring in rainy season, causing shorter residence time. Additionally, the residence time of groundwater ranged from 3 to 5 years even in low rainfall period. The residence time in high groundwater table level in ridge was older as compared with that in low groundwater table level. These suggest that the contribution of groundwater with older age in the ridge becomes dominant in the low discharge.

  6. Seasonal cycles of pelagic production and consumption

    Science.gov (United States)

    Longhurst, Alan

    Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.

  7. Microbiological and chemical assessment of spring water from a ...

    African Journals Online (AJOL)

    Assessment of spring water from Ikare-Akoko, a rural setting in southwest, Nigeria for microbial and chemical contaminants was carried out. Total heterotrophic bacteria count of 4.0 x 106 CFU/mL was highest during the peak of the rainy season in Omi-idu spring (Igbede community) while the lowest population of 0.14 x106 ...

  8. Linear relationship between peak and season-long abundances in insects.

    Directory of Open Access Journals (Sweden)

    Ksenia S Onufrieva

    Full Text Available An accurate quantitative relationship between key characteristics of an insect population, such as season-long and peak abundances, can be very useful in pest management programs. To the best of our knowledge, no such relationship has yet been established. Here we establish a predictive linear relationship between insect catch Mpw during the week of peak abundance, the length of seasonal flight period, F (number of weeks and season-long cumulative catch (abundance A = 0.41MpwF. The derivation of the equation is based on several general assumptions and does not involve fitting to experimental data, which implies generality of the result. A quantitative criterion for the validity of the model is presented. The equation was tested using extensive data collected on captures of male gypsy moths Lymantria dispar (L. (Lepidoptera: Erebidae in pheromone-baited traps during 15 years. The model was also tested using trap catch data for two species of mosquitoes, Culex pipiens (L. (Diptera: Culicidae and Aedes albopictus (Skuse (Diptera: Culicidae, in Gravid and BG-sentinel mosquito traps, respectively. The simple, parameter-free equation approximates experimental data points with relative error of 13% and R2 = 0.997, across all of the species tested. For gypsy moth, we also related season-long and weekly trap catches to the daily trap catches during peak flight. We describe several usage scenarios, in which the derived relationships are employed to help link results of small-scale field studies to the operational pest management programs.

  9. Trends in land surface phenology and atmospheric CO2 seasonality in the Northern Hemisphere terrestrial ecosystems

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2017-12-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystems on the atmospheric CO2 concentration and 13C/12C isotope ratio seasonality. Atmospheric CO2 and 13C/12C seasonality is controlled by vegetation phenology, but is not identical because growth will typically commence some time before and terminate some time after the net carbon exchange changes sign in spring and autumn, respectively. Here, we use 34-year satellite normalized difference vegetation index (NDVI) observations to determine how changes in vegetation productivity and phenology affect both the atmospheric CO2 and 13C/12C seasonality. Differences and similarities in recent trends of CO2 and 13C/12C seasonality and vegetation phenology will be discussed. Furthermore, we use the NDVI observations, and atmospheric CO2 and 13C/12C data to show the trends and variability of the timing of peak season plant activity. Preliminary results show that the peak season plant activity of the Northern Hemisphere extra-tropical terrestrial ecosystems is shifting towards spring, largely in response to the warming-induced advance of the start of growing season. Besides, the spring-ward shift of the peak plant activity is contributing the most to the increasing peak season productivity. In other words, earlier start of growing season is highly linked to earlier arrival of peak of season and higher NDVI. Changes in the timing of peak season plant activity are expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.

  10. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    Science.gov (United States)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring

  11. Seasonal and daily plasma corticosterone rhythms in American toads, Bufo americanus

    International Nuclear Information System (INIS)

    Pancak, M.K.; Taylor, D.H.

    1983-01-01

    Concentrations of corticosterone were measured in the plasma of American toads, Bufo americanus, on a seasonal basis using a radioimmunoassay technique. Two populations of toads, maintained under different light conditions, were monitored to observe the effects of photoperiod on the seasonal rhythm of plasma corticosterone. Under a natural photoperiod toads demonstrated a rhythm consisting of a spring peak and a fall peak in corticosterone concentration. Toads maintained under a 12L:12D photoperiod all year round demonstrated a similar rhythm with peaks in the spring and fall. This suggests that an endogenous (circannual) rhythm of corticosterone may be playing an important role in the seasonal change of overt behavior and physiology of Bufo americanus. A daily rhythm of corticosterone was also detected in toads when blood samples were taken every 4 hr. When compared to a previously published circadian rhythm study of locomotor activity, the surge in corticosterone concentration for the day occurred at 1730 just prior to the peak in locomotor activity

  12. Seasonal succession in zooplankton feeding traits reveals trophic trait coupling

    DEFF Research Database (Denmark)

    Kenitz, Kasia; Visser, Andre; Mariani, Patrizio

    2017-01-01

    non-motile cells flourishing in spring and motile community dominating during summer. The zooplankton community is dominated by active feeding-current feeders with peak biomass in the late spring declining during summer. The model reveals how zooplankton grazing reinforces protist plankton seasonal...

  13. Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season

    Science.gov (United States)

    Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.

    2017-12-01

    The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS

  14. Seasonality in Violent and Nonviolent Methods of Suicide Attempts: A Cross-Sectional Study on Systematic Registry Data.

    Science.gov (United States)

    Veisani, Yousef; Delpisheh, Ali; Sayehmiri, Kourosh; Moradi, Ghobad; Hassanzadeh, Jafar

    2017-08-01

    Little attention has been paid to seasonality in suicide in Iran. Time pattern in suicide deaths and suicide attempts for some related factors such as gender, mental disorders has been found. In present study, we focus on suicide methods and the association with seasonality and other putative covariates such as gender. Through a cross-sectional study, overall identified suicide attempts and suicide deaths in the province of Ilam from 1 January 2010 and 31 December 2014 were enrolled. We used Edwards' test for test of seasonality in suicide methods. Seasonal effect (peak/trough seasons) and (deaths/attempts suicide) was explored by ratio statistics, the null hypothesis being that the attempted suicides in each method group are evenly distributed over a year. More suicide attempts by hanging 29.4% and self-immolation 41.4% were observed in spring and differ by season pattern in both genders. The overall distribution of suicides by violent and non-violent methods was (males x2=6.3, P=0.041, females x2=7.7, P=0.021) and (males x2=44.5, P=0.001, females x2=104.7, P=0.001), respectively. The peak and trough seasons was observed in taking medications and self-poisoning for spring and winter. Suicide with alcohol was no differ by season pattern (x2=1.0, P=0.460). Suicide in Ilam illustrates a significant seasonality for both violent and non-violent methods of suicide, in both genders, the two peaks were observed in spring and autumn for violent suicides, and spring and summer in non-violent suicides.

  15. Interdisciplinary class on the asymmetric seasonal march from autumn to the next spring around Japan at Okayama University (Joint activity with art and music expressions on the seasonal feeling)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Akagi, Rikako; Haga, Yuichi

    2015-04-01

    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around there. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High. The intermittent rainfall due to the shallow cumulus clouds in such situation is called "Shi-gu-re" in Japanese (consisting of the two Chinese characters which mean for "sometimes" (or intermittent) and "rain", respectively) and is often used for expression of the "seasonal feeling" in the Japanese classic literature (especially we can see in the Japanese classic poems called "Wa-Ka"). However, as presented by Kato et al. (EGU2014-3708), while the appearance frequency of the "wintertime pressure pattern" around November (early winter) and in early March (early spring) is nearly the same as each other, air temperature is rather lower in early spring. The solar radiation, however, is rather stronger in early spring. Such asymmetric seasonal cycle there would result in rather different "seasonal feeling" between early winter and early spring. Inversely, such difference of the "seasonal feelings" might be utilized for deeper understanding of the seasonal cycle of the climate system around Japan. As such, the present study reports the joint activity of the meteorology with music and art on these topics mainly in the class at the Faculty of Education, Okayama University. In that class, the students tried firstly the expression of the both selected stages in early winter and early spring, respectively, by combination of the 6 colors students selected from the 96 colored papers, based on the Johannes Itten's (1888-1967) exercise of the representation of the four seasons. Next, the students' activity on the music expression of what they firstly presented by the colors was

  16. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland.

    Science.gov (United States)

    Ru, Jingyi; Zhou, Yaqiong; Hui, Dafeng; Zheng, Mengmei; Wan, Shiqiang

    2018-03-01

    Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013-2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra-annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions. © 2017 John Wiley & Sons Ltd.

  17. Seasonal and daily fluctuation of diatoms during spring tide periods in Kerkennah Islands

    Directory of Open Access Journals (Sweden)

    Mounir Ben brahim

    2015-06-01

    Full Text Available Objective: To study seasonal and the daily distribution of diatoms in the three tidal periods (flood, slack and ebb period during the spring tide. Methods: Water samples were taken and environmental variables were measured three times in each tidal period during 10 days of spring tide. Sampling was done in 2007 in Cercina station located in the western coast of Kerkennah (34°41'27'' N; 11°07'45'' E (Southern Tunisia. Results: Nutrients showed significant variation between seasons, increasing in spring and decreasing noticeably in autumn and winter. About 36 diatom species were found. Results revealed a remarkable abundance increase in spring and summer. Irregular differences in diatom abundances were revealed over the tidal periods, with the highest rates being detected during the flood and the ebb period, while the abundance rate was lowest during the slack period. This could presumably be attributed to the increase of nutrient supply of suspended particulate matter during water motion. The results revealed a correlation between diatom abundance and temperature, NO2 - , NO3 - , Si(OH4 and PO4 3 . Temperature seemed to be the most important factors which may influence the distribution and diatom abundance. Conclusions: Tide has various effects on the nutrients status and diatoms community (in terms of species composition, succession and abundance between different tidal periods. Fluctuation of diatoms was correlated with changes in the circulation of water bodies and changes in nutrient regime.

  18. The role of mesoscale convective systems in the diurnal cycle of rainfall and its seasonality over sub-Saharan Northern Africa

    Science.gov (United States)

    Liu, Weiran; Cook, Kerry H.; Vizy, Edward K.

    2018-03-01

    This study evaluates the role of MCSs in the total rainfall distribution as a function of season from a climatological perspective (1998-2014) over sub-Saharan northern Africa and examines how the diurnal cycle of rainfall changes with season. Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall estimates and European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis are used to evaluate the climatology. The percentages of the full TRMM precipitation delivered by MCSs have meridional structures in spring, fall and winter, ranging from 0 to 80% across sub-Saharan northern Africa, while the percentages are homogenous in summer (> 80%). The diurnal cycles of MCS-associated precipitation coincide with the full TRMM rainfall. Attributes of MCSs, including size, count, and intensity, vary synchronously with the diurnal cycle of rainfall. The diurnal peaks are classified into three categories: single afternoon peak, continuous afternoon peak, and nocturnal peak. Single afternoon peaks dominate in spring and fall while continuous afternoon and nocturnal peaks are more common in summer, indicating the seasonality of the diurnal cycle. The continuous afternoon peak combines rainfall from two system types—one locally-generated and one propagating. The seasonality of the diurnal cycle is related to the seasonality of MCS lifetimes, and propagation speeds and directions. The moisture component of the MSE profile contributes to the instability most in summer when convection is more frequent. Low-level temperature, which is related to surface warming and sensible heat fluxes, influences the instability more during winter and spring.

  19. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate

    Science.gov (United States)

    de Freitas, Christopher R.; Grigorieva, Elena A.

    2015-01-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  20. Seasonal variations in growth and body composition of 8-11-year-old Danish children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    BACKGROUND: Earlier studies on seasonality in growth reported the largest height gains during spring and largest body weight gains during autumn. We examined seasonality in height, body weight, BMI, fat mass index (FMI) and fat-free mass index (FFMI) among contemporary Danish 8-11-year......-olds. METHODS: 760 children from the OPUS School Meal Study provided >2200 measurements on height, body weight and composition between September-June. Average velocities were calculated using change-score analyses based on three-month intervals. As a complementary analysis, point velocities derived from...... suggest seasonality in growth and body composition of Danish children. We recovered the well-known height velocity peak during spring time, but unlike earlier studies we found coincident peaks in body weight, BMI, and FFMI velocities.Pediatric Research (2015); doi:10.1038/pr.2015.206....

  1. Seasonality of Suicidal Behavior

    Science.gov (United States)

    Woo, Jong-Min; Okusaga, Olaoluwa; Postolache, Teodor T.

    2012-01-01

    A seasonal suicide peak in spring is highly replicated, but its specific cause is unknown. We reviewed the literature on suicide risk factors which can be associated with seasonal variation of suicide rates, assessing published articles from 1979 to 2011. Such risk factors include environmental determinants, including physical, chemical, and biological factors. We also summarized the influence of potential demographic and clinical characteristics such as age, gender, month of birth, socioeconomic status, methods of prior suicide attempt, and comorbid psychiatric and medical diseases. Comprehensive evaluation of risk factors which could be linked to the seasonal variation in suicide is important, not only to identify the major driving force for the seasonality of suicide, but also could lead to better suicide prevention in general. PMID:22470308

  2. Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts.

    Science.gov (United States)

    Aalto, J; Porcar-Castell, A; Atherton, J; Kolari, P; Pohja, T; Hari, P; Nikinmaa, E; Petäjä, T; Bäck, J

    2015-11-01

    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. © 2015 John Wiley & Sons Ltd.

  3. Functional Stability and Community Dynamics during Spring and Autumn Seasons Over 3 Years in Camargue Microbial Mats

    Directory of Open Access Journals (Sweden)

    Mercedes Berlanga

    2017-12-01

    Full Text Available Microbial mats are complex biofilms in which the major element cycles are represented at a millimeter scale. In this study, community variability within microbial mats from the Camargue wetlands (Rhone Delta, southern France were analyzed over 3 years during two different seasons (spring and autumn and at different layers of the mat (0–2, 2–4, and 4–6 mm. To assess bacterial diversity in the mats, amplicons of the V1–V2 region of the 16S rRNA gene were sequenced. The community’s functionality was characterized using two approaches: (i inferred functionality through 16S rRNA amplicons genes according to PICRUSt, and (ii a shotgun metagenomic analysis. Based on the reads distinguished, microbial communities were dominated by Bacteria (∼94%, followed by Archaea (∼4% and Eukarya (∼1%. The major phyla of Bacteria were Proteobacteria, Bacteroidetes, Spirochaetes, Actinobacteria, Firmicutes, and Cyanobacteria, which together represented 70–80% of the total population detected. The phylum Euryarchaeota represented ∼80% of the Archaea identified. These results showed that the total bacterial diversity from the Camargue microbial mats was not significantly affected by seasonal changes at the studied location; however, there were differences among layers, especially between the 0–2 mm layer and the other two layers. PICRUSt and shotgun metagenomic analyses revealed similar general biological processes in all samples analyzed, by season and depth, indicating that different layers were functionally stable, although some taxa changed during the spring and autumn seasons over the 3 years. Several gene families and pathways were tracked with the oxic-anoxic gradient of the layers. Genes directly involved in photosynthesis (KO, KEGG Orthology were significantly more abundant in the top layer (0–2 mm than in the lower layers (2–4 and 4–6 mm. In the anoxic layers, the presence of ferredoxins likely reflected the variation of redox

  4. Preparing for the Season (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Flu season starts in the fall and goes through the spring, typically peaking between January and March in the United States. In this podcast, Dr. Joe Bresee discusses the importance of getting vaccinated against the flu every year.

  5. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    Science.gov (United States)

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  6. Daily and seasonal rhythms in immune responses of splenocytes in the freshwater snake, Natrix piscator.

    Science.gov (United States)

    Tripathi, Manish Kumar; Singh, Ramesh; Pati, Atanu Kumar

    2015-01-01

    Present study was designed to examine daily and seasonal variability in the innate immune responses of splenocytes in the fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleen was aseptically isolated and processed for macrophage phagocytosis, NBT reduction, nitrite production, splenocyte proliferation and serum lysozyme activity. Samples were collected at seven time points, viz., 0000, 0400, 0800, 1200, 1600, 2000 and 0000 h during three different seasons, namely summer, winter and spring. Cosinor analysis revealed that percent phagocytosis had a significant 24-h rhythm during summer and spring seasons. The peaks of rhythms in NBT reduction and nitrite release occurred in the morning hours at 10.88 h and 8.31 h, respectively, in winter. A significant 24-h rhythm was also observed in lysozyme concentration and splenocyte proliferation (both Basal and Concanavalin A stimulated) in all three seasons. A significant phase shift in splenocyte proliferation was obtained with a trend of delayed phase shift from winter to spring and from spring to summer. Of the nine variables, significant annual (seasonal) rhythms were detected in almost all variables, excluding phagocytic and splenosomatic indices. All rhythmic variables, except spleen cellularity, exhibited tightly synchronized peaks coinciding with the progressive and recrudescence phases of annual reproductive cycle. It is concluded that the snake synchronizes its daily and seasonal immune activity with the corresponding external time cues. The enhancement of immune function coinciding with one of its crucial reproductive phases might be helping it to cope with the seasonal stressors, including abundance of pathogens, which would otherwise jeopardize the successful reproduction and eventual survival of the species.

  7. Seasonal variations of vivax and falciparum malaria: an observation at a tertiary care hospital

    International Nuclear Information System (INIS)

    Jamil, S.; Khan, M.N.

    2012-01-01

    Background: Malaria is a major public health problem in the malaria endemic zones of the world. Various factors influence the prevalence of malaria. This study was conducted to determine the variation in frequency of Plasmodium vivax and Plasmodium falciparum malaria in different seasons of the year in Khyber Teaching Hospital, Peshawar. Methods: A total of 411 patients were included in the study. All these febrile patients were reported to have trophozoites of either Plasmodium vivax or Plasmodium falciparum malaria on Giemsa stained thick and thin smears. The frequency of vivax and falciparum malaria was worked out and statistically analysed for different season of the year. The study was carried out from 2nd Jan 2004 till 31st December 2008. Results: Out of total 411 diagnosed malaria cases, total 134 (32.60%) presented in the autumn season (vivax=33.58%, and falciparum=66.42%), 37 (9%) in winter season (vivax=32.4%, and falciparum=67.6%), 76 (18.49%) in spring season (vivax=93.4% and falciparum 6.6%) and 164 (39.90%) in summer season (vivax=89.6, and falciparum=10.4%). The malaria showed a highly significant pattern in different seasons of the year (p=0.00) in a way that Plasmodium falciparum malaria reached its highest frequency in autumn and winter seasons while Plasmodium vivax malaria reached its peak frequency in spring and summer seasons. Conclusion: There was highly significant seasonal variation of vivax and falciparum malaria. There is arrival of Plasmodium falciparum in autumn which peaks in winter followed by arrival of Plasmodium vivax in spring till the end of summer. (author)

  8. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific

    Science.gov (United States)

    Fan, Tingting; Xu, Shibin; Huang, Fei; Zhao, Jinping

    2018-04-01

    This study compares the interdecadal variations in tropical cyclone (TC) activities over the western North Pacific (WNP) basin during the peak season (July-September) and late season (October-December) of 1955-2014 and explores the possible physical mechanisms behind the variations. Both the peak- and late-season tropical storm (TS) days show distinct interdecadal variations, while the late-season TS days lead the peak-season TS days by approximately 4 years on an interdecadal time scale. The late-season TC activity is related to the east-west sea surface temperature (SST) gradient across the equatorial Pacific. The westerly winds induced by the SST gradient can reduce the vertical wind shear and increase the low-level vorticity, which favors TC genesis over the TC genesis region. The peak-season TC activity appears to relate to the SST gradient between the Indian Ocean and the Central Pacific. The westerly wind induced by the SST gradient can reduce the vertical wind shear and increase the mid-level relative humidity, thereby enhancing the TC activity. The full picture of the interdecadal variation in the WNP TC activity during the peak and late seasons revealed in this study provides a new perspective on the seasonal TC forecasts and future projections.

  9. The Dependency between the Arabian Peninsula Wet Events and Sea Level Pressure Patterns during Spring Season

    KAUST Repository

    El Kenawy, Ahmed M.; McCabe, Matthew; Stenchikov, Georgiy L.; Raj, Jerry

    2014-01-01

    This work investigates the relationships between regional extreme wet events in the Arabian Peninsula during the spring season (MAM) and sea level pressure (SLP) patterns. Based on NCEP/NCAR reanalysis data, S-mode principal components were computed

  10. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests

    Science.gov (United States)

    Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D.

    2012-01-01

    The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.

  11. Springs-neaps cycles in daily total seabed light: Daylength-induced changes

    Science.gov (United States)

    Roberts, E. M.; Bowers, D. G.; Davies, A. J.

    2014-04-01

    In shallow, tidal seas, daily total seabed light is determined largely by the interaction of the solar elevation cycle, the tidal cycle in water depth, and any temporal variability in turbidity. Since tidal range, times of low water, and often turbidity vary in regular ways over the springs-neaps cycle, daily total seabed light exhibits cycles of the same periodicity. Corresponding cycles are likely to be induced in the daily total primary production of benthic algae and plants, particularly those light-limited specimens occupying the lower reaches of a sub-tidal population. Consequently, this effect is an important control on the growth patterns, depth distribution and survival of, for example, macroalgal forests and seagrass meadows. Seasonal changes in daylength exert an important additional control on these cycles, as they alter the fraction of the tidal and turbidity cycles occurring within daylight hours. Bowers et al. (1997) modelled this phenomenon numerically and predicted that for a site with low water at about midday and midnight at neaps tides, 6 am and 6 pm at springs, daily total seabed light peaks at neaps in winter, but the ‘sense' of the cycle ‘switches' so that it peaks at springs in summer - the longer daylength permits the morning and evening low water springs to contribute substantially to the daily total. Observations for such a site in North Wales (UK), presented in this paper, show that no such ‘switch' occurs, and neaps tides host the largest daily totals throughout the year. The predicted ‘switch' is not observed because turbidity increases generally at spring tides, and specifically at low water springs, both of which were not accounted for in the model. Observations at a second site in Brittany (France), diametrically opposite in terms of the times of low water at neaps and at springs, indicate a peak at springs throughout the year. Analytical tools are developed to calculate the percentage of daily total sea surface irradiance

  12. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau.

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-15

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations show a winter (November-February) high (413.2ngm -3 ) and spring (March-June) low (139.1ngm -3 ) at Ranwu, but in contrast a winter low and spring high at Beiluhe (204.8 and 621.6ngm -3 , respectively). By examining the meteorological conditions at various scales, we found that the monthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. The winter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwu sampling site showed a significant diurnal cycle with a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-01

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m$-$3) and spring (March–June) low(139.1 ng m$-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m$-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.

  14. Using movement behaviour to define biological seasons for woodland caribou

    Directory of Open Access Journals (Sweden)

    Tyler D. Rudolph

    2012-03-01

    Full Text Available Terrestrial mammals are strongly influenced by seasonal changes in environmental conditions. Studies of animal space use behaviour are therefore inherently seasonal in nature. We propose an individual-based quantitative method for identifying seasonal shifts in caribou movement behaviour and we demonstrate its use in determining the onset of the winter, spring dispersal, and calving seasons. Using pooled data for the population we demonstrate an alternate approach using polynomial regression with mixed effects. We then compare individual onset dates with population-based estimates and those adopted by expert consensus for our study area. Distributions of individual-based onset dates were normally distributed with prominent modes; however, there was considerable variation in individual onset times. Population-based estimates were closer to the peaks of individual estimates than were expert-based estimates, which fell outside the onetailed 90% and 95% sample quantiles of individually-fitted distributions for spring and winter, respectively. Both expertand population-based estimates were later for winter and earlier for both spring and calving than were individual-based estimates. We discuss the potential consequences of neglecting to corroborate conventionally used dates with observed seasonal trends in movement behaviour. In closing, we recommend researchers adopt an individual-based quantitative approach and a variable temporal window for data set extraction.

  15. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    Science.gov (United States)

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Diel and seasonal variation in food habits of Atlantic salmon parr in a small stream

    Science.gov (United States)

    Grader, M.; Letcher, B.H.

    2006-01-01

    The diel and seasonal food habits of young-of-year (YOY) and post-young-of-year (PYOY) Atlantic salmon (Salmo salar) parr were assayed over the course of 11 months in the West Brook, Massachusetts USA. Gut fullness of YOY salmon did not vary significantly among months. PYOY salmon exhibited significant seasonal differences in gut fullness, with peak fullness occurring in the spring and late fall. Significant diel differences in PYOY gut fullness occurred in June and April, with peak fullness always occurring at dawn. Prey composition varied substantially among months. Dominant prey items of PYOY salmon were baetid mayflies in June, July, and August, limnephilid caddisflies in October and November, and ephemerellid mayflies in February and April. Few differences in prey composition between PYOY and YOY salmon were observed. Fish growth was unrelated to prey availability, but gut fullness explained up to 97% of growth variation across seasons. Results suggest that spring and fall are critical periods of feeding for PYOY salmon and that diel feeding intensity shifts seasonally.

  17. Impacts of climate change on spring flower tourism in Beijing, China

    Science.gov (United States)

    Wang, Huanjiong

    2016-04-01

    The beauty of blooming flowers causes spring to be one of the most picturesque and pleasant seasons in which to travel. However, the blooming time of plant species are very sensitive to small changes in climate. Therefore, recent climate change may shift flowering time and, as a result, may affect timing of spring tourism for tourists. In order to prove this assumption, we gathered data of first flowering date and end of flowering date (1963-2014) for 49 common ornamental plants in Beijing, China. In addition, we used the number of messages (2010-2014) posted on Sina Weibo (one of the most popular microblogs sites in China, in use by well over 30% of internet users, with a market penetration similar to the United States' Twitter) to indicate the tourist numbers of five scenic spots in Beijing. These spots are most famous places for seeing spring flowers, including the Summer Palace, Yuyuantan Park, Beijing Botanical Garden, Jingshan Park, Dadu City Wall Relics Park. The results showed that the number of species in flower starts to increase in early spring and peaks in middle spring, and then begins to decrease from late spring. The date when the number of species in flower peaks can be defined as best date of spring flower tourism, because on this day people can see blooming flowers of most plant species. The best date of spring flower tourism varied from March 31 to May 1 among years with a mean of April 20. At above scenic spots characterized by the beauty of blooming flowers, tourist numbers also had a peak value during spring. Furthermore, peak time of tourist numbers derived from Weibo varied among different years and was related to best date of spring flower tour derived from phenological data. This suggests that the time of spring outing for tourists is remarkably attracted by flowering phenology. From 1963 to 2014, the best date of spring flower tour became earlier at a rate of 1.6 days decade-1, but the duration for spring flower tour (defined as width at

  18. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    OpenAIRE

    Lindsey T. Funch; Erik Lind; Larissa True; Deborah Van Langen; John T. Foley; James F. Hokanson

    2017-01-01

    The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak) and running economy (RE) following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years) were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8) and High Intensity Interval Training (HIIT; ...

  19. Seasonal functioning and dynamics of Caulerpa prolifera meadows in shallow areas: An integrated approach in Cadiz Bay Natural Park

    Science.gov (United States)

    Vergara, Juan J.; García-Sánchez, M. Paz; Olivé, Irene; García-Marín, Patricia; Brun, Fernando G.; Pérez-Lloréns, J. Lucas; Hernández, Ignacio

    2012-10-01

    The rhizophyte alga Caulerpa prolifera thrives in dense monospecific stands in the vicinity of meadows of the seagrass Cymodocea nodosa in Cadiz Bay Natural Park. The seasonal cycle of demographic and biometric properties, photosynthesis, and elemental composition (C:N:P) of this species were monitored bimonthly from March 2004 to March 2005. The number of primary assimilators peaked in spring as consequence of the new recruitment, reaching densities up to 104 assimilators·m-2. A second peak was recorded in late summer, with a further decrease towards autumn and winter. Despite this summer maximum, aboveground biomass followed a unimodal pattern, with a spring peak about 400 g dry weight·m-2. In conjunction to demographic properties of the population, a detailed biometric analysis showed that the percentage of assimilators bearing proliferations and the number of proliferations per assimilator were maximal in spring (100% and c.a. 17, respectively), and decreased towards summer and autumn. The size of the primary assimilators was minimal in spring (May) as a result of the new recruitments. However, the frond area per metre of stolon peaked in early spring and decreased towards the remainder of the year. The thallus area index (TAI) was computed from two different, independent approaches which both produced similar results, with a maximum TAI recorded in spring (transient values up to 18 m2·m-2). The relative contribution of primary assimilators and proliferations to TAI was also assessed. Whereas the number of proliferations accounted for most of the TAI peak in spring, its contribution decreased during the year, to a minimum in winter, where primary assimilators were the main contributors to TAI. The present study represents the first report of the seasonal dynamics of C. prolifera in south Atlantic Spanish coasts, and indicates the important contribution of this primary producer in shallow coastal ecosystems.

  20. Predictability of soil moisture and river flows over France for the spring season

    Science.gov (United States)

    Singla, S.; Céron, J.-P.; Martin, E.; Regimbeau, F.; Déqué, M.; Habets, F.; Vidal, J.-P.

    2012-01-01

    Sources of spring predictability of the hydrological system over France were studied on a seasonal time scale over the 1960-2005 period. Two random sampling experiments were set up in order to test the relative importance of the land surface initial state and the atmospheric forcing. The experiments were based on the SAFRAN-ISBA-MODCOU hydrometeorological suite which computed soil moisture and river flow forecasts over a 8-km grid and more than 880 river-gauging stations. Results showed that the predictability of hydrological variables primarily depended on the seasonal atmospheric forcing (mostly temperature and total precipitation) over most plains, whereas it mainly depended on snow cover over high mountains. However, the Seine catchment area was an exception as the skill mainly came from the initial state of its large and complex aquifers. Seasonal meteorological hindcasts with the Météo-France ARPEGE climate model were then used to force the ISBA-MODCOU hydrological model and obtain seasonal hydrological forecasts from 1960 to 2005 for the entire March-April-May period. Scores from this seasonal hydrological forecasting suite could thus be compared with the random atmospheric experiment. Soil moisture and river flow skill scores clearly showed the added value in seasonal meteorological forecasts in the north of France, contrary to the Mediterranean area where values worsened.

  1. Seasonal trends in sleep-disordered breathing: evidence from Internet search engine query data.

    Science.gov (United States)

    Ingram, David G; Matthews, Camilla K; Plante, David T

    2015-03-01

    The primary aim of the current study was to test the hypothesis that there is a seasonal component to snoring and obstructive sleep apnea (OSA) through the use of Google search engine query data. Internet search engine query data were retrieved from Google Trends from January 2006 to December 2012. Monthly normalized search volume was obtained over that 7-year period in the USA and Australia for the following search terms: "snoring" and "sleep apnea". Seasonal effects were investigated by fitting cosinor regression models. In addition, the search terms "snoring children" and "sleep apnea children" were evaluated to examine seasonal effects in pediatric populations. Statistically significant seasonal effects were found using cosinor analysis in both USA and Australia for "snoring" (p search term in Australia (p = 0.13). Seasonal patterns for "snoring children" and "sleep apnea children" were observed in the USA (p = 0.002 and p search volume to examine these search terms in Australia. All searches peaked in the winter or early spring in both countries, with the magnitude of seasonal effect ranging from 5 to 50 %. Our findings indicate that there are significant seasonal trends for both snoring and sleep apnea internet search engine queries, with a peak in the winter and early spring. Further research is indicated to determine the mechanisms underlying these findings, whether they have clinical impact, and if they are associated with other comorbid medical conditions that have similar patterns of seasonal exacerbation.

  2. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Science.gov (United States)

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  3. Seasonal variability of physico–chemical characteristics of the ...

    Indian Academy of Sciences (India)

    Salinity varied spatially and temporally and seasonally during ebb and flood tide conditions. ... The tidal varia- tion at the mouth is from 6.1 m at springs to 0.22 m at neaps. The fresh water discharge ranges from a peak value of 4250m3 s−1 to almost zero in the ...... National Conference on Harbour and Ocean Engineer-.

  4. Preparing for the Season (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2016-12-08

    Flu season starts in the fall and goes through the spring, typically peaking between January and March in the United States. In this podcast, Dr. Joe Bresee discusses the importance of getting vaccinated against the flu every year.  Created: 12/8/2016 by MMWR.   Date Released: 12/8/2016.

  5. Land Surface Phenologies and Seasonalities of Croplands and Grasslands in the US Prairie Pothole Region Using Passive Microwave Data (2003-2015)

    Science.gov (United States)

    Alemu, W. G.; Henebry, G. M.

    2017-12-01

    Grasslands and wetlands in the Prairie Pothole Region (PPR) have been converted to croplands in recent years. Crops cultivated in the PPR are also changing: spring wheat and alfalfa/hay are being switched to corn and soybean due to biofuel demand. According to the USDA Cropland Data Layer (CDL) from 2003 to 2015, spring wheat significantly decreased (r2 = 0.74), while corn and soybeans significantly increased (r2 = 0.86). We characterized land surface phenologies and land surface seasonalities across the PPR using the finer temporal (twice daily) but much lower spatial (25 km) resolution Advanced Microwave Scanning Radiometer (AMSR: blended from AMSR-E and AMSR2) enhanced land surface parameters for 2003-2015 (DOY 91-330 annual cycles). We tracked the temporal development of these land surface parameters as a function of accumulated growing degree-days (AGDD) based on the AMSR retrieved air temperature data. Growing degree-days (GDD) revealed distinct seasonality typical to temperate grasslands and croplands. GDD peaks were 23°C and it peaks at 1700°C AGDD. Precipitable water vapor (V) displayed seasonality comparable to GDD. Vegetation optical depth (VOD) revealed distinct land surface phenologies for grasslands versus croplands. We explored the changing crop fractions within the 25 km AMSR pixels using the CDL. Crop-dominated sites VOD time series caught the early spring growth, ploughing, and crop growth dynamics. In contrast, the VOD time series at grass-dominated sites exhibited a lower but more extended amplitude throughout the non-frozen season. VODs peaked at 1.6 and 1.3 for croplands and grasslands, respectively. Croplands peaked about a month later than grasslands (2200 °C AGDD vs. 1600 °C AGDD). The other parameters available from the AMSR dataset—soil moisture (sm), and fractional open water (fw)—together with the AGDD time series constructed from the AMSR air temperature data revealed the passage of storm systems during the growing season. Soil

  6. Drivers of larval fish assemblage shift during the spring-summer transition in the coastal Mediterranean

    Science.gov (United States)

    Álvarez, Itziar; Catalán, Ignacio A.; Jordi, Antoni; Palmer, Miquel; Sabatés, Ana; Basterretxea, Gotzon

    2012-01-01

    The influence of coastal environmental conditions from winter-spring to summer on fish larvae assemblages in a temperate area has suggested a seasonal shift in ecosystem-level variation through which trophic pathways shift from the pelagic to the benthic system. This variation may be related to marked effects in the reproductive strategies in the fishes inhabiting the area and indirectly affect ichthyoplankton assemblages. Larval fish assemblages were sampled fortnightly at three stations located in coastal waters off southern Mallorca (Western Mediterranean) from March to August 2007, covering the main spawning period for the resident coastal fish in this region. The larval fish assemblage showed clear seasonality with higher specific abundance but lower diversity in the spring. Two main assemblages were identified: a spring assemblage, occurring at surface seawater temperatures ichthyoplankton communities occurred in early June, coinciding with the onset of summer hydrographical conditions and the local benthic productivity peak.

  7. Hydroclimatology of Dual Peak Cholera Incidence in Bengal Region: Inferences from a Spatial Explicit Model

    Science.gov (United States)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The seasonality of cholera and its relation with environmental drivers are receiving increasing interest and research efforts, yet they remain unsatisfactorily understood. A striking example is the observed annual cycle of cholera incidence in the Bengal region which exhibits two peaks despite the main environmental drivers that have been linked to the disease (air and sea surface temperature, zooplankton density, river discharge) follow a synchronous single-peak annual pattern. A first outbreak, mainly affecting the coastal regions, occurs in spring and it is followed, after a period of low incidence during summer, by a second, usually larger, peak in autumn also involving regions situated farther inland. A hydroclimatological explanation for this unique seasonal cycle has been recently proposed: the low river spring flows favor the intrusion of brackish water (the natural environment of the causative agent of the disease) which, in turn, triggers the first outbreak. The summer rising river discharges have a temporary dilution effect and prompt the repulsion of contaminated water which lowers the disease incidence. However, the monsoon flooding, together with the induced crowding of the population and the failure of the sanitation systems, can possibly facilitate the spatial transmission of the disease and promote the autumn outbreak. We test this hypothesis using a mechanistic, spatially explicit model of cholera epidemic. The framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for the annual fluctuation of the river flow. The model is forced with the actual environmental drivers of the region, namely river flow and temperature. Our results show that these two drivers, both having a single peak in the summer, can generate a double peak cholera incidence pattern. Besides temporal patterns, the model is also able to qualitatively reproduce spatial patterns characterized

  8. Validation of inverse seasonal peak mortality in medieval plagues, including the Black Death, in comparison to modern Yersinia pestis-variant diseases.

    Science.gov (United States)

    Welford, Mark R; Bossak, Brian H

    2009-12-22

    Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent "plagues") and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900+/-15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data. We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion. These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics.

  9. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  10. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  11. Long-Term Trends and Variability in Spring Development of Calanus finmarchicus in the Southeastern Norwegian Sea during 1996-2012

    Science.gov (United States)

    Dupont, N.; Bagøien, E.; Melle, W.

    2016-02-01

    Calanus finmarchicus is the dominant copepod species in the Norwegian Sea in terms of biomass, playing a key role in the ecosystem by transferring energy from primary producers to higher trophic levels. This study analyses the long-term trend of a 17-year time series (1996-2012) on abundance of adult Calanus finmarchicus in the Atlantic water-mass of the southern Norwegian Sea during spring. The long-term trend in spring abundance was assessed by using Generalised Additive Models, while simultaneously accounting for both general population development and inter-annual variation in population development throughout the study period. In one model, we focus on inter-annual changes in timing of the Calanus spring seasonal development by including Mean Stage Composition as a measure for state of population development. Following a short increase during the years 1996 to 2000, the abundance of Calanus finmarchicus decreased strongly until about the year 2010. For the two last years of the studied period, 2011-2012, increasing population abundances are suggested but with less certainty. The model results suggest that the analysis is capturing the G0 generation, displaying a peak for the adults in about mid-April. Inter-annual differences in spring seasonal development, with the peak of adults shifting towards earlier in the season as well as a shorter generation time are suggested. Considering the importance of Calanus finmarchicus as food for planktivorous predators in the Norwegian Sea, our time series analysis suggests relevant changes both with respect to the spring abundance and timing of this food source. The next step is to relate variation in the Calanus time series to environmental factors with special emphasis on climatic drivers.

  12. Seasonal variation of 226Ra and 222Rn in mineral spring waters of Aguas da Prata-Brazil

    International Nuclear Information System (INIS)

    Oliveira, J. de; Mazzilli, B.; Oliveira S, M.H de; Bernadete, S.

    1996-01-01

    Concentration levels of 226 Ra and 222 Rn have been analysed in most of the mineral spring waters available in the Aguas da Prata region, which is located in the Pocos de Caldas plateau, one of the biggest weathered alkaline intrusions of the world. In this plateau can be found many health resorts[based on springs of thermal and mineral waters. The Aguas da Prata spring waters show a large variety of composition. It has been observed bicarbonates, carbonates and sulphates salts in these mineral waters. The 226 Ra was determined by gross alpha counting of a Ba(Ra)SO 4 precipitate. The measurement was carried out in a low background gas flow proportional counter. The 222 Rn concentrations were determined by liquid scintillation method. Water samples were randomly collected at 9 spring sites over a period of one year, in order to evaluate the seasonal variation of these radionuclides. Lower concentrations were found mostly in the rainy season (summer), which presents 80% of the annual rainfall of the region (1500 mm/year). Higher concentrations up to 2223 mBq/L for 226 Ra and 131 Bq/L for 222 Rn have been observed in waters with low level of soluble salts. Waters which present high levels of carbonate and sulphate salts showed maximum values of 316 mBq/L for 226 Ra and 30 Bq/L for 222 Rn. This behaviour is mainly due to the physicochemical properties of these radionuclides in water as well as to the lithologic structure of the aquifers. (authors). 6 refs., 2 figs., 1 tab

  13. Season of sampling and season of birth influence serotonin metabolite levels in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Jurjen J Luykx

    Full Text Available BACKGROUND: Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF monoamine (MA turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA, dopamine (homovanillic acid, HVA and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG were measured using high performance liquid chromatography (HPLC. Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75. The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050, with predicted maximum (PC(max and minimum (PC(min concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PC(max = 172 and PC(min = 126. The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. CONCLUSION: In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall.

  14. Plasma progesterone profiles, ovulation rate, donor embryo yield and recipient embryo survival in native Saloia sheep in the fall and spring breeding seasons.

    Science.gov (United States)

    Chagas e Silva, J; Lopes da Costa, L; Cidadão, R; Robalo Silva, J

    2003-08-01

    The response to superovulatory (SOV) and estrus synchronization (ES) treatments and the fertility of donor (n=68) and recipient (n=118) Saloia ewes was evaluated in the fall and spring breeding seasons. The proportion of acyclic ewes at treatment time was significantly higher in the spring than in the fall (42.6% versus 4.0%, P<0.00001). Donors treated with eCG had a significantly higher mean number of follicles over 5mm in diameter in the ovaries at embryo recovery and a significantly lower mean efficiency of recovery than FSH-treated ewes. These negative effects were more pronounced in the fall than in the spring, which resulted in a significantly lower mean number of total and fertilized ova recovered from eCG-treated ewes, compared to FSH donors in the fall, but not in the spring. Season had no significant effect on the ovulation rate and plasma P4 concentrations of recipients treated with a progestagen plus eCG combination. Although the recipient lambing and embryo survival rates were higher in the fall than in the spring the differences were not significant. No significant differences were observed in the ovulation rate or P4 concentrations of recipients that lambed compared to those that did not lamb. These preliminary results show that, in Portugal, response of Saloia ewes to SOV or ES treatments and donor fertility following the SOV treatment were similar in the spring and the fall, which suggests that in the spring acyclic ewes are in moderate anestrus. The effect of season on fertility following embryo transfer should be confirmed in further studies involving a larger number of animals. The semilaparoscopic transfer method reported here allowed lambing and embryo survival rates higher (although not significantly) than a standard surgical approach.

  15. Validation of inverse seasonal peak mortality in medieval plagues, including the Black Death, in comparison to modern Yersinia pestis-variant diseases.

    Directory of Open Access Journals (Sweden)

    Mark R Welford

    Full Text Available BACKGROUND: Recent studies have noted myriad qualitative and quantitative inconsistencies between the medieval Black Death (and subsequent "plagues" and modern empirical Y. pestis plague data, most of which is derived from the Indian and Chinese plague outbreaks of A.D. 1900+/-15 years. Previous works have noted apparent differences in seasonal mortality peaks during Black Death outbreaks versus peaks of bubonic and pneumonic plagues attributed to Y. pestis infection, but have not provided spatiotemporal statistical support. Our objective here was to validate individual observations of this seasonal discrepancy in peak mortality between historical epidemics and modern empirical data. METHODOLOGY/PRINCIPAL FINDINGS: We compiled and aggregated multiple daily, weekly and monthly datasets of both Y. pestis plague epidemics and suspected Black Death epidemics to compare seasonal differences in mortality peaks at a monthly resolution. Statistical and time series analyses of the epidemic data indicate that a seasonal inversion in peak mortality does exist between known Y. pestis plague and suspected Black Death epidemics. We provide possible explanations for this seasonal inversion. CONCLUSIONS/SIGNIFICANCE: These results add further evidence of inconsistency between historical plagues, including the Black Death, and our current understanding of Y. pestis-variant disease. We expect that the line of inquiry into the disputed cause of the greatest recorded epidemic will continue to intensify. Given the rapid pace of environmental change in the modern world, it is crucial that we understand past lethal outbreaks as fully as possible in order to prepare for future deadly pandemics.

  16. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  17. On the seasonal transition from winter to spring in Europe and the "seasonal feeling" relating to "Fasnacht" in comparison with those in East Asia (Toward an interdisciplinary activity on climate and cultural understanding education)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Hamaki, Tatsuya

    2016-04-01

    As mentioned in the introduction of the EGU2016 abstract (Kato et al., submitted to CL5.06/AS4.9), there are many stages with rapid seasonal transitions in East Asia, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the arts. On the other hand, around Germany located near the western edge of the Eurasian Continent, there are so many music or literature works in which the "May" is treated as the special season (comparison of the climate and songs on "spring" (or "May") between Japan and Germany was tried in a book by Kato, H. and K. Kato, although written in Japanese). The Japanese researchers on German Literature suggested that there are basically two seasons "winter" and "summer" around Germany, with the transitional stages of spring and autumn. The concepts of the battle between winter and summer, and driving winter away, and so on, around Germany seem to show rather different seasonal feelings from that around the Japan Islands (Oshio 1982; Miyashita 1982; Takeda 1980). A traditional event there called "Fasnacht" for driving winter away is held in March or slightly earlier stage (Takeda 1980; Ueda and Ebato 1988). Kato et al. (EGU2016, submitted to CL5.06/AS4.9) will report the synoptic climatological features on the seasonal transition from winter to spring in Europe based on the daily data, by comparing with that in East Asia. In this presentation, we will discuss on the climatological background for the "seasonal feeling" leading to such as the battle between winter and summer, driving winter away, including "Fasnacht", also by referring to some songs (children's songs, etc.). At the same time, the analysis results on the seasonal transition from winter to spring in Europe in comparison with those in East Asia by Kato et al. (EGU2016) will be also referred to. On the other hand, although it is around the end of March when the "wintertime pressure pattern" on the daily surface weather maps in

  18. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    Directory of Open Access Journals (Sweden)

    Lindsey T. Funch

    2017-11-01

    Full Text Available The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak and running economy (RE following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8 and High Intensity Interval Training (HIIT; n = 6. Participants completed 12 training sessions. HITrun consisted of 30 min of high-intensity running, while HIIT consisted of a series of whole-body high intensity Tabata-style intervals (75–85% of age predicted maximum heart rate for a total of four minutes. In addition to the interval training, the off-season training included six resistance training sessions, three team practices, and concluded with a team scrimmage. V ˙O2peak was measured pre- and post-training to determine the effectiveness of the training program. A two-way mixed (group × time ANOVA showed a main effect of time with a statistically significant difference in V ˙O2peak from pre- to post-testing, F(1, 12 = 12.657, p = 0.004, partial η2 = 0.041. Average (±SD V ˙O2peak increased from 44.64 ± 3.74 to 47.35 ± 3.16 mL·kg−1·min−1 for HIIT group and increased from 45.39 ± 2.80 to 48.22 ± 2.42 mL·kg−1·min−1 for HITrun group. Given the similar improvement in aerobic power, coaches and training staff may find the time saving element of HIIT-type conditioning programs attractive.

  19. The Effect of PM10 on Allergy Symptoms in Allergic Rhinitis Patients During Spring Season

    Directory of Open Access Journals (Sweden)

    Il Gyu Kang

    2015-01-01

    Full Text Available Background: Asian sand dust (ASD that originates in the Mongolian Desert in the spring induces serious respiratory health problems throughout East Asia (China, Korea, Japan. PM10 (particulate matter with an aerodynamic diameter <10 μm is a major air pollutant component in ASD. We studied the effects of PM10 on allergy symptoms in patients with allergic rhinitis during the spring season, when ASD frequently develops. Methods: We investigated the changes in allergic symptoms in 108 allergic patients and 47 healthy subjects by comparing their 120-day symptom scores from February to May 2012. At the same time, the contributions of pollen count and PM10 concentration were also assessed. We also compared symptom scores before and 2 days after the daily PM10 concentration was >100 μg/m3. Results: The PM10 concentration during the 120 days was <150 μg/m3. No significant correlations were observed between changes in the PM10 concentration and allergic symptom scores (p > 0.05. However, allergic symptoms were significantly correlated with outdoor activity time (p < 0.001. Conclusions: These results demonstrate that a PM10 concentration <150 μg/m3 did not influence allergy symptoms in patients with allergic rhinitis during the 2012 ASD season.

  20. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.

    Science.gov (United States)

    Richardson, Andrew D; Hollinger, David Y; Dail, D Bryan; Lee, John T; Munger, J William; O'keefe, John

    2009-03-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO(2) exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux sites. All phenological measures, including CO(2) source-sink transition dates, could be well predicted on the basis of a simple two-parameter spring warming model, indicating good potential for improving the representation of phenological transitions and their dynamic responsiveness to climate variability in land surface models. The date at which canopy-scale photosynthetic capacity reached a threshold value of 12 micromol m(-2) s(-1) was better correlated with spring and annual flux integrals than were either deciduous or coniferous bud burst dates. For all phenological indicators, earlier spring onset consistently, but not always significantly, resulted in higher gross primary productivity (GPP) and ecosystem respiration (RE) for both seasonal (spring months, April-June) and annual flux integrals. The increase in RE was less than that in GPP; depending on the phenological indicator used, a one-day advance in spring onset increased springtime net ecosystem productivity (NEP) by 2-4 g C m(-2) day(-1). In general, we could not detect significant differences between the two forest types in response to earlier spring, although the response to earlier spring was generally more pronounced for Harvard Forest than for Howland Forest, suggesting that future climate warming may favor deciduous species over coniferous species, at least in this region. The effect of earlier spring tended to be about twice as large when annual rather than springtime flux integrals were considered. This result is suggestive of both immediate and lagged effects of earlier spring onset on ecosystem C cycling, perhaps as a result of accelerated N cycling

  1. Seasonal marine growth of Bristol Bay sockeye salmon (Oncorhynchus nerka) in relation to competition with Asian pink salmon (O. gorbuscho) and the 1977 ocean regime shift

    Science.gov (United States)

    Ruggerone, Gregory T.; Farley, Ed; Nielsen, Jennifer L.; Hagen, Peter

    2005-01-01

    Recent research demonstrated significantly lower growth and survival of Bristol Bay sockeye salmon (Oncorhynchus nerka) during odd-numbered years of their second or third years at sea (1975, 1977, etc.), a trend that was opposite that of Asian pink salmon (O. gorbuscha) abundance. Here we evaluated seasonal growth trends of Kvichak and Egegik river sockeye salmon (Bristol Bay stocks) during even- and odd-numbered years at sea by measuring scale circuli increments within each growth zone of each major salmon age group between 1955 and 2000. First year scale growth was not significantly different between odd- and even-numbered years, but peak growth of age-2. smolts was significantly higher than age-1 smolts. Total second and third year scale growth of salmon was significantly lower during odd- than during even-numbered years. However, reduced scale growth in odd-numbered years began after peak growth in spring and continued through summer and fall even though most pink salmon had left the high seas by late July (10-18% growth reduction in odd vs. even years). The alternating odd and even year growth pattern was consistent before and after the 1977 ocean regime shift. During 1977-2000, when salmon abundance was relatively great, sockeye salmon growth was high during specific seasons compared with that during 1955-1976, that is to say, immediately after entry to Bristol Bay, after peak growth in the first year, during the middle of the second growing season, and during spring of the third season. Growth after the spring peak in the third year at sea was relatively low during 1977-2000. We hypothesize that high consumption rates of prey by pink salmon during spring through mid-July of odd-numbered years, coupled with declining zooplankton biomass during summer and potentially cyclic abundances of squid and other prey, contributed to reduced prey availability and therefore reduced growth of Bristol Bay sockeye salmon during late spring through fall of odd-numbered years.

  2. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  3. Seasonality of light transmittance through Arctic sea ice during spring and summe

    Science.gov (United States)

    Nicolaus, M.; Hudson, S. R.; Granskog, M. A.; Pavlov, A.; Taskjelle, T.; Kauko, H.; Katlein, C.; Geland, S.; Perovich, D. K.

    2017-12-01

    The energy budget of sea ice and the upper ocean during spring, summer, and autumn is strongly affected by the transfer of solar shortwave radiation through sea ice and into the upper ocean. Previous studies highlighted the great importance of the spring-summer transition, when incoming fluxes are highest and even small changes in surface albedo and transmittance have strong impacts on the annual budgets. The timing of melt onset and changes in snow and ice conditions are also crucial for primary productivity and biogeochemical processes. Here we present results from time series measurements of radiation fluxes through seasonal Arctic sea ice, as it may be expected to play a key role in the future Arctic. Our observations were performed during the Norwegian N-ICE drift experiment in 2015 and the Polarstern expedition PS106 in 2017, both studying sea ice north of Svalbard. Autonomous stations were installed to monitor spectral radiation fluxes above and under sea ice. The observation periods cover the spring-summer transition, including snow melt and early melt pond formation. The results show the direct relation of optical properties to under ice algae blooms and their influence on the energy budget. Beyond these results, we will discuss the latest plans and implementation of radiation measurements during the MOSAiC drift in 2019/2020. Then, a full annual cycle of radiation fluxes may be studied from manned and autonomous (buoys) measurements as well as using a remotely operated vehicle (ROV) as measurement platform. These measurements will be performed in direct relation with numerical simulations on different scales.

  4. Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, R.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)

    1999-04-01

    The effect of proximity to natural CO{sub 2} springs on seasonal patterns of xylem embolism in various species of Quercus (oak), Fraxinus, Populus (poplar) and Arbutus was studied. Xylem embolism was evaluated in both artificially dehydrated branches and in hydrated apical branches collected at monthly intervals over a 20-month period. Species-dependent differences in xylem hydraulic properties in response to elevated CO{sub 2} were noted. Populus tremula was the most embolized, an Arbutus unedo was the least embolized among the species examined. The actual differences in xylem vulnerability between trees growing near the CO{sub 2} spring and those growing in control area were small, however, these differences combined with the interaction of seasonal stress events, may be of great importance in determining future community composition in Mediterranean forest ecosystems. Causes and ecological significance of such differences are discussed vis-a-vis elevated carbon dioxide concentration and other environmental factors. 48 refs., 2 tabs., 3 figs.

  5. Seasonality of Mansonia titillans during dam construction, Biritiba-Mirim, São Paulo State, Brazil

    OpenAIRE

    D'Avila,Frederico Alves; Gomes,Almério de Castro

    2013-01-01

    A two and a half year survey was conducted at a dam in southeastern Brazil. Shannon Traps were used for sampling. Kruskal-Wallis test showed little relation between rainfall and abundance. The data clearly show three abundance peaks, all of them in the end of the dry season, in consonance with the scarce literature existent. Although Kruskal-Wallis Test did not find a clear preference for the dry season, Pairwise Wilcoxon Rank Test revealed a significant difference between Fall and Spring sam...

  6. Seasonal formation of ikaite (caco 3 · 6h 2o) in saline spring discharge at Expedition Fiord, Canadian High Arctic: Assessing conditional constraints for natural crystal growth

    Science.gov (United States)

    Omelon, Christopher R.; Pollard, Wayne H.; Marion, Giles M.

    2001-05-01

    - Spring discharge at Expedition Fiord (Pollard et al., 1999) on Axel Heiberg Island in the Canadian High Arctic produces a variety of travertine forms in addition to a diverse collection of mineral precipitates. This paper focuses on clusters of thermally unstable crystals believed to be the mineral ikaite (CaCO 3 · 6H 2O) growing seasonally along two spring outflows at Colour Peak. This form of calcium carbonate mineral occurs along small sections of discharge outflow as white euhedral crystals up to 0.5 cm in length. Difficulty in sampling, storage and transport of the samples for analysis has hampered attempts to confirm the presence of ikaite by X-ray diffraction. However, various field observations and the remarkable instability of these crystals at normal ambient temperatures strengthens our argument. This paper provides a description of these particular CaCO 3 · 6H 2O crystals and their environmental surroundings, and attempts to determine the validity of ikaite precipitation at this site by theoretical geochemical modeling: these results are compared with other reported observations of ikaite to both understand their occurrence and help delineate their geochemical characteristics. It is believed that the restrictive combination of spring water chemistry and long periods of low temperatures characteristic of arctic climates are necessary for ikaite growth at this site. The fact that ikaite is not forming at a second group of saline springs 11 km away allows us to more specifically outline conditions controlling its presence.

  7. National Assessment of Climate Resources for Tourism Seasonality in China Using the Tourism Climate Index

    Directory of Open Access Journals (Sweden)

    Yan Fang

    2015-01-01

    Full Text Available Tourism is a very important industry, and it is deeply affected by climate. This article focuses on the role of climate in tourism seasonality and attempts to assess the impacts of climate resources on China’s tourism seasonality by using the Tourism Climate Index (TCI. Seasonal distribution maps of TCI scores indicate that the climates of most regions in China are comfortable for tourists during spring and autumn, while the climate conditions differ greatly in summer and winter, with “excellent”, “good”, “acceptable” and “unfavorable” existing almost by a latitudinal gradation. The number of good months throughout China varies from zero (the Tibetan Plateau area to 10 (Yunnan Province, and most localities have five to eight good months. Moreover, all locations in China can be classified as winter peak, summer peak and bi-modal shoulder peak. The results will provide some useful information for tourist destinations, travel agencies, tourism authorities and tourists.

  8. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  9. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  10. Do suicide attempts occur more frequently in the spring too? A systematic review and rhythmic analysis.

    Science.gov (United States)

    Coimbra, Daniel Gomes; Pereira E Silva, Aline Cristine; de Sousa-Rodrigues, Célio Fernando; Barbosa, Fabiano Timbó; de Siqueira Figueredo, Diego; Araújo Santos, José Luiz; Barbosa, Mayara Rodrigues; de Medeiros Alves, Veronica; Nardi, Antonio Egidio; de Andrade, Tiago Gomes

    2016-05-15

    Seasonal variations in suicides have been reported worldwide, however, there may be a different seasonal pattern in suicide attempts. The aim of this study was to perform a systematic review on seasonality of suicide attempts considering potential interfering variables, and a statistical analysis for seasonality with the collected data. Observational epidemiological studies about seasonality in suicide attempts were searched in PubMed, Web of Science, LILACS and Cochrane Library databases with terms attempted suicide, attempt and season. Monthly or seasonal data available were evaluated by rhythmic analysis softwares. Twenty-nine articles from 16 different countries were included in the final review. It was observed different patterns of seasonality, however, suicide attempts in spring and summer were the most frequent seasons reported. Eight studies indicated differences in sex and three in the method used for suicide attempts. Three articles did not find a seasonal pattern in suicide attempts. Cosinor analysis identified an overall pattern of seasonal variation with a suggested peak in spring, considering articles individually or grouped and independent of sex and method used. A restricted analysis with self-poisoning in hospital samples demonstrated the same profile. Grouping diverse populations and potential analytical bias due to lack of information are the main limitations. The identification of a seasonal profile suggests the influence of an important environmental modulator that can reverberate to suicide prevention strategies. Further studies controlling interfering variables and investigating the biological substrate for this phenomenon would be helpful to confirm our conclusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-04-01

    Full Text Available Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a summertime trough and that the month when surface ozone peaks differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Pollution background ozone (annual mean of 12.6 ppbv shows a minimum in the summer and maximum in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The summertime trough in surface ozone over eastern China can be explained by the decrease of background ozone from spring to summer (by −15 ppbv regionally averaged over eastern China. Tagged simulations suggest that long-range transport of ozone from northern mid-latitude continents (including Europe and North America reaches a minimum in the summer, whereas ozone from Southeast Asia exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.

  12. Determination of seasonal, diurnal, and height resolved average number concentration in a pollution impacted rural continental location

    Science.gov (United States)

    Bullard, Robert L.; Stanier, Charles O.; Ogren, John A.; Sheridan, Patrick J.

    2013-05-01

    The impact of aerosols on Earth's radiation balance and the associated climate forcing effects of aerosols represent significant uncertainties in assessment reports. The main source of ultrafine aerosols in the atmosphere is the nucleation and subsequent growth of gas phase aerosol precursors into liquid or solid phase particles. Long term records of aerosol number, nucleation event frequency, and vertical profiles of number concentration are rare. The data record from multiagency monitoring assets at Bondville, IL can contribute important information on long term and vertically resolved patterns. Although particle number size distribution data are only occasionally available at Bondville, highly time-resolved particle number concentration data have been measured for nearly twenty years by the NOAA ESRL Global Monitoring Division. Furthermore, vertically-resolved aerosol counts and other aerosol physical parameters are available from more than 300 flights of the NOAA Airborne Aerosol Observatory (AAO). These data sources are used to better understand the seasonal, diurnal, and vertical variation and trends in atmospheric aerosols. The highest peaks in condensation nuclei greater than 14 nm occur during the spring months (May, April) with slightly lower peaks during the fall months (September, October). The diurnal pattern of aerosol number has a midday peak and the timing of the peak has seasonal patterns (earlier during warm months and later during colder months). The seasonal and diurnal patterns of high particle number peaks correspond to seasons and times of day associated with low aerosol mass and surface area. Average vertical profiles show a nearly monotonic decrease with altitude in all months, and with peak magnitudes occurring in the spring and fall. Individual flight tracks show evidence of plumes (i.e., enhanced aerosol number is limited to a small altitude range, is not homogeneous horizontally, or both) as well as periods with enhanced particle number

  13. Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts

    Science.gov (United States)

    He, Qiong; Zuo, Zhiyan; Zhang, Renhe; Zhang, Ruonan

    2018-01-01

    The spring snow water equivalent (SWE) over Eurasia plays an important role in East Asian and Indian monsoon rainfall. This study evaluates the seasonal prediction capability of NCEP Climate Forecast System version 2 (CFSv2) retrospective forecasts (1983-2010) for the Eurasian spring SWE. The results demonstrate that CFSv2 is able to represent the climatological distribution of the observed Eurasian spring SWE with a lead time of 1-3 months, with the maximum SWE occurring over western Siberia and Northeastern Europe. For a longer lead time, the SWE is exaggerated in CFSv2 because the start of snow ablation in CFSv2 lags behind that of the observation, and the simulated snowmelt rate is less than that in the observation. Generally, CFSv2 can simulate the interannual variations of the Eurasian spring SWE 1-5 months ahead of time but with an exaggerated magnitude. Additionally, the downtrend in CFSv2 is also overestimated. Because the initial conditions (ICs) are related to the corresponding simulation results significantly, the robust interannual variability and the downtrend in the ICs are most likely the causes for these biases. Moreover, CFSv2 exhibits a high potential predictability for the Eurasian spring SWE, especially the spring SWE over Siberia, with a lead time of 1-5 months. For forecasts with lead times longer than 5 months, the model predictability gradually decreases mainly due to the rapid decrease in the model signal.

  14. Observational evidence of seasonality in the timing of loop current eddy separation

    Science.gov (United States)

    Hall, Cody A.; Leben, Robert R.

    2016-12-01

    Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated

  15. Diversity, Seasonality, and Context of Mammalian Roadkills in the Southern Great Plains

    Science.gov (United States)

    Smith-Patten, Brenda D.; Patten, Michael A.

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum ( Didelphis virginiana), nine-banded armadillo ( Dasypus novemcinctus), striped skunk ( Mephitis mephitis), and northern raccoon ( Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should

  16. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition.

    Science.gov (United States)

    Niu, Shuli; Yuan, Zhiyou; Zhang, Yanfang; Liu, Weixing; Zhang, Lei; Huang, Jianhui; Wan, Shiqiang

    2005-11-01

    This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the two-peak model (more water in the spring and autumn than in the summer), and the average model (water evenly distributed over the growing season). The effects of water variability on the photosynthetic characteristics of the C3 and C4 species were dependent on season. There were significant differences in the photosynthetic characteristics of the C4 species in the summer and the C3 species in the autumn among the three water treatments. Interspecific competition exerted negative impacts on the C3 species in August and September but had no effects on the C4 species in any of the four measuring dates. The relative competitive capability of the two species was not altered by water availability. The assimilation rate, the maximum quantum yield of net CO2 assimilation, and the maximum rate of carboxylation of the C3 species were 13-56%, 5-11%, and 11-48% greater, respectively, in a monoculture than in a mixture in August and September. The results demonstrated that the photosynthetic characteristics of the C3 and C4 species were affected by water availability, but the effects varied considerably with season.

  17. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats.

    Science.gov (United States)

    Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M; Nash, Richard D M

    2014-01-01

    Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2) lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.

  18. Seasonal dynamics of Atlantic herring (Clupea harengus L. populations spawning in the vicinity of marginal habitats.

    Directory of Open Access Journals (Sweden)

    Florian Eggers

    Full Text Available Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L. populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2 lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.

  19. Different growth responses of C3 and C4 grasses to seasonal water and nitrogen regimes and competition in a pot experiment.

    Science.gov (United States)

    Niu, Shuli; Liu, Weixing; Wan, Shiqiang

    2008-01-01

    Understanding temporal niche separation between C(3) and C(4) species (e.g. C(3) species flourishing in a cool spring and autumn while C(4) species being more active in a hot summer) is essential for exploring the mechanism for their co-existence. Two parallel pot experiments were conducted, with one focusing on water and the other on nitrogen (N), to examine growth responses to water or nitrogen (N) seasonality and competition of two co-existing species Leymus chinensis (C(3) grass) and Chloris virgata (C(4) grass) in a grassland. The two species were planted in either monoculture (two individuals of one species per pot) or a mixture (two individuals including one L. chinensis and one C. virgata per pot) under three different water or N seasonality regimes, i.e. the average model (AM) with water or N evenly distributed over the growing season, the one-peak model (OPM) with more water or N in the summer than in the spring and autumn, and the two-peak model (TPM) with more water or N in the spring and autumn than in the summer. Seasonal water regimes significantly affected biomass in L. chinensis but not in C. virgata, while N seasonality impacted biomass and relative growth rate of both species over the growing season. L. chinensis accumulated more biomass under the AM and TPM than OPM water or N treatments. Final biomass of C. virgata was less impacted by water and N seasonality than that of L. chinensis. Interspecific competition significantly decreased final biomass in L. chinensis but not in C. virgata, suggesting an asymmetric competition between the two species. The magnitude of interspecific competition varied with water and N seasonality. Changes in productivity and competition balance of L. chinensis and C. virgata under shifting seasonal water and N availabilities suggest a contribution of seasonal variability in precipitation and N to the temporal niche separation between C(3) and C(4) species.

  20. Asymmetric seasonal march from autumn to the next spring in East Asia (Toward interdisciplinary education on the climate systems and the "seasonal feeling" such as around the Japan Islands area)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Sato, Sari; Akagi, Rikako; Haga, Yuichi; Miyake, Shoji

    2014-05-01

    There are many steps of seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around the Japan Islands. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High, although the air temperature around the Japan Islands is still rather higher than in midwinter. On the other hand, since the southward retreat of the warm moist air mass in the western Pacific area delays rather greatly to the advances of those northern systems. Thus it would be interesting to re-examine the whole seasonal cycle around the Japan Islands at the view point of how the phase differences among seasonal marches of the Asian monsoon subsystems affect the variety of the seasonal cycle there, together with their effects on the "seasonal feeling". As such, the present study will examine the asymmetric seasonal march from autumn to the next spring through midwinter around the Japan Islands as an interesting example, and will also report the joint activity with music, and so on, toward the development of an interdisciplinary study plan on such topics for the students in junior high school, high school and the faculty of education of the university. The wintertime weather pattern, i.e., precipitation in the Japan Sea side and clear day in the Pacific side of the Japan Islands, prevails from early November to early March, reflected by the seasonal cycle of the Siberian Air Mass and the Siberian High. However, the air temperature shows the minimum from late January to early February around the Japan Islands. In other words, although the dominant weather patterns around November and in early March are nearly the same as each other, air temperature is still lower in early March (early spring). In spite of that, the solar radiation is rather stronger in early

  1. Plant nitrogen dynamics and nitrogen-use strategies under altered nitrogen seasonality and competition.

    Science.gov (United States)

    Yuan, Zhiyou; Liu, Weixing; Niu, Shuli; Wan, Shiqiang

    2007-10-01

    Numerous studies have examined the effects of climatic factors on the distribution of C(3) and C(4) grasses in various regions throughout the world, but the role of seasonal fluctuations in temperature, precipitation and soil N availability in regulating growth and competition of these two functional types is still not well understood. This report is about the effects of seasonality of soil N availability and competition on plant N dynamics and N-use strategies of one C(3) (Leymus chinensis) and one C(4) (Chloris virgata) grass species. Leymus chinensis and C. virgata, two grass species native to the temperate steppe in northern China, were planted in a monoculture and a mixture under three different N seasonal availabilities: an average model (AM) with N evenly distributed over the growing season; a one-peak model (OM) with more N in summer than in spring and autumn; and a two-peak model (TM) with more N in spring and autumn than in summer. The results showed that the altered N seasonality changed plant N concentration, with the highest value of L. chinensis under the OM treatment and C. virgata under the TM treatment, respectively. N seasonality also affected plant N content, N productivity and N-resorption efficiency and proficiency in both the C(3) and C(4) species. Interspecific competition influenced N-use and resorption efficiency in both the C(3) and C(4) species, with higher N-use and resorption efficiency in the mixture than in monoculture. The C(4) grass had higher N-use efficiency than the C(3) grass due to its higher N productivity, irrespective of the N treatment or competition. The observations suggest that N-use strategies in the C(3) and C(4) species used in the study were closely related to seasonal dynamics of N supply and competition. N seasonality might be involved in the growth and temporal niche separation between C(3) and C(4) species observed in the natural ecosystems.

  2. A Prospective Longitudinal Study of Seasonality in African Students Living in the Greater Washington, D.C. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Alvaro Guzman

    2007-01-01

    Full Text Available We conducted a prospective, longitudinal study of seasonality in a vulnerable population, i.e., African students who migrated to a temperate climate. Consistent with previous cross-sectional studies, we hypothesized lower mood and energy, and higher appetite and weight, in fall/winter than in spring/summer. Four cohorts of African students attending a year-long nursing school program without vacation in Washington, D.C., were assessed monthly for 1 year. Forty-three subjects (mean age = 33.46 ± 6.25, consisting of predominantly females (76.7%, completed the study. The cohorts began their academic program in different seasons (one each in winter, spring, summer, and fall, inherently minimizing confounding influences on seasonality, such as academic and immigration stress, as well as allowing adjustment for an order effect. At each assessment, students completed three 100-mm visual analog scales for mood, energy, and appetite, and were weighed on a digital scale. For each standardized dependent variable, a repeated measure ANOVA was used and, if a significant effect of month was identified, averages for spring/summer and fall/winter were compared using paired ttests. In addition, a mixed model for repeated measures was applied to raw (nonstandardized data. Body weight was significantly higher in fall/winter than in spring/summer (p < 0.01. No seasonal differences in mood, energy, or appetite were found. Benefiting from certain unique features of our cohorts allowing adjustment for order effects, this is the first study to identify a seasonal variation in body weight with a peak in winter using longitudinal monthly measurements.

  3. Seasonality of community structure and carbon flow in Narragansett Bay sediments

    International Nuclear Information System (INIS)

    Rudnick, D.T.

    1984-01-01

    Seasonal patterns of benthic community dynamics and the pathways of detrital decomposition in Narragansett Bay were examined. Benthic meiofauna and macrofauna exhibited a pronounced seasonality, with peak abundances in the late spring and minima in the late summer. This pattern was most pronounced for surface dwelling fauna, particularly harpacticoid copepods. These results were attributed to the seasonality of detrital inputs to the sediment and the fate of these inputs. A six month study in which 14 C-sodium bicarbonate was added to a large (13 m 3 ) microcosm enabled the author to observe pathways of carbon flow. Half of the labeled organic carbon that was deposited on the sediment during the winter and spring was found in the sediment in July. At least 20 gC/m 2 had accumulated since December. Within the sediment, the existence of two discrete food webs was distinguished by measurement of faunal specific activity. Surface fauna, dominated by the meiofauna, exclusively assimilate fresh (labeled) organics, while subsurface fauna (meiofauna and macrofauna) predominantly assimilated older, non-labeled organics for the duration of the study. Only the subsurface food web had access to the storage of buried detritus. While there was a surplus of detritus for both food webs during the winter and spring, the authors expect that benthic respiration rates exceed organic deposition rates during the summer. Detrital storage may be critical for the survival of the fauna through the summer

  4. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations.

    Science.gov (United States)

    Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P. B.; Tjoelker, M. G.

    2000-06-01

    We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root

  5. Seasonal variation in hemodialysis initiation: A single-center retrospective analysis.

    Directory of Open Access Journals (Sweden)

    Yujiro Maeoka

    Full Text Available The number of new dialysis patients has been increasing worldwide, particularly among elderly individuals. However, information on seasonal variation in hemodialysis initiation in recent decades is lacking, and the seasonal distribution of patients' conditions immediately prior to starting dialysis remains unclear. Having this information could help in developing a modifiable approach to improving pre-dialysis care. We retrospectively investigated the records of 297 patients who initiated hemodialysis at Hiroshima Prefectural Hospital from January 1st, 2009 to December 31st, 2013. Seasonal differences were assessed by χ2 or Kruskal-Wallis tests. Multiple comparison analysis was performed with the Steel test. The overall number of patients starting dialysis was greatest in winter (n = 85, 28.6%, followed by spring (n = 74, 24.9%, summer (n = 70, 23.6%, and autumn (n = 68, 22.9%, though the differences were not significant. However, there was a significant winter peak in dialysis initiation among patients aged ≥65 years, but not in those aged <65 years. Fluid overload assessed by clinicians was the most common uremic symptom among all patients, but a winter peak was only detected in patients aged ≥65 years. The body weight gain ratio showed a similar trend to fluid overload assessed by clinicians. Pulmonary edema was most pronounced in winter among patients aged ≥65 years compared with other seasons. The incidences of infection were modestly increased in summer and winter, but not statistically significant. Cardiac complications were similar in all seasons. This study demonstrated the existence of seasonal variation in dialysis initiation, with a winter peak among patients aged ≥65 years. The winter increment in dialysis initiation was mainly attributable to increased fluid overload. These findings suggest that elderly individuals should be monitored particularly closely during the winter.

  6. Seasonal variability of thermophilic Campylobacter spp. in raw milk sold by automatic vending machines in Lombardy Region

    Directory of Open Access Journals (Sweden)

    Barbara Bertasi

    2016-06-01

    Full Text Available In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1% in different months during the three years considered. The statistical analysis showed a significant difference (PCampylobacter spp. between warmer and cooler months (2.3 vs 0.6%. The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  7. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  8. Seasonal Association of Immune Thrombocytopenia in Adults

    Directory of Open Access Journals (Sweden)

    Anıl Tombak

    2015-12-01

    Full Text Available Background: Immune thrombocytopenia (ITP is an autoimmune disorder. It is characterized by thrombocytopenia due to thrombocyte destruction mediated by autoantibodies; however, cytotoxic and defective regulatory T-lymphocytes play an important role in its pathogenesis. While childhood ITP is usually acute, self-limiting and generally seasonal in nature, ITP in adults is usually chronic; its relation with seasons has not been studied. Aims: We investigated whether months and/or seasons have triggering roles in adults with ITP. Study Design: Descriptive study. Methods: A retrospective case review of adult patients with primary ITP diagnosed at various University Hospitals in cities where Mediterranean climate is seen was performed. Demographic data, date of referral and treatments were recorded. Corticosteroid-resistant, chronic and refractory cases were determined. Relation between sex, corticosteroid-resistant, chronic and refractory ITP with the seasons was also investigated. Results: The study included 165 patients (124 female, mean age=42.8±16.6. Most cases of primary ITP were diagnosed in the spring (p=0.015. Rates of patients diagnosed according to the seasons were as follows: 35.8% in spring, 23% in summer, 20.6% in fall, and 20.6% in winter. With respect to months, the majority of cases occurred in May (18.2%. Time of diagnosis according to the seasons did not differ between genders (p=0.699. First-line treatment was corticosteroids in 97.3%, but 35% of the cases were corticosteroid-resistant. Steroid-resistant patients were mostly diagnosed in the spring (52.1% (p=0.001. ITP was chronic in 52.7% of the patients and they were also diagnosed mostly in the spring (62.7% (p=0.149. Conclusion: This is the first study showing seasonal association of ITP in adults and we have observed that ITP in adults is mostly diagnosed in the spring. The reason why more patients are diagnosed in the spring may be due to the existence of atmospheric pollens

  9. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    Science.gov (United States)

    Contributors: Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  10. Reflectance spectroscopy of indoor settled dust in Tel Aviv, Israel: comparison between the spring and the summer seasons

    Directory of Open Access Journals (Sweden)

    A. A. Chudnovsky

    2007-07-01

    Full Text Available The influence of mineral and anthropogenic dust components on the VIS-NIR-SWIR spectral reflectance of artificial laboratory dust mixtures was evaluated and used in combination with Partial Least Squares (PLS regression to construct a model that correlates the dust content with its reflectance. Small amounts of dust (0.018–0.33 mg/cm2 were collected using glass traps placed in different indoor environments in Tel Aviv, Israel during the spring and summer of 2005. The constructed model was applied to reflectance spectroscopy measurements derived from the field dust samples to assess their mineral content. Additionally, field samples were examined using Principal Component Analysis (PCA to identify the most representative spectral pattern for each season. Across the visible range of spectra two main spectral shapes were observed, convex and concave, though spectra exhibiting hybrid shapes were also seen. Spectra derived from spring season dust samples were characterized mostly by a convex shape, which indicates a high mineral content. In contrast, the spectra generated from summer samples were characterized generally by a concave shape, which indicates a high organic matter content. In addition to this seasonal variation in spectral patterns, spectral differences were observed associated with the dwelling position in the city. Samples collected in the city center showed higher organic content, whereas samples taken from locations at the city margins, near the sea and next to open areas, exhibited higher mineral content. We conclude that mineral components originating in the outdoor environment influence indoor dust loads, even when considering relatively small amounts of indoor settled dust. The sensitive spectral-based method developed here has potentially many applications for environmental researchers and policy makers concerned with dust pollution.

  11. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    Science.gov (United States)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  12. The Dependency between the Arabian Peninsula Wet Events and Sea Level Pressure Patterns during Spring Season

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-05-01

    This work investigates the relationships between regional extreme wet events in the Arabian Peninsula during the spring season (MAM) and sea level pressure (SLP) patterns. Based on NCEP/NCAR reanalysis data, S-mode principal components were computed from the de-seasonalized daily SLP for spring months between 1960 and 2013. The analysis covered a window for the region (15-70°E and 2.5-50°N). This window coupled different oceanic-land influences (e.g. the Indian, Mediterranean and the Sahara configurations) that may impart an effect on rainfall variations in the study domain. A set of eight significant circulation spatial patterns were retained, which explained 84.8% of the total explained variance. The derived patterns explained a wide variety of flows over the peninsula, with a clear distinction between zonal and meridional advections. The extreme wet events (R95 and R99) were defined from a relatively dense network of 209 observatories covering the peninsula, using the 95th and 99th percentile of rainfall distribution respectively. The links between the dominant SLP patterns and significant wet events were established and the physical interpretations of these associations were examined. The results, as revealed by the location and intensity of high pressure centers, highlight the strength of eastern and southeastern advections corresponding to these extreme events. Other patterns have a local character, suggesting an orographic origin of some wet events in the region. The relationships described in this research can advance the understanding of the large-scale processes that contribute to the wet weather events in the Arabian Peninsula. These findings can therefore contribute to better management of water resources and agricultural practices in the region.

  13. Improved Performance of Unpaved Roads During Spring Thaw

    National Research Council Canada - National Science Library

    Henry, Karen S; Olson, James P; Farrington, Stephen P; Lens, John

    2005-01-01

    Unpaved roads in Vermont are subject to deterioration from seasonal freezing and thawing, and many towns have roads that suffer chronic serviceability problems during the so-called "spring thaw," or mud season...

  14. Gear and seasonal bias associated with abundance and size structure estimates for lentic freshwater fishes

    Science.gov (United States)

    Fischer, Jesse R.; Quist, Michael C.

    2014-01-01

    All freshwater fish sampling methods are biased toward particular species, sizes, and sexes and are further influenced by season, habitat, and fish behavior changes over time. However, little is known about gear-specific biases for many common fish species because few multiple-gear comparison studies exist that have incorporated seasonal dynamics. We sampled six lakes and impoundments representing a diversity of trophic and physical conditions in Iowa, USA, using multiple gear types (i.e., standard modified fyke net, mini-modified fyke net, sinking experimental gill net, bag seine, benthic trawl, boat-mounted electrofisher used diurnally and nocturnally) to determine the influence of sampling methodology and season on fisheries assessments. Specifically, we describe the influence of season on catch per unit effort, proportional size distribution, and the number of samples required to obtain 125 stock-length individuals for 12 species of recreational and ecological importance. Mean catch per unit effort generally peaked in the spring and fall as a result of increased sampling effectiveness in shallow areas and seasonal changes in habitat use (e.g., movement offshore during summer). Mean proportional size distribution decreased from spring to fall for white bass Morone chrysops, largemouth bass Micropterus salmoides, bluegill Lepomis macrochirus, and black crappie Pomoxis nigromaculatus, suggesting selectivity for large and presumably sexually mature individuals in the spring and summer. Overall, the mean number of samples required to sample 125 stock-length individuals was minimized in the fall with sinking experimental gill nets, a boat-mounted electrofisher used at night, and standard modified nets for 11 of the 12 species evaluated. Our results provide fisheries scientists with relative comparisons between several recommended standard sampling methods and illustrate the effects of seasonal variation on estimates of population indices that will be critical to

  15. Seasonal Variability of Thermophilic Campylobacter Spp. in Raw Milk Sold by Automatic Vending Machines in Lombardy Region.

    Science.gov (United States)

    Bertasi, Barbara; Losio, Marina Nadia; Daminelli, Paolo; Finazzi, Guido; Serraino, Andrea; Piva, Silvia; Giacometti, Federica; Massella, Elisa; Ostanello, Fabio

    2016-06-03

    In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1%) in different months during the three years considered. The statistical analysis showed a significant difference (P<0.01) of the prevalence of positive samples for thermophilic Campylobacter spp. between warmer and cooler months (2.3 vs 0.6%). The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  16. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    Science.gov (United States)

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total

  17. Use of post-thaw semen quality parameters to predict fertility of water buffalo (Bubalus bubalis) bull during peak breeding season.

    Science.gov (United States)

    Ahmed, H; Andrabi, S M H; Anwar, M; Jahan, S

    2017-05-01

    This study was designed to predict the fertility of water buffalo bull using post-thaw semen quality parameters during peak breeding season. Thirty ejaculates were collected from five bulls with artificial vagina and cryopreserved. At post-thaw, semen was analysed for motility parameters, velocity distribution, kinematics, DNA integrity/fragmentation, viability, mitochondrial transmembrane potential, morphology, plasma membrane and acrosome integrity. Data of 514 inseminations were collected for estimation of in vivo fertility. Pearson's correlation coefficients showed that progressive motility (PM), rapid velocity, average path velocity, straight line velocity, straightness, supravital plasma membrane integrity, viable spermatozoon with intact acrosome or with high mitochondrial activity were correlated with in vivo fertility (r = .81, p fertility was PM. However, combinations of semen quality parameters to predict fertility were better as compared to single parameter. In conclusion, fertility of buffalo bull can be predicted through some of the post-thaw in vitro semen quality tests during peak breeding season. © 2016 Blackwell Verlag GmbH.

  18. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Nicolás, Emilio; Fernández, José Enrique

    2007-08-01

    This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic

  19. Algal grazing by the planktonic copepods Centropages hamatus and Pseudocalanus sp.: Diurnal and seasonal variation during the spring phytoplankton bloom in the Øresund Denmark

    DEFF Research Database (Denmark)

    Nicolajsen, Hanne; Møhlenberg, Flemming; Kiørboe, Thomas

    1983-01-01

    Seasonal and diel variation in rate of algal grazing were estimated from measurements of gut content (plant pigments) and gut turnover in the copepods C. hamatus and Pseudocalanus sp. during spring (Jan.-May) in the Oresund. Both species exhibited significant diel variation in gut content...

  20. Recharge Area, Base-Flow and Quick-Flow Discharge Rates and Ages, and General Water Quality of Big Spring in Carter County, Missouri, 2000-04

    Science.gov (United States)

    Imes, Jeffrey L.; Plummer, Niel; Kleeschulte, Michael J.; Schumacher, John G.

    2007-01-01

    during the period of record (water years 1922 through 2004) was 1,170 cubic feet per second on December 7, 1982. The daily mean water temperature of Big Spring was monitored during water years 2001 through 2004 and showed little variability, ranging from 13 to 15? C (degree Celsius). Water temperatures generally vary less than 1? C throughout the year. The warmest temperatures occur during October and November and decrease until April, indicating Big Spring water temperature does show a slight seasonal variation. The use of the traditional hydrograph separation program HYSEP to determine the base flow and quick flow or runoff components at Big Spring failed to yield base-flow and quick-flow discharge curves that matched observations of spring characteristics. Big Spring discharge data were used in combination with specific conductance data to develop an improved hydrograph separation method for the spring. The estimated annual mean quick flow ranged from 15 to 48 cubic feet per second for the HYSEP analysis and ranged from 26 to 154 cubic feet per second for the discharge and specific conductance method for water years 2001 to 2004. Using the discharge and specific conductance method, the estimated base-flow component rises abruptly as the spring hydrograph rises, attains a peak value on the same day as the discharge peak, and then declines abruptly from its peak value. Several days later, base flow begins to increase again at an approximately linear trend, coinciding with the time at which the percentage of quick flow has reached a maximum after each recharge-induced discharge peak. The interval between the discharge peak and the peak in percentage quick flow ranges from 8 to 11 days for seven hydrograph peaks, consistent with quick-flow traveltime estimates by dye-trace tests from the mature karst Hurricane Creek Basin in the central part of the recharge area. Concentrations of environmental tracers chlorofluorocarbons (CFCs: CFC-11, CFC-12, CFC-113)

  1. Suicides in the midnight sun--a study of seasonality in suicides in West Greenland

    DEFF Research Database (Denmark)

    Björkstén, Karin Sparring; Bjerregaard, Peter; Kripke, Daniel F

    2005-01-01

    high rates in most age groups, up to 577 per 100,000 person-years in men aged 15-24 years in 1990, and up to 147 per 100,000 person-years in women aged 15-24 years in 1995. Violent methods of suicide were used by 93%. Depression has been reported uncommonly. High alcohol intake and extended periods......Greenland is the most extreme of human habitats in regard to annual changes in natural light. From being very low, the rate of suicides in Greenland has increased during the past few decades to be among the highest in the world. Several studies have shown seasonality in suicides with spring...... or summer peaks, but this has not been previously shown in Greenland. Official data from 1968 to 1995 from West Greenland were pooled. A significant seasonality in the 833 suicides was found using Rayleigh's test, a peak in June and a trough in the winter. Suicides increased during the period, and reached...

  2. Comparison of circadian, weekly, and seasonal variations of electrical storms and single events of ventricular fibrillation in patients with Brugada syndrome

    Directory of Open Access Journals (Sweden)

    Yoshiyasu Aizawa

    2016-06-01

    Full Text Available In patients with Brugada syndrome (BS, VF occurred predominantly during the nocturnal period. Some patients also developed ESs. In addition to the circadian rhythm, patients showed weekly and seasonal patterns. The patients with ESs had peak episodes of VF on Saturday and in the winter and spring, while episodes of VF in patients with single VF events occurred most often on Monday with smaller seasonal variation. Except for age, there was no difference in the clinical or ECG characteristics between the patients with ESs and those with single VF episodes.

  3. The Gambia and Bangladesh: the seasons and diarrhoea.

    Science.gov (United States)

    Rowland, M G

    1986-09-01

    Climactic factors in the Gambia and Bangladesh have an important impact on the incidence of diarrheal disease. Both countries share some common characteristics in climate, including a cool dry winter of 3 months followed by a hot dry spring and hot wet summers of 5-7 months in length. The main difference is in the amount of rainfall. The Gambia may have 20-30 inches of rain each year; Bangladesh usually has up to 4-5 times this amount. In the Gambia, drought is a recurring problem; floods is the problem in Bangladesh. A study in the Gambia found a close link between the time of the annual peak in diarrhea in young children and the summer rains. A 2nd peak of diarrhea in the winter also was significant and was shown to coincide with a short period of intense transmission of rotavirus. Of the enteric infections of childhood, the enterotoxigenic "Escherichia coli" (ETEC), that is those producing heat-stable toxin (ST) were found to be the most important etiological agents of diarrhea in both countries, with a peak during the rains. In rural Gambia, water is obtained almost exclusively from surface wells, 15-20 meters deep. It was found that, although this water was fecally contaminated throughout the year, levels of contamination increased by up to 100 times with 1-2 days of the start of the rains because excreta is washed into the wells. It also was clear that contaminated water and domestic environment contribute to contamination of children's food. The high level of contamination of food during the summer coincided with the time of high diarrhea prevalence. In Bangladesh it was shown that the incidence of ETEC diarrhea in infants was positively correlated with the frequency of consumption of weaning foods contaminated with fecal coliforms. The seasonal peak of ETEC diarrhea coincided with the time when food was most contaminated due to higher bacterial growth caused by high temperatures. Cholera is endemic in many areas of Bangladesh but not in the Gambia. Though

  4. Seasonal Dynamics of Sublittoral Meiobenthos in Relation to Phytoplankton Sedimentation in the Baltic Sea

    Science.gov (United States)

    Ólafsson, E.; Elmgren, R.

    1997-08-01

    Meiobenthic metazoans (40-500) μm were sampled monthly at a 37 m deep station in the north-western Baltic Sea proper. Nematodes dominated the meiofauna, ranging from 67% of total abundance in February to 91% in September. Harpacticoid copepods were the second most common group, ranging from 2% in September to 15% in February. Total meiofauna shell-free dry weight biomass was lowest in winter (0·9 mg 10 cm -2in January), and increased rapidly following the spring bloom, to high values in May-July (peak 1·7 mg 10 cm -2in July). As an annual average, ostracods contributed most to biomass, 38%, while nematodes and harpacticoids made up 24 and 15%, respectively. Only nematodes were common below 2 cm depth in the sediment, and few nematodes penetrated below 4 cm. Of Wieser's morphologically based nematode feeding groups, epistrate feeders dominated the surface sediment, and non-selective deposit feeders dominated the deeper layer in May. Total nematode abundance was significantly different among dates, with lowest numbers in winter and spring (October-April), and almost doubled within about 2 months after the spring phytoplankton bloom in March. There was a significant increase in selective deposit feeders and epistrate feeders after the spring bloom. Harpacticoid copepods were almost all of two species, Pseudobradyasp. and Microarthridion littorale, both of which differed significantly in abundance among months, and displayed continuous reproduction throughout the year, with a peak in pairs in precopula in winter for Pseudobradyasp. and in ovigerous females in M. littoraleafter the spring bloom. Pseudobradyawas significantly more numerous in winter than in other seasons. Microarthridion littoralehad its highest abundance from July to October. Three species of ostracods were common throughout the year and all differed significantly in numbers among months. Turbellaria, Kinorhyncha were found in lowest numbers during winter and peaked in summer. The peak of newly

  5. Spring plant phenology and false springs in the conterminous US during the 21st century

    Science.gov (United States)

    Allstadt, Andrew J.; Vavrus, Stephen J.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Radeloff, Volker C.

    2015-01-01

    The onset of spring plant growth has shifted earlier in the year over the past several decades due to rising global temperatures. Earlier spring onset may cause phenological mismatches between the availability of plant resources and dependent animals, and potentially lead to more false springs, when subsequent freezing temperatures damage new plant growth. We used the extended spring indices to project changes in spring onset, defined by leaf out and by first bloom, and predicted false springs until 2100 in the conterminous United States (US) using statistically-downscaled climate projections from the Coupled Model Intercomparison Project 5 ensemble. Averaged over our study region, the median shift in spring onset was 23 days earlier in the Representative Concentration Pathway 8.5 scenario with particularly large shifts in the Western US and the Great Plains. Spatial variation in phenology was due to the influence of short-term temperature changes around the time of spring onset versus season long accumulation of warm temperatures. False spring risk increased in the Great Plains and portions of the Midwest, but remained constant or decreased elsewhere. We conclude that global climate change may have complex and spatially variable effects on spring onset and false springs, making local predictions of change difficult.

  6. Seasonality of dizziness and vertigo in a tropical region.

    Science.gov (United States)

    Pereira, Alcione Botelho; Almeida, Leonardo Alves Ferreira; Pereira, Nayara Gorette; Menezes, Patrícia Andrade Freitas de; Felipe, Lilian; Volpe, Fernando Madalena

    2015-06-01

    Vertigo and dizziness are among the most common medical complaints in the emergency room, and are associated with a considerable personal and health care burden. Scarce and conflicting reports indicate those symptoms may present a seasonal distribution. This study aimed at investigating the existence of a seasonal distribution of vertigo/dizziness in a tropical region, and the correlations of these findings with climatic variables. The charts of all patients consecutively admitted between 2009 and 2012 in the emergency room of a Brazilian general hospital were reviewed. A total of 4920 cases containing these terms were sorted from a sample of 276,076 emergency records. Seasonality was assessed using Cosinor Analysis. Pearson's correlations were performed between the incidence of consultations, considering separately dizziness and vertigo and each of the predictor climatic variables of that index month. Significant seasonal patterns were observed for dizziness and vertigo in the emergency room. Vertigo was more frequent in late winter-spring, negatively correlating to humidity (r = -0.374; p = 0.013) and rainfall (r = -0.334; p = 0.020). Dizziness peaked on summer months, and positively correlated to average temperatures (r = 0.520; p vertigo indicate possible distinct underlying mechanisms of how seasons may influence the occurrence of those symptoms.

  7. Seasons can influence the results of the methacholine challenge test

    Directory of Open Access Journals (Sweden)

    Bruno Sposato

    2012-01-01

    Conclusion: There was a higher probability of finding BHR in outpatients with suspected asthma in autumn and spring compared with summer. Spring is the season where BHR may be more severe. Females and overweight/obese subjects were those mainly involved in this seasonal variability of BHR.

  8. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: Implications for public health intervention in the Bengal Delta

    Science.gov (United States)

    Akanda, Ali Shafqat; Jutla, Antarpreet S.; Alam, Munirul; de Magny, Guillaume Constantin; Siddique, A. Kasem; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.; Islam, Shafiqul

    2011-03-01

    Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and annual recurrence of this infectious disease in endemic areas remain of considerable interest to scientists and public health workers. Despite major advances in the ecological and microbiological understanding of Vibrio cholerae, the causative agent of the disease, the role of underlying large-scale hydroclimatic processes in propagating the disease for different seasons and spatial locations is not well understood. Here we show that the cholera outbreaks in the Bengal Delta region are propagated from the coastal to the inland areas and from spring to fall by two distinctly different transmission cycles, premonsoon and postmonsoon, influenced by coastal and terrestrial hydroclimatic processes, respectively. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the space-time variability of incidence peaks with seasonal processes and extreme climatic events. We explain how the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating the disease to fall by monsoon flooding. Our findings may serve as the basis for "climate-informed" early warnings and for prompting effective means for intervention and preempting epidemic cholera outbreaks in vulnerable regions.

  9. Formation Mechanisms of the Spring-Autumn Asymmetry of the Midlatitudinal NmF2 under Daytime Quiet Geomagnetic Conditions at Low Solar Activity

    Science.gov (United States)

    Pavlov, A. V.; Pavlova, N. M.

    2018-05-01

    Formation mechanism of the spring-autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere-plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring-autumn asymmetry of NmF2: first, the spring-autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring-autumn asymmetry of NmF2.

  10. Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

    Science.gov (United States)

    Tobin, Benjamin W.; Springer, Abraham E.; Kreamer, David K.; Schenk, Edward

    2018-05-01

    An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The 750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

  11. Fast Times During Spring Breaks: Are Traffic Fatalities Another Consequence?

    OpenAIRE

    French, Michael; Gumus, Gulcin

    2014-01-01

    Every year in the United States, millions of college students travel for spring break, spending billions of dollars. We examine a potential adverse consequence of spring break that has received little attention in the literature - traffic safety. In particular, we estimate the impact of spring break season on fatal passenger vehicle crashes. Using daily county-level longitudinal data on traffic fatalities in popular spring break destinations from 1982-2011, we conduct separate analyses by age...

  12. Determination trends and abnormal seasonal wind speed in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Hassoon, Ahmed F. [Department of Atmospheric Sciences, College of Science, AL- Mustansiriyah University, Baghdad (Iraq)

    2013-07-01

    Monthly observed wind speed data at four weather stations (Baghdad, Mosul, Basra, Rutba) at 10m above surface were used to explore the temporal variations of the wind speed (1971-2000) in Iraq. There are different methods to analyze wind speed variation data, but the time series are one of the powerful analysis methods to diagnose the seasonal wind speed anomaly. The results show most high abnormal data is found in summer seasons in all the stations of study, where it concentrated at 1975, 1976, 1978,1996-1995, 2000. Rutba station is different where its high deviation about annual average at nearly all the seasons, in this station there are trends in seasonal wind towards decreases in all the seasons, for example in winter it reached to about 0.046m/s.a-1, while in other stations Mosul and Basra there increases in annual seasonal wind speed trends in seasons spring, summer, autumn where its reached higher value at summer in Basra about 0.0482m/s.a-1. The second method to determine abnormal annual seasonal wind speed is through comparison seasonal average wind speed, where the average wind speed at the seasons summer and spring in Baghdad and Basra station have very high averages at nearly all years, this cannot see in Mosul and Rutba, in Rutba the seasonal average is intersected with each other, summer and spring is not have greater seasonal average in this station.

  13. Feature: Controlling Seasonal Allergies | NIH Medlineplus the Magazine

    Science.gov (United States)

    ... this page please turn Javascript on. Feature: Seasonal Allergies Controlling Seasonal Allergies Past Issues / Spring 2012 Table of Contents In ... to allergens, helping to prevent allergic reactions. Seasonal Allergy Research at NIH Allergen and T-Cell Reagent ...

  14. Variation and seasonal patterns of suicide mortality in Finland and Sweden since the 1750s.

    Science.gov (United States)

    Holopainen, Jari; Helama, Samuli; Björkenstam, Charlotte; Partonen, Timo

    2013-11-01

    Suicide mortality varies in both the short and long term. Our study examines suicide mortality in Finland and Sweden from the 1750s until today. The aim of our study is to detect any seasonal peaks in suicide rates and examine their temporal evolution to suggest a mechanism that may explain such peaks. We acquired the study material from the Finnish and Swedish cause of death statistics (257,341 deaths by suicide) and the relevant population gender structure data. We then separately calculated the annual male and female suicide rates per 100,000 inhabitants. We analysed the suicide peaks, calculating factors of proportionality for the available data by dividing the suicide rates in the peak months (May and October) by the annual suicide rates. Suicide rates in Finland and Sweden peak twice a year. Both men and women in both countries most often commit suicide in May. There is another peak in October, with the exception of Finnish men. These suicide peaks coincide with a temperature increase in May and the biggest annual drop in temperature in October. We also observed a monotonic long-term change in the Swedish statistics, but not in the Finnish data. Our hypothesis is that seasonal variation in suicide rates may be caused by abrupt temperature changes twice a year that trigger the activity in brown adipose tissue and deepen depression. While the overall suicide mortality rates varied considerably, the monthly proportions in May did not. This finding suggests a routine factor underlying the spring peak in suicide mortality.

  15. Seasonal prolactin secretion and its role in seasonal reproduction: a review.

    Science.gov (United States)

    Curlewis, J D

    1992-01-01

    The majority of seasonally breeding mammals show a seasonal pattern of prolactin secretion with peak concentrations in spring or summer and a nadir in autumn or winter. Photoperiod influences prolactin secretion via its effects on the secretion of the pineal hormone melatonin. Preliminary evidence suggests that the effects of melatonin on both prolactin and gonadotrophin secretion are via a common target area, possibly within the anterior hypothalamus, and that differences in response to photoperiod may be due to differences in the processing and/or interpretation of the melatonin signal. In contrast to seasonal gonadotrophin secretion, the seasonal changes in prolactin are not due to changes in the sensitivity of a feedback loop and so must be due to direct effects on the hypothalamic pathways that control prolactin secretion. Little else can be said with confidence about the neuroendocrine mechanisms that lead to the seasonal changes in prolactin secretion. Dopamine and noradrenaline turnover in the arcuate nucleus and median eminence decrease under short daylength. If catecholamine turnover in these structures is positively correlated with catecholamine concentrations in the long or short hypophysial portal vessels, it is unlikely that the decrease in prolactin concentration in winter is due to the effects of increased concentrations of dopamine or noradrenaline in the portal vessels. There is, however, evidence for increased pituitary sensitivity to dopamine under short daylength, so increased dopamine concentrations may not be required for suppression of prolactin secretion at this time. In addition to the diminished secretion of prolactin under short daylength, rate of prolactin synthesis and pituitary content of prolactin also decline although the mechanisms that regulate these changes are poorly understood. Although all seasonal breeders show a seasonal change in prolactin secretion, there are continuously breeding species in which prolactin secretion is

  16. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  17. A trial of music composition work on the theme of the marching season from spring to summer (An interdisciplinary class between music and climate education for the university students)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko

    2017-04-01

    studied it only a little in the university to get license of primary school teacher. But they have already experienced composition on the theme of spring at the class in the previous year. In this class, the students tried to compose on the theme of the marching season from spring to summer. The term of the class was from April to July 2016, and thus the students have really experienced the detailed seasonal advance just during their activity. At the final stage of this activity, students' music works were performed with various instruments. The present study will report outline of the activity including a part of the students' music works and the analysis results of them, together with brief explanation of the seasonal cycle from spring to summer around the Japan Islands. The students' music works are analyzed on the following three points, and then the possibility toward the joint activity of music with science will be discussed. 1) The point to which the students have paid attention for composition, 2) The relationship between music expression of the works and the climate, 3) The students' interest in the climate induced by the experience of this activity.

  18. Seasonal variations of CO2 and 222Rn in a mediterranean sinkhole - spring (Causse d’Aumelas, SE France

    Directory of Open Access Journals (Sweden)

    Batiot-Guilhe Christelle

    2007-01-01

    Full Text Available Carbon dioxide and 222Rn monitoring of the atmosphere of a Mediterranean sink hole - spring (SE France during two hydrological cycles (from September 2004 to September 2006 showed seasonal variations with very high concentrations during summer (greater than 6% and 20 000 Bq/m3, respectively. Gas dynamics in caves often show seasonal variations.Meteorological parameters (barometric pressure and temperature mainly, cave geometry and fracture networks control exchanges between the cavity and outside atmosphere. Carbon dioxide and 222Rn may have different sources (atmosphere, soil, bedrock, deep gas diffusion, in situ oxidation of organic matter and, in some caves, the key role of swift underground streams.For a CO2 origin, 13C measurements on water and gas samples taken into the cavity suggest a superficial origin. Radon-222 appears to be locally produced and transported by biogenic CO2. Further investigations will be carried out in order to study the relationship of gas-level variations with barometric pressure variations and piezometric level fluctuations within the aquifer.

  19. Clostridium difficile infection seasonality: patterns across hemispheres and continents - a systematic review.

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J; Yakob, Laith; Clark, Justin; Paterson, David L; Riley, Thomas V; Clements, Archie C

    2015-01-01

    Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality.

  20. Seasonal fluctuations in body weight during growth of Thoroughbred racehorses during their athletic career.

    Science.gov (United States)

    Takahashi, Yuji; Takahashi, Toshiyuki

    2017-08-18

    Domesticated horses adapt to environmental conditions through seasonal fluctuations in their metabolic rate. The seasonal change of metabolic rates of domesticated horses in pastures is documented. However, there are few investigations on seasonal body weight change of domesticated horses housed in stables, which are provided constant energy intake throughout the year. Both seasonal changes and gain in body weight of racehorses during their athletic career is known to a lesser extent because their body weight are not measured in most countries. Here, we used a seasonal-trend decomposition method to conduct a time series analysis of body weight of Thoroughbred racehorses participating in flat races held by the Japan Racing Association from 1 January 2002 to 31 December 2014. We acquired 640,431 body weight measurements for race starts and included 632,540 of these in the time series analysis. Based on seasonal component analysis, the body weight of male and gelding horses peaked in autumn and winter and reached its nadir in summer. In contrast, the body weight of female horses peaked in autumn and reached the nadir in spring. Based on trend component analysis, most of the increase in body weight was observed when all sexes approached 5 years of age. The slope of the body weight gain was smaller after that, and an approximately 30 kg gain was observed during their careers. These results indicate that the body weight of a Thoroughbred racehorse fluctuates seasonally, and that there may be sex differences in energy balance mechanisms. Moreover, the present results suggest that the physiological development of Thoroughbred racehorses is completed just before they reach 5 years of age.

  1. Nitrogen dynamics of spring-fed wetland ecosystems of the Sierra Nevada foothills oak woodland

    Science.gov (United States)

    Randall D. Jackson; Barbara Allen-Diaz

    2002-01-01

    Spring-fed wetlands are small, highly productive, patchy ecosystems nested within the oak woodland/annual grassland matrix of the Sierra Nevada foothills. In an effort to place these wetlands in a landscape context, we described seasonal variation (1999-2000 growing season) in nitrogen cycling parameters at 6 spring-fed wetland sites of the Sierra Nevada foothill oak...

  2. An assessment of the water quality of the Isinuka springs in the ...

    African Journals Online (AJOL)

    The physico-chemical properties of Isinuka springs, a "wonder" water resource in Port St Johns area of Eastern Cape Province, were investigated over three seasonal regimes. Water samples were collected from the five spring sources, along Isinuka river and from Ferry Point Cottage spring and analysed for their quality ...

  3. Impact of spring warming on sowing times of cereal, potato and sugar beet in Finland

    Directory of Open Access Journals (Sweden)

    T. KAUKORANTA

    2008-12-01

    Full Text Available Historical data were used to determine if the warm springs experienced in recent decades have influenced time of sowing of spring cereals (barley, wheat and oats, potato and sugar beet in Finland. The start of the thermal growing season was used to represent all climatic factors affecting sowing time. Regional anomalies in sowing and start of growing season were computed for the years 1965–2007. The start of the growing season was 2–2.8 days earlier per decade, with a steeper increase since 1980. Sugar beet sowing advanced 2.5 (since 1980 5.2 and potato planting 3.4 (since 1980 4.5 days per decade, more than expected solely due to earlier starts to the growing season. Sowing of spring cereals advanced 0.6, 0.7 and 1.7 days per decade in the east, north and west respectively (since 1980 1.0, 1.9 and 3.1, with statistically significant trend (p < 0.01 in the west. Earlier sowings can be largely explained by warmer springs, but the trend was not as steep as that for the growing season. This has however not led to increased temperatures during early vegetative phases and thus faster development and increased drought or pest risk, which would have reduced the positive effects of earlier sowing on yield potential. Earlier sowing detected in the west can be explained by changes in spring temperatures, but may also result from economic and technological development. Farmers seem to have adequately adjusted their field activities to the changes in spring temperatures.;

  4. Yaşamların Özü Olan Mevsimsel Bahâr Zemininde Ulusal Bahâr National Spring In Ground Seasonal Spring Being Essence Of Life

    Directory of Open Access Journals (Sweden)

    Ahmet ADIGÜZEL

    2013-09-01

    Full Text Available North hemisfere is a season in which takes place march, april,may and in spring animation of plants between summer and winter.Spring is one of the four seasons. This season include alterations ineverything such as animations of plants, colorful and a good smell life.The spring is a new life, beauty. We won’t examine this beauty. We willexamine spring’s Word which from spring of anation. Although HalideNusret Zorlutuna’s “ Git Bahar, Ağla Bahar, Gel Bahar, Bahar Geldi”poems are piece of verse they are poems which follow each other. Thepoet, who starts her bad life with Mondros treaty, shows pictures withher piece of verses. İn her Works such as Git Bahar, Ağla Bahar, GelBahar, Bahr Geldi, she tells about the success of nation and save fromcaptivity.In this piece of verses, it is told about season of spring andTurkish nation had events and unforeseen dnager left a deep traces inTurkish nations life. These dominant components, which affact fourverses of poet, form rich images and strong concepts. As willemainementioned, The poet express country, the civilization Turkish nation’spsychology and strugle in Anatolia in her work. The poet efforts to beTurkish nation’s language, guide. The poet also efforts to be nation’svoice with her standing individual. This shows Turkish nation’ssituation. The literature which is a branch of life form the societyproblems with a big pleasure. Kuzey yarım kürede mart, nisan ve mayıs aylarını içine alan 21 Mart-22 Haziran arası zaman aralığı ilkyaz, bahâr, bitkilerin canlandığı, canlıların kanlandığı kış ve yaz arasındaki mevsimdir. Bahâr, yılın dört mevsiminden biridir. Bu mevsim dilimi, evrenin olağan dışı yenilemeler ve değişerek gelişmeler gösterdiği capcanlı, rengârenk güzel kokulu ipeksi bir yaşam kreasyonu, karesidir. Bahâr bir yeniden doğuştur, diriliştir, ihyadır. Bizler, bu güzel yaşam tablosunu irdelemeyeceğiz. Bahâr kelimesinin “bir farkl

  5. Morphofunctional evaluation of the testicle and the spermatogenic process of adult white-eyed parakeets (Aratinga leucophthalma MULLER, 1776) during the different seasons of the year.

    Science.gov (United States)

    Peixoto, J V; Paula, T A R; Balarini, M K; Matta, S L P; Santos, J A D; Lima, C B; Peixoto, G V

    2012-08-01

    In this experiment, testicle fragments of 14 adult White-eyed Parakeets (Aratinga leucophthalma) were evaluated as for their seasonal reproductive activities using the following quantitative parameters: average thickness of the testicular tunica albuginea, volumetric proportion of tubular and extratubular compartments, average diameter of the seminiferous tubules and corporal weight. Parameters were created for qualitative evaluations of the degree of spermatogenic development. In this experiment, all the animals were distributed into four groups, and their testicular fragments were collected during the middle of summer, fall, winter and spring. The animals were submitted to volatile general anaesthesia, and a biopsy was made by celioscopy. The fragments collected were processed histologically. The slides were prepared and later evaluated by using an optical microscope. The average seasonal values of the corporal weight increased, starting in the winter and reaching the peak during the spring. A seasonal testicle cycle was observed, because, in the spring, the testicles showed values for the quantitative and qualitative parameters of spermatic production compatible with the period of greater activity, while the opposite thing happened during the fall. Our data indicate that the parameters of sperm production may be correlated with daily light rather than with air humidity. © 2012 Blackwell Verlag GmbH.

  6. Contrasting recruitment seasonality of sea urchin species in Gran Canaria, Canary Islands (eastern Atlantic

    Directory of Open Access Journals (Sweden)

    S. GARCIA-SANZ

    2014-03-01

    Full Text Available Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula at Gran Canaria Island (eastern Atlantic via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula with the most conspicuous species (D. africanum in the study area.

  7. Is earthquake rate in south Iceland modified by seasonal loading?

    Science.gov (United States)

    Jonsson, S.; Aoki, Y.; Drouin, V.

    2017-12-01

    Several temporarily varying processes have the potential of modifying the rate of earthquakes in the south Iceland seismic zone, one of the two most active seismic zones in Iceland. These include solid earth tides, seasonal meteorological effects and influence from passing weather systems, and variations in snow and glacier loads. In this study we investigate the influence these processes may have on crustal stresses and stressing rates in the seismic zone and assess whether they appear to be influencing the earthquake rate. While historical earthquakes in the south Iceland have preferentially occurred in early summer, this tendency is less clear for small earthquakes. The local earthquake catalogue (going back to 1991, magnitude of completeness M6+ earthquakes, which occurred in June 2000 and May 2008. Standard Reasenberg earthquake declustering or more involved model independent stochastic declustering algorithms are not capable of fully eliminating the aftershocks from the catalogue. We therefore inspected the catalogue for the time period before 2000 and it shows limited seasonal tendency in earthquake occurrence. Our preliminary results show no clear correlation between earthquake rates and short-term stressing variations induced from solid earth tides or passing storms. Seasonal meteorological effects also appear to be too small to influence the earthquake activity. Snow and glacier load variations induce significant vertical motions in the area with peak loading occurring in Spring (April-May) and maximum unloading in Fall (Sept.-Oct.). Early summer occurrence of historical earthquakes therefore correlates with early unloading rather than with the peak unloading or unloading rate, which appears to indicate limited influence of this seasonal process on the earthquake activity.

  8. Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents – A Systematic Review

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J.; Yakob, Laith; Clark, Justin; Paterson, David L.; Riley, Thomas V.; Clements, Archie C.

    2015-01-01

    Background Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Methods Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. Results The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. Conclusion CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality. PMID:25775463

  9. An early warning system to forecast the close of the spring burning window from satellite-observed greenness.

    Science.gov (United States)

    Pickell, Paul D; Coops, Nicholas C; Ferster, Colin J; Bater, Christopher W; Blouin, Karen D; Flannigan, Mike D; Zhang, Jinkai

    2017-10-27

    Spring represents the peak of human-caused wildfire events in populated boreal forests, resulting in catastrophic loss of property and human life. Human-caused wildfire risk is anticipated to increase in northern forests as fuels become drier, on average, under warming climate scenarios and as population density increases within formerly remote regions. We investigated springtime human-caused wildfire risk derived from satellite-observed vegetation greenness in the early part of the growing season, a period of increased ignition and wildfire spread potential from snow melt to vegetation green-up with the aim of developing an early warning wildfire risk system. The initial system was developed for 392,856 km 2 of forested lands with satellite observations available prior to the start of the official wildfire season and predicted peak human-caused wildfire activity with 10-day accuracy for 76% of wildfire-protected lands by March 22. The early warning system could have significant utility as a cost-effective solution for wildfire managers to prioritize the deployment of wildfire protection resources in wildfire-prone landscapes across boreal-dominated ecosystems of North America, Europe, and Russia using open access Earth observations.

  10. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    Science.gov (United States)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern

  11. Annual Survey of Horsehair Worm Cysts in Northern Taiwan, with Notes on a Single Seasonal Infection Peak in Chironomid Larvae (Diptera: Chironomidae).

    Science.gov (United States)

    Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng

    2016-06-01

    The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected.

  12. Characteristics and seasonal variations of precipitation phenomena at Syowa Station

    Directory of Open Access Journals (Sweden)

    Hiroyuki Konishi

    1997-03-01

    Full Text Available Long-term observations of precipitating clouds were carried out by a vertical pointing radar, PPI radar and a 37 GHz microwave radiometer at Syowa Station (69°00′S, 39°35′E, Antarctica in 1989. It is concluded from the observations that precipitation near Syowa Station, Antarctica is mainly brought by cloud vortices associated with extratropical cyclones which advance to high latitude while developing to a mature stage. The seasonal variations of clouds and precipitation were analyzed corresponding to the seasonal changes of air temperature and sea ice area. The occurrence frequencies of cloud vortices which brought snowfall to Syowa Station increased in the fall and spring seasons corresponding to activity of the circumpolar trough. However, the activities of cloud systems that bring precipitation weaken in spring when the sea ice area expands to low latitudes, because of less supply of heat and vapor. In 1989,the amount of precipitation in spring brought by a few snowfall events was as large as the amount of precipitation in fall brought by frequent snowfall events. Radar observations revealed that there were three abundant snowfall seasons at Syowa Station and the amount of snowfall was uniform in all seasons except summer. The amounts of precipitation in fall, winter and spring were 74,74 and 53mm respectively.

  13. Seasonal variation in the behaviour of a short-lived rodent.

    Science.gov (United States)

    Eccard, Jana A; Herde, Antje

    2013-11-15

    Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring).We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled.We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as

  14. Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity.

    Science.gov (United States)

    Song, Sang-Keun; Shon, Zang-Ho; Park, Yeon-Hee

    2017-12-01

    The temporal variations (diurnal and seasonal) of the optical properties and direct aerosol radiative forcing (DARF) of different aerosol components (water-soluble, insoluble, black carbon (BC), and sea-salt) were analyzed using the hourly resolution data (PM 2.5 ) measured at an urban site in Seoul, Korea during 2010, based on a modeling approach. In general, the water-soluble component was predominant over all other components (with a higher concentration) in terms of its impact on the optical properties (except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD, τ) at 500nm for the water-soluble component was 0.38±0.07 (0.06±0.01 for BC). The forcing at the surface (DARF SFC ) and top of the atmosphere (DARF TOA ), and in the atmosphere (DARF ATM ) for most aerosol components (except for BC) during the daytime were highest in spring and lowest in late fall or early winter. The maximum DARF SFC occurred in the morning during most seasons (except for the water-soluble components showing peaks in the afternoon or noon in summer, fall, or winter), while the maximum DARF TOA occurred in the morning during spring and/or winter and in the afternoon during summer and/or fall. The estimated DARF SFC and DARF ATM of the water-soluble component were in the range of -49 to -84Wm -2 and +10 to +22Wm -2 , respectively. The DARF SFC and DARF ATM of BC were -26 to -39Wm -2 and +32 to +51Wm -2 , respectively, showing highest in summer and lowest in spring, with morning peaks regardless of the season. This positive DARF ATM of BC in this study area accounted for approximately 64% of the total atmospheric aerosol forcing due to strong radiative absorption, thus increasing atmospheric heating by 2.9±1.2Kday -1 (heating rate efficiency of 39K day -1 τ -1 ) and then causing further atmospheric warming. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas

    2012-12-01

    Full Text Available Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011 from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids.

  16. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Science.gov (United States)

    Dutcher, James D.; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  17. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  18. Birth seasonality in Korean Prader-Willi syndrome with chromosome 15 microdeletion

    Directory of Open Access Journals (Sweden)

    Aram Yang

    2015-03-01

    Full Text Available PurposePrader-Willi syndrome (PWS is a well-known genetic disorder, and microdeletion on chromosome 15 is the most common causal mechanism. Several previous studies have suggested that various environmental factors might be related to the pathogenesis of microdeletion in PWS. In this study, we investigated birth seasonality in Korean PWS.MethodsA total of 211 PWS patients born from 1980 to 2014 were diagnosed by methylation polymerase chain reaction at Samsung Medical Center. Of the 211 patients, 138 were born from 2000-2013. Among them, the 74 patients of a deletion group and the 22 patients of a maternal uniparental disomy (UPD group were compared with general populations born from 2000 using the Walter and Elwood method and cosinor analysis.ResultsThere was no statistical significance in seasonal variation in births of the total 211 patients with PWS (χ2=7.2522, P=0.2982. However, a significant difference was found in the monthly variation between PWS with the deletion group and the at-risk general population (P<0.05. In the cosinor model, the peak month of birth for PWS patients in the deletion group was January, while the nadir occurred in July, with statistical significance (amplitude=0.23, phase=1.2, low point=7.2. The UPD group showed the peak birth month in spring; however, this result was not statistically significant (χ2=3.39, P=0.1836.ConclusionCorrelation with birth seasonality was identified in a deletion group of Korean PWS patients. Further studies are required to identify the mechanism related to seasonal effects of environmental factors on microdeletion on chromosome 15.

  19. Measurement of the 36Cl deposition flux in central Japan: natural background levels and seasonal variability

    International Nuclear Information System (INIS)

    Tosaki, Yuki; Tase, Norio; Sasa, Kimikazu; Takahashi, Tsutomu; Nagashima, Yasuo

    2012-01-01

    Essential parameters for the applications of 36 Cl as a tracer in groundwater studies include the initial 36 Cl/Cl ratio, at the time of recharge, and/or the natural background deposition flux of 36 Cl in the recharge area. To facilitate the hydrological use of 36 Cl in central Japan, this study aimed to obtain a precise estimate of the long-term average local 36 Cl flux and to characterize its seasonal variability. The 36 Cl in precipitation was continuously monitored in Tsukuba, central Japan over a period of >5 years. The 36 Cl flux showed a clear seasonal variation with an annual peak during the spring, which was attributed to the seasonal variability of tropopause height. The long-term average 36 Cl flux (32 ± 2 atoms m −2 s −1 ), estimated from the measured data, was consistent with the prediction from the 36 Cl latitudinal fallout model scaled using the global mean production rate of 20 atoms m −2 s −1 . The initial 36 Cl/Cl ratio was estimated to be (41 ± 6) × 10 −15 , which is similar to that of pre-bomb groundwater in the Tsukuba Upland. An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased 36 Cl flux during the solar minimum. - Highlights: ► We monitored 36 Cl in precipitation in central Japan over a period of >5 years. ► The 36 Cl flux varied seasonally, with a peak in spring. ► The long-term average 36 Cl flux and the initial 36 Cl/Cl ratio were 32 ± 2 atoms m −2 s −1 and (41 ± 6) × 10 −15 , respectively. ► An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased 36 Cl flux during the solar minimum.

  20. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    The expected peak wind speed for the day is an important element in the daily morning forecast for ground and space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron (45 WS) must issue forecast advisories for KSC/CCAFS when they expect peak gusts for >= 25, >= 35, and >= 50 kt thresholds at any level from the surface to 300 ft. In Phase I of this task, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a cool-season (October - April) tool to help forecast the non-convective peak wind from the surface to 300 ft at KSC/CCAFS. During the warm season, these wind speeds are rarely exceeded except during convective winds or under the influence of tropical cyclones, for which other techniques are already in use. The tool used single and multiple linear regression equations to predict the peak wind from the morning sounding. The forecaster manually entered several observed sounding parameters into a Microsoft Excel graphical user interface (GUI), and then the tool displayed the forecast peak wind speed, average wind speed at the time of the peak wind, the timing of the peak wind and the probability the peak wind will meet or exceed 35, 50 and 60 kt. The 45 WS customers later dropped the requirement for >= 60 kt wind warnings. During Phase II of this task, the AMU expanded the period of record (POR) by six years to increase the number of observations used to create the forecast equations. A large number of possible predictors were evaluated from archived soundings, including inversion depth and strength, low-level wind shear, mixing height, temperature lapse rate and winds from the surface to 3000 ft. Each day in the POR was stratified in a number of ways, such as by low-level wind direction, synoptic weather pattern, precipitation and Bulk Richardson number. The most accurate Phase II equations were then selected for an independent verification. The Phase I and II forecast methods were

  1. Hydrogen Peroxide Cycling in High-Temperature Acidic Geothermal Springs and Potential Implications for Oxidative Stress Response

    Directory of Open Access Journals (Sweden)

    Margaux M. Meslé

    2017-05-01

    Full Text Available Hydrogen peroxide (H2O2, superoxide (O2•-, and hydroxyl radicals (OH• are produced in natural waters via ultraviolet (UV light-induced reactions between dissolved oxygen (O2 and organic carbon, and further reaction of H2O2 and Fe(II (i.e., Fenton chemistry. The temporal and spatial dynamics of H2O2 and other dissolved compounds [Fe(II, Fe(III, H2S, O2] were measured during a diel cycle (dark/light in surface waters of three acidic geothermal springs (Beowulf Spring, One Hundred Springs Plain, and Echinus Geyser Spring; pH = 3–3.5, T = 68–80°C in Norris Geyser Basin, Yellowstone National Park. In situ analyses showed that H2O2 concentrations were lowest (ca. 1 μM in geothermal source waters containing high dissolved sulfide (and where oxygen was below detection and increased by 2-fold (ca. 2–3 μM in oxygenated waters corresponding to Fe(III-oxide mat formation down the water channel. Small increases in dissolved oxygen and H2O2 were observed during peak photon flux, but not consistently across all springs sampled. Iron-oxide microbial mats were sampled for molecular analysis of ROS gene expression in two primary autotrophs of acidic Fe(III-oxide mat ecosystems: Metallosphaera yellowstonensis (Archaea and Hydrogenobaculum sp. (Bacteria. Expression (RT-qPCR assays of specific stress-response genes (e.g., superoxide dismutase, peroxidases of the primary autotrophs were used to evaluate possible changes in transcription across temporal, spatial, and/or seasonal samples. Data presented here documented the presence of H2O2 and general correlation with dissolved oxygen. Moreover, two dominant microbial populations expressed ROS response genes throughout the day, but showed less expression of key genes during peak sunlight. Oxidative stress response genes (especially external peroxidases were highly-expressed in microorganisms within Fe(III-oxide mat communities, suggesting a significant role for these proteins during survival and growth in

  2. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes

    Science.gov (United States)

    Luo, Mingming; Chen, Zhihua; Zhou, Hong; Zhang, Liang; Han, Zhaofeng

    2018-03-01

    To be better understand the hydrological and thermal behavior of karst systems in South China, seasonal variations in flow, hydrochemistry and stable isotope ratios of five karst springs were used to delineate flow paths and recharge processes, and to interpret their thermal response. Isotopic data suggest that mean recharge elevations are 200-820 m above spring outlets. Springs that originate from high elevations have lower NO3 - concentrations than those originating from lower areas that have more agricultural activity. Measured Sr2+ concentrations reflect the strontium contents of the host carbonate aquifer and help delineate the spring catchment's saturated zone. Seasonal variations of NO3 - and Sr2+ concentrations are inversely correlated, because the former correlates with event water and the latter with baseflow. The mean annual water temperatures of springs were only slightly lower than the local mean annual surface temperature at the outlet elevations. These mean spring temperatures suggest a vertical gradient of 6 °C/vertical km, which resembles the adiabatic lapse rate of the Earth's stable atmosphere. Seasonal temperature variations in the springs are in phase with surface air temperatures, except for Heilongquan (HLQ) spring. Event-scale variations of thermal response are dramatically controlled by the circulation depth of karst systems, which determines the effectiveness of heat exchange. HLQ spring undergoes the deepest circulation depth of 820 m, and its thermal responses are determined by the thermally effective regulation processes at higher elevations and the mixing processes associated with thermally ineffective responses at lower elevations.

  3. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide

    Science.gov (United States)

    Liang, Qing; Jaeglé, Lyatt; Jaffe, Daniel A.; Weiss-Penzias, Peter; Heckman, Anna; Snow, Julie A.

    2004-12-01

    Continuous CO measurements were obtained at Cheeka Peak Observatory (CPO, 48.3°N, 124.6°W, 480 m), a coastal site in Washington state, between 9 March 2001 and 31 May 2002. We analyze these observations as well as CO observations at ground sites throughout the North Pacific using the GEOS-CHEM global tropospheric chemistry model to examine the seasonal variations of Asian long-range transport. The model reproduces the observed CO levels, their seasonal cycle and day-to-day variability, with a 5-20 ppbv negative bias in winter/spring and 5-10 ppbv positive bias during summer. Asian influence on CO levels in the North Pacific troposphere maximizes during spring and minimizes during summer, ranging from 91 ppbv (44% of total CO) to 52 ppbv (39%) along the Asian Pacific Rim and from 44 ppbv (30%) to 24 ppbv (23%) at CPO. Maximum export of Asian pollution to the western Pacific occurs at 20°-50°N during spring throughout the tropospheric column, shifting to 30°-60°N during summer, mostly in the upper troposphere. The model captures five particularly strong transpacific transport events reaching CPO (four in spring, one in winter) resulting in 20-40 ppbv increases in observed CO levels. Episodic long-range transport of pollutants from Asia to the NE Pacific occurs throughout the year every 10, 15, and 30 days in the upper, middle, and lower troposphere, respectively. Lifting ahead of cold fronts followed by transport in midlatitude westerlies accounts for 78% of long-range transport events reaching the NE Pacific middle and upper troposphere. During summer, convective injection into the upper troposphere competes with frontal mechanisms in this export. Most events reaching the NE Pacific lower troposphere below 2 km altitude result from boundary layer outflow behind cold fronts (for spring) or ahead of cold fronts (for other seasons) followed by low-level transpacific transport.

  4. Seasonal effect on physiological, reproductive and fertility profiles in breeding mithun bulls

    Directory of Open Access Journals (Sweden)

    P Perumal

    2017-01-01

    Full Text Available Objective: To analyse the seasonal effect on physiological parameters, reproductive profiles and in vitro fertility in breeding mithun bulls.Methods: A total of ten adult mithun bulls age of 5 to 6 years old with good body condition (score 5-6 were selected from ICAR-NRC on Mithun, Jharnapani, Nagaland, India. The seasons were categorised into winter, spring, summer and autumn seasons based on the meteorological data and sunshine hours. The physiological parameters, reproductive profiles and in vitro fertility parameters were assessed during different seasons in mithun under the semi-intensive system of management.Results: The statistical analysis revealed that these experimental parameters were differed significantly (P<0.05 among the seasons and in overall spring and winter seasons were more beneficial in mithun breeding programme, although, the breeding in mithun occurred throughout the year with variation.Conclusions: It is concluded that collection & preservation of mithun semen and artificial insemination in mithun species during the season of spring and winter has significant beneficial effect in terms of semen production, freezability and fertility for artificial breeding programme in mithun under the semi-intensive system.

  5. Biological Characterization of Microenvironments in a Hypersaline Cold Spring Mars Analog

    Directory of Open Access Journals (Sweden)

    Haley M. Sapers

    2017-12-01

    Full Text Available While many habitable niches on Earth are characterized by permanently cold conditions, little is known about the spatial structure of seasonal communities and the importance of substrate-cell associations in terrestrial cyroenvironments. Here we use the 16S rRNA gene as a marker for genetic diversity to compare two visually distinct but spatially integrated surface microbial mats on Axel Heiberg Island, Canadian high arctic, proximal to a perennial saline spring. This is the first study to describe the bacterial diversity in microbial mats on Axel Heiberg Island. The hypersaline springs on Axel Heiberg represent a unique analog to putative subsurface aquifers on Mars. The Martian subsurface represents the longest-lived potentially habitable environment on Mars and a better understanding of the microbial communities on Earth that thrive in analog conditions will help direct future life detection missions. The microbial mats sampled on Axel Heiberg are only visible during the summer months in seasonal flood plains formed by melt water and run-off from the proximal spring. Targeted-amplicon sequencing revealed that not only does the bacterial composition of the two mat communities differ substantially from the sediment community of the proximal cold spring, but that the mat communities are distinct from any other microbial community in proximity to the Arctic springs studied to date. All samples are dominated by Gammaproteobacteria: Thiotichales is dominant within the spring samples while Alteromonadales comprises a significant component of the mat communities. The two mat samples differ in their Thiotichales:Alteromonadales ratio and contribution of Bacteroidetes to overall diversity. The red mats have a greater proportion of Alteromonadales and Bacteroidetes reads. The distinct bacterial composition of the mat bacterial communities suggests that the spring communities are not sourced from the surface, and that seasonal melt events create

  6. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    Science.gov (United States)

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  7. Seasonal Allergies: Diagnosis, Treatment & Research

    Science.gov (United States)

    ... this page please turn JavaScript on. Feature: Seasonal Allergies Diagnosis, Treatment & Research Past Issues / Spring 2015 Table of Contents Diagnosis Testing for Allergies Knowing exactly what you are allergic to can ...

  8. Beneficial effect of hot spring bathing on stress levels in Japanese macaques.

    Science.gov (United States)

    Takeshita, Rafaela S C; Bercovitch, Fred B; Kinoshita, Kodzue; Huffman, Michael A

    2018-05-01

    The ability of animals to survive dramatic climates depends on their physiology, morphology and behaviour, but is often influenced by the configuration of their habitat. Along with autonomic responses, thermoregulatory behaviours, including postural adjustments, social aggregation, and use of trees for shelter, help individuals maintain homeostasis across climate variations. Japanese macaques (Macaca fuscata) are the world's most northerly species of nonhuman primates and have adapted to extremely cold environments. Given that thermoregulatory stress can increase glucocorticoid concentrations in primates, we hypothesized that by using an available hot spring, Japanese macaques could gain protection against weather-induced cold stress during winter. We studied 12 adult female Japanese macaques living in Jigokudani Monkey Park, Japan, during the spring birth season (April to June) and winter mating season (October to December). We collected faecal samples for determination of faecal glucocorticoid (fGC) metabolite concentrations by enzyme immunoassay, as well as behavioural data to determine time spent in the hot springs, dominance rank, aggression rates, and affiliative behaviours. We used nonparametric statistics to examine seasonal changes in hot spring bathing, and the relationship between rank and air temperature on hot spring bathing. We used general linear mixed-effect models to examine factors impacting hormone concentrations. We found that Japanese macaques use hot spring bathing for thermoregulation during the winter. In the studied troop, the single hot spring is a restricted resource favoured by dominant females. High social rank had both costs and benefits: dominant females sustained high fGC levels, which were associated with high aggression rates in winter, but benefited by priority of access to the hot spring, which was associated with low fGC concentrations and therefore might help reduce energy expenditure and subsequent body heat loss. This unique

  9. Using fluorescence spectroscopy to gain new insights into seasonal patterns of stream DOC concentrations in an alpine, headwater catchment underlain by discontinuous permafrost in Wolf Creek Research Basin, Yukon Territory, Canada

    Science.gov (United States)

    Shatilla, N. J.; Carey, S.; Tang, W.

    2017-12-01

    The Canadian subarctic is experiencing rapid climate warming resulting in decreased depth and duration of snowcover, decreased permafrost extent and time span of seasonal frozen ground resulting in increased active layer depth, and increased frequency and magnitude of rainfall events during the growing season. These changes challenge our conceptual models of permafrost hydrology as comparisons between recent and historical streamflow records show an emerging secondary post-freshet peak in flow in recent years along with enhanced winter flows. Long-term monitoring of Granger Creek (7.6km2), an alpine watershed underlain by discontinuous permafrost located within Wolf Creek Research Basin (176km2) in Yukon Territory, Canada provided a multi-decadal record of hydro-meteorological measurements. Granger Creek experienced warmer and wetter summers in 2015-6 compared to 2001-8, and an altered streamflow pattern with an earlier spring freshet and peak in dissolved organic carbon (DOC) concentrations. DOC concentrations post-freshet remained low at both the headwater and meso-catchment scale, which contradicts trends of increasing DOC concentrations observed in larger river systems. Hysteresis loops of sub-hourly measurements of streamflow, salinity and chromophoric dissolved organic matter (CDOM) were analyzed to provide new insights into how hydrological connectivity at the headwater scale affected the timing of solute release with supporting information from optical indices calculated from fluorescence spectroscopy. These indices provided a more nuanced view of catchment dynamics than the DOC concentrations. The composition and quality of DOM varied throughout the growing season with the delivery of older, terrestrially-derived material corresponding to high DOC concentrations at the onset of spring freshet when the catchment was initially being flushed. The origin and quality of stream DOM shifted throughout the rest of the season to newer, more easily mobilized DOM

  10. Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity

    Science.gov (United States)

    Thual, S.; Majda, A.; Chen, N.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.

  11. Feeding season duration and the relative success of capital and income spawning copepods

    DEFF Research Database (Denmark)

    Sainmont, Julie; Varpe, Øystein; Andersen, Ken Haste

    to the spring bloom, using only its reserves accumulated the previous year (capital breeder). The success of these two strategies is related to the length of the spring bloom, the only source of nutrients for these copepods. We use an individual based model to approach the question of income versus capital...... breeders in a highly seasonal environment, and find that the capital breeders have a higher fitness during short spring bloom while the income breeder has an improved performance over long productive seasons...

  12. Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey.

    Directory of Open Access Journals (Sweden)

    Takashi Ikeda

    Full Text Available The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight, and cathemeral (active throughout the day. These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels, nocturnal (raccoon dogs and raccoons, crepuscular (sika deer and mountain hares, and cathemeral (Japanese martens, red foxes, and brown bears. Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring-autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter-summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.

  13. Managing Your Seasonal Allergies | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... this page please turn JavaScript on. Feature: Seasonal Allergies Managing Your Seasonal Allergies Past Issues / Spring 2015 Table of Contents Allergic ... and avoid collecting pollen on them. Fast Facts Allergies are reactions of your immune system to one ...

  14. Seasonal and regional differentiation of bio-optical properties within the north polar Atlantic

    Science.gov (United States)

    Stramska, Malgorzata; Stramski, Dariusz; Kaczmarek, SłAwomir; Allison, David B.; Schwarz, Jill

    2006-08-01

    Using field data from the north polar Atlantic, we examined seasonal variability of the spectral absorption, a(λ), and backscattering, bb(λ), coefficients of surface waters in relation to phytoplankton pigments. For a given chlorophyll a concentration, the concentrations of accessory pigments were lower in spring than in summer. This effect contributed to lower chlorophyll-specific absorption of phytoplankton and total particulate matter in spring. The spring values of the green-to-blue band ratio of a(λ) were higher than the summer ratios. The blue-to-green ratios of bb(λ) were also higher in spring. The higher bb values and lower blue-to-green bb ratios in summer were likely associated with higher concentrations of detrital particles in summer compared to spring. Because the product of these band ratios of a and bb is a proxy for the blue-to-green ratio of remote-sensing reflectance, the performance of ocean color band-ratio algorithms for estimating pigments is significantly affected by seasonal shifts in the relationships between absorption, backscattering, and chlorophyll a. Our results suggest that the algorithm for the spring season would predict chlorophyll a that is higher by as much as a factor of 4-6 compared to that predicted from the summer algorithm. This indicates a need for a seasonal approach in the north polar Atlantic. However, we also found that a fairly good estimate of the particulate beam attenuation coefficient at 660 nm (a proxy for total particulate matter or particulate organic carbon concentration) can be obtained by applying a single blue-to-green band-ratio algorithm regardless of the season.

  15. Neural correlates of behavioural olfactory sensitivity changes seasonally in European starlings.

    Directory of Open Access Journals (Sweden)

    Geert De Groof

    2010-12-01

    Full Text Available Possibly due to the small size of the olfactory bulb (OB as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season.This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls.By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size.

  16. Seasonal Mean SST images of Stellwagen Bank National Marine Sanctuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Average seasonal sea surface temperatures http://podaac.jpl.nasa.gov/ Naming Convention: XXXX_SSSYYYY_SST.tif XXXX=location (Stell) SSS=season (FAL=fall, SPR=spring,...

  17. 14C distribution and mobilization in young apple trees in autumn and spring

    International Nuclear Information System (INIS)

    Katzfuss, M.

    1979-01-01

    14 CO 2 was administered to young apple trees in autumn and the roots proved to be the most important storage organ for 14 C in this season. From autumn to spring the 14 C content of the roots, rootstocks, and the two-year-old shoots decreased strongly, while the respective level of the one-year-old shoots decreased only slightly. In spring the growing buds were the main consuming organs of 14 C-assimilates stored in the different organs of the tree at the end of the growing season

  18. CH{sub 4} and N{sub 2}O emissions from China’s beef feedlots with ad libitum and restricted feeding in fall and spring seasons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhi; Liao, Wenhua; Yang, Yuanyuan [College of Resources and Environmental Sciences, Agricultural University of Hebei, 071000 Baoding (China); Gao, Zhiling, E-mail: zhilinggao@hotmail.com [College of Resources and Environmental Sciences, Agricultural University of Hebei, 071000 Baoding (China); Ma, Wenqi; Wang, Dianwu [College of Resources and Environmental Sciences, Agricultural University of Hebei, 071000 Baoding (China); Cao, Yufeng; Li, Jianguo [College of Animal Science and Technology, Agricultural University of Hebei, 071000 Baoding (China); Cai, Zhenjiang [Mechanical and Electric Engineering College, Agricultural University of Hebei, 071000 Baoding (China)

    2015-04-15

    Accurately quantifying methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions from beef operations in China is necessary to evaluate the contribution of beef cattle to greenhouse gas budgets at the national and global level. Methane and N{sub 2}O emissions from two intensive beef feedlots in the North China Plain, one with a restricted feeding strategy and high manure collection frequency and the other with an ad libitum feeding strategy and low manure collection frequency, were quantified in the fall and spring seasons using an inverse dispersion technique. The diel pattern of CH{sub 4} from the beef feedlot with an ad libitum feed strategy (single peak during a day) differed from that under a restricted feeding condition (multiple peaks during a day), but little difference in the diel pattern of N{sub 2}O emissions between two feeding strategies was observed. The two-season average CH{sub 4} emission rates of the two intensive feedlots were 230 and 198 g CH{sub 4} animal{sup −1} d{sup −1} and accounted for 6.7% and 6.8% of the gross energy intake, respectively, indicating little impact of the feeding strategy and manure collection frequency on the CH{sub 4} conversion factor at the feedlot level. However, the average N{sub 2}O emission rates (21.2 g N{sub 2}O animal{sup −1} d{sup −1}) and conversion factor (8.5%) of the feedlot with low manure collection frequency were approximately 131% and 174% greater, respectively, than the feedlot under high frequency conditions, which had a N{sub 2}O emission rate and conversion factor of 9.2 g N{sub 2}O animal{sup −1} d{sup −1} and 3.1%, respectively, indicating that increasing manure collection frequency played an important role in reducing N{sub 2}O emissions from beef feedlots. In addition, comparison indicated that China’s beef and dairy cattle in feedlots appeared to have similar CH{sub 4} conversion factors. - Highlights: • CH{sub 4} and N{sub 2}O emissions from China’s beef feedlots were

  19. Trends and natural variability of North American spring onset as evaluated by a new gridded dataset of spring indices

    Science.gov (United States)

    Ault, Toby R.; Schwartz, Mark D.; Zurita-Milla, Raul; Weltzin, Jake F.; Betancourt, Julio L.

    2015-01-01

    Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from 20.8 to 21.6 days decade21, while first bloom index trends are between20.4 and 21.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.

  20. Diet and physical activity in African-American girls: Seasonal differences

    Science.gov (United States)

    Diet and physical activity (PA) may vary by season. Two 24-hour dietary recalls and 7 days of accelerometry were collected from 342 8-10 year-old African-American girls between January 2013 and October 2014. Season was based on time of data collection (fall, spring, winter, summer). Seasonal differe...

  1. Long-term seasonal nutrient limiting patterns at Meiliang Bay in a large, shallow and subtropical Lake Taihu, China

    Directory of Open Access Journals (Sweden)

    Rui Ye

    2015-04-01

    Full Text Available Lake Taihu has undergone severe eutrophication in the past three decades, and harmful cyanobacteria blooms occur nearly every year in Meiliang Bay at the north end of the lake. To elucidate the potential relationship between seasonal nutrient limitation and phytoplankton proliferation, a 20-year (1991-2012 time series of nutrient limitation in Meiliang Bay was analyzed for deviations between trophic state index (TSI parameters. Results showed that patterns of nutrient limitation in Meiliang Bay were distinctly seasonal, where phytoplankton growth was generally phosphorus (P-limited in winter and spring, but nitrogen (N-limited mainly occurred in summer and fall. This general pattern, however, shifted into N limitation across the four seasons during the mid-1990s because a rapid increase in industrialization led to a significant rise in the input of N and P from inflowing tributaries. The initial patterns were restored by environmental regulation in the end of 1990s, including the Zero Actions plan. Using routine monitoring data, a generalised additive model (GAM with time and deviations between trophic state indexes for nitrogen and phosphorus (TSIN-TSIP as explanatory variables was used to explore which nutrient was responsible for limitation of phytoplankton chlorophyll-a (Chl-a in different seasons. Surprisingly, the model revealed a weak N limitation (TSIN-TSIP = -10 corresponded to peak values of Chl-a in summer-autumn season, which is probably because the phytoplankton community is co-limited by N & P during the period. The shift of nutrition limitation during winter-spring would partially explain high values of Chl-a throughout 1996. This study suggests that seasonal patterns of nutrient limitation must be considered to develop effective management measures to control cyanobacterial blooms.

  2. An Assessment of the Skill of GEOS-5 Seasonal Forecasts

    Science.gov (United States)

    Ham, Yoo-Geun; Schubert, Siegfried D.; Rienecker, Michele M.

    2013-01-01

    The seasonal forecast skill of the NASA Global Modeling and Assimilation Office coupled global climate model (CGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the CGCM consisting of the GEOS-5 AGM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase

  3. Timing of breeding and reproductive performance in murres and kittiwakes reflect mismatched seasonal prey dynamics

    Science.gov (United States)

    Shultz, M.T.; Piatt, John F.; Harding, A.M.A.; Kettle, Arthur B.; van Pelt, Thomas I.

    2009-01-01

    Seabirds are thought to time breeding to match the seasonal peak of food availability with peak chick energetic demands, but warming ocean temperatures have altered the timing of spring events, creating the potential for mismatches. The resilience of seabird populations to climate change depends on their ability to anticipate changes in the timing and magnitude of peak food availability and 'fine-tune' efforts to match ('Anticipation Hypothesis'). The degree that inter-annual variation in seabird timing of breeding and reproductive performance represents anticipated food availability versus energetic constraints ('Constraint Hypothesis') is poorly understood. We examined the relative merits of the Constraint and Anticipation Hypotheses by testing 2 predictions of the Constraint Hypothesis: (1) seabird timing of breeding is related to food availability prior to egg laying rather than the date of peak food availability, (2) initial reproductive output (e.g. laying success, clutch size) is related to pre-lay food availability rather than anticipated chick-rearing food availability. We analyzed breeding biology data of common murres Uria aalge and black-legged kittiwakes Rissa tridactyla and 2 proxies of the seasonal dynamics of their food availability (near-shore forage fish abundance and sea-surface temperature) at 2 colonies in Lower Cook Inlet, Alaska, USA, from 1996 to 1999. Our results support the Constraint Hypothesis: (1) for both species, egg laying was later in years with warmer sea-surface temperature and lower food availability prior to egg laying, but was not related to the date of peak food availability, (2) pre-egg laying food availability explained variation in kittiwake laying success and clutch size. Murre reproductive success was best explained by food availability during chick rearing. ?? 2009 Inter-Research.

  4. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer

    Science.gov (United States)

    Liu, Senfeng; Duan, Anmin

    2017-02-01

    The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific-Japan or East Asia-Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.

  5. A seasonal-scale climatological analysis correlating spring tornadic activity with antecedent fall-winter drought in the southeastern United States

    International Nuclear Information System (INIS)

    Shepherd, Marshall; Mote, Thomas L; Niyogi, Dev

    2009-01-01

    Using rain gauge and satellite-based rainfall climatologies and the NOAA Storm Prediction Center tornado database (1952-2007), this study found a statistically significant tendency for fall-winter drought conditions to be correlated with below-normal tornado days the following spring in north Georgia (i.e. 93% of the years) and other regions of the Southeast. Non-drought years had nearly twice as many tornado days in the study area as drought years and were also five to six times more likely to have multiple tornado days. Individual tornadic events are largely a function of the convective-mesoscale thermodynamic and dynamic environments, thus the study does not attempt to overstate predictability. Yet, the results may provide seasonal guidance in an analogous manner to the well known Sahelian rainfall and Cape Verde hurricane activity relationships.

  6. Seasonal and spatial changes of macrobenthic community structure and diversity in South Yellow Sea

    Science.gov (United States)

    Li, X.; Xu, Y.

    2016-02-01

    The seasonal and spatial characteristics of macrobenthic community in South Yellow Sea were studied based on the data from three voyages carried out in spring, summer and autumn, 2012. A total of 218 species were obtained, including 80 species of Polychaeta, 75 of Crustacea, 35 of Mollusca, 15 of Echinodermata and 13 of other groups. Mean abundance varied from 151.4 ind./m2 in spring to 188 ind./m2 in autumn showing an increasing trend with season and mean biomass ranged from 12.1 g/m2 in spring to 33.4 g/m2 in summer. Mean secondary productivity varied from 2.5 g(AFDW)/(m2·a) in spring to 5.7 g(AFDW)/(m2·a) in summer. Two-way ANOVA indicated that biomass were significantly different among seasons and number of species and Shannon-Weiner index had significant differences among stations. But abundance, Pielou's evenness index and average taxonomic distinctness were not significantly different among either seasons or stations. Non-parametric Kruskal-Wallis test showed significant differences of secondary productivity among tations. Two-way crossed ANOSIM indicated overall significant differences of community structure among both seasons and stations. The stations were divided into four groups in spring and five in summer and autumn through the CLUSTER and nMDS analysis. Depth was an important factor influencing distribution of macrobenthos in the South Yellow Sea.

  7. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    Science.gov (United States)

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  8. Food habits of the hoary bat (LASIURUS CINEREUS) during spring migration through new mexico

    Science.gov (United States)

    Valdez, E.W.; Cryan, P.M.

    2009-01-01

    Hoary bats (Lasiums cinernis) exhibit continental patterns of migration that are unique to bats, but details about their behaviors during migration are lacking. We captured 177 hoary bats in spring and early summer 2002 as individuals migrated through the Sandia Mountains of north-central New Mexico. Our results support earlier observations of asynchronous timing of migration between sexes of L. cinernis during spring, with females preceding males by ca. 1 month. We provide the first evidence that hoary bats may travel in dispersed groups, fly below the tree canopy along streams, and feed while migrating during spring. Analysis of guano revealed that diet of L. cinereus consisted mostly of moths, with more than one-half of samples identified as Noctuidae and Geometridae. We observed a late-spring decline in consumption of moths that might be related to seasonal changes in abundance of prey, differential selection of prey by bats, or sampling bias. We suspect that spring migration of L. cinernis through New Mexico temporally coincides with the seasonal abundance of moths.

  9. Genetic parameters for production and fertility in spring-calving Irish dairy cattle

    NARCIS (Netherlands)

    Evans, R.; Buckley, F.; Dillon, P.; Veerkamp, R.F.

    2001-01-01

    The objective of this study was to estimate genetic parameters for milk production and selected fertility traits in Irish dairy cattle. Data were derived from 74 seasonal spring-calving dairy herds with a potential cow population of 6,783 in the 1999 calving season. The average 305-day yields (kg)

  10. Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope

    Science.gov (United States)

    Ortiz, Ivonne; Aydin, Kerim; Hermann, Albert J.; Gibson, Georgina A.; Punt, André E.; Wiese, Francis K.; Eisner, Lisa B.; Ferm, Nissa; Buckley, Troy W.; Moffitt, Elizabeth A.; Ianelli, James N.; Murphy, James; Dalton, Michael; Cheng, Wei; Wang, Muyin; Hedstrom, Kate; Bond, Nicholas A.; Curchitser, Enrique N.; Boyd, Charlotte

    2016-12-01

    We combined field data and the output from a climate-to-fish coupled biophysical model to calculate weekly climatologies and 1971-2009 time series of physical and biological drivers for 16 distinct regions of the eastern Bering Sea shelf and slope. We focus on spatial trends and physical-biological interactions as a framework to compare model output to localized or season-specific observations. Data on pollock (≥8 cm) diet were used to evaluate energy flows and zooplankton dynamics predicted by the model. Model validation shows good agreement to sea-ice cover albeit with a one month delay in ice retreat. Likewise, the timing of spring phytoplankton blooms in the model were delayed approximately one month in the south and extend further into summer, but the relative timing between the spring and fall bloom peaks was consistent with observations. Ice-related primary producers may shift the timing of the spring bloom maximum biomass earlier in years when sea ice was still present after mid-March in the southern regions. Including the effects of explicit, dynamic fish predation on zooplankton in the model shifts the seasonal spring peak and distribution of zooplankton later in the year relative to simulations with implicit predation dependent only on zooplankton biomass and temperature; the former capturing the dynamic demand on zooplankton prey by fish. Pollock diets based on stomach samples collected in late fall and winter from 1982-2013 show overwintering euphausiids and small pollock as key prey items in the outer and southern Bering Sea shelf; a characteristic not currently present in the model. The model captured two large-scale gradients, supported by field data, characterizing the overall dynamics: 1) inshore to off-shelf physical and biological differences with a gradient in inter-annual variability from higher frequency inshore to lower frequency offshore; and 2) latitudinal gradients in the timing of events. The combined effects of length of day

  11. Seasonal dynamics of fecundity and recruitment of Temora longicornis in the Baltic Sea

    DEFF Research Database (Denmark)

    Dutz, J; van Beusekom, JEE; Hinrichs, R

    2012-01-01

    ), female prosome length (PL) and weight-specific egg production (spEPR) were compared with the seasonal variations in temperature, salinity, and food concentration and composition. Females reproduced year round with maxima of 9.8 to 12.3 eggs female−1 d−1 in spring and low to moderate egg production during...... the remaining seasons. PL was maximal during spring, and %FS, sfEPR and spEPR paralleled egg production. HS was low during winter and increased in spring. The statistical analyses showed that mean egg production correlated with both sfEPR and %FS. While %FS was significantly related to food concentration, sf...

  12. Fuel load and flight ranges of blackcaps Sylvia atricapilla in northern Iberia during autumn and spring migrations

    Directory of Open Access Journals (Sweden)

    JUAN ARIZAGA, EMILIO BARBA

    2009-12-01

    Full Text Available Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atricapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and 'potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003–2005, and from 1 March to 30 April 2004–2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn, the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering [Current Zoology 55 (6: 401–410, 2009].

  13. Diversity of Sex Types and Seasonal Sexual Plasticity in a Cucumber Germplasm Collection

    Directory of Open Access Journals (Sweden)

    Dou Xinxin

    2015-09-01

    Full Text Available The sex type of a cucumber plant is determined by the proportion of male, female and hermaphrodite flowers that it bears and is an important factor that affects fruit yield. In this paper, the sex types and seasonal sexual stabilities of 322 accessions of cucumber germplasm were identified. This germplasm collection displayed a great variety of sex types. We used an updated 10-type sex classification system based on the flower types present and the proportion of nodes with pistillate flowers (PNPF. The PNPF ranges of all the accessions were 2.12%–100% in spring and 0–100% in autumn. A total of 81.37% of the accessions had PNPFs of 10%–50% in spring, but most (84.78% accessions were reduced to 0–20% PNPF in autumn. The range of reduction of PNPF from spring to autumn was 0–67.91%. In other words, most of the germplasm was normal monoecious (31.68% or subandroecious (62.73% in spring, but 94.10% of the accessions were subandroecious in autumn. According to the statistical evaluation of the difference in PNPFs between the two seasons, each accession could be classified into one of three groups: seasonally stable, seasonally sensitive and highly seasonally sensitive, accounting for 10.56%, 20.50% and 68.94% of the accessions, respectively. With a few exceptions, the seasonal PNPF differences were positively correlated with the PNPFs in a given season for most accessions. These results provided useful information and materials for sex expression mechanism research and for breeding cucumbers with high and stable yields.

  14. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  15. The transcriptional landscape of seasonal coat colour moult in the snowshoe hare.

    Science.gov (United States)

    Ferreira, Mafalda S; Alves, Paulo C; Callahan, Colin M; Marques, João P; Mills, L Scott; Good, Jeffrey M; Melo-Ferreira, José

    2017-08-01

    Seasonal coat colour change is an important adaptation to seasonally changing environments but the evolution of this and other circannual traits remains poorly understood. In this study, we use gene expression to understand seasonal coat colour moulting in wild snowshoe hares (Lepus americanus). We used hair colour to follow the progression of the moult, simultaneously sampling skin from three moulting stages in hares collected during the peak of the spring moult from white winter to brown summer pelage. Using RNA sequencing, we tested whether patterns of expression were consistent with predictions based on the established phases of the hair growth cycle. We found functionally consistent clustering across skin types, with 766 genes differentially expressed between moult stages. "White" pelage showed more differentially expressed genes that were upregulated relative to other skin types, involved in the transition between late telogen (quiescent stage) and the onset of anagen (proliferative stage). Skin samples from transitional "intermediate" and "brown" pelage were transcriptionally similar and resembled the regressive transition to catagen (regressive stage). We also detected differential expression of several key circadian clock and pigmentation genes, providing important means to dissect the bases of alternate seasonal colour morphs. Our results reveal that pelage colour is a useful biomarker for seasonal change but that there is a consistent lag between the main gene expression waves and change in visible coat colour. These experiments establish that developmental sampling from natural populations of nonmodel organisms can provide a crucial resource to dissect the genetic basis and evolution of complex seasonally changing traits. © 2017 John Wiley & Sons Ltd.

  16. Timing of floods in southeastern China: Seasonal properties and potential causes

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  17. Spatiotemporal phenological changes in fall foliage peak coloration in deciduous forest and the responses to climatic variation

    Science.gov (United States)

    Xie, Y.; Wilson, A. M.

    2017-12-01

    Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.

  18. Hydrosalinity studies of the Virgin River, Dixie Hot Springs, and Littlefield Springs, Utah, Arizona, and Nevada

    Science.gov (United States)

    Gerner, Steven J.; Thiros, Susan A.; Gerner, Steven J.; Thiros, Susan A.

    2014-01-01

    -solids concentration. Dissolved-solids concentrations in excess irrigation water draining from the agricultural fields are about 1,700 mg/L higher than the concentrations in the Virgin River water that is currently (2014) used for irrigation that contains inflow from Dixie Hot Springs; this increase results from evaporative concentration and dissolution of mineral salts in the irrigated agricultural fields. The water samples collected from drains downgradient from the irrigated areas are assumed to include the dissolution of all available minerals precipitated in the soil during the previous irrigation season. Based on this assumption, a change to more dilute irrigation water will not dissolve additional minerals and increase the dissolved-solids load in the drain discharge. Following the hypothetical reduction of salts from Dixie Hot Springs, which would result in more dilute Virgin River irrigation water than is currently used, the dissolution of minerals left in the soil from the previous irrigation season would result in a net increase in dissolved-solids concentrations in the drain discharge, but this increase should only last one irrigation season. After one (or several) seasons of irrigating with more dilute irrigation water, mineral precipitation and subsequent re-dissolution beneath the agricultural fields should be greatly reduced, leading to a reduction in dissolved-solids load to the Virgin River below the agricultural drains. A mass-balance model was used to predict changes in the dissolved-solids load in the Virgin River if the salt discharging from Dixie Hot Springs were reduced or removed. Assuming that 33.4 or 26.7 ft3/s of water seeps from the Virgin River to the groundwater system upstream of the Virgin River Gorge Narrows, the immediate hypothetical reduction in dissolved-solids load in the Virgin River at Littlefield, Arizona is estimated to be 67,700 or 71,500 ton/yr, respectively. The decrease in dissolved-solids load in seepage from the Virgin River to the

  19. The Association between Seasonal Variation in Vitamin D, Postural Sway, and Falls Risk: An Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Marie-Louise Bird

    2013-01-01

    Full Text Available Introduction. Low serum vitamin D levels are associated with increased postural sway. Vitamin D varies seasonally. This study investigates whether postural sway varies seasonally and is associated with serum vitamin D and falls. Methods. In a longitudinal observational study, eighty-eight independently mobile community-dwelling older adults (69.7 ± 7.6 years were evaluated on five occasions over one year, measuring postural sway (force platform, vitamin D levels, fall incidence, and causes and adverse outcomes. Mixed-methods Poisson regression was used to determine associations between measures. Results. Postural sway did not vary over the year. Vitamin D levels varied seasonally (P<0.001, peaking in summer. Incidence of falls (P=0.01 and injurious falls (P=0.02 were lower in spring, with the highest fall rate at the end of autumn. Postural sway was not related to vitamin D (P=0.87 or fall rates, but it was associated with fall injuries (IRR 1.59 (CI 1.14 to 2.24, P=0.007. Conclusions. Postural sway remained stable across the year while vitamin D varied seasonally. Participants with high values for postural sway demonstrated higher rates of injurious falls. This study provides important evidence for clinicians and researchers providing interventions measuring balance outcomes across seasons.

  20. Oxygen and Hydrogen Isotopes of Precipitation in a Rocky Mountainous Area of Beijing to Distinguish and Estimate Spring Recharge

    Directory of Open Access Journals (Sweden)

    Ziqiang Liu

    2018-05-01

    Full Text Available Stable isotopes of oxygen and hydrogen were used to estimate seasonal contributions of precipitation to natural spring recharge in Beijing’s mountainous area. Isotopic compositions were shown to be more positive in the dry season and more negative in the wet season, due to the seasonal patterns in the amount of precipitation. The local meteoric water line (LMWL was δ2H = 7.0 δ18O − 2.3 for the dry season and δ2H = 5.9 δ18O − 10.4 for the wet season. LMWL in the two seasons had a lower slope and intercept than the Global Meteoric Water Line (p < 0.01. The slope and intercept of the LMWL in the wet season were lower than that in the dry season because of the effect of precipitation amount during the wet season (p < 0.01. The mean precipitation effects of −15‰ and −2‰ per 100 mm change in the amount of precipitation for δ2H and δ18O, respectively, were obtained from the monthly total precipitation and its average isotopic value. The isotopic composition of precipitation decreased when precipitation duration increased. Little changes in the isotopic composition of the natural spring were found. By employing isotope conservation of mass, it could be derived that, on average, approximately 7.2% of the natural spring came from the dry season precipitation and the rest of 92.8% came from the wet season precipitation.

  1. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    Science.gov (United States)

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  2. Seasonality of food groups and total energy intake: a systematic review and meta-analysis.

    Science.gov (United States)

    Stelmach-Mardas, M; Kleiser, C; Uzhova, I; Peñalvo, J L; La Torre, G; Palys, W; Lojko, D; Nimptsch, K; Suwalska, A; Linseisen, J; Saulle, R; Colamesta, V; Boeing, H

    2016-06-01

    The aim of this systematic review and meta-analysis was to assess the effect of season on food intake from selected food groups and on energy intake in adults. The search process was based on selecting publications listed in the following: Medline, Scopus, Web of Science, Embase and Agris. Food frequency questionnaires, 24-h dietary recalls and food records as methods for assessment of dietary intake were used to assess changes in the consumption of 11 food groups and of energy intake across seasons. A meta-analysis was performed. Twenty-six studies were included. Articles were divided into those reporting data on four seasons (winter, spring, summer and autumn) or on two seasons (pre-and post-harvest). Four of the studies could be utilized for meta-analysis describing changes in food consumption across four season scheme: from winter to spring fruits decreased, whereas vegetables, eggs and alcoholic beverages increased; from spring to summer vegetable consumption further increased and cereals decreased; from summer to autumn fruits and cereals increased and vegetables, meat, eggs and alcoholic beverages decreased; from autumn to winter cereals decreased. A significant association was also found between energy intake and season, for 13 studies reporting energy intake across four seasons (favors winter) and for eight studies across pre- and post-harvest seasons (favors post-harvest). The winter or the post-harvest season is associated with increased energy intake. The intake of fruits, vegetables, eggs, meat, cereals and alcoholic beverages is following a seasonal consumption pattern and at least for these foods season is determinant of intake.

  3. Seasonal and annual variation in Chilean hake Merluccius gayi spawning locations and egg size off central Chile

    Science.gov (United States)

    Landaeta, Mauricio F.; Castro, Leonardo R.

    2012-01-01

    Variability in Chilean hake reproductive tactics off central Chile was assessed by analyzing ichthyoplankton samples from nine oceanographic cruises (1996-2005) and through experimental trials with early life stages (eggs, yolk-sac larvae) during the main (austral spring) and secondary (late summer-early autumn) spawning seasons. Abundant eggs in the plankton (1300-2000 eggs per 10 m 2) and historical adult reproductive data showed the highest reproductive activity in austral spring, with large egg aggregations near shelf break (50-100 m depth). Large, recently spawned eggs (1.15-1.20 mm diameter) were advected nearshore by coastward subsurface flows in the spring upwelling season. Experimental trials indicated that recently hatched larvae (3.4-3.5 mm) consumed their yolk-sac (0.17-0.41 mm 3) in 3-4 days at 10-12 °C; plankton sampling indicated that larval hake remained at mid-depth (50-100 m) without showing daily vertical migrations until completing their caudal fin formation (∼15 mm). During the secondary reproductive peak, hake spawned nearshore, when smaller eggs (0.95-1.13 mm) and recently hatched larvae (2.2-2.6 mm notochord length) occurred in surface waters (0-10 m depth). Their relatively large yolk-sac volumes (0.57 ± 0.11 mm 3) provided endogenous nourishment for at least 5 days at 10 °C, according to experiments. In the field, preflexion larvae occurred mainly in the mixed layer (0-25 m) and started ontogenetic daily vertical migrations at 7 mm. A strong decline occurred after 2002 in the adult Chilean hake biomass (estimated by hydroacoustic surveys) and body size, coinciding with variations in spawning locations (more coastward in early spring 2004 and 2005) and decline in egg size. Thus, recent variations in Chilean hake reproductive tactics may reflect an indirect effect of declines in the parental population size.

  4. Seasonal Changes in Central England Temperatures

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Hillebrand, Eric

    The aim of this paper is to assess how climate change is reflected in the variation of the seasonal patterns of the monthly Central England Temperature time series between 1772 and 2013. In particular, we model changes in the amplitude and phase of the seasonal cycle. Starting from the seminal work...... by Thomson (“The Seasons, Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a number of studies have documented a shift in the phase of the annual cycle implying an earlier onset of the spring season at various European locations. A significant reduction in the amplitude...... and stochastic trends, as well as seasonally varying autocorrelation and residual variances. The model can be summarized as containing a permanent and a transitory component, where global warming is captured in the permanent component, on which the seasons load differentially. The phase of the seasonal cycle...

  5. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  6. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  7. Seasonal Patterns of Gastrointestinal Illness and Streamflow along the Ohio River

    Directory of Open Access Journals (Sweden)

    Elena N. Naumova

    2012-05-01

    Full Text Available Waterborne gastrointestinal (GI illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses. Streamflow is correlated with biological contamination and can be used as proxy for drinking water contamination. We compare seasonal patterns of GI illnesses in the elderly (65 years and older along the Ohio River for a 14-year period (1991–2004 to seasonal patterns of streamflow. Focusing on six counties in close proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses and streamflow data. Seasonal patterns were explored using Poisson annual harmonic regression with and without adjustment for streamflow. GI illnesses demonstrated significant seasonal patterns with peak timing preceding peak timing of streamflow for all six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. This study found that the time of peak GI illness precedes the peak of streamflow, suggesting either an indirect relationship or a more direct path whereby pathogens enter water supplies prior to the peak in streamflow. Such findings call for interdisciplinary research to better understand associations among streamflow, pathogen loading, and rates of gastrointestinal illnesses.

  8. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Synoptic climatological analyses on the seasonal transition from winter to spring in Europe also with attention to the day-to-day variability (Comparing with that in East Asia)

    Science.gov (United States)

    Kato, Kuranoshin; Hamaki, Tatsuya; Haga, Yuichi; Otani, Kazuo; Kato, Haruko

    2016-04-01

    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the many kinds of arts also in Europe around the western edge of the Eurasian Continent. Especially around Germany, there are so many music or literature works in which the "May" is treated as the special season. However, more detailed examination and its comparison with that in East Asia about the seasonal evolution from winter to spring including before May would be interesting. Deeper knowledge on the seasonal cycle would contribute greatly to the cultural understanding as mentioned above, as well as for considering the detailed response of the regional climate to the global-scale impacts such as the global warming. As such, the present study examined, based mainly on the NCEP/NCAR reanalysis data during 1971-2010, the synoptic climatological features on the seasonal transition from winter to spring in Europe also with attention to the day-to-day variability, by comparing with those in East Asia (detailed analyses were made mainly for 2000/01 - 2010/11 winters). Around the region from Germany to Turkey, the surface air temperature (TS) showed rather larger day-to-day variation (including the interannual or intraseasonal variation) throughout a year than in the Japan Islands area in East Asia. Especially from December to March (the minimum period of the climatological TS in the European side), the day-to-day variation was extremely great around Germany and its northern region (to the north of around 45N/10E). Thus, the extremely low temperature events sometimes appeared around Germany till the end of March, although the seasonal mean TS was not so considerably low. The day-to-day variation of sea level pressure (SLP) was also very large where such large amplitude of TS

  10. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China

    Science.gov (United States)

    Pan, Jing; Yang, Yong-Liang; Zhang, Gan; Shi, Jing-Lei; Zhu, Xiao-Hua; Li, Yong; Yu, Han-Qing

    2011-07-01

    Near-surface atmospheric aerosol samples were collected at the sampling frequency of 2-3 d per week for one year from August 2006 to August 2007 at a low latitude station in Tianhe District, Guangzhou, Guangdong Province of southern China. The samples were analyzed for cosmogenic nuclide 7Be and persistent organic pollutants, i.e. organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The annual average 7Be concentration was 2.59 mBq m -3, with the maximum occurred in May (8.45 mBq m -3) and minimum in late August and early September (0.07 mBq m -3). Winter and spring were the seasons in which the 7Be concentrations were high while summer and autumn were the lower 7Be seasons. Spring peaks in 7Be in the near-surface atmospheric aerosols may have associated with the "spring leak maximum" episode. The annual average ∑OCPs concentration was 345.6 pg m -3, ∑ 33PCBs 317.6 pg m -3, and ∑ 31PBDEs 609.0 pg m -3. The variation trends in the time-series of 7Be, OCPs, PCBs, and PBDEs in near-surface atmospheric aerosol showed both common features and differences. Significant correlations ( R2 = 0.957 and 0.811. respectively, p = 0.01) were observed between the monthly average 7Be concentrations and those of ∑PCBs and ∑PBDEs in summer, autumn, and early winter. The difference between the seasonal variation features of OCPs and PCBs (and PBDEs) could be attributed to the different source functions and physical-chemical properties which could control the behaviors of these compounds in air-aerosol partitions as well as atmospheric transport.

  11. Seasonal dynamics of the tick Haemaphysalis tibetensis in the Tibetan Plateau, China.

    Science.gov (United States)

    Liu, M; Li, T; Yu, Z J; Qiu, Z X; Yan, P; Li, Y; Liu, J

    2017-12-01

    The tick Haemaphysalis tibetensis (Acari: Ixodidae) Hoogstraal is an important arthropod vector widespread in the Qinghai-Tibet Plateau, and knowledge of its seasonal dynamics is still poor. The current study investigated the seasonal dynamics of the parasitic and non-parasitic H. tibetensis over a 2-year period from March 2014 to February 2016 in the Tibetan Plateau, China. During this timeframe, non-parasitic ticks were collected weekly by flag-dragging in grassland and shrubland areas, and parasitic ticks were removed weekly from selected sheep. Plateau pikas were captured using traps and examined for immature ticks between May to September 2014. Results suggest that non-parasitic H. tibetensis were mainly distributed in the grassland, and the parasitic adults and nymphs were found mostly on sheep. Larvae were usually found on Plateau pikas and the prevalence of infestation and mean parasitic intensity were 72.1 and 1.81%, respectively. Adults were observed from March to July with the major peak occurring in mid-April. Nymphs were found from March to August and reached a peak in late June. Larvae were collected from April to September, and their numbers peaked in late May. In the parasitic and non-parasitic period, the overall sex ratio of males to females was 1.62 and 1.30, respectively. Results show that H. tibetensis can complete one generation per year, with a population overlap between stages over the spring-summer months. These findings provide additional information on the biology and ecology of H. tibetensis as well as insights on its control in the environment and on sheep. © 2017 The Royal Entomological Society.

  12. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam.

    Science.gov (United States)

    Castro, D M P; Hughes, R M; Callisto, M

    2013-11-01

    Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.

  13. Seasonal variability in CDOM absorption and fluorescence properties in the Barataria Basin, Louisiana, USA.

    Science.gov (United States)

    Singh, Shatrughan; D'Sa, Eurico; Swenson, Erick

    2010-01-01

    Absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) along a 124 km transect in the Barataria Basin, a large estuary located in Louisiana, USA, were investigated during high and low flow periods of the Mississippi River in the spring and winter of 2008-2009. Mean CDOM absorption at 355 nm from the marine to the freshwater end member stations ranged from (3.25 +/- 0.56) to (20.76 +/- 2.43) m(-1) for the three month high flow period whereas it varied from (1.48 +/- 1.08) to (25.45 +/- 7.03) m(-1) for the same stations during low flow period. Corresponding salinity values at these stations indicated the influence of river and shelf exchanges in the lower basin and precipitation and runoff in the upper basin. An inverse relationship of CDOM absorbance and fluorescence with salinity observed in the basin could be a useful indicator of salinity. CDOM fluorescence also varied over a large range showing an approximately 8 to 12-fold increase between the marine and freshwater end members for the two flow seasons. Excitation-emission matrix spectral plots indicated the presence of various fluorescence components with highest being the A-peak, lowest the T-peak, and the C and M-peaks showing similar trends along the transect. During low flow season the A/C ratio were well correlated with station locations indicating increased terrestrial influence towards the upper basin. CDOM absorption and fluorescence at 355 nm were highly correlated and independent of CDOM sources suggesting that fluorescence could be used to characterize CDOM in the basin.

  14. Seasonal Variations in Color Preference.

    Science.gov (United States)

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  15. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagø ien, Espen; Melle, Webjø rn; Kaartvedt, Stein

    2012-01-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  16. Seasonal development of mixed layer depths, nutrients, chlorophyll and Calanus finmarchicus in the Norwegian Sea - A basin-scale habitat comparison

    KAUST Repository

    Bagøien, Espen

    2012-09-01

    Seasonal patterns for mixed layer depths, nutrients, chlorophyll, and Calanus finmarchicus in different water masses between 62 and 70°N of the Norwegian Sea were compared using spatiotemporally aggregated basin-scale data. Norwegian Coastal Water was stratified throughout the year due to a low-salinity upper layer. The winter mixed layer depth was typically about 50-60m, and the spring phytoplankton bloom peaked in late April. In Atlantic and Arctic Waters the winter mixed layer depths were much greater, typically about 175-250m. Due to the requirement for thermal stratification, the phytoplankton build-ups there were slower and the peaks were delayed until late May. Seasonal development of mixed layer depths, nutrient consumption and chlorophyll was similar for the Atlantic and Arctic areas. Young Calanus copepodites of the first new generation in Coastal Water peaked in early May, preceding the peak in Atlantic Water by about 2weeks, and that in Arctic Water by about 6weeks. While the young G 1 cohorts in Coastal and Atlantic waters coincided rather well in time with the phytoplankton blooms, the timing of the cohort in Arctic Water was delayed compared to the phytoplankton. Two or more Calanus generations in Coastal Water, and two generations in Atlantic Water were observed. Only one generation was found in Arctic Water, where scarce autumn data precludes evaluation of a possible second generation. © 2012 Elsevier Ltd.

  17. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    Science.gov (United States)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  18. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    Science.gov (United States)

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  19. Leptin and ghrelin in anadromous Arctic charr: cloning and change in expressions during a seasonal feeding cycle.

    Science.gov (United States)

    Frøiland, Eirik; Murashita, Koji; Jørgensen, Even Hjalmar; Kurokawa, Tadahide

    2010-01-01

    Anadromous (sea-migrating) Arctic charr (Salvelinus alpinus) display pronounced seasonal variations in food intake and growth and is an interesting model for studying mechanisms of appetite regulation. In this study cDNAs encoding for ghrelin (GHRL) and leptin (LEP) in Arctic charr were cloned, after which stomach GHRL and liver LEP mRNA expressions were examined by qPCR during a seasonal feeding cycle of semi-wild anadromous Arctic charr. The fish were captured as they returned from summer feeding in seawater and transferred to an indoor tank where they were fed in excess until October the year after. Growth rate was low in late winter, increased in late spring and reached a peak during summer, and then declined during autumn, when the fish became sexually mature. The changes in growth rate were associated with corresponding changes in the proportion of fish that had been eating at each sampling date, and whole body lipid status. Stomach GHRL mRNA expression was high in late winter, decreased to a nadir in mid-summer and increased again to a high level in early autumn. Liver LEP mRNA remained low during winter, spring and early summer, after which there was a gradual, 7-fold increase until October. The seasonal changes in ghrelin and leptin support a role of these hormones in the long-term regulation of energy homeostasis in the anadromous Arctic charr. It cannot be excluded, however, that the increase in liver leptin expression during autumn is related to sexual maturation.

  20. Analysis Of First Fall And Last Spring Advection and Radiation-Advection Frosts In Azerbaijan Provinces

    International Nuclear Information System (INIS)

    Noohi, K.; Pedram, M.; Sahraian, F.; Kamali, G. A.

    2007-01-01

    Atmospheric Science and Meteorological Research Center (ASMERC)Dates of first fall and last spring frosts on the basis of minimum shelter temperature equal or less than 0°C were determined for 12 synoptic stations for period 1986-2000 in Azerbaijan region. The advection frost was determined based on using of synoptic maps and studying of meteorological elements in different hours. In this work, we found that series of first fall and last spring advection and radiation-advection frosts are random and normally distributed. This study shows that on the average advection frosts start from 6 to 40 days later than radiation-advection frosts in fall and ends 2 to 25 days earlier in spring. Potential growing season that is interval between last spring and first fall advection frost is found to be from 5 to 65 days longer than the growing season defined by the interval from last spring to first fall occurrences of minimum temperature equal or less than 0°C. Crop protection against radiation frosts can bring about too much benefit. To assess whether practical protection of some special crops against radiation frosts is done or not, the number of radiation frosts before first advection frost in fall and after last advection frost in spring, were determined

  1. Spring Changeover of the Middle Atmosphere Circulation Compared with Rocket Wind Data up to 80 Km

    Science.gov (United States)

    Entzian, G.; Tarasenko, D. A.; Lauter, E. A.

    1984-01-01

    The middle atmosphere circulation is governed by two seasonal basic states in winter and summer, twice a year separated by relatively shortlived reversal periods. These seasonal basic states of circulation and the spring changeover period between them are investigated.

  2. Report on the FY 1998 survey for preservation of Jozankei Hot Spring. Hot spring variation survey; 1998 nendo Jozankei onsen hozen chosa. Onsen hendo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Of the FY 1998 survey for preservation of Jozankei Hot Spring, a survey was conducted with the aim of grasping the state of variation in ingredients of hot spring, etc. in the area and of elucidating the causes of hot spring variation. During the period from October 27, 1998 to August 28, 1999, the following were carried out: sampling of specimens of spring water at 6 spring sources, river water at 2 points and precipitation at 2 points; measurement of temperature, spring temperature, pH, electric conductivity, etc.; analyses of Na, Ca, CL, HCO{sub 3}, SiO{sub 2}, etc. The results of the analysis are as follows. As to spring sources, A-2, A-7 and B-1, the precipitation or river water flow rate seem to largely affect the variation in hot spring measuring values. As to spring resources, A-6 and B-4, the relation with the precipitation or river water flow rate is not clear, but a big change is recognized in the snow-melting season. The tendency to the two variations seems to be caused by the difference between the spring with which the river water is greatly concerned by the crack system of the spring having reached the river and the spring which was closed on the earth surface. The temperature variation of springs was considered to be affected by the river water which flowed into the springs. (NEDO)

  3. The Asian-Bering-North American teleconnection: seasonality, maintenance, and climate impact on North America

    Science.gov (United States)

    Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2018-03-01

    The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.

  4. Early Spring Phytoplankton Dynamics in the Western Antarctic Peninsula

    Science.gov (United States)

    Arrigo, Kevin R.; van Dijken, Gert L.; Alderkamp, Anne-Carlijn; Erickson, Zachary K.; Lewis, Kate M.; Lowry, Kate E.; Joy-Warren, Hannah L.; Middag, Rob; Nash-Arrigo, Janice E.; Selz, Virginia; van de Poll, Willem

    2017-12-01

    The Palmer Long-Term Ecological Research program has sampled waters of the western Antarctic Peninsula (wAP) annually each summer since 1990. However, information about the wAP prior to the peak of the phytoplankton bloom in January is sparse. Here we present results from a spring process cruise that sampled the wAP in the early stages of phytoplankton bloom development in 2014. Sea ice concentrations were high on the shelf relative to nonshelf waters, especially toward the south. Macronutrients were high and nonlimiting to phytoplankton growth in both shelf and nonshelf waters, while dissolved iron concentrations were high only on the shelf. Phytoplankton were in good physiological condition throughout the wAP, although biomass on the shelf was uniformly low, presumably because of heavy sea ice cover. In contrast, an early stage phytoplankton bloom was observed beneath variable sea ice cover just seaward of the shelf break. Chlorophyll a concentrations in the bloom reached 2 mg m-3 within a 100-150 km band between the SBACC and SACCF. The location of the bloom appeared to be controlled by a balance between enhanced vertical mixing at the position of the two fronts and increased stratification due to melting sea ice between them. Unlike summer, when diatoms overwhelmingly dominate the phytoplankton population of the wAP, the haptophyte Phaeocystis antarctica dominated in spring, although diatoms were common. These results suggest that factors controlling phytoplankton abundance and composition change seasonally and may differentially affect phytoplankton populations as environmental conditions within the wAP region continue to change.

  5. Seasonal response of Eragrostis curvula to nitrogen | R | African ...

    African Journals Online (AJOL)

    On the basis of the seasonal response of Eragrostis curvula to nitrogen applied as single dressings to separate plots at the beginning of each of the six months of the growing season, it is deduced that nitrogen can profitably be applied in the Ukulinga environment from early spring though to early January. Late summer and ...

  6. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae.

    Directory of Open Access Journals (Sweden)

    Hongsheng Pan

    Full Text Available In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür host plant use in successive spring, summer and winter seasons at one single location (Langfang, China. Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops.

  7. Differences in Influenza Seasonality by Latitude, Northern India

    Science.gov (United States)

    Broor, Shobha; Saha, Siddhartha; Barnes, John; Smith, Catherine; Shaw, Michael; Chadha, Mandeep; Lal, Renu B.

    2014-01-01

    The seasonality of influenza in the tropics complicates vaccination timing. We investigated influenza seasonality in northern India and found influenza positivity peaked in Srinagar (34.09°N) in January–March but peaked in New Delhi (28.66°N) in July–September. Srinagar should consider influenza vaccination in October–November, but New Delhi should vaccinate in May–June. PMID:25279651

  8. Springing into Inquiry: Using Student Ideas to Investigate Seasons

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid

    2012-01-01

    Although inquiry is more engaging and results in more meaningful learning (Minner, Levy, and Century 2010) than traditional science classroom instruction, actually involving students in the process is difficult. Furthermore, many students have misconceptions about Earth's seasons, which are supported by students' prior knowledge of heat sources.…

  9. Spring Barley Yield Parameters after Lignite, Sodium Humate and Nitrogen Utilization

    Directory of Open Access Journals (Sweden)

    Kováčik Peter

    2016-10-01

    Full Text Available The existence of a small number of publications dealing with the impact of solid sodium humate and lignite on the quantity and quality of grown crops was the reason for establishing the field experiment. The objective of this experiment was to detect the impact of solid lignite and solid sodium humate on the quantity and quality of spring barley yield. These substances were applied into the soil either independently or along with nitrogen fertiliser. The next objective was to determine the impact of foliar application of sodium humate water solution applied either independently or along with nitrogen fertiliser on the quality and quantity of spring barley yield. The achieved results showed that the autumn application of solid lignite and the presowing application of solid sodium humate into the soil tended to decrease the yield of both grain and straw of spring barley, crude protein content in grain, proportion of the first-class grains and volume weight of grain, whereas the impact of humate was more negative. Lignite and sodium humate in the solid form should be used along with nitrogen fertiliser. The application of sodium humate in liquid form during the growth season of barley tended to increase the yield of both grain and straw. The joint application of nitrogen and liquid sodium humate during the growth season of barley increased the grain yield of barley significantly. A lower dose of nitrogen, applied during the growth season of barley (growth season BBCH 23, increased the grain yield of barley considerably more than a higher N dose, applied into the soil before barley sowing.

  10. Daily Nigerian peak load forecasting using artificial neural network ...

    African Journals Online (AJOL)

    A daily peak load forecasting technique that uses artificial neural network with seasonal indices is presented in this paper. A neural network of relatively smaller size than the main prediction network is used to predict the daily peak load for a period of one year over which the actual daily load data are available using one ...

  11. Tidal and seasonal variation in particulate and dissolved organic carbon in the western dutch Wadden Sea and Marsdiep tidal inlet

    Science.gov (United States)

    Cadée, G. C.

    Seasonal variation in POC and DOC was measured in the Marsdiep tidal inlet of the Wadden Sea from March 1978 to June 1981, and compared with tidal variation. A POC peak was coincident with the phytoplankton peak (except for 1981), whereas a DOC peak occurred about one month later indicating autolysis and degradation of phytoplankton rather than excretion as the main source of this DOC. DOC production calculated from the spring increase amounted to 4.2 mg C·1 -1 or about 40% of the annual phytoplankton primary production in the area. This means that a large part of the phytoplankton production is not used directly by primary consumers but is converted into DOC. Tidal variation in DOC was correlated with salinity, pointing to a fresh water source for the bulk of it. POC was correlated with suspended matter content and phaeopigment, and slightly less with chlorophyll. Compared with the seasonal variation, tidal variation in chlorophyll and temperature was relatively small, but large in POC, DOC, suspended matter and salinity. Although import of POC and export of DOC through the Marsdiep inlet is large on an annual base, the transport cannot be measured directly because of the variability and precision limits of the measurements and as differences in content between ebb and flood current are only 15 and 5% of the POC and DOC content, respectively.

  12. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  13. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada.

    Directory of Open Access Journals (Sweden)

    Danuta M Skowronski

    2010-04-01

    Full Text Available In late spring 2009, concern was raised in Canada that prior vaccination with the 2008-09 trivalent inactivated influenza vaccine (TIV was associated with increased risk of pandemic influenza A (H1N1 (pH1N1 illness. Several epidemiologic investigations were conducted through the summer to assess this putative association.(1 test-negative case-control design based on Canada's sentinel vaccine effectiveness monitoring system in British Columbia, Alberta, Ontario, and Quebec; (2 conventional case-control design using population controls in Quebec; (3 test-negative case-control design in Ontario; and (4 prospective household transmission (cohort study in Quebec. Logistic regression was used to estimate odds ratios for TIV effect on community- or hospital-based laboratory-confirmed seasonal or pH1N1 influenza cases compared to controls with restriction, stratification, and adjustment for covariates including combinations of age, sex, comorbidity, timeliness of medical visit, prior physician visits, and/or health care worker (HCW status. For the prospective study risk ratios were computed. Based on the sentinel study of 672 cases and 857 controls, 2008-09 TIV was associated with statistically significant protection against seasonal influenza (odds ratio 0.44, 95% CI 0.33-0.59. In contrast, estimates from the sentinel and three other observational studies, involving a total of 1,226 laboratory-confirmed pH1N1 cases and 1,505 controls, indicated that prior receipt of 2008-09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring-summer 2009, with estimated risk or odds ratios ranging from 1.4 to 2.5. Risk of pH1N1 hospitalization was not further increased among vaccinated people when comparing hospitalized to community cases.Prior receipt of 2008-09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring-summer 2009 in Canada. The occurrence of bias (selection, information or

  14. Contribution to performing gas solutions and the complementarity of energies to address electric peak consumptions

    International Nuclear Information System (INIS)

    2015-01-01

    This article aims at outlining the contribution that gas-based solutions may have for the reduction of the seasonal electricity peak consumption. After having recalled the principles related to electricity peak consumption (daily peak in summer and in winter due to the use of various equipment which lasts few hours, seasonal peak in winter due to the use of electric heating which may last several weeks) and the associated evolution of electricity consumptions over the last years, this article describes the main challenges related to the electric peak consumption: how to maintain the balance in real time between production and consumption. In France, the network manager must use, beside nuclear power stations, thermal productions (gas or coal-based) which result in higher CO 2 emissions. Electricity imports from Germany also degrade the French carbon footprint. Thus, the management of daily and seasonal peaks can be based on three levers of action: to act on supply by developing capacities to face the residual peak, to act on demand by smoothing the load curve by controlling the load of electric equipment, or to act on demand by a global reduction of the thermo-sensitive consumption of electricity

  15. A shorter snowfall season associated with higher air temperatures over northern Eurasia

    International Nuclear Information System (INIS)

    Ye Hengchun; Cohen, Judah

    2013-01-01

    The temperature sensitivity of the snowfall season (start, end, duration) over northern Eurasia (the former USSR) is analyzed from synoptic records of 547 stations from 1966 to 2000. The results find significant correlations between temperature and snowfall season at approximately 56% of stations (61% for the starting date and 56% for the ending date) with a mean snowfall season duration temperature sensitivity of −6.2 days °C −1 split over the start (2.8 days) and end periods (−3.4 days). Temperature sensitivity was observed to increase with stations’ mean seasonal air temperature, with the strongest relationships at locations of around 6 °C temperature. This implies that increasing air temperature in fall and spring will delay the onset and hasten the end of snowfall events, and reduces the snowfall season length by 6.2 days for each degree of increase. This study also clarifies that the increasing trend in snowfall season length during 1936/37–1994 over northern European Russia and central Siberia revealed in an earlier study is unlikely to be associated with warming in spring and fall seasons. (letter)

  16. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  17. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  18. Influence of Media on Seasonal Influenza Epidemic Curves.

    Science.gov (United States)

    Saito, Satoshi; Saito, Norihiro; Itoga, Masamichi; Ozaki, Hiromi; Kimura, Toshiyuki; Okamura, Yuji; Murakami, Hiroshi; Kayaba, Hiroyuki

    2016-09-01

    Theoretical investigations predicting the epidemic curves of seasonal influenza have been demonstrated so far; however, there is little empirical research using ever accumulated epidemic curves. The effects of vaccine coverage and information distribution on influenza epidemics were evaluated. Four indices for epidemics (i.e., onset-peak duration, onset-end duration, ratio of the onset-peak duration to onset-end duration and steepness of epidemic curves) were defined, and the correlations between these indices and anti-flu drug prescription dose, vaccine coverage, the volume of media and search trend on influenza through internet were analyzed. Epidemiological data on seasonal influenza epidemics from 2002/2003 to 2013/2014 excluding 2009/2010 season were collected from National Institute of Infectious Diseases of Japan. The onset-peak duration and its ratio to onset-end duration correlated inversely with the volume of anti-flu drug prescription. Onset-peak duration correlated positively with media information volume on influenza. The steepness of the epidemic curve, and anti-flu drug prescription dose inversely correlated with the volume of media information. Pre-epidemic search trend and media volume on influenza correlated with the vaccine coverage in the season. Vaccine coverage had no strong effect on epidemic curve. Education through media has an effect on the epidemic curve of seasonal influenza. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers

    Science.gov (United States)

    Foster, Kean; Bertacchi Uvo, Cintia; Olsson, Jonas

    2018-05-01

    Hydropower makes up nearly half of Sweden's electrical energy production. However, the distribution of the water resources is not aligned with demand, as most of the inflows to the reservoirs occur during the spring flood period. This means that carefully planned reservoir management is required to help redistribute water resources to ensure optimal production and accurate forecasts of the spring flood volume (SFV) is essential for this. The current operational SFV forecasts use a historical ensemble approach where the HBV model is forced with historical observations of precipitation and temperature. In this work we develop and test a multi-model prototype, building on previous work, and evaluate its ability to forecast the SFV in 84 sub-basins in northern Sweden. The hypothesis explored in this work is that a multi-model seasonal forecast system incorporating different modelling approaches is generally more skilful at forecasting the SFV in snow dominated regions than a forecast system that utilises only one approach. The testing is done using cross-validated hindcasts for the period 1981-2015 and the results are evaluated against both climatology and the current system to determine skill. Both the multi-model methods considered showed skill over the reference forecasts. The version that combined the historical modelling chain, dynamical modelling chain, and statistical modelling chain performed better than the other and was chosen for the prototype. The prototype was able to outperform the current operational system 57 % of the time on average and reduce the error in the SFV by ˜ 6 % across all sub-basins and forecast dates.

  20. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  1. Spring in the Arab Spring

    NARCIS (Netherlands)

    Borg, G.J.A.

    2011-01-01

    Column Gert Borg | Spring in the Arab Spring door dr. Gert Borg, onderzoeker bij Islam en Arabisch aan de Radboud Universiteit Nijmegen en voormalig directeur van het Nederlands-Vlaams Instituut Caïro Spring If, in Google, you type "Arab Spring" and hit the button, you get more than

  2. Climate change is advancing spring onset across the U.S. national park system

    Science.gov (United States)

    Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.

    2016-01-01

    Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.

  3. Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty.

    Science.gov (United States)

    Matchock, Robert L; Dorn, Lorah D; Susman, Elizabeth J

    2007-01-01

    Diurnal and seasonal rhythms of cortisol, testosterone, and DHEA were examined, as little is known about the relationship between these rhythmicities and pubertal development. Salivary samples were obtained from 60 boys and 60 girls at approximately 07:45, 08:00, 08:30, 12:00, 16:50, and 21:00 h. The participants' ages ranged from 8-14 yrs, and each participant was tested three times at six-month intervals. The study was conducted at a General Clinical Research Center (GCRC) and at the homes of the participants. All hormones showed diurnal fluctuations. The acrophase (peak time) of cortisol occurred earlier than for testosterone or DHEA and showed a seasonal effect, with the acrophase occurring earlier in spring than in summer. The cortisol acrophase also occurred later in the day for boys than for girls during later puberty. Seasonal effects were found only for cortisol with higher concentrations in the spring and summer. Cortisol concentrations were relatively stable across pubertal maturation, but significantly lower concentrations were observed at pubertal stage 3 compared to the other stages. Morning cortisol levels were also higher in boys at pubertal stage 2. Testosterone concentrations were higher in boys at pubertal stages 3 and 4, and DHEA was lower at pubertal stage 1 than 3 and 4 for both boys and girls. For the total sample, there was a positive correlation between DHEA and testosterone during early puberty (stages 1-3) but not later puberty (stages 4-5). Awakening secretory activity correlated with daytime secretory activity for testosterone and DHEA, but not for cortisol. These data provide novel chronobiological information on cortisol, testosterone, and DHEA as it relates to sexual maturation and encourage further study on both normal and abnormal endocrine rhythms.

  4. Seasonal inhalant insect allergy: Harmonia axyridis ladybug.

    Science.gov (United States)

    Goetz, David W

    2009-08-01

    The exotic Asian lady beetle, Harmonia axyridis, has become a prominent cause of seasonal inhalant allergy (allergic rhinitis, asthma, and urticaria) in the last two decades in North America and Europe after being introduced into the environment as an agricultural pest-control predator. Seeking winter hibernation sites, ladybug swarms will invade human habitats in the fall. Large fall swarms and smaller spring dispersions produce corresponding peaks in ladybug allergy. Ladybug allergy prevalence in endemic areas has been reported as high as 10%. For some individuals ladybug allergy is their first expression of allergic disease. Exposures at home, work, school, and in other settings may be sensitizing. Ladybug hemolymph is the primary source of allergens. Har a 1 and Har a 2 major ladybug allergens have been characterized. 'Reflex bleeding' from tibiofemoral joints (for communication and during alarm) disperses these allergens. Ladybug skin testing should be routine in endemic areas. Avoidance continues to be the first step in treatment. Allergen vaccine therapy may be effective, but a commercial extract of H. axyridis is needed.

  5. Seasonal Changes in Tropospheric Ozone Concentrations over South Korea and Its Link to Ozone Precursors

    Science.gov (United States)

    Jung, H. C.; Moon, B. K.; Wie, J.

    2017-12-01

    Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  6. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  7. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a cross-sectional study

    DEFF Research Database (Denmark)

    Kolle, Elin; Steene-Johannessen, Jostein; Andersen, Lars B

    2009-01-01

    ABSTRACT: BACKGROUND: The literature on seasonality in children and youth's physical activity participation is inconsistent. The aims of this study were to: 1) compare physical activity across seasons and describe activity patterns within seasons, and 2) to determine compliance with current...... data were collected during winter, spring and fall. General linear models were used to study the associations between physical activity and season. RESULTS: Nine-year-old children had significantly higher mean physical activity levels in spring than in winter and fall. In the two latter seasons...... physical activity recommendations across seasons among 9- and 15-year-olds living in a climatically diverse country. METHODS: Participants were 2,299 9- and 15-year-olds from all regions in Norway. Physical activity was assessed using the Actigraph accelerometer for 4 consecutive days. Physical activity...

  8. The phenological phases of flowering and pollen seasons of spring flowering tree taxa against a background of meteorological conditions in Kraków, Poland

    Directory of Open Access Journals (Sweden)

    Danuta Stępalska

    2016-06-01

    Full Text Available The aim of the study was to compare phenological observations of pollen seasons of selected early spring trees. Special attention was paid to meteorological conditions which favored or did not favor tree flowering and pollen release. For this reason, we used phenological observation, pollen counts, and meteorological data in five sites in the center of Kraków in the period 2009–2011. Phenological phases (5 of four tree species: Alnus glutinosa, Alnus incana, Corylus avellana, and Betula pendula, were analyzed. It was found that in case of A. glutinosa the pollen season often preceded the flowering period, while for A. incana those two phenomena were more correlated. As regards Corylus avellana, the beginning of the pollen season and phenological phases was simultaneous. However, pollen grains occurred in the air longer, even by a dozen or so days. The phenological phases and pollen seasons of Alnus and Corylus were dependent on meteorological conditions. To give the definition of the relationship between pollen concentration and weather conditions, Spearman rank correlation analysis was applied. High Alnus and Corylus pollen concentrations were found on sunny days with a maximum temperature over 10°C and no precipitation, and when the snow cover was gone. In case of Betula, the phenological phases of the full pollination period usually coincided with the periods of high pollen concentrations. However, Betula pollen sometimes appears earlier and stays in the air longer than the flowering period of local trees in the nearest vicinity. This situation indicates long-distance transport or secondary deposition.

  9. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    OpenAIRE

    Thomas Serensits; Matthew Cutulle; Jeffrey F. Derr

    2011-01-01

    Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual) ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass di...

  10. Seasonal variability in somatic and reproductive investment of the bivalve Scrobicularia plana (da Costa, 1778) along a latitudinal gradient

    Science.gov (United States)

    Santos, Sílvia; Cardoso, Joana F. M. F.; Carvalho, Célia; Luttikhuizen, Pieternella C.; van der Veer, Henk W.

    2011-03-01

    Monthly investment in soma and gonads in the bivalve Scrobicularia plana is described for three populations along its distributional range: Minho estuary, Portugal; Westerschelde estuary, The Netherlands and Buvika estuary, Norway. Seasonal cycles in body mass (BMI), somatic mass (SMI) and gonadal mass (GMI) indices were observed for all populations. In Portugal, BMI and SMI peaked in mid-autumn, while in The Netherlands both indices were at their highest in mid-spring. Norway showed a different pattern with two distinct peaks: one in mid-autumn and a second peak in spring. GMI reached maximum values in July in Portugal and Netherlands and in June in Norway. Overall, mean BMI and SMI were lower in Portugal while mean GMI was lower in Norway. The spawning period lasted the whole summer in Portugal, but was shorter (only two months) in The Netherlands and Norway. The reproductive investment in The Netherlands was significantly higher than in Portugal and Norway, with the lowest values being observed in Norway. Differences in annual cycles between populations were attributed to environmental factors, namely temperature and food availability. Temperature seems important in shaping the reproductive pattern with more northern populations showing shorter reproductive periods starting later in the year, and a lower reproductive output. In addition, winter water temperatures can explain the lower mean body and somatic mass values observed in Portugal. Food availability influenced the physiological performance of the species with peaks in somatic mass coinciding with phytoplankton blooms. This relation between physiological performance and environmental factors influences S. plana distribution, densities and even survival, with natural consequences on its commercial importance.

  11. Morphological studies on the seasonal changes in the epididymal duct of the one-humped camel (camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Ahmed El-Zuhry Zayed

    2012-02-01

    Full Text Available The present work was carried out on 20 testes and epididymis of sexually mature camels to elucidate the gross anatomical, morphometerical, light microscopical and scanning electron microscopical features of the epididymis in different seasons. Anatomically, the epididymal duct of a camel consists of three parts head, body and tail. Histomorphologically, the epididymal duct is subdivided into initial, middle and terminal segments, of which the middle segment is further subdivided into proximal, intermediate and distal parts. There is a gradual decrease in the epithelial height of the epididymal duct from the initial to the terminal segments. This mechanically facilities passage of the sperms toward the terminal segment. High epithelium in the initial segment may indicate a more absorptive power of the epithelium in this segment. The seasonal reproductivety of the epididymal duct in the camel expressed by variations in the weight and volume of the epididymis, total diameter of the epididymal duct, epithelial height, length of the stereocilia, thickness of the muscular coat and cellular distributions in different segments. The spring months offer ideal circumstances for maximal reproductive activity in this species. The cellular components of the epididymal duct epithelium of the camel displays important morphological changes from season to another showing signs of increasing activity during spring in comparison to decreasing activity in other seasons. PAS positive granules are demonstrated in different segments of the epididymal duct and intraepithelial glands in different seasons. These granules are relatively more numerous in spring. The lamina propria surrounding the epididymal duct contains a layer of the elastic fibers which is very thick in winter, thick in spring and thin in other seasons. This increase in thickness of the elastic fibers predisposes for the increase in the total diameter of the epididymal duct in spring. It was conclude

  12. Seasonality in the Mesozooplankton Community of Delaware Bay, USA

    Science.gov (United States)

    Wickline, A.; Cohen, J.

    2016-02-01

    Zooplankton communities in temperate estuaries undergo seasonal shifts in abundance and species composition, though the physical/biological mechanisms behind these shifts vary among systems. Delaware Bay is a well-mixed estuary on the mid-Atlantic coast with predictable seasonal variation in environmental conditions and circulation. To understand factors influencing mesozooplankton community dynamics in this system, we conducted seasonal sampling at 16 stations over the estuary's salinity range in 2014-2015. Sampling paralleled the last similar investigation into Delaware Bay zooplankton, conducted in the early 1950s. Biomass, measured as dry weight and totaled for all stations, was low in late summer and high in spring and fall. Bio-volume, measured either as displacement volume or calculated from ZooScan processing to exclude detritus, also showed a similar pattern. Across seasons, the mesozooplankton community was dominated by copepods, representing over 60% of the relative abundance at each station. Acartia tonsa was the dominant calanoid species in summer and fall, with abundances up to 7,353 ind. m-3, which is similar to the 1950s. In spring, Centropages hamatus and C. typicus were dominant at densities up to 2,550 ind. m-3 throughout the estuary, which is an increase from the 1950s. Environmental data suggest the seasonal shift in dominance from neritic Centropages to estuarine Acartia could be driven by increased stratification of the estuary during periods of high river discharge in spring, creating a two-layer system with a bottom advection current fed by the coastal ocean, bringing coastal species into the estuary. As river discharge decreases, the advection current is reduced, creating a well-mixed estuary and allowing Acartia to dominante. As river discharge is ultimately determined by precipitation, which is predicted to increase during winter with climate change in this region, the phenology of mesozooplankton species dynamics could shift as well.

  13. Relation between flow and temporal variations of nitrate and pesticides in two karst springs in northern Alabama

    Science.gov (United States)

    Kingsbury, J.A.

    2008-01-01

    Two karst springs in the Mississippian Carbonate Aquifer of northern Alabama were sampled between March 1999 and March 2001 to characterize the variability in concentration of nitrate, pesticides, selected pesticide degradates, water temperature, and inorganic constituents. Water temperature and inorganic ion data for McGeehee Spring indicate that this spring represents a shallow flow system with a relatively short average ground-water residence time. Water issuing from the larger of the two springs, Meridianville Spring, maintained a constant temperature, and inorganic ion data indicate that this water represents a deeper flow system having a longer average ground-water residence time than McGeehee Spring. Although water-quality data indicate differing short-term responses to rainfall at the two springs, the seasonal variation of nitrate and pesticide concentrations generally is similar for the two springs. With the exception of pesticides detected at low concentrations, the coefficient of variation for most constituent concentrations was less than that of flow at both springs, with greater variability in concentration at McGeehee Spring. Degradates of the herbicides atrazine and fluometuron were detected at concentrations comparable to or greater than the parent pesticides. Decreases in concentration of the principal degradate of fluometuron from about July to November indicate that the degradation rate may decrease as fluometuron (demethylfluometuron) moves deeper into the soil after application. Data collected during the study show that from about November to March when recharge rates increase, nitrate and residual pesticides in the soil, unsaturated zone, and storage within the aquifer are transported to the spring discharges. Because of the increase in recharge, fluometuron loads discharged from the springs during the winter were comparable to loads discharged at the springs during the growing season. ?? 2008 American Water Resources Association.

  14. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  15. Unusually Warm Spring Temperatures Magnify Annual CH4 Losses From Arctic Ecosystems

    Science.gov (United States)

    Goodrich, J. P.; Oechel, W. C.; Gioli, B.; Murphy, P.; Zona, D.

    2015-12-01

    The relatively fast pace of Northern high latitude warming puts the very large permafrost soil C pool at a higher risk of being lost to the atmosphere as CH4. Estimates for the Arctic tundra's contribution to the global wetland CH4 emissions range from 15-27 TgCH4 y-1 (8-14% of total). However, these estimates are largely based on data from the growing season, or from boreal systems underlain by discontinuous permafrost with different physical, hydrological, and biogeochemical dynamics than continuous permafrost zones. Recent data from a transect of eddy covariance flux towers across the North Slope of Alaska revealed the importance of cold season emissions to the annual CH4 budget, which may not correlate with summer flux patterns. However, understanding of the controls and inter-annual variability in fluxes at these different sites is lacking. Here, we present data from ~3 years at 5 tundra ecosystems along this Arctic transect to show the influence of earlier and deeper spring active layer thaw on timing and magnitude of CH4 fluxes. This year's warm spring led to significantly greater thaw depths and lower water tables than the previous year. Substantial CH4 emissions in 2015 were recorded at the wettest sites >20 days earlier than in the more meteorologically normal previous year. Since the soil remained saturated despite a lowered water table, total spring CH4 emissions more than doubled at these wet sites. At the drier sites, soil moisture declined with water table during the warmer spring, resulting in similar emissions to the previous year. However, deeper thaw depths prolonged fall and early winter emissions during the 'zero-curtain' soil temperature freezing phase, particularly at the drier site. In general, warmer spring temperatures in the Arctic may result in large increases in early season CH4 losses at wet sites and prolonged steady losses at the upland sites, enhancing the feedback between changing climate and tundra CH4 emissions at all sites.

  16. Seasonality of the Mindanao Current/Undercurrent System

    Science.gov (United States)

    Ren, Qiuping; Li, Yuanlong; Wang, Fan; Song, Lina; Liu, Chuanyu; Zhai, Fangguo

    2018-02-01

    Seasonality of the Mindanao Current (MC)/Undercurrent (MUC) system is investigated using moored acoustic Doppler current profiler (ADCP) measurements off Mindanao (8°N, 127.05°E) and ocean model simulations. The mooring observation during December 2010 to August 2014 revealed that the surface-layer MC between 50-150 m is dominated by annual-period variation and tends to be stronger in spring (boreal) and weaker in fall. Prominent semiannual variations were detected below 150 m. The lower MC between 150 and 400 m is stronger in spring and fall and weaker in summer and winter, while the northward MUC below 400 m emerges in summer and winter and disappears in spring and fall. In-phase and out-of-phase current anomalies above and below 150 m were observed alternatively. These variations are faithfully reproduced by an eddy-resolving ocean model simulation (OFES). Further analysis demonstrates that seasonal variation of the MC is a component of large-scale upper-ocean circulation gyre, while current variations in the MUC layer are confined near the western boundary and featured by shorter-scale (200-400 km) structures. Most of the MC variations and approximately half of the MUC variations can be explained by the first and second baroclinic modes and caused by local wind forcing of the western Pacific. Semiannual surface wind variability and superimposition of the two baroclinic modes jointly give rise to the enhanced subsurface semiannual variations. The pronounced mesoscale eddy variability in the MUC layer may also contribute to the seasonality of the MUC through eddy-current interaction.

  17. Influenza activity in Europe during eight seasons (1999–2007: an evaluation of the indicators used to measure activity and an assessment of the timing, length and course of peak activity (spread across Europe

    Directory of Open Access Journals (Sweden)

    Meijer Adam

    2007-11-01

    Full Text Available Abstract Background The European Influenza Surveillance Scheme (EISS has collected clinical and virological data on influenza since 1996 in an increasing number of countries. The EISS dataset was used to characterise important epidemiological features of influenza activity in Europe during eight winters (1999–2007. The following questions were addressed: 1 are the sentinel clinical reports a good measure of influenza activity? 2 how long is a typical influenza season in Europe? 3 is there a west-east and/or south-north course of peak activity ('spread' of influenza in Europe? Methods Influenza activity was measured by collecting data from sentinel general practitioners (GPs and reports by national reference laboratories. The sentinel reports were first evaluated by comparing them to the laboratory reports and were then used to assess the timing and spread of influenza activity across Europe during eight seasons. Results We found a good match between the clinical sentinel data and laboratory reports of influenza collected by sentinel physicians (overall match of 72% for +/- 1 week difference. We also found a moderate to good match between the clinical sentinel data and laboratory reports of influenza from non-sentinel sources (overall match of 60% for +/- 1 week. There were no statistically significant differences between countries using ILI (influenza-like illness or ARI (acute respiratory disease as case definition. When looking at the peak-weeks of clinical activity, the average length of an influenza season in Europe was 15.6 weeks (median 15 weeks; range 12–19 weeks. Plotting the peak weeks of clinical influenza activity reported by sentinel GPs against the longitude or latitude of each country indicated that there was a west-east spread of peak activity (spread of influenza across Europe in four winters (2001–2002, 2002–2003, 2003–2004 and 2004–2005 and a south-north spread in three winters (2001–2002, 2004–2005 and 2006

  18. Seasonal variation in nitrogen pools and 15N/13C natural abundances in different tissues of grassland plants

    Directory of Open Access Journals (Sweden)

    J. K. Schjoerring

    2012-05-01

    Full Text Available Seasonal changes in nitrogen (N pools, carbon (C content and natural abundance of 13C and 15N in different tissues of ryegrass plants were investigated in two intensively managed grassland fields in order to address their ammonia (NH3 exchange potential. Green leaves generally had the largest total N concentration followed by stems and inflorescences. Senescent leaves had the lowest N concentration, indicating N re-allocation. The seasonal pattern of the Γ value, i.e. the ratio between NH4+ and H+ concentrations, was similar for the various tissues of the ryegrass plants but the magnitude of Γ differed considerably among the different tissues. Green leaves and stems generally had substantially lower Γ values than senescent leaves and litter. Substantial peaks in Γ were observed during spring and summer in response to fertilization and grazing. These peaks were associated with high NH4+ rather than with low H+ concentrations. Peaks in Γ also appeared during the winter, coinciding with increasing δ15N values, indicating absorption of N derived from mineralization of soil organic matter. At the same time, δ13C values were declining, suggesting reduced photosynthesis and capacity for N assimilation. δ15N and δ13C values were more influenced by mean monthly temperature than by the accumulated monthly precipitation. In conclusion, ryegrass plants showed a clear seasonal pattern in N pools. Green leaves and stems of ryegrass plants generally seem to constitute a sink for NH3, while senescent leaves have a large potential for NH3 emission. However, management events such as fertilisation and grazing may create a high NH3 emission potential even in green plant parts. The obtained results provide input for future modelling of plant-atmosphere NH3 exchange.

  19. Phenological changes in bamboo carbohydrates explain the preference for culm over leaves by giant pandas (Ailuropoda melanoleuca during spring.

    Directory of Open Access Journals (Sweden)

    Katrina K Knott

    Full Text Available Seasonal changes in the foodscape force herbivores to select different plant species or plant parts to meet nutritional requirements. We examined whether the search for calorie-rich carbohydrates explained giant panda's selection for bamboo culm over leaves during spring. Leaves and culms were collected from four Phyllostachys bamboos (P. aurea, P. aureosulcata, P. glauca, and P. nuda once per month over 18-27 months. Monthly changes in annual plant part nutrients were examined, and compared to seasonal foraging behaviors of captive giant pandas. Although total fiber was greater (p<0.0001 in culm (85.6 ± 0.5% than leaves (55.3 ± 0.4% throughout the year, culm fiber was at its lowest in spring (79-85% when culm selection by giant pandas exceeded 70% of their overall diet. Culm starch also was greatest (p = 0.044 during spring (5.5 ± 1.1% and 2.5-fold the percentage of starch in leaves (2.2 ± 0.6%. The free sugars in spring culm consisted of a high proportion of glucose (35% and fructose (47%, whereas sucrose made up 42% of the total free sugar content of spring leaves. Bound sugars in culm consisted of 60% glucose and 38% xylose likely representative of hemicellulose. The concentrations of bound sugars (hemicelluloses in spring culms (543.7 ± 13.0 mg/g was greater (p<0.001 than in leaves (373.0 ± 14.8 mg/g. These data help explain a long-standing question in giant panda foraging ecology: why consume the plant part with the lowest protein and fat during the energetically intensive spring breeding season? Giant pandas likely prefer spring culm that contains abundant mono- and polysaccharides made more bioavailable as a result of reduced fiber content. These data suggest that phenological changes in bamboo plant part nutrition drive foraging decisions by giant pandas.

  20. The risk mortality of the population of azerbaijan from circulatory diseases, depending on the season

    Directory of Open Access Journals (Sweden)

    A. J. Rzayeva

    2015-06-01

    Azerbaijan State Advanced Training Institute for doctors named after A. Aliyev, Baku   ABSTRACT The Objective.  To obtain evidence-based data about the role of seasons of the year in the formation of the population mortality risk from the circulatory system diseases  (CSD in Azerbaijan and its regions with specific climate. Materials of the study. A case of mortality was a unit of statistical observation. The fatalities from all reasons, including CSD have been distributed by the days of every month in the year. Daily average amount of fatalities by months and seasons ( from 20 December to 19 March – winter; from 20 March to 19 June- spring; from 20 June to 16 September; from 20 September to 19 December - autumn have been determined. Results.  In Azerbaijan the risk of general mortality and mortality from CSD is the highest in winter, it decreases in spring but nonuniformly (the general mortality rate is less than that from CSD. That is why the share of CSD increases among mortality reasons. Conclusions. Seasonal change of mortality risks from CSD is multivariant. Winter-spring increase of risk predominates in Azerbaijan. In some regions of Azerbaijan the mortality risk from CSD increases only once either in spring or in summer or winter. Key words: seasonal dynamics, risk of mortality, circulatory system diseases.

  1. Seasonal anomalies in electricity intensity across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.

    2013-01-01

    Highlights: ► We analyze seasonal anomalies in electricity intensity in China. ► Regional and time dimensions are investigated from 2003 to 2009. ► Results suggest that seasonality is stochastic. ► We find four main effects: Summer, Winter, Spring and Lunar New Year effects. ► Differences are observed between northern regions and east-south of China. - Abstract: This paper provides evidence on the relevance of modeling the seasonal nature of electricity intensity across Chinese regions in a suitable manner with monthly data from 2003 to 2009. In contrast to previous works, this study relaxes the assumption of deterministic seasonality, allowing for time and regional variation in the Chinese economy. In doing so, unobserved-components models are used to analyze the type of seasonality – stochastic or deterministic – that prevails. Regional differences in the seasonal patterns and their evolution over time are also examined. Results provide new empirical evidence on the stochastic nature of electricity intensity in the majority of the provinces. In addition, we find four main effects as regards seasonal patterns: (i) Lunar New Year, (ii) Summer, (iii) Spring, and (iv) Winter effects. In the first two effects seasonality becomes positive, thus indicating that electricity intensity increases, and the last two are negative, showing improvements in the use of electricity per unit of output. However, differences are observed between northern regions and the east-south of China. In addition, once we control our estimates for temperature and prices, no significant differences are seen in the results. Conclusions from this analysis are useful for empirical modeling in the energy-economics literature, and also for designing energy policies to improve the efficiency of the use of energy resources across Chinese regions

  2. Spring Blooms Observed with Biochemical Profiling Floats from a Chemical and Biological Perspective

    Science.gov (United States)

    Plant, J. N.; Johnson, K. S.; Sakamoto, C.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.

    2015-12-01

    Recently there has been renewed interest in the mechanisms which control the seasonal increases in plankton biomass (spring blooms). Changes in physical and chemical forcing (light, wind, heat and nutrients) may increase the specific growth rate of phytoplankton. These changes may also shift the predator - prey relationships within the food web structure, which can alter the balance between plankton growth and loss rates. Biogeochemical profiling floats provide a means to observe the seasonal evolution of spring blooms from a physical, chemical and biological perspective in near real time. Floats equipped with optical sensors to measure nitrate, oxygen, chlorophyll fluorescence, and optical backscatter now have a presence in many ocean regions including the North Pacific, Subarctic Pacific, North Atlantic, South Atlantic and the Southern Ocean. Data from these regions are used to compare and contrast the evolution of spring blooms. The evolution of the bloom is examined using both chemical (oxygen, nitrate) and biooptical (phytoplankton from chlorophyll fluorescence and particulate organic carbon from optical backscatter) sensors under vastly different environmental conditions.

  3. Influence of landscape features on variation of δ2H and δ18O in seasonal mountain snowpack

    Science.gov (United States)

    Kipnis, E. L.; Chapple, W.; Frank, J. M.; Traver, E.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    Streamflow contributions from snowpack remain difficult to predict in snow dominated headwater catchments in the Rocky Mountains. There remains considerable uncertainty in how environmental change in mountain watersheds alter seasonal snowpack accumulation and development and how these relationships translate from gaged to ungaged catchments. Stable isotope analysis is a valuable tool for determining the contribution and changes of different source inputs to catchment water budgets. Stable isotope values in snowpack integrate source inputs and processes such as water vapor exchange, selective redistribution, and melt. For better understanding of how these physical processes vary at local and catchment scales, snowpack density, depth, snow water equivalence (SWE), δ2H and δ18O were examined at peak snowpack in spring 2013 and 2014 and at monthly time steps throughout the winter of 2013-2014. Distributed data and sample collection occurred between 2400 and 3300 m elevation across two pine beetle and spruce beetle impacted forest stands with variable canopy cover in the Libby Creek and Nash Fork Little Laramie River basins, Medicine Bow Range, Wyoming. Peak snowpack within these watersheds was 10% below historic average in 2013 and 50% above average in 2014 (NRCS Snotel data). Even with these contrasting peak snowpack patterns, elevation described less than 40% of the spatial variation of snow water equivalents (SWE) across the watersheds for both seasons. Hydrogen and oxygen isotope ratio values of snowpack sampled monthly in 2014 revealed early season separation from the local meteoric water line, suggesting some kinetic isotope effects. However, isotope ratio values at peak snowpack in 2013 reflected no such signal at any sampling location. The influence of landscape position and canopy cover will be modeled to detect and scale spatial and temporal changes in SWE and stable isotope composition of snowpack. Such an approach will provide increased understanding of

  4. Adaptation behavior of skilled infant bouncers to different spring frequencies

    Directory of Open Access Journals (Sweden)

    Olinda Habib Perez

    2015-05-01

    Full Text Available Infants explore their environments through repetitive movements that are constrained or facilitated by the environmental context. In this study, we evaluated how skilled bouncers adapted to bouncing in systems with four different spring conditions (natural frequencies of 0.9, 1.15, 1.27 and 1.56 Hz. Trunk kinematics and vertical ground reaction forces (VGRFs were recorded from three pre-walking infants (mean age 10.6 ±0.9 months. Bounce frequency, trunk displacement, peak VGRF, percent of time on the ground and time to peak force as a function of time on the ground were analyzed. In addition, infant bounce frequencies were compared to measured oscillations of an inert mass equivalent to each infant’s mass. All infants bounced above the natural frequency of the spring system in all conditions suggesting that they did not behave solely like mass-spring systems. Infants produced asymmetrical VGRF loading patterns suggesting that a timing component, such as bounce frequency, was regulated. Skilled infants consistently increased their bounce frequency as their vertical trunk displacement decreased; however, the mode for regulating bounce frequency differed from infant to infant.

  5. Algoflora and vascular flora of a limestone spring in the Warta river valley

    Directory of Open Access Journals (Sweden)

    Joanna Żelazna-Wieczorek

    2011-01-01

    Full Text Available Qualitative analysis of algae, including microhabitats and vascular vegetation in a spring niche, together with basic physical and chemical characteristics is presented. 175 diatom taxa as well as taxa of macroalgae and vascular plants were determined in the spring niche, and the community types were defined. Seasonal variability of diatom communities was observed. The influence of a flood as a catastrophe on the community of diatoms and macroalgae was noticed.

  6. Long distance migratory songbirds respond to extremes in arctic seasonality

    Science.gov (United States)

    Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.

    2017-12-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.

  7. Spring performance tester for miniature extension springs

    Science.gov (United States)

    Salzbrenner, Bradley; Boyce, Brad

    2017-05-16

    A spring performance tester and method of testing a spring are disclosed that has improved accuracy and precision over prior art spring testers. The tester can perform static and cyclic testing. The spring tester can provide validation for product acceptance as well as test for cyclic degradation of springs, such as the change in the spring rate and fatigue failure.

  8. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2018-06-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  9. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  10. Case-based reported mortality associated with laboratory-confirmed influenza A(H1N1 2009 virus infection in the Netherlands: the 2009-2010 pandemic season versus the 2010-2011 influenza season

    Directory of Open Access Journals (Sweden)

    Timen Aura

    2011-10-01

    Full Text Available Abstract Background In contrast to seasonal influenza epidemics, where the majority of deaths occur amongst elderly, a considerable part of the 2009 pandemic influenza related deaths concerned relatively young people. In the Netherlands, all deaths associated with laboratory-confirmed influenza A(H1N1 2009 virus infection had to be notified, both during the 2009-2010 pandemic season and the 2010-2011 influenza season. To assess whether and to what extent pandemic mortality patterns were reverting back to seasonal patterns, a retrospective analyses of all notified fatal cases associated with laboratory-confirmed influenza A(H1N1 2009 virus infection was performed. Methods The notification database, including detailed information about the clinical characteristics of all notified deaths, was used to perform a comprehensive analysis of all deceased patients with a laboratory-confirmed influenza A(H1N1 2009 virus infection. Characteristics of the fatalities with respect to age and underlying medical conditions were analysed, comparing the 2009-2010 pandemic and the 2010-2011 influenza season. Results A total of 65 fatalities with a laboratory-confirmed influenza A(H1N1 2009 virus infection were notified in 2009-2010 and 38 in 2010-2011. During the pandemic season, the population mortality rates peaked in persons aged 0-15 and 55-64 years. In the 2010-2011 influenza season, peaks in mortality were seen in persons aged 0-15 and 75-84 years. During the 2010-2011 influenza season, the height of first peak was lower compared to that during the pandemic season. Underlying immunological disorders were more common in the pandemic season compared to the 2010-2011 season (p = 0.02, and cardiovascular disorders were more common in the 2010-2011 season (p = 0.005. Conclusions The mortality pattern in the 2010-2011 influenza season still resembled the 2009-2010 pandemic season with a peak in relatively young age groups, but concurrently a clear shift toward

  11. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    Science.gov (United States)

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  12. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  13. Seasonal variation in the composition and concentration of butyltin compounds in marine fish of Taiwan

    International Nuclear Information System (INIS)

    Dong, C.D.; Chen, C.W.; Liu, L.L.

    2004-01-01

    For the first time, strong evidence is presented to demonstrate that the accumulations of butyltin compounds (BTs) exhibit seasonal variations with respect to their compositions and concentrations in marine fishes. Measurements were made on the benthic ponyfish Leiogenathus splendens and lizardfish Trachinocephalus myops inhabiting the west coast of Taiwan. In the whole body samples of the ponyfish, BT concentrations ranged from 236 to 2501 ng/g wet wt, with those in winter considerably higher than in the other seasons (p summer > spring (p<0.05). Meanwhile, TBT (41%) was predominant in spring, whereas DBT (50 and 68%) was most heavily concentrated in summer and autumn (p<0.001). Seasonally mediated physiological changes, such as dilution due to growth and metabolic compensation, may play important roles in forming different BT accumulation patterns among seasons and organisms

  14. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  15. High-resolution 129I bomb peak profile in an ice core from SE-Dome site, Greenland.

    Science.gov (United States)

    Bautista, Angel T; Miyake, Yasuto; Matsuzaki, Hiroyuki; Iizuka, Yoshinori; Horiuchi, Kazuho

    2018-04-01

    129 I in natural archives, such as ice cores, can be used as a proxy for human nuclear activities, age marker, and environmental tracer. Currently, there is only one published record of 129 I in ice core (i.e., from Fiescherhorn Glacier, Swiss Alps) and its limited time resolution (1-2 years) prevents the full use of 129 I for the mentioned applications. Here we show 129 I concentrations in an ice core from SE-Dome, Greenland, covering years 1956-1976 at a time resolution of ∼6 months, the most detailed record to date. Results revealed 129 I bomb peaks in years 1959, 1962, and 1963, associated to tests performed by the former Soviet Union, one year prior, in its Novaya Zemlya test site. All 129 I bomb peaks were observed in winter (1958.9, 1962.1, and 1963.0), while tritium bomb peaks, another prominent radionuclide associated with nuclear bomb testing, were observed in spring or summer (1959.3, and 1963.6; Iizuka et al., 2017). These results indicate that 129 I bomb peaks can be used as annual and seasonal age markers for these years. Furthermore, we found that 129 I recorded nuclear fuel reprocessing signals and that these can be potentially used to correct timing of estimated 129 I releases during years 1964-1976. Comparisons with other published records of 129 I in natural archives showed that 129 I can be used as common age marker and tracer for different types of records. Most notably, the 1963 129 I bomb peak can be used as common age marker for ice and coral cores, providing the means to reconcile age models and associated trends from the polar and tropical regions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Secular trends in seasonal variation in birth weight

    DEFF Research Database (Denmark)

    Jensen, Camilla Bjørn; Gamborg, M; Raymond, K

    2015-01-01

    and phase of the yearly cycles to change. RESULTS: There was a clear seasonal pattern in BW which, however, changed gradually across the study period. The highest BWs were seen during fall (September - October) from 1936 to 1963, but a new peak gradually grew from the early 1940s during early summer (May...... again. Sunshine did not explain the seasonal variation in BW. CONCLUSION: There was a clear seasonal pattern in BW in Denmark 1936-1989, which however changed across the study period. Throughout the study period we observed a peak in BW during the fall, but gradually, starting in the early 1940s...

  17. Control of plankton seasonal succession by adaptive grazing

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Andersen, Ken Haste; Visser, Andre

    2013-01-01

    The ecological succession of phytoplankton communities in temperate seas is characterized by the dominance of nonmotile diatoms during spring and motile flagellates during summer, a pattern often linked to the seasonal variation in the physical environment and nutrient availability. We focus...

  18. Assessment of GloSea4 seasonal forecasts for SADC and the global oceans

    CSIR Research Space (South Africa)

    Landman, WA

    2012-10-01

    Full Text Available totals during the austral spring (SON), mid-summer (DJF) and autumn (MAM) seasons in the region, and by testing for monthly sea-surface temperature anomalies during mid-summer. The model’s ability to simulate the region’s intra-seasonal rainfall and low...

  19. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  20. Short-term community dynamics in seasonal and hyperseasonal cerrados

    Directory of Open Access Journals (Sweden)

    MV. Cianciaruso

    Full Text Available In South America, the largest seasonal savanna region is the Brazilian cerrado. Our aim was to study temporal changes in some community descriptors, such as floristic composition, richness, species density, plant density, and cylindrical volume, in a seasonal cerrado, comparing it to a nearby hyperseasonal cerrado. In four different seasons, we placed randomly ten 1 m² quadrats in each vegetation form and sampled all the vascular plants. Seasonal changes in floristic composition, species density, and plant density were less pronounced in the seasonal than in the hyperseasonal cerrado. Floristic similarity between the vegetation forms was lower when the hyperseasonal cerrado was waterlogged. Richness and species density were higher in the seasonal cerrado, which reached its biomass peak at mid rainy season. The hyperseasonal cerrado, in turn, reached its biomass peak at early rainy season and, despite the waterlogging, maintained it until late rainy season. In the hyperseasonal cerrado, waterlogging acts as an environmental filter restricting the number of cerrado species able to withstand it. The seasonal cerrado community was more stable than the hyperseasonal one. Our results corroborated the idea that changes in the environmental filters will affect floristic composition and community structure in savannas.

  1. Spring and Autumn Phenological Variability across Environmental Gradients of Great Smoky Mountains National Park, USA

    Directory of Open Access Journals (Sweden)

    Steven P. Norman

    2017-04-01

    Full Text Available Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for cover type, topography and disturbance history, we achieved an improved understanding of the effects of seasonal weather variation on land surface phenology (LSP. Elevational effects were greatest in spring and were more important than site moisture effects. The spring and autumn NDVI of deciduous forests were found to increase in response to antecedent warm temperatures, with evidence of possible cross-seasonal lag effects, including possible accelerated green-up after cold Januarys and early brown-down following warm springs. Areas that were disturbed by the hemlock woolly adelgid and a severe tornado showed a weaker sensitivity to cross-year temperature and precipitation variation, while low severity wildland fire had no discernable effect. Use of ancillary datasets to filter for disturbance and vegetation type improves our understanding of vegetation’s phenological responsiveness to climate dynamics across complex environmental gradients.

  2. Modeling smog along the Los Angeles-Palm Springs trajectory

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1976-01-01

    Observations of smog concentrations and wind patterns during the summer of 1973 in Los Angeles, Pomona, Riverside, Banning, and Palm Springs, California are presented which show that high oxidant concentrations at Banning and Palm Springs are often due to advection of smog from source regions in the more densely populated western part of the Los Angeles basin. At Pomona and Riverside, advection from upwind source regions combines with the effects of local emissions to cause long durations of high oxidant concentrations with peak times in the mid afternoon. An empirical model for the diurnal oxidant variation is suggested which satisfactorily simulates observed concentrations. More complex models which include chemical kinetics systems do not perform very satisfactorily at the rural stations of Banning and Palm Springs, especially at night when observed oxidant concentrations remain high

  3. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests

    Science.gov (United States)

    Andrew D. Richardson; David Y. Hollinger; D. Bryan Dail; John T. Lee; J. William Munger; John O' Keefe

    2009-01-01

    Spring phenology is thought to exert a major influence on the carbon (C) balance of temperate and boreal ecosystems. We investigated this hypothesis using four spring onset phenological indicators in conjunction with surface-atmosphere CO2 exchange data from the conifer-dominated Howland Forest and deciduous-dominated Harvard Forest AmeriFlux...

  4. Initial assessment of a multi-model approach to spring flood forecasting in Sweden

    Science.gov (United States)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2015-06-01

    Hydropower is a major energy source in Sweden and proper reservoir management prior to the spring flood onset is crucial for optimal production. This requires useful forecasts of the accumulated discharge in the spring flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialised set-up of the HBV model. In this study, a number of new approaches to spring flood forecasting, that reflect the latest developments with respect to analysis and modelling on seasonal time scales, are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for three main Swedish rivers over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for specific locations and lead times improvements of 20-30 % are found. When combining all forecasts in a weighted multi-model approach, a mean improvement over all locations and lead times of nearly 10 % was indicated. This demonstrates the potential of the approach and further development and optimisation into an operational system is ongoing.

  5. Yearly, seasonal and monthly daily average diffuse sky radiation models

    International Nuclear Information System (INIS)

    Kassem, A.S.; Mujahid, A.M.; Turner, D.W.

    1993-01-01

    A daily average diffuse sky radiation regression model based on daily global radiation was developed utilizing two year data taken near Blytheville, Arkansas (Lat. =35.9 0 N, Long. = 89.9 0 W), U.S.A. The model has a determination coefficient of 0.91 and 0.092 standard error of estimate. The data were also analyzed for a seasonal dependence and four seasonal average daily models were developed for the spring, summer, fall and winter seasons. The coefficient of determination is 0.93, 0.81, 0.94 and 0.93, whereas the standard error of estimate is 0.08, 0.102, 0.042 and 0.075 for spring, summer, fall and winter, respectively. A monthly average daily diffuse sky radiation model was also developed. The coefficient of determination is 0.92 and the standard error of estimate is 0.083. A seasonal monthly average model was also developed which has 0.91 coefficient of determination and 0.085 standard error of estimate. The developed monthly daily average and daily models compare well with a selected number of previously developed models. (author). 11 ref., figs., tabs

  6. SEASONAL DIFFERENCES IN SPATIAL SCALES OF CHLOROPHYLL-A CONCENTRATION IN LAKE TAIHU,CHINA

    Directory of Open Access Journals (Sweden)

    Y. Bao

    2012-08-01

    Full Text Available Spatial distribution of chlorophyll-a (chla concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL and Distributed chla (chlaD, seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.

  7. The costs of seasonality and expansion in Ireland’s milk production and processing

    Directory of Open Access Journals (Sweden)

    Heinschink K.

    2016-12-01

    Full Text Available Ireland’s milk production sector relies on grass-based spring-calving systems, which facilitates cost advantages in milk production but entails a high degree of supply seasonality. Among other implications, this supply seasonality involves extra costs in the processing sector including elevated plant capacities and varying levels of resource utilisation throughout the year. If both the national raw milk production increased substantially (e.g. post-milk quota and a high degree of seasonality persisted, extra processing capacities would be required to cope with peak supplies. Alternatively, existing capacities could be used more efficiently by distributing the milk volume more evenly during the year. In this analysis, an optimisation model was applied to analyse the costs and economies arising to an average Irish milk-processing business due to changes to the monthly distribution of milk deliveries and/or the total annual milk pool. Of the situations examined, changing from a seasonal supply prior to expansion to a smoother pattern combined with an increased milk pool emerged as the most beneficial option to the processor because both the processor’s gross surplus and the marginal producer milk price increased. In practice, it may however be the case that the extra costs arising to the producer from smoothing the milk intake distribution exceed the processor’s benefit. The interlinkages between the stages of the dairy supply chain mean that nationally, the seasonality trade-offs are complex and equivocal. Moreover, the prospective financial implications of such strategies will be dependent on the evolving and uncertain nature of international dairy markets in the post-quota environment.

  8. Hot spring deposits on a cliff face: A case study from Jifei, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2014-04-01

    A cliff face in the Jifei karst area, southwest China, is covered by a spectacular succession of precipitates that formed from the hot spring water that once flowed down its surface. This layered succession is formed of aragonite layers that are formed largely of “fountain dendrites”, calcite layers that are formed mostly of “cone dendrites”, and microlaminated layers that contain numerous microbes and extracellular polymeric substances (EPS). Many of the aragonite crystals are hollow due to preferential dissolution of their cores. The calcite cone dendrites are commonly covered with biofilms, reticulate Si-Mg coatings, and other precipitates. The microbial layers include dodecahedral calcite crystals and accessory minerals that include opal-A, amorphous Si-Mg coatings, trona, barite, potassium sulfate crystals, mirabillite, and gaylussite. Interpretation of the δ18O(calcite) and δ18O(aragonite) indicates precipitation from water with a temperature of 54 to 66 °C. The active hot spring at the top of the cliff presently ejects water at a temperature of 65 °C. Layers, 1 mm to 6 cm thick, record temporal changes in the fluids from which the precipitates formed. This succession is not, however, formed of recurring cycles that can be linked to diurnal or seasonal changes in the local climate. Indeed, it appears that the climatic contrast between the wet season and the dry season had little impact on precipitation from the spring waters that flowed down the cliff face. Integration of currently available evidence suggests that the primary driving force was aperiodic changes in the CO2 content of the spring waters because that seems to be the prime control on the saturation levels that underpinned precipitation of the calcite and aragonite as well as the dissolution of the aragonite. Such variations in the CO2 content of the spring water were probably due to changes that took place in the subterranean plumbing system of the spring.

  9. Seasonal ionospheric scintillation analysis during increasing solar activity at mid-latitude

    Science.gov (United States)

    Ahmed, Wasiu Akande; Wu, Falin; Agbaje, Ganiyu Ishola; Ednofri, Ednofri; Marlia, Dessi; Zhao, Yan

    2017-09-01

    Monitoring of ionospheric parameters (such as Total Electron Content and scintillation) is of great importance as it affects and contributes to the errors encountered by radio signals. It thus requires constant measurements to avoid disastrous situation for space agencies, parastatals and departments that employ GNSS applications in their daily operations. The research objective is to have a better understanding of the behaviour of ionospheric scintillation at midlatitude as it threatens the performances of satellite communication, navigation systems and military operations. This paper adopts seasonal ionospheric scintillation scenario. The mid-latitude investigation of ionospheric effect of scintillation was conducted during the increasing solar activity from 2011-2015. Ionospheric scintillation data were obtained from four ionospheric monitoring stations located at mid-latitude (i.e Shenzhen North Station, Beijing Changping North Station Branch, Beijing North Station and Beijing Miyun ground Station). The data was collected from January 2011 to December 2015. There were absence of data due to software problem or system failure at some locations. The scintillation phenomenon was computed using Global Ionospheric Scintillation and TEC Monitoring Model. There are four seasons which existed in China namely: Spring, Summer, Autumn and Winter. The relationship between TEC, amplitude and phase scintillation were observed for each of these seasons. The results indicated that the weak amplitude scintillation was observed as against phase scintillation which was high. Phase scintillation was gradually enhanced from 2011 to 2012 and later declined till 2014. TEC was also at peak around 00:00-10:00 UT (08:00-18:00 LT). The seasonal events temporal density characteristics comply with solar cycle prediction as such it ascended from 2011 to 2013 and then scintillation parameters declined significantly afterwards.

  10. Hydrogeochemsitry of montane springs and their influence on streams in the Cairngorm mountains, Scotland

    Directory of Open Access Journals (Sweden)

    C. Soulsby

    1999-01-01

    Full Text Available Springs are important groundwater discharge points on the high altitude (>800m plateaux of the Cairngorm mountains, Scotland and form important wetland habitats within what is often a dry, sub-arctic landscape. The hydrogeochemistry of a typical spring in the Allt a'Mharcaidh catchment was examined between 1995-98 in order to characterise its chemical composition, identify the dominant controls on its chemical evolution and estimate groundwater residence time using 18O isotopes. Spring water, sustained by groundwater flow in shallow drift deposits and fractured bedrock, was moderately acidic (mean pH 5.89, with a very low alkalinity (mean 18 μeq l-1 and the ionic composition was dominated by sea-salts derived from atmospheric sources. Geochemical modelling using NETPATH, predicted that the dissolution of plagioclase mainly controls the release of Si, non-marine Na, Ca, K and Al into spring water. Hydrological conditions influenced seasonal variations in spring chemistry, with snowmelt associated with more rapid groundwater flows and lower weathering rates than summer discharges. Downstream of the spring, the chemistry of surface water was fundamentally different as a result of drainage from larger catchment areas, with increased soil and drift cover, and higher evaporation rates. Thus, the hydrogeochemical influence of springs on surface waters appears to be localized. Mean δ18O values in spring water were lower and more damped than those in precipitation. Nevertheless, a sinusoidal seasonal pattern was observed and used to estimate mean residence times of groundwater of around 2 years. Thus, in the high altitude plateau of the Cairngorms, shallow, coarse drift deposits from significant aquifers. At lower altitudes, deeper drift deposits, combined with larger catchment areas, increase mean groundwater residence times to >5 years. At high altitudes, the shallow, permeable nature of the drifts dictates that groundwater is vulnerable to impacts

  11. Detecting Springs in the Coastal Area of the Gunungsewu Karst Terrain, Yogyakarta Special Province, Indonesia, Analysis using Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Sari Bahagiarti Kusumayudha

    2009-11-01

    Full Text Available The Gunungsewu area is a karst terrain with water scarcity, located in the Yogyakarta Special Province, adjacent to the open sea of Indian Ocean in the South. Shorelines of the Gunungsewu southern parts show fractal geometry phenomenon, and there can be found some groundwater outlets discharging to the Indian Ocean. One of the coastal outlets exists at the Baron Beach.The amount of water discharge from this spring reaches 20,000 l/sec in wet season, and approximately 9000 in dry season. In order to find other potential coastal springs, shoreline of the south coast is divided into some segments. By applying fractal analysis utilizing air photo of 1 : 30,000 scale, the fractal dimension of every shore line segment is determined, and then the fractal dimension value is correlated to the existence of spring in the segment being analyzed. The results inform us that shoreline segments having fractal dimension (D > 1.300 are potential for the occurrence of coastal springs.

  12. Seasonal radon measurements in Darbandikhan Lake water resources at Kurdistan region-northeastern of Iraq

    Science.gov (United States)

    Jafir, Adeeb Omer; Ahmad, Ali Hassan; Saridan, Wan Muhamad

    2016-03-01

    A total of 164 water samples were collected from Darbandikhan Lake with their different resources (spring, stream, and lake) during the four seasons, and the measurements were carried out using the electronic RAD 7 detector. For spring water the average radon concentration for spring, summer, autumn and summer were found to be 8.21 Bq/1, 8.94 Bq/1, 7.422 Bq/1, and 8.06 Bq/1, respectively, while for lake and streams the average values were found to be 0.43 Bq/1, 0.877 Bq/1, 0.727 Bq/1, 0.575 Bq/1 respectively. The radon concentration level was higher in summer and lower in spring, and only two samples from spring water have radon concentrations more than 11.1 Bq/1 recommended by the EPA. Total annual effective dose due to ingestion and inhalation has been estimated, the mean annual effective dose during the whole year for spring water was 0.022 mSv/y while for lake with streams was 0.00157 mSv/y. The determined mean annual effective dose in water was lower than the 0.1 mSv/y recommended by WHO. Some physicochemical parameters were measured and no correlation was found between them and radon concentration except for the conductivity of the spring drinking water which reveals a strong correlation for the four seasons.

  13. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  14. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    Science.gov (United States)

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  15. Seasonal Differences in Segmented-Day Physical Activity and Sedentary Behaviour in Primary School Children

    Science.gov (United States)

    Loucaides, Constantinos A.

    2018-01-01

    This study examined seasonal differences in children's segmented-day physical activity (PA) and time engaged in sedentary activities. Seventy-three children wore a pedometer during winter and spring and completed a diary relating to their after-school sedentary activities and time playing outside. Children recorded higher steps in spring compared…

  16. What Controls Seasonal Variation of Phytoplankton Growth in the East China Sea?

    Science.gov (United States)

    Liu, K.; Chao, S.; Lee, H.; Gong, G.; Teng, Y.

    2009-05-01

    The seasonal variation of phytoplankton growth in the East China Sea (ECS) is simulated with a three- dimensional coupled physical-biogeochemical model, which includes discharges from Changjiang (aka the Yangtze River). The purpose is to determine the main control on the seasonality of primary productivity in the ECS shelf, which nurtures rich biological resources. The model has a horizontal resolution of 1/6 degree in the domain from 23N to 41N and from 116E to 134E, excluding the Japan/East Sea, and 33 layers in the vertical. The nitrogen-based biogeochemical model has four compartments: dissolved inorganic nitrogen (DIN), phytoplankton, zooplankton and detritus. The chlorophyll to phytoplankton ratio depends on light and DIN availability. The model is driven by monthly climatological winds with the sea surface temperature, salinity and DIN relaxed towards the climatological mean values. It successfully reproduces the observed seasonal variation of phytoplankton growth over the ECS shelf with a strong peak in later spring and summer. The modeled annual mean primary production over the entire ECS shelf is 439 mg C m-2 d-1, which falls within the reported range of 390-529 mg C m-2 d-1. It also reproduces the marked gradient of DIN across the shelf decreasing away from the Changjiang River plume. An alternative model run, Free-N, which deviates from the standard run by essentially removing nudging on DIN, generates the same seasonal pattern of primary productivity but somewhat reduced productivity. In yet another alternative run, Fix-PAR, which deviates from Free-N by removing the seasonal cycle of photosynthetically active radiation, the seasonality of primary productivity almost vanishes. These model results demonstrate that light availability is the major control on the seasonality of primary productivity. However, nutrient supply from vertical nutrient pumping and from Changjiang discharges is still important. It is the insufficient nutrient pumping that leads

  17. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Science.gov (United States)

    Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are

  18. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.

    Directory of Open Access Journals (Sweden)

    Stefan G H Simis

    Full Text Available Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM, properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession and physical (thermal stratification processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90 no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively, characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing

  19. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea

    Science.gov (United States)

    Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit

    2017-01-01

    Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms

  20. Seasonal dynamics of mobile carbohydrates and stem growth in Scots pine (Pinus sylvestris) exposed to drought

    Science.gov (United States)

    Oberhuber, Walter; Kofler, Werner; Schuster, Roman; Swidrak, Irene; Gruber, Andreas

    2014-05-01

    Tree growth requires a continuous supply of carbon as structural material and as a source for metabolic energy. To detect whether intra-annual stem growth is related to changes in carbon allocation, we monitored seasonal dynamics of shoot and radial growth and concentrations of mobile carbohydrates (NSC) in above- and belowground organs of Scots pine (Pinus sylvestris L.). The study area is situated within an inner Alpine dry environment (750 m asl, Tyrol, Austria), which is characterized by recurring drought periods at the start of the growing season in spring and limited water holding capacity of nutrient deficient, shallow stony soils. Shoot elongation was monitored on lateral branches in the canopy and stem radius changes were continuously followed by electronic band dendrometers. Daily radial stem growth and tree water deficit (ΔW) were extracted from dendrometer records. ΔW is regarded a reliable measure of drought stress in trees and develops when transpirational water loss from leaves exceeds water uptake by the root system. Daily radial stem growth and ΔW were related to environmental variables and determination of NSC was performed using specific enzymatic assays. Results revealed quite early culmination of aboveground growth rates in late April (shoot growth) and late May (radial growth), and increasing accumulation of NSC in coarse roots in June. NSC content in roots peaked at the end of July and thereafter decreased again, indicating a shift in carbon allocation after an early cessation of aboveground stem growth. ΔW was found to peak in late summer, when high temperatures prevailed. That maximum growth rates of aboveground organs peaked quite before precipitation increased during summer is related to the finding that ΔW and radial stem growth were more strongly controlled by the atmospheric environment, than by soil water content. We conclude that as a response to the seasonal development of ΔW a shift in carbon allocation from aboveground

  1. Seasonal Snowpack Dynamics and Runoff in a Maritime Forested Basin, Niigata, Japan

    Science.gov (United States)

    Whitaker, A. C.; Sugiyama, H.

    2005-12-01

    Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff is given through three complete winter seasons 2002-05 in: (1) mature cedar stand, (2) larch stand, and (3) regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter base-flow, mid-winter melt, rain-on-snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterised by constant ground melt of 0.8-1.0 mm/day. Rapid response to mid-winter melt or rainfall shows that the snowpack remains in a ripe or near-ripe condition throughout the snowcover season. Hourly and daily lysimeter discharge was greatest during rain-on-snow with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain-on-snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4.0 times greater in the opening compared to the mature cedar, and 48-hour discharge was up to 2.5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models.

  2. The Seasonality of Fecal Coliform Bacteria Pollution and its Influence on Closures of Shellfish Harvesting Areas in Mississippi Sound

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-08-01

    Full Text Available Runoff from agricultural lands and farm animal feedlots is one of the major sources of fecal coliforms in surface waters, and fecal coliform (FC bacteria concentrations tend to vary with season because of seasonal variations in climatic factors. However, El Niño -Southern Oscillation (ENSO events may affect the extent and patterns of seasonality in FC levels in coastal waters. Water quality monitoring data for shellfish management collected during El Niño (1990, 1992, 1997, and La Niña (1999, 2000 years were analyzed to evaluate the extent to which these events influenced Pearl River stage, and bacterial levels, water temperature, and salinity in the western part of Mississippi Sound. Models to predict FC levels in relation to various environmental factors were also developed. In 1990, 1992 and 1997, FC geometric mean counts peaked in late winter (January/February reaching 120 MPN (February 1990, 165 MPN (January 1992, and 86 MPN (January 1997, and then decreased considerably during spring and summer (1.2 – 19 MPN. Thereafter, FC abundance increased slightly in fall and early winter (1.9 – 24 MPN. Fecal coliform abundance during the 2000 La Niña year was much lower (1.0 – 10.3 MPN than in 1992 (1.2 – 165 MPN, and showed no seasonal pattern from January to August, perhaps due to the relative scarcity of rainfall in 2000. In 1995 (ENSO neutral year, peak geometric mean FC count (46 MPN was lower than during El Niño years and occurred in early spring (March. The seasonal and between year variations in FC levels determined the number of days during which the conditionally approved shellfish growing area was opened for harvesting shellfish. For example, from January to April 1997, the area was not opened for shellfish harvesting, whereas in 2000, the number of days during which the area was opened ranged from 6 - 27 (January to April to 24 - 26 (October to December

  3. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009-2016

    Science.gov (United States)

    McKinstry, Caitlin A. E.; Campbell, Robert W.

    2018-01-01

    Large calanoid copepods and other zooplankters comprise the prey field for ecologically and economically important predators such as juvenile pink salmon, herring, and seabirds in Prince William Sound (PWS).​ From 2009-2016, the Gulf Watch Alaska program collected zooplankton 5-10 times each year at 12 stations in PWS to establish annual patterns. Surveys collected 188 species of zooplankton with Oithona similis, Limacina helicina, Pseudocalanus spp., and Acartia longiremis as the most common species present in 519 samples. Generalized additive models assessed seasonal abundance and showed peak abundance in July (mean: 9826 no. m-3 [95% CI: 7990-12,084]) and lowest abundance in January (503 no. m-3 [373 to 678]). Significantly higher zooplankton abundance occurred in 2010 (542 no. m-3 ± 55 SE) and lowest in 2013 (149 no. m-3 ± 13). The species composition of communities, determined via hierarchical cluster analysis and indicator species analysis, produced six distinct communities based on season and location. The winter community, characterized by warm-water indicator species including Mesocalanus tenuicornis, Calanus pacificus, and Corycaeus anglicus, diverged into four communities throughout the spring and summer. The first spring community, characterized by copepods with affinities for lower salinities, occurred sound-wide. The second spring community, comprised of planktonic larvae, appeared sporadically in PWS bays in 2011-2013. Spring and summer open water stations were defined by the presence of large calanoid copepods. A summer community including the most abundant taxa was common in 2010 and 2011, absent in 2013, then sporadically appeared in 2014 and 2015 suggesting interannual variability of zooplankton assemblages. The zooplankton community shifted to a uniform assemblage characterized by cnidarians in the early autumn. Community assemblages showed significant correlations to a set of environmental variables including SST, mixed layer depth

  4. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  5. The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau

    OpenAIRE

    Hatsuki, Fujinami; Tetsuzo, Yasunari; Institute of Geoscience, University of Tsukuba; Institute of Geoscience, University of Tsukuba

    2001-01-01

    Seasonal variation of diurnal cloud activity(abbreviated DCA)over the Tibetan Plateau throughout the year is examined using 3-hourly geostationary meteorological satellite(GMS)data for 6-years(1989-1994). The DCA shows two distinct variance maxima in the seasonal cycle. One is in spring(pre-monsoon season), and the other is in the summer monsoon season. The DCA begins in late January, and reaches its maximum from March through April. The active DCA extends over almost the whole of the plateau...

  6. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  7. Estimation of N2 fixation in winter and spring sown chickpea and in lentil grown under rainfed conditions using 15 N

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, Kh.; Al-Asfari, F.

    1996-03-01

    A field experiment was conducted under rainfed conditions to asses N 2 fixation in one cultivar of lentil and in two cultivars of chickpea (Gab 1 for winter and spring sowing, and Baladi for spring sowing). Moreover, the effect of P fertilizer on dry matter production, percentages and amounts of different N sources was studied using 15 N isotope dilution method. Wheat was used as a reference crop. The rate of N 2 fixation affected by several factors such as plant species, cultivar, date of sowing, P-fertilizer and the growing season. The highest amount of N 2 fixation obtained in winter sown chickpea was 126 Kg N ha -1 . Whereas, that of spring sowing for the same cultivar was 30 Kg N ha -1 . For Baladi cultivar, the highest amount of N-fixed was 55 Kg N ha -1 . While it was 104 Kg N ha -1 in lentil. Generally, N 2 -fixation affected positively by P-application. In the first growing season, N 2 -fixation increased from 33 to %58 by P application in spring sown chickpea (Baladi), and from 20 to %35 in spring sown chickpea (Gab 1). Whereas, no significant differences were observed upon P application in winter sown chickpea and in lentil. In the second growing season, P-fertilizer increased the percentage of N 2 fixation from 54 to %64 in winter sown chickpea, and from 45 to %64 in spring sown chickpea (Gab 1), and from 49 to %60 in spring sown chickpea (Baladi). While, in lentil it was from 66 to %72. The rate of N 2 fixation in winter sown chickpea was clearly higher than that of spring sowings. Moreover, this last one absorbed more N from the soil. Our results indicate the importance of winter sown chickpea in terms of N 2 fixation, seed yield and the reduction of soil N-uptake, besides a positive P-fertilizer response, especially when suitable rain fall occurs during the season. Moreover, the importance of these results from agronomical point of view was discussed. (author). 24 refs., 6 figs., 7 tabs

  8. Peaking for optimal performance: Research limitations and future directions.

    Science.gov (United States)

    Pyne, David B; Mujika, Iñigo; Reilly, Thomas

    2009-02-01

    A key element of the physical preparation of athletes is the taper period in the weeks immediately preceding competition. Existing research has defined the taper, identified various forms used in contemporary sport, and examined the prescription of training volume, load, intensity, duration, and type (progressive or step). Current limitations include: the lack of studies on team, combative, racquet, and precision (target) sports; the relatively small number of randomized controlled trials; the narrow focus on a single competition (single peak) compared with multiple peaking for weekly, multi-day or multiple events; and limited understanding of the physiological, neuromuscular, and biomechanical basis of the taper. Future research should address these limitations, together with the influence of prior training on optimal tapering strategies, and the interactions between the taper and long-haul travel, heat, and altitude. Practitioners seek information on how to prescribe tapers from season to season during an athlete's career, or a team's progression through a domestic league season, or multi-year Olympic or World Cup cycle. Practical guidelines for planning effective tapers for the Vancouver 2010 and London 2012 Olympics will evolve from both experimental investigations and modelling of successful tapers currently employed in a wide range of sports.

  9. Climatology and classification of spring Saharan cyclone tracks

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, A. [Reading University, Department of Meteorology, PO Box 243, Reading (United Kingdom); Awad, A. [King Abdulaziz University, Department of Meteorology, Jeddah (Saudi Arabia); Ammar, K. [Meteorological Authority, Department of Research, Cairo (Egypt)

    2011-08-15

    Spring Saharan cyclones constitute a dominant feature of the not-well-explored Saharan region. In this manuscript, a climatological analysis and classification of Saharan cyclone tracks are presented using 6-hourly NCEP/NCAR sea level pressure (SLP) reanalyses over the Sahara (10 W-50 E, 20 N-50 N) for the Spring (March-April-May) season over the period 1958-2006. A simple tracking procedure based on following SLP minima is used to construct around 640 Spring Saharan cyclone tracks. Saharan cyclones are found to be short-lived compared to their extratropical counterparts with an e-folding time of about 3 days. The lee side of the west Atlas mountain is found to be the main cyclogenetic region for Spring Saharan cyclones. Central Iraq is identified as the main cyclolytic area. A subjective procedure is used next to classify the cyclone tracks where six clusters are identified. Among these clusters the Western Atlas-Asia Minor is the largest and most stretched, whereas Algerian Sahara-Asia Minor is composed of the most long-lived tracks. Upper level flow associated with the tracks has also been examined and the role of large scale baroclinicity in the growth of Saharan cyclones is discussed. (orig.)

  10. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  11. Meteorological Influences on the Seasonality of Lyme Disease in the United States

    Science.gov (United States)

    Moore, Sean M.; Eisen, Rebecca J.; Monaghan, Andrew; Mead, Paul

    2014-01-01

    Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season. PMID:24470565

  12. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient.

    Science.gov (United States)

    Marcisz, Katarzyna; Lamentowicz, Lukasz; Słowińska, Sandra; Słowiński, Michał; Muszak, Witold; Lamentowicz, Mariusz

    2014-10-01

    Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal-Wallis test, p=0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Capital versus income breeding in a seasonal environment

    DEFF Research Database (Denmark)

    Sainmont, Julie; Andersen, Ken Haste; Varpe, Oystein

    2014-01-01

    and thereby achieve a high annual growth rate, outcompeting capital breeders in long feeding seasons. Therefore, we expect to find a dominance of small income breeders in temperate waters, while large capital breeders should dominate high latitudes where the spring is short and intense. This pattern...

  14. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    Science.gov (United States)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  15. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    Full Text Available The aim of this study is to investigate the seasonal variations in the physicochemical properties of atmospheric ultra-fine particles (UFPs, d ≤ 100 nm and submicron particles (PM1, d ≤ 1 µm in an east Asian urban area, which are hypothesized to be affected by the interchange of summer and winter monsoons. An observation experiment was conducted at TARO (Taipei Aerosol and Radiation Observatory, an urban aerosol station in Taipei, Taiwan, from October 2012 to August 2013. The measurements included the mass concentration and chemical composition of UFPs and PM1, as well as the particle number concentration (PNC and the particle number size distribution (PSD with size range of 4–736 nm. The results indicated that the mass concentration of PM1 was elevated during cold seasons with a peak level of 18.5 µg m−3 in spring, whereas the highest concentration of UFPs was measured in summertime with a mean of 1.64 µg m−3. Moreover, chemical analysis revealed that the UFPs and PM1 were characterized by distinct composition; UFPs were composed mostly of organics, whereas ammonium and sulfate were the major constituents of PM1. The seasonal median of total PNCs ranged from 13.9  ×  103 cm−3 in autumn to 19.4  ×  103 cm−3 in spring. Median concentrations for respective size distribution modes peaked in different seasons. The nucleation-mode PNC (N4 − 25 peaked at 11.6  ×  103 cm−3 in winter, whereas the Aitken-mode (N25 − 100 and accumulation-mode (N100 − 736 PNC exhibited summer maxima at 6.0  ×  103 and 3.1  ×  103 cm−3, respectively. The change in PSD during summertime was attributed to the enhancement in the photochemical production of condensable organic matter that, in turn, contributed to the growth of aerosol particles in the atmosphere. In addition, clear photochemical production of particles was observed, mostly in the summer season

  16. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    Science.gov (United States)

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. Identifying anomalously early spring onsets in the CESM large ensemble project

    Science.gov (United States)

    Labe, Zachary; Ault, Toby; Zurita-Milla, Raul

    2017-06-01

    Seasonal transitions from winter to spring impact a wide variety of ecological and physical systems. While the effects of early springs across North America are widely documented, changes in their frequency and likelihood under the combined influences of climate change and natural variability are poorly understood. Extremely early springs, such as March 2012, can lead to severe economical losses and agricultural damage when these are followed by hard freeze events. Here we use the new Community Earth System Model Large Ensemble project and Extended Spring Indices to simulate historical and future spring onsets across the United States and in the particular the Great Lakes region. We found a marked increase in the frequency of March 2012-like springs by midcentury in addition to an overall trend towards earlier spring onsets, which nearly doubles that of observational records. However, changes in the date of last freeze do not occur at the same rate, therefore, causing a potential increase in the threat of plant tissue damage. Although large-scale climate modes, such as the Pacific Decadal Oscillation, have previously dominated decadal to multidecadal spring onset trends, our results indicate a decreased role in natural climate variability and hence a greater forced response by the end of the century for modulating trends. Without a major reduction in greenhouse gas emissions, our study suggests that years like 2012 in the US could become normal by mid-century.

  18. Spring nitrogen fertilization of ryegrass-bermudagrass for phytoremediation of phosphorus-enriched soils

    Science.gov (United States)

    Nitrogen fertilization of forage grasses is critical for optimizing biomass and utilization of manure soil nutrients. Field studies were conducted in 2007-09 to determine the effects of spring N fertilization on amelioration of high soil P when cool-season, annual ryegrass (Lolium multiflorum L.) is...

  19. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    Science.gov (United States)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  20. T198. A SCHIZOPHRENIA-LIKE BIRTH SEASONALITY AMONG MATHEMATICIANS AND AN OPPOSITE SEASONALITY AMONG BIOLOGISTS: MORE EVIDENCE IMPLICATING BIMODAL RHYTHMS OF GENERAL BIRTHS

    Science.gov (United States)

    Marzullo, Giovanni

    2018-01-01

    Abstract Background Based on early-20th century births, a pre-electric illumination time of comparatively normal human exposure to sunlight, studies of schizophrenia (SCZ) found a birth seasonality with two opposite effects: a SCZ-liability peak among subjects born around late-February and an equally significant SCZ-resistance peak among those born six months later, around late-August. We previously investigated this rhythm in connection with a sunlight-dependent bimodal rhythm of general births that, prior to the full advent of electric lighting (but not later), occurred ubiquitously in non-equatorial parts of the world. We found that the SCZ-liability peak coincided with a first, Feb-Mar peak of general-population births (the GP1) while the SCZ-resistance peak coincided with a second, Aug-Sep peak of those births (the GP2). Moreover, in a study of hand and visual-field preferences among professional baseball players, we found the SCZ-liability, GP1-coincident seasonality among players with preferences denoting cerebral asymmetry “deficits” (CADs) and the SCZ-resistance, GP2-coincident seasonality among those with preferences denoting cerebral asymmetry “excesses.” Also, in a study suggested by associations of CADs with artistic abilities, we found the SCZ-liability, GP1-coincident seasonality among groups representing visual, performing and literary art “creators” (VPL-Artists) and the SCZ-resistance, GP2-coincident seasonality among groups representing art critics, historians, curators and other art “observers” (Para-Artists). Together, these findings suggested, as one possibility (but see later), that the SCZ-liability, CAD effects and artistic abilities could all three represent traits genetically or otherwise selected into the GP1 excess population of newborns and out of the GP2 population. The present study of “scientists” was initially aimed at the purported arts/science antithesis. Methods Birth seasonalities were examined among early

  1. Season of infectious mononucleosis and risk of multiple sclerosis at different latitudes; the EnvIMS Study.

    Science.gov (United States)

    Lossius, Andreas; Riise, Trond; Pugliatti, Maura; Bjørnevik, Kjetil; Casetta, Ilaria; Drulovic, Jelena; Granieri, Enrico; Kampman, Margitta T; Landtblom, Anne-Marie; Lauer, Klaus; Magalhaes, Sandra; Myhr, Kjell-Morten; Pekmezovic, Tatjana; Wesnes, Kristin; Wolfson, Christina; Holmøy, Trygve

    2014-05-01

    Seasonal fluctuations in solar radiation and vitamin D levels could modulate the immune response against Epstein-Barr virus (EBV) infection and influence the subsequent risk of multiple sclerosis (MS). Altogether 1660 MS patients and 3050 controls from Norway and Italy participating in the multinational case-control study of Environmental Factors In Multiple Sclerosis (EnvIMS) reported season of past infectious mononucleosis (IM). IM was generally reported more frequently in Norway (p=0.002), but was associated with MS to a similar degree in Norway (odds ratio (OR) 2.12, 95% confidence interval (CI) 1.64-2.73) and Italy (OR 1.72, 95% CI 1.17-2.52). For all participants, there was a higher reported frequency of IM during spring compared to fall (p<0.0005). Stratified by season of IM, the ORs for MS were 1.58 in spring (95% CI 1.08-2.31), 2.26 in summer (95% CI 1.46-3.51), 2.86 in fall (95% CI 1.69-4.85) and 2.30 in winter (95% CI 1.45-3.66). IM is associated with MS independently of season, and the association is not stronger for IM during spring, when vitamin D levels reach nadir. The distribution of IM may point towards a correlation with solar radiation or other factors with a similar latitudinal and seasonal variation.

  2. Seasonal and spatial variations of macro- and megabenthic community characteristics in two sections of the East China Sea

    Science.gov (United States)

    Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa

    2017-09-01

    In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.

  3. Seasonality and vertical structure of microbial communities in an ocean gyre.

    Science.gov (United States)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J

    2009-10-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.

  4. Behavioral characteristics of Hanwoo ( steers at different growth stages and seasons

    Directory of Open Access Journals (Sweden)

    Na Yeon Kim

    2017-10-01

    Full Text Available Objective This research analyzed behavioral characteristics of Hanwoo (Bos taurus coreanae steers during each season and growth stage to enable measurement of the animals’ welfare level for precision livestock farming. Methods A hundred-eight beef steers were divided into three equal groups at a Hanwoo farm according to their growth stage: growing stage (GS, 8 months; early-fattening stage (EFS, 19 months; and late-fattening stage (LFS, 30 months. Twelve behavioral categories were continuously recorded for 13 day-time hours in each four seasons with three replications. Results Time spent standing was found to be significantly longer in summer at all growth stages (p<0.05. Hanwoos at the GS spent significantly longer standing time in spring and summer than those at the EFS and LFS (p<0.05. Lying time in summer was the shortest for all growth stages (p<0.05. Steers at the LFS spent significantly longer lying time than that at the GS (p<0.05 in summer. For GS and EFS, time spent eating in spring and autumn were longer than in summer and winter (p<0.05. Eating time was the longest for the GS in spring, autumn, and winter, excluding for the LFS in winter (p<0.05. Regarding ruminating, steers at the LFS spent significantly shorter time than those at other stages in all seasons (p<0.05. GS and EFS steers showed the longest walking time in summer compared with other seasons (p<0.05. At GS and LFS, drinking time in summer was the longest of all seasons (p<0.05. Sleeping time was significantly shorter in summer compared with the other seasons (p<0.05. Self-grooming time was the longest in winter for all growth stages (p<0.05. Conclusion Steers were found to have more variable behavioral patterns during summer and the GS and less active behaviors during the LFS, thus extra care seems necessary during the GS, LFS, and summer period.

  5. Where are weather-suicide associations valid? An examination of nine US counties with varying seasonality

    Science.gov (United States)

    Dixon, P. Grady; Kalkstein, Adam J.

    2018-05-01

    There has been much research on the associations between weather variables and suicide rates. However, the state of understanding has remained rather stagnant due to many contradictory findings. The purpose of this project is to examine a larger database of suicides that includes a longer and more recent period of record (1975-2010) across numerous locations in the USA. In all, we examine nine total counties (and the primary city associated with them) with a special effort made to compare locations with varying degrees of temperature seasonality: Cook (Chicago), Fulton (Atlanta), King (Seattle), Los Angeles (Los Angeles), Maricopa (Phoenix), Miami-Dade (Miami), Philadelphia (Philadelphia), Salt Lake (Salt Lake City), and St. Louis (St. Louis). We first examine the unique seasonal cycle in suicides evident in each locale and then use distributed lag nonlinear modeling (DLNM) to relate the suicide data to daily surface temperatures. Results suggest that a late spring/summer peak generally exists in suicide rates, and above average temperatures are associated with increased suicide risk in almost all study counties. Further, it appears that these associations can be found in both mid-latitude and sub-tropical climate types.

  6. Maize response to time of nitrogen application and planting seasons

    Directory of Open Access Journals (Sweden)

    Parbati Adhikari

    2016-12-01

    Full Text Available Nitrogen (N response by maize differs due to growing seasons, growth stages, duration and growing domain as N losses is higher due to leaching as well as volatilization. Objective of this study was to know the response of split applications of N and growing seasons on maize under Chitwan environments. Field experiments were conducted for two consecutive years at the research field of NMRP Rampur during the winter, spring, and summer seasons of 2012/013 and 2013/014. Experiments were laid out in factorial randomized complete block design with four replications for all the seasons. Early maturing maize genotype Arun-1 EV was used for the experiments. Five splits of recommended dose of N were tested. Grain yield, days to flowering, plant height, ear height, kernel rows per ear, no. of kernels per row, ear length and thousand grain weight significantly differed due to growing seasons and split applications of N. Significantly higher grain yield (3911 kg ha-1 was obtained with the application of 30 kg N ha-1 each at 30, 45, 60, and 75 days after sowing as compared to control (2801 kg ha-1. Regarding the growing seasons, highest grain yield was obtained in winter (4393 kg ha-1 followed by spring (3791 kg ha-1 and summer (2468 kg ha-1 season, respectively. Results of these studies revealed that four splits of N viz. application of 30 kg N each at 30, 45, 60, and 75 days after sowing respectively, would be more economical to minimize N losses from the soil and efficient use of N at critical growth and development stages of maize.

  7. Change in Length of Growing Season by State, 1895-2015

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map shows the total change in length of the growing season, time of first fall frost and time of last spring frost from 1895 to 2015 for each of the contiguous...

  8. Seasonal Variation of Cistus ladanifer L. Diterpenes

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alías

    2012-07-01

    Full Text Available The exudate of Cistus ladanifer L. consists mainly of two families of secondary metabolites: flavonoids and diterpenes. The amount of flavonoids present in the leaves has a marked seasonal variation, being maximum in summer and minimum in winter. In the present study, we demonstrate that the amount of diterpenes varies seasonally, but with a different pattern: maximum concentration in winter and minimum in spring-summer. The experiments under controlled conditions have shown that temperature influences diterpene production, and in particular, low temperatures. Given this pattern, the functions that these compounds perform in C. ladanifer are probably different.

  9. Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea

    International Nuclear Information System (INIS)

    Sambrotto, R.N.

    1983-01-01

    Interactions beween a high latitude, continental shelf, spring phytoplankton bloom and water column physics and chemistry were studied using 15 N measured rates of nitrogen uptake. Peak bloom conditions commenced when the mixed layer shallowed and minimized respirational losses. Integrative light-mixing growth models were accurate during early bloom stages. An advection-diffusion model associated peak bloom nitrate uptake with pycnocline mixing rates of 2.1 m d -1 in an 18 m mixed layer. Maximum nitrogen specific uptake rates (hr -1 ), unlike those of carbon, coincided with peak bloom conditions. Although species compositions among peak bloom periods were similar, particulate C/N ratios were not. Apparently, both intercellular factors and prevailing mixing conditions influence specific uptake rates and cell composition. A large proportion of new (nitrate) to total productivity was associated with the dominance of the early bloom forming diatoms in the mixed layer. In the absence of these net plankton the residual nanoplankton dominated community exhibited a greater dependence on regenerated nitrogen. Nitrate uptake averaged 700 mg-at m -2 during the spring bloom and 1 g-at m -2 year -1 . The yearly f factor was 0.40. Nitrogen uptake based carbon productivity was 188 g C m -2 year -1

  10. Seasonal variation in the acute effect of particulate air pollution on mortality in the China Air Pollution and Health Effects Study (CAPES)

    Science.gov (United States)

    Chen, Renjie; Peng, Roger D.; Meng, Xia; Zhou, Zhijun; Chen, Bingheng; Kan, Haidong

    2013-01-01

    Epidemiological findings concerning the seasonal variation in the acute effect of particulate matter (PM) are inconsistent. We investigated the seasonality in the association between PM with an aerodynamic diameter of less than 10 μm (PM10) and daily mortality in 17 Chinese cities. We fitted the “main” time-series model after adjustment for time-varying confounders using smooth functions with natural splines. We established a “seasonal” model to obtain the season-specific effect estimates of PM10, and a “harmonic” model to show the seasonal pattern that allows PM10 effects to vary smoothly with the day in a year. At the national level, a 10 μg/m3 increase in the two-day moving average concentrations (lag 01) of PM10 was associated with 0.45% [95% posterior interval (PI), 0.15% to 0.76%], 0.17% (95% PI, −0.09% to 0.43%), 0.55% (95% PI, 0.15% to 0.96%) and 0.25% (95%PI, −0.05% to 0.56%) increases in total mortality for winter, spring, summer and fall, respectively. For the smoothly-varying plots of seasonality, we identified a two-peak pattern in winter and summer. The observed seasonal pattern was generally insensitive to model specifications. Our analyses suggest that the acute effect of particulate air pollution could vary by seasons with the largest effect in winter and summer in China. To our knowledge, this is the first multicity study in developing countries to analyze the seasonal variations of PM-related health effects. PMID:23500824

  11. Seasonal varability of the Canary Current

    Science.gov (United States)

    Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.

    2016-02-01

    The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings, east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands.Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC), using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has and amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the

  12. Seasonal cycle of the Canary Current.

    Science.gov (United States)

    Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.

    2015-12-01

    The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands. Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC) using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has an amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the

  13. West Florida shelf circulation and temperature budget for the 1999 spring transition

    Science.gov (United States)

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  14. Seasonal Variation in Group Size Is Related to Seasonal Variation in Neuropeptide Receptor Density.

    Science.gov (United States)

    Wilson, Leah C; Goodson, James L; Kingsbury, Marcy A

    2016-01-01

    In many species, seasonal variation in grouping behavior is widespread, with shifts towards territoriality in the breeding season and grouping in the winter. Compared to the hormonal and neural mechanisms of seasonal territorial aggression, the mechanisms that promote seasonal grouping have received little attention. We collected brains in spring and winter from wild-caught males of two species of emberizid sparrows that seasonally flock (the field sparrow, Spizella pusilla, and the dark-eyed junco, Junco hyemalis) and two species that do not seasonally flock (the song sparrow, Melospiza melodia, and the eastern towhee, Pipilo erythrophthalmus). We used receptor autoradiography to quantify seasonal plasticity in available binding sites for three neuropeptides known to influence social behavior. We examined binding sites for 125I-vasoactive intestinal polypeptide (VIP), 125I-sauvagine (SG, a ligand for corticotropin-releasing hormone receptors) and 125I-ornithine vasotocin analog (OVTA, a ligand for the VT3 nonapeptide). For all species and ligands, brain areas that exhibited a seasonal pattern in binding density were characterized by a winter increase. Compared to nonflocking species, seasonally flocking species showed different binding patterns in multiple brain areas. Furthermore, we found that winter flocking was associated with elevated winter 125I-VIP binding density in the medial amygdala, as well as 125I-VIP and 125I-OVTA binding density in the rostral arcopallium. While the functional significance of the avian rostral arcopallium is unclear, it may incorporate parts of the pallial amygdala. Our results point to this previously undescribed area as a likely hot spot of social modulation. © 2016 S. Karger AG, Basel.

  15. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  16. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM

    Science.gov (United States)

    Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming

    2018-03-01

    The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

  17. The Impact of Internal Wave Seasonality on the Continental Shelf Energy Budget

    Science.gov (United States)

    Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Palmer, Matthew R.; Mattias Green, J. A.

    2017-04-01

    Heating-stirring models are widely used to simulate the timing and strength of stratification in continental shelf environments. Such models are based on bulk potential energy (PE) budgets: the loss of PE due to thermal stratification is balanced by wind and tidal mixing. The model often fails to accurately predict the observed vertical structure, as it only considers forces acting on the surface and bottom boundary of the water column. This highlights the need for additional internal energy sources to close this budget, and produce an accurate seasonal cycle of stratification. We present new results that test the impact of boundary layer and internal wave forcing on stratification and vertical density structure in continental shelves. A new series of continuous measurements of full water depth vertical structure, dynamics and meteorological data spanning 17 months (March'14-July'15) provide unprecedented coverage over a full seasonal cycle at a station 120 km north-east from the continental shelf break. We observe a highly variable but energetic internal wave field from the onset of stratification that suggests a continuous supply of internal PE. The heating-stirring model reproduces bulk characteristics of the seasonal cycle. While it accurately predicts the timing of the onset in spring and peak stratification in late summer there is a persistent 20 J m-3 positive offset between the model and observations throughout this period. By including a source of internal energy in the model we improve the prediction for the strength of stratification and the vertical distribution of heat. Yet a constant source of PE seems to result in a seasonal discrepancy resulting in too little mixing during strong stratification and too much mixing during transient periods. The discrepancy seen in the model is consistent with the seasonality observed in the internal wave field. We will establish the role that changing stratification (N2) exerts on the internal wave field and vice

  18. Field assessment of partial resistance to powdery mildew in spring barley

    DEFF Research Database (Denmark)

    Nørgaard Knudsen, J. Chr.; Dalsgaard, H. H.; Jørgensen, Jørgen Helms

    1986-01-01

    Partial resistance to powdery mildew in spring barley was evaluated in three plot types: large isolation plots, in 1.4 m2 plots in chessboard design with guard plots of spring wheat and in single rows. Percentage leaf area covered by powdery mildew was scored four to six times during the season....... The relationship between single scores of amount of powdery mildew on the upper four leaves and the area under the disease progress curve was high in all plot designs during the first two to three weeks after heading, allowing selection for the trait by one or two scorings. Differential ranking of varieties...

  19. Seasonal Changes in the Character and Nitrogen Content of Dissolved Organic Matter in an Alpine/Subalpine Headwater Catchment

    Directory of Open Access Journals (Sweden)

    Eran W. Hood

    2001-01-01

    Full Text Available We are studying the chemical quality of dissolved organic nitrogen (DON in a high-elevation watershed in the Colorado Front Range. Samples were collected over the 2000 snowmelt runoff season at two sites across an alpine/subalpine ecotone to understand how the transition between the lightly vegetated alpine and forested reaches of the catchment influences the chemical character of DON. Samples were analyzed approximately weekly for dissolved organic material (DOM content and chemical character. A subset of samples was analyzed for the elemental content of fulvic and hydrophilic acids. Concentrations of DON at both sites were highest in the spring at the initiation of snowmelt, decreased during snowmelt, and increased again during the late summer and fall. In contrast, concentrations of dissolved organic carbon (DOC peaked on the ascending limb of the hydrograph and declined to seasonal minima on the descending limb of the hydrograph. The ratio of DOC:DON showed a seasonal shift at both sites with high values (40 to 55 during peak runoff in early summer and lower values (15 to 25 during low flows late in the runoff season. These results indicate that there was a seasonal change in the relative N content of DOM at both sites. Chemical fractionation of DOC showed that there were temporal and longitudinal changes in the chemical character of DOC. At the alpine site, the fulvic acid content of DOC decreased from 57% in June to 35% in September. The change in fulvic acid was less pronounced at the forested site, from 66% in June to 54% in September. Elemental analysis of fulvic and hydrophilic acids indicated that hydrophilic acids were N rich compared to fulvic acids. Additionally, fulvic and hydrophilic acids isolated at the alpine site had a lower C:N ratio than those isolated at the forested site. Similarly, the C:N ratio of organic acids at both sites was lower in September than in June during peak runoff. These differences appear to be a result

  20. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    amplitude of the seasonal signal is much higher than the inter-annual ... Spring inter-monsoon was characterised by light (< 4. m sА1) and ... due to increased insolation, combined with weak ... Nitrate in the surface layers was below detection.

  1. Reconstruction of false spring occurrences over the southeastern United States, 1901-2007: an increasing risk of spring freeze damage?

    International Nuclear Information System (INIS)

    Marino, Garrett P; Kaiser, Dale P; Gu, Lianhong; Ricciuto, Daniel M

    2011-01-01

    Near-record warmth over much of the United States during March 2007 promoted early growth of crops and vegetation. A widespread arctic air outbreak followed in early April, resulting in extensive agricultural losses over much of the south-central and southeastern US. This 'false spring' event also resulted in widespread damage to newly grown tissues of native deciduous forest species, shown by previous researchers to have had measurable effects on the terrestrial carbon cycle. The current study reconstructed the historical occurrence of false springs over most of the southeastern quarter of the conterminous US (32-39 deg. N; 75-98 deg. W) from 1901 to 2007 using daily maximum and minimum temperature records from 176 stations in the Global Historical Climatology Network database, and enhanced vegetation index (EVI) data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. A false spring index was derived that examined the timing of the start of the growing season (SGS), or leaf emergence, relative to the timing of a potentially damaging last hard freeze (minimum temperature ≤ - 2.2 deg. C). SGS was modeled for the domain by combining EVI data with ground-based temperature 'degree day' calculations reflecting the rate of springtime warming. No significant area-wide, long-term SGS trend was found; however, over much of a contiguous region stretching from Mississippi eastward to the Carolinas, the timing of the last hard freeze was found to occur significantly later, this change occurring along with increased frequency of false springs. Earlier last hard freeze dates and decreased frequency of false springs were found over much of the northwestern part of the study region, including Arkansas and southern Missouri.

  2. Seasonal variation in biochemical indicators of physiological status in Euphausia superba from Port Foster, Deception Island, Antarctica

    Science.gov (United States)

    Cullen, M.; Kaufmann, R. S.; Lowery, M. S.

    2003-06-01

    Seasonal changes in biochemical indicators of physiological status were analyzed in abdominal muscle of the Antarctic krill, Euphausia superba, collected from Port Foster, Deception Island, an active volcano located in the Shetland Island chain west of the Antarctic Peninsula. Krill were collected with a 10 m 2 MOCNESS trawl during four cruises (November 1999, February, May, November 2000). RNA:DNA mirrored the chlorophyll a concentration, with the highest values found during seasons of abundant phytoplankton. Activities of the glycolytic enzyme lactate dehydrogenase (LDH) and the mitochondrial enzyme citrate synthase (CS) were significantly higher in male krill when compared to females of similar size, indicating that their burst and aerobic swimming performance may be higher than females throughout the year. RNA:DNA ratio and enzyme activities were highly elevated in summer as compared to the earliest spring sampling period. Krill showed significant seasonal changes in LDH activity, with lowest values in spring and highest values in summer (females) or autumn (males). Krill showed significant seasonal changes in CS activity with highest values in summer. Protein and % water varied significantly among seasons for both males and females. Lower CS activity and RNA:DNA ratio suggest krill exhibit reduced metabolism during the winter when phytoplankton production is reduced, perhaps enhancing survival. Lower enzyme activities in female krill in early spring suggest they may achieve greater metabolic suppression during overwintering.

  3. Seasonal variation in the composition and concentration of butyltin compounds in marine fish of Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C.D.; Chen, C.W.; Liu, L.L

    2004-10-01

    For the first time, strong evidence is presented to demonstrate that the accumulations of butyltin compounds (BTs) exhibit seasonal variations with respect to their compositions and concentrations in marine fishes. Measurements were made on the benthic ponyfish Leiogenathus splendens and lizardfish Trachinocephalus myops inhabiting the west coast of Taiwan. In the whole body samples of the ponyfish, BT concentrations ranged from 236 to 2501 ng/g wet wt, with those in winter considerably higher than in the other seasons (p<0.05). In a similar vein, proportions of mono- (MBT), di- (DBT) and tributyltin (TBT) differed significantly (p<0.001) depending upon the season, with TBT (75 and 50%) dominant in winter and spring and DBT (37 and 57%) and MBT (42 and 24%) dominant in summer and autumn, respectively. In the lizardfish, the concentrations of BTs were one to two orders of magnitude higher in the liver than in the muscle, i.e. 3058-11,473 vs. 36-159 ng/g wet wt, respectively. Concentrations of MBT, DBT and TBT in the muscle ranged, respectively, from 5 to 14, 8 to 35 and 23 to 110 ng/g wet wt, with the major compound being TBT (57-69%) in all seasons. However, in the liver, DBT concentrations, ranging from 992 to 7797 ng/g wet wt, differed seasonally with a descending order of autumn > summer > spring (p<0.05). Meanwhile, TBT (41%) was predominant in spring, whereas DBT (50 and 68%) was most heavily concentrated in summer and autumn (p<0.001). Seasonally mediated physiological changes, such as dilution due to growth and metabolic compensation, may play important roles in forming different BT accumulation patterns among seasons and organisms.

  4. Seasonality and trend in blood lead levels of New York State children

    Directory of Open Access Journals (Sweden)

    Talbot Thomas O

    2004-06-01

    Full Text Available Abstract Background Environmental exposure to lead remains a significant health problem for children. The costs of lead exposure in children are estimated to be considerably more than other childhood diseases of environmental origin. While long-term trends in blood lead levels (BLLs among children are declining, seasonal variation persists. Cross-sectional studies have found a peak in summer months. Part of this variation may be due to increased exposure to lead paint on window sills and through increased contact with soils containing lead during the summer. The current study represents the largest published population-based study on seasonality and trends in the BLLs of children to date. In addition, the results offer a comparison of recent data on seasonality of BLLs in New York State children, to studies conducted over the past three decades. Methods 262,687 New York State children born between 1994 and 1997 were screened for blood lead within 2 weeks of their first or second birthdays. Time series analyses of blood lead data from these children were conducted to study the seasonality and trends of BLLs. Results Children's blood lead values showed a distinct seasonal cycle on top of a long-term decreasing trend. The geometric mean BLL declined by about 24% for children born between 1994 and 1997. The prevalence of elevated BLLs in two-year-olds was almost twice that in one-year-olds over the time period. Nearly twice as many children had elevated BLLs in the late summer compared to late winter/early spring. In this and previous cross-sectional studies, the amount of seasonality as a proportion of the mean ranged between 15% and 30%. Conclusion Pediatricians should be aware of the seasonality of BLLs. For example, if a two-year-old receives a borderline result during the winter, it is possible that the levels would have been higher if he had been tested during the summer. However, physicians should continue to screen children at their normally

  5. The effect of autumn and spring planting time on seed yield and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effects of autumn and spring plantings on seed yield and quality of chickpea genotypes. Fourteen chickpea genotypes were grown over the consecutive two growing seasons in northwest Turkey. The results showed that planting time had significant effects on the investigated ...

  6. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    Science.gov (United States)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  7. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    Science.gov (United States)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  8. Disease ecology of Hematodinium perezi in a high salinity estuary: investigating seasonal trends in environmental detection.

    Science.gov (United States)

    Lycett, K A; Pitula, J S

    2017-05-11

    The blue crab Callinectes sapidus has seen a general decline in population levels. One factor influencing mortality is infections by Hematodinium perezi, a dinoflagellate parasite. A 2 yr study was conducted in 2014 and 2015 to monitor H. perezi DNA within the Maryland (USA) coastal bays, comparing seasonal cycles in the abundance of parasite DNA in environmental samples to parasite presence in host blue crabs. A late summer to early fall peak in H. perezi infections in blue crabs was observed, consistent with previous work. Infection intensities matched this trend, showing a slow progression of low intensity infections early in the year, with a peak in moderate and heavy infections occurring between July and September, for both years. It was hypothesized that the peak in water column occurrence would coincide with those months when infection intensities were highest in blue crabs. As the peaks in water column occurrence were in July 2014 and August-September 2015, this is consistent with sporulation being the primary contributor to environmental detection in summer months. An additional peak in environmental detection occurred in both years during the early spring months, the cause of which is currently unknown but may be related to infections in overwintering crabs or alternate hosts. Several new crustacean hosts were identified within this estuary, including grass shrimp Palaemonetes spp. and the sand shrimp Crangon septemspinosa, as well as the mud crab Dyspanopeus sayi. Improved knowledge of this disease system will allow for better management of this important fishery.

  9. Irrigation scheduling of spring wheat using infrared thermometry

    International Nuclear Information System (INIS)

    Stegman, E.C.; Soderlund, M.G.

    1989-01-01

    Irrigation scheduling for spring wheat requires information on different irrigation timing methods. Irrigation timing based on allowable root zone available water depletion and selected crop water stress index (CWSI) thresholds were evaluated in terms of their effect on spring wheat yield. A field study was conducted at Oakes, North Dakota in 1987 and 1988 on a Maddock sandy loam soil with two varieties of spring wheat (Marshall and Wheaton) using a split plot randomized block design. Irrigation was metered to each plot using trickle irrigation tubing. Neutron soil water measurements along with a water balance model were used to time irrigations that were based on different allowed root zone depletions. Infrared thermometer sensors (IRT) were used to measure in situ canopy temperatures and along with measured climatic information were used to time irrigations using the CWSI approach. Additionally, crop phenological stages and final grain yield were measured. The non-water-stressed baselines necessary for the CWSI differed between the two seasons but were similar to those from previous studies. The CWSI methods were feasible from the Feekes scale S4 (beginning pseudo-stem) to S11.2 (mealy ripe). Minimal yield reductions were observed using the CWSI method for thresholds less than 0.4-0.5 during this period. Minimal yield reductions were observed by maintaining the root zone allowable depletion below 50%. The grain yield-evapotranspiration (ET) relationship was linear in both years but with different slopes and intercepts. When analyzed on a relative basis to maximum ET (ETm), a single relationship fit both years’ data with a yield sensitivity factor of 1.58. Irrigations timed at CWSI = 0.5 reduced seasonal water application by 18% relative to treatments irrigated at CWSI = 0.2. (author)

  10. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Directory of Open Access Journals (Sweden)

    Thomas Ohde

    Full Text Available We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area. The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone

  11. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Science.gov (United States)

    Ohde, Thomas; Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  12. Diurnal variation in the behaviour of the Pink-footed Goose (Anser brachyrhynchus) during the spring stopover in Trøndelag, Norway

    DEFF Research Database (Denmark)

    Chudzinska, Magda Ewa; Madsen, Jesper; Nabe-Nielsen, Jacob

    2013-01-01

    behaviour at a staging site and assess the extent to which behavioural patterns are attributable to physiological factors (digestibility of the food) and environmental conditions (flock size, type and frequency of disturbance and distance to roost). We found that feeding activity peaked at mid-day, whereas...... different energetic and nutrient demands when at spring staging sites. Seasonal changes in habitat availability as well as density dependence may also affect the birds’ behavioural patterns. A sporadic, unpredictable disturbance reduced the proportion of geese feeding to a greater extent than a predictable...... the birds were most alert in the morning and afternoon. The behaviour of Pink-footed Goose also varied with habitat type, disturbance level and distance to roost. The diurnal variation in feeding activity differed from behaviour reported for geese on the wintering grounds, indicating that the birds have...

  13. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    Science.gov (United States)

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  14. Phototrophic microvegetation of thermal springs in Karlovy Vary, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kaštovský, J.; span class="emphasis">Komárek, Jiříspan>

    2001-01-01

    Roč. 123, - (2001), s. 107-120 ISSN 1438-9134. [International conference: Algae and extreme environments. Třeboň, 11.09.2000-16.09.2000] R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : Cyanobacteria * algae * biodiversity * thermal springs * Karlovy Vary Spa * ecology * seasonality * anthropogenic factors * conservation Subject RIV: EF - Botanics Impact factor: 0.488, year: 2000

  15. Analyzing seasonality of tuberculosis across Indian states and union territories

    Directory of Open Access Journals (Sweden)

    Pankaj Narula

    2015-12-01

    Full Text Available A significant seasonal variation in tuberculosis (TB is observed in north India during 2006–2011, particularly in states like Himachal Pradesh, Haryana and Rajasthan. To quantify the seasonal variation, we measure average amplitude (peak to trough distance across seasons in smear positive cases of TB and observe that it is maximum for Himachal Pradesh (40.01% and minimum for Maharashtra (3.87%. In north India, smear positive cases peak in second quarter (April–June and reach a trough in fourth quarter (October–December, however low seasonal variation is observed in southern region of the country. The significant correlations as 0.64 (p-value < 0.001, 0.54 (p-value < 0.01 and 0.42 (p-value < 0.05 are observed between minimum temperature and seasonality of TB at lag-1 in north, central and northeast India respectively. However, in south India, this correlation is not significant.

  16. [Seasonal variation in the absorption and fluorescence characteristics of CDOM in downstream of Liaohe River].

    Science.gov (United States)

    Shao, Tian-Tian; Zhao, Ying; Song, Kai-Shan; Du, Jia; Ding, Zhi

    2014-10-01

    Chromophoric dissolved organic matter (CDOM), which is an important part of dissolved organic matter (DOM), is considered as the largest storage of dissolved organic carbon in the aquatic environment. Liaohe River is the seventh largest river in China with annual runoff of 1.48 billion m3. As a result, studying on CDOM of Liaohe River is very important in estimating the organic carbon flux into sea. Seasonal optical characteristics of CDOM in the downstream of Liaohe River were investigated using absorbance spectroscopy and fluorescence excitation-emission matrices (EEMs). CDOM absorption coefficient at 355 nm [aCDOM (355)] in spring was lower than that in autumn and winter while low molecular weight substances were found in autumn and high molecular weight substances in spring based on the absorption coefficient and absorption slope (S) of CDOM. Samples in different seasons all exhibited fairly strong protein-like fluorophore (fluorophore B and fluorophore T) in the EEMs but the values showed apparent temporal variations. Based on the analysis of the relationships between different fluorophores, strong correlations (R2 > 0. 9) were observed between fluorophore A and C in spring, fluorophore B and T in autumn and winter, which illustrated that they had similar CDOM originalsources. However, a weak relationship (R2 = 0.21) was found between fluorophore B and T in spring, demonstrating the complexity and diversity of CDOM sources. Starting from autumn to winter and the subsequent spring, humic-like fluorophores exhibited enhanced fluorescent intensity, which could be ascribed to exogenous input. Furthermore, linear relationship between aCDOM (355) and Fn (355) in different seasons was examined in the study, and the strongest relationship was obtained in winter (R2 = 0.75), followed by autumn (R2 = 0.48) and spring (R2 = 0.01). This study indicated that fluorophore B in autumn and winter (R = 0.66; R = 0.89) as well as humic-like fluorophores (A and C, R = 0.74; R = 0

  17. Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.

    Science.gov (United States)

    Rigano, K S; Gehring, J L; Evans Hutzenbiler, B D; Chen, A V; Nelson, O L; Vella, C A; Robbins, C T; Jansen, H T

    2017-05-01

    Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.

  18. Seasonal variations of aerosol residence time in the lower atmospheric boundary layer

    International Nuclear Information System (INIS)

    Ahmed, A.A.; Mohamed, A.; Ali, A.E.; Barakat, A.; Abd El-Hady, M.; El-Hussein, A.

    2004-01-01

    During a one year period, from Jan. 2002 up to Dec. 2002, approximately 130 air samples were analyzed to determine the atmospheric air activity concentrations of short- and long-lived ( 222 Rn) decay products 214 Pb and 210 Pb. The samples were taken by using a single-filter technique and γ-spectrometry was applied to determine the activity concentrations. A seasonal fluctuation in the concentration of 214 Pb and 210 Pb in surface air was observed. The activity concentrations of both radionuclides were observed to be relatively higher during the winter/autumn season than in spring/summer season. The mean activity concentration of 214 Pb and 210 Pb within the whole year was found to be 1.4±0.27 Bq m -3 and 1.2±0.15 mBq m -3 , respectively. Different 210 Pb: 214 Pb activity ratios during the year varied between 1.78x10 -4 and 1.6x10 -3 with a mean value of 8.9x10 -4 ±7.6x10 -5 . From the ratio between the activity concentrations of the radon decay products 214 Pb and 210 Pb a mean residence time (MRT) of aerosol particles in the atmosphere of about 10.5±0.91 d could be estimated. The seasonal variation pattern shows relatively higher values of MRT in spring/summer season than in winter/autumn season. The MRT data together with relative humidity (RH), air temperature (T) and wind speed (WS), were used for a comprehensive regression analysis of its seasonal variation in the atmospheric air

  19. Seasonal variations in fouling diatom communities on the Yantai coast

    Science.gov (United States)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  20. The effect of calving season on reproductive performance of Jersey cows

    Directory of Open Access Journals (Sweden)

    Ercan Soydan

    2017-01-01

    Full Text Available Dairy records, containing 1269 lactation record of 462 Jersey dairy cows collected over 16 years, from an agricultural state farm were used. Data for reproductive performance of cows were also collected. Means of the herd for lactation milk yield, calving interval, days open, interval from calving to the first insemination, lactation length, gestation length and dry period were 3195.7±20.2 kg, 366.6±1.7 d, 92.9±1.6 d, 78.0±1.3 d, 301.7±1.1 d, 275.2±0.2 d and 69.3±0.8 d, respectively. The effect of calving season (winter, spring, summer and autumn on reproductive performance for high, low and moderate milk-yield cows was investigated. Calving season affected the days from calving to first insemination in high and moderate yielding cows (P<0.001 while didn’t affect low yielding cows. In summer, days open in high yielding cows were 35 days longer compared to winter season (P<0.001 as observed for moderate yielding cows (P<0.01. In high yielding cows, calving interval was 18 days longer in spring compared to winter calving season. Calving season also affected the first service conception rate in high yielding cows (P<0.05. Services per conception in autumn were lower than the other seasons (P<0.001. In conclusion, high yielding dairy cows need more attention in summer season with respect to body condition score, dietary energy: protein ratio, uterus health and elimination of heat stress, to get more profit in dairy farm.

  1. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    Science.gov (United States)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  2. Seasonal and Diel Vocalization Patterns of Antarctic Blue Whale (Balaenoptera musculus intermedia in the Southern Indian Ocean: A Multi-Year and Multi-Site Study.

    Directory of Open Access Journals (Sweden)

    Emmanuelle C Leroy

    Full Text Available Passive acoustic monitoring is an efficient way to provide insights on the ecology of large whales. This approach allows for long-term and species-specific monitoring over large areas. In this study, we examined six years (2010 to 2015 of continuous acoustic recordings at up to seven different locations in the Central and Southern Indian Basin to assess the peak periods of presence, seasonality and migration movements of Antarctic blue whales (Balaenoptera musculus intermedia. An automated method is used to detect the Antarctic blue whale stereotyped call, known as Z-call. Detection results are analyzed in terms of distribution, seasonal presence and diel pattern of emission at each site. Z-calls are detected year-round at each site, except for one located in the equatorial Indian Ocean, and display highly seasonal distribution. This seasonality is stable across years for every site, but varies between sites. Z-calls are mainly detected during autumn and spring at the subantarctic locations, suggesting that these sites are on the Antarctic blue whale migration routes, and mostly during winter at the subtropical sites. In addition to these seasonal trends, there is a significant diel pattern in Z-call emission, with more Z-calls in daytime than in nighttime. This diel pattern may be related to the blue whale feeding ecology.

  3. Surface currents in the equatorial Indian Ocean during spring and fall - An altimetry based analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Somayajulu, Y.K.

    This communication presents the results of a study aimed at investigating the nature and variability of surface currents in the equatorial Indian Ocean between 5 degrees N and 5 degrees S during spring and fall seasons. Geostrophic surface currents...

  4. Effect of season on peripheral resistance to localised cold stress

    Science.gov (United States)

    Tanaka, M.; Harimura, Y.; Tochihara, Y.; Yamazaki, S.; Ohnaka, T.; Matsui, J.; Yoshida, K.

    1984-03-01

    This study was carried out to determine the effect that seasonal changes have on the effect of localised cold stress on peripheral temperatures using the foot immersion method with a cold water bath. The subjects were six males and four females. The data were obtained in April, July, October and January. Skin temperature of the right index finger, the forehead, the arm, the cheek, the second toe and the instep were measured before, during and after the immersion of the feet in water at 15°C for 10 mins, as well as oxygen consumption before immersion of the feet. The average finger temperature was highest during foot immersion in the summer, next highest in the winter, then spring, and the lowest during foot immersion in the autumn. The finger temperatures during the pre-immersion period in the autumn tended to be lower than in other seasons. The finger temperatures during the pre-immersion period affected the temperature change of the finger during the immersion period. The rate of increase of the toe temperature and the foot temperature during post-immersion in the summer and the spring were greater than those in the autumn and winter. Oxygen consumption during the pre-immersion period in the autumn was significantly lower than in the other seasons (pCooling the feet caused no significant changes in the temperatures the cheek, forehead or forearm. The cheek temperature in the summer and autumn was cooler than corresponding temperatures taken in the winter and spring.

  5. Hydrology and geochemistry of carbonate springs in Mantua Valley, northern Utah

    Science.gov (United States)

    Rice, Karen C.; Spangler, Lawrence E.; Spangler, Lawrence E.; Allen, Constance J.

    1999-01-01

    Water chemistry, tritium data, precipitation-discharge relations, geology, topography, and dye tracing were used to determine recharge areas, ground-water residence times, factors influencing ground-water flow, and aquifer characteristic for five springs that discharge from Paleozoic limestones and dolostones along the margin of Manuta Valley, northern Utah.Temperature of Mantua Valley spring water ranged between 6.0 and 15.0 degrees Celsius. Spring-water temperature indicates that depth of circulation of ground water could be as shallow as 80 feet (25 meters) to as much as 1,150 feet (350 meters). Dissolved-solids concentration in the water from springs ranged from 176 to 268 milligrams per liter. Average total hardness of spring water ranged from 157 to 211 milligrams per liter. Water from all of the springs is a calcium-magnesium-bicarbonate type that generally is undersaturated with respect to calcite and dolomite. The molar calcium/magnesium ratio in spring water ranged from 1.21 to 1.88, and indicates that ground water flows through impure dolostone or a mixed limestone and dolostone terrace.Discharge from carbonate springs in Mantua Valley ranges from about to 10 to 4,300 gallons per minute (0.6 to 271 liters per second). Seasonal variations in chemical parameters and discharge indicate that the aquifers supplying water to most of these springs are predominantly diffuse-flow systems that have been locally enhanced by bedrock dissolution. Estimated recharge area for th springs ranges from 2.7 to 7 square miles (7 to 18 square kilometers).On the basis of tritium age dating, the mean residence time of ground water discharges from Olsens-West Hallins and Maple Springs was determined to be from 3 to 9, and from 4 to 15 years, respectively. Dye tracing from point sources 2.65 miles (4.26 kilometers) southeast of Maple Spring, however, indicates a substantially faster component of flow during snowmelt runoff, with a travel time of about 5 days, or an average ground

  6. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  7. Succession and fate of the spring diatom bloom in Disko Bay, western Greenland

    DEFF Research Database (Denmark)

    Dünweber, Michael; Swalethorp, Rasmus; Kjellerup, Sanne

    2010-01-01

    Phytoplankton and copepod succession was investigated in Disko Bay, western Greenland from February to July 2008. The spring phytoplankton bloom developed immediately after the breakup of sea ice and reached a peak concentration of 24 mg chl a m–3 2 wk later. The bloom was analyzed during 3 phases...... from the initiation of the bloom but only had a small grazing impact on the phytoplankton. Consequently, there was a close coupling between the spring phytoplankton bloom and sedimentation of particulate organic carbon (POC). Out of 1836 ± 180 mg C m–2 d–1 leaving the upper 50 m, 60% was phytoplankton...... and fate of the phytoplankton spring bloom was controlled by nitrogen limitation and subsequent sedimentation, while grazing-mediated flux by the Calanus-dominated copepod community played a minor role in the termination of the spring bloom of Disko Bay....

  8. Seasonal herbicide monitoring in soil, runoff and sediments of an olive orchard under conventional tillage

    Science.gov (United States)

    Calderón, Maria Jesus; de Luna, Elena; Gómez, José Alfonso; Cornejo, Juan; Hermosín, M. Carmen

    2015-04-01

    Several pollution episodes in surface and groundwaters with pesticides have occurred in areas where olive crops are established. For that reason, it is necessary to know the evolution of some pesticides in olive trees plantation depending on their seasonal application. This is especially important when conventional tillage is used. A monitoring of two herbicides (terbuthylazine and oxyfluorfen)in the first cm of soil and, in runoff and sediment yield was carried out after several rainfall events. The rainfall occurred during the study was higher in winter than in spring giving rise more runoff in winter. However, no differences in sediment yields were observed between spring and winter. Terbuthylazine depletion from soil is associated to the first important rainfall events in both seasons (41 mm in spring and 30 mm in winter). At the end of the experiment, no terbuthylazine soil residues were recovered in winter whereas 15% of terbuthylazine applied remained in spring. Oxyfluorfen showed a character more persistent than terbuthylazine remaining 48% of the applied at the end of the experiment due to its low water solubility. Higher percentage from the applied of terbuthylazine was recovered in runoff in winter (0.55%) than in spring (0.17%). Nevertheless, no differences in terbuthylazine sediments yields between both seasons were observed. That is in agreement with the values of runoff and sediment yields accumulated in tanks in both seasons. Due to the low water solubility of oxyfluorfen very low amount of this herbicide was recovered in runoff. Whereas, in sediment yields the 39.5% of the total applied was recovered. These data show that the dissipation of terbuthylazine from soil is closely related with leaching processes and in less extent with runoff. However, oxyfluorfen dissipation is more affected by runoff processes since this herbicide is co-transported in sediment yields. Keywords: olive crop, pesticide, runoff, sediments, surface water, groundwater

  9. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual.

    Science.gov (United States)

    Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2016-04-27

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD.

  10. A distinction between summer rainy season and summer monsoon season over the Central Highlands of Vietnam

    Science.gov (United States)

    Ngo-Thanh, Huong; Ngo-Duc, Thanh; Nguyen-Hong, Hanh; Baker, Peter; Phan-Van, Tan

    2018-05-01

    The daily rainfall data at 13 stations over the Central Highlands (CH) Vietnam were collected for the period 1981-2014. Two different sets of criteria using daily observed rainfall and 850 hPa daily reanalysis wind data were applied to determine the onset (retreat) dates of the summer rainy season (RS) and summer monsoon (SM) season, respectively. Over the study period, the mean RS and SM onset dates were April 20 and May 13 with standard deviations of 17.4 and 17.8 days, respectively. The mean RS and SM retreat dates were November 1 and September 30 with standard deviations of 17.9 and 10.2 days, respectively . The year-to-year variations of the onset dates and the rainfall amount within the RS and SM season were closely linked with the preceding winter and spring sea surface temperature in the central-eastern and western Pacific. It was also found that the onset dates were significantly correlated with the RS and SM rainfall amount.

  11. Seasonal and socio-demographic determinants of school commuting

    DEFF Research Database (Denmark)

    Bjørkelund Børrestad, Line Anita; Andersen, Lars Bo; Bere, Elling

    2011-01-01

    OBJECTIVE: To report prevalence of commuting to school in Norway with regard to season, gender, parental education level, ethnicity and distance to school. METHODS: Cross-sectional questionnaire data from the Fruits and Vegetables Make the Marks project collected in 2008, including 1,339 ten...... to twelve-year-old children from 27 schools. The participants were categorized according to main mode of commuting to school in the three different school seasons (fall, winter and spring) and for the full school year if more than 50% of all trips were conducted by one specific mode. RESULTS: Most pupils...

  12. Modern (1992–2011) and projected (2012–99) peak snowpack and May–July runoff for the Fort Peck Lake and Lake Sakakawea watersheds in the Upper Missouri River Basin

    Science.gov (United States)

    Stamm, John F.; Todey, Dennis; Mayes Bousted, Barbara; Rossi, Shawn; Norton, Parker A.; Carter, Janet M.

    2016-02-09

    Mountain snowpack is an important contributor to runoff in the Upper Missouri River Basin; for example, high amounts of winter and spring precipitation in the mountains and plains in 2010–11 were associated with the peak runoff of record in 2011 in the Upper Missouri River Basin. To project trends in peak mountain snowpack and runoff in the upcoming decades, multiple linear regression models of peak mountain snowpack and total May–July runoff were developed for the Fort Peck Lake (above Fort Peck Dam) and lower Lake Sakakawea watersheds (between Fort Peck and Garrison Dams) in the Upper Missouri River Basin. Input to regression models included seasonal estimates of precipitation, air temperature, and total reference evapotranspiration stratified by elevation. Calibration was based on records from 107 weather stations from 1991 to 2011. Regressed annual peak mountain snowpack was used as input to the transfer function of May–July runoff. Peak snowpack and May–July runoff were projected for 2012–99 on the basis of air temperature and precipitation from the Community Climate System Model (CCSM) output. Two estimates of projected peak snowpack and May–July runoff for 2012–99 were computed: one estimate was based on output from the CCSM, version 3.0 (CCSM3), and the second estimate was based on output from the CCSM, version 4.0 (CCSM4). The significance of projected trends was based on the Kendall’s tau nonparametric test.

  13. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    Science.gov (United States)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  14. Effect of season on reproductive behaviors and fertilization success in cavies (Cavia aperea).

    Science.gov (United States)

    Hribal, Romy; Rübensam, Kathrin; Bernhardt, Sandra; Jewgenow, Katarina; Guenther, Anja

    2018-04-05

    Finding the optimal timing for breeding is crucial for small mammals to ensure survival and maximize lifetime reproductive success. Species living in temperate regions therefore often restrict breeding to seasons with favorable food and weather conditions. Although caviomorph rodents such as guinea pigs are described as non-seasonal breeders, a series of recent publications has shown seasonal adaptations in litter size, offspring birth mass and maternal investment. Here, we aim to test if seasonal patterns of litter size variation found in earlier studies, are mediated by seasonal differences in female estrus length, fertilization rate and mating behavior. The female estrus period was longer in fall compared to all other seasons (p < 0.001), frequently lasting 7-9 days while estrus in spring usually lasted less than 2 days. In fall, females mated later during estrus (p < 0.001), resulting in reduced fertilization rates (p < 0.001). Fertilization rate was well above 95% in summer while it dropped to less than 85% in fall and winter. While none of the male mating characteristics such as number and duration of copulations differed across seasons, the number of mating bouts was reduced in fall (p = 0.04). Finally, the developmental stages of flushed embryos were more diverse in spring and summer compared to fall and winter. These results suggest that seasonal differences in fertilization rate and quality of implanted embryos are mediated by female estrus length and timing and intensity of mating behavior. Together, these effects contribute to the observed differences in litter size across seasons. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Aspects of the population biology of Octopus vulgaris in False Bay ...

    African Journals Online (AJOL)

    ... gonadal somatic indices of 0.52 and 0.46 found in spring and summer respectively (periods of warmer water in False Bay) may indicate peak spawning during those seasons. Keywords: maturation, morphometrics, Octopus vulgaris, population biology, sex ratio, spawning season. African Journal of Marine Science 2002, ...

  16. Mapping Spatial Distribution of Larch Plantations from Multi-Seasonal Landsat-8 OLI Imagery and Multi-Scale Textures Using Random Forests

    Directory of Open Access Journals (Sweden)

    Tian Gao

    2015-02-01

    Full Text Available The knowledge about spatial distribution of plantation forests is critical for forest management, monitoring programs and functional assessment. This study demonstrates the potential of multi-seasonal (spring, summer, autumn and winter Landsat-8 Operational Land Imager imageries with random forests (RF modeling to map larch plantations (LP in a typical plantation forest landscape in North China. The spectral bands and two types of textures were applied for creating 675 input variables of RF. An accuracy of 92.7% for LP, with a Kappa coefficient of 0.834, was attained using the RF model. A RF-based importance assessment reveals that the spectral bands and bivariate textural features calculated by pseudo-cross variogram (PC strongly promoted forest class-separability, whereas the univariate textural features influenced weakly. A feature selection strategy eliminated 93% of variables, and then a subset of the 47 most essential variables was generated. In this subset, PC texture derived from summer and winter appeared the most frequently, suggesting that this variability in growing peak season and non-growing season can effectively enhance forest class-separability. A RF classifier applied to the subset led to 91.9% accuracy for LP, with a Kappa coefficient of 0.829. This study provides an insight into approaches for discriminating plantation forests with phenological behaviors.

  17. Linear magnetic spring and spring/motor combination

    Science.gov (United States)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  18. Foraging behaviour of pink-footed geese (Anser brachyrhynchus) during spring migration

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa

    and their energetic consequences are therefore of great importance to these birds. In this thesis, I have aimed to address some aspects of the foraging decisions and behaviour of pink-footed geese during their spring migration to the Arctic breeding area. I combined field techniques with telemetry technology as well...... as modelling tools to address questions about how geese forage and fuel during their spring migration. The first three presented manuscripts focus on changes in goose foraging behaviour and energetics over the course of the day, a stopover season and the entire migration. They also focus on variety of factors...... the question: which foraging decision do geese make at the Mid-Norway stopover site....

  19. Spatio-temporal seasonal drought patterns in Europe from 1950 to 2015

    Science.gov (United States)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen

    2016-04-01

    Drought is one of the natural disasters with severe impacts in Europe, not only in areas which frequently experience water scarcity such as the Mediterranean, but also in temperate or continental climates such as Central and Eastern Europe and even in cold regions such as Scandinavia and Iceland. In this study the spatio-temporal patterns of seasonal meteorological droughts in Europe between 1950 and 2015 are investigated using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). Since the focus is on the analysis of seasonal drought trends, indicators were calculated for 3 monthly accumulation periods. The input variables of precipitation and temperature were derived from E-OBS grids (v11-v12) at a spatial resolution of 0.25°x0.25°. Seasonal trends of drought frequency and severity were analyzed for moderate (SPI or SPEI 2.0) events during the periods 1950-2015 and 1981-2015. For the moderate events, results of the SPI analysis (precipitation driven) demonstrate a significant tendency towards less frequent and severe droughts in Northern Europe and Russia, especially in winter and spring; oppositely, an increasing trend is visible in Southern Europe, mainly in spring and summer. According to the SPEI analysis (precipitation and temperature driven) Northern Europe shows wetting patterns, while Southern and Eastern Europe show a more remarkable drying tendency, especially in summer and autumn for drought frequency and in every season for drought severity. The evolution towards drier conditions is more relevant from 1981 onwards, both in terms of frequency and severity. This is especially true for Central Europe in spring, for the Mediterranean in summer, and for Eastern Europe in autumn. Extreme events follow similar patterns, but in autumn no spatially coherent trend can be found.

  20. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Quansheng Ge

    2014-01-01

    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  1. Research on the Tourism Marketing Strategy of the New Countryside-" Auspicious Four Seasons" in Wuhan

    OpenAIRE

    Li, Ya-Juan; Hu, Jing

    2010-01-01

    On the basis of expounding connotation of "auspicious four seasons", the paper introduces related situations of spring peach blossom village, summer pomegranate blossom village, autumn osmanthus blossom village and winter plum blossom village, as well as major project and profit of "auspicious four seasons" new village tourism in Wuhan city. Development situations of "auspicious four seasons" new village tourism in Wuhan city are analyzed by using SWOT analysis. Among them, the strengths are ...

  2. Increased spring freezing vulnerability for alpine shrubs under early snowmelt.

    Science.gov (United States)

    Wheeler, J A; Hoch, G; Cortés, A J; Sedlacek, J; Wipf, S; Rixen, C

    2014-05-01

    Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so early spring exposure may increase risk of freezing damage during early development, and consequently reduce seasonal growth. We examined whether environmental factors (duration of snow cover, elevation) influenced size and the vulnerability of shrubs to spring freezing along elevational gradients and snow microhabitats by modelling the past frequency of spring freezing events. We sampled biomass and measured the size of Salix herbacea, Vaccinium myrtillus, Vaccinium uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing temperatures to determine the temperature at which 50% of specimens are killed for each species and sampling site. By linking site snowmelt and temperatures to long-term climate measurements, we extrapolated the frequency of spring freezing events at each elevation, snow microhabitat and per species over 37 years. Snowmelt timing was significantly driven by microhabitat effects, but was independent of elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased with elevation. Freezing resistance was strongly species dependent, and did not differ along the elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal freezing events (in May and June) occurred for three of the four species examined. Freezing events never occurred on late snow beds, and increased in frequency with earlier snowmelt and higher elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year record. We suggest that earlier snowmelt does not enhance growth in four dominant alpine shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species.

  3. Thermal ecology of phytoplankton in a desert reservoir

    International Nuclear Information System (INIS)

    Olsen, R.D.; Sommerfeld, M.R.

    1976-01-01

    The physical--chemical limnology and phytoplankton dynamics of Canyon Lake, Arizona, were investigated from February 1971 to July 1973. The reservoir is a warm monomictic lake with pronounced thermal stratification during the summer months. Chemically the lake is hard water of moderate to high alkalinity and salinity. Annual peaks in the phytoplankton standing crop were recorded during early spring and mid- to late summer, and significant depressions occurred during April--May and November to January. The spring peak was composed primarily of centric diatoms, whereas the summer peak was dominated by filamentous Cyanophyceae. The seasonal appearance and variation in population size of individual species were correlated in varying degrees with one or more physical--chemical parameters. Indications are that physical factors (particularly light and water temperature), rather than water chemistry, were the primary parameters regulating seasonal succession

  4. Influence of season of birth on growth and reproductive development of Brahman bulls.

    Science.gov (United States)

    Tatman, Shawn R; Neuendorff, Don A; Wilson, Timothy W; Randel, Ronald D

    2004-07-01

    Seasonal effects on reproduction are more dramatic in Bos indicus than Bos taurus cattle. This experiment evaluated reproductive development of fall- (n=7) versus spring- (n = 10) born Brahman bulls to determine if season of birth affects reproductive development. Measurements of growth and reproductive development began after weaning and continued at bi-weekly intervals until each bull reached sexual maturity. Different stages of sexual development were classified according to characteristics of the ejaculate and included first sperm in the ejaculate, puberty (> 50 x 10(6) sperm/ejaculate), and sexual maturity (two ejaculates with > 500 = 10(6) sperm/ejaculate). Average daily increases in all measured traits were similar in fall- and spring-born bulls and there were no differences in age, body weight, scrotal circumference, or paired testis volume between groups at first sperm or puberty. However, fall-born bulls were older (P days versus 481 days, respectively) as the interval between puberty and sexual maturity was longer (P days versus 54 days, respectively). The prolonged interval between puberty and sexual maturity in fall-born calves coincided with a short photoperiod (winter) whereas the short interval between puberty and sexual maturity in spring-born calves coincided with a long photoperiod (summer). In conclusion, season of birth affected sexual development; photoperiod might be involved in regulating testicular function immediately after puberty in Brahman bulls.

  5. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  6. An observation-based progression modeling approach to spring and autumn deciduous tree phenology

    Science.gov (United States)

    Yu, Rong; Schwartz, Mark D.; Donnelly, Alison; Liang, Liang

    2016-03-01

    It is important to accurately determine the response of spring and autumn phenology to climate change in forest ecosystems, as phenological variations affect carbon balance, forest productivity, and biodiversity. We observed phenology intensively throughout spring and autumn in a temperate deciduous woodlot at Milwaukee, WI, USA, during 2007-2012. Twenty-four phenophase levels in spring and eight in autumn were recorded for 106 trees, including white ash, basswood, white oak, boxelder, red oak, and hophornbeam. Our phenological progression models revealed that accumulated degree-days and day length explained 87.9-93.4 % of the variation in spring canopy development and 75.8-89.1 % of the variation in autumn senescence. In addition, the timing of community-level spring and autumn phenophases and the length of the growing season from 1871 to 2012 were reconstructed with the models developed. All simulated spring phenophases significantly advanced at a rate from 0.24 to 0.48 days/decade ( p ≤ 0.001) during the 1871-2012 period and from 1.58 to 2.00 days/decade ( p coloration) and 0.50 (full-leaf coloration) days/decade ( p coloration and leaf fall, and suggested accelerating simulated ecosystem responses to climate warming over the last four decades in comparison to the past 142 years.

  7. Studies on the antifertility potentiality of Hibiscus rosa sinensis. Parts of medicinal value; selection of species and seasonal variations.

    Science.gov (United States)

    Kholkute, S D; Mudgal, V; Udupa, K N

    1977-02-01

    The postcoital antifertility properties of benzene hot extracts of Hibiscus rosa sinensis flowers, leaves, and stembarks, collected during the winter, spring, rainy, and summer seasons, were investigated in female rats. Only extracts from the flowers of the plant were 100% effective in preventing pregnancy. Those flowers collected during the winter showed the greatest potency, followed by those collected in the spring, rainy season, and summer, in decreasing order. Benzene extracts of flowers collected from Hibiscus mutabilis, Hibiscus schizopetalus, and Malvasicus grandiflorus, plants resembling Hibiscus rosa sinensis in petaloid structure, did not markedly affect pregnancy.

  8. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    Science.gov (United States)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  9. Life cycle and spring phenology of Temora longicornis in the Baltic Sea

    DEFF Research Database (Denmark)

    Dutz, Jörg; Mohrholz, V.; van Beusekom, J. E. E.

    2010-01-01

    The seasonal variation in abundance, biomass and vertical distribution of nauplii and copepodites of Temora longicornis in the Bornholm Basin was studied from March 2002 to May 2003 to understand the overwintering, spring development and life cycle of this species in the Baltic Sea. The analysis...... of the life cycle by means of stage structure, copepodite length and stage duration revealed that T. longicornis produced 5 to 6 generations yr–1. The species overwintered in low abundance as an active, slowly developing generation with adults appearing from February/March onwards. The onset of the spring...... bloom in April triggered reproduction and initiated the first spring generation (G1) with a strong rise in nauplii abundance. The stock biomass increased in May with the occurrence of the copepodites of G1 and remained high during the succeeding generations G2 and G3 until August. The stock...

  10. Influence of season and microclimate on fertility of dairy cows in a hot-arid environment.

    Science.gov (United States)

    Ray, D E; Jassim, A H; Armstrong, D V; Wiersma, F; Schuh, J D

    1992-08-01

    Records were obtained over a 3 year period from six Holstein dairy farms of 300 to 500 cows each in the Phoenix, Ariz. area. Dairies were selected on the basis of similar management practices, herd size, milk production and facilities (with the exception of cooling systems). Microclimatic modifications (two dairies each) were shade only (approximately 3.7 m2/cow), evaporative-cooled shades and low-pressure water foggers under the shades. Data were categorized by season of calving (spring, Feb.-May; summer, June-Sept.; and fall, Oct.-Jan.). Traits evaluated were calving interval, days open and services/conception. Calving interval was shortest for cows calving in the spring (378 days), intermediate in fall (382 days) and longest in summer (396 days). Similar seasonal trends were observed for days open (103, 103 and 119 days, respectively) and services/conception (1.54, 1.81 and 1.93, respectively). All differences between spring and summer were significant (P less than 0.05). Calving interval and days open were less for evaporative-cooled groups (374 and 98 days, respectively), with no difference between shade only and foggers (391 and 392 days, 112 and 116 days, respectively). Services/conception were similar for all groups (1.72 to 1.79). A significant interaction between microclimate and season for services/conception could be interpreted as (i) smaller season differences for evaporative-cooled groups than for shade or foggers, or (ii) a change in the ranking of control and fogger groups during summer versus fall. Evaporative cooling was more effective than fogging for reducing the detrimental effects of seasonal high temperatures on fertility.

  11. Satellite comparison of the seasonal circulation in the Benguela and ...

    African Journals Online (AJOL)

    Satellite surface height and surface temperature fields are used to examine the seasonal surface circulation in the Benguela and California Current systems. In the California Current system, an equatorward jet develops in spring and summer near to the coast, with a latitudinal structure that responds to the equatorward ...

  12. How Do Tropical Sea Surface Temperatures Influence the Seasonal Distribution of Precipitation in the Equatorial Amazon?.

    Science.gov (United States)

    Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui

    2001-10-01

    Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through

  13. STRUCTURE OF THE FRESH ONION MARKET IN THE SPRING SEASON: A FOCUS ON TEXAS AND ITS COMPETITION

    OpenAIRE

    Fuller, Stephen W.; Capps, Oral, Jr.; Bello, Haruna; Shafer, Carl E.

    1991-01-01

    A structural model of the spring onion economy is developed to analyze forces affecting the onion-producing sector in Texas. Spring onion prices in Texas are influenced by own shipments, shipments from storage stocks, and variety. Texas's decline in market share is largely the result of expanded late summer (storage) onion production. A decline in the U.S. real tariff and a weakening of the real exchange rate (pesos/$) encouraged onion imports from Mexico during the study period. However, thi...

  14. Seasonal variations in aerosol optical properties over China

    Science.gov (United States)

    Yuesi Wang; Jinyuan Xin; Zhanqing Li; Shigong Wang; Pucai Wang; Wei Min Hao; Bryce L. Nordgren; Hongbin Chen; Lili Wang; Yang Sun

    2012-01-01

    Seasonal variations in background aerosol optical depth (AOD) and aerosol type are investigated over various ecosystems in China based upon three years' worth of meteorological data and data collected by the Chinese Sun Hazemeter Network. In most parts of China, AODs are at a maximum in spring or summer and at a minimum in autumn or winter. Minimum values (0.10~0....

  15. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  16. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    Science.gov (United States)

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    Science.gov (United States)

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Seasonal and annual plant production of a southern Manitoba old-field

    International Nuclear Information System (INIS)

    Turner, B.N.; Iverson, S.L.

    1980-06-01

    The amount of natural variation in vegetation production during Project ZEUS (an investigation of long-term gamma radiation on meadow voles) will constitute an important habitat variable for the meadow vole population. To quantify this variation, annual and seasonal plant production of a nearby old-field was estimated by monthly harvests of aboveground vegetation between April and October for five consecutive years. The amount of dry green vegetation varied significantly both among years and months, peaking at a mean of nearly 300 G. M -2 in late July and late August. Mean rates of production were maximum in late May to late June, reaching 4.45 g.m -2 .d -1 . Dead vegetation varied significantly among months, but not among years, with peak amounts of nearly 800 G. M -2 in May and October. Moss quantities varied among years, but not among months, and showed a general trend to increase as the field aged. Monthly production of green vegetation showed some relationships to precipitation and temperature, and particularly indicated that hot dry springs impeded growth. Both amount and rate of green production were greater than that on most similar old-fields reported in the literature, and generally exceeded levels on all native grasslands except tallgrass prairie. Annual variability in peak green production was similar to that on other grasslands and old-fields. Variability in green production was greatest in April, and least in June, at the time when production was greatest. Greatest variation in green production occurred at the same time as greatest variation in temperature. Low precipitation may limit production, but the amount of precipitation does not appear to have an effect above a certain minimum level. (auth)

  19. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  20. Investigation of Natural Radioactivity in the Tap and Spring Water in Yaounde Town, Cameroon

    International Nuclear Information System (INIS)

    Lydie, R.M.; Hakam, O.K.; Choukri, A.; Lydie, R.M.; Hakam, O.K.; Choukri, A.

    2013-01-01

    The natural radionuclide concentrations in the tap and springs water in Yaounde town, capital of Cameroon with a population of 3.5 million inhabitants were estimated by gamma spectrometry, using both well calibrated Canberra NaI(Tl) and HPGe detector systems. Tap water samples were collected during the dry and the rainy seasons, respectively in December 2002 and July 2003 and spring water samples were collected in August 2010. The radionuclides observed with regularity belonged to the series decay naturally occurring radionuclides headed by 238 U and 232 Th as well as the non-series nuclide 40 K. Assuming an individual daily consumption of 1 litre of water, the average annual intake for these populations is 3821 Bq/y for tap water and 1161 Bq/y for spring water.

  1. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  2. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  3. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  4. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    Science.gov (United States)

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  5. Radon-enriched spring waters in the South of Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Hetman, A.; Dorda, J.; Zipper, W.

    2001-01-01

    A method for determination of 222 Rn in natural water samples which involves a Wallac 1414 Win Spectral α/β liquid scintillation counter is described. Samples were collected from springs in health resorts in the Sudety Mountains in Poland. Half of the studied water samples were radon enriched with an activity concentration higher then 74 Bq/l. Seasonal variations of 222 Rn in these waters are under investigation. The method introduced is very convenient and elegant for radon activity measurements.

  6. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin

    Science.gov (United States)

    Robert D. McReynolds

    1971-01-01

    Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...

  7. Spring Tire

    Science.gov (United States)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  8. Simulation of spring barley yield variability in different climatic zones of Northern and Central Europe

    DEFF Research Database (Denmark)

    Rötter, R P; Palosuo, T; Kersebaum, K C

    2012-01-01

    In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L.) at seven sites in Northern and Central...

  9. Seasonal alterations in park visitation, amenity use, and physical activity--Grand Forks, North Dakota, 2012-2013.

    Science.gov (United States)

    Roemmich, James N; Johnson, LuAnn

    2014-09-11

    Park amenities promote visitation and physical activity during summer. Physical activity declines during winter. Identifying park amenities that promote visitation during winter would increase year-round activity. The purpose of this study was to determine how park visitation, amenity choice, and physical activity intensity change across seasons. Physical activity intensity of children and adults was assessed at 16 parks in Grand Forks, North Dakota, during summer and fall of 2012, and winter and spring of 2013. Park visitation was highest in spring and lowest in winter. Amenity use varied by season. Parks with water splash pads were visited more during summer, and playgrounds and open spaces were visited more during spring. Ice rinks were visited most in winter. Physical activity intensity was lowest in summer and highest in winter for each age group. The activity intensity observed for all young age groups ranged from 2.7 to 2.9 metabolic equivalents in summer and greater than 3 metabolic equivalents in all other seasons. Adults' mean activity intensity was greater than 3 metabolic equivalents in winter. Information on park visitation, amenity use, and activity intensity across seasons is valuable; it can be used when designing or redesigning parks in order to promote year-round physical activity. Redesigning parks in cold climates to include ice rinks, sledding hills, cross-country skiing, and indoor areas for physical activity would increase winter visitation and allow the park to serve as a year-round resource for physical activity.

  10. Studying Springs in Series Using a Single Spring

    Science.gov (United States)

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    Springs are used for a wide range of applications in physics and engineering. Possibly, one of their most common uses is to study the nature of restoring forces in oscillatory systems. While experiments that verify Hooke's law using springs are abundant in the physics literature, those that explore the combination of several springs together are…

  11. Comparison of biochemical compositions of phytoplankton during spring and fall seasons in the northern East/Japan Sea

    Science.gov (United States)

    Kang, Jae Joong; Joo, HuiTae; Lee, Jae Hyung; Lee, Jang Han; Lee, Ho Won; Lee, Dabin; Kang, Chang Keun; Yun, Mi Sun; Lee, Sang Heon

    2017-09-01

    The East/Japan Sea (EJS) where is surrounded by the Korean peninsula, the Japanese islands, and the Russian coast has been experiencing a large change in physicochemical properties. Based on biochemical composition analysis (carbohydrates, proteins, and lipids), the current qualitative status of phytoplankton was identified in the northern EJS from two different sampling seasons (fall and spring in 2012 and 2015, respectively). The average chlorophyll-a (chl-a) concentration integrated from the euphotic depths was significantly higher in 2015 (99.3 ± 69.2 mg m-2) than 2012 (21.5 ± 6.7 mg m-2). Large phytoplankton (> 2 μm) were predominant in 2015 accounting for 64.5 ± 19.7% whereas small-size phytoplankton (0.7-2 μm) were dominant (49.1 ± 17.5%) in 2012. The biochemical compositions of phytoplankton were predominated by lipids (42.6 ± 7.8%) in 2012 whereas carbohydrate composition largely contributed (53.2 ± 11.7%) to the total biochemical composition in 2015, which is mainly due to different nutrient availabilities and growth stages. Interestingly, the averaged FM concentrations and calorific values for phytoplankton based on the biochemical compositions had similar values between the two years, although the integrated chl-a concentrations were substantially different between 2012 and 2015. In terms of different cell sizes of phytoplankton, we found that small phytoplankton assimilate more FM and calorific energy per unit of chl-a concentration than total phytoplankton. Our results are meaningful for the understanding of future marine ecosystems where small phytoplankton will become dominant at a scenario of ongoing warmer oceans.

  12. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  13. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  14. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples: an attempt to discern recurrences and trends

    Directory of Open Access Journals (Sweden)

    M. Ribera d'Alcalà

    2004-04-01

    Full Text Available The annual cycle of plankton was studied over 14 years from 1984 to 2000 at a coastal station in the Gulf of Naples, with the aim of assessing seasonal patterns and interannual trends. Phytoplankton biomass started increasing over the water column in February-early March, and generally achieved peak values in the upper layers in late spring. Another peak was often recorded in autumn. Diatoms and phytoflagellates dominated for the largest part of the year. Ciliates showed their main peaks in phase with phytoplankton and were mainly represented by small (< 30 mm naked choreotrichs. Mesozooplankton increased in March-April, reaching maximum concentrations in summer. Copepods were always the most abundant group, followed by cladocerans in summer. At the interannual scale, a high variability and a decreasing trend were recorded over the sampling period for autotrophic biomass. Mesozooplankton biomass showed a less marked interannual variability. From 1995 onwards, phytoplankton populations increased in cell number but decreased in cell size, with intense blooms of small diatoms and undetermined coccoid species frequently observed in recent years. In spite of those interannual variations, the different phases of the annual cycle and the occurrence of several plankton species were remarkably regular.

  15. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  16. THE PRE-PERIHELION ACTIVITY OF DYNAMICALLY NEW COMET C/2013 A1 (SIDING SPRING) AND ITS CLOSE ENCOUNTER WITH MARS

    Energy Technology Data Exchange (ETDEWEB)

    Bodewits, Dennis; Kelley, Michael S. P.; Farnham, Tony L.; A’Hearn, Michael F. [Department of Astronomy, University Maryland, College Park, MD 20742 (United States); Li, Jian-Yang, E-mail: dennis@astro.umd.edu, E-mail: msk@astro.umd.edu, E-mail: farnham@astro.umd.edu, E-mail: ma@astro.umd.edu, E-mail: jyli@psi.edu [Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States)

    2015-03-20

    We used the UltraViolet-Optical Telescope on board Swift to systematically follow the dynamically new comet C/2013 A1 (Siding Spring) on its approach to the Sun. The comet was observed from a heliocentric distance of 4.5 AU pre-perihelion to its perihelion at 1.4 AU. From our observations, we estimate that the water production rate during closest approach to Mars was 1.5 ± 0.3 × 10{sup 28} molecules s{sup −1}, that peak gas delivery rates where between 4.5 and 8.8 kg s{sup −1}, and that in total between 3.1 and 5.4 × 10{sup 4} kg cometary gas was delivered to the planet. Seasonal and evolutionary effects on the nucleus govern the pre-perihelion activity of comet Siding Spring. The sudden increase of its water production between 2.46 and 2.06 AU suggests the onset of the sublimation of icy grains in the coma, likely driven by CO{sub 2}. As the comet got closer to the Sun, the relative contribution of the nucleus’ water production increased, while CO{sub 2} production rates decreased. The changes in the comet’s activity can be explained by a depletion of CO{sub 2}, but the comet’s high mass loss rate suggests they may reflect primordial heterogeneities in the nucleus.

  17. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting

    Science.gov (United States)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.

    2013-12-01

    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most

  18. Accumulation of wet-deposited radiocaesium and radiostrontium by spring oilseed rape (Brássica napus L.) and spring wheat (Tríticum aestívum L.)

    International Nuclear Information System (INIS)

    Bengtsson, Stefan B.; Eriksson, Jan; Gärdenäs, Annemieke I.; Vinichuk, Mykhailo; Rosén, Klas

    2013-01-01

    The accumulation of 134 Cs and 85 Sr within different parts of spring oilseed rape and spring wheat plants was investigated, with a particular focus on transfer to seeds after artificial wet deposition at different growth stages during a two-year field trial. In general, the accumulation of radionuclides in plant parts increased when deposition was closer to harvest. The seed of spring oilseed rape had lower concentrations of 85 Sr than spring wheat grain. The plants accumulated more 134 Cs than 85 Sr. We conclude that radionuclides can be transferred into human food chain at all growing stages, especially at the later stages. The variation in transfer factors during the investigation, and in comparison to previous results, implies the estimation of the risk for possible transfer of radionuclides to seeds in the event of future fallout during a growing season is still subject to considerable uncertainty. -- Highlights: •Accumulation of 134 Cs and 85 Sr in plants increased the closer to harvest the nuclides were deposited. • 134 Cs and 85 Sr concentrations in seeds were highest when deposited after flowering. •Activity concentrations of 134 Cs in spring oilseed rape were higher than the activity concentrations of 85 Sr. •Oilseed rape redistributes 134 Cs and 85 Sr to seed at a lower rate than wheat redistributes 134 Cs and 85 Sr to grain. -- Intercepted radionuclides can be transferred into the food chain for humans

  19. Ecological effects of spring and late summer applications of lambda-cyhalothrin on freshwater microcosms.

    Science.gov (United States)

    Van Wijngaarden, R P A; Brock, T C M; van den Brink, P J; Gylstra, R; Maund, S J

    2006-02-01

    The aim of the study was to compare the effects of the pyrethroid insecticide lambda-cyhalothrin (treated at 10, 25, 50, 100, 250 ng active ingredient a.i./L) on a drainage ditch ecosystem in spring and late summer. Microcosms (water volume approximately 430 L) were established using enclosures in a 50-cm-deep experimental ditch system containing communities typical of macrophyte-dominated freshwater ecosystems. Effects on macroinvertebrates, zooplankton, phytoplankton, macrophytes, and community metabolism were assessed and evaluated using univariate and multivariate statistical techniques. The macroinvertebrate community responded most clearly to treatment and, as anticipated, insects and crustaceans were among the most sensitive organisms. Statistical analysis showed that the underlying community structure was significantly different between the spring and summer experiments. However, the most sensitive species (Chaoborus obscuripes and Gammarus pulex) were abundant in spring as well as in late summer. In spring and late summer, only slight and transient effects were observed at the community level in the 10-ng/L treatment. Overall, the study did not show substantial differences in the responses of sensitive taxa between spring and late summer treatments, and effects thresholds were similar irrespective of season of treatment.

  20. Beginning Spring

    CERN Document Server

    Caliskan, Mert

    2015-01-01

    Get up to speed quickly with this comprehensive guide toSpring Beginning Spring is the complete beginner's guide toJava's most popular framework. Written with an eye towardreal-world enterprises, the book covers all aspects of applicationdevelopment within the Spring Framework. Extensive samples withineach chapter allow developers to get up to speed quickly byproviding concrete references for experimentation, building askillset that drives successful application development byexploiting the full capabilities of Java's latest advances. Spring provides the exact toolset required to build anent

  1. Damage Evaluation of Critical Components of Tilted Support Spring Nonlinear System under a Rectangular Pulse

    Directory of Open Access Journals (Sweden)

    Ningning Duan

    2015-01-01

    Full Text Available Dimensionless nonlinear dynamical equations of a tilted support spring nonlinear packaging system with critical components were obtained under a rectangular pulse. To evaluate the damage characteristics of shocks to packaged products with critical components, a concept of the damage boundary surface was presented and applied to a titled support spring system, with the dimensionless critical acceleration of the system, the dimensionless critical velocity, and the frequency parameter ratio of the system taken as the three basic parameters. Based on the numerical results, the effects of the frequency parameter ratio, the mass ratio, the dimensionless peak pulse acceleration, the angle of the system, and the damping ratio on the damage boundary surface of critical components were discussed. It was demonstrated that with the increase of the frequency parameter ratio, the decrease of the angle, and/or the increase of the mass ratio, the safety zone of critical components can be broadened, and increasing the dimensionless peak pulse acceleration or the damping ratio may lead to a decrease of the damage zone for critical components. The results may lead to a thorough understanding of the design principles for the tilted support spring nonlinear system.

  2. Seasonal variation in Chironomid emergence from coastal pools

    Directory of Open Access Journals (Sweden)

    Alexander T. Egan

    2015-07-01

    Full Text Available Understanding the phenology of emergences can be useful in determining seasonal chironomid life cycle patterns, which are often influenced by ice cover and temperature in cold climates. Lake Superior is the largest lake in North America and with a mean surface temperature of 3.9 °C influences regional climate. Coastal pools at Isle Royale, a wilderness archipelago in the northern part of the lake, occur in dense patches on low-gradient volcanic bedrock between the lakeshore and forest, creating variable microhabitats for Chironomidae. Four sites were sampled monthly from April to October, 2010. Surface-floating pupal exuviae were collected from a series of pools in two zones: a lower zone near the lake influenced by wave splash, and an upper zone near the forest and influenced by upland runoff. We used Jaccard’s and Whittaker’s diversity indexes to test community similarity across months. Temperature loggers in pools collected hourly readings for most of the study. Assemblage emergences were stable in upper pools, with significant similarity across late spring and summer months. Assemblages were seasonally variable in lower pools, with significant dissimilarity across spring, summer, and fall months. Few species in either zone were unique to spring or fall months. However, many summer species in the splash zone had a narrow emergence period occurring during calm weather following distinct increases in mean water temperature. Regardless of input of cold lake water to the lower zone, pools from both zones generally had corresponding temperature trends.

  3. Cool seasons are related to poor prognosis in patients with infective endocarditis

    Science.gov (United States)

    Chen, Su-Jung; Chao, Tze-Fan; Lin, Yenn-Jiang; Lo, Li-Wei; Hu, Yu-Feng; Tuan, Ta-Chuan; Hsu, Tsui-Lieh; Yu, Wen-Chung; Leu, Hsin-Bang; Chang, Shih-Lin; Chen, Shih-Ann

    2012-09-01

    Many cardiac diseases demonstrate seasonal variations in the incidence and mortality. This study was designed to investigate whether the mortality of infective endocarditis (IE) was higher in cool seasons and to evaluate the effects of cool climate for IE. We enrolled 100 IE patients with vegetations in our hospital. The temperatures of the IE episodes were defined as the monthly average temperatures of the admission days. The average temperatures in the cool (fall/winter) and warm seasons (spring/summer) were 19.2°C and 27.6°C, respectively. In addition, patients admitted with the diagnosis of IE were identified from the National Health Insurance Research Database (NHIRD) and the in-hospital mortality rates in cool and warm seasons were compared to validate the findings derived from the data of our hospital. The mortality rate for IE was significantly higher in fall/winter than in spring/summer which presents consistently in the patient population of our hospital (32.7% versus 12.5%, p = 0.017) and from NHIRD (10.4% versus 4.6%, p = 0.019). IE episodes which occurred during cool seasons presented with a higher rate of heart failure (44.2% versus 22.9%, p = 0.025) and D-dimer level (5.5 ± 3.8 versus 2.4 ± 1.8 μg/ml, p = 0.017) at admission than that of warm seasons. These results may reflect the impact of temperatures during the pre-hospitalized period on the disease process. In the multivariate analysis, Staphylococcal infection, left ventricular hypertrophy, left ventricular systolic dysfunction and temperature were the independent predictors of mortalities in IE patients.

  4. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants.

    Science.gov (United States)

    Becky K. Kerns; Walter G. Thies; Christine G. Niwa

    2006-01-01

    We investigated herbaceous richness and cover in relation to fire season and severity, and other variables, five growing seasons following prescribed fires. Data were collected from six stands consisting of three randomly applied treatments: no burn, spring burn, and fall burn. Fall burns had significantly more exotic/native annual/biennial (an/bi) species and greater...

  5. Seasonal and interannual dynamics of soil microbial biomass and available nitrogen in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China

    Science.gov (United States)

    Xu, Bo; Wang, Jinniu; Wu, Ning; Wu, Yan; Shi, Fusun

    2018-01-01

    Soil microbial activity varies seasonally in frozen alpine soils during cold seasons and plays a crucial role in available N pool accumulation in soil. The intra- and interannual patterns of microbial and nutrient dynamics reflect the influences of changing weather factors, and thus provide important insights into the biogeochemical cycles and ecological functions of ecosystems. We documented the seasonal and interannual dynamics of soil microbial and available N in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China, between April 2011 and October 2013. Soil was collected in the middle of each month and analyzed for water content, microbial biomass C (MBC) and N (MBN), dissolved organic C and N, and inorganic N. Soil microbial community composition was measured by the dilution-plate method. Fungi and actinomycetes dominated the microbial community during the nongrowing seasons, and the proportion of bacteria increased considerably during the early growing seasons. Trends of consistently increasing MBC and available N pools were observed during the nongrowing seasons. MBC sharply declined during soil thaw and was accompanied by a peak in available N pool. Induced by changes in soil temperatures, significant shifts in the structures and functions of microbial communities were observed during the winter-spring transition and largely contributed to microbial reduction. The divergent seasonal dynamics of different N forms showed a complementary nutrient supply pattern during the growing season. Similarities between the interannual dynamics of microbial biomass and available N pools were observed, and soil temperature and water conditions were the primary environmental factors driving interannual fluctuations. Owing to the changes in climate, seasonal soil microbial activities and nutrient supply patterns are expected to change further, and these changes may have crucial implications for the productivity and biodiversity of alpine ecosystems.

  6. Population level evidence for seasonality of the human microbiome.

    Science.gov (United States)

    Korownyk, Christina; Liu, Fangwei; Garrison, Scott

    2018-04-01

    The objective of this study is to determine whether human body odors undergo seasonal modulation. We utilized google trends search volume from the United States of America from January 1, 2010 to June 24, 2017 for a number of predetermined body odors. Regression modeling of time series data was completed. Our primary outcome was to determine the proportion of the variability in Internet searches for each unpleasant odor (about the mean) that is explained by a seasonal model. We determined that the seasonal (sinusoidal) model provided a significantly better fit than the null model (best straight line fit) for all searches relating to human body odors (P odor, 60% of the variability in search volume for foot odor, and 58% of the variability in search volume for bad breath. Flatulence and bad breath tended to peak in January, foot odor in February, and Axillary odor in July. We conclude that searching by the general public for information on unpleasant body odors undergoes substantial seasonal variation, with the timing of peaks and troughs varying with the body part involved. The symptom burden of such smells may have a similar seasonal variation, as might the composition of the commensal bacterial microflora that play a role in creating them.

  7. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    Science.gov (United States)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  8. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial.

    Science.gov (United States)

    Dennis-Wall, Jennifer C; Culpepper, Tyler; Nieves, Carmelo; Rowe, Cassie C; Burns, Alyssa M; Rusch, Carley T; Federico, Ashton; Ukhanova, Maria; Waugh, Sheldon; Mai, Volker; Christman, Mary C; Langkamp-Henken, Bobbi

    2017-03-01

    Background: Rhinoconjunctivitis-specific quality of life is often reduced during seasonal allergies. The Mini Rhinoconjunctivitis Quality of Life Questionnaire (MRQLQ) is a validated tool used to measure quality of life in people experiencing allergies (0 = not troubled to 6 = extremely troubled). Probiotics may improve quality of life during allergy season by increasing the percentage of regulatory T cells (Tregs) and inducing tolerance. Objective: The objective of this study was to determine whether consuming Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and B. longum MM-2 compared with placebo would result in beneficial effects on MRQLQ scores throughout allergy season in individuals who typically experience seasonal allergies. Secondary outcomes included changes in immune markers as part of a potential mechanism for changes in MRQLQ scores. Design: In this double-blind, placebo-controlled, parallel, randomized clinical trial, 173 participants (mean ± SEM: age 27 ± 1 y) who self-identified as having seasonal allergies received either a probiotic (2 capsules/d, 1.5 billion colony-forming units/capsule) or placebo during spring allergy season for 8 wk. MRQLQ scores were collected weekly throughout the study. Fasting blood samples were taken from a subgroup (placebo, n = 37; probiotic, n = 35) at baseline and week 6 (predicted peak of pollen) to determine serum immunoglobulin (Ig) E concentrations and Treg percentages. Results: The probiotic group reported an improvement in the MRQLQ global score from baseline to pollen peak (-0.68 ± 0.13) when compared with the placebo group (-0.19 ± 0.14; P = 0.0092). Both serum total IgE and the percentage of Tregs increased from baseline to week 6, but changes were not different between groups. Conclusions: This combination probiotic improved rhinoconjunctivitis-specific quality of life during allergy season for healthy individuals with self-reported seasonal allergies; however, the associated mechanism is

  9. Seasonal Differences in the Day-of-the-Week Pattern of Suicide in Queensland, Australia

    Science.gov (United States)

    Law, Chi-kin; De Leo, Diego

    2013-01-01

    Various temporal patterns of suicide events, according to time of day, day of week, month and season, have been identified. However, whether different dimensions of time interact has not been investigated. Using suicide data from Queensland, Australia, this study aims to verify if there is an interaction effect between seasonal and day-of-the-week distribution. Computerized suicide data from the Queensland Suicide Register for those aged 15+ years were analyzed according to date of death, age, sex and geographic location for the period 1996–2007. To examine seasonal differences in day-of-the-week pattern of suicide, Poisson regressions were used. A total of 6,555 suicides were recorded over the whole study period. Regardless of the season, male residents of Brisbane had a significantly marked day-of-the-week pattern of suicide, with higher rates between Mondays and Thursdays. When seasonal differences were considered, male residents in Brisbane showed a Monday peak in summer and a wave-shape pattern with a peak on Thursday and a nadir on Saturdays in winter. Whilst males have distinctive peaks in terms of days of the week for summer and winter, females do not show similar patterns. PMID:23880724

  10. Successional dynamics in the seasonally forced diamond food web.

    Science.gov (United States)

    Klausmeier, Christopher A; Litchman, Elena

    2012-07-01

    Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.

  11. Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events.

    Science.gov (United States)

    Densmore-McCulloch, Justine A; Thompson, Donald L; Fraser, Lauchlan H

    2016-01-01

    Climate change is expected to alter precipitation patterns. Droughts may become longer and more frequent, and the timing and intensity of precipitation may change. We tested how shifting precipitation patterns, both seasonally and by frequency of events, affects soil nitrogen availability, plant biomass and diversity in a shrub-steppe temperate grassland along a natural productivity gradient in Lac du Bois Grasslands Protected Area near Kamloops, British Columbia, Canada. We manipulated seasonal watering patterns by either exclusively watering in the spring or the fall. To simulate spring precipitation we restricted precipitation inputs in the fall, then added 50% more water than the long term average in the spring, and vice-versa for the fall precipitation treatment. Overall, the amount of precipitation remained roughly the same. We manipulated the frequency of rainfall events by either applying water weekly (frequent) or monthly (intensive). After 2 years, changes in the seasonality of watering had greater effects on plant biomass and diversity than changes in the frequency of watering. Fall watering reduced biomass and increased species diversity, while spring watering had little effect. The reduction in biomass in fall watered treatments was due to a decline in grasses, but not forbs. Plant available N, measured by Plant Root Simulator (PRS)-probes, increased from spring to summer to fall, and was higher in fall watered treatments compared to spring watered treatments when measured in the fall. The only effect observed due to frequency of watering events was greater extractable soil N in monthly applied treatments compared to weekly watering treatments. Understanding the effects of changing precipitation patterns on grasslands will allow improved grassland conservation and management in the face of global climatic change, and here we show that if precipitation is more abundant in the fall, compared to the spring, grassland primary productivity will likely be

  12. REPRODUCTIVE SEASONALITY AND ITS CONTROL IN SPANISH SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Amelia Gómez Brunet

    2011-12-01

    Full Text Available Sheep and goat breeds from subtropical, middle and high latitudes show seasonal changes in reproductive activity. In general, the breeding season starts in autumn and ends in winter, with anoestrus in spring/summer. An endogenous circannual rhythm driven and synchronised by the annual photoperiod cycle regulates the onset and offset of the breeding season. However, the timing and duration of the breeding season can be affected by interactions between the photoperiod and factors such as breed, geographical origin, nutritional and lactational status, social interactions, and the season of parturition. Seasonality in reproduction is naturally accompanied by variation in the availability and price of meat, milk and cheese over the year, affecting the economy of farmers, consumers and the food industry alike. The control of reproduction outside the normal breeding season by inducing and synchronizing oestrus and ovulation plus the use of artificial insemination and/or natural mating would help ensure the year-round availability of products. This review describes the seasonal variation in the sexual activity of ovine and caprine species with special regard to local Spanish sheep and goats breeds, examines how the photoperiod regulates their annual reproductive cycle, and discusses a number of strategies that can be used to induce and synchronise ovulation outside the natural breeding season.

  13. [Seasonal changes of fish species composition and diversity in mudflat wetlands of Hangzhou Bay].

    Science.gov (United States)

    Jia, Xing-huan; Zhang, Heng; Jiang, Ke-yi; Wu, Ming

    2010-12-01

    In order to understand the spatiotemporal variation of fish species composition and biodiversity in the mudflat wetlands of Hangzhou Bay, thirty six surveys were conducted in the mudflat area, inning area, and aquaculture area in the south bank of the Bay in. March (early spring), May (spring), July (summer), and October (autumn), 2009. A total of 41 species belonging to 9 orders and 16 families were observed, among which, Cyprinid had the largest species number (14 species, 33.3% of the total), followed by Gobiidae (8 species, 19.1%). According to the lifestyle of fish, these 41 species could be divided into five ecological types, i.e., freshwater type (21 species), brackish-water type (16 species), inshore type (2 species), anadromous type (Coilia ectenes), and catadromios type (Anguilla japonica). The fish abundance was the highest (54. 5 fish per net) in summer, followed by in spring and autumn, and the lowest (17.7 fish per net) in early spring. In the three habitats, mudflat area and inning area had the similar seasonal change of fish abundance, i.e., the lowest in early spring, the highest in summer, and then decreased in autumn. Only two or three species were the dominant species in different seasons. In mudflat area, the dominant species were Mugil cephalus and Liza carinatus; while in inning and aquaculture areas, the dominant species were Carassius auratus, Hemiculter leucisculus, and Pseudorasbora parva. The values of Margalef's richness index (D), Pielou's evenness index (J), and Shannon index (H) were lower in March than in other months, but had no significant differences among May, July, and October (P > 0.05). The H value ranged in 0. 27-2. 13, being the lowest in March and higher in May and October (1.66 and 1.63, respectively). Overall, the fish abundance and biodiversity in the mudflat wetlands of Hangzhou Bay had apparent seasonal changes.

  14. Vitamin D status in infants: relation to nutrition and season

    DEFF Research Database (Denmark)

    Østergard, M.; Arnberg, K.; Michaelsen, K. F.

    2011-01-01

    , it was positively associated with 25(OH) D (P = 0.001). There was a significant seasonal difference in 25(OH) D, with higher levels during summer-autumn compared with winter-spring (P = 0.021) after control for BMI. European Journal of Clinical Nutrition (2011) 65, 657-660; doi: 10.1038/ejcn.2010.285; published...

  15. Aspects of Seasonal and Long-term Trends in Fisheries and ...

    African Journals Online (AJOL)

    ... Schilbe moebiusii and Hydrocynus tanzaniae. A distinct seasonal pattern in fish catches was found, where more fish were landed in the dry months (June, July, August and September) and less during peak of the rainy season (March to May). Reduction of fishing effort, crop farming and inaccessibility of fish landing sites ...

  16. Just Spring

    CERN Document Server

    Konda, Madhusudhan

    2011-01-01

    Get a concise introduction to Spring, the increasingly popular open source framework for building lightweight enterprise applications on the Java platform. This example-driven book for Java developers delves into the framework's basic features, as well as advanced concepts such as containers. You'll learn how Spring makes Java Messaging Service easier to work with, and how its support for Hibernate helps you work with data persistence and retrieval. Throughout Just Spring, you'll get your hands deep into sample code, beginning with a problem that illustrates dependency injection, Spring's co

  17. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  18. Reducing the threat of wildlife-vehicle collisions during peak tourism periods using a Roadside Animal Detection System.

    Science.gov (United States)

    Grace, Molly K; Smith, Daniel J; Noss, Reed F

    2017-12-01

    Roadside Animal Detection Systems (RADS) aim to reduce the frequency of wildlife-vehicle collisions. Unlike fencing and wildlife passages, RADS do not attempt to keep animals off the road; rather, they attempt to modify driver behavior by detecting animals near the road and warning drivers with flashing signs. A RADS was installed in Big Cypress National Park (Florida, USA) in 2012 in response to an increased number of Florida panther mortalities. To assess driver response, we measured the speed of individual cars on the road when the RADS was active (flashing) and inactive (not flashing) during the tourist season (November-March) and the off-season (April-October), which vary dramatically in traffic volume. We also used track beds and camera traps to assess whether roadside activity of large mammal species varied between seasons. In the tourist season, the activation of the RADS caused a significant reduction in vehicle speed. However, this effect was not observed in the off-season. Track and camera data showed that the tourist season coincided with peak periods of activity for several large mammals of conservation interest. Drivers in the tourist season generally drove faster than those in the off-season, so a reduction in speed in response to the RADS is more beneficial in the tourist season. Because traffic volume and roadside activity of several species of conservation interest both peak during the tourist season, our study indicates that the RADS has the potential to reduce the number of accidents during this period of heightened risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Seasonal variations in estrus behavior and ovulatory activity in Chios and Serres ewes in Greece].

    Science.gov (United States)

    Avdi, M; Driancourt, M A; Chemineau, P

    1993-01-01

    Sheep are seasonal breeders, but a lower seasonality has been reported for sheep breeds from the Mediterranean countries enabling spring matings. To further substantiate this, the present study compared seasonal variation in oestrus behaviour and ovulation in two Greek breeds (Chios and Serres) maintained in the same environment. In 27 adult ewes of each breed, oestrus behaviour, the occurrence of ovulation and ovulation rate were monitored during 2 successive years by daily inspection by rams, weekly progesterone assay in circulating blood plasma and monthly ovarian laparoscopy. The periods of anoestrus (109 +/- 8 (wk) vs 178 +/- 5 d) and anovulation (63 +/- 8 vs 149 +/- 6 d) were significantly shorter (P duration of oestrus was also longer in Chios ewes (1.8 +/- 0.05 vs 1.5 +/- 0.06 d; P = 0.002). There were significant correlations between the duration of anovulatory periods of the 2 successive years in Chios (r = 0.43) but not Serres ewes. Ovulation rate was positively related to the onset of the sexual season in Serres but not in Chios ewes. The present data suggest that: i) the efficiency of Serres but not in Chios ewes. The present data suggest that: i) the efficiency of spring mating in these breeds is suboptimal since it is a period when the percentage of ewes exhibiting oestrus and ovulation as well as ovulation rate are limited, ii) owing to the large variation in seasonality within Chios ewes and to the good between year correlation in features of seasonality, selection against seasonality in Chios ewes could be worthwhile.

  20. Testing the Metabolic Theory of Ecology with marine bacteria: Different temperature sensitivity of major phylogenetic groups during the spring phytoplankton bloom

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2017-08-24

    Although temperature is a key driver of bacterioplankton metabolism, the effect of ocean warming on different bacterial phylogenetic groups remains unclear. Here, we conducted monthly short-term incubations with natural coastal bacterial communities over an annual cycle to test the effect of experimental temperature on the growth rates and carrying capacities of four phylogenetic groups: SAR11, Rhodobacteraceae, Gammaproteobacteria and Bacteroidetes. SAR11 was the most abundant group year-round as analysed by CARD-FISH, with maximum abundances in summer, while the other taxa peaked in spring. All groups, including SAR11, showed high temperature-sensitivity of growth rates and/or carrying capacities in spring, under phytoplankton bloom or post-bloom conditions. In that season, Rhodobacteraceae showed the strongest temperature response in growth rates, estimated here as activation energy (E, 1.43 eV), suggesting an advantage to outcompete other groups under warmer conditions. In summer E values were in general lower than 0.65 eV, the value predicted by the Metabolic Theory of Ecology (MTE). Contrary to MTE predictions, carrying capacity tended to increase with warming for all bacterial groups. Our analysis confirms that resource availability is key when addressing the temperature response of heterotrophic bacterioplankton. We further show that even under nutrient-sufficient conditions, warming differentially affected distinct bacterioplankton taxa. This article is protected by copyright. All rights reserved.

  1. The Role of Phytoplankton Dynamics in the Seasonal and Interannual Variability of Carbon in the Subpolar North Atlantic - a Modeling Study

    Science.gov (United States)

    Signorini, Sergio; Hakkinen, Sirpa; Gudmundsson, K.; Olsen, A.; Omar, A. M.; Olafsson, J.; Reverdin, G.; Henson, S. A.; McClain, C. R.; Worthen, D. L.

    2014-01-01

    We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients) are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 µmol kg(sup -1) with a corresponding increase in DIC of up to 16 µmol kg(sup -1). During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 µatm and a reduction of atmospheric CO2 uptake of more than 6 mmolm(sup -2) d(sup -1). On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27 %. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500

  2. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  3. Evaluating Gridded Spring Indices Using the USA National Phenology Network's Observational Phenology Data

    Science.gov (United States)

    Crimmins, T. M.; Gerst, K.

    2017-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) produces and freely delivers daily and short-term forecast maps of spring onset dates at fine spatial scale for the conterminous United States and Alaska using the Spring Indices. These models, which represent the start of biological activity in the spring season, were developed using a long-term observational record of four species of lilacs and honeysuckles contributed by volunteer observers. Three of the four species continue to be tracked through the USA-NPN's phenology observation program, Nature's Notebook. The gridded Spring Index maps have utility for a wide range of natural resource planning and management applications, including scheduling invasive species and pest detection and control activities, anticipating allergy outbreaks and planning agricultural harvest dates. However, to date, there has not been a comprehensive assessment of how well the gridded Spring Index maps accurately reflect phenological activity in lilacs and honeysuckles or other species of plants. In this study, we used observational plant phenology data maintained by the USA-NPN to evaluate how well the gridded Spring Index maps match leaf and flowering onset dates in a) the lilac and honeysuckle species used to construct the models and b) in several species of deciduous trees. The Spring Index performed strongly at predicting the timing of leaf-out and flowering in lilacs and honeysuckles. The average error between predicted and observed date of onset ranged from 5.9 to 11.4 days. Flowering models performed slightly better than leaf-out models. The degree to which the Spring Indices predicted native deciduous tree leaf and flower phenology varied by year, species, and region. Generally, the models were better predictors of leaf and flowering onset dates in the Northeastern and Midwestern US. These results reveal when and where the Spring Indices are a meaningful proxy of phenological activity across the United States.

  4. Changes in vegetation phenology are not reflected in atmospheric CO2 and 13 C/12 C seasonality.

    Science.gov (United States)

    Gonsamo, Alemu; D'Odorico, Petra; Chen, Jing M; Wu, Chaoyang; Buchmann, Nina

    2017-10-01

    Northern terrestrial ecosystems have shown global warming-induced advances in start, delays in end, and thus increased lengths of growing season and gross photosynthesis in recent decades. The tradeoffs between seasonal dynamics of two opposing fluxes, CO 2 uptake through photosynthesis and release through respiration, determine the influence of the terrestrial ecosystem on the atmospheric CO 2 and 13 C/ 12 C seasonality. Here, we use four CO 2 observation stations in the Northern Hemisphere, namely Alert, La Jolla, Point Barrow, and Mauna Loa Observatory, to determine how changes in vegetation productivity and phenology, respiration, and air temperature affect both the atmospheric CO 2 and 13 C/ 12 C seasonality. Since the 1960s, the only significant long-term trend of CO 2 and 13 C/ 12 C seasonality was observed at the northern most station, Alert, where the spring CO 2 drawdown dates advanced by 0.65 ± 0.55 days yr -1 , contributing to a nonsignificant increase in length of the CO 2 uptake period (0.74 ± 0.67 days yr -1 ). For Point Barrow station, vegetation phenology changes in well-watered ecosystems such as the Canadian and western Siberian wetlands contributed the most to 13 C/ 12 C seasonality while the CO 2 seasonality was primarily linked to nontree vegetation. Our results indicate significant increase in the Northern Hemisphere soil respiration. This means, increased respiration of 13 C depleted plant materials cancels out the 12 C gain from enhanced vegetation activities during the start and end of growing season. These findings suggest therefore that parallel warming-induced increases both in photosynthesis and respiration contribute to the long-term stability of CO 2 and 13 C/ 12 C seasonality under changing climate and vegetation activity. The summer photosynthesis and the soil respiration in the dormant seasons have become more vigorous which lead to increased peak-to-through CO 2 amplitude. As the relative magnitude of the increased

  5. DEPENDENCE OF AIR SPRING PARAMETERS ON THROTTLE RESISTANCE

    Directory of Open Access Journals (Sweden)

    O. H. Reidemeister

    2016-04-01

    Full Text Available Purpose. In this paper it is necessary to conduct: 1 research and analyse the influence of throttle element pneumatic resistance on elastic and damping parameters of air spring; 2 to obtain the dependence of air spring parameters on throttle element pneumatic resistance value. Methodology. The work presents the elaborated model of the air spring as a dynamic system with three phase coordinates (cylinder pressure, auxiliary reservoir pressure, cylinder air mass. Stiffness and viscosity coefficients were determined on the basis of system response to harmonic kinematic disturbance. The data for the analysis are obtained by changing the capacity of the connecting element and the law of pressure variation between the reservoir and the cylinder. The viscosity coefficient is regarded as the viscosity ratio of the hydraulic damper, which for one oscillation cycle consumes the same energy as the air spring. The process of air condition change inside the cylinder (reservoir is considered to be adiabatic; the mass air flow through the connecting element depends on the pressure difference. Findings. We obtained the curves for spring viscosity and stiffness coefficients dependence on the throttle resistance at three different laws, linking airflow through the cylinder with the pressure difference in cylinder and reservoir. At both maximum and minimum limiting resistance values the spring viscosity tends to zero, reaching its peak in the mean resistance values. Stiffness increases monotonically with increasing resistance, tends to the limit corresponding to the absence of an auxiliary reservoir (at high resistance and the increase in cylinder volume by the reservoir volume (at low resistance. Originality.The designed scheme allows determining the optimal parameters of elastic and damping properties of the pneumatic system as function of the throttle element air resistance. Practical value.The ability to predict the parameters of elastic and damping properties

  6. Insulin-like growth factor 1 and growth seasonality in reindeer (Rangifer tarandus - comparisons with temperate and tropical cervids

    Directory of Open Access Journals (Sweden)

    J. M. Suttie

    1993-12-01

    Full Text Available Growth in temperate and arctic deer is seasonal, with higher growth rates in spring and summer while growth rates are low or negative in autumn and winter. We have measured IGF1 concentrations in the plasma of reindeer calves exposed to a manipulated photoperiod, indoors, of either 16 hours light followed by 8 hours dark each day (16L:8D (n = 3 or 8L:16D (n = 3 from about the autumnal to the vernal equinox, to determine whether the seasonal growth spurt normally seen in spring is associated with changes in the circulating level of IGF1. A high quality concentrate diet was available ad libitum. The animals were weighed, and bled every 2 weeks and plasma samples assayed for IGF1 by radioimmunoassay. 6-8 weeks after the start of the study those calves exposed to 16L.-8D showed a significant increase in plasma IGF1 concentration which was maintained until the close of the experiment, 24 weeks after the start. In contrast IGF1 plasma concentrations in those calves exposed to a daylength of 8L:16D did not significantly alter during the study. The elevated IFG1 in the 16L:8D group was associated with rapid weight gain compared with the 8L:16D group. We have shown that the seasonal growth spurt is preceded by an elevation in plasma IFG1 concentration. Further, this elevation in IGF1 is daylength dependent. For comparison IGF1 and growth rate seasonal profiles from temperate and tropical deer are included. This comparison reveals that seasonal increases in IGF1 take place only in animals with a seasonal growth spurt. Thus IGF1 plasma level elevations seem most closely associated with the resumption of rapid growth in spring following the winter.

  7. Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows.

    Directory of Open Access Journals (Sweden)

    Chelsea Arnold

    Full Text Available By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous "extreme" years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013. We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency.

  8. Diverse host feeding on nesting birds may limit early-season West Nile virus amplification.

    Science.gov (United States)

    Egizi, Andrea M; Farajollahi, Ary; Fonseca, Dina M

    2014-06-01

    Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April-June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses.

  9. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2009-01-09

    the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less

  10. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the Green River downstream of Flaming Gorge Dam

    International Nuclear Information System (INIS)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2009-01-01

    same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less

  11. Seasonal dynamics in arbuscular mycorrhizal fungal colonization and spore numbers in the rhizosphere of dactylis glomerata l. and trifolium repens L

    International Nuclear Information System (INIS)

    Xin, G.; Ye, S.; Wang, Y.; Wu, E.; Sugawara, K.

    2012-01-01

    The seasonal dynamics in the colonization of the rhizosphere of orchardgrass (Dactylis glomerata L.) and white clover (Trifolium repens L.) pastures by arbuscular mycorrhizal (AM) fungi and the production of spores in an artifical Japanese grassland was investigated over 12 months (between December 2001 and December 2002). The results showed that the AM fungal colonization fluctuated seasonally in the rhizosphere of both pastures. The total AM fungal colonization of the two pastures decreased during winter, then increased from March to June as the pastures grew, but slightly decreased again in July and August, and again followed an increase in September. There was significant difference of the colonization by arbuscules and vesicles between the two pastures ( p <0.05). Besides, the vesicular colonization of orchardgrass was higher than that of white clover, but the opposite trend was observed for arbuscular colonization. Similarly, the numbers of AM fungal spores in the pastures varied throughout the year, decreasing from spring to summer, then slowly increasing in late summer, reaching peak levels in winter. There is significant correlation between the frequency of spores in the rhizosphere soil and both soil temperature and pH. (author)

  12. Seasonality of cavitation and frost fatigue in Acer mono Maxim.

    Science.gov (United States)

    Zhang, Wen; Feng, Feng; Tyree, Melvin T

    2017-12-08

    Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation-refilling and freeze-thaw cycles for a whole year. Cavitation resistance was determined from 'vulnerability curves' showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation-refilling cycle, whereas frost fatigue was caused by a freeze-thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12-month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes. © 2017 John Wiley & Sons Ltd.

  13. [Air Quality Characteristics in Beijing During Spring Festival in 2015].

    Science.gov (United States)

    Cheng, Nian-liang; Chen, Tian; Zhang, Da-wei; Li, Yun-ting; Sun, Feng; Wei, Qiang; Liu, Jia-lin; Liu, Bao-xian; Sun, Rui-wen

    2015-09-01

    To analyze the impacts of emissions from fireworks on the air quality, monitoring data of PM2.5, PM10, SO2, NO2 chemical compositions of PM2.5 of automatic air quality stations in Beijing during Spring Festival(February 18th-24th) in 2015 were investigated. Moreover, we also estimated the fireworks on the New Year's Eve produced based on the ratio of PM.5 to CO. Analysis results showed that the concentrations of PM2.5, PM10, SO2, NO2 during 2015 Spring Festival was 116. 85, 184.71, 22. 14, and 36. 27 µg.m-3 respectively, which raised 52. 61%, 92. 41%, - 40. 15%, - 0.46% respectively compared to the same period in 2014; the concentration peaks of PM2.5, PM10, SO2, NO2 at 1 : 00 am on 19th was 412. 69, 541. 63, 152. 73, 51. 09 µg.m-3, respectively, which was increased 19. 02%, 14. 37%, 76. 57%, 11. 35% compared to that of 2014; the concentration peaks at dense population area were significantly higher than that in other districts; fireworks had great influence on the chemical compositions of PM2.5 especially on the concentrations of chloride ion, potassium ion, magnesian ion, which were 18. 85, 66. 72, and 70. 10 times than that in 2013-2014; fireworks resulted in severe air pollution in a short time and the estimated fireworks on the New Year's Eve was approximately 2. 13 x 10(5) kg of PM2.5. Reduction of pollutants during Spring Festival had a positive significant impact on air quality in Beijing.

  14. Pro Spring Batch

    CERN Document Server

    Minella, Michael T

    2011-01-01

    Since its release, Spring Framework has transformed virtually every aspect of Java development including web applications, security, aspect-oriented programming, persistence, and messaging. Spring Batch, one of its newer additions, now brings the same familiar Spring idioms to batch processing. Spring Batch addresses the needs of any batch process, from the complex calculations performed in the biggest financial institutions to simple data migrations that occur with many software development projects. Pro Spring Batch is intended to answer three questions: *What? What is batch processing? What

  15. Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park.

    Science.gov (United States)

    Boomer, S M; Pierson, B K; Austinhirst, R; Castenholz, R W

    2000-09-01

    Novel red, filamentous, gliding bacteria formed deep red layers in several alkaline hot springs in Yellowstone National Park. Filaments contained densely layered intracellular membranes and bacteriochlorophyll a. The in vivo absorption spectrum of the red layer filaments was distinct from other phototrophs, with unusual bacteriochlorophyll a signature peaks in the near-infrared (IR) region (807 nm and 911 nm). These absorption peaks were similar to the wavelengths penetrating to the red layer of the mats as measured with in situ spectroradiometry. The filaments also demonstrated maximal photosynthetic uptake of radiolabeled carbon sources at these wavelengths. The red layer filaments displayed anoxygenic photoheterotrophy, as evidenced by the specific incorporation of acetate, not bicarbonate, and by the absence of oxygen production. Photoheterotrophy was unaffected by sulfide and oxygen, but was diminished by high-intensity visible light. Near-IR radiation supported photoheterotrophy. Morphologically and spectrally similar filaments were observed in several springs in Yellowstone National Park, including Octopus Spring. Taken together, these data suggest that the red layer filaments are most similar to the photoheterotroph, Heliothrix oregonensis. Notable differences include mat position and coloration, absorption spectra, and prominent intracellular membranes.

  16. Season, molt, and body size influence mercury concentrations in grebes

    Science.gov (United States)

    Hartman, Christopher; Ackerman, Joshua T.; Herzog, Mark; Eagles-Smith, Collin A.

    2017-01-01

    We studied seasonal and physiological influences on mercury concentrations in western grebes (Aechmophorus occidentalis) and Clark's grebes (A. occidentalis) across 29 lakes and reservoirs in California, USA. Additionally, at three of these lakes, we conducted a time series study, in which we repeatedly sampled grebe blood mercury concentrations during the spring, summer, and early fall. Grebe blood mercury concentrations were higher among males (0.61 ± 0.12 μg/g ww) than females (0.52 ± 0.10 μg/g ww), higher among Clark's grebes (0.58 ± 0.12 μg/g ww) than western grebes (0.51 ± 0.10 μg/g ww), and exhibited a strong seasonal pattern (decreasing by 60% from spring to fall). Grebe blood THg concentrations exhibited a shallow, inverse U-shaped pattern with body size, and was lowest among the smallest and largest grebes. Further, the relationship between grebe blood mercury concentrations and wing primary feather molt exhibited a shallow U-shaped pattern, where mercury concentrations were highest among birds that had not yet begun molting, decreased approximately 24% between pre-molt and late molt, and increased approximately 19% from late molt to post-molt. Because grebes did not begin molting until mid-summer, lower grebe blood mercury concentrations observed in late summer and early fall were consistent with the onset of primary feather molt. However, because sampling date was a much stronger predictor of grebe mercury concentrations than molt, other seasonally changing environmental factors likely played a larger role than molt in the seasonal variation in grebe mercury concentrations. In the time series study, we found that seasonal trends in grebe mercury concentrations were not consistent among lakes, indicating that lake-specific variation in mercury dynamics influence the overall seasonal decline in grebe blood mercury concentrations. These results highlight the importance of accounting for sampling date, as well as ecological processes that may

  17. Seasonal differences in extinction and colonization drive occupancy dynamics of an imperilled amphibian.

    Directory of Open Access Journals (Sweden)

    Lea A Randall

    Full Text Available A detailed understanding of the population dynamics of many amphibian species is lacking despite concerns about declining amphibian biodiversity and abundance. This paper explores temporal patterns of occupancy and underlying extinction and colonization dynamics in a regionally imperiled amphibian species, the Northern leopard frog (Lithobates pipiens in Alberta. Our study contributes to elucidating regional occupancy dynamics at northern latitudes, where climate extremes likely have a profound effect on seasonal occupancy. The primary advantage of our study is its wide geographic scale (60,000 km2 and the use of repeat visual surveys each spring and summer from 2009-2013. We find that occupancy varied more dramatically between seasons than years, with low spring and higher summer occupancy. Between spring and summer, colonization was high and extinction low; inversely, colonization was low and extinction high over the winter. The dynamics of extinction and colonization are complex, making conservation management challenging. Our results reveal that Northern leopard frog occupancy was constant over the last five years and thus there is no evidence of decline or recovery within our study area. Changes to equilibrium occupancy are most sensitive to increasing colonization in the spring or declining extinction in the summer. Therefore, conservation and management efforts should target actions that are likely to increase spring colonization; this could be achieved through translocations or improving the quality or access to breeding habitat. Because summer occupancy is already high, it may be difficult to improve further. Nevertheless, summer extinction could be reduced by predator control, increasing water quality or hydroperiod of wetlands, or increasing the quality or quantity of summer habitat.

  18. Seasonal differences in extinction and colonization drive occupancy dynamics of an imperilled amphibian.

    Science.gov (United States)

    Randall, Lea A; Smith, Des H V; Jones, Breana L; Prescott, David R C; Moehrenschlager, Axel

    2015-01-01

    A detailed understanding of the population dynamics of many amphibian species is lacking despite concerns about declining amphibian biodiversity and abundance. This paper explores temporal patterns of occupancy and underlying extinction and colonization dynamics in a regionally imperiled amphibian species, the Northern leopard frog (Lithobates pipiens) in Alberta. Our study contributes to elucidating regional occupancy dynamics at northern latitudes, where climate extremes likely have a profound effect on seasonal occupancy. The primary advantage of our study is its wide geographic scale (60,000 km2) and the use of repeat visual surveys each spring and summer from 2009-2013. We find that occupancy varied more dramatically between seasons than years, with low spring and higher summer occupancy. Between spring and summer, colonization was high and extinction low; inversely, colonization was low and extinction high over the winter. The dynamics of extinction and colonization are complex, making conservation management challenging. Our results reveal that Northern leopard frog occupancy was constant over the last five years and thus there is no evidence of decline or recovery within our study area. Changes to equilibrium occupancy are most sensitive to increasing colonization in the spring or declining extinction in the summer. Therefore, conservation and management efforts should target actions that are likely to increase spring colonization; this could be achieved through translocations or improving the quality or access to breeding habitat. Because summer occupancy is already high, it may be difficult to improve further. Nevertheless, summer extinction could be reduced by predator control, increasing water quality or hydroperiod of wetlands, or increasing the quality or quantity of summer habitat.

  19. Seasonal rhythms of seed rain and seedling emergence in two tropical rain forests in southern Brazil.

    Science.gov (United States)

    Marques, M C M; Oliveira, P E A M

    2008-09-01

    Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.

  20. Frequency and seasonality of flash floods in Slovenia

    Directory of Open Access Journals (Sweden)

    Trobec Tajan

    2017-01-01

    Full Text Available The purpose of this paper is to assess and analyse the dynamics of flash flooding events in Slovenia. The paper examines in particular the frequency of flash floods and their seasonal distribution. The methodology is based on the analysis of historical records and modern flood data. The results of a long-term frequency analysis of 138 flash floods that occurred between 1550 and 2015 are presented. Because of the lack of adequate historical flood data prior to 1950 the main analysis is based on data for the periodbetween1951 and2015, while the analysis of data for the period between1550 and1950 is added as a supplement to the main analysis. Analysis of data for the period after 1950 shows that on average 1.3 flash floods occur each year in Slovenia. The linear trend for the number of flash floods is increasing but is not statistically significant. Despite the fact that the majority of Slovenian rivers have one of the peaks in spring and one of the lows in summer, 90% of flash floods actually occur during meteorological summer or autumn - i.e. between June and November, which shows that discharge regimes and flood regimes are not necessarily related. Because of the lack of flood records from the more distant past as well as the large variability of flash flood events in the last several decades, we cannot provide a definitive answer to the question about possible changes in their frequency and seasonality by relying solely on the detected trends. Nevertheless, considering the results of analysis and future climate change scenarios the frequency of flash floods in Slovenia could increase while the period of flash flood occurrence could be extended.

  1. Seasonal effects on ground water chemistry of the Ouachita Mountains. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Steele, K.F.; Fay, W.M.; Cavendor, P.N.

    1982-08-01

    Samples from 13 ground water sites (10 springs and 3 wells) in the Ouachita Mountains were collected nine times during a 16-month period. Daily sampling of six sites was carried out over an 11-day period, with rain during this period. Finally, hourly sampling was conducted at a single site over a 7-hour period. The samples were analyzed for pH, conductivity, temperature, total alkalinity, nitrate, ammonia, sulfate, phosphate, chloride, silica, Na, K, Li, Ca, Mg, Sr, Ba, Fe, Mn, Zn, Cu, Co, Ni, Pb, Hg, Br, F, V, Al, Dy, and U. Despite the dry season during late summer, and wet seasons during late spring and late fall in the Ouachita Mountain region, there was no significant change in the ground water chemistry with season. Likewise, there was no significant change due to rain storm events (daily sampling) or hourly sampling. The report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the National Uranium Resource Evaluation. 9 figures, 19 tables

  2. Enhanced vegetation growth peak and its key mechanisms

    Science.gov (United States)

    Huang, K.; Xia, J.; Wang, Y.; Ahlström, A.; Schwalm, C.; Huntzinger, D. N.; Chen, J.; Cook, R. B.; Fang, Y.; Fisher, J. B.; Jacobson, A. R.; Michalak, A.; Schaefer, K. M.; Wei, Y.; Yan, L.; Luo, Y.

    2017-12-01

    It remains unclear that whether and how the vegetation growth peak has been shifted globally during the past three decades. Here we used two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in seasonal peak vegetation growth. The attribution of changes in peak growth to their driving factors was examined with several datasets. We demonstrated that the growth peak of global vegetation has been linearly increasing during the past three decades. About 65% of this trend is evenly explained by the expanding croplands (21%), rising atmospheric [CO2] (22%), and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend was substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrated that croplands have a higher photosynthetic capacity than other vegetation types. The contribution of rising atmospheric [CO2] and nitrogen deposition are consistent with the positive response of leaf growth to elevated [CO2] (25%) and nitrogen addition (8%) from 346 manipulated experiments. The positive effect of rising atmospheric [CO2] was also well captured by 15 terrestrial biosphere models. However, most models underestimated the contributions of land-cover change and nitrogen deposition, but overestimated the positive effect of climate change.

  3. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  4. Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Khanghyun; Hong, Sang-Bum [Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406–840 (Korea, Republic of); Lee, Jeonghoon [Department of Science Education, Ewha womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750 (Korea, Republic of); Chung, Jiwoong; Hur, Soon-Do [Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 406–840 (Korea, Republic of); Hong, Sungmin, E-mail: smhong@inha.ac.kr [Department of Ocean Sciences, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2015-09-01

    Oxygen isotope ratio (δ{sup 18}O) and concentrations of Al, Na{sup +}, methanesulfonic acid (MSA), SO{sub 4}{sup 2−}, and selenium (Se) in a continuous series of 70 snow samples from a 3.2-m snow pit at a site in northwestern Greenland were determined using ultraclean procedures. Well-defined depth profiles of δ{sup 18}O, Al, and sea-salt-Na{sup +} allowed the determination of chronology of the snow pit that spanned approximately 6 years from spring 2003 to summer 2009. Se concentrations were at a low pg/g level, ranging from 7.2 to 45 pg/g, and exhibited high variability with generally higher values during winter and spring and lower values during summer and fall. Very high crustal enrichment factors (EF{sub c}) of Se averaging approximately 26,600 for the entire time period indicate a small contribution from crust dust. High Se/MSA ratios are generally observed in the winter and spring snow layers, in which the Se concentrations were relatively high (> 20 pg/g). This suggests that a significant component of the Se present in the snow layers is of anthropogenic origin. During the summer season, however, high EF{sub c} values are accompanied with low Se/MSA, indicating an increased contribution of marine biogenic sources. Significant correlations between Se, Al, and non-sea-salt SO{sub 4}{sup 2−} highlight that significant inputs of Se to the snow are likely controlled by the seasonality in the transport efficiency of anthropogenic Se from the source regions to the site. Based on the seasonal changes in Se concentrations, Se/MSA, and Se/S ratios observed in the samples, the input of anthropogenic Se to the site appears to be governed by the long-range transportation of Se emitted from coal combustion in East Asian countries, especially in China. - Highlights: • The first comprehensive seasonal variation of Se in Greenland snow is presented. • Data exhibit pronounced seasonality in the fallout of Se to Greenland. • High Se/MSA ratios indicate a

  5. Seasonal variation in the input of atmospheric selenium to northwestern Greenland snow

    International Nuclear Information System (INIS)

    Lee, Khanghyun; Hong, Sang-Bum; Lee, Jeonghoon; Chung, Jiwoong; Hur, Soon-Do; Hong, Sungmin

    2015-01-01

    Oxygen isotope ratio (δ 18 O) and concentrations of Al, Na + , methanesulfonic acid (MSA), SO 4 2− , and selenium (Se) in a continuous series of 70 snow samples from a 3.2-m snow pit at a site in northwestern Greenland were determined using ultraclean procedures. Well-defined depth profiles of δ 18 O, Al, and sea-salt-Na + allowed the determination of chronology of the snow pit that spanned approximately 6 years from spring 2003 to summer 2009. Se concentrations were at a low pg/g level, ranging from 7.2 to 45 pg/g, and exhibited high variability with generally higher values during winter and spring and lower values during summer and fall. Very high crustal enrichment factors (EF c ) of Se averaging approximately 26,600 for the entire time period indicate a small contribution from crust dust. High Se/MSA ratios are generally observed in the winter and spring snow layers, in which the Se concentrations were relatively high (> 20 pg/g). This suggests that a significant component of the Se present in the snow layers is of anthropogenic origin. During the summer season, however, high EF c values are accompanied with low Se/MSA, indicating an increased contribution of marine biogenic sources. Significant correlations between Se, Al, and non-sea-salt SO 4 2− highlight that significant inputs of Se to the snow are likely controlled by the seasonality in the transport efficiency of anthropogenic Se from the source regions to the site. Based on the seasonal changes in Se concentrations, Se/MSA, and Se/S ratios observed in the samples, the input of anthropogenic Se to the site appears to be governed by the long-range transportation of Se emitted from coal combustion in East Asian countries, especially in China. - Highlights: • The first comprehensive seasonal variation of Se in Greenland snow is presented. • Data exhibit pronounced seasonality in the fallout of Se to Greenland. • High Se/MSA ratios indicate a significant contribution from anthropogenic sources.

  6. Minthorn Springs Creek summer juvenile release and adult collection facility: Annual report 1992; ANNUAL

    International Nuclear Information System (INIS)

    Rowan, Gerald D.

    1993-01-01

    we re negative for inclusions. One of 73 summer steelhead sampled for BKD had a high level of antigen, while all others had very low or negative antigen levels. All fall chinook tested had low or negative antigen levels. Regularly-scheduled maintenance of pumps, equipment and facilities was performed in 1992. The progress of outmigration for juvenile releases was monitored at the Westland Canal fish trapping facility by CTUIR and ODFW personnel. Coho and spring chinook yearlings were released in mid-March at Umatilla rivermile (RM) 56 and 60. The peak outmigration period past Westland (RM 27) was mid-April to early May, approximately four to seven weeks after release. Groups of summer steelhead were released from Minthorn (RM 63) and Bonifer (RM 81) in late March and into Meacham Creek near Bonifer in late April. The peak outmigration period past Westland for all groups appeared to be the first two to three weeks in May. Spring chinook yearlings released in mid-April from Bonifer and at Umatilla RM 89, migrated rapidly downriver and the peak outmigration period past Westland appeared to be within a week or two after release. Fall and spring chinook subyearlings released in mid-May at RM 42 and 60, respectively, also migrated rapidly downriver and the peak outmigration period was within days after release. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to the ocean, Columbia River and Umatilla River fisheries. Total estimated summer steelhead survival have ranged from 0.03 to 0.61% for releases in which recovery information is complete. Coho survival rates have ranged from 0.15 to 4.14%, and spring chinook yearling survival rates from spring releases have ranged from 0.72 to 0.74%. Survival rates of fall chinook yearlings have ranged from 0.08 to 3.01%, while fall chinook subyearling survival rates have ranged from 0.25 to 0.87% for spring released groups

  7. Seasonal dynamics of zooplankton in Columbia–Snake River reservoirs,with special emphasis on the invasive copepod Pseudodiaptomus forbesi

    Science.gov (United States)

    Emerson, Joshua E.; Bollens, Stephen M.; Counihan, Timothy D.

    2015-01-01

    The Asian copepod Pseudodiaptomus forbesi has recently become established in the Columbia River. However, little is known about its ecology and effects on invaded ecosystems. We undertook a 2-year (July 2009 to June 2011) field study of the mesozooplankton in four reservoirs in the Columbia and Snake Rivers, with emphasis on the relation of the seasonal variation in distribution and abundance of P. forbesi to environmental variables. Pseudodiaptomus forbesi was abundant in three reservoirs; the zooplankton community of the fourth reservoir contained no known non-indigenous taxa. The composition and seasonal succession of zooplankton were similar in the three invaded reservoirs: a bloom of rotifers occurred in spring, native cyclopoid and cladoceran species peaked in abundance in summer, and P. forbesi was most abundant in late summer and autumn. In the uninvaded reservoir, total zooplankton abundance was very low year-round. Multivariate ordination indicated that temperature and dissolved oxygen were strongly associated with zooplankton community structure, with P. forbesi appearing to exhibit a single generation per year . The broad distribution and high abundance of P. forbesi in the Columbia–Snake River System could result in ecosystem level effects in areas intensively managed to improve conditions for salmon and other commercially and culturally important fish species. 

  8. Seasonal and within-canopy variation in shoot-scale resource-use efficiency trade-offs in a Norway spruce stand.

    Science.gov (United States)

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2015-11-01

    Previous leaf-scale studies of carbon assimilation describe short-term resource-use efficiency (RUE) trade-offs where high use efficiency of one resource requires low RUE of another. However, varying resource availabilities may cause long-term RUE trade-offs to differ from the short-term patterns. This may have important implications for understanding canopy-scale resource use and allocation. We used continuous gas exchange measurements collected at five levels within a Norway spruce, Picea abies (L.) karst., canopy over 3 years to assess seasonal differences in the interactions between shoot-scale resource availability (light, water and nitrogen), net photosynthesis (An ) and the use efficiencies of light (LUE), water (WUE) and nitrogen (NUE) for carbon assimilation. The continuous data set was used to develop and evaluate multiple regression models for predicting monthly shoot-scale An . These models showed that shoot-scale An was strongly dependent on light availability and was generally well described with simple one- or two-parameter models. WUE peaked in spring, NUE in summer and LUE in autumn. However, the relative importance of LUE for carbon assimilation increased with canopy depth at all times. Our results suggest that accounting for seasonal and within-canopy trade-offs may be important for RUE-based modelling of canopy carbon uptake. © 2015 John Wiley & Sons Ltd.

  9. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Shilong [Chinese Academy of Sciences (CAS), Beijing (China); Peking Univ., Beijing (China); Liu, Zhuo [Peking Univ., Beijing (China); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Peng, Shushi [Peking Univ., Beijing (China); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Huang, Mengtian [Peking Univ., Beijing (China); Ahlstrom, Anders [Stanford Univ., CA (United States); Burkhart, John F. [Univ. of Oslo (Norway); Chevallier, Frédéric [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Janssens, Ivan A. [Univ. of Antwerp, Wilrijk (Belgium); Jeong, Su-Jong [South Univ. of Science and Technology of China, Shenzhen (China); Lin, Xin [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, John [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States); Mohammat, Anwar [Chinese Academy of Sciences (CAS), Beijing (China); Myneni, Ranga B. [Boston Univ., MA (United States); Peñuelas, Josep [Centre for Ecological Research and Forestry Applications (CREAF), Barcelona (Spain); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stohl, Andreas [Norwegian Institute for Air Research (NILU), Kjeller (Norway); Yao, Yitong [Peking Univ., Beijing (China); Zhu, Zaichun [Peking Univ., Beijing (China); Tans, Pieter P. [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States)

    2017-04-24

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. We use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. Here, we use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. These results thus challenge the ‘warmer spring–bigger sink’ mechanism.

  10. Tillage methods and mulch on water saving and yield of spring maize in Chitwan

    Directory of Open Access Journals (Sweden)

    Ishwari Prasad Upadhyay

    2016-12-01

    Full Text Available Tillage methods and mulch influences the productivity and water requirement of spring maize hence a field experiment was conducted at the National Maize Research Program, Rampur in spring seasons of 2011 and 2012 with the objectives to evaluate different tillage methods with and without mulch on water requirement and grain yield of spring maize. The experiment was laid out in two factors factorial randomized complete design with three replications. The treatments consisted of tillage methods (Permanent bed, Zero tillage and Conventional tillage and mulch (with and without. Irrigation timing was fixed as knee high stage, tasseling stage and milking/dough stage. Data on number of plants, number of ears, thousand grain weight and grain yield were recorded and analysed using GenStat. Two years combined result showed that the effect of tillage methods and mulch significant influenced grain yield and water requirement of spring maize. The maize grain yield was the highest in permanent beds with mulch (4626 kg ha-1 followed by zero tillage with mulch (3838 kg ha-1. Whereas total water applied calculated during the crop period were the highest in conventional tillage without mulch followed by conventional tillage with mulch. The permanent bed with mulch increased the yield and reduced the water requirement of spring maize in Chitwan.

  11. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    Science.gov (United States)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic

  12. Reproductive health of bass in the potomac, USA, drainage: part 2. Seasonal occurrence of persistent and emerging organic contaminants

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Schroeder, V.L.; Iwanowicz, L.R.; Clark, R.C.; Guy, C.P.; Pinkney, A.E.; Blazer, V.S.; Mullican, J.E.

    2009-01-01

    The seasonal occurrence of organic contaminants, many of which are potential endocrine disruptors, entering the Potomac River, USA, watershed was investigated using a two-pronged approach during the fall of 2005 and spring of 2006. Passive samplers (semipermeable membrane device and polar organic chemical integrative sampler [POCIS]) were deployed in tandem at sites above and below wastewater treatment plant discharges within the watershed. Analysis of the samplers resulted in detection of 84 of 138 targeted chemicals. The agricultural pesticides atrazine and metolachlor had the greatest seasonal changes in water concentrations, with a 3.1 - to 91 -fold increase in the spring compared with the level in the previous fall. Coinciding with the elevated concentrations of atrazine in the spring were increasing concentrations of the atrazine degradation products desethylatrazine and desisopropylatrazine in the fall following spring and summer application of the parent compound. Other targeted chemicals (organochlorine pesticides, polycyclic aromatic hydrocarbons, and organic wastewater chemicals) did not indicate seasonal changes in occurrence or concentration; however, the overall concentrations and number of chemicals present were greater at the sites downstream of wastewater treatment plant discharges. Several fragrances and flame retardants were identified in these downstream sites, which are characteristic of wastewater effluent and human activities. The bioluminescent yeast estrogen screen in vitro assay of the POCIS extracts indicated the presence of chemicals that were capable of producing an estrogenic response at all sampling sites. ?? 2009 SETA.

  13. Molecular composition and seasonal variation of amino acids in urban aerosols from Beijing, China

    Science.gov (United States)

    Ren, Lujie; Bai, Huahua; Yu, Xi; Wu, Fengchang; Yue, Siyao; Ren, Hong; Li, Linjie; Lai, Senchao; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-05-01

    Fifteen hydrolyzed amino acids (THAA) were quantified in urban aerosols (TSP samples) collected during April 2012 to May 2013 in Beijing, China using high-performance liquid chromatography (HPLC) after their derivatization with o-phthalaldehyde (OPA), to investigate their molecular distributions and seasonal variation. Total concentrations of amino acids ranged from 1.73-25.7 nmol m- 3 with a peak in spring (13.7 nmol m- 3), followed by winter (11.5 nmol m- 3), fall (9.51 nmol m- 3) and summer (7.45 nmol m- 3). Glycine (Gly), alanine (Ala) and valine (Val) are found to be the most abundant species, which account for 46% of the total THAA. Compared with those recorded in previous studies, the atmospheric levels of amino acids in Beijing were higher than those from other regions. Enhanced amounts of methionine, tyrosine, histidine, aspartic acid and glutamic acid were found during the rainfall events. The factor analysis further suggests that amino acids in urban Beijing originated from multiple sources including biological emission, biomass burning, as well as anthropogenic activities.

  14. Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile

    Science.gov (United States)

    Escribano, Ruben; Hidalgo, Pamela; González, Humberto; Giesecke, Ricardo; Riquelme-Bugueño, Ramiro; Manríquez, Karen

    2007-11-01

    Zooplankton sampling at Station 18 off Concepción (36°30‧S and 73°07‧W), on an average frequency of 30 days (August 2002 to December 2005), allowed the assessment of seasonal and inter-annual variation in zooplankton biomass, its C and N content, and the community structure in relation to upwelling variability. Copepods contributed 79% of the total zooplankton community and were mostly represented by Paracalanus parvus, Oithona similis, Oithona nana, Calanus chilensis, and Rhincalanus nasutus. Other copepod species, euphausiids (mainly Euphausia mucronata), gelatinous zooplankton, and crustacean larvae comprised the rest of the community. Changes in the depth of the upper boundary of the oxygen minimum zone indicated the strongly seasonal upwelling pattern. The bulk of zooplankton biomass and total copepod abundance were both strongly and positively associated with a shallow (oxygen minimum zone; these values increased in spring/summer, when upwelling prevailed. Gelatinous zooplankton showed positive abundance anomalies in the spring and winter, whereas euphausiids had no seasonal pattern and a positive anomaly in the fall. The C content and the C/N ratio of zooplankton biomass significantly increased during the spring when chlorophyll- a was high (>5 mg m -3). No major changes in zooplankton biomass and species were found from one year to the next. We concluded that upwelling is the key process modulating variability in zooplankton biomass and its community structure in this zone. The spring/summer increase in zooplankton may be largely the result of the aggregation of dominant copepods within the upwelling region; these may reproduce throughout the year, increasing their C content and C/N ratios given high diatom concentrations.

  15. Seasonality of suicide deaths in Serbia, 1990-2012

    Directory of Open Access Journals (Sweden)

    Penev Goran

    2014-01-01

    Full Text Available Background: In the period from 1990 to 2012, there were 32,855 suicides registered in Serbia, i.e. an average of 1428 deaths per year (18.9 per 100.000 inhabitants. The suicides were the most frequent in the early 1990s, less frequent during the 2000s, and least frequent in the last three years of the observed period (2010-2012 - an average of 1237 suicides per year. Objective: The goal of this paper is to evaluate the seasonal variations of suicides in Serbia in the period of 1990-2012, their changes, as well as the accordance with findings from other countries. Method: In the paper are used "classical" statistical methods of evaluating cyclical variations (χ2-test, Edwards' test as well as some frequently used newer methods (e.g. the peak-low ratio. It also introduces a new indicator of the intensity of monthly variations in suicides (the magnitude of trimester variations of /12/ moving consecutive months index - the MtMV index. Seasonality of suicides is also observed by sex. Results: The results of the research of seasonality confirm that certain cyclical variations in mortality due to suicide are also present in Serbia. Observed by season, suicides are most frequent in spring and summer and less in winter. The cyclical nature was also clearly confirmed by month. Suicides are most frequent in "warm" months (April-August and far less frequent in "cold" months (December-February. By month, suicides are most frequent in May, while the maximal average number of suicides per day was calculated for June (21 % higher than the average for 1990-2012. December is singled out as the month with the lowest number as well as lowest daily average of suicides (25 % lower than the average. Conclusion: The cyclical nature of suicides is clearly notable during the entire observed period and no significant fluctuations or decrease in the intensity of the variation were observed. Regardless of the method of analysis, the resulting conclusions are identical

  16. Seasonal patterns of periphyton nitrogen fixation in calcareous wetlands

    Science.gov (United States)

    Liao, X.; Inglett, P.

    2011-12-01

    Periphyton mats are an ecologically important component of the Everglades ecosystem and plays various vital ecological functions. However, nitrogen fixation of periphyton, has received little attention throughout much of the Everglades system. The objective of this study was to characterize the seasonal pattern of periphyton N2 fixation in the Hole-in-the-Donut (HID) of Florida Everglades, where farmed marl prairie wetlands have been restored through complete soil removal (CSR) to reduce nutrient levels. Two restored areas (i.e., cleared in 2000 and 2003) and a reference (natural and unfarmed) marl prairie wetland sites were selected in the HID. Seven times of sampling were performed across the wet and dry season during the 2010 and 2011. The annual fixed nitrogen was approximately 0.4gN m-2 yr-1 in the restored sites which was higher in the reference site (~0.2gN m-2 yr-1). All the three sites showed similar seasonal patterns of N2 fixation that is higher values were observed in the wet season; but the peak value was one month later in reference sits (i.e., September) comparing to the restored areas (i.e., July). The peak of periphyton AR rates in the 2000- and 2003-restored areas appeared in July (i.e., wet season) within the range of 20-79 nmols g-1dw h-1 and 31-53nmols g-1dw h-1, respectively. In contrast, the peak of reference site was observed in September with the range of 2-5 nmols g-1dw h-1. Stable N isotopic ratios (i.e., δ15N) also varied with time but didn't show consistent seasonal pattern as nitrogen fixation. N2 fixation positively correlated with periphyton total phosphorus (TP) and negatively correlated with total nitrogen and phosphorus molar ratios (TN:TP), indicating that N2 fixation would be a indicator of nutrient limitation. In general, δ15N was negatively correlated with nitrogenase activity but the correlation became weakened in the wet season, especially in the flooded July and September, which would be explained by other environmental

  17. How could discharge management affect Florida spring fish assemblage structure?

    Science.gov (United States)

    Work, Kirsten; Codner, Keneil; Gibbs, Melissa

    2017-08-01

    Freshwater bodies are increasingly affected by reductions in water quantity and quality and by invasions of exotic species. To protect water quantity and maintain the ecological integrity of many water bodies in central Florida, a program of adopting Minimum Flows and Levels (MFLs) has begun for both lentic and lotic waters. The purpose of this study was to determine whether there were relationships between discharge and stage, water quality, and biological parameters for Volusia Blue Spring, a first magnitude spring (discharge > 380,000 m 3 day -1 or 100 mgd) for which an MFL program was adopted in 2006. Over the course of fourteen years, we assessed fish density and diversity weekly, monthly, or seasonally with seine and snorkel counts. We evaluated annual changes in the assemblages for relationships with water quantity and quality. Low discharge and dissolved oxygen combined with high stage and conductivity produced a fish population with a lower density and diversity in 2014 than in previous years. Densities of fish taxonomic/functional groups also were low in 2014 and measures of water quantity were significant predictors of fish assemblage structure. As a result of the strong relationships between variation in discharge and an array of chemical and biological characteristics of the spring, we conclude that maintaining the historical discharge rate is important for preserving the ecological integrity of Volusia Blue Spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Extended duration of parturition season in North American elk (Cervus elaphus)

    Science.gov (United States)

    Barbara J. Keller; Amy D. Bleisch; Joshua J. Millspaugh; Chad P. Lehman; Jackie J. Kragel; Lonnie P. Hansen; Jason Sumners; Mark A. Rumble; Gary C. Brundige

    2015-01-01

    The timing of births in ungulates has significant implications for juvenile survival and population growth. For North American elk (Cervus elaphus), typical parturition season ranges from late May to early Jun., and juveniles born outside of this peak characteristically exhibit lowered survival. We observed abnormally long parturition seasons in free-ranging elk...

  19. Seasonal dynamics of Co60 accumulation by Elodea canadensis Rich

    International Nuclear Information System (INIS)

    Bochenin, V.F.; Chebotina, M.Ya.

    1975-01-01

    The seasonal dynamics of Co 60 accumulation by one of the most widely distributed fresh-water plants, elodea (Elodea canadensis Rich), were studied. Accumulation was shown to vary with the season. A very low coefficient of accumulation (500-700 units) was typical for the summer period (June to August). It increased in the fall, reached its highest values (3500-4000) in mid-winter (January), and dropped sharply in the spring. Radioisotope concentrations in the plant varied similarly. The cumulative capacity of plants for Co 60 may vary by a factor of 6 to 7 during the year. It is suggested that the seasonal changes in Co 60 accumulation may be caused by both differences in the physiological state of the plants at different times of the year, and by seasonal variations in the hydrochemical regime of the water reservoir. Experiments were done to clarify which of these mechanisms is the determining factor. (V.A.P.)

  20. On seasonal fluctuations of available Olsen P in soils

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    Full Text Available The likelihood of a strong seasonal effect on the analytical results of soil chemical tests has been substantiated by several findings. The occurrence of such a trouble would heavily affect the routine work of chemical laboratories dealing with hundreds or thousands of soil samples every year and would possibly interfere even with current timing of soil sampling and testing in agronomical research. Soils from four different experimental fields were sampled and analyzed for Olsen P test through the growing season of both spring-summer crops (maize and autumn-spring crops (soft wheat. To avoid the cross effect of recent P applications, samples were collected only from the control plots, with no P applied. In a first long-time experiment the level of Olsen P was followed in three soils during two years, while in a second experiment the study considered two different soils for a couple of years each. The amount of extractable (available Olsen P showed significant fluctuations-with-time in four years out of six. The observed variations seems entirely due to P absorption by crops, as they appeared in the final samplings during the cropping season. The amount of decrease was nearly always small, less than 1-1.5 mg kg-1 soil, and consistent with the reduction of the available pool which is to be expected as crops gradually take up nutrients. As far as Olsen P is concerned, no evidence was found for the occurrence of erratic seasonal variations such as those previously reported. As soil samples for advisory purposes are usually taken at different times of the year, it seems reassuring that no complications are to be expected about information needed to interpret the results of chemical tests.

  1. Representativeness and seasonality of major ion records derived from NEEM firn cores

    Directory of Open Access Journals (Sweden)

    G. Gfeller

    2014-10-01

    Full Text Available The seasonal and annual representativeness of ionic aerosol proxies (among others, calcium, sodium, ammonium and nitrate in various firn cores in the vicinity of the NEEM drill site in northwest Greenland have been assessed. Seasonal representativeness is very high as one core explains more than 60% of the variability within the area. The inter-annual representativeness, however, can be substantially lower (depending on the species making replicate coring indispensable to derive the atmospheric variability of aerosol species. A single core at the NEEM site records only 30% of the inter-annual atmospheric variability in some species, while five replicate cores are already needed to cover approximately 70% of the inter-annual atmospheric variability in all species. The spatial representativeness is very high within 60 cm, rapidly decorrelates within 10 m but does not diminish further within 3 km. We attribute this to wind reworking of the snow pack leading to sastrugi formation. Due to the high resolution and seasonal representativeness of the records we can derive accurate seasonalities of the measured species for modern (AD 1990–2010 times as well as for pre-industrial (AD 1623–1750 times. Sodium and calcium show similar seasonality (peaking in February and March respectively for modern and pre-industrial times, whereas ammonium and nitrate are influenced by anthropogenic activities. Nitrate and ammonium both peak in May during modern times, whereas during pre-industrial times ammonium peaked during July–August and nitrate during June–July.

  2. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  3. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  4. Forecasting monthly peak demand of electricity in India—A critique

    International Nuclear Information System (INIS)

    Rallapalli, Srinivasa Rao; Ghosh, Sajal

    2012-01-01

    The nature of electricity differs from that of other commodities since electricity is a non-storable good and there have been significant seasonal and diurnal variations of demand. Under such condition, precise forecasting of demand for electricity should be an integral part of the planning process as this enables the policy makers to provide directions on cost-effective investment and on scheduling the operation of the existing and new power plants so that the supply of electricity can be made adequate enough to meet the future demand and its variations. Official load forecasting in India done by Central Electricity Authority (CEA) is often criticized for being overestimated due to inferior techniques used for forecasting. This paper tries to evaluate monthly peak demand forecasting performance predicted by CEA using trend method and compare it with those predicted by Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA) model. It has been found that MSARIMA model outperforms CEA forecasts both in-sample static and out-of-sample dynamic forecast horizons in all five regional grids in India. For better load management and grid discipline, this study suggests employing sophisticated techniques like MSARIMA for peak load forecasting in India. - Highlights: ► This paper evaluates monthly peak demand forecasting performance by CEA. ► Compares CEA forecasts it with those predicted by MSARIMA model. ► MSARIMA model outperforms CEA forecasts in all five regional grids in India. ► Opportunity exists to improve the performance of CEA forecasts.

  5. Seasonal variation in the Dutch bovine raw milk composition.

    Science.gov (United States)

    Heck, J M L; van Valenberg, H J F; Dijkstra, J; van Hooijdonk, A C M

    2009-10-01

    In this study, we determined the detailed composition of and seasonal variation in Dutch dairy milk. Raw milk samples representative of the complete Dutch milk supply were collected weekly from February 2005 until February 2006. Large seasonal variation exists in the concentrations of the main components and milk fatty acid composition. Milk lactose concentration was rather constant throughout the season. Milk true protein content was somewhat more responsive to season, with the lowest content in June (3.21 g/100 g) and the highest content in December (3.38 g/100 g). Milk fat concentration increased from a minimum of 4.10 g/100 g in June to a maximum of 4.57 g/100 g in January. The largest (up to 2-fold) seasonal changes in the fatty acid composition were found for trans fatty acids, including conjugated linoleic acid. Milk protein composition was rather constant throughout the season. Milk unsaturation indices, which were used as an indication of desaturase activity, were lowest in spring and highest in autumn. Compared with a previous investigation of Dutch dairy milk in 1992, the fatty acid composition of Dutch raw milk has changed considerably, in particular with a higher content of saturated fatty acids in 2005 milk.

  6. Seasonal migration determined by a trade-off between predator avoidance and growth

    DEFF Research Database (Denmark)

    Brönmark, C.; Skov, Christian; Brodersen, J.

    2008-01-01

    on commercially important fish species, such as salmon and trout. However, seasonal mass-migrations may occur also among other freshwater fish, e.g. in cyprinids that leave lakes and migrate into streams and wetlands in the fall and return back to the lake in spring. In a conceptual model, we hypothesized...

  7. Reproductive Patterns in the Non-Breeding Season in Asinina de Miranda Jennies.

    Science.gov (United States)

    Quaresma, M; Silva, S R; Payan-Carreira, R

    2015-10-01

    This study aims to characterize the reproductive patterns in Asinina de Miranda jennies during the non-breeding season. Reproductive activity was surveyed in 12 females, aged between 3 and 18 years old, using ultrasound and teasing with a jack. The animals were monitored from September to April, six in each consecutive year. Of these 12 females, nine showed disruption to the normal pattern of ovarian activity during the non-breeding season. Loss of normal cyclicity included anoestrus (41.7%), silent ovulatory oestrus (25%), and persistence of corpus luteum (8.3%). Only three females maintained a regular cyclic pattern with oestrous behaviour during the non-breeding season. Anoestrus began in early November and lasted for an average of 147 ± 28 days (113-191 days), ending near to the spring equinox. Onset of silent oestrous cycles began more erratically, between October and February. In both groups the first behavioural ovulation of the year occurred around the time of the spring equinox. Disrupted reproductive activity was preceded by a shorter oestrous cycle only in females entering anoestrus. The mean follicle size in the first ovulation of the year was larger than in the reproductive season (44.7 ± 2.45 mm vs 39.2 ± 3.60 mm) in anoestrous jennies with protracted oestrus. Though age and body condition score (BCS) were associated, changes in BCS below a threshold of four points (for anoestrus) and five points (for silent oestrus) contributed greatly to disruption of reproductive cycles. BCS in females with regular oestrous cycles during the winter season remained unchanged or exceeded five points prior to the winter solstice. © 2015 Blackwell Verlag GmbH.

  8. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.

    Science.gov (United States)

    Garcia, Edenise; Carignan, Richard; Lean, David R S

    2007-08-01

    We compared the effects of natural and anthropogenic watershed disturbances on methyl mercury (MeHg) concentration in bulk zooplankton from boreal Shield lakes. MeHg in zooplankton was monitored for three years in nine lakes impacted by deforestation, in nine lakes impacted by wildfire, and in twenty lakes with undisturbed catchments. Lakes were sampled during spring, mid- and late summer. MeHg in zooplankton showed a seasonal trend: concentrations were the lowest in spring, then peaked in mid-summer and decreased in late summer. Over the three study years, MeHg concentrations observed in mid-summer in zooplankton from forest harvested lakes were significantly higher than in reference and fire-impacted lakes, whereas differences between these two groups of lakes were not significant. The pattern of distribution of MeHg in zooplankton during the different seasons paralleled that of dissolved organic carbon (DOC), which is known as a vector of Hg from watershed soils to lake water. Besides DOC, MeHg in zooplankton also showed a positive significant correlation with epilimnetic temperature and sulfate concentrations. An inter-annual decreasing trend in MeHg was observed in zooplankton from reference and fire-impacted lakes. In forest harvested lakes, however, MeHg concentrations remained higher and nearly constant over three years following the impact. Overall these results indicate that the MeHg pulse observed in zooplankton following deforestation by harvesting is relatively long-lived, and may have repercussions to the accumulation of MeHg along the food chain. Therefore, potential effects of deforestation on the Hg contamination of fish should be taken into account in forest management practices.

  9. Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)

  10. Timescales for nitrate contamination of spring waters, northern Florida, USA

    Science.gov (United States)

    Katz, B.G.; Böhlke, J.K.; Hornsby, H.D.

    2001-01-01

    Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium (3H), and tritium/helium-3 (3H/3He) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997–1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20±2 years from CFC-12, CFC-113, 3H, and 3He, with evidence of partial CFC-11 degradation. The EMM gave a reasonable fit to CFC-113, CFC-12, and 3H data, but did not reproduce the observed 3He concentrations or 3H/3He ratios, nor did a combination PFM–EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had 3H concentrations not much different from modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC-113, with evidence of partial CFC-11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10–20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwanee County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio

  11. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  12. Influence of Seasonality and Circulating Cytokines on Serial QuantiFERON Discordances

    Directory of Open Access Journals (Sweden)

    Marsha L. Griffin

    2018-01-01

    Full Text Available Objectives. An 18-month prospective study serially tested healthcare workers (HCWs for tuberculosis infection (TBI and reported discordant QuantiFERON Gold In-Tube® (QFT results in some participants. The purpose of the current study was to investigate whether the interferon-gamma (IFN-γ measured by QFT in discordant individuals could be influenced by other circulating cytokines that vary seasonally at the time of phlebotomy. Methods. The CDC funded TBESC Task Order 18 (TO18 project to assess the use of Interferon Gamma Release Assays (IGRAs, T-SPOT.TB® and QFT, compared to the tuberculin skin test (TST for the serial testing of TBI in HCW at 4 US sites. Unstimulated plasma from 9 discordant TO18 participants at 4 different time points from the Houston site was multiplexed to determine the association between circulating cytokines and antigen stimulated IFN-γ levels. Results. IL-12, IL-1β, IL-3, GCSF, and IL-7 were associated with the amount of IFN-γ measured in response to antigen stimulation. In addition to these cytokines, a significant relationship was found between a positive QFT result and the spring season. Conclusions. Allergens during the spring season can result in the upregulation of IL-1β and IL-3, and this upregulation was observed with the amount of IFN-γ measured in discordant results.

  13. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  14. Strontium isotopic composition of hot spring and mineral spring waters, Japan

    International Nuclear Information System (INIS)

    Notsu, Kenji; Wakita, Hiroshi; Nakamura, Yuji

    1991-01-01

    In Japan, hot springs and mineral springs are distributed in Quaternary and Neogene volcanic regions as well as in granitic, sedimentary and metamorphic regions lacking in recent volcanic activity. The 87 Sr/ 86 Sr ratio was determined in hot spring and mineral spring waters obtained from 47 sites. The ratios of waters from Quaternary and Neogene volcanic regions were in the range 0.703-0.708, which is lower than that from granitic, sedimentary and metamorphic regions (0.706-0.712). The geographical distribution of the ratios coincides with the bedrock geology, and particularly the ratios of the waters in Quaternary volcanic regions correlate with those of surrounding volcanic rocks. These features suggest that subsurface materials control the 87 Sr/ 86 Sr ratios of soluble components in the hot spring and mineral spring waters. (author)

  15. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  16. A natural tracer investigation of the hydrological regime of Spring Creek Springs, the largest submarine spring system in Florida

    Science.gov (United States)

    Dimova, Natasha T.; Burnett, William C.; Speer, Kevin

    2011-04-01

    This work presents results from a nearly two-year monitoring of the hydrologic dynamics of the largest submarine spring system in Florida, Spring Creek Springs. During the summer of 2007 this spring system was observed to have significantly reduced flow due to persistent drought conditions. Our examination of the springs revealed that the salinity of the springs' waters had increased significantly, from 4 in 2004 to 33 in July 2007 with anomalous high radon ( 222Rn, t1/2=3.8 days) in surface water concentrations indicating substantial saltwater intrusion into the local aquifer. During our investigation from August 2007 to May 2009 we deployed on an almost monthly basis a continuous radon-in-water measurement system and monitored the salinity fluctuations in the discharge area. To evaluate the springs' freshwater flux we developed three different models: two of them are based on water velocity measurements and either salinity or 222Rn in the associated surface waters as groundwater tracers. The third approach used only salinity changes within the spring area. The three models showed good agreement and the results confirmed that the hydrologic regime of the system is strongly correlated to local precipitation and water table fluctuations with higher discharges after major rain events and very low, even reverse flow during prolong droughts. High flow spring conditions were observed twice during our study, in the early spring and mid-late summer of 2008. However the freshwater spring flux during our observation period never reached that reported from a 1970s value of 4.9×10 6 m 3/day. The maximum spring flow was estimated at about 3.0×10 6 m 3/day after heavy precipitation in February-March 2008. As a result of this storm (total of 173 mm) the salinity in the spring area dropped from about 27 to 2 in only two days. The radon-in-water concentrations dramatically increased in parallel, from about 330 Bq/m 3 to about 6600 Bq/m 3. Such a rapid response suggests a direct

  17. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    Science.gov (United States)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  18. Evaluation of the Effects of Nationwide Conservation Voltage Reduction on Peak-Load Shaving Using SOMAS Data

    Directory of Open Access Journals (Sweden)

    Soon-Ryul Nam

    2013-12-01

    Full Text Available In this paper we propose a new method to evaluate the effects of nationwide conservation voltage reduction (CVR on peak-load shaving, using substation operating results management system (SOMAS data. Its evaluation is based on a national CVR factor, which is defined as the weighted average of CVR factors associated with all transformer banks and weighting coefficients are determined by the reconstructed loads corresponding to each transformer bank. To make use of the data resulting from nationwide CVR without installing additional measuring devices, we adopt a linearized static-load model with a linearizing parameter. SOMAS data are used to evaluate the effects of nationwide CVR on peak-load shaving in the Korean power system. Evaluation results show that the national CVR factor of the Korean power system has small values in the summer season and large values in the winter season. This means that the effect of nationwide CVR on peak-load shaving in the Korean power system presents stronger benefits during winter months.

  19. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  20. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  1. Springs as hydrologic refugia in a changing climate? A remote sensing approach

    Science.gov (United States)

    Cartwright, Jennifer M.; Johnson, Henry M.

    2018-01-01

    the number of associated springs. Resilience was greater for SMZs on topographically shaded, north‐facing slopes. Several high‐resilience SMZs were located immediately below persistent snowbanks, suggesting a possible source of steady recharge throughout the growing season. The approach presented here—if combined with field assessments of spring hydrogeology, discharge, and groundwater age—could help identify spring‐fed wetlands that are most likely to serve as hydrologic refugia from climate change.

  2. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  3. Peak Wind Tool for General Forecasting

    Science.gov (United States)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  4. [The variability of vegetation beginning date of greenness period in spring in the north-south transect of eastern China based on NOAA NDVI].

    Science.gov (United States)

    Wang, Zhi; Liu, Shi-rong; Sun, Peng-sen; Guo, Zhi-hua; Zhou, Lian-di

    2010-10-01

    NDVI based on NOAA/AVHRR from 1982 to 2003 are used to monitor variable rules for the growing season in spring of vegetation in the north-south transect of eastern China (NSTEC). The following, mainly, are included: (1) The changing speed of greenness period in spring of most regions in NSTEC is slow and correlation with the year is not distinct; (2) The regions in which greenness period in spring distinctly change mainly presented an advance; (3) The regions in which inter-annual fluctuation of greenness period in spring is over 10 days were found in 3 kinds of areas: the area covered with agricultural vegetation types; the areas covered with evergreen vegetation types; the areas covered with steppe vegetation types; (4) changes of vegetation greenness period in spring have spatio-temporal patterns.

  5. Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit.

    Directory of Open Access Journals (Sweden)

    Wan-Ze Zhu

    Full Text Available Many studies have tried to explain the physiological mechanisms of the alpine treeline phenomenon, but the debate on the alpine treeline formation remains controversial due to opposite results from different studies. The present study explored the carbon-physiology of an alpine shrub species (Quercus aquifolioides grown at its upper elevational limit compared to lower elevations, to test whether the elevational limit of alpine shrubs (<3 m in height are determined by carbon limitation or growth limitation. We studied the seasonal variations in non-structural carbohydrate (NSC and its pool size in Q. aquifolioides grown at 3000 m, 3500 m, and at its elevational limit of 3950 m above sea level (a.s.l. on Zheduo Mt., SW China. The tissue NSC concentrations along the elevational gradient varied significantly with season, reflecting the season-dependent carbon balance. The NSC levels in tissues were lowest at the beginning of the growing season, indicating that plants used the winter reserve storage for re-growth in the early spring. During the growing season, plants grown at the elevational limit did not show lower NSC concentrations compared to plants at lower elevations, but during the winter season, storage tissues, especially roots, had significantly lower NSC concentrations in plants at the elevational limit compared to lower elevations. The present results suggest the significance of winter reserve in storage tissues, which may determine the winter survival and early-spring re-growth of Q. aquifolioides shrubs at high elevation, leading to the formation of the uppermost distribution limit. This result is consistent with a recent hypothesis for the alpine treeline formation.

  6. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica.

    Science.gov (United States)

    do Amaral, M Clara F; Lee, Richard E; Costanzo, Jon P

    2016-12-01

    Liver glycogen is an important energy store in vertebrates, and in the freeze-tolerant wood frog, Rana sylvatica, this carbohydrate also serves as a major source of the cryoprotectant glucose. We investigated how variation in the levels of the catalytic subunit of protein kinase A (PKAc), glycogen phosphorylase (GP), and glycogen synthase (GS) relates to seasonal glycogen cycling in a temperate (Ohioan) and subarctic (Alaskan) populations of this species. In spring, Ohioan frogs had reduced potential for glycogen synthesis, as evidenced by low GS activity and high PKAc protein levels. In addition, glycogen levels in spring were the lowest of four seasonal samples, as energy input was likely directed towards metabolism and somatic growth during this period. Near-maximal glycogen levels were reached by mid-summer, and remained unchanged in fall and winter, suggesting that glycogenesis was curtailed during this period. Ohioan frogs had a high potential for glycogenolysis and glycogenesis in winter, as evidenced by large glycogen reserves, high levels of GP and GS proteins, and high GS activity, which likely allows for rapid mobilization of cryoprotectant during freezing and replenishing of glycogen reserves during thawing. Alaskan frogs also achieved a near-maximal liver glycogen concentration by summer and displayed high glycogenic and glycogenolytic potential in winter, but, unlike Ohioan frogs, started replenishing their energy reserves early in spring. We conclude that variation in levels of both glycogenolytic and glycogenic enzymes likely happens in response to seasonal changes in energetic strategies and demands, with winter survival being a key component to understanding the regulation of glycogen cycling in this species.

  7. Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica

    Science.gov (United States)

    Lee, W.; Sheen, D.; Seo, K.; Yun, S.

    2009-12-01

    The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period

  8. Study on a New Operational Mode of Economic Operation of Islanded Microgrids Using Electric Springs

    Directory of Open Access Journals (Sweden)

    Zhao Zhiyu

    2018-01-01

    Full Text Available With the increasing penetration of intermittent renewable energy sources (RESs into microgrids, the original operation mode of power generation determined by load demand faces severe challenges due to the uncertainties of the RESs power output. The electric springs(ESs, as an emerging technology has been verified to be effective in enabling load demand to follow power generation and stabilizing fluctuation of RESs output. This paper presents a new mode of economic operation for island microgrids including non-critical loads with embedded electric springs. Its connotation includes that i the capacity of energy storage can be reduced through the interaction of the energy storage system (ESS and the electric springs, ii the electric springs reduce the stress of peak load regulation and operational cost and iii the demand of microgrids system for ramping ability of generation units is reduced with the buffer of the electric springs. Numerical results show that the coordinated operation between electric springs and energy storage system of microgrids can bring down the investment cost for the ESS and short-term operational cost in the aspect of economic dispatch, reducing requirements for the capacity and ramp ability of the energy storage system in microgrids. Energy buffering can be achieved with lower cost and the load demand can follow power generation in the new operational mode of islanded microgrids using electric springs.

  9. Seasonal variation and trends in stroke hospitalizations and mortality in a South American community hospital.

    Science.gov (United States)

    Díaz, Alejandro; Gerschcovich, Eliana Roldan; Díaz, Adriana A; Antía, Fabiana; Gonorazky, Sergio

    2013-10-01

    Numerous studies have reported the presence of temporal variations in biological processes. Seasonal variation (SV) in stroke has been widely studied, but little data have been published on this phenomenon in the Southern Hemisphere, and there have been no studies reported from Argentina. The goals of the present study were to describe the SV of admissions and deaths for stroke and examine trends in stroke morbidity and mortality over a 3-year period in a community hospital in Argentina. Hospital discharge reports from the electronic database of vital statistics between 1999 and 2001 were examined retrospectively. Patients who had a main discharge diagnosis of stroke (ischemic or hemorrhagic) or cerebrovascular accident (International Classification of Diseases, Ninth Revision codes 431, 432, 434, and 436) were selected. The study sample included 1382 hospitalizations by stroke (3.5% of all admissions). In-hospital mortality demonstrated a winter peak (25.5% vs 17% in summer; P = .001). The crude seasonal stroke attack rate (ischemic and hemorrhagic) was highest in winter (164 per 100,000 population; 95% CI, 159-169 per 100,000) and lowest in summer (124 per 100,000; 95% CI, 120-127 per 100,000; P = .008). Stroke admissions followed a seasonal pattern, with a winter-spring predominance (P = .008). Our data indicate a clear SV in stroke deaths and admissions in this region of Argentina. The existence of SV in stroke raises a different hypothesis about the rationale of HF admissions and provides information for the organization of care and resource allocation. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    Science.gov (United States)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  11. ‘Tis the Season for Flu Vaccine (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2015-12-10

    Flu season typically runs from late fall through early spring. In this podcast, Dr. Lisa Grohskopf discusses the importance of getting vaccinated against the flu.  Created: 12/10/2015 by MMWR.   Date Released: 12/10/2015.

  12. Ground beetles (Coleoptera, Carabidae agrocenoses of spring and winter wheat

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2005-01-01

    Full Text Available On two monitoring areas of the Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ loaded with risk elements we carried out investigations of beetles of the family Carabidae (Coleoptera in agricultural stands of winter and spring wheat. The focus of the present study is on synecological characteristics and in some extent on the impact of agricultural practise on the population and seasonal dynamics of the most important representatives of ground beetles. This paper precedes the following article aimed to contents of heavy metals in ground beetles.

  13. Instant Spring Tool Suite

    CERN Document Server

    Chiang, Geoff

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A tutorial guide that walks you through how to use the features of Spring Tool Suite using well defined sections for the different parts of Spring.Instant Spring Tool Suite is for novice to intermediate Java developers looking to get a head-start in enterprise application development using Spring Tool Suite and the Spring framework. If you are looking for a guide for effective application development using Spring Tool Suite, then this book is for you.

  14. Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability

    Directory of Open Access Journals (Sweden)

    K. E. Cady-Pereira

    2012-09-01

    Full Text Available We present a detailed description of the TES methanol (CH3OH retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i generally provides less than 1.0 piece of information, (ii is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km at a vertical resolution of ~5 km, (iii has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.

  15. Seasonal variability of the hydrogen exosphere of Mars

    Science.gov (United States)

    Halekas, J. S.

    2017-05-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.

  16. Between Two Worlds: Twin Peaks and the Film/Television Divide

    Directory of Open Access Journals (Sweden)

    Siobhan Lyons

    2017-04-01

    Full Text Available In 1992, the year David Lynch’s cult television series 'Twin Peaks' was pulled off air, Lynch released the film 'Twin Peaks: Fire Walk with Me', a prequel to the television series which filled in some of the gaps left from the series finale cliff-hanger. The film was received with unanimously negative reviews from critics and fans alike, condemning both its subtle and obvious deviations from the series and its inclusion of the character Laura Palmer, whose absence was a crucial narrative device at the centre of 'Twin Peaks'. In film form, the 'Twin Peaks' narrative suffers from thematic inconsistencies and aesthetic deviations. The scope of 'Twin Peaks' seems much more capable in the setting of television and its gradual, episodic set-up. In recent years, however, with the announcement of a revival of the series, retrospective analysis of 'Fire Walk with Me' has become more positive, and the film has also become an integral part of the overall 'Twin Peaks' canon. Nevertheless, the transition from television to film in the case of 'Twin Peaks' has remained a point of fan and scholarly controversy, with issues of continuity, narrative and aesthetics between the two different mediums continually being addressed and compared. In light of the news that the new season of 'Twin Peaks' is set to be released in 2017, this article examines the significance of 'Fire Walk with Me' as a cinematic counterpart and prequel to the original series, and how this has helped shape – whether positively or not – the overall narrative of 'Twin Peaks'.

  17. Differences in Reporting the Ragweed Pollen Season Using Google Trends across 15 Countries.

    Science.gov (United States)

    Bousquet, Jean; Agache, Ioana; Berger, Uwe; Bergmann, Karl-Christian; Besancenot, Jean-Pierre; Bousquet, Philippe J; Casale, Tom; d'Amato, Gennaro; Kaidashev, Igor; Khaitov, Musa; Mösges, Ralph; Nekam, Kristof; Onorato, Gabrielle L; Plavec, Davor; Sheikh, Aziz; Thibaudon, Michel; Vautard, Robert; Zidarn, Mihaela

    2018-05-09

    Google Trends (GT) searches trends of specific queries in Google, which potentially reflect the real-life epidemiology of allergic rhinitis. We compared GT terms related to ragweed pollen allergy in American and European Union countries with a known ragweed pollen season. Our aim was to assess seasonality and the terms needed to perform the GT searches and to compare these during the spring and summer pollen seasons. We examined GT queries from January 1, 2011, to January 4, 2017. We included 15 countries with a known ragweed pollen season and used the standard 5-year GT graphs. We used the GT translation for all countries and the untranslated native terms for each country. The results of "pollen," "ragweed," and "allergy" searches differed between countries, but "ragweed" was clearly identified in 12 of the 15 countries. There was considerable heterogeneity of findings when the GT translation was used. For Croatia, Hungary, Romania, Serbia, and Slovenia, the GT translation was inappropriate. The country patterns of "pollen," "hay fever," and "allergy" differed in 8 of the 11 countries with identified "ragweed" queries during the spring and the summer, indicating that the perception of tree and grass pollen allergy differs from that of ragweed pollen. To investigate ragweed pollen allergy using GT, the term "ragweed" as a plant is required and the translation of "ragweed" in the native language needed. © 2018 S. Karger AG, Basel.

  18. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    Science.gov (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  19. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  20. Seasonal Alterations in Park Visitation, Amenity Use, and Physical Activity — Grand Forks, North Dakota, 2012–2013

    Science.gov (United States)

    Johnson, LuAnn

    2014-01-01

    Introduction Park amenities promote visitation and physical activity during summer. Physical activity declines during winter. Identifying park amenities that promote visitation during winter would increase year-round activity. The purpose of this study was to determine how park visitation, amenity choice, and physical activity intensity change across seasons. Methods Physical activity intensity of children and adults was assessed at 16 parks in Grand Forks, North Dakota, during summer and fall of 2012, and winter and spring of 2013. Results Park visitation was highest in spring and lowest in winter. Amenity use varied by season. Parks with water splash pads were visited more during summer, and playgrounds and open spaces were visited more during spring. Ice rinks were visited most in winter. Physical activity intensity was lowest in summer and highest in winter for each age group. The activity intensity observed for all young age groups ranged from 2.7 to 2.9 metabolic equivalents in summer and greater than 3 metabolic equivalents in all other seasons. Adults’ mean activity intensity was greater than 3 metabolic equivalents in winter. Conclusion Information on park visitation, amenity use, and activity intensity across seasons is valuable; it can be used when designing or redesigning parks in order to promote year-round physical activity. Redesigning parks in cold climates to include ice rinks, sledding hills, cross-country skiing, and indoor areas for physical activity would increase winter visitation and allow the park to serve as a year-round resource for physical activity. PMID:25211503