WorldWideScience

Sample records for seasonal pattern assessment

  1. Scores of a web-based version of the seasonal pattern assessment questionnaire in Brazil

    Directory of Open Access Journals (Sweden)

    Denis Martinez

    2015-12-01

    Full Text Available Introduction: Seasonal affective disorder (SAD is a proposed mental disorder still controversial. This condition is prevalent in northern latitudes, but few studies have been conducted at locations in the southern hemisphere. It is usually assessed by the Seasonal Pattern Assessment Questionnaire (SPAQ. This study aimed to evaluate, through on-line questionnaire, the hypothesis that, in the Brazilian population, latitude and longitude influence SPAQ scores. Methods: An advertisement was posted on a sleep medicine website inviting visitors to investigate seasonal patterns of behavior and mood, using a Brazilian Portuguese version of the SPAQ. The geographic coordinates of the place of residence of each respondent were analyzed as a continuous variable or distributed in quartiles of latitude and longitude. The psychometric properties of the SPAQ were assessed by reliability and factor analyses. Results: Answers from 1001 respondents out of 1045 were considered eligible. High SPAQ scores were observed in 287 respondents, equally distributed among all latitude and longitude quartiles. Data collected in different seasons and during daylight saving time did not differ significantly in any of the scores for SPAQ dimensions. No correlations between SPAQ scores and latitude or longitude were observed. Psychometric properties of the SPAQ were preserved in all geographic locations. Conclusion: The finding of similar SPAQ scores at a wide latitude range defies the concept of SAD symptoms as latitude or longitude-dependent phenomena.

  2. Seasonality patterns of mood and behavior in the Old Order Amish.

    Science.gov (United States)

    Patel, Falguni; Postolache, Nadine; Mohyuddin, Hira; Vaswani, Dipika; Balis, Theodora; Raheja, Uttam K; Postolache, Teodor T

    2012-12-01

    Although humans have become partially isolated from physical seasonal environmental changes through artificial lighting and temperature control, seasonal changes in mood and behavior have been described across hemispheres, continents, ethnicities and occupations. The Old Order Amish are more exposed than the general population to environmental seasonal changes both occupationally as well as through their limited use of electric light in the winter and air conditioning in the summer; yet, their seasonal changes in mood and behavior have not been previously studied. The aim of this study was to analyze seasonal patterns in mood and behavior in the Old Order Amish of Lancaster County, Pennsylvania, who returned completed Seasonal Pattern Assessment Questionnaires (SPAQ). Monthly seasonal patterns were analyzed with repeated measures ANOVAs, followed by a post hoc t-test if significant. The χ 2 was used for presence or absence of seasonal patterns for each item. More than 75% of the participants reported at least one seasonal change. More than 75 % endorsed seasonality in "feeling best" but only populations.

  3. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  4. Factors influencing the seasonal patterns of infectious diseases

    Directory of Open Access Journals (Sweden)

    Auda Fares

    2013-01-01

    Full Text Available The recognition of seasonal patterns in infectious disease occurrence dates back at least as far as the hippocratic era, but the mechanisms underlying these fluctuations remain poorly understood. Many classes of mechanistic hypotheses have been proposed to explain seasonality of various directly transmitted diseases, including at least the following; human activity, seasonal variability in human immune system function, seasonal variations in vitamin D levels, seasonality of melatonin, and pathogen infectivity. In this short paper will briefly discuss the role of these factors in the seasonal patterns of infectious diseases.

  5. Seasonal and daily activity patterns of leopard tortoises ...

    African Journals Online (AJOL)

    Seasonal and daily activity patterns of leopard tortoises ( Stigmochelys pardalis Bell, 1828) on farmland in the Nama-Karoo, South Africa. ... that activity is also initiated by the time since sunrise. Key words: Stigmochelys pardalis, leopard tortoise, activity patterns, activity behaviour, Nama-Karoo Biome, time of day, season.

  6. Canary tomato export prices: comparison and relationships between daily seasonal patterns

    Directory of Open Access Journals (Sweden)

    G. Martin-Rodriguez

    2013-10-01

    Full Text Available Statistical procedures are proposed to describe, compare and forecast the behaviour of seasonal variations in two daily price series of Canary tomato exported to German and British markets, respectively, over the last decade. These seasonal patterns are pseudo-periodic as the length of the seasonal period changes frequently in dependence of market conditions. Seasonal effect at a day in the harvesting period is defined as a spline function of the proportion of the length of such a period elapsed up to such a day. Then, seasonal patterns for the two series are compared in terms of the area between the corresponding spline functions. The ability of these models to capture the dynamic process of change in the seasonal pattern is useful to forecasting purpose. Furthermore, an analytical tool is also proposed to obtain forecasts of the seasonal pattern in one of these two series from the forecasts of the seasonal pattern in the other one. These procedures are useful for farmers in developing strategies related to the seasonal distribution of tomato production exported to each market.

  7. Seasonal Patterns of Gastrointestinal Illness and Streamflow along the Ohio River

    Directory of Open Access Journals (Sweden)

    Elena N. Naumova

    2012-05-01

    Full Text Available Waterborne gastrointestinal (GI illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses. Streamflow is correlated with biological contamination and can be used as proxy for drinking water contamination. We compare seasonal patterns of GI illnesses in the elderly (65 years and older along the Ohio River for a 14-year period (1991–2004 to seasonal patterns of streamflow. Focusing on six counties in close proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses and streamflow data. Seasonal patterns were explored using Poisson annual harmonic regression with and without adjustment for streamflow. GI illnesses demonstrated significant seasonal patterns with peak timing preceding peak timing of streamflow for all six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. This study found that the time of peak GI illness precedes the peak of streamflow, suggesting either an indirect relationship or a more direct path whereby pathogens enter water supplies prior to the peak in streamflow. Such findings call for interdisciplinary research to better understand associations among streamflow, pathogen loading, and rates of gastrointestinal illnesses.

  8. Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns

    Science.gov (United States)

    Chen, Chia-Jeng; Lee, Tsung-Yu

    2017-04-01

    Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping

  9. An exploration of spatial patterns of seasonal diarrhoeal morbidity in Thailand.

    Science.gov (United States)

    McCormick, B J J; Alonso, W J; Miller, M A

    2012-07-01

    Studies of temporal and spatial patterns of diarrhoeal disease can suggest putative aetiological agents and environmental or socioeconomic drivers. Here, the seasonal patterns of monthly acute diarrhoeal morbidity in Thailand, where diarrhoeal morbidity is increasing, are explored. Climatic data (2003-2006) and Thai Ministry of Health annual reports (2003-2009) were used to construct a spatially weighted panel regression model. Seasonal patterns of diarrhoeal disease were generally bimodal with aetiological agents peaking at different times of the year. There is a strong association between daily mean temperature and precipitation and the incidence of hospitalization due to acute diarrhoea in Thailand leading to a distinct spatial pattern in the seasonal pattern of diarrhoea. Model performance varied across the country in relation to per capita GDP and population density. While climatic factors are likely to drive the general pattern of diarrhoeal disease in Thailand, the seasonality of diarrhoeal disease is dampened in affluent urban populations.

  10. Seasonal patterns of mixed species groups in large East African mammals.

    Science.gov (United States)

    Kiffner, Christian; Kioko, John; Leweri, Cecilia; Krause, Stefan

    2014-01-01

    Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease) of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  11. SRKW seasonal occurence - Patterns of seasonal occurrence of Southern Resident Killer Whales

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Patterns of seasonal occurrence of Southern Resident Killer Whales (SRKW) throughout their range. Southern Resident Killer Whales are listed as a Distinct Population...

  12. Seasonal patterns of mixed species groups in large East African mammals.

    Directory of Open Access Journals (Sweden)

    Christian Kiffner

    Full Text Available Mixed mammal species groups are common in East African savannah ecosystems. Yet, it is largely unknown if co-occurrences of large mammals result from random processes or social preferences and if interspecific associations are consistent across ecosystems and seasons. Because species may exchange important information and services, understanding patterns and drivers of heterospecific interactions is crucial for advancing animal and community ecology. We recorded 5403 single and multi-species clusters in the Serengeti-Ngorongoro and Tarangire-Manyara ecosystems during dry and wet seasons and used social network analyses to detect patterns of species associations. We found statistically significant associations between multiple species and association patterns differed spatially and seasonally. Consistently, wildebeest and zebras preferred being associated with other species, whereas carnivores, African elephants, Maasai giraffes and Kirk's dik-diks avoided being in mixed groups. During the dry season, we found that the betweenness (a measure of importance in the flow of information or disease of species did not differ from a random expectation based on species abundance. In contrast, in the wet season, we found that these patterns were not simply explained by variations in abundances, suggesting that heterospecific associations were actively formed. These seasonal differences in observed patterns suggest that interspecific associations may be driven by resource overlap when resources are limited and by resource partitioning or anti-predator advantages when resources are abundant. We discuss potential mechanisms that could drive seasonal variation in the cost-benefit tradeoffs that underpin the formation of mixed-species groups.

  13. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea.

    Science.gov (United States)

    Lee, Sewon; Lee, Kiyoung

    2017-06-22

    Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT) was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  14. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea

    Directory of Open Access Journals (Sweden)

    Sewon Lee

    2017-06-01

    Full Text Available Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  15. Clostridium difficile infection seasonality: patterns across hemispheres and continents - a systematic review.

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J; Yakob, Laith; Clark, Justin; Paterson, David L; Riley, Thomas V; Clements, Archie C

    2015-01-01

    Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality.

  16. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park.

    Science.gov (United States)

    Metz, Matthew C; Smith, Douglas W; Vucetich, John A; Stahler, Daniel R; Peterson, Rolf O

    2012-05-01

    1. For large predators living in seasonal environments, patterns of predation are likely to vary among seasons because of related changes in prey vulnerability. Variation in prey vulnerability underlies the influence of predators on prey populations and the response of predators to seasonal variation in rates of biomass acquisition. Despite its importance, seasonal variation in predation is poorly understood. 2. We assessed seasonal variation in prey composition and kill rate for wolves Canis lupus living on the Northern Range (NR) of Yellowstone National Park. Our assessment was based on data collected over 14 winters (1995-2009) and five spring-summers between 2004 and 2009. 3. The species composition of wolf-killed prey and the age and sex composition of wolf-killed elk Cervus elaphus (the primary prey for NR wolves) varied among seasons. 4. One's understanding of predation depends critically on the metric used to quantify kill rate. For example, kill rate was greatest in summer when quantified as the number of ungulates acquired per wolf per day, and least during summer when kill rate was quantified as the biomass acquired per wolf per day. This finding contradicts previous research that suggests that rates of biomass acquisition for large terrestrial carnivores tend not to vary among seasons. 5. Kill rates were not well correlated among seasons. For example, knowing that early-winter kill rate is higher than average (compared with other early winters) provides little basis for anticipating whether kill rates a few months later during late winter will be higher or lower than average (compared with other late winters). This observation indicates how observing, for example, higher-than-average kill rates throughout any particular season is an unreliable basis for inferring that the year-round average kill rate would be higher than average. 6. Our work shows how a large carnivore living in a seasonal environment displays marked seasonal variation in

  17. Seasonal patterns in human A (H5N1 virus infection: analysis of global cases.

    Directory of Open Access Journals (Sweden)

    Maya B Mathur

    Full Text Available Human cases of highly pathogenic avian influenza (HPAI A (H5N1 have high mortality. Despite abundant data on seasonal patterns in influenza epidemics, it is unknown whether similar patterns exist for human HPAI H5N1 cases worldwide. Such knowledge could help decrease avian-to-human transmission through increased prevention and control activities during peak periods.We performed a systematic search of published human HPAI H5N1 cases to date, collecting month, year, country, season, hemisphere, and climate data. We used negative binomial regression to predict changes in case incidence as a function of season. To investigate hemisphere as a potential moderator, we used AIC and the likelihood-ratio test to compare the season-only model to nested models including a main effect or interaction with hemisphere. Finally, we visually assessed replication of seasonal patterns across climate groups based on the Köppen-Geiger climate classification.We identified 617 human cases (611 with complete seasonal data occurring in 15 countries in Southeast Asia, Africa, and the Middle East. Case occurrence was much higher in winter (n = 285, p = 0.03 than summer (n = 64, and the winter peak occurred across diverse climate groups. There was no significant interaction between hemisphere and season.Across diverse climates, HPAI H5N1 virus infection in humans increases significantly in winter. This is consistent with increased poultry outbreaks and HPAI H5N1 virus transmission during cold and dry conditions. Prioritizing prevention and control activities among poultry and focusing public health messaging to reduce poultry exposures during winter months may help to reduce zoonotic transmission of HPAI H5N1 virus in resource-limited settings.

  18. Seasonal patterns of periphyton nitrogen fixation in calcareous wetlands

    Science.gov (United States)

    Liao, X.; Inglett, P.

    2011-12-01

    Periphyton mats are an ecologically important component of the Everglades ecosystem and plays various vital ecological functions. However, nitrogen fixation of periphyton, has received little attention throughout much of the Everglades system. The objective of this study was to characterize the seasonal pattern of periphyton N2 fixation in the Hole-in-the-Donut (HID) of Florida Everglades, where farmed marl prairie wetlands have been restored through complete soil removal (CSR) to reduce nutrient levels. Two restored areas (i.e., cleared in 2000 and 2003) and a reference (natural and unfarmed) marl prairie wetland sites were selected in the HID. Seven times of sampling were performed across the wet and dry season during the 2010 and 2011. The annual fixed nitrogen was approximately 0.4gN m-2 yr-1 in the restored sites which was higher in the reference site (~0.2gN m-2 yr-1). All the three sites showed similar seasonal patterns of N2 fixation that is higher values were observed in the wet season; but the peak value was one month later in reference sits (i.e., September) comparing to the restored areas (i.e., July). The peak of periphyton AR rates in the 2000- and 2003-restored areas appeared in July (i.e., wet season) within the range of 20-79 nmols g-1dw h-1 and 31-53nmols g-1dw h-1, respectively. In contrast, the peak of reference site was observed in September with the range of 2-5 nmols g-1dw h-1. Stable N isotopic ratios (i.e., δ15N) also varied with time but didn't show consistent seasonal pattern as nitrogen fixation. N2 fixation positively correlated with periphyton total phosphorus (TP) and negatively correlated with total nitrogen and phosphorus molar ratios (TN:TP), indicating that N2 fixation would be a indicator of nutrient limitation. In general, δ15N was negatively correlated with nitrogenase activity but the correlation became weakened in the wet season, especially in the flooded July and September, which would be explained by other environmental

  19. Defining global neuroendocrine gene expression patterns associated with reproductive seasonality in fish.

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    Full Text Available BACKGROUND: Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning, sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h typical of the springtime breeding season (May, we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. CONCLUSIONS/SIGNIFICANCE: Using both

  20. Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents – A Systematic Review

    Science.gov (United States)

    Furuya-Kanamori, Luis; McKenzie, Samantha J.; Yakob, Laith; Clark, Justin; Paterson, David L.; Riley, Thomas V.; Clements, Archie C.

    2015-01-01

    Background Studies have demonstrated seasonal variability in rates of Clostridium difficile infection (CDI). Synthesising all available information on seasonality is a necessary step in identifying large-scale epidemiological patterns and elucidating underlying causes. Methods Three medical and life sciences publication databases were searched from inception to October 2014 for longitudinal epidemiological studies written in English, Spanish or Portuguese that reported the incidence of CDI. The monthly frequency of CDI were extracted, standardized and weighted according to the number of follow-up months. Cross correlation coefficients (XCORR) were calculated to examine the correlation and lag between the year-month frequencies of reported CDI across hemispheres and continents. Results The search identified 13, 5 and 2 studies from North America, Europe, and Oceania, respectively that met the inclusion criteria. CDI had a similar seasonal pattern in the Northern and Southern Hemisphere characterized by a peak in spring and lower frequencies of CDI in summer/autumn with a lag of 8 months (XCORR = 0.60) between hemispheres. There was no difference between the seasonal patterns across European and North American countries. Conclusion CDI demonstrates a distinct seasonal pattern that is consistent across North America, Europe and Oceania. Further studies are required to identify the driving factors of the observed seasonality. PMID:25775463

  1. Retrospective assessment of seasonal allergic symptoms

    DEFF Research Database (Denmark)

    Bødtger, Uffe; Poulsen, L K; Malling, H-J

    2003-01-01

    in a double-blind study. Assessment of severity of symptoms from the nose, eyes and lungs were performed daily during the season 2000, and post-seasonally 6 months after the season in 1999 and 2000. A four-point verbal descriptor scale (VDS-4) was used at all occasions. A mean in-seasonal symptom rating...

  2. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum)

    Science.gov (United States)

    B.L. Wong; K.L. Baggett; A.H. Rye

    2003-01-01

    Sugar maple (Acer saccharum Marsh.) trees exhibit seasonal patterns of production, accumulation, and utilization of nonstructural carbohydrates that are closely correlated with phenological events and (or) physiological processes. The simultaneous seasonal patterns of both reserve and soluble carbohydrates in the leaves, twigs, branches, and trunks of healthy mature...

  3. Child maltreatment hospitalisations in Hong Kong: incidence rate and seasonal pattern.

    Science.gov (United States)

    Ip, Patrick; Ho, Frederick Ka-Wing; Chan, Ko Ling; Yip, Paul Siu-Fai; Lau, Joseph Tak-Fai; Wong, Wilfred Hing-Sang; Chow, Chun-Bong; Jiang, Fan

    2016-12-01

    We investigated the incidence and seasonal patterns of child maltreatment hospitalisations in Hong Kong. A retrospective study of subjects aged under 19 years with a primary diagnosis of child maltreatment admitted to hospitals in Hong Kong from 2001 to 2010. Data were retrieved from the centralised database of all 42 public hospitals in the Hospital Authority. Child maltreatment incidence rate. A consistent seasonal pattern was found for non-sexual maltreatment in children aged 6-18 years (pmaltreatment or among children under 6 years. The seasonal pattern of child maltreatment coincided with the two school examination periods. The annual child maltreatment hospitalisation rate in Hong Kong in 2010 was 73.4 per 100 000 children under 19 years, more than double that in 2001. A peculiar seasonal pattern and an alarming increasing trend in child maltreatment hospitalisation were observed in Hong Kong, which we speculated to be related to school examination stress and increasing socioeconomic disparity. Our findings highlighted differences in the trends of child maltreatment between Hong Kong and the West. Professionals and policymakers should be made aware of these trends and develop effective strategies to tackle child maltreatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Seasonal Differences in the Day-of-the-Week Pattern of Suicide in Queensland, Australia

    Science.gov (United States)

    Law, Chi-kin; De Leo, Diego

    2013-01-01

    Various temporal patterns of suicide events, according to time of day, day of week, month and season, have been identified. However, whether different dimensions of time interact has not been investigated. Using suicide data from Queensland, Australia, this study aims to verify if there is an interaction effect between seasonal and day-of-the-week distribution. Computerized suicide data from the Queensland Suicide Register for those aged 15+ years were analyzed according to date of death, age, sex and geographic location for the period 1996–2007. To examine seasonal differences in day-of-the-week pattern of suicide, Poisson regressions were used. A total of 6,555 suicides were recorded over the whole study period. Regardless of the season, male residents of Brisbane had a significantly marked day-of-the-week pattern of suicide, with higher rates between Mondays and Thursdays. When seasonal differences were considered, male residents in Brisbane showed a Monday peak in summer and a wave-shape pattern with a peak on Thursday and a nadir on Saturdays in winter. Whilst males have distinctive peaks in terms of days of the week for summer and winter, females do not show similar patterns. PMID:23880724

  5. Seasonality of cholera from 1974 to 2005: a review of global patterns

    Directory of Open Access Journals (Sweden)

    Feldacker Caryl

    2008-06-01

    Full Text Available Abstract Background The seasonality of cholera is described in various study areas throughout the world. However, no study examines how temporal cycles of the disease vary around the world or reviews its hypothesized causes. This paper reviews the literature on the seasonality of cholera and describes its temporal cycles by compiling and analyzing 32 years of global cholera data. This paper also provides a detailed literature review on regional patterns and environmental and climatic drivers of cholera patterns. Data, Methods, and Results Cholera data are compiled from 1974 to 2005 from the World Health Organization Weekly Epidemiological Reports, a database that includes all reported cholera cases in 140 countries. The data are analyzed to measure whether season, latitude, and their interaction are significantly associated with the country-level number of outbreaks in each of the 12 preceding months using separate negative binomial regression models for northern, southern, and combined hemispheres. Likelihood ratios tests are used to determine the model of best fit. The results suggest that cholera outbreaks demonstrate seasonal patterns in higher absolute latitudes, but closer to the equator, cholera outbreaks do not follow a clear seasonal pattern. Conclusion The findings suggest that environmental and climatic factors partially control the temporal variability of cholera. These results also indirectly contribute to the growing debate about the effects of climate change and global warming. As climate change threatens to increase global temperature, resulting rises in sea levels and temperatures may influence the temporal fluctuations of cholera, potentially increasing the frequency and duration of cholera outbreaks.

  6. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  7. Retrospective assessment of seasonal allergic symptoms

    DEFF Research Database (Denmark)

    Bodtger, U; Poulsen, Lars K.; Malling, H-J

    2003-01-01

    The history of the severity of seasonal allergic symptoms is often obtained post-seasonally as a retrospective assessment. Correct rating is essential when determining the efficacy of pharmaceutical treatment, indications for allergen-specific immunotherapy (SIT), or inclusion into controlled cli...

  8. Impacts of Seasonal Patterns of Climate on Recurrent Fluctuations in Tourism Demand: Evidence from Aruba

    NARCIS (Netherlands)

    Ridderstaat, J.R.; Oderber, M.; Croes, R.; Nijkamp, P.; Martens, P.

    2014-01-01

    This study estimates the effect of seasonal patterns of pull and push climate elements (rainfall, temperature, wind, and cloud coverage) on recurrent fluctuations in tourism demand from the United States (USA) and Venezuela to Aruba. The seasonal patterns were first isolated from the series using

  9. When do predatory mites (Phytoseiidae) attack? Understanding their diel and seasonal predation patterns.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Aguilar-Fenollosa, Ernestina; Hurtado, Mónica A; Jaques, Josep A; Pina, Tatiana

    2017-06-16

    Predatory mites of the Phytoseiidae family are considered one of the most important groups of natural enemies used in biological control. The behavioral patterns of arthropods can differ greatly daily and seasonally; however, there is a lack of literature related to Phytoseiidae diel and seasonal predation patterns. The predatory activity of three phytoseiid species (two Tetranychidae-specialists, Phytoseiulus persimilis and Neoseiulus californicus, and one omnivore, Euseius stipulatus) that occur naturally in Spanish citrus orchards was observed under laboratory conditions in winter and summer. The temperature and photoperiod of the climatic chamber where the mites were reared did not change during the experiment. Our study demonstrates that phytoseiids can exhibit diel and seasonal predatory patterns when feeding on Tetranychus urticae (Acari: Tetranychidae). Neoseiulus californicus was revealed to be a nocturnal predator in summer but diurnal in winter. In contrast, P. persimilis activity was maximal during the daytime, and E. stipulatus showed no clear daily predation patterns. The predatory patterns described in this study should be taken into account when designing laboratory studies and also in field samplings, especially when applying molecular techniques to unveil trophic relationships. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  10. Associating sex-biased and seasonal behaviour with contact patterns and transmission risk in Gopherus agassizii

    Science.gov (United States)

    Aiello, Christina M.; Esque, Todd; Nussear, K. E.; Emblidge, P. G.; Hudson, P. J.

    2018-01-01

    Interactions between wildlife hosts act as transmission routes for directly transmitted pathogens and vary in ways that affect transmission efficiency. Identifying drivers of contact variation can allow both contact inference and estimation of transmission dynamics despite limited data. In desert tortoises, mating strategy, burrow use and seasonal change influence numerous behaviours and likely shape contact patterns. In this study, we ask to what extent tortoise contact behaviour varies between sexes and seasons, and whether space or burrow-use data can be used to infer contact characteristics consistent with those recorded by proximity loggers. We identified sex and season-biased contact behaviour in both wild and captive populations indicative of female-female avoidance and seasonal male mate-seeking behaviour. Space and burrow-use patterns were informative, but did not always predict the extent of sex or seasonal biases on contact. We discuss the implications these findings have for transmission patterns and disease mitigation in tortoise populations.

  11. Evaluation of a Novel Single-administration Food Frequency Questionnaire for Assessing Seasonally Varied Dietary Patterns among Women in Rural Nepal.

    Science.gov (United States)

    Campbell, Rebecca K; Talegawkar, Sameera A; Christian, Parul; Leclerq, Steven C; Khatry, Subarna K; Wu, Lee S F; Stewart, Christine P; West, Keith P

    2015-01-01

    Novel dietary assessment methods are needed to study chronic disease risk in agrarian cultures where food availability is highly seasonal. In 16,320 rural Nepalese women, we tested a novel food frequency questionnaire, administered once, to assess past 7-day intake and usual frequency of intake throughout the year for year-round foods and when in season for seasonal foods. Spearman rank correlations between usual and past 7-day intakes were 0.12-0.85 and weighted kappa statistics, representing chance-corrected agreement, were 0.10-0.80, with better agreement for frequently consumed foods. The questionnaire performed well, but may require refinement for settings of extremely low dietary diversity.

  12. Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil.

    Science.gov (United States)

    Krüger, Rodrigo Ferreira; Krolow, Tiago Kütter

    2015-12-01

    Fluctuations in seasonal patterns of horse fly populations were examined in rainforests of tropical South America, where the climate is seasonal. These patterns were evaluated with robust analytical models rather than identifying the main factors that influenced the fluctuations. We examined the seasonality of populations of horse flies in fields and lowland areas of the Pampa biome of southern Brazil with generalized linear models. We also investigated the diversity of these flies and the sampling effort of Malaise traps in this biome over two years. All of the 29 species had clear seasonality with regard to occurrence and abundance, but only seven species were identified as being influenced by temperature and humidity. The sampling was sufficient and the estimated diversity was 10% more than observed. Seasonal trends were synchronized across species and the populations were most abundant between September and March and nearly zero in other months. While previous studies demonstrated that seasonal patterns in population fluctuations are correlated with climatic conditions in horse fly assemblages in South America rainforests, we show a clear effect of each factor on richness and abundance and the seasonality in the prevalence of horse fly assemblages in localities of the Pampa biome. © 2015 The Society for Vector Ecology.

  13. Spatial and seasonal distribution patterns of the ragged-tooth shark ...

    African Journals Online (AJOL)

    Catches from competitive shore-anglers, inshore boatbased anglers and sightings by spearfishers and divers were used to infer the spatial and seasonal movement patterns of young-of-the-year (2.4m TL) ragged-tooth sharks Carcharias taurus along ...

  14. Global Seasonality of Rotavirus Disease

    Science.gov (United States)

    Patel, Manish M.; Pitzer, Virginia; Alonso, Wladimir J.; Vera, David; Lopman, Ben; Tate, Jacqueline; Viboud, Cecile; Parashar, Umesh D.

    2012-01-01

    Background A substantial number of surveillance studies have documented rotavirus prevalence among children admitted for dehydrating diarrhea. We sought to establish global seasonal patterns of rotavirus disease before widespread vaccine introduction. Methods We reviewed studies of rotavirus detection in children with diarrhea published since 1995. We assessed potential relationships between seasonal prevalence and locality by plotting the average monthly proportion of diarrhea cases positive for rotavirus according to geography, country development, and latitude. We used linear regression to identify variables that were potentially associated with the seasonal intensity of rotavirus. Results Among a total of 99 studies representing all six geographical regions of the world, patterns of year-round disease were more evident in low- and low-middle income countries compared with upper-middle and high income countries where disease was more likely to be seasonal. The level of country development was a stronger predictor of strength of seasonality (P=0.001) than geographical location or climate. However, the observation of distinctly different seasonal patterns of rotavirus disease in some countries with similar geographical location, climate and level of development indicate that a single unifying explanation for variation in seasonality of rotavirus disease is unlikely. Conclusion While no unifying explanation emerged for varying rotavirus seasonality globally, the country income level was somewhat more predictive of the likelihood of having seasonal disease than other factors. Future evaluation of the effect of rotavirus vaccination on seasonal patterns of disease in different settings may help understand factors that drive the global seasonality of rotavirus disease. PMID:23190782

  15. Reproductive Patterns in the Non-Breeding Season in Asinina de Miranda Jennies.

    Science.gov (United States)

    Quaresma, M; Silva, S R; Payan-Carreira, R

    2015-10-01

    This study aims to characterize the reproductive patterns in Asinina de Miranda jennies during the non-breeding season. Reproductive activity was surveyed in 12 females, aged between 3 and 18 years old, using ultrasound and teasing with a jack. The animals were monitored from September to April, six in each consecutive year. Of these 12 females, nine showed disruption to the normal pattern of ovarian activity during the non-breeding season. Loss of normal cyclicity included anoestrus (41.7%), silent ovulatory oestrus (25%), and persistence of corpus luteum (8.3%). Only three females maintained a regular cyclic pattern with oestrous behaviour during the non-breeding season. Anoestrus began in early November and lasted for an average of 147 ± 28 days (113-191 days), ending near to the spring equinox. Onset of silent oestrous cycles began more erratically, between October and February. In both groups the first behavioural ovulation of the year occurred around the time of the spring equinox. Disrupted reproductive activity was preceded by a shorter oestrous cycle only in females entering anoestrus. The mean follicle size in the first ovulation of the year was larger than in the reproductive season (44.7 ± 2.45 mm vs 39.2 ± 3.60 mm) in anoestrous jennies with protracted oestrus. Though age and body condition score (BCS) were associated, changes in BCS below a threshold of four points (for anoestrus) and five points (for silent oestrus) contributed greatly to disruption of reproductive cycles. BCS in females with regular oestrous cycles during the winter season remained unchanged or exceeded five points prior to the winter solstice. © 2015 Blackwell Verlag GmbH.

  16. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a cross-sectional study

    DEFF Research Database (Denmark)

    Kolle, Elin; Steene-Johannessen, Jostein; Andersen, Lars B

    2009-01-01

    ABSTRACT: BACKGROUND: The literature on seasonality in children and youth's physical activity participation is inconsistent. The aims of this study were to: 1) compare physical activity across seasons and describe activity patterns within seasons, and 2) to determine compliance with current...... data were collected during winter, spring and fall. General linear models were used to study the associations between physical activity and season. RESULTS: Nine-year-old children had significantly higher mean physical activity levels in spring than in winter and fall. In the two latter seasons...... physical activity recommendations across seasons among 9- and 15-year-olds living in a climatically diverse country. METHODS: Participants were 2,299 9- and 15-year-olds from all regions in Norway. Physical activity was assessed using the Actigraph accelerometer for 4 consecutive days. Physical activity...

  17. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (NDMA FP showed more variability in spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) NDMA FP (R(2) = 0.53). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Frequency and characteristics of individuals with seasonal pattern among depressive patients attending primary care in France.

    Science.gov (United States)

    Azorin, Jean-Michel; Adida, Marc; Belzeaux, Raoul

    2015-01-01

    High rates of bipolar disorder (BD) have been found among major depressives with seasonal pattern (SP) consulting in psychiatric departments, as well as among patients seeking primary care. As SP was reported to be common in the latter, the current study was designed to assess (a) the frequency and characteristics of SP among major depressives attending primary care and (b) the prevalence and aspects of BD in this population. Among 400 patients who consulted French general practitioners (GPs) for major depression between February and December 2010, 390 could be included in the study: 167 (42.8%) met Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria for seasonal pattern [SP(+)], whereas 223 (57.2%) did not meet these criteria [SP(-)]. The two groups were compared on demographic, clinical, family history and temperamental characteristics. Compared to SP(-), SP(+) patients were more frequently female, married and with a later age at first depressive episode, and showed more atypical vegetative symptoms, comorbid bulimia and stimulant abuse. They also exhibited more lifetime depressive episodes, were more often diagnosed as having BD II and met more often bipolarity specifier criteria, with higher rates of bipolar temperaments and a higher BD family loading. Among SP(+) patients, 68.9% met the bipolarity specifier criteria, whereas 31.1% did not. Seasonality was not influenced by climatic conditions. The following independent variables were associated with SP: BD according to bipolarity specifier, female gender, comorbid bulimia nervosa, hypersomnia, number of depressive episodes and family history of substance abuse. Seasonal pattern is frequent among depressive patients attending primary care in France and may be indicative of hidden bipolarity. Given the risks associated with both SP and bipolarity, GPs are likely to have a major role in regard to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. SEASONAL DIFFERENCES IN PHYSICAL ACTIVITY AND SEDENTARY PATTERNS: THE RELEVANCE OF THE PA CONTEXT

    Directory of Open Access Journals (Sweden)

    Pedro Silva

    2011-03-01

    Full Text Available The aim of this pilot study was to characterize seasonal variation in the moderate to vigorous physical activity (MVPA and sedentary behavior of Portuguese school youth, and understand the influence of activity choices and settings. The participants in this study were 24 students, aged 10-13 years. Accelerometers measured daily PA over 7 consecutive days, in different seasons May - June and January - February. In summer, boys accumulated more minutes in MVPA (928 minutes/week than girls (793 minutes/week. In winter the pattern was reversed with girls accumulating more activity than boys (736 minutes/week vs. 598 minutes/week. The repeated measures ANOVA revealed significant effects for season (F = 5.98, p = 0.023 and in- school vs. out-of-school (F = 6.53, p = 0.018. Youth were more active in the summer and activity levels were higher after school than in school. Summer season provided relevant contexts for youth physical activity accumulation. Winter season may have been a significant barrier to boy's preferred PA context. Differences in choices of outdoor or indoor PA, after school, explained the gender differences in seasonal activity patterns

  20. Spatio-temporal seasonal drought patterns in Europe from 1950 to 2015

    Science.gov (United States)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen

    2016-04-01

    Drought is one of the natural disasters with severe impacts in Europe, not only in areas which frequently experience water scarcity such as the Mediterranean, but also in temperate or continental climates such as Central and Eastern Europe and even in cold regions such as Scandinavia and Iceland. In this study the spatio-temporal patterns of seasonal meteorological droughts in Europe between 1950 and 2015 are investigated using the Standardized Precipitation Index (SPI) and the Standardized Precipitation-Evapotranspiration Index (SPEI). Since the focus is on the analysis of seasonal drought trends, indicators were calculated for 3 monthly accumulation periods. The input variables of precipitation and temperature were derived from E-OBS grids (v11-v12) at a spatial resolution of 0.25°x0.25°. Seasonal trends of drought frequency and severity were analyzed for moderate (SPI or SPEI 2.0) events during the periods 1950-2015 and 1981-2015. For the moderate events, results of the SPI analysis (precipitation driven) demonstrate a significant tendency towards less frequent and severe droughts in Northern Europe and Russia, especially in winter and spring; oppositely, an increasing trend is visible in Southern Europe, mainly in spring and summer. According to the SPEI analysis (precipitation and temperature driven) Northern Europe shows wetting patterns, while Southern and Eastern Europe show a more remarkable drying tendency, especially in summer and autumn for drought frequency and in every season for drought severity. The evolution towards drier conditions is more relevant from 1981 onwards, both in terms of frequency and severity. This is especially true for Central Europe in spring, for the Mediterranean in summer, and for Eastern Europe in autumn. Extreme events follow similar patterns, but in autumn no spatially coherent trend can be found.

  1. Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness.

    Science.gov (United States)

    Lavania, Umesh C; Basu, Surochita; Kushwaha, Jyotsana Singh; Lavania, Seshu

    2014-09-01

    Environmental stress in plants impacts many biological processes, including male gametogenesis, and affects several cytological mechanisms that are strongly interrelated. To understand the likely impact of rising temperature on reproductive fitness in the climate change regime, a study of tapetal mitosis and its accompanying meiosis over seasons was made to elucidate the influence of temperature change on the cytological events occurring during microsporogenesis. For this we used two species of an environmentally sensitive plant system, i.e., genus Cymbopogon Sprengel (Poaceae), namely Cymbopogon nardus (L.) Rendle var. confertiflorus (Steud.) Bor (2n = 20) and Cymbopogon jwaruncusha (Jones) Schult. (2n = 20). Both species flower profusely during extreme summer (48 °C) and mild winter (15 °C) but support low and high seed fertility, respectively, in the two seasons. We have shown that tapetal mitotic patterns over seasons entail differential behavior for tapetal mitosis. During the process of tapetum development there are episodes of endomitosis that form either (i) an endopolyploid genomically imbalanced uninucleate and multinucleate tapetum, and (or) (ii) an acytokinetic multinucleate genomically balanced tapetum, with the progression of meiosis in the accompanying sporogenous tissue. The relative frequency of occurrence of the two types of tapetum mitosis patterns is significantly different in the two seasons, and it is found to be correlated with the temperature conditions. Whereas, the former (genomically imbalanced tapetum) are prevalent during the hot summer, the latter (genomically balanced tapetum) are frequent under optimal conditions. Such a differential behaviour in tapetal mitosis vis-à-vis temperature change is also correspondingly accompanied by substantial disturbances or regularity in meiotic anaphase disjunction. Both species show similar patterns. The study underpins that tapetal mitotic behaviour per se could be a reasonable indicator to

  2. The prevalence of seasonal affective disorder in the Netherlands : A prospective and retrospective study of seasonal mood variation in the general population

    NARCIS (Netherlands)

    Mersch, PPA; Middendorp, HM; Bouhuys, AL; Beersma, DGM; van den Hoofdakker, RH; Middendorp, Hermine M.

    1999-01-01

    Background: The aim of the present study was to assess the prevalence of seasonal affective disorder (SAD) in The Netherlands. Methods: The subjects (n = 5356), randomly selected from community registers, were given the Seasonal Pattern Assessment Questionnaire and the Centre for Epidemiological

  3. Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site.

    Science.gov (United States)

    Nuuttila, Hanna K; Bertelli, Chiara M; Mendzil, Anouska; Dearle, Nessa

    2018-04-01

    Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phlebotomus argentipes seasonal patterns in India and Nepal.

    Science.gov (United States)

    Picado, Albert; Das, Murari Lal; Kumar, Vijay; Dinesh, Diwakar S; Rijal, Suman; Singh, Shri P; Das, Pradeep; Coosemans, Marc; Boelaert, Marleen; Davies, Clive

    2010-03-01

    The current control of Phebotomus argentipes (Annandale and Brunetti), the vector of Leishmania donovani (Laveran and Mesnil), on the Indian subcontinent is base on indoor residual spraying. The efficacy of this method depends, among other factors, on the timing and number of spraying rounds, which depend on the P. argentipes seasonality. To describe P. argentipes' seasonal patterns, six visceral leishmaniasis (VL) endemic villages, three in Muzaffarpur and three in Sunsari districts in India and Nepal, respectively, were selected based on accessibility and VL incidence. Ten houses per cluster with the highest P. argentipes density were monitored monthly for 15-16 mo using Center for Disease Control and Prevention light traps. Minimum and maximum temperature and rainfall data for the months January 2006 through December 2007 were collected from the nearest available weather stations. Backwards stepwise regression was used to generate the minimal adequate model for explaining the monthly variation in P. argentipes populations. The seasonality of P. argentipes is similar in India and Nepal, with two annual density peaks around May and October. Monthly P. argentipes density is positively associated with temperature and negatively associated with rainfall in both study sites. The multivariate climate model explained 57% of the monthly vectorial abundance. Vector control programs against P. argentipes (i.e., indoor residual spraying) should take into account the seasonal described here when implementing and monitoring interventions. Monitoring simple meteorological variables (i.e., temperature, rainfall) may allow prediction of VL epidemics on the Indian subcontinent.

  5. Projections of Seasonal Patterns in Temperature- Related Deaths for Manhattan, New York

    Science.gov (United States)

    Li, Tiantian; Horton, Radley M.; Kinney, Patrick L.

    2013-01-01

    Global average temperatures have been rising for the past half-century, and the warming trend has accelerated in recent decades. Further warming is expected over the next few decades, with significant regional variations. These warming trends will probably result in more frequent, intense and persistent periods of hot temperatures in summer, and generally higher temperatures in winter. Daily death counts in cities increase markedly when temperatures reach levels that are very high relative to what is normal in a given location. Relatively cold temperatures also seem to carry risk. Rising temperatures may result in more heat-related mortality but may also reduce cold-related mortality, and the net impact on annual mortality remains uncertain. Here we use 16 downscaled global climate models and two emissions scenarios to estimate present and future seasonal patterns in temperature-related mortality in Manhattan, New York. All 32 projections yielded warm-season increases and cold-season decreases in temperature-related mortality, with positive net annual temperature-related deaths in all cases. Monthly analyses showed that the largest percentage increases may occur in May and September. These results suggest that, over a range of models and scenarios of future greenhouse gas emissions, increases in heat-related mortality could outweigh reductions in cold-related mortality, with shifting seasonal patterns.

  6. Investigating the patterns and determinants of seasonal variation in vitamin D status in Australian adults: the Seasonal D Cohort Study

    Directory of Open Access Journals (Sweden)

    Laura King

    2016-08-01

    Full Text Available Abstract Background Vitamin D status generally varies seasonally with changing solar UVB radiation, time in the sun, amount of skin exposed, and, possibly, diet. The Seasonal D Study was designed to quantify the amplitude and phase of seasonal variation in the serum concentration of 25-hydroxyvitamin D, (25OHD and identify the determinants of the amplitude and phase and those of inter-individual variability in seasonal pattern. Methods The Seasonal D Study collected data 2-monthly for 12 months, including demographics, personal sun exposure using a diary and polysulphone dosimeters over 7 days, and blood for serum 25(OHD concentration. The study recruited 333 adults aged 18–79 years living in Canberra (35°S, n = 168 and Brisbane (27°South, n = 165, Australia. Discussion We report the study design and cohort description for the Seasonal D Study. The study has collected a wealth of data to examine inter- and intra-individual seasonal variation in vitamin D status and serum 25(OHD levels in Australian adults.

  7. Seasonal changes in plant-water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies.

    Science.gov (United States)

    Vinya, Royd; Malhi, Yadvinder; Brown, Nick D; Fisher, Joshua B; Brodribb, Timothy; Aragão, Luiz E O C

    2018-06-15

    Water availability has frequently been linked to seasonal leaf display in seasonally dry ecosystems, but there have been few ecohydrological investigations of this link. Miombo woodland is a dominant seasonally dry tropical forest ecosystem type in southern Africa; however, there are few data on the relationship between seasonal dynamics in plant-water relations and patterns of leaf display for Miombo woodland. Here we investigate this relationship among nine key Miombo woodland tree species differing in drought tolerance ability and leaf phenology. Results of this study showed that seasonal patterns of leaf phenology varied significantly with seasonal changes in stem water relations among the nine species. Leaf shedding coincided with the attainment of seasonal minimum stem water potential. Leaf flush occurred following xylem rehydration at the peak of the dry season suggesting that endogenous plant factors play a pivotal role in seasonal leaf display in this forest type. Drought-tolerant deciduous species suffered significantly higher seasonal losses in xylem hydraulic conductivity than the drought-intolerant semi-evergreen tree species (P water stress in seasonally dry tropical forests selects for water conservative traits that protect the vulnerable xylem transport system. Therefore, seasonal rhythms in xylem transport dictate patterns of leaf display in seasonally dry tropical forests.

  8. Animal perception of seasonal thresholds: changes in elephant movement in relation to rainfall patterns.

    Science.gov (United States)

    Birkett, Patricia J; Vanak, Abi T; Muggeo, Vito M R; Ferreira, Salamon M; Slotow, Rob

    2012-01-01

    The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions

  9. Animal perception of seasonal thresholds: changes in elephant movement in relation to rainfall patterns.

    Directory of Open Access Journals (Sweden)

    Patricia J Birkett

    Full Text Available BACKGROUND: The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal's behaviour, which contributes to an understanding of species' responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana, in relation to local and regional rainfall patterns. METHODOLOGY/PRINCIPAL FINDINGS: We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007-2009. Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. CONCLUSIONS/SIGNIFICANCE: By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal's perspective, for delineating seasons or

  10. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qingyun [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yu, Yuhe [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Deng, Ye [CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing China; Li, Xinghao [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wu, Shu [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Dai, Lili [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Zhang, Xiang [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Jinjin [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Wang, Chun [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ni, Jiajia [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Li, Xuemei [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Hu, Hongjuan [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Xiao, Fanshu [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Feng, Weisong [Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan China; Ning, Daliang [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; He, Zhili [Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou China; Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Van Nostrand, Joy D. [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Wu, Liyou [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; Zhou, Jizhong [Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing China; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA

    2017-05-21

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relative abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.

  11. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  12. Seasonal and Diel Vocalization Patterns of Antarctic Blue Whale (Balaenoptera musculus intermedia in the Southern Indian Ocean: A Multi-Year and Multi-Site Study.

    Directory of Open Access Journals (Sweden)

    Emmanuelle C Leroy

    Full Text Available Passive acoustic monitoring is an efficient way to provide insights on the ecology of large whales. This approach allows for long-term and species-specific monitoring over large areas. In this study, we examined six years (2010 to 2015 of continuous acoustic recordings at up to seven different locations in the Central and Southern Indian Basin to assess the peak periods of presence, seasonality and migration movements of Antarctic blue whales (Balaenoptera musculus intermedia. An automated method is used to detect the Antarctic blue whale stereotyped call, known as Z-call. Detection results are analyzed in terms of distribution, seasonal presence and diel pattern of emission at each site. Z-calls are detected year-round at each site, except for one located in the equatorial Indian Ocean, and display highly seasonal distribution. This seasonality is stable across years for every site, but varies between sites. Z-calls are mainly detected during autumn and spring at the subantarctic locations, suggesting that these sites are on the Antarctic blue whale migration routes, and mostly during winter at the subtropical sites. In addition to these seasonal trends, there is a significant diel pattern in Z-call emission, with more Z-calls in daytime than in nighttime. This diel pattern may be related to the blue whale feeding ecology.

  13. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  14. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  15. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  16. Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain

    Science.gov (United States)

    Zhang, Tuantuan; Huang, Bohua; Yang, Song; Laohalertchai, Charoon

    2018-06-01

    The seasonal dependence of the prediction skill of 850-hPa monthly zonal wind over the tropical Indo-Pacific domain is examined using the ensemble reforecasts for 1983-2010 from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis and Reforecast (CFSRR) project. According to a maximum signal-to-noise empirical orthogonal function analysis, the most predictable patterns of atmospheric low-level circulation are associated with the developing and maturing phases of El Niño-Southern Oscillation (ENSO). The CFSv2 is capable of predicting these ENSO-related patterns up to 9-months in advance for all months, except for May-June when the effect of the spring barrier is strong. The other predictable climate processes associated with the low-level atmospheric circulation are more seasonally dependent. For winter and spring, the second most predictable patterns are associated with the ENSO decaying phase. Within these seasons, the monthly evolution of the predictable patterns is characterized by a southward shift of westerly wind anomalies, generated by the interaction between the annual cycle and the ENSO signals (i.e., the combination-mode). In general, the CFSv2 hindcast well predicts these patterns at least 5 months in advance for spring, while shows much lower skills for winter months. In summer, the second predictable patterns are associated with the western North Pacific (WNP) monsoon (i.e., the WNP anticyclone/cyclone) in short leads while associated with ENSO in longer leads (after 4-month lead). The second predictable patterns in fall are mainly associated with tropical Indian Ocean Dipole, which can be predicted 3 months in advance.

  17. Season of sampling and season of birth influence serotonin metabolite levels in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Jurjen J Luykx

    Full Text Available BACKGROUND: Animal studies have revealed seasonal patterns in cerebrospinal fluid (CSF monoamine (MA turnover. In humans, no study had systematically assessed seasonal patterns in CSF MA turnover in a large set of healthy adults. METHODOLOGY/PRINCIPAL FINDINGS: Standardized amounts of CSF were prospectively collected from 223 healthy individuals undergoing spinal anesthesia for minor surgical procedures. The metabolites of serotonin (5-hydroxyindoleacetic acid, 5-HIAA, dopamine (homovanillic acid, HVA and norepinephrine (3-methoxy-4-hydroxyphenylglycol, MPHG were measured using high performance liquid chromatography (HPLC. Concentration measurements by sampling and birth dates were modeled using a non-linear quantile cosine function and locally weighted scatterplot smoothing (LOESS, span = 0.75. The cosine model showed a unimodal season of sampling 5-HIAA zenith in April and a nadir in October (p-value of the amplitude of the cosine = 0.00050, with predicted maximum (PC(max and minimum (PC(min concentrations of 173 and 108 nmol/L, respectively, implying a 60% increase from trough to peak. Season of birth showed a unimodal 5-HIAA zenith in May and a nadir in November (p = 0.00339; PC(max = 172 and PC(min = 126. The non-parametric LOESS showed a similar pattern to the cosine in both season of sampling and season of birth models, validating the cosine model. A final model including both sampling and birth months demonstrated that both sampling and birth seasons were independent predictors of 5-HIAA concentrations. CONCLUSION: In subjects without mental illness, 5-HT turnover shows circannual variation by season of sampling as well as season of birth, with peaks in spring and troughs in fall.

  18. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus).

    Science.gov (United States)

    Tozetti, Alexandro M; Martins, Marcio

    2013-09-01

    This study aimed at describing daily and seasonal variation in the activity of a population of South-American rattlesnakes (Crotalus durissus) in a savanna like habitat (Cerrado) in Southeastern Brazil. Seasonal and daily activities of snakes were evaluated by the number of captures of snakes during road surveys, accidental encounters, and relocations by radio-tracking. Our results show that climatic variables such as air temperature and rainfall have little influence on the activity pattern of rattlesnakes. Our findings indicate that rattlesnakes spend most of the day resting and most of the night in ambush posture. The South-American rattlesnake is active throughout the year with a discrete peak in activity of males during the matting season. The possibility of maintaining activity levels even during the coldest and driest season can facilitate the colonization of several habitats in South America. This possibility currently facilitates the colonization of deforested areas by rattlesnakes.

  19. Assessment and Seasonal Variations of Heavy Metals and Mineral ...

    African Journals Online (AJOL)

    Mal Raji

    ISSN 0794-5698. Assessment and Seasonal Variations of Heavy Metals and Mineral Elements in River ... immediately from Sokoto Cement Factory) at value above WHO's permissible limit in the rainy season. Ag .... level which is considered to represent a threat to the life of .... regulations governing waste management and.

  20. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus

    Directory of Open Access Journals (Sweden)

    ALEXANDRO M. TOZETTI

    2013-09-01

    Full Text Available This study aimed at describing daily and seasonal variation in the activity of a population of South-American rattlesnakes (Crotalus durissus in a savanna like habitat (Cerrado in Southeastern Brazil. Seasonal and daily activities of snakes were evaluated by the number of captures of snakes during road surveys, accidental encounters, and relocations by radio-tracking. Our results show that climatic variables such as air temperature and rainfall have little influence on the activity pattern of rattlesnakes. Our findings indicate that rattlesnakes spend most of the day resting and most of the night in ambush posture. The South-American rattlesnake is active throughout the year with a discrete peak in activity of males during the matting season. The possibility of maintaining activity levels even during the coldest and driest season can facilitate the colonization of several habitats in South America. This possibility currently facilitates the colonization of deforested areas by rattlesnakes.

  1. Hybrid model for forecasting time series with trend, seasonal and salendar variation patterns

    Science.gov (United States)

    Suhartono; Rahayu, S. P.; Prastyo, D. D.; Wijayanti, D. G. P.; Juliyanto

    2017-09-01

    Most of the monthly time series data in economics and business in Indonesia and other Moslem countries not only contain trend and seasonal, but also affected by two types of calendar variation effects, i.e. the effect of the number of working days or trading and holiday effects. The purpose of this research is to develop a hybrid model or a combination of several forecasting models to predict time series that contain trend, seasonal and calendar variation patterns. This hybrid model is a combination of classical models (namely time series regression and ARIMA model) and/or modern methods (artificial intelligence method, i.e. Artificial Neural Networks). A simulation study was used to show that the proposed procedure for building the hybrid model could work well for forecasting time series with trend, seasonal and calendar variation patterns. Furthermore, the proposed hybrid model is applied for forecasting real data, i.e. monthly data about inflow and outflow of currency at Bank Indonesia. The results show that the hybrid model tend to provide more accurate forecasts than individual forecasting models. Moreover, this result is also in line with the third results of the M3 competition, i.e. the hybrid model on average provides a more accurate forecast than the individual model.

  2. Long-term seasonal nutrient limiting patterns at Meiliang Bay in a large, shallow and subtropical Lake Taihu, China

    Directory of Open Access Journals (Sweden)

    Rui Ye

    2015-04-01

    Full Text Available Lake Taihu has undergone severe eutrophication in the past three decades, and harmful cyanobacteria blooms occur nearly every year in Meiliang Bay at the north end of the lake. To elucidate the potential relationship between seasonal nutrient limitation and phytoplankton proliferation, a 20-year (1991-2012 time series of nutrient limitation in Meiliang Bay was analyzed for deviations between trophic state index (TSI parameters. Results showed that patterns of nutrient limitation in Meiliang Bay were distinctly seasonal, where phytoplankton growth was generally phosphorus (P-limited in winter and spring, but nitrogen (N-limited mainly occurred in summer and fall. This general pattern, however, shifted into N limitation across the four seasons during the mid-1990s because a rapid increase in industrialization led to a significant rise in the input of N and P from inflowing tributaries. The initial patterns were restored by environmental regulation in the end of 1990s, including the Zero Actions plan. Using routine monitoring data, a generalised additive model (GAM with time and deviations between trophic state indexes for nitrogen and phosphorus (TSIN-TSIP as explanatory variables was used to explore which nutrient was responsible for limitation of phytoplankton chlorophyll-a (Chl-a in different seasons. Surprisingly, the model revealed a weak N limitation (TSIN-TSIP = -10 corresponded to peak values of Chl-a in summer-autumn season, which is probably because the phytoplankton community is co-limited by N & P during the period. The shift of nutrition limitation during winter-spring would partially explain high values of Chl-a throughout 1996. This study suggests that seasonal patterns of nutrient limitation must be considered to develop effective management measures to control cyanobacterial blooms.

  3. Seasonal and Diel Activity Patterns of Eight Sympatric Mammals in Northern Japan Revealed by an Intensive Camera-Trap Survey.

    Directory of Open Access Journals (Sweden)

    Takashi Ikeda

    Full Text Available The activity patterns of mammals are generally categorized as nocturnal, diurnal, crepuscular (active at twilight, and cathemeral (active throughout the day. These patterns are highly variable across regions and seasons even within the same species. However, quantitative data is still lacking, particularly for sympatric species. We monitored the seasonal and diel activity patterns of terrestrial mammals in Hokkaido, Japan. Through an intensive camera-trap survey a total of 13,279 capture events were recorded from eight mammals over 20,344 camera-trap days, i.e., two years. Diel activity patterns were clearly divided into four categories: diurnal (Eurasian red squirrels, nocturnal (raccoon dogs and raccoons, crepuscular (sika deer and mountain hares, and cathemeral (Japanese martens, red foxes, and brown bears. Some crepuscular and cathemeral mammals shifted activity peaks across seasons. Particularly, sika deer changed peaks from twilight during spring-autumn to day-time in winter, possibly because of thermal constraints. Japanese martens were cathemeral during winter-summer, but nocturnal in autumn. We found no clear indication of predator-prey and competitive interactions, suggesting that animal densities are not very high or temporal niche partitioning is absent among the target species. This long-term camera-trap survey was highly cost-effective and provided one of the most detailed seasonal and diel activity patterns in multiple sympatric mammals under natural conditions.

  4. Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis Patterns and their Impact on Surveillance Estimates.

    Science.gov (United States)

    Mowery, Jared

    2016-01-01

    Influenza (flu) surveillance using Twitter data can potentially save lives and increase efficiency by providing governments and healthcare organizations with greater situational awareness. However, research is needed to determine the impact of Twitter users' misdiagnoses on surveillance estimates. This study establishes the importance of Twitter users' misdiagnoses by showing that Twitter flu surveillance in the United States failed during the 2011-2012 flu season, estimates the extent of misdiagnoses, and tests several methods for reducing the adverse effects of misdiagnoses. Metrics representing flu prevalence, seasonal misdiagnosis patterns, diagnosis uncertainty, flu symptoms, and noise were produced using Twitter data in conjunction with OpenSextant for geo-inferencing, and a maximum entropy classifier for identifying tweets related to illness. These metrics were tested for correlations with World Health Organization (WHO) positive specimen counts of flu from 2011 to 2014. Twitter flu surveillance erroneously indicated a typical flu season during 2011-2012, even though the flu season peaked three months late, and erroneously indicated plateaus of flu tweets before the 2012-2013 and 2013-2014 flu seasons. Enhancements based on estimates of misdiagnoses removed the erroneous plateaus and increased the Pearson correlation coefficients by .04 and .23, but failed to correct the 2011-2012 flu season estimate. A rough estimate indicates that approximately 40% of flu tweets reflected misdiagnoses. Further research into factors affecting Twitter users' misdiagnoses, in conjunction with data from additional atypical flu seasons, is needed to enable Twitter flu surveillance systems to produce reliable estimates during atypical flu seasons.

  5. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment

    Science.gov (United States)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira

    2015-04-01

    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  6. Diel and seasonal movement pattern of the dusky grouper Epinephelus marginatus inside a marine reserve.

    Science.gov (United States)

    Koeck, Barbara; Pastor, Jérémy; Saragoni, Gilles; Dalias, Nicolas; Payrot, Jérôme; Lenfant, Philippe

    2014-03-01

    Temporal movement patterns and spawning behaviour of the dusky grouper Epinephelus marginatus were investigated using depth and temperature sensors combined to acoustic telemetry. Results showed that these fish are year-round resident, remaining inside the fully protected area of the marine reserve of Cerbère-Banyuls (65 ha) and display a diurnal activity pattern. Records from depth sensors revealed that groupers range inside small, distinct, and individual territories. Individual variations in habitat depth are only visible on a seasonal scale, i.e., between the spawning season and the rest of the year. In fact, during summer months when the seawater temperature exceeded 20 °C, tagged groupers made vertical spawning migrations of 4-8 m in amplitude. These vertical migrations are characteristic of the reproductive behaviour of dusky groupers, during which they release their gametes. The results are notable for the implementation of management rules in marine protected areas, such as reduced navigation speed, boating or attendance during spawning season. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Measuring pattern, amplitude and timing differences between monetary and nonmonetary seasonal factors of tourism - the case of Aruba

    NARCIS (Netherlands)

    Ridderstaat, J.R.; Nijkamp, P.

    2015-01-01

    Seasonality is a frequent and important occurrence in the tourism industry, with concurrent effects on both the financial and volume flows of tourism. The purpose of this study is to measure pattern, amplitude and timing differences between the seasonal factors of monetary and non-monetary

  8. Seasonal Changes in Central England Temperatures

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Hillebrand, Eric

    The aim of this paper is to assess how climate change is reflected in the variation of the seasonal patterns of the monthly Central England Temperature time series between 1772 and 2013. In particular, we model changes in the amplitude and phase of the seasonal cycle. Starting from the seminal work...... by Thomson (“The Seasons, Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a number of studies have documented a shift in the phase of the annual cycle implying an earlier onset of the spring season at various European locations. A significant reduction in the amplitude...... and stochastic trends, as well as seasonally varying autocorrelation and residual variances. The model can be summarized as containing a permanent and a transitory component, where global warming is captured in the permanent component, on which the seasons load differentially. The phase of the seasonal cycle...

  9. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.

    Science.gov (United States)

    Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.

  10. Seasonal pattern of seed dormancy in parthenium hysterophorus L

    International Nuclear Information System (INIS)

    Arshad Javaid, A.; Shafique, S.; Shafique, S.

    2010-01-01

    Earlier non-conclusive results have been reported on the initial dormancy status of parthenium (Parthenium hysterophorus L.) seeds. The present study reports the seasonal dormancy pattern of parthenium in Lahore, Pakistan where there are four distinct seasons viz. summer, autumn, winter and spring in a year. Mature parthenium seeds were collected on the last day of each month from January to December 2006 and investigations for their germination percentage and rate of germination were started on the next day. Parthenium seeds collected during coldest months of January and December showed highest germination of 100% with germination rate of 33.3% per day. Conversely, seeds collected in summer months of April to September exhibited lowest germination of 0-7% and germination rate of 0-1.75% per day. Seeds collected in rest of the months showed variable final germination percentage and germination rate ranging from 30-97% and 3.8-17.4%, respectively. Both the final germination and germination rate showed a highly significant negative correlation with the solar radiation and environmental temperature during the seed development period. The present study concludes that dormancy in parthenium seeds depends upon the temperature and solar radiation during the seed development period. (author)

  11. Seasonality of selected surface water constituents in the Indian River Lagoon, Florida.

    Science.gov (United States)

    Qian, Y; Migliaccio, K W; Wan, Y; Li, Y C; Chin, D

    2007-01-01

    Seasonality is often the major exogenous effect that must be compensated for or removed to discern trends in water quality. Our objective was to provide a methodological example of trend analysis using water quality data with seasonality. Selected water quality constituents from 1979 to 2004 at three monitoring stations in southern Florida were evaluated for seasonality. The seasonal patterns of flow-weighted and log-transformed concentrations were identified by applying side-by-side boxplots and the Wilcoxon signed-rank test (p turbidity, color, and chloride), except for turbidity at Station C24S49, exhibited significant seasonal patterns. Almost all nutrient species (NO(2)-N, NH(4)-N, total Kjeldahl N, PO(4)-P, and total P) had an identical seasonal pattern of concentrations significantly greater in the wet than in the dry season. Some water quality constituents were observed to exhibit significant annual or seasonal trends. In some cases, the overall annual trend was insignificant while opposing trends were present in different seasons. By evaluating seasonal trends separately from all data, constituents can be assessed providing a more accurate interpretation of water quality trends.

  12. Application of Satellite Data for Early Season Assessment of Fallowed Agricultural Lands for Drought Impact Reporting

    Science.gov (United States)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Verdin, J. P.; Thenkabail, P. S.; mueller, R.; Zakzeski, A.; Jones, J.

    2013-12-01

    Rapid assessment of drought impacts can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, or state emergency proclamations. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and land fallowing associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. Here we describe an approach for monthly mapping of land fallowing developed as part of a joint effort by USGS, USDA, and NASA to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of fallowed land from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of normalized difference vegetation index (NDVI) data from Landsat TM, ETM+, and MODIS. Our effort has been focused on development of leading indicators of drought impacts in the March - June timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. This capability complements ongoing work by USDA to produce and publicly release within-season estimates of fallowed acreage from the USDA Cropland Data Layer. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted along transects across the Central Valley at more than 200 fields per month from March - June, 2013. Here we present the algorithm for mapping fallowed acreage early in the season along with results from the accuracy assessment, and discuss potential applications to other regions.

  13. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2

    Directory of Open Access Journals (Sweden)

    Carlyn J. Matz

    2014-02-01

    Full Text Available Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2 was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011 provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%, most of which was indoors at home, with limited time spent outdoors (5.8% or in a vehicle (5.3%. Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.

  14. Effects of age, season, gender and urban-rural status on time-activity: CanadianHuman Activity Pattern Survey 2 (CHAPS 2).

    Science.gov (United States)

    Matz, Carlyn J; Stieb, David M; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-02-19

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010-2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents.

  15. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    Science.gov (United States)

    Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-01-01

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-activity information from Canadians of all ages. Five urban and two rural locations were sampled using telephone surveys. Infants and children, key groups in risk assessment activities, were over-sampled. Survey participants (n = 5,011) provided time-activity information in 24-hour recall diaries and responded to supplemental questionnaires concerning potential exposures to specific pollutants, dwelling characteristics, and socio-economic factors. Results indicated that a majority of the time was spent indoors (88.9%), most of which was indoors at home, with limited time spent outdoors (5.8%) or in a vehicle (5.3%). Season, age, gender and rurality were significant predictors of time activity patterns. Compared to earlier data, adults reported spending more time indoors at home and adolescents reported spending less time outdoors, which could be indicative of broader societal trends. These findings have potentially important implications for assessment of exposure and risk. The CHAPS 2 data also provide much larger sample sizes to allow for improved precision and are more representative of infants, children and rural residents. PMID:24557523

  16. Seasonality in consumption: An economic analysis of the alimentary patterns in Greece (1957-2005)

    NARCIS (Netherlands)

    Sotiropoulos, I.; Georgakopoulos, G.; Pendaraki, K.

    2010-01-01

    This paper attempts to explore financial expenditure of households in post-war Greece (1957-2005) in our endeavour to describe annual seasonality patterns of food consumption. Agricultural/industrial, animal/plant-based, in-house/away-from-home alimentation features are examined in an effort to

  17. Seasonal mood changes in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Tan, Oğuz; Metin, Barış; Ünsalver, Barış Önen; Sayar, Gökben Hızlı

    2017-12-01

    Obsessive-compulsive disorder (OCD) is frequently associated with mood disorders. However, to date, the co-occurrence of OCD with seasonal affective disorder (SAD) has not been investigated. We have aimed to estimate the prevalence of seasonal mood changes in patients with OCD and explore the contribution of seasonality in mood to the severity of OCD. The Seasonal Pattern Assessment Questionnaire (SPAQ), the Yale-Brown Obsession and Compulsion Scale (Y-BOCS), the Hamilton Depression Rating Scale-17 Items (HDRS-17), and the Beck Anxiety Inventory (BAI) were administered to patients with OCD (n=104) and controls (n=125). The degree of seasonality was measured by the Global Seasonality Score (GSS) calculated from the SPAQ. SAD and subsyndromal seasonal affective disorder (S-SAD) were significantly more prevalent in patients with OCD (53%, n=55) than controls (25%, n=31). When patients were assessed in the season in which SAD occurs, depression and compulsions (but not obsessions, OCD or anxiety) were more severe than those assessed in a season during which SAD does not occur. SAD frequently co-occurs with OCD and, given this co-occurrence, depression symptoms in some patients with OCD might be expected to vary on a seasonal basis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of patterns in endemic areas

    Science.gov (United States)

    Baracchini, Theo; King, Aaron A.; Bouma, Menno J.; Rodó, Xavier; Bertuzzo, Enrico; Pascual, Mercedes

    2017-10-01

    Seasonal patterns in cholera dynamics exhibit pronounced variability across geographical regions, showing single or multiple peaks at different times of the year. Although multiple hypotheses related to local climate variables have been proposed, an understanding of this seasonal variation remains incomplete. The historical Bengal region, which encompasses the full range of cholera's seasonality observed worldwide, provides a unique opportunity to gain insights on underlying environmental drivers. Here, we propose a mechanistic, rainfall-temperature driven, stochastic epidemiological model which explicitly accounts for the fluctuations of the aquatic reservoir, and analyze with this model the historical dataset of cholera mortality in the Bengal region. Parameters are inferred with a recently developed sequential Monte Carlo method for likelihood maximization in partially observed Markov processes. Results indicate that the hydrological regime is a major driver of the seasonal dynamics of cholera. Rainfall tends to buffer the propagation of the disease in wet regions due to the longer residence times of water in the environment and an associated dilution effect, whereas it enhances cholera resurgence in dry regions. Moreover, the dynamics of the environmental water reservoir determine whether the seasonality is unimodal or bimodal, as well as its phase relative to the monsoon. Thus, the full range of seasonal patterns can be explained based solely on the local variation of rainfall and temperature. Given the close connection between cholera seasonality and environmental conditions, a deeper understanding of the underlying mechanisms would allow the better management and planning of public health policies with respect to climate variability and climate change.

  19. Seasonal activity patterns and diet divergence of three sympatric Afrotropical tortoise species (genus Kinixys)

    NARCIS (Netherlands)

    Luiselli, Luca

    2003-01-01

    Three species of hinge-back tortoises ( (Kinixys belliana nogueyi, Kinixys erosa, Kinixys homeana) are found in simpatry in the rainforests of the Niger Delta, southern Nigeria (west Africa). The seasonal activity patterns and food habits of these tortoises are studied in the present paper. K. erosa

  20. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species

    Science.gov (United States)

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  1. Seasonal Habitat Patterns of Japanese Common Squid (Todarodes Pacificus Inferred from Satellite-Based Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Irene D. Alabia

    2016-11-01

    Full Text Available The understanding of the spatio-temporal distributions of the species habitat in the marine environment is central to effectual resource management and conservation. Here, we examined the potential habitat distributions of Japanese common squid (Todarodes pacificus in the Sea of Japan during a four-year period. The seasonal patterns of preferential habitat were inferred from species distribution models, built using squid occurrences detected from night-time visible images and remotely-sensed environmental factors. The predicted squid habitat (i.e., areas with high habitat suitability revealed strong seasonal variability, characterized by a reduction of potential habitat, confined off of the southern part of the basin during the winter–spring period (December–May. Apparent expansion of preferential habitat occurred during summer–autumn months (June–November, concurrent with the formation of highly suitable habitat patches in certain regions of the Sea of Japan. These habitat distribution patterns were in response to changes in oceanographic conditions and synchronous with seasonal migration of squid. Moreover, the most important variables regulating the spatio-temporal patterns of suitable habitat were sea surface temperature, depth, sea surface height anomaly, and eddy kinetic energy. These variables could affect the habitat distributions through their impacts on growth and survival of squid, local nutrient transport, and the availability of favorable spawning and feeding grounds.

  2. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic

    Science.gov (United States)

    Prado, Jonatas H. F.; Mattos, Paulo H.; Silva, Kleber G.; Secchi, Eduardo R.

    2016-01-01

    Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change

  3. Long-Term Seasonal and Interannual Patterns of Marine Mammal Strandings in Subtropical Western South Atlantic.

    Directory of Open Access Journals (Sweden)

    Jonatas H F Prado

    Full Text Available Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574, South American fur seal, (n = 3,419, South American sea lion (n = 2,049, bottlenose dolphins (n = 293 and subantarctic fur seal (n = 219 were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal and warm-water (e.g. rough-toothed dolphin species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to

  4. Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia aegypti (L. (Diptera: Culicidae in subtropical Argentina

    Directory of Open Access Journals (Sweden)

    Micieli María Victoria

    2003-01-01

    Full Text Available Monthly oviposition activity and the seasonal density pattern of Aedes aegypti were studied using larvitraps and ovitraps during a research carried out by the Public Health Ministry of Salta Province, in Tartagal, Aguaray and Salvador Mazza cities, in subtropical Argentina. The A. aegypti population was active in both dry and wet seasons with a peak in March, accordant with the heaviest rainfall. From May to November, the immature population level remained low, but increased in December. Ae. aegypti oviposition activity increased during the fall and summer, when the relative humidity was 60% or higher. Eggs were found in large numbers of ovitraps during all seasons but few eggs were observed in each one during winter. The occurrence and the number of eggs laid were variable when both seasons and cities were compared. The reduction of the population during the winter months was related to the low in the relative humidity of the atmosphere. Significant differences were detected between oviposition occurrences in Tartagal and Aguaray and Salvador Mazza cities, but no differences in the number of eggs were observed. Two factors characterize the seasonal distribution pattern of Ae. aegypti in subtropical Argentina, the absence of a break during winter and an oviposition activity concomitant of the high relative humidity of the atmosphere.

  5. Studies of the Seasonal Pattern of Multiple Maternities.

    Science.gov (United States)

    Fellman, Johan

    2017-06-01

    The seasonality of population data has been of great interest in demographic studies. When seasonality is analyzed, the population at risk plays a central role. In a study of the monthly number of births and deaths, the population at risk is the product of the size of the population and the length of the month. Usually, the population can be assumed to be constant, and consequently, the population at risk is proportional to the length of the month. Hence, the number of cases per day has to be analyzed. If one studies the seasonal variation in twin or multiple maternities, the population at risk is the total number of monthly confinements, and the study should be based on the rates of the multiple maternities. Consequently, if one considers monthly twinning rates, the monthly number of birth data is eliminated and one obtains an unaffected seasonality measure of the twin maternities. The strength of the seasonality is measured by a chi-squared test or by the standard deviation. When seasonal models are applied, one must pay special attention to how well the model fits the data. If the goodness of fit is poor, it can erroneously result in a statement that the seasonality is slight, although the observed seasonal fluctuations are marked.

  6. Seasonal and spatial patterns of microbial diversity along a trophic gradient in the interconnected lakes of the Osterseen Lake District, Bavaria

    Science.gov (United States)

    Zwirglmaier, Katrin; Keiz, Katharina; Engel, Marion; Geist, Juergen; Raeder, Uta

    2015-01-01

    The Osterseen Lake District in Bavaria consists of 19 small interconnected lakes that exhibit a pronounced trophic gradient from eutrophic to oligotrophic. It therefore presents a unique model system to address ecological questions regarding niche adaptation and Baas Becking's long standing hypothesis of “everything is everywhere, but the environment selects.” Here, we present the first assessment of the microbial diversity in these lakes. We sampled the lakes in August and December and used 454 pyrosequencing of 16S rRNA amplicons to analyze the microbial diversity. The diversity patterns between lakes and seasons were compared and the bacterial community composition was correlated with key chemical and physical parameters. Distinct patterns of bacterial diversity only emerged at the level of individual OTUs (operational taxonomic units), but not at the level of the major bacterial phyla. This emphasizes the high functional and physiological diversity among bacterial species within a phylum and calls for analysis of biodiversity at the level of OTUs in order to understand fine-scale biogeography. We were able to identify a number of cosmopolitan OTUs as well as specialist OTUs that were restricted to certain lakes or seasons, suggesting adaptation to specific ecological niches. PMID:26579082

  7. Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G.E.; Hinckley, T.M.; Stettler, R.F. [Washington Univ., College of Forest Resources, Seattle, WA (United States)

    1999-09-01

    A study was carried out to compare highly productive cones, in the Pacific Northwest, in terms of contrasting growth and morphology. The objective of the study was to determine seasonal differences in carbon allocation patterns among 1- and 2-year old trees of Populus deltoides Bartr, and 2 of their interspecific hybrids. The study examined if there are different patterns of carbon allocation associated with the more productive poplar clones, how these patterns vary over the course of the growing season and from the first and the second year, if sylleptic branches vary from proleptic branches in their carbon allocation patterns, if there are the translocation patterns within branches and the degree of branch autonomy that exists with sylleptic and proleptic branches and if these patterns vary during the growing season. Previous findings on general patterns of carbon allocation in poplar clones were confirmed, and new dimensions were introduced regarding differences among branch types and clones. In the first year, carbon export from sylleptic branches increased over the growing season, and they export primarily toward the lower stem and roots. In the second year, important differences in translocation efficiency occurred among branch types with the sylleptic branches contributing more than proleptic branches, on a per unit mass basis, to the growth of the tree. Transport patterns, within branches and among branches of different order, were similar to those in the main stem, with phenology playing an important role in controlling the sink activity of the apical portion of the growing axis. Exchange of photosynthates between adjacent branches of the same order or between branches and main stem leaves are minimal, supporting an hypothesis of branch autonomy. 29 refs., 5 tabs., 4 figs.

  8. The Dependency between the Arabian Peninsula Wet Events and Sea Level Pressure Patterns during Spring Season

    KAUST Repository

    El Kenawy, Ahmed M.; McCabe, Matthew; Stenchikov, Georgiy L.; Raj, Jerry

    2014-01-01

    This work investigates the relationships between regional extreme wet events in the Arabian Peninsula during the spring season (MAM) and sea level pressure (SLP) patterns. Based on NCEP/NCAR reanalysis data, S-mode principal components were computed

  9. Modeling seasonal detection patterns for burrowing owl surveys

    Science.gov (United States)

    Quresh S. Latif; Kathleen D. Fleming; Cameron Barrows; John T. Rotenberry

    2012-01-01

    To guide monitoring of burrowing owls (Athene cunicularia) in the Coachella Valley, California, USA, we analyzed survey-method-specific seasonal variation in detectability. Point-based call-broadcast surveys yielded high early season detectability that then declined through time, whereas detectability on driving surveys increased through the season. Point surveys...

  10. In vivo seasonal assessment of Plasmodium falciparum sensitivity to chloroquine in two different malaria endemic communities in Southern Ghana.

    Science.gov (United States)

    Afari, Edwin A.; Dunyo, Samuel; Appawu, Maxwell; Nkrumah, Francis K.

    1994-08-01

    A two year (1992 to 1993) in vivo assessment of Plasmodium falciparum sensitivity to chloroquine was conducted in two communities at Dodowa (hyperendemic) and Prampram (mesoendemic) in Southern Ghana. A slightly modified World Helath Organization standard field test (7 day test) for response of Plasmodium falciparum asexual parasites to chloroquine was used for the survey. In 1992, 16.2% (12/74) responses were classified as exhibiting chloroquine resistance at RI (14.8% ) and RII (1.4%) in the dry season and 8.2% (10/122) responses at RI in the wet season in the hyperendemic community. Only a single response (1/144; 0.7%) at RI showed resistance in the mesoendemic community. The rest of the responses in both communities were classified as sensitive to chloroquine. In the hyperendemic community, 8.4% (13/154) of responses in the dry season showed resistance at RI and 1.3% (82/150) at RI (0.7%) and RII (0.7%) in the wet season in 1993. In the mesoendemic community 1 (1.0%) response was resistant at RI in the wet season. The rest of the responses were classified as sensitive responses to chloroquine. No RIII response was encountered in any of the communities. The pattern of RI and RII responses did not show any seasonal variations in the mesoendemic community. However, they were generally higher in the dry season than in the wet season in the hyperendemic community.

  11. Appendicitis: Trends in incidence, age, sex, and seasonal variations ...

    African Journals Online (AJOL)

    Background:Appendicitis is a common clinical condition worldwide. Differences in ... Aim:To assess the trends in incidence and pattern of variation with age, sex, and seasons of the year. .... population of 465000 (an annual population growth.

  12. Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004)

    Science.gov (United States)

    Wang, Bin; Lee, June-Yi; Kang, In-Sik; Shukla, J.; Park, C.-K.; Kumar, A.; Schemm, J.; Cocke, S.; Kug, J.-S.; Luo, J.-J.; Zhou, T.; Wang, B.; Fu, X.; Yun, W.-T.; Alves, O.; Jin, E. K.; Kinter, J.; Kirtman, B.; Krishnamurti, T.; Lau, N. C.; Lau, W.; Liu, P.; Pegion, P.; Rosati, T.; Schubert, S.; Stern, W.; Suarez, M.; Yamagata, T.

    2009-07-01

    We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980-2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models’ MME for the period of 1981-2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Niño 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface

  13. Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Lee, June-Yi; Fu, X.; Liu, P. [University of Hawaii, Department of Meteorology and International Pacific Research Center, IPRC, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Kang, In-Sik; Kug, J.S. [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea); Shukla, J.; Jin, E.K.; Kinter, J.; Kirtman, B. [George Mason University and COLA, Climate Dynamics Program, Calverton, MD (United States); Park, C.K. [APEC Climate Center, Busan (Korea); Kumar, A.; Schemm, J. [Climate Prediction Center/NCEP, Camp Springs, MD (United States); Cocke, S.; Krishnamurti, T. [Florida State University, Tallahassee, FL (United States); Luo, J.J. [Frontier Research Center for Global Chnage, Yokohama (Japan); Zhou, T.; Wang, B. [Chinese Academy of Sciences, LASG/Institute of Atmospheric Physics, Beijing (China); Yun, W.T. [Korean Meteorological Administration, Seoul (Korea); Alves, O. [Bureau of Meteorology Research Center, Melburne (Australia); Lau, N.C.; Rosati, T.; Stern, W. [Princeton University, Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, NJ (United States); Lau, W.; Pegion, P.; Schubert, S.; Suarez, M. [Godard Space Flight Center/NASA, Greenbelt, MD (United States)

    2009-07-15

    We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980-2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models' MME for the period of 1981-2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Nino 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface

  14. The seasonal dormancy pattern and germination of Matricaria maritima subsp. inodora (L. Dostal seeds in hydrotime model terms

    Directory of Open Access Journals (Sweden)

    Anna Bochenek

    2011-01-01

    Full Text Available Changes in hydrotime model parameters were determined in Matricaria maritima L. subsp. inodora seeds during burial in a field in order to describe the seasonal dormancy pattern. Seeds were exhumed at regular intervals over a year and incubated at different water potentials at 19°C. Germination time courses were analyzed to determine hydrotime population parameters. Values of ѱb(50, ѲH and σѱb varied each month. Mean base water potential values in seeds exhumed each month were related to precipitation over 20 days before their exhumation. Soil temperature could be a trend-controlling factor of this relationship. The seeds were in deep dormancy after remaining 80-90 days in soil below or above limit temperature 15°C. The application of the hydrotime model to describe and predict seasonal dormancy patterns of weed seed is promising, especially for species with a considerable diversification of life strategies and ecophysiological flexibility of diaspores. It could also suggest mechanisms of seasonal dormancy changes of seeds in natural conditions and provide a basis for their examination. One of advantages of the dormancy pattern description of weed seeds remaining in a soil bank by means of threshold models is its simplicity.

  15. High prevalence of seasonal affective disorder among persons with severe visual impairment

    DEFF Research Database (Denmark)

    Madsen, Helle Østergaard; Dam, Henrik; Hageman, Ida

    2016-01-01

    BACKGROUND: Light severely affects the occurrence of seasonal affective disorder (SAD). AIMS: To compare the prevalence of SAD in persons with severe visual impairment and persons with full sight, and in persons with severe visual impairment with or without light perception. METHOD: This cross......-sectional study assessed the Global Seasonality Score (GSS) and the prevalence of SAD among 2781 persons with visual impairment and 4099 persons with full sight using the Seasonal Pattern Assessment Questionnaire (SPAQ). RESULTS: Respondents with visual impairment had significantly higher GSS and prevalence...... of SAD compared with full sight controls, Pvisual impairment and SPAQ-defined SAD parameters...

  16. Size, sex and seasonal patterns in the assemblage of Carcharhiniformes in a sub-tropical bay.

    Science.gov (United States)

    Taylor, S M; Bennett, M B

    2013-01-01

    Size, sex and seasonal patterns among Carcharhiniformes were examined in shallow regions of Moreton Bay, Queensland, Australia. A total of 1259 sharks were caught, comprising 13 species. The Australian sharpnose shark Rhizoprionodon taylori and the blacktip complex Carcharhinus limbatus-Carcharhinus tilstoni comprised 55% of all shark individuals. Neonates were observed for five species including the dusky shark Carcharhinus obscurus, which contrary to previous reports was relatively abundant in shallow, predominantly estuarine waters. Three contrasting patterns of occurrence were observed: smaller species were abundant and present throughout much of their ontogeny, larger species were mainly caught as neonates or juveniles and vagrant species were only caught during the warmer months. The shark assemblage differed significantly among seasons. While many species were observed during the warmer months, species diversity was lower in winter when C. obscurus comprised 43% of the catch. Overall, the results indicated that spatial and temporal distribution patterns were not synchronous for all species. The capture of small numbers of neonate C. obscurus in late autumn and winter demonstrates that parturition among Carcharhiniformes is not confined to spring and summer in sub-tropical waters. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  17. Prevalence and correlates of binge eating in seasonal affective disorder

    Science.gov (United States)

    Donofry, Shannon D.; Roecklein, Kathryn A.; Rohan, Kelly J.; Wildes, Jennifer E.; Kamarck, Marissa L.

    2014-01-01

    Eating pathology in Seasonal Affective Disorder (SAD) may be more severe than hyperphagia during winter. Although research has documented elevated rates of subclinical binge eating in women with SAD, the prevalence and correlates of BED in SAD remain largely uncharacterized. We examined the prevalence and correlates of binge eating, weekly binge eating with distress, and BED as defined by the DSM-IV-TR in SAD. We also tested whether binge eating exhibits a seasonal pattern among individuals with BED. Two samples were combined to form a sample of individuals with SAD (N = 112). A third sample included non-depressed adults with clinical (n=12) and subclinical (n=11) BED. All participants completed the Questionnaire of Eating and Weight Patterns-Revised (QEWP-R) and modified Seasonal Pattern Assessment Questionnaire (M-SPAQ). In the SAD sample, 26.5% reported binge eating, 11.6% met criteria for weekly binge eating with distress, and 8.9% met criteria for BED. Atypical symptom severity predicted binge eating and BED. In the BED sample, 30% endorsed seasonal worsening of mood, and 26% reported a winter pattern of binge eating. The spectrum of eating pathology in SAD includes symptoms of BED, which are associated with atypical depression symptoms, but typical depression symptoms. PMID:24680872

  18. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (Propithecus verreauxi).

    Science.gov (United States)

    Springer, Andrea; Fichtel, Claudia; Al-Ghalith, Gabriel A; Koch, Flávia; Amato, Katherine R; Clayton, Jonathan B; Knights, Dan; Kappeler, Peter M

    2017-08-01

    The intestinal microbiota plays a major role in host development, metabolism, and health. To date, few longitudinal studies have investigated the causes and consequences of microbiota variation in wildlife, although such studies provide a comparative context for interpreting the adaptive significance of findings from studies on humans or captive animals. Here, we investigate the impact of seasonality, diet, group membership, sex, age, and reproductive state on gut microbiota composition in a wild population of group-living, frugi-folivorous primates, Verreaux's sifakas ( Propithecus verreauxi ). We repeatedly sampled 32 individually recognizable animals from eight adjacent groups over the course of two different climatic seasons. We used high-throughput sequencing of the 16S rRNA gene to determine the microbiota composition of 187 fecal samples. We demonstrate a clear pattern of seasonal variation in the intestinal microbiota, especially affecting the Firmicutes-Bacteroidetes ratio, which may be driven by seasonal differences in diet. The relative abundances of certain polysaccharide-fermenting taxa, for example, Lachnospiraceae, were correlated with fruit and fiber consumption. Additionally, group membership influenced microbiota composition independent of season, but further studies are needed to determine whether this pattern is driven by group divergences in diet, social contacts, or genetic factors. In accordance with findings in other wild mammals and primates with seasonally fluctuating food availability, we demonstrate seasonal variation in the microbiota of wild Verreaux's sifakas, which may be driven by food availability. This study adds to mounting evidence that variation in the intestinal microbiota may play an important role in the ability of primates to cope with seasonal variation in food availability.

  19. Seasonal patterns of birth for subjects with bulimia nervosa, binge eating, and purging: results from the National Women's Study.

    Science.gov (United States)

    Brewerton, Timothy D; Dansky, Bonnie S; O'Neil, Patrick M; Kilpatrick, Dean G

    2012-01-01

    Studies of birth patterns in anorexia nervosa have shown relative increases between March and August, while studies in Bulimia Nervosa (BN) have been negative. Since there are no studies using representative, nonclinical samples, we looked for seasonal birth patterns in women with BN and in those who ever endorsed bingeing or purging. A national, representative sample of 3,006 adult women completed structured telephone interviews including screenings for bulimia nervosa (BN) and questions about month, date, and year of birth. Season of birth was calculated using traditional definitions. Differences across season of birth between subjects with (n = 85) and without BN (n = 2,898), those with (n = 749) and without bingeing (n = 2,229), and those with (n = 267) and without any purging (n = 2,715) were compared using chi-square analyses. There were significant differences across season of birth between subjects: (1) with and without BN (p = 0.033); (2) with and without bingeing (p = 0.034), and; (3) with and without purging (p = 0.001). Fall had the highest relative number of births for all categories, while spring had the lowest. In a national representative study of nontreatment seeking subjects significant differences in season of birth were found for subjects with lifetime histories of BN, binge eating and purging. © 2011 by Wiley Periodicals, Inc. (Int J Eat Disord 2012). Copyright © 2011 Wiley Periodicals, Inc.

  20. Life-forms and seasonal patterns in the pteridophytes in Zambia

    Directory of Open Access Journals (Sweden)

    Jan Kornaś

    2015-01-01

    Full Text Available 146 species of pteridophytes occurring in Zambia were classified into Raunkiaer's life-form classes. The hemicryptophytes are dominant and include the most widely distributed species. The phanerophytes (tree-ferns and lianas and the epiphytes are rather scarce and limited to or concentrated in the higher-rainfall areas in the northern part of the country. Simplified diagrams of periodicity were constructed for all Zambian pteridophyte species. Three major types of seasonal pattern of growth and dormancy were distinguished: the evergreen type, the poikilohydrous type, and the "summer-green" type. The first of them is connected with the local conditions of continuously wet non-zonal sites, while the two others clearly reflect the peculiarities of the zonal climate of Zambia.

  1. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Directory of Open Access Journals (Sweden)

    Laura M. Soissons

    2018-02-01

    Full Text Available Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i seasonal fluctuations, (ii short-term stress events such as, e.g., local nutrient enrichment, and (iii small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon

  2. Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Science.gov (United States)

    Soissons, Laura M.; Haanstra, Eeke P.; van Katwijk, Marieke M.; Asmus, Ragnhild; Auby, Isabelle; Barillé, Laurent; Brun, Fernando G.; Cardoso, Patricia G.; Desroy, Nicolas; Fournier, Jerome; Ganthy, Florian; Garmendia, Joxe-Mikel; Godet, Laurent; Grilo, Tiago F.; Kadel, Petra; Ondiviela, Barbara; Peralta, Gloria; Puente, Araceli; Recio, Maria; Rigouin, Loic; Valle, Mireia; Herman, Peter M. J.; Bouma, Tjeerd J.

    2018-01-01

    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and small-scale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth

  3. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data.

    Directory of Open Access Journals (Sweden)

    Hongjie Yu

    2013-11-01

    Full Text Available The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005-2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%-151%] in the north versus 37% [95% CI 27%-47%] in the south, p0.6 in provinces located within 27.4°N-31.3°N, slope of latitudinal gradient with latitude -0.016 [95% CI -0.025 to -0.008], p<0.001. In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4-6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid

  4. Seasonal changes in mood and behavior are linked to metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Reeta Rintamäki

    Full Text Available BACKGROUND: Obesity is a major public health problem worldwide. Metabolic syndrome is a risk factor to the cardiovascular diseases. It has been reported that disruptions of the circadian clockwork are associated with and may predispose to metabolic syndrome. METHODOLOGY AND PRINCIPAL FINDINGS: 8028 individuals attended a nationwide health examination survey in Finland. Data were collected with a face-to-face interview at home and during an individual health status examination. The waist circumference, height, weight and blood pressure were measured and samples were taken for laboratory tests. Participants were assessed using the ATP-III criteria for metabolic syndrome and with the Seasonal Pattern Assessment Questionnaire for their seasonal changes in mood and behavior. Seasonal changes in weight in particular were a risk factor of metabolic syndrome, after controlling for a number of known risk and potential confounding factors. CONCLUSIONS AND SIGNIFICANCE: Metabolic syndrome is associated with high global scores on the seasonal changes in mood and behavior, and with those in weight in particular. Assessment of these changes may serve as a useful indicator of metabolic syndrome, because of easy assessment. Abnormalities in the circadian clockwork which links seasonal fluctuations to metabolic cycles may predispose to seasonal changes in weight and to metabolic syndrome.

  5. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    Science.gov (United States)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  6. Prevalence and correlates of binge eating in seasonal affective disorder.

    Science.gov (United States)

    Donofry, Shannon D; Roecklein, Kathryn A; Rohan, Kelly J; Wildes, Jennifer E; Kamarck, Marissa L

    2014-06-30

    Eating pathology in Seasonal Affective Disorder (SAD) may be more severe than hyperphagia during winter. Although research has documented elevated rates of subclinical binge eating in women with SAD, the prevalence and correlates of binge eating disorder (BED) in SAD remain largely uncharacterized. We examined the prevalence and correlates of binge eating, weekly binge eating with distress, and BED as defined by the DSM-IV-TR in SAD. We also tested whether binge eating exhibits a seasonal pattern among individuals with BED. Two samples were combined to form a sample of individuals with SAD (N=112). A third sample included non-depressed adults with clinical (n=12) and subclinical (n=11) BED. All participants completed the Questionnaire of Eating and Weight Patterns-Revised (QEWP-R) and modified Seasonal Pattern Assessment Questionnaire (M-SPAQ). In the SAD sample, 26.5% reported binge eating, 11.6% met criteria for weekly binge eating with distress, and 8.9% met criteria for BED. Atypical symptom severity predicted binge eating and BED. In the BED sample, 30% endorsed seasonal worsening of mood, and 26% reported a winter pattern of binge eating. The spectrum of eating pathology in SAD includes symptoms of BED, which are associated with atypical depression symptoms, but typical depression symptoms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Case-based reported mortality associated with laboratory-confirmed influenza A(H1N1 2009 virus infection in the Netherlands: the 2009-2010 pandemic season versus the 2010-2011 influenza season

    Directory of Open Access Journals (Sweden)

    Timen Aura

    2011-10-01

    Full Text Available Abstract Background In contrast to seasonal influenza epidemics, where the majority of deaths occur amongst elderly, a considerable part of the 2009 pandemic influenza related deaths concerned relatively young people. In the Netherlands, all deaths associated with laboratory-confirmed influenza A(H1N1 2009 virus infection had to be notified, both during the 2009-2010 pandemic season and the 2010-2011 influenza season. To assess whether and to what extent pandemic mortality patterns were reverting back to seasonal patterns, a retrospective analyses of all notified fatal cases associated with laboratory-confirmed influenza A(H1N1 2009 virus infection was performed. Methods The notification database, including detailed information about the clinical characteristics of all notified deaths, was used to perform a comprehensive analysis of all deceased patients with a laboratory-confirmed influenza A(H1N1 2009 virus infection. Characteristics of the fatalities with respect to age and underlying medical conditions were analysed, comparing the 2009-2010 pandemic and the 2010-2011 influenza season. Results A total of 65 fatalities with a laboratory-confirmed influenza A(H1N1 2009 virus infection were notified in 2009-2010 and 38 in 2010-2011. During the pandemic season, the population mortality rates peaked in persons aged 0-15 and 55-64 years. In the 2010-2011 influenza season, peaks in mortality were seen in persons aged 0-15 and 75-84 years. During the 2010-2011 influenza season, the height of first peak was lower compared to that during the pandemic season. Underlying immunological disorders were more common in the pandemic season compared to the 2010-2011 season (p = 0.02, and cardiovascular disorders were more common in the 2010-2011 season (p = 0.005. Conclusions The mortality pattern in the 2010-2011 influenza season still resembled the 2009-2010 pandemic season with a peak in relatively young age groups, but concurrently a clear shift toward

  8. Patterns of Seasonal Heat Uptake and Release Over the Arctic Ocean Between 1979-2016

    Science.gov (United States)

    Helmberger, M. N.; Serreze, M. C.

    2017-12-01

    As the Arctic Ocean loses its sea ice cover, there is a stronger oceanic heat gain from the surface fluxes throughout the spring and summer; ultimately meaning that there is more energy to transfer out of the ocean to the atmosphere and outer space in the autumn and winter. Recent work has shown that the increased oceanic heat content at the end of summer in turn delays autumn ice growth, with implications for marine shipping and other economic activities. Some of the autumn and winter heat loss to the atmosphere is represented by evaporation, which increases the atmospheric water vapor content, and there is growing evidence that this is contributing to increases in regional precipitation. However, depending on patterns of seasonal sea ice retreat and weather conditions, the spring-summer heat uptake and autumn-winter heat loss can be highly variable from year to year and regionally. Here, we examine how the seasonality in upper ocean heat uptake and release has evolved over the past 37 years and the relationships between this seasonal heat gain and loss and the evolution of sea ice cover. We determine which regions have seen the largest increases in total seasonal heat uptake and how variable this uptake can be. Has the timing at which the Arctic Ocean (either as a whole or by region) transitions from an atmospheric energy sink to an atmospheric energy source (or from a source to a sink) appreciably changed? What changes have been observed in the seasonal rates of seasonal heat uptake and release? To begin answering these questions, use is made of surface fluxes from the ERA-Interim reanalysis and satellite-derived sea ice extent spanning the period 1979 through the present. Results from ERA-Interim will be compared to those from other reanalyses and satellite-derived flux estimates.

  9. Diurnal patterns of methane flux from a seasonal wetland: mechanisms and methodology

    Science.gov (United States)

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2018-01-01

    Methane emissions from wetlands are temporally dynamic. Few chamber-based studies have explored diurnal variation in methane flux with high temporal replication. Using an automated sampling system, we measured methane flux every 2.5 to 4 h for 205 diel cycles during three growing seasons (2013–2015) from a seasonal wetland in the Prairie Pothole Region of North America. During ponded conditions, fluxes were generally positive (i.e., methanogenesis dominant, 10.1 ± 0.8 mg m−2 h−1), had extreme range of variation (from −1 to 70 mg m−2 h−1), and were highest during late day. In contrast, during dry conditions fluxes were very low and primarily negative (i.e., oxidation dominant, −0.05 ± 0.002 mg m−2 h−1), with the highest (least negative) fluxes occurring at pre-dawn. During semi-saturated conditions, methane fluxes also were very low, oscillated between positive and negative values (i.e., balanced between methanogenesis and methane oxidation), and exhibited no diel pattern. Methane flux was positively correlated with air temperature during ponded conditions (r = 0.57) and negatively during dry conditions (r = −0.42). Multiple regression analyses showed that temperature, light and water-filled pore space explained 72% of variation in methane flux. Methane fluxes are highly temporally dynamic and follow contrasting diel patterns that are dependent on dominant microbial processes influenced by saturation state.

  10. Seasonal Variation in Epidemiology

    Science.gov (United States)

    Marrero, Osvaldo

    2013-01-01

    Seasonality analyses are important in medical research. If the incidence of a disease shows a seasonal pattern, then an environmental factor must be considered in its etiology. We discuss a method for the simultaneous analysis of seasonal variation in multiple groups. The nuts and bolts are explained using simple trigonometry, an elementary…

  11. Seasonal variation of radon concentrations in UK homes

    International Nuclear Information System (INIS)

    Miles, J C H; Howarth, C B; Hunter, N

    2012-01-01

    The patterns of seasonal variation of radon concentrations were measured in 91 homes in five regions of the UK over a period of two years. The results showed that there was no significant difference between the regions in the pattern or magnitude of seasonal variation in radon concentrations. The arithmetic mean variation was found to be close to that found previously in the UK national survey. Differences in the pattern between the two years of the study were not significant. Two-thirds of homes in the study followed the expected pattern of high radon in the winter and low radon in the summer. Most of the rest showed little seasonal variation, and a few showed a reversed seasonal pattern. The study does not provide any clear evidence for the recorded house characteristics having an effect on the seasonal variation in radon concentrations in UK homes, though the statistical power for determining such effects is limited in this study. The magnitude of the seasonal variation varied widely between homes. Analysis of the individual results from the homes showed that because of the wide variation in the amount of seasonal variation, applying seasonal correction factors to the results of three-month measurements can yield only relatively small improvements in the accuracy of estimates of annual mean concentrations.

  12. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system.

    Science.gov (United States)

    Beckers, Liza-Marie; Busch, Wibke; Krauss, Martin; Schulze, Tobias; Brack, Werner

    2018-05-15

    Sites of wastewater discharge are hotspots for pollution of freshwaters with organic micropollutants and are often associated with adverse effects to aquatic organisms. The assessment, monitoring and managment of these hotspots is challenged by variations in the pollutant mixture composition due to season, weather conditions and random spills. In this study, we unraveled temporal exposure patterns in organic micropollutant mixtures from wastewater discharge and analyzed respective acute and sublethal risks for aquatic organisms. Samples were taken from two components of a separate sewer system i) a wastewater treatment plant (WWTP) and ii) a rain sewer of a medium size town as well as from the receiving river in different seasons. Rain sewer samples were separately collected for rain and dry - weather conditions. We analyzed 149 compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By considering the pollution dynamics in the point sources, we reduced the complexity of pollutant mixtures by k-means clustering to a few emission groups representing temporal and weather-related pollution patterns. From these groups, we derived biological quality element (BQE) - specific risk patterns. In most cases, one main risk driving emission group and a few individual risk driving compounds were identified for each BQE. While acute risk for fish was quite low, algae were exposed to seasonally emitted herbicides (terbuthylazine, spiroxamine) and crustaceans to randomly spilled insecticides (diazinon, dimethoate). Sublethal risks for all BQE were strongly influenced by constantly emitted pollutants, above all, pharmaceuticals. Variability of risks in the river was mainly driven by water discharge of the river rather than by season or peak events. Overall, the studied WWTP represented the major pollution source with a specific emission of agricultural compounds. However, the investigated rain sewer showed to be a constant pollution source due to illicit connections

  13. The Dependency between the Arabian Peninsula Wet Events and Sea Level Pressure Patterns during Spring Season

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-05-01

    This work investigates the relationships between regional extreme wet events in the Arabian Peninsula during the spring season (MAM) and sea level pressure (SLP) patterns. Based on NCEP/NCAR reanalysis data, S-mode principal components were computed from the de-seasonalized daily SLP for spring months between 1960 and 2013. The analysis covered a window for the region (15-70°E and 2.5-50°N). This window coupled different oceanic-land influences (e.g. the Indian, Mediterranean and the Sahara configurations) that may impart an effect on rainfall variations in the study domain. A set of eight significant circulation spatial patterns were retained, which explained 84.8% of the total explained variance. The derived patterns explained a wide variety of flows over the peninsula, with a clear distinction between zonal and meridional advections. The extreme wet events (R95 and R99) were defined from a relatively dense network of 209 observatories covering the peninsula, using the 95th and 99th percentile of rainfall distribution respectively. The links between the dominant SLP patterns and significant wet events were established and the physical interpretations of these associations were examined. The results, as revealed by the location and intensity of high pressure centers, highlight the strength of eastern and southeastern advections corresponding to these extreme events. Other patterns have a local character, suggesting an orographic origin of some wet events in the region. The relationships described in this research can advance the understanding of the large-scale processes that contribute to the wet weather events in the Arabian Peninsula. These findings can therefore contribute to better management of water resources and agricultural practices in the region.

  14. Season-modulated responses of Neotropical bats to forest fragmentation.

    Science.gov (United States)

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in

  15. Seasonal and diel patterns of total gaseous mercury concentration in the atmosphere of the Central Valley of Costa Rica

    International Nuclear Information System (INIS)

    Castillo, Aylin; Valdes, Juan; Sibaja, Jose; Vega, Ilena; Alfaro, Rosa; Morales, Jose; Esquivel, Germain; Barrantes, Elisa; Black, Paleah; Lean, David

    2011-01-01

    Research highlights: → Elevated seasonal and daily patterns of total gaseous mercury (TGM) were observed in the Central Valley of Costa Rica 27 km south-east of the Poas volcano. → With the onset of the wet season TGM in late April, values increased from typical values near 10 to 905 ng m -3 . → During the day, TGM values increased until midday along with temperature and radiation but relative humidity showed a reciprocal pattern. → We conclude that elemental mercury from the volcano may react with atmospheric oxidants especially during the dry season and the mercury would be deposited to the ground. → With the onset of heavy rains, mercury in the soil is reduced and re-volatilized resulting in the high levels in atmospheric air at the end of April. - Abstract: Monitoring of Hg in the atmosphere near volcanoes is limited with no previous data for Costa Rica. Seasonal and daily patterns of total gaseous mercury (TGM) were observed at the main sampling location at the Universidad Nacional, Heredia, Costa Rica. The area (lat. 10.000230 long. -84.109499) is located in the Central Valley of Costa Rica and is 27 km SE of the Poas volcano (lat. 10.199486 long. -84.231388). Measurements were made from May 2008 to May 2009 at this location with some additional values obtained at other sites near the Poas volcano including San Luis and Grecia as well as near, Turrialba and Irazu volcanoes. Total gaseous Hg was determined in samples collected at a height of 2 m using the Tekran 2537A (Tekran Inc.) gas-phase Hg vapor analyzer. Meteorological data (temperature, relative humidity, wind speed, wind direction, radiation and precipitation) were obtained from the airport weather station located at Alajuela. Monthly precipitation is typically 85 mm during the dry season (December to April) with winds from the west. The wet season begins in late April and continues to December with monthly rainfall of 328 mm and winds from the NE. The annual mean temperature is 20 deg. C

  16. Seasonal and diel patterns of total gaseous mercury concentration in the atmosphere of the Central Valley of Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Aylin; Valdes, Juan; Sibaja, Jose; Vega, Ilena; Alfaro, Rosa; Morales, Jose; Esquivel, Germain; Barrantes, Elisa [Laboratory for Atmospheric Chemistry, LAQAT-UNA, Universidad Nacional, P.O. Box 86-3000, Heredia (Costa Rica); Black, Paleah [Department of Biology, University of Ottawa, P.O. Box 450 Station A, Ottawa, Ontario, K1N 6N5 (Canada); Lean, David, E-mail: drslean@gmail.com [P.O. Box 309, Apsley, Ontario, K0L 1A0 (Canada)

    2011-02-15

    Research highlights: {yields} Elevated seasonal and daily patterns of total gaseous mercury (TGM) were observed in the Central Valley of Costa Rica 27 km south-east of the Poas volcano. {yields} With the onset of the wet season TGM in late April, values increased from typical values near 10 to 905 ng m{sup -3}. {yields} During the day, TGM values increased until midday along with temperature and radiation but relative humidity showed a reciprocal pattern. {yields} We conclude that elemental mercury from the volcano may react with atmospheric oxidants especially during the dry season and the mercury would be deposited to the ground. {yields} With the onset of heavy rains, mercury in the soil is reduced and re-volatilized resulting in the high levels in atmospheric air at the end of April. - Abstract: Monitoring of Hg in the atmosphere near volcanoes is limited with no previous data for Costa Rica. Seasonal and daily patterns of total gaseous mercury (TGM) were observed at the main sampling location at the Universidad Nacional, Heredia, Costa Rica. The area (lat. 10.000230 long. -84.109499) is located in the Central Valley of Costa Rica and is 27 km SE of the Poas volcano (lat. 10.199486 long. -84.231388). Measurements were made from May 2008 to May 2009 at this location with some additional values obtained at other sites near the Poas volcano including San Luis and Grecia as well as near, Turrialba and Irazu volcanoes. Total gaseous Hg was determined in samples collected at a height of 2 m using the Tekran 2537A (Tekran Inc.) gas-phase Hg vapor analyzer. Meteorological data (temperature, relative humidity, wind speed, wind direction, radiation and precipitation) were obtained from the airport weather station located at Alajuela. Monthly precipitation is typically 85 mm during the dry season (December to April) with winds from the west. The wet season begins in late April and continues to December with monthly rainfall of 328 mm and winds from the NE. The annual mean

  17. Seasonal variation of mood and behaviour in a healthy middle-aged population in Japan.

    Science.gov (United States)

    Okawa, M; Shirakawa, S; Uchiyama, M; Oguri, M; Kohsaka, M; Mishima, K; Sakamoto, K; Inoue, H; Kamei, K; Takahashi, K

    1996-10-01

    A population survey of seasonality in six representative cities in Japan was conducted using the Japanese version of the Seasonal Pattern Assessment Questionnaire (SPAQ). The questionnaires were given to 951 parents (male: female ratio 1:1 age range 34-59 years) of high-school students. Significant regional differences in seasonal variations of mood, length of sleep, and weight were observed; the proportion of individuals reporting high seasonality in the two northern cities was significantly higher than that in the other areas. These results provide evidence for a northern predominance in the prevalence of seasonal affective disorder in Japan.

  18. Breeding seasons, molt patterns, and gender and age criteria for selected northeastern Costa Rican resident landbirds

    Science.gov (United States)

    Jared D. Wolfe; Peter Pyle; C. John. Ralph

    2009-01-01

    Detailed accounts of molt and breeding cycles remain elusive for the majority of resident tropical bird species. We used data derived from a museum review and 12 years of banding data to infer breeding seasonality, molt patterns, and age and gender criteria for 27 common landbird species in northeastern Costa Rica. Prealternate molts appear to be rare, only occurring...

  19. Seasonal rockfall risk assessment along transportation network: a sample from Mallorca (Spain)

    Science.gov (United States)

    Mateos, Rosa Maria; Garcia, Inmaculada; Reichenbach, Paola; Herrera, Gerardo; Rius, Joan; Aguilo, Raul; Roldan, Francisco J.

    2014-05-01

    In the literature there are numerous works focusing on rockfall risk assessment along transportation corridors which take into account several factors, including the annual average traffic volume. Few papers examine in detail examples with a strong seasonal distribution of people travelling along roads, in particular in regions with a great importance for tourism. In these areas, potential blockages along the road network can cause significant economic losses, considering not only direct costs, but also indirect ones related to a reduction in tourism arrivals, with the consequent loss of jobs and profits. In this work we present a methodology for rockfall risk assessment focusing on the reliability and applicability of the evaluation in a test site located in the island of Mallorca, a region which welcomes over 11.3 million visitors per year and where tourism represents the main source of income (83% of its GDP). The Ma-10 road (111 km), located in the north-western sector of the island along the coastal face of the Tramuntana range, has been affected by 85 rockfall events during the past 18 years, which caused repairing costs valued at approximately 2M Euro (Mateos et al., 2013). Rockfalls are triggered by heavy rainfall and freeze-thaw cycles and, for these reasons, autumn and winter can be considered as the most hazardous seasons (Mateos et al., 2012). The road has heavy traffic estimated at 7.200 vehicles per day on average, with a seasonal variation of people travelling in vehicles, the summer being most prominent- up to 6 times the average- due to the pattern of tourism arrivals. To analyse the seasonal rockfall hazard and risk along the Ma-10 road, we obtained the extent of the areas potentially subject to rockfall hazards using STONE, a physically-based rockfall simulation computer program (Guzzetti et al, 2002). The availability of historical rockfalls mapped in detail allowed checking the STONE results, and identifying a hazardous area on the southern

  20. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  1. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology

    Science.gov (United States)

    Vignoli, Leonardo; Bologna, Marco A.; Luiselli, Luca

    2007-03-01

    We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.

  2. Using Multi-Temporal Remote Sensing Data to Analyze the Spatio-Temporal Patterns of Dry Season Rice Production in Bangladesh

    Science.gov (United States)

    Shew, A. M.; Ghosh, A.

    2017-10-01

    Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, and potential for HYV rice adoption in Bangladesh during the dry season.

  3. Identification of symmetric and asymmetric responses in seasonal streamflow globally to ENSO phase

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip J.; Block, Paul

    2018-04-01

    The phase of the El Niño Southern Oscillation (ENSO) has large-ranging effects on streamflow and hydrologic conditions globally. While many studies have evaluated this relationship through correlation analysis between annual streamflow and ENSO indices, an assessment of potential asymmetric relationships between ENSO and streamflow is lacking. Here, we evaluate seasonal variations in streamflow by ENSO phase to identify asymmetric (AR) and symmetric (SR) spatial pattern responses globally and further corroborate with local precipitation and hydrological condition. The AR and SR patterns between seasonal precipitation and streamflow are identified at many locations for the first time. Our results identify strong SR patterns in particular regions including northwestern and southern US, northeastern and southeastern South America, northeastern and southern Africa, southwestern Europe, and central-south Russia. The seasonally lagged anomalous streamflow patterns are also identified and attributed to snowmelt, soil moisture, and/or cumulative hydrological processes across river basins. These findings may be useful in water resources management and natural hazards planning by better characterizing the propensity of flood or drought conditions by ENSO phase.

  4. Seasonal variation in food pattern but not in energy and nutrient intakes of rural Beninese school-aged children

    NARCIS (Netherlands)

    Mitchikpe, C.E.S.; Dossa, R.A.M.; Ategbo, E.A.D.; Raaij, van J.M.A.; Kok, F.J.

    2009-01-01

    Background: Inadequate energy and nutrient intakes are a major nutritional problem in developing countries. A recent study in Beninese school-aged children in different seasons revealed a high prevalence of stunting and poor iron status that might be related to the food pattern. Objective: To

  5. Short-term forecasting of non-OPEC supply: a test of seasonality and seasonal decomposition

    International Nuclear Information System (INIS)

    Jazayeri, S.M.R.T.; Yahyai, A.

    2002-01-01

    The purpose of this study is, first to find out, based on historical data, whether quarterly averages of non-OPEC supply follow a seasonal pattern. If that is mathematically established, then, secondly, it is attempted to estimate the best seasonal factors to decompose the estimated yearly average into seasonal averages. This study applies the Fourier analysis to quarterly supply series to test for seasonality, and provides estimates of seasonal factors for the year 2001 by applying the so-called X-11 decomposition method to the annual estimate. A set of historical data, consisting of quarterly supply averages of individual countries, regional subtotals and aggregate non-OPEC for the period 1971-2000, forms the basis of the analysis. Through the application of the Fourier analysis and X-11 decomposition method, it is demonstrated that quarterly non-OPEC supply, be it by an individual major producer or regional sub-totals, clearly follows a seasonal pattern. This is a very useful conclusion for the market analyst involved with forecasting the quarterly supply. (author)

  6. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses.

    Science.gov (United States)

    Harriman, Vanessa B; Dawson, Russell D; Bortolotti, Lauren E; Clark, Robert G

    2017-04-01

    For organisms in seasonal environments, individuals that breed earlier in the season regularly attain higher fitness than their late-breeding counterparts. Two primary hypotheses have been proposed to explain these patterns: The quality hypothesis contends that early breeders are of better phenotypic quality or breed on higher quality territories, whereas the date hypothesis predicts that seasonally declining reproductive success is a response to a seasonal deterioration in environmental quality. In birds, food availability is thought to drive deteriorating environmental conditions, but few experimental studies have demonstrated its importance while also controlling for parental quality. We tested predictions of the date hypothesis in tree swallows ( Tachycineta bicolor ) over two breeding seasons and in two locations within their breeding range in Canada. Nests were paired by clutch initiation date to control for parental quality, and we delayed the hatching date of one nest within each pair. Subsequently, brood sizes were manipulated to mimic changes in per capita food abundance, and we examined the effects of manipulations, as well as indices of environmental and parental quality, on nestling quality, fledging success, and return rates. Reduced reproductive success of late-breeding individuals was causally related to a seasonal decline in environmental quality. Declining insect biomass and enlarged brood sizes resulted in nestlings that were lighter, in poorer body condition, structurally smaller, had shorter and slower growing flight feathers and were less likely to survive to fledge. Our results provide evidence for the importance of food resources in mediating seasonal declines in offspring quality and survival.

  7. Seasonal Patterns of Sporophyte Growth, Fertility, Fouling, and Mortality of Saccharina latissima in Skagerrak, Norway: Implications for Forest Recovery

    Directory of Open Access Journals (Sweden)

    Guri Sogn Andersen

    2011-01-01

    Full Text Available On the Skagerrak coast the kelp Saccharina latissima has suffered severe stand reductions over the last decade, resulting in loss of important habitats. In the present study, healthy kelp plants were transplanted into four deforested areas and their patterns of growth, reproduction, and survival were monitored through subsequent seasons. Our main objective was to establish whether the kelp plants were able to grow and mature in deforested areas. We observed normal patterns of growth and maturation at all study sites. However, heavy fouling by epiphytes occurred each summer, followed by high kelp mortality. The study shows that the seasonal variations and the life stage timing of S. latissima make formation of self-sustainable populations impossible in the present environment. Most noteworthy, we suggest that fouling by epiphytes is involved in the lack of kelp forest recovery in Skagerrak, Norway.

  8. Ecological assessment of seasonal bioclimatic and production rhythms in agrosystems of the Republic of Armenia

    Directory of Open Access Journals (Sweden)

    Arsen Grigoryan

    2017-06-01

    Full Text Available In the article the time features of occurrence of bioclimatic and industrial rhythms according to altitudinal belts are analyzed, a nomogram is composed and spatial and time patterns of rhythms are revealed, the ways of the rational use of seasonal rhythms and greening agrosystems of the Republic of Armenia (RA are shown. The paper summarizes 80–100-year summer monitoring data on onset timing of the main seasonal bioclimatic rhythms of animate and inanimate nature in the RA. The definition of bioclimatic rhythms is given. The importance of studies of seasonal rhythms of nature and society, especially in the non-tropical zones of the Earth is shown. Besides, the special importance of bioclimatic seasonal rhythms' study in order to optimize agro-zootechnical activities and to green agricultural systems is emphasized. Continuous chain of natural rhythms leads to the formation of adequate seasonal rhythms in the production activities of all sectors of the economy, ensuring the functioning of the biosphere and society. The regularities of the timing of seasonal bioclimatic rhythms' onset by the vertical zones in Armenia taking into account the atmospheric moisture of regions is set, vertical gradients are calculated and a nomogram allowing to develop calendars of seasonal works being carried out in certain regions is drawn.

  9. An integrated, indicator framework for assessing large-scale variations and change in seasonal timing and phenology (Invited)

    Science.gov (United States)

    Betancourt, J. L.; Weltzin, J. F.

    2013-12-01

    As part of an effort to develop an Indicator System for the National Climate Assessment (NCA), the Seasonality and Phenology Indicators Technical Team (SPITT) proposed an integrated, continental-scale framework for understanding and tracking seasonal timing in physical and biological systems. The framework shares several metrics with the EPA's National Climate Change Indicators. The SPITT framework includes a comprehensive suite of national indicators to track conditions, anticipate vulnerabilities, and facilitate intervention or adaptation to the extent possible. Observed, modeled, and forecasted seasonal timing metrics can inform a wide spectrum of decisions on federal, state, and private lands in the U.S., and will be pivotal for international efforts to mitigation and adaptation. Humans use calendars both to understand the natural world and to plan their lives. Although the seasons are familiar concepts, we lack a comprehensive understanding of how variability arises in the timing of seasonal transitions in the atmosphere, and how variability and change translate and propagate through hydrological, ecological and human systems. For example, the contributions of greenhouse warming and natural variability to secular trends in seasonal timing are difficult to disentangle, including earlier spring transitions from winter (strong westerlies) to summer (weak easterlies) patterns of atmospheric circulation; shifts in annual phasing of daily temperature means and extremes; advanced timing of snow and ice melt and soil thaw at higher latitudes and elevations; and earlier start and longer duration of the growing and fire seasons. The SPITT framework aims to relate spatiotemporal variability in surface climate to (1) large-scale modes of natural climate variability and greenhouse gas-driven climatic change, and (2) spatiotemporal variability in hydrological, ecological and human responses and impacts. The hierarchical framework relies on ground and satellite observations

  10. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Directory of Open Access Journals (Sweden)

    Cook Jackie

    2012-03-01

    Full Text Available Abstract Background In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. Methods In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP and Plasmodium vivax Merozoite Surface Protein-119 (MSP-119 were detected using Enzyme Linked Immunosorbent Assay (ELISA. The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART method. Results A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively. P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species. CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the

  11. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  12. Seasonal variations in 228Ra/226Ra ratio within coastal waters of the Sea of Japan: implications for water circulation patterns in coastal areas

    International Nuclear Information System (INIS)

    Inoue, M.; Tanaka, K.; Watanabe, S.; Kofuji, H.; Yamamoto, M.; Komura, K.

    2006-01-01

    In this study, low-background γ-spectrometry was used to determine the 228 Ra/ 226 Ra ratio of 131 coastal water samples from various environments around Honshu Island, Japan (mainly around Noto Peninsula) at 1-3 month intervals from April 2003 until September 2005. Spatial variation in 228 Ra/ 226 Ra ratios was also assessed by analyzing 34 coastal water samples from five areas within the Sea of Japan during May and June 2004. The 228 Ra/ 226 Ra ratio of coastal water from all sites around Noto Peninsula shows seasonal variation, with minimum values during summer ( 228 Ra/ 226 Ra = 0.7) and maximum values during autumn-winter ( 228 Ra/ 226 Ra = 1.7-2). This seasonal variation is similar to that recorded for coastal water between Tsushima Strait and Noto Peninsula. The measured lateral variation in 228 Ra/ 226 Ra ratios within coastal water between Tsushima Strait and Noto Peninsula is only minor (0.5-0.7; May-June 2004). Coastal waters from two other sites (Pacific shore and Tsugaru Strait, north Honshu) show no clear seasonal variation in 228 Ra/ 226 Ra ratio. These measured variations in 228 Ra/ 226 Ra ratio, especially the temporal variations, have important implications for seasonal changes in patterns of coastal water circulation within the Sea of Japan

  13. Enhanced seasonal predictability of the summer mean temperature in Central Europe favored by new dominant weather patterns

    Science.gov (United States)

    Hoffmann, P.

    2018-04-01

    In this study two complementary approaches have been combined to estimate the reliability of the data-driven seasonal predictability of the meteorological summer mean temperature (T_{JJA}) over Europe. The developed model is based on linear regressions and uses early season predictors to estimate the target value T_{JJA}. We found for the Potsdam (Germany) climate station that the monthly standard deviations (σ) from January to April and the temperature mean ( m) in April are good predictors to describe T_{JJA} after 1990. However, before 1990 the model failed. The core region where this model works is the north-eastern part of Central Europe. We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes. In spring, a significant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather systems over Europe. Other weather types are predominantly decreasing or their trends are not significant. Thus, the predictability may be attributed to these two weather types where the difference between the two Z500 composite patterns is large. This also applies to the north-eastern part of Central Europe. Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side effects may occur. One of these are more frequent climate extremes in summer half-year.

  14. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China.

    Science.gov (United States)

    Wang, Zhi-Tao; Nachtigall, Paul E; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  15. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis in the Pearl River Estuary, China.

    Directory of Open Access Journals (Sweden)

    Zhi-Tao Wang

    Full Text Available A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world's largest known population of Indo-Pacific humpback dolphins (Sousa chinensis. Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts.

  16. Passive Acoustic Monitoring the Diel, Lunar, Seasonal and Tidal Patterns in the Biosonar Activity of the Indo-Pacific Humpback Dolphins (Sousa chinensis) in the Pearl River Estuary, China

    Science.gov (United States)

    Wang, Zhi-Tao; Nachtigall, Paul E.; Akamatsu, Tomonari; Wang, Ke-Xiong; Wu, Yu-Ping; Liu, Jian-Chang; Duan, Guo-Qin; Cao, Han-Jiang; Wang, Ding

    2015-01-01

    A growing demand for sustainable energy has led to an increase in construction of offshore windfarms. Guishan windmill farm will be constructed in the Pearl River Estuary, China, which sustains the world’s largest known population of Indo-Pacific humpback dolphins (Sousa chinensis). Dolphin conservation is an urgent issue in this region. By using passive acoustic monitoring, a baseline distribution of data on this species in the Pearl River Estuary during pre-construction period had been collected. Dolphin biosonar detection and its diel, lunar, seasonal and tidal patterns were examined using a Generalized Linear Model. Significant higher echolocation detections at night than during the day, in winter-spring than in summer-autumn, at high tide than at flood tide were recognized. Significant higher echolocation detections during the new moon were recognized at night time. The diel, lunar and seasonal patterns for the echolocation encounter duration also significantly varied. These patterns could be due to the spatial-temporal variability of dolphin prey and illumination conditions. The baseline information will be useful for driving further effective action on the conservation of this species and in facilitating later assessments of the effects of the offshore windfarm on the dolphins by comparing the baseline to post construction and post mitigation efforts. PMID:26580966

  17. Influenza vaccine effectiveness assessment through sentinel virological data in three post-pandemic seasons

    Science.gov (United States)

    Torner, Núria; Martínez, Ana; Basile, Luca; Marcos, M Angeles; Antón, Andrés; Mar Mosquera, M; Isanta, Ricard; Cabezas, Carmen; Jané, Mireia; Domínguez, Angela; Program of Catalonia, the PIDIRAC Sentinel Surveillance

    2014-01-01

    Influenza vaccination aims at reducing the incidence of serious disease, complications and death among those with the most risk of severe influenza disease. Influenza vaccine effectiveness (VE) through sentinel surveillance data from the PIDIRAC program (Daily Acute Respiratory Infection Surveillance of Catalonia) during 2010–2011, 2011–2012, and 2012–2013 influenza seasons, with three different predominant circulating influenza virus (IV) types [A(H1N1)pdm09, A(H3N2) and B, respectively] was assessed. The total number of sentinel samples with known vaccination background collected during the study period was 3173, 14.7% of which had received the corresponding seasonal influenza vaccine. 1117 samples (35.2%) were positive for IV. A retrospective negative case control design was used to assess vaccine effectiveness (VE) for the entire period and for each epidemic influenza season. An overall VE of 58.1% (95% CI:46.8–67) was obtained. Differences in VE according to epidemic season were observed, being highest for the 2012–2013 season with predominance of IV type B (69.7% ;95% CI:51.5–81) and for the 2010–2011 season, with predominance of the A(H1N1)pdm09 influenza virus strain (67.2% ;95%CI:49.5–78.8) and lowest for the 2011–2012 season with A(H3N2) subtype predominance (34.2% ;95%CI:4.5–54.6). Influenza vaccination prevents a substantial number of influenza-associated illnesses. Although vaccines with increased effectiveness are needed and the search for a universal vaccine that is not subject to genetic modifications might increase VE, nowadays only the efforts to increase vaccination rates of high-risk population and healthcare personnel let reduce the burden of influenza and its complications. PMID:25483540

  18. Investigation into Seasonal Scavenging Patterns of Raccoons on Human Decomposition.

    Science.gov (United States)

    Jeong, Yangseung; Jantz, Lee Meadows; Smith, Jake

    2016-03-01

    Although raccoons are known as one of the most common scavengers in the U.S., scavenging by these animals has seldom been studied in terms of forensic significance. In this research, the seasonal pattern of raccoon scavenging and its effect on human decomposition was investigated using 178 human cadavers placed at the Anthropological Research Facility (ARF) of the University of Tennessee, Knoxville (UTK) between February 2011 and December 2013. The results reveal that (i) the frequency of scavenging increases during summer, (ii) scavenging occurs relatively immediately and lasts shorter in summer months, and (iii) scavenging influences the decomposition process by hollowing limbs and by disturbing insect activities, both of which eventually increases the chance of mummification on the affected body. This information is expected to help forensic investigators identify raccoon scavenging as well as make a more precise interpretation of the effect of raccoon scavenging on bodies at crime scenes. © 2015 American Academy of Forensic Sciences.

  19. Assessment of printability for printed electronics patterns by measuring geometric dimensions and defining assessment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sung Woong [Dept. of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu (Korea, Republic of); Kim, Cheol; Kim, Chung Hwan [Chungnam National University, Daejeon (Korea, Republic of)

    2016-12-15

    The printability of patterns for printed electronic devices determines the performance, yield rate, and reliability of the devices; therefore, it should be assessed quantitatively. In this paper, parameters for printability assessment of printed patterns for width, pinholes, and edge waviness are suggested. For quantitative printability assessment, printability grades for each parameter are proposed according to the parameter values. As examples of printability assessment, printed line patterns and mesh patterns obtained using roll-to-roll gravure printing are used. Both single-line patterns and mesh patterns show different levels of printability, even in samples obtained using the same printing equipment and conditions. Therefore, for reliable assessment, it is necessary to assess the printability of the patterns by enlarging the sampling area and increasing the number of samples. We can predict the performance of printed electronic devices by assessing the printability of the patterns that constitute them.

  20. Assessment of printability for printed electronics patterns by measuring geometric dimensions and defining assessment parameters

    International Nuclear Information System (INIS)

    Jeon, Sung Woong; Kim, Cheol; Kim, Chung Hwan

    2016-01-01

    The printability of patterns for printed electronic devices determines the performance, yield rate, and reliability of the devices; therefore, it should be assessed quantitatively. In this paper, parameters for printability assessment of printed patterns for width, pinholes, and edge waviness are suggested. For quantitative printability assessment, printability grades for each parameter are proposed according to the parameter values. As examples of printability assessment, printed line patterns and mesh patterns obtained using roll-to-roll gravure printing are used. Both single-line patterns and mesh patterns show different levels of printability, even in samples obtained using the same printing equipment and conditions. Therefore, for reliable assessment, it is necessary to assess the printability of the patterns by enlarging the sampling area and increasing the number of samples. We can predict the performance of printed electronic devices by assessing the printability of the patterns that constitute them

  1. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea.

    Science.gov (United States)

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-02-01

    There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.

  2. Clinical Age-Specific Seasonal Conjunctivitis Patterns and Their Online Detection in Twitter, Blog, Forum, and Comment Social Media Posts

    Science.gov (United States)

    Deiner, Michael S.; McLeod, Stephen D.; Chodosh, James; Oldenburg, Catherine E.; Fathy, Cherie A.; Lietman, Thomas M.; Porco, Travis C.

    2018-01-01

    Purpose We sought to determine whether big data from social media might reveal seasonal trends of conjunctivitis, most forms of which are nonreportable. Methods Social media posts (from Twitter, and from online forums and blogs) were classified by age and by conjunctivitis type (allergic or infectious) using Boolean and machine learning methods. Based on spline smoothing, we estimated the circular mean occurrence time (a measure of central tendency for occurrence) and the circular variance (a measure of uniformity of occurrence throughout the year, providing an index of seasonality). Clinical records from a large tertiary care provider were analyzed in a similar way for comparison. Results Social media posts machine-coded as being related to infectious conjunctivitis showed similar times of occurrence and degree of seasonality to clinical infectious cases, and likewise for machine-coded allergic conjunctivitis posts compared to clinical allergic cases. Allergic conjunctivitis showed a distinctively different seasonal pattern than infectious conjunctivitis, with a mean occurrence time later in the spring. Infectious conjunctivitis for children showed markedly greater seasonality than for adults, though the occurrence times were similar; no such difference for allergic conjunctivitis was seen. Conclusions Social media posts broadly track the seasonal occurrence of allergic and infectious conjunctivitis, and may be a useful supplement for epidemiologic monitoring. PMID:29450538

  3. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Basseri

    2010-01-01

    Full Text Available Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area.

  4. Seasonality of the activity pattern of Callithrix penicillata (Primates, Callitrichidae in the cerrado (scrub savanna vegetation

    Directory of Open Access Journals (Sweden)

    S. L. Vilela

    Full Text Available Two wild groups of Callithrix penicillata, the Black Pincelled Marmoset, were observed from January to September 1998, in two areas, one an area of dense scrub savanna vegetation (cerrado and the other, a semidecidual woodland (cerradão, both within the boundaries of the Ecological Reserve of IBGE (Brazilian Institute of Geography and Statistics, in an environmentally protected area, the APA (Portuguese abbreviation for "environmental protected area" Gama/Cabeça-de-Veado, Brasília, DF. The behavioral data collected during the rainy (January 15 to April 15 and dry season (June 1 to September 15 were compared. Because of the proximity to the Reserve facilities, the group from the dense scrub savanna vegetation (CD was submitted to antropic impacts different from the group in the semidecidual woodland (CE, which was using as territory an area that had been suffering from man-made fires every two years as part of a long-term experimental project on fire impacts. The behavioral data was quantified by instantaneous cross-section ("scan sampling" every ten minutes with records of locomotion, rest, foraging for insects, use of exudate, and feeding. During the whole year, the greatest percentage of time spent by CE and CD was in foraging for insects, with 44% and 39%, respectively. It was evident when comparing the data for the two seasons that, for both groups, foraging for insects was more intense during the dry season, possibly to complement the shortage of food, and locomotion increased during the rainy season. The greater the availability and distribution of fruit in the areas, the greater the locomotion of the groups to obtain these resources. None of the other behavioral patterns, including the use of exudates, presented significant differences between the two seasons. Both groups foraged more frequently during the dry season and locomoted more during the rainy one.

  5. Ranking GCM Estimates of Twentieth Century Precipitation Seasonality in the Western U.S. and its Influence on Floristic Provinces.

    Science.gov (United States)

    Cole, K. L.; Eischeid, J. K.; Garfin, G. M.; Ironside, K.; Cobb, N. S.

    2008-12-01

    Floristic provinces of the western United States (west of 100W) can be segregated into three regions defined by significant seasonal precipitation during the months of: 1) November-March (Mediterranean); 2) July- September (Monsoonal); or, 3) May-June (Rocky Mountain). This third region is best defined by the absence of the late spring-early summer drought that affects regions 1 and 2. Each of these precipitation regimes is characterized by distinct vegetation types and fire seasonality adapted to that particular cycle of seasonal moisture availability and deficit. Further, areas where these regions blend from one to another can support even more complex seasonal patterns and resulting distinctive vegetation types. As a result, modeling the effects of climates on these ecosystems requires confidence that GCMs can at least approximate these sub- continental seasonal precipitation patterns. We evaluated the late Twentieth Century (1950-1999 AD) estimates of annual precipitation seasonality produced by 22 GCMs contained within the IPCC Fourth Assessment (AR4). These modeled estimates were compared to values from the PRISM dataset, extrapolated from station data, over the same historical period for the 3 seasonal periods defined above. The correlations between GCM estimates and PRISM values were ranked using 4 measures: 1) A map pattern relationship based on the correlation coefficient, 2) A map pattern relationship based on the congruence coefficient, 3) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation amounts, and, 4) The ratio of simulated/observed area averaged precipitation based on the seasonal precipitation percentages of the annual total. For each of the four metrics, the rank order of models was very similar. The ranked order of the performance of the different models quantified aspects of the model performance visible in the mapped results. While some models represented the seasonal patterns very well, others

  6. Seasonal Patterns of Stored-Product Insects at a Rice Mill.

    Science.gov (United States)

    McKay, Tanja; White, Amanda L; Starkus, Laura A; Arthur, Frank H; Campbell, James F

    2017-06-01

    The temporal and spatial patterns in flight activity outside of a rice mill were evaluated for the lesser grain borer [Rhyzopertha dominica (F.)], warehouse beetle [Trogoderma variabile Ballion], cigarette beetle [Lasioderma serricorne (F.)], and Indian meal moth [Plodia interpunctella (Hüϋbner)] to determine critical times of year when the mill would be vulnerable to invasion. Insect activity was monitored using pheromone-baited glue traps (N = 99) from June 2008 to October 2010. Traps were placed along exterior walls of all major buildings and along the fence around the perimeter of the facility. Trogoderma variabile was the most abundant species, with flight activity between mid-March and November. No activity of T. variabile was observed during December through March. Rhyzopertha dominica was also abundant, with activity in mid-April through October. A few adult R. dominica were captured in traps during winter months in the first year of study. Trap captures for all four species increased with an increase in temperature and can be described by linear equations. Knowing seasonal patterns in insect activity allows rice facilities to better understand when facilities are most vulnerable to pest activity. However, this study demonstrates that more research is needed to address how insects are immigrating and emigrating within and around a rice mill. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Seasonal Variations in Mood and Behavior in Romanian Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Joseph J. Soriano

    2007-01-01

    Full Text Available To our knowledge, this paper is the first to estimate seasonality of mood in a predominantly Caucasian sample, living in areas with hot summers and a relative unavailability of air conditioning. As a summer pattern of seasonal depression was previously associated with a vulnerability to heat exposure, we hypothesized that those with access to air conditioners would have a lower rate of summer seasonal affective disorder (SAD compared to those without air conditioning. A convenience sample of 476 Romanian postgraduate students completed the Seasonal Pattern Assessment Questionnaire (SPAQ, which was used to calculate a global seasonality score (GSS and to estimate the rates of winter- and summer-type SAD. The ratio of summer- vs. winter-type SAD was compared using multinomial probability distribution tests. We also compared the ratio of summer SAD in individuals with vs. without air conditioners. Winter SAD and winter subsyndromal SAD (S-SAD were significantly more prevalent than summer SAD and summer S-SAD. Those with access to air conditioners had a higher, rather than a lower, rate of summer SAD. Our results are consistent with prior studies that reported a lower prevalence of summer than winter SAD in Caucasian populations. Finding an increased rate of summer SAD in the minority of those with access to air conditioners was surprising and deserves replication.

  8. Assessing elders using the functional health pattern assessment model.

    Science.gov (United States)

    Beyea, S; Matzo, M

    1989-01-01

    The impact of older Americans on the health care system requires we increase our students' awareness of their unique needs. The authors discuss strategies to develop skills using Gordon's Functional Health Patterns Assessment for assessing older clients.

  9. Landscape pattern metrics and regional assessment

    Science.gov (United States)

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  10. Assessing the impact of climate variability on cropping patterns in Kenya

    Science.gov (United States)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  11. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.

    Science.gov (United States)

    Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C

    2018-07-01

    Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re

  12. Seasonality of food groups and total energy intake: a systematic review and meta-analysis.

    Science.gov (United States)

    Stelmach-Mardas, M; Kleiser, C; Uzhova, I; Peñalvo, J L; La Torre, G; Palys, W; Lojko, D; Nimptsch, K; Suwalska, A; Linseisen, J; Saulle, R; Colamesta, V; Boeing, H

    2016-06-01

    The aim of this systematic review and meta-analysis was to assess the effect of season on food intake from selected food groups and on energy intake in adults. The search process was based on selecting publications listed in the following: Medline, Scopus, Web of Science, Embase and Agris. Food frequency questionnaires, 24-h dietary recalls and food records as methods for assessment of dietary intake were used to assess changes in the consumption of 11 food groups and of energy intake across seasons. A meta-analysis was performed. Twenty-six studies were included. Articles were divided into those reporting data on four seasons (winter, spring, summer and autumn) or on two seasons (pre-and post-harvest). Four of the studies could be utilized for meta-analysis describing changes in food consumption across four season scheme: from winter to spring fruits decreased, whereas vegetables, eggs and alcoholic beverages increased; from spring to summer vegetable consumption further increased and cereals decreased; from summer to autumn fruits and cereals increased and vegetables, meat, eggs and alcoholic beverages decreased; from autumn to winter cereals decreased. A significant association was also found between energy intake and season, for 13 studies reporting energy intake across four seasons (favors winter) and for eight studies across pre- and post-harvest seasons (favors post-harvest). The winter or the post-harvest season is associated with increased energy intake. The intake of fruits, vegetables, eggs, meat, cereals and alcoholic beverages is following a seasonal consumption pattern and at least for these foods season is determinant of intake.

  13. Simplicity within complexity: Seasonality and predictability of hospital admissions in the province of Ontario 1988–2001, a population-based analysis

    Directory of Open Access Journals (Sweden)

    Moineddin Rahim

    2005-02-01

    Full Text Available Abstract Background Seasonality is a common feature of communicable diseases. Less well understood is whether seasonal patterns occur for non-communicable diseases. The overall effect of seasonal fluctuations on hospital admissions has not been systematically evaluated. Methods This study employed time series methods on a population based retrospective cohort of for the fifty two most common causes of hospital admissions in the province of Ontario from 1988–2001. Seasonal patterns were assessed by spectral analysis and autoregressive methods. Predictive models were fit with regression techniques. Results The results show that 33 of the 52 most common admission diagnoses are moderately or strongly seasonal in occurrence; 96.5% of the predicted values were within the 95% confidence interval, with 37 series having all values within the 95% confidence interval. Conclusion The study shows that hospital admissions have systematic patterns that can be understood and predicted with reasonable accuracy. These findings have implications for understanding disease etiology and health care policy and planning.

  14. Seasonality in acute liver injury? Findings in two health care claims databases

    Directory of Open Access Journals (Sweden)

    Weinstein RB

    2016-03-01

    Full Text Available Rachel B Weinstein, Martijn J Schuemie, Patrick B Ryan, Paul E Stang Epidemiology, Janssen Research and Development, LLC, Titusville, NJ, USA Background: Presumed seasonal use of acetaminophen-containing products for relief of cold/influenza (“flu” symptoms suggests that there might also be a corresponding seasonal pattern for acute liver injury (ALI, a known clinical consequence of acetaminophen overdose. Objective: The objective of this study was to determine whether there were any temporal patterns in hospitalizations for ALI that would correspond to assumed acetaminophen use in cold/flu season. Methods: In the period 2002–2010, monthly hospitalization rates for ALI using a variety of case definitions were calculated. Data sources included Truven MarketScan® Commercial Claims and Encounters (CCAE and Medicare Supplemental and Coordination of Benefits (MDCR databases. We performed a statistical test for seasonality of diagnoses using the periodic generalized linear model. To validate that the test can distinguish seasonal from nonseasonal patterns, we included two positive controls (ie, diagnoses of the common cold [acute nasopharyngitis] and influenza, believed to change with seasons, and two negative controls (female breast cancer and diabetes, believed to be insensitive to season. Results: A seasonal pattern was observed in monthly rates for common cold and influenza diagnoses, but this pattern was not observed for monthly rates of ALI, with or without comorbidities (cirrhosis or hepatitis, breast cancer, or diabetes. The statistical test for seasonality was significant for positive controls (P<0.001 for each diagnosis in both databases and nonsignificant for ALI and negative controls. Conclusion: No seasonal pattern was observed in the diagnosis of ALI. The positive and negative controls showed the expected patterns, strengthening the validity of the statistical and visual tests used for detecting seasonality. Keywords: acute liver

  15. Seasonality in cholera dynamics : a rainfall-driven model explains the wide range of patterns of an infectious disease in endemic areas

    Science.gov (United States)

    Baracchini, Theo; Pascual, Mercedes; King, Aaron A.; Bouma, Menno J.; Bertuzzo, Enrico; Rinaldo, Andrea

    2015-04-01

    An explanation for the spatial variability of seasonal cholera patterns has remained an unresolved problem in tropical medicine te{pascual_2002}. Previous studies addressing the role of climate drivers in disease dynamics have focused on interannual variability and modelled seasonality as given te{king_nature}. Explanations for seasonality have relied on complex environmental interactions that vary with spatial location (involving regional hydrological models te{bertuzzo_2012}, river discharge, sea surface temperature, and plankton blooms). Thus, no simple and unified theory based on local climate variables has been formulated te{emch_2008}, leaving our understanding of seasonal variations of cholera outbreaks in different regions of the world incomplete. Through the analysis of a unique historical dataset containing 50 years of monthly meteorological, demographic and epidemiological records, we propose a mechanistic, SIR-based stochastic model for the population dynamics of cholera driven by local rainfall and temperature that is able to capture the full range of seasonal patterns in this large estuarine region, which encompasses the variety of patterns worldwide. Parameter inference was implemented via new statistical methods that allow the computation of maximum-likelihood estimates for partially observed Markov processes through sequential Monte-Carlo te{ionides_2011}. Such a model may provide a unprecedented opportunity to gain insights on the conditions and factors responsible for endemicity around the globe, and therefore, to also revise our understanding of the ecology of Vibrio cholerae. Results indicate that the hydrological regime is a decisive driver determining the seasonal dynamics of cholera. It was found that rainfall and longer water residence times tend to buffer the propagation of the disease in wet regions due to a dilution effect, while also enhancing cholera incidence in dry regions. This indicates that overall water levels matter and appear

  16. How Does Seasonal Flu Differ From Pandemic Flu?

    Science.gov (United States)

    ... Past Issues How Does Seasonal Flu Differ From Pandemic Flu? Past Issues / Fall 2006 Table of Contents ... this page please turn Javascript on. Seasonal Flu Pandemic Flu Outbreaks follow predictable seasonal patterns; occurs annually, ...

  17. Seasonal changes in english walnut (Juglans regia L.) (Juglandaceae), fruit properties and host use patterns by Rhagoletis zoqui (Diptera: Tephritidae)

    Science.gov (United States)

    Rhagoletis zoqui Bush is a Neosubtropical, univoltine, frugivorous tephritid fly that exploits both native Juglans spp. and the introduced, Palearctic English walnut, Juglans regia. The seasonal development of commercial J. regia fruit and the pattern of host exploitation by R. zoqui were tracked ov...

  18. Otolith microstructure analysis to resolve seasonal patterns of hatching and settlement in western Baltic cod

    DEFF Research Database (Denmark)

    Rehberg-Haas, Sabine; Hammer, Cornelius; Hillgruber, Nicola

    2012-01-01

    Previous studies showed that Baltic cod (Gadus morhua) settle to demersal life at a given size, while the annulus is formed seasonally, irrespective of size. The goal of this study was to examine the timing of check formation in juvenile Baltic cod otoliths to validate macrostructural ageing...... and to differentiate between true annuli and secondary structures such as settlement checks. Otoliths were collected from fish off Fehmarn Island in 2008 and 2009, and were examined for macrostructural and microstructural patterns using light and scanning electron microscopy. All fish examined were age-0. Back...

  19. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults.

    Directory of Open Access Journals (Sweden)

    Nelson Lee

    Full Text Available BACKGROUND: Studying cytokine/chemokine responses in severe influenza infections caused by different virus subtypes may improve understanding on pathogenesis. METHODS: Adults hospitalized for laboratory-confirmed seasonal and pandemic 2009 A/H1N1 (pH1N1 influenza were studied. Plasma concentrations of 13 cytokines/chemokines were measured at presentation and then serially, using cytometric-bead-array with flow-cytometry and ELISA. PBMCs from influenza patients were studied for cytokine/chemokine expression using ex-vivo culture (Whole Blood Assay,±PHA/LPS stimulation. Clinical variables were prospectively recorded and analyzed. RESULTS: 63 pH1N1 and 53 seasonal influenza patients were studied. pH1N1 patients were younger (mean±S.D. 42.8±19.2 vs 70.5±16.7 years, and fewer had comorbidities. Respiratory/cardiovascular complications were common in both groups (71.4% vs 81.1%, although severe pneumonia with hypoxemia (54.0% vs 28.3% and ICU admissions (25.4% vs 1.9% were more frequent with pH1N1. Hyperactivation of the proinflammatory cytokines IL-6, CXCL8/IL-8, CCL2/MCP-1 and sTNFR-1 was found in pH1N1 pneumonia (2-15 times normal and in complicated seasonal influenza, but not in milder pH1N1 infections. The adaptive-immunity (Th1/Th17-related CXCL10/IP-10, CXCL9/MIG and IL-17A however, were markedly suppressed in severe pH1N1 pneumonia (2-27 times lower than seasonal influenza; P-values<0.01. This pattern was further confirmed with serial measurements. Hypercytokinemia tended to be sustained in pH1N1 pneumonia, associated with a slower viral clearance [PCR-negativity: day 3-4, 55% vs 85%; day 6-7, 67% vs 100%]. Elevated proinflammatory cytokines, particularly IL-6, predicted ICU admission (adjusted OR 12.6, 95%CI 2.6-61.5, per log(10unit increase; P = 0.002, and correlated with fever, tachypnoea, deoxygenation, and length-of-stay (Spearman's rho, P-values<0.01 in influenza infections. PBMCs in seasonal influenza patients were activated and

  20. Varied representation of the West Pacific pattern in multiple dynamical seasonal predictions of APCC-MME

    Science.gov (United States)

    Lee, Yun-Young

    2017-04-01

    West Pacific (WP) teleconnection pattern is one of the well-known primary modes of boreal winter low-frequency variability (LFV) resolved in 500 hPa geopotential height and its phase and amplitude strongly influence regional weather conditions including temperature and rainfall extremes [Baxter and Nigam, 2015; Hsu and Wallace, 1985; Linkin and Nigam, 2008; Mo and Livezey, 1986; Thompson and Wallace, 1998; Wallace and Gutzler, 1981]. This study primary aims to evaluate individual 11 GCMs seasonal hindcasts employed as members of multi-model ensemble (MME) produced in APEC Climate Center (APCC) in representing WP. For the extensive and comprehensive evaluation, this study applied seven verification metrics in three scopes: (a) temporal representation of observed indices, (b) spatial mode separation in the Northern Hemisphere (NH), and (c) regional mode isolated in the preset longitudinal domain. Verification results display quite large inter-model spread. Some models mimic observed index variability while others display large bias of index variability compared to climatology. Basic north-south dipole pattern is mostly well reproduced in both rotated and unrotated loading modes. However, each individual seasonal forecast model exhibits slightly different behavior (e.g. amplification/weakening, zonal and meridional shift, downstream extension and so forth) in representing spatial structure of WP. When taking all 7 metrics into account, one Europe (CMCC) model, one Oceania (POAMA) model and two North America (NASA and NCEP) models are classified as relatively good performers while PNU is classified as a matchless poor performer out of 11. Least WP representing skill of PNU is sort of consistent with the largest bias of NH total variability. This study further tries to examine winter mean biases of individual models and figure out how mean bias is linked to WP representation in model world. Model bias of winter climatology is investigated focusing on six large scale

  1. An Early Mathematical Patterning Assessment: identifying young Australian Indigenous children's patterning skills

    Science.gov (United States)

    Papic, Marina

    2015-12-01

    This paper presents an Early Mathematical Patterning Assessment (EMPA) tool that provides early childhood educators with a valuable opportunity to identify young children's mathematical thinking and patterning skills through a series of hands-on and drawing tasks. EMPA was administered through one-to-one assessment interviews to children aged 4 to 5 years in the year prior to formal school. Two hundred and seventeen assessments indicated that the young low socioeconomic and predominantly Australian Indigenous children in the study group had varied patterning and counting skills. Three percent of the study group was able to consistently copy and draw an ABABAB pattern made with coloured blocks. Fifty percent could count to six by ones and count out six items with 4 % of the total group able to identify six items presented in regular formations without counting. The integration of patterning into early mathematics learning is critical to the abstraction of mathematical ideas and relationships and to the development of mathematical reasoning in young children. By using the insights into the children's thinking that the EMPA tool provides, early childhood educators can better inform mathematics teaching and learning and so help close the persistent gap in numeracy between Indigenous and non-Indigenous children.

  2. Seasonal Variation in Group Size Is Related to Seasonal Variation in Neuropeptide Receptor Density.

    Science.gov (United States)

    Wilson, Leah C; Goodson, James L; Kingsbury, Marcy A

    2016-01-01

    In many species, seasonal variation in grouping behavior is widespread, with shifts towards territoriality in the breeding season and grouping in the winter. Compared to the hormonal and neural mechanisms of seasonal territorial aggression, the mechanisms that promote seasonal grouping have received little attention. We collected brains in spring and winter from wild-caught males of two species of emberizid sparrows that seasonally flock (the field sparrow, Spizella pusilla, and the dark-eyed junco, Junco hyemalis) and two species that do not seasonally flock (the song sparrow, Melospiza melodia, and the eastern towhee, Pipilo erythrophthalmus). We used receptor autoradiography to quantify seasonal plasticity in available binding sites for three neuropeptides known to influence social behavior. We examined binding sites for 125I-vasoactive intestinal polypeptide (VIP), 125I-sauvagine (SG, a ligand for corticotropin-releasing hormone receptors) and 125I-ornithine vasotocin analog (OVTA, a ligand for the VT3 nonapeptide). For all species and ligands, brain areas that exhibited a seasonal pattern in binding density were characterized by a winter increase. Compared to nonflocking species, seasonally flocking species showed different binding patterns in multiple brain areas. Furthermore, we found that winter flocking was associated with elevated winter 125I-VIP binding density in the medial amygdala, as well as 125I-VIP and 125I-OVTA binding density in the rostral arcopallium. While the functional significance of the avian rostral arcopallium is unclear, it may incorporate parts of the pallial amygdala. Our results point to this previously undescribed area as a likely hot spot of social modulation. © 2016 S. Karger AG, Basel.

  3. Seasonal prolactin secretion and its role in seasonal reproduction: a review.

    Science.gov (United States)

    Curlewis, J D

    1992-01-01

    The majority of seasonally breeding mammals show a seasonal pattern of prolactin secretion with peak concentrations in spring or summer and a nadir in autumn or winter. Photoperiod influences prolactin secretion via its effects on the secretion of the pineal hormone melatonin. Preliminary evidence suggests that the effects of melatonin on both prolactin and gonadotrophin secretion are via a common target area, possibly within the anterior hypothalamus, and that differences in response to photoperiod may be due to differences in the processing and/or interpretation of the melatonin signal. In contrast to seasonal gonadotrophin secretion, the seasonal changes in prolactin are not due to changes in the sensitivity of a feedback loop and so must be due to direct effects on the hypothalamic pathways that control prolactin secretion. Little else can be said with confidence about the neuroendocrine mechanisms that lead to the seasonal changes in prolactin secretion. Dopamine and noradrenaline turnover in the arcuate nucleus and median eminence decrease under short daylength. If catecholamine turnover in these structures is positively correlated with catecholamine concentrations in the long or short hypophysial portal vessels, it is unlikely that the decrease in prolactin concentration in winter is due to the effects of increased concentrations of dopamine or noradrenaline in the portal vessels. There is, however, evidence for increased pituitary sensitivity to dopamine under short daylength, so increased dopamine concentrations may not be required for suppression of prolactin secretion at this time. In addition to the diminished secretion of prolactin under short daylength, rate of prolactin synthesis and pituitary content of prolactin also decline although the mechanisms that regulate these changes are poorly understood. Although all seasonal breeders show a seasonal change in prolactin secretion, there are continuously breeding species in which prolactin secretion is

  4. Seasonal Patterns of Community Participation and Mobility of Wheelchair Users Over an Entire Year.

    Science.gov (United States)

    Borisoff, Jaimie F; Ripat, Jacquie; Chan, Franco

    2018-03-23

    To describe how people who use wheelchairs participate and move at home and in the community over an entire yearlong period, including during times of inclement weather conditions. Longitudinal mixed-methods research study. Urban community in Canada. People who use a wheelchair for home and community mobility (N=11). Not applicable. Use of a global positioning system (GPS) tracker for movement in community (number of trips per day), use of accelerometer for bouts of wheeling mobility (number of bouts per day, speed, distance, and duration), prompted recall interviews to identify supports and barriers to mobility and participation. More trips per day were taken during the summer (P= .03) and on days with no snow and temperatures above 0°C. Participants reliant on public transportation demonstrated more weather-specific changes in their trip patterns. The number of daily bouts of mobility remained similar across seasons; total daily distance wheeled, duration, and speed were higher on summer days, days with no snow, and days with temperatures above 0°C. A higher proportion of outdoor wheeling bouts occurred in summer (P=.02) and with temperatures above 0°C (P=.03). Inaccessible public environments were the primary barrier to community mobility and participation; access to social supports and private transportation were the primary supports. Objective support is provided for the influence of various seasonal weather conditions on community mobility and participation for people who use a wheelchair. Longitudinal data collection provided a detailed understanding of the patterns of, and influences on, wheelchair mobility and participation within wheelchair users' own homes and communities. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Seasonal bat activity related to insect emergence at three temperate lakes.

    Science.gov (United States)

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  6. Soil Moisture and Turgidity of Selected Robusta Coffee Clones on Alluvial Plain with Seasonal Rainfall Pattern

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyono

    2005-08-01

    Full Text Available Observation on the seasonal variations of hydrological condition and turgidity of selected Robusta coffee clones has been carried out in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute in Jember. The aim was to evaluate the effect of hydrological variation on the coffee plants and the degree of soil moisture effect on plant performance. Experimental site overlays on alluvial plain, + 45 m a.s.l., 8o 15’ South with D rainfall type. Observation was conducted by survey method at the experimental plots of organic fertilizer and nitogen treatments on selected Robusta coffee clones derived from rooted cuttings, i.e. BP 436, BP 42, BP 936 and BP 358. Observation was only conducted at the experimental blocks of organic matter trials of 20 l/tree/year at nitrogen (Urea application of locally recommanded rate during the subsequent years of 1999 to 2001. Parameters observed included plant turgidity and soil moisture content of three different depths, i.e. 0—20, 20—40 and 40—60 cm and the weather. Observation was carried out in five replicates designed as blocks of barn manure treatment and N-fertilizer of recommended rate as basal fertilizer. The results showed that meteorological condition and soil moisture of experimental site through the years have seasonal patterns following the seasonal pattern of rainfall. Compared to other meteorological characteristics, relative humidity dominantly determined evaporation and plant turgidity. Plant turgi-dity was not only determined by soil moisture condition, but also atmospheric demand. When relative humidity (RH was relatively high, plant turgidity was relatively stable although soil moisture of surface layers was very low, and the reversal when soil moisture content was high plant turgidity was controlled by atmospheric demand (relative humidity. With a 3—4 dry month period, relative turgidity of the coffee plants was relatively stable above 82%, except when soil

  7. Short-Term Effects of Changing Precipitation Patterns on Shrub-Steppe Grasslands: Seasonal Watering Is More Important than Frequency of Watering Events.

    Science.gov (United States)

    Densmore-McCulloch, Justine A; Thompson, Donald L; Fraser, Lauchlan H

    2016-01-01

    Climate change is expected to alter precipitation patterns. Droughts may become longer and more frequent, and the timing and intensity of precipitation may change. We tested how shifting precipitation patterns, both seasonally and by frequency of events, affects soil nitrogen availability, plant biomass and diversity in a shrub-steppe temperate grassland along a natural productivity gradient in Lac du Bois Grasslands Protected Area near Kamloops, British Columbia, Canada. We manipulated seasonal watering patterns by either exclusively watering in the spring or the fall. To simulate spring precipitation we restricted precipitation inputs in the fall, then added 50% more water than the long term average in the spring, and vice-versa for the fall precipitation treatment. Overall, the amount of precipitation remained roughly the same. We manipulated the frequency of rainfall events by either applying water weekly (frequent) or monthly (intensive). After 2 years, changes in the seasonality of watering had greater effects on plant biomass and diversity than changes in the frequency of watering. Fall watering reduced biomass and increased species diversity, while spring watering had little effect. The reduction in biomass in fall watered treatments was due to a decline in grasses, but not forbs. Plant available N, measured by Plant Root Simulator (PRS)-probes, increased from spring to summer to fall, and was higher in fall watered treatments compared to spring watered treatments when measured in the fall. The only effect observed due to frequency of watering events was greater extractable soil N in monthly applied treatments compared to weekly watering treatments. Understanding the effects of changing precipitation patterns on grasslands will allow improved grassland conservation and management in the face of global climatic change, and here we show that if precipitation is more abundant in the fall, compared to the spring, grassland primary productivity will likely be

  8. SEASONAL PATTERNS AND VERTICAL PROFILE OF SOIL WATER UPTAKE AND UTILIZATION BY YOUNG AND OLD DOUGLAS-FIR AND PONDEROSA PINE FORESTS

    Science.gov (United States)

    Water availability has a strong influence on the distribution of forest tree species across the landscape. However, we do not understand how seasonal patterns of water utilization by tree species are related to their drought tolerance. In the Pacific Northwest, Douglas-fir occu...

  9. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  10. Seasonality in swimming and cycling: Exploring a limitation of accelerometer based studies

    Directory of Open Access Journals (Sweden)

    Flo Harrison

    2017-09-01

    Full Text Available Accelerometer-based studies of children's physical activity have reported seasonal patterns in activity levels. However, the inability of many accelerometers to detect activity while the wearer is swimming or cycling may introduce a bias to the estimation of seasonality if participation in these activities are themselves seasonally patterned. We explore seasonal patterns in children's swimming and cycling among a sample of 7–8 year olds (N = 591 participating in the Millennium Cohort Study, UK. Participating children wore an accelerometer for one week on up to five occasions over the year and their parents completed a diary recording daily minutes spent swimming and cycling. Both swimming and cycling participation showed seasonal patterns, with 2.7 (SE 0.8 more minutes swimming and 5.7 (0.7 more minutes cycling performed in summer compared to winter. Adding swimming and cycling time to accelerometer-determined MVPA increased the summer-winter difference in MVPA from 16.6 (1.6 to 24.9 min. The seasonal trend in swimming and cycling appears to follow the same pattern as accelerometer-measured MVPA. Studies relying solely on accelerometers may therefore underestimate seasonal differences in children's activity.

  11. Season, molt, and body size influence mercury concentrations in grebes

    Science.gov (United States)

    Hartman, Christopher; Ackerman, Joshua T.; Herzog, Mark; Eagles-Smith, Collin A.

    2017-01-01

    We studied seasonal and physiological influences on mercury concentrations in western grebes (Aechmophorus occidentalis) and Clark's grebes (A. occidentalis) across 29 lakes and reservoirs in California, USA. Additionally, at three of these lakes, we conducted a time series study, in which we repeatedly sampled grebe blood mercury concentrations during the spring, summer, and early fall. Grebe blood mercury concentrations were higher among males (0.61 ± 0.12 μg/g ww) than females (0.52 ± 0.10 μg/g ww), higher among Clark's grebes (0.58 ± 0.12 μg/g ww) than western grebes (0.51 ± 0.10 μg/g ww), and exhibited a strong seasonal pattern (decreasing by 60% from spring to fall). Grebe blood THg concentrations exhibited a shallow, inverse U-shaped pattern with body size, and was lowest among the smallest and largest grebes. Further, the relationship between grebe blood mercury concentrations and wing primary feather molt exhibited a shallow U-shaped pattern, where mercury concentrations were highest among birds that had not yet begun molting, decreased approximately 24% between pre-molt and late molt, and increased approximately 19% from late molt to post-molt. Because grebes did not begin molting until mid-summer, lower grebe blood mercury concentrations observed in late summer and early fall were consistent with the onset of primary feather molt. However, because sampling date was a much stronger predictor of grebe mercury concentrations than molt, other seasonally changing environmental factors likely played a larger role than molt in the seasonal variation in grebe mercury concentrations. In the time series study, we found that seasonal trends in grebe mercury concentrations were not consistent among lakes, indicating that lake-specific variation in mercury dynamics influence the overall seasonal decline in grebe blood mercury concentrations. These results highlight the importance of accounting for sampling date, as well as ecological processes that may

  12. Assessing responsiveness of a volatile and seasonal supply chain

    DEFF Research Database (Denmark)

    Wong, Chee Yew; Arlbjørn, Jan Stentoft; Hvolby, Hans Henrik

    2006-01-01

    ‘‘market responsive’’ and ‘‘physically efficient’’ supply chains constitutes the backbone of this assessment. Four risk-influencing determinants—forecast uncertainty, demand variability, contribution margin, and time window of delivery are found suitable to assess the responsiveness of the toy supply chain......This paper describes a structural approach to assess the responsiveness of a volatile and seasonal supply chain. It is based on a case study in an international toy company. Fisher’s (Harvard Bus. Rev. 75(2) (1997) 105–117) Model of ‘‘innovative’’ and ‘‘functional’’ products and the corresponding...... with volatility, and to design for a responsive supply chain. These findings have also enabled the extension of Fisher’s Model to volatile supply chains. This new product differentiation model adds a physically responsive supply chain for ‘‘intermediate’’ products into the Fisher’s Model....

  13. Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers

    International Nuclear Information System (INIS)

    Estellano, Victor H.; Pozo, Karla; Efstathiou, Christos; Pozo, Katerine; Corsolini, Simonetta; Focardi, Silvano

    2015-01-01

    Polyurethane foam disks (PUF) passive air samplers (PAS) were deployed over 4 sampling periods of 3–5-months (≥ 1 year) at ten urban and rural locations throughout the Tuscany Region. The purpose was to assess the occurrence and seasonal variations of ten current-use pesticides (CUPs). PUF disk extracts were analyzed using GC–MS. The organophosphates insecticides; chlorpyrifos (3–580 pg m −3 ) and chlorpyrifos-methyl (below detection limit – to 570 pg m −3 ) presented the highest levels in air, and showed seasonal fluctuation coinciding with the growing seasons. The relative proportion urban/(urban + rural) ranged from 0.4 to 0.7 showing no differences between urban and rural concentrations. Air back trajectories analysis showed air masses passing over agricultural fields and potentially enhancing the drift of pesticides into the urban sites. This study represents the first information regarding CUPs in the atmosphere of Tuscany region using PAS-PUF disk. - Highlights: • Current use pesticides (CUPs) were detected in the atmosphere of Tuscany, Italy. • Chlorpyrifos showed the highest concentrations in air with seasonal patterns. • CUPs levels might be influenced by agricultural activities. • No differences were detected between Urban and Rural sites. • Air mass analysis indicated the monitoring sites are influenced by local sources. - Seasonality of CUPs was measured in Tuscany, Italy. Chlorpyrifos showed the highest values. Urban and rural sites showed no differences. Agricultural activities influence CUPs levels in air

  14. Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site

    Science.gov (United States)

    León, Pablo; Walsham, Pam; Bresnan, Eileen; Hartman, Susan E.; Hughes, Sarah; Mackenzie, Kevin; Webster, Lynda

    2018-03-01

    Lack of information about carbonate chemistry in inshore waters is a 'knowledge gap' in assessing the impacts of changing carbonate chemistry on the marine environment. Assessing the response of calcifying phytoplankton to this changing carbonate chemistry requires a greater understanding of temporal variation. This study provides a description of the variability of carbonate parameters at a monitoring site in the eastern coast of Scotland. Four-years of monthly data were analysed to assess the diversity, abundance and morphometrics of coccolithophores in relation to carbonate chemistry and environmental variables. The seasonality in carbonate parameters reflected the seasonal cycle in phytoplankton activity, with higher total alkalinity concentrations and pH and lower dissolved inorganic carbon concentrations during the growing season. The dominant coccolithophore at the site was Emiliania huxleyi which showed a clear seasonal pattern, being more abundant in mid-summer when warmer and nutrient-depleted conditions restricted the annual diatom bloom. This study revealed the presence of three morphotypes of E. huxleyi, type A, type A overcalcified (type AO) and type B, which were seasonally distributed throughout the year. The less calcified form was mainly observed in spring while heavily calcified morphotypes overlapped during summer. Autumn and winter months were dominated by the most calcified form (type AO). These results indicate that the seasonal pattern of E. huxleyi morphotypes was not related to the carbonate concentration at the site. This study reflects the strong interannual variability in carbonate chemistry and the complexity associated with coccolithophore calcification, and highlights the need of long-term data to understand the potential impact of ocean acidification on calcifying phytoplankton.

  15. Temporal and spatial patterns of micropollutants in urban receiving waters

    Energy Technology Data Exchange (ETDEWEB)

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  16. Coral reef fish assemblages along a disturbance gradient in the northern Persian Gulf: A seasonal perspective.

    Science.gov (United States)

    Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William

    2016-04-30

    Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3-5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  18. Assessing element-specific patterns of bioaccumulation across New England lakes

    International Nuclear Information System (INIS)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would

  19. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    Science.gov (United States)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  20. Identification of a seasonal pattern to brain metastases

    Directory of Open Access Journals (Sweden)

    Sakellakis M

    2016-03-01

    Full Text Available Minas Sakellakis,1 Angelos Koutras,1 Maria Pittaka,2 Dimitrios Kardamakis,2 Melpomeni Kalofonou,1 Haralabos P Kalofonos,1 Despina Spyropoulou2 1Division of Oncology, Department of Medicine, 2Department of Radiation Oncology, University Hospital, Patras Medical School, Rion, Patras, GreeceWe have previously tested our hypothesis that there is a seasonality in the incidence of carcinomatous meningitis.1 Although further validation is needed in a larger cohort, we found that leptomeningeal metastasis occurred more often during warm months of the year which, in the case of Greece, is the period generally marked with the larger daytime length.1 Carcinomatous meningitis is closely related to brain metastasis, and a logical question is whether warm season is marked by a greater propensity also for brain metastasis.2 

  1. Seasonal changes, sleep length and circadian preference among twins with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Koskenvuo Markku

    2003-06-01

    Full Text Available Abstract Background We aimed at studying the seasonal changes in mood and behaviour, the distribution of hospital admissions by season, and the persistence of the circadian type in twins with bipolar disorder and their healthy co-twins. Methods All Finnish like-sex twins born from 1940 to 1969 were screened for a diagnosis of bipolar type I disorder. The diagnosis was assessed with a structured research interview, and the study subjects (n = 67 filled in the Seasonal Pattern Assessment Questionnaire (SPAQ and the Morningness-Eveningness Questionnaire (MEQ. For studying the persistence of the habitual sleep length and circadian type, we used data derived from the Finnish Twin Cohort Questionnaire (FTCQ. Bipolar twins were compared with their healthy co-twins. Results Bipolar twins had greater seasonal changes in sleep length (p = 0.01 and mood (p = 0.01, and higher global seasonality scores (p = 0.03 as compared with their co-twins with no mental disorder. Sunny days (p = 0.03 had a greater positive effect on wellbeing in the bipolar than healthy co-twins. Conclusions Our results support the view that bipolar disorder is sensitive to the environmental influence in general and to the seasonal effect in specific. Exposure to natural light appears to have a substantial effect on wellbeing in twins with bipolar disorder.

  2. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  3. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  4. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    Science.gov (United States)

    S, S. A.; Ghosh, S.

    2015-12-01

    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  5. SEASONAL PATTERNS OF PHOTOSYNTHESIS IN DOUGLAS FIR SEEDLINGS DURING THE THIRD AND FOURTH YEAR OF EXPOSURE TO ELEVATED CO2 AND TEMPERATURE

    Science.gov (United States)

    We examined the interactive effects of elevated atmospheric CO2 and temperature on seasonal patterns of photosynthesis in Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO2 or am...

  6. Consistency of Vegetation Index Seasonality Across the Amazon Rainforest

    Science.gov (United States)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jerome; Mottus, Matti; Aragao, Luiz E.O.C.; Shimabukuro, Yosio

    2016-01-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  7. Consistency of vegetation index seasonality across the Amazon rainforest

    Science.gov (United States)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio

    2016-10-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  8. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  9. Seasonal Accumulation and Depletion of Local Sediment Stores of Four Headwater Catchments

    Directory of Open Access Journals (Sweden)

    Sarah E. Martin

    2014-07-01

    Full Text Available Seasonal turbidity patterns and event-level hysteresis analysis of turbidity verses discharge in four 1 km2 headwater catchments in California’s Sierra Nevada indicate localized in-channel sediment sources and seasonal accumulation-depletion patterns of stream sediments. Turbidity signals were analyzed for three years in order to look at the relationships between seasonal turbidity trends, event turbidity patterns, and precipitation type to stream sediment production and transport. Seasonal patterns showed more turbidity events associated with fall and early to mid- winter events than with peak snow-melt. No significant turbidity patterns emerged for periods of snow melt vs. rain. Single event hysteresis loops showed clockwise patterns were dominant suggesting local sediment sources. In successive discharge events, the largest turbidity spike was often associated with the first but not necessarily the largest discharge event-indicating seasonal depletion of local sediment stores. In multi-peaked discharge events, hysteresis loops shifted from clockwise to linear or random patterns suggesting that localized sediment stores are being used up and sufficient flow energy must be reached to start entraining the more consolidated bank/bed sediment or that dominant sediment sources may be shifting to less localized areas such as hill slopes. A conceptual model with phases of accumulation and transport is proposed.

  10. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  11. Seasonality of dizziness and vertigo in a tropical region.

    Science.gov (United States)

    Pereira, Alcione Botelho; Almeida, Leonardo Alves Ferreira; Pereira, Nayara Gorette; Menezes, Patrícia Andrade Freitas de; Felipe, Lilian; Volpe, Fernando Madalena

    2015-06-01

    Vertigo and dizziness are among the most common medical complaints in the emergency room, and are associated with a considerable personal and health care burden. Scarce and conflicting reports indicate those symptoms may present a seasonal distribution. This study aimed at investigating the existence of a seasonal distribution of vertigo/dizziness in a tropical region, and the correlations of these findings with climatic variables. The charts of all patients consecutively admitted between 2009 and 2012 in the emergency room of a Brazilian general hospital were reviewed. A total of 4920 cases containing these terms were sorted from a sample of 276,076 emergency records. Seasonality was assessed using Cosinor Analysis. Pearson's correlations were performed between the incidence of consultations, considering separately dizziness and vertigo and each of the predictor climatic variables of that index month. Significant seasonal patterns were observed for dizziness and vertigo in the emergency room. Vertigo was more frequent in late winter-spring, negatively correlating to humidity (r = -0.374; p = 0.013) and rainfall (r = -0.334; p = 0.020). Dizziness peaked on summer months, and positively correlated to average temperatures (r = 0.520; p vertigo indicate possible distinct underlying mechanisms of how seasons may influence the occurrence of those symptoms.

  12. Coastal upwelling seasonality and variability of temperature and chlorophyll in a small coastal embayment

    Science.gov (United States)

    Walter, Ryan K.; Armenta, Kevin J.; Shearer, Brandon; Robbins, Ian; Steinbeck, John

    2018-02-01

    While the seasonality of wind-driven coastal upwelling in eastern boundary upwelling systems has long been established, many studies describe two distinct seasons (upwelling and non-upwelling), a generalized framework that does not capture details relevant to marine ecosystems. In this contribution, we present a more detailed description of the annual cycle and upwelling seasonality for an understudied location along the central California coast. Using both the mean monthly upwelling favorable wind stress and the monthly standard deviation, we define the following seasons (contiguous months) and a transitional period (non-contiguous months): "Winter Storms" season (Dec-Jan-Feb), "Upwelling Transition" period (Mar and Jun), "Peak Upwelling" season (Apr-May), "Upwelling Relaxation" season (Jul-Aug-Sep), and "Winter Transition" season (Oct-Nov). In order to describe the oceanic response to this upwelling wind seasonality, we take advantage of nearly a decade of full water-column measurements of temperature and chlorophyll made using an automated profiling system at the end of the California Polytechnic State University Pier in San Luis Obispo Bay, a small ( 2 km wide near study site) and shallow ( 10 m average bay depth) coastal embayment. Variability and average-year patterns are described inside the bay during the various upwelling seasons. Moreover, the role of the local coastline orientation and topography on bay dynamics is also assessed using long-term measurements collected outside of the bay. The formation of a seasonally variable upwelling shadow system and potential nearshore retention zone is discussed. The observations presented provide a framework on which to study interannual changes to the average-year seasonal cycle, assess the contribution of higher-frequency features to nearshore variability, and better predict dynamically and ecologically important events.

  13. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  14. Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use

    DEFF Research Database (Denmark)

    Stedmon, C. A.; Markager, S.; Søndergaard, M.

    2006-01-01

    Inputs of dissolved carbon, nitrogen, and phosphorus were assessed for an estuary and its catchment (Horsens, Denmark). Seasonal patterns in the concentrations of DOM in the freshwater supply to the estuary differed depending on the soil and drainage characteristics of the area. In streams draini...

  15. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus and turkey vultures (Cathartes aura.

    Directory of Open Access Journals (Sweden)

    Amanda E Holland

    Full Text Available Knowledge of black vulture (Coragyps atratus and turkey vulture (Cathartes aura spatial ecology is surprisingly limited despite their vital ecological roles. Fine-scale assessments of space use patterns and resource selection are particularly lacking, although development of tracking technologies has allowed data collection at finer temporal and spatial resolution. Objectives of this study were to conduct the first assessment of monthly home range and core area sizes of resident black and turkey vultures with consideration to sex, as well as elucidate differences in monthly, seasonal, and annual activity patterns based on fine-scale movement data analyses. We collected 2.8-million locations for 9 black and 9 turkey vultures from June 2013 -August 2015 using solar-powered GSM/GPS transmitters. We quantified home ranges and core areas using the dynamic Brownian bridge movement model and evaluated differences as a function of species, sex, and month. Mean monthly home ranges for turkey vultures were ~50% larger than those of black vultures, although mean core area sizes did not differ between species. Turkey vulture home ranges varied little across months, with exception to a notable reduction in space-use in May, which corresponds with timing of chick-rearing activities. Black vulture home ranges and core areas as well as turkey vulture core areas were larger in breeding season months (January-April. Comparison of space use between male and female vultures was only possible for black vultures, and space use was only slightly larger for females during breeding months (February-May. Analysis of activity patterns revealed turkey vultures spend more time in flight and switch motion states (between flight and stationary more frequently than black vultures across temporal scales. This study reveals substantive variability in space use and activity rates between sympatric black and turkey vultures, providing insights into potential behavioral mechanisms

  16. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    Science.gov (United States)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to

  17. Seasonal variations in hospital admissions for mania

    DEFF Research Database (Denmark)

    Medici, Clara Reece; Vestergaard, Claus Høstrup; Hadzi-Pavlovic, Dusan

    2016-01-01

    in summer. Higher admission rates were associated with more sunshine, more ultraviolet radiation, higher temperature and less snow but were unassociated with rainfall. We did not find a secular trend in the seasonal pattern. Finally, neither gender nor admission status impacted on the overall seasonal...

  18. Secular trends in seasonal variation in birth weight

    DEFF Research Database (Denmark)

    Jensen, Camilla Bjørn; Gamborg, M; Raymond, K

    2015-01-01

    and phase of the yearly cycles to change. RESULTS: There was a clear seasonal pattern in BW which, however, changed gradually across the study period. The highest BWs were seen during fall (September - October) from 1936 to 1963, but a new peak gradually grew from the early 1940s during early summer (May...... again. Sunshine did not explain the seasonal variation in BW. CONCLUSION: There was a clear seasonal pattern in BW in Denmark 1936-1989, which however changed across the study period. Throughout the study period we observed a peak in BW during the fall, but gradually, starting in the early 1940s...

  19. Season, molt, and body size influence mercury concentrations in grebes.

    Science.gov (United States)

    Hartman, C Alex; Ackerman, Joshua T; Herzog, Mark P; Eagles-Smith, Collin A

    2017-10-01

    We studied seasonal and physiological influences on mercury concentrations in western grebes (Aechmophorus occidentalis) and Clark's grebes (A. occidentalis) across 29 lakes and reservoirs in California, USA. Additionally, at three of these lakes, we conducted a time series study, in which we repeatedly sampled grebe blood mercury concentrations during the spring, summer, and early fall. Grebe blood mercury concentrations were higher among males (0.61 ± 0.12 μg/g ww) than females (0.52 ± 0.10 μg/g ww), higher among Clark's grebes (0.58 ± 0.12 μg/g ww) than western grebes (0.51 ± 0.10 μg/g ww), and exhibited a strong seasonal pattern (decreasing by 60% from spring to fall). Grebe blood THg concentrations exhibited a shallow, inverse U-shaped pattern with body size, and was lowest among the smallest and largest grebes. Further, the relationship between grebe blood mercury concentrations and wing primary feather molt exhibited a shallow U-shaped pattern, where mercury concentrations were highest among birds that had not yet begun molting, decreased approximately 24% between pre-molt and late molt, and increased approximately 19% from late molt to post-molt. Because grebes did not begin molting until mid-summer, lower grebe blood mercury concentrations observed in late summer and early fall were consistent with the onset of primary feather molt. However, because sampling date was a much stronger predictor of grebe mercury concentrations than molt, other seasonally changing environmental factors likely played a larger role than molt in the seasonal variation in grebe mercury concentrations. In the time series study, we found that seasonal trends in grebe mercury concentrations were not consistent among lakes, indicating that lake-specific variation in mercury dynamics influence the overall seasonal decline in grebe blood mercury concentrations. These results highlight the importance of accounting for sampling date, as well as ecological processes

  20. Synchronic historical patterns of species diversification in seasonal aplocheiloid killifishes of the semi-arid Brazilian Caatinga.

    Science.gov (United States)

    Costa, Wilson J E M; Amorim, Pedro F; Mattos, José Leonardo O

    2018-01-01

    The Caatinga is the largest nucleus of seasonally dry tropical forests in South America, but little is known about the evolutionary history and biogeography of endemic organisms. Evolutionary diversification and distribution of terrestrial vertebrates endemic to the Caatinga have been explained by palaeogeographical Neogene episodes, mostly related to changes in the course of the São Francisco River, the largest river in the region. Our objective is to estimate the timing of divergence of two endemic groups of short-lived seasonal killifishes inhabiting all ecoregions of the Caatinga, testing the occurrence of synchronic events of spatial diversification in light of available data on regional palaeogeography. We performed independent time-calibrated phylogenetic molecular analyses for two clades of sympatric and geographically widespread seasonal killifishes endemic to the Caatinga, the Hypsolebias antenori group and the Cynolebias alpha-clade. Our results consistently indicate that species diversification took place synchronically in both groups, as well as it is contemporary to diversification of other organisms adapted to life in the semi-arid Caatinga, including lizards and small mammals. Both groups originated during the Miocene, but species diversification started between the Late Miocene and Early Pliocene, when global cooling probably favoured the expansion of semi-arid areas. Synchronic diversification patterns found are chronologically related to Tertiary palaeogeographical reorganizations associated to continental drift and to Quaternary climatic changes, corroborating the recent proposal that South American biodiversity has been continuously shaped between the Late Paleogene and Pleistocene.

  1. Synchronic historical patterns of species diversification in seasonal aplocheiloid killifishes of the semi-arid Brazilian Caatinga.

    Directory of Open Access Journals (Sweden)

    Wilson J E M Costa

    Full Text Available The Caatinga is the largest nucleus of seasonally dry tropical forests in South America, but little is known about the evolutionary history and biogeography of endemic organisms. Evolutionary diversification and distribution of terrestrial vertebrates endemic to the Caatinga have been explained by palaeogeographical Neogene episodes, mostly related to changes in the course of the São Francisco River, the largest river in the region. Our objective is to estimate the timing of divergence of two endemic groups of short-lived seasonal killifishes inhabiting all ecoregions of the Caatinga, testing the occurrence of synchronic events of spatial diversification in light of available data on regional palaeogeography. We performed independent time-calibrated phylogenetic molecular analyses for two clades of sympatric and geographically widespread seasonal killifishes endemic to the Caatinga, the Hypsolebias antenori group and the Cynolebias alpha-clade. Our results consistently indicate that species diversification took place synchronically in both groups, as well as it is contemporary to diversification of other organisms adapted to life in the semi-arid Caatinga, including lizards and small mammals. Both groups originated during the Miocene, but species diversification started between the Late Miocene and Early Pliocene, when global cooling probably favoured the expansion of semi-arid areas. Synchronic diversification patterns found are chronologically related to Tertiary palaeogeographical reorganizations associated to continental drift and to Quaternary climatic changes, corroborating the recent proposal that South American biodiversity has been continuously shaped between the Late Paleogene and Pleistocene.

  2. Assessing impact of climate change on season length in Karnataka

    Indian Academy of Sciences (India)

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, ...

  3. Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results

    Science.gov (United States)

    Kántor, Noémi; Kovács, Attila; Takács, Ágnes

    2016-11-01

    Wide research attention has been paid in the last two decades to the thermal comfort conditions of different outdoor and semi-outdoor urban spaces. Field studies were conducted in a wide range of geographical regions in order to investigate the relationship between the thermal sensation of people and thermal comfort indices. Researchers found that the original threshold values of these indices did not describe precisely the actual thermal sensation patterns of subjects, and they reported neutral temperatures that vary among nations and with time of the year. For that reason, thresholds of some objective indices were rescaled and new thermal comfort categories were defined. This research investigates the outdoor thermal perception patterns of Hungarians regarding the Physiologically Equivalent Temperature ( PET) index, based on more than 5800 questionnaires. The surveys were conducted in the city of Szeged on 78 days in spring, summer, and autumn. Various, frequently applied analysis approaches (simple descriptive technique, regression analysis, and probit models) were adopted to reveal seasonal differences in the thermal assessment of people. Thermal sensitivity and neutral temperatures were found to be significantly different, especially between summer and the two transient seasons. Challenges of international comparison are also emphasized, since the results prove that neutral temperatures obtained through different analysis techniques may be considerably different. The outcomes of this study underline the importance of the development of standard measurement and analysis methodologies in order to make future studies comprehensible, hereby facilitating the broadening of the common scientific knowledge about outdoor thermal comfort.

  4. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  5. MEDICAL STUDENTS’ FEEDBACK ABOUT FORMATIVE ASSESSMENT PATTERN

    Directory of Open Access Journals (Sweden)

    Navajothi

    2016-03-01

    Full Text Available BACKGROUND Pharmacology is the toughest subject in the II MBBS syllabus. Students have to memorise a lot about the drugs’ name and classification. We are conducting internal assessment exams after completion of each system. Number of failures will be more than 60% in the internal assessments conducted during first six months of II MBBS course. AIM To assess the formative assessment pattern followed in our institution with the students’ feedback and modify the pattern according to the students’ feedback. SETTINGS & DESIGN Prospective Observational Study conducted at Department of Pharmacology, Government Sivagangai Medical College, Sivagangai, Tamil Nadu. MATERIALS AND METHODS Questionnaire was prepared and distributed to the 300 students of Government Sivagangai Medical College and feedback was collected. Data collected was analysed in Microsoft Excel 2007 version. RESULTS Received feedback from 274 students. Most (80% of the students wanted to attend the tests in all systems. Monthly assessment test was preferred by 47% of the students. Students who preferred to finish tests before holidays was 57%. Most (56% of the students preferred tests for 1 hour. Multiple choice question (MCQ type was preferred by 43%, which is not a routine question pattern. Only 7% preferred viva. Recall type of questions was preferred by 41% of the students. CONCLUSION In our institution, internal assessment is conducted as per the students’ mind setup. As the feedback has been the generally followed one, we will add MCQs in the forthcoming tests. Application type questions will be asked for more marks than Recall type of questions.

  6. Habitat-Based Density Models for Three Cetacean Species off Southern California Illustrate Pronounced Seasonal Differences

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Becker

    2017-05-01

    Full Text Available Managing marine species effectively requires spatially and temporally explicit knowledge of their density and distribution. Habitat-based density models, a type of species distribution model (SDM that uses habitat covariates to estimate species density and distribution patterns, are increasingly used for marine management and conservation because they provide a tool for assessing potential impacts (e.g., from fishery bycatch, ship strikes, anthropogenic sound over a variety of spatial and temporal scales. The abundance and distribution of many pelagic species exhibit substantial seasonal variability, highlighting the importance of predicting density specific to the season of interest. This is particularly true in dynamic regions like the California Current, where significant seasonal shifts in cetacean distribution have been documented at coarse scales. Finer scale (10 km habitat-based density models were previously developed for many cetacean species occurring in this region, but most models were limited to summer/fall. The objectives of our study were two-fold: (1 develop spatially-explicit density estimates for winter/spring to support management applications, and (2 compare model-predicted density and distribution patterns to previously developed summer/fall model results in the context of species ecology. We used a well-established Generalized Additive Modeling framework to develop cetacean SDMs based on 20 California Cooperative Oceanic Fisheries Investigations (CalCOFI shipboard surveys conducted during winter and spring between 2005 and 2015. Models were fit for short-beaked common dolphin (Delphinus delphis delphis, Dall's porpoise (Phocoenoides dalli, and humpback whale (Megaptera novaeangliae. Model performance was evaluated based on a variety of established metrics, including the percentage of explained deviance, ratios of observed to predicted density, and visual inspection of predicted and observed distributions. Final models were

  7. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China

    Directory of Open Access Journals (Sweden)

    Zhubin Zheng

    2015-10-01

    Full Text Available Assessing the impacts of environmental change and anthropogenic activities on the historical and current total suspended matter (TSM pattern in Dongting Lake, China, is a large challenge. We addressed this challenge by using more than three decades of Landsat data. Based on in situ measurements, we developed an algorithm based on the near-infrared (NIR band to estimate TSM in Dongting Lake. The algorithm was applied to Landsat images to derive TSM distribution maps from 1978 to 2013 in the wet season, revealing significant inter-annual and spatial variability. The relationship of TSM to water level, precipitation, and wind speed was analyzed, and we found that: (1 sand mining areas usually coincide with regions that have high TSM levels in Dongting Lake; (2 water level and seven-day precipitation were both important to TSM variation, but no significant relationship was found between TSM and wind speed or other meteorological data; (3 the increased level of sand mining in response to rapid economic growth has deeply influenced the TSM pattern since 2000 due to the resuspension of sediment; and (4 TSM variation might be associated with policy changes regarding the management of sand mining; it might also be affected by lower water levels caused by the impoundment of the Three Gorges Dam since 2000.

  8. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    Science.gov (United States)

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Changes in body composition and bone of female collegiate soccer players through the competitive season and off-season

    Science.gov (United States)

    Minett, M.M.; Binkley, T.B.; Weidauer, L.A.; Specker, B.L.

    2017-01-01

    Objectives: To assess body composition and bone changes pre- to post-season (pre-post) and post- to off-season (post-off) in female soccer athletes (SC). Methods: Outcomes were assessed using DXA and pQCT in 23 SC and 17 controls at three times throughout season. Results: SC, non-starters in particular, lost lean mass pre-post (-0.9±0.2 kg, pSoccer players lost lean mass over the competitive season that was not recovered during off-season. Bone size increased pre- to post-season. Female soccer athletes experience body composition and bone geometry changes that differ depending on the time of season and on athlete’s playing status. Evaluations of athletes at key times across the training season are necessary to understand changes that occur. PMID:28250243

  10. Spatial and seasonal patterns of European short-snouted seahorse ...

    African Journals Online (AJOL)

    North-East Atlantic), determining the spatial and seasonal abundance, population structure and physical appearance of European short-snouted seahorse Hippocampus hippocampus. Animals were surveyed off Gran Canaria Island in two ...

  11. Assessing a Top-Down Modeling Approach for Seasonal Scale Snow Sensitivity

    Science.gov (United States)

    Luce, C. H.; Lute, A.

    2017-12-01

    Mechanistic snow models are commonly applied to assess changes to snowpacks in a warming climate. Such assessments involve a number of assumptions about details of weather at daily to sub-seasonal time scales. Models of season-scale behavior can provide contrast for evaluating behavior at time scales more in concordance with climate warming projections. Such top-down models, however, involve a degree of empiricism, with attendant caveats about the potential of a changing climate to affect calibrated relationships. We estimated the sensitivity of snowpacks from 497 Snowpack Telemetry (SNOTEL) stations in the western U.S. based on differences in climate between stations (spatial analog). We examined the sensitivity of April 1 snow water equivalent (SWE) and mean snow residence time (SRT) to variations in Nov-Mar precipitation and average Nov-Mar temperature using multivariate local-fit regressions. We tested the modeling approach using a leave-one-out cross-validation as well as targeted two-fold non-random cross-validations contrasting, for example, warm vs. cold years, dry vs. wet years, and north vs. south stations. Nash-Sutcliffe Efficiency (NSE) values for the validations were strong for April 1 SWE, ranging from 0.71 to 0.90, and still reasonable, but weaker, for SRT, in the range of 0.64 to 0.81. From these ranges, we exclude validations where the training data do not represent the range of target data. A likely reason for differences in validation between the two metrics is that the SWE model reflects the influence of conservation of mass while using temperature as an indicator of the season-scale energy balance; in contrast, SRT depends more strongly on the energy balance aspects of the problem. Model forms with lower numbers of parameters generally validated better than more complex model forms, with the caveat that pseudoreplication could encourage selection of more complex models when validation contrasts were weak. Overall, the split sample validations

  12. Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada

    International Nuclear Information System (INIS)

    Zhang Liang; Campbell, Linda M.; Johnson, Timothy B.

    2012-01-01

    Seasonal variation in mercury (Hg) concentrations and food web structure was assessed for eastern Lake Ontario. Hg concentrations, measured in 6 species of invertebrates and 8 species of fishes, tended to be highest in the spring and lowest in the summer for most biota. Yellow perch (Perca flavescens) exhibited significant ontogenetic shifts in diet and Hg, although such patterns were not evident for other species. Food web structure, as indicated by stable isotope values (δ 15 N, δ 13 C) was not static. Log-transformed Hg data were strongly and consistently correlated with δ 15 N values for the whole food web in each of the three seasons (slopes, 0.17–0.24) and across the entire year (slope, 0.2). While significantly different between seasons, the regression slope values are still consistent with published global Hg biomagnification rates. Our results indicate that the assessment of Hg trends in Great Lakes must take into account seasonal patterns and time of sampling. - Graphical abstract: Total mercury concentrations and trophic level (δ 15 N) regressions for organisms from the littoral Lake Ontario food web of Waupoos in 2009. Filled circles represent invertebrates while open circles represent fish. Dashed lines represents the regression between δ 15 N and THg of “whole” food web (log-Hg-δ 15 N regression equations in the upper left hand corner in each plot), and solid lines represents the regression between δ 15 N and THg of “fish-only” food web (log-Hg-δ 15 N regression equations in the lower right hand corner of each plot). Note that the y-axis is untransformed Hg concentrations plotted along a logarithmic scale, while the equations are based on log-transformed Hg values. Highlights: ► Most fish in littoral Lake Ontario had higher Hg concentrations in spring and lower Hg in summer. ► Log Hg consistently biomagnified throughout the food web in each season and for the year. ► Biomagnification rates (e.g., log Hg-δ 15 N slopes) vary

  13. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons.

    Science.gov (United States)

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-05

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  14. Acceleration and Counteraction of Changes in Vegetation Seasonality and Patterns using CMIP5 Projections from Different ESMs.

    Science.gov (United States)

    Chavaillaz, Y.; Joussaume, S.; De Noblet-Decoudre, N.

    2017-12-01

    Most climatological studies characterize future climate change as the evolution between a fixed current baseline and the future. Considering the pace of future climate change is however of major importance, since it may strongly influence how we experience climate hazards. To complement previous work related to the pace of temperature and precipitation changes, we propose here to study how fast vegetation seasonality and patterns of climate change evolve in different future configurations according to CMIP5 simulations of several Earth system models. The pace is defined as the difference in relevant metrics between two successive 20-year periods, i.e. with a continually moving baseline. Shifts of vegetation groups and changes in the characteristics of the seasonal cycle are considered. Both accelerate in close relationship with the warming rate regardless of the selected scenario, but they balance each other out, especially for trees in northern mid- and high-latitudes. Efforts are nevertheless strongly needed to harmonize the representation of vegetation in new versions of model inter-comparison projects, in order to properly conduct multi-model analyses related to vegetation changes.

  15. Seasonal and Sexual Variation in Metabolism, Thermoregulation, and Hormones in the Big Brown Bat (Eptesicus fuscus).

    Science.gov (United States)

    Richardson, Christopher S; Heeren, Tim; Kunz, Thomas H

    In response to seasonal variation in energy availability and thermal environment, physiological and endocrine mechanisms have evolved in temperate zone animals. Seasonal changes in hormone activity affect metabolism, body temperature, and reproductive activity. We examined the seasonal regulatory role of hormones on basal metabolic rate (BMR) and regulatory nonshivering thermogenesis (RNST) in 98 female and 17 male adult Eptesicus fuscus (big brown bat). We measured BMR, RNST, and plasma levels of thyroid hormone (T 3 ), leptin, and cortisol in bats captured in maternity colonies in eastern Massachusetts from May to August (from arousal from the hibernation phase to the prehibernation phase). We hypothesized that all three hormones are seasonally primarily metabolic hormones and secondarily thermogenic hormones. In males, only BMR significantly changed seasonally. In females, all five variables significantly changed seasonally. The seasonal pattern of plasma leptin and cortisol levels correlated with the seasonal pattern of BMR, with an initial increase followed by a decrease, suggesting that leptin and cortisol are primarily metabolic hormones. The seasonal pattern of plasma T 3 levels generally paralleled the basic seasonal pattern of RNST, with both increasing at the second half of the season, suggesting that T 3 is primarily a thermogenic hormone. The observed decrease in plasma leptin levels may be necessary to allow for the observed seasonal decrease in BMR, with the similar cortisol pattern important for leptin regulation. While T 3 is needed to maintain BMR, it may play a more critical role in the seasonal regulation of RNST than of BMR.

  16. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987-2016

    Science.gov (United States)

    Smith, Taylor; Bookhagen, Bodo; Rheinwalt, Aljoscha

    2017-10-01

    High Mountain Asia (HMA) - encompassing the Tibetan Plateau and surrounding mountain ranges - is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications - such as agriculture, drinking-water generation, and hydropower - rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987 to 2016 to track the timing of the snowmelt season - defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years); our algorithm is generally accurate within 3-5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year) time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1) The end of the snowmelt season is trending almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and 8 days decade-1 over the 29-year study period (5-25 days total). The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive trends), but with generally smaller magnitudes

  17. SEASONAL VARIATION IN LIGHT TRANSMISSION AND CANOPY GAPS OF DECIDUOUS ROADSIDE VEGETATION: ASSESSMENT WITHIN FOREST LANDSCAPE

    OpenAIRE

    Öztürk, Melih; Gökyer, Ercan

    2015-01-01

    Deciduous roadside vegetation exhibits seasonal patterns of foliage with varying colors and numbers. Hence the alternating percentage of the gaps within the roadside canopy allows changing percentages of light transmission throughout the year. The leafless roadside vegetation in winter is sequentially subject to budburst, flushing, and development stages until the summer, when the leaves are fully developed both in size and number. Then, defoliation follows senescence, and fading and fall sta...

  18. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  19. Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon

    Science.gov (United States)

    Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...

  20. Seasonal Variation of Cistus ladanifer L. Diterpenes

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alías

    2012-07-01

    Full Text Available The exudate of Cistus ladanifer L. consists mainly of two families of secondary metabolites: flavonoids and diterpenes. The amount of flavonoids present in the leaves has a marked seasonal variation, being maximum in summer and minimum in winter. In the present study, we demonstrate that the amount of diterpenes varies seasonally, but with a different pattern: maximum concentration in winter and minimum in spring-summer. The experiments under controlled conditions have shown that temperature influences diterpene production, and in particular, low temperatures. Given this pattern, the functions that these compounds perform in C. ladanifer are probably different.

  1. Identification of dietary patterns associated with blood pressure in a sample of overweight Australian adults.

    Science.gov (United States)

    Anil, S; Charlton, K E; Tapsell, L C; Probst, Y; Ndanuko, R; Batterham, M J

    2016-11-01

    The dietary approaches to stop hypertension (DASH) diet provides strong evidence for an optimal dietary pattern for blood pressure (BP) control; however, investigation at the level of key foods in a dietary pattern is sparse. This study aimed to assess the relationship between dietary patterns driven by key foods with BP in a sample of obese Australian adults. Secondary analysis was conducted on baseline data of 118 participants (45.1±8.4 years, mean BP=124.1±15.8/72.6±9.2 mm Hg) recruited in a weight reduction randomized controlled trial (ACTRN12608000425392). Dietary assessment was by a validated diet history interview. The average of three office BP measurements was taken. Factor analysis extracted dietary patterns and their relation to systolic BP (SBP) and diastolic BP (DBP) was analysed using multiple linear regression. Eight dietary patterns were identified based on leading foods: meat and alcohol; seafood; fats; fruits and nuts; legumes; confectionery; sweet foods; and yeast extracts and seasonings. A lower SBP was associated with alignment with the fruit and nuts pattern (β=-4.1 (95% confidence interval -7.5 to -0.7) mm Hg) and with seafood for DBP (β=-2.4 (-4.6 to -0.3) mm Hg). SBP and DBP were higher with yeast extract and seasonings (β=4.3 (1.4-7.3); 2.5 (0.9-4.0) mm Hg, respectively). In obese adults attending for weight loss, dietary patterns that included larger amounts of fruits and nuts and/or seafood were associated with lower BP at baseline, whereas patterns that were characterised by yeast extract and seasonings were associated with higher BP.

  2. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States

    Science.gov (United States)

    Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.

    2014-11-01

    Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.

  3. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb

  4. Diversity and seasonal variation of zooplankton of Lake Hlan ...

    African Journals Online (AJOL)

    SARAH

    2016-06-30

    Jun 30, 2016 ... The taxonomic composition and the species ... Keywords: Biodiversity; Community structure; Hydrological season; Zooplankton .... Table 1: Seasonal change in recorded environmental parameters ..... reproduction, growth and life duration (Fernandez de .... Spatial temporal patterns and relationships with.

  5. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    Science.gov (United States)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  6. Assessment of the genetic diversity and pattern of relationship of ...

    African Journals Online (AJOL)

    An understanding of the extent, distribution and patterns of genetic variation is useful for estimation of any possible loss of genetic diversity and assessment of genetic variability and its potential use in breeding programs, including establishment of heterotic groups. This study assessed patterns of genetic diversity and ...

  7. Comparative Assessments of the Seasonality in "The Total Number of Overnight Stays" in Romania, Bulgaria and the European Union

    Directory of Open Access Journals (Sweden)

    Jugănaru Ion Dănuț

    2017-01-01

    For the quantitative research carried out in this study, we processed a database consisting of the monthly values of “the total number of overnight stays” indicator, recorded between January 2005 and December 2016, using the moving average method, the seasonality coefficient and EViews 5. The results led to the formulation of comparative assessments regarding the seasonality in the tourism activities from Romania and Bulgaria and their situation compared to the average of the seasonality recorded in the EU.

  8. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China.

    Science.gov (United States)

    Briggs, Brandon R; Brodie, Eoin L; Tom, Lauren M; Dong, Hailiang; Jiang, Hongchen; Huang, Qiuyuan; Wang, Shang; Hou, Weiguo; Wu, Geng; Huang, Liuquin; Hedlund, Brian P; Zhang, Chuanlun; Dijkstra, Paul; Hungate, Bruce A

    2014-06-01

    Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Nonbreeding-Season Drivers of Population Dynamics in Seasonal Migrants: Conservation Parallels Across Taxa

    Directory of Open Access Journals (Sweden)

    Anna M. Calvert

    2009-12-01

    Full Text Available For seasonal migrants, logistical constraints have often limited conservation efforts to improving survival and reproduction during the breeding season only. Yet, mounting empirical evidence suggests that events occurring throughout the migratory life cycle can critically alter the demography of many migrant species. Herein, we build upon recent syntheses of avian migration research to review the role of non-breeding seasons in determining the population dynamics and fitness of diverse migratory taxa, including salmonid fishes, marine mammals, ungulates, sea turtles, butterflies, and numerous bird groups. We discuss several similarities across these varied migrants: (i non-breeding survivorship tends to be a strong driver of population growth; (ii non-breeding events can affect fitness in subsequent seasons through seasonal interactions at individual- and population-levels; (iii broad-scale climatic influences often alter non-breeding resources and migration timing, and may amplify population impacts through covariation among seasonal vital rates; and (iv changes to both stationary and migratory non-breeding habitats can have important consequences for abundance and population trends. Finally, we draw on these patterns to recommend that future conservation research for seasonal migrants will benefit from: (1 more explicit recognition of the important parallels among taxonomically diverse migratory animals; (2 an expanded research perspective focused on quantification of all seasonal vital rates and their interactions; and (3 the development of detailed population projection models that account for complexity and uncertainty in migrant population dynamics.

  10. Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Ze

    2017-06-01

    A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5-6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA-EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.

  11. Seasonality of Kawasaki Disease: A Global Perspective

    Science.gov (United States)

    Burns, Jane C.; Herzog, Lauren; Fabri, Olivia; Tremoulet, Adriana H.; Rodó, Xavier; Uehara, Ritei; Burgner, David; Bainto, Emelia; Pierce, David; Tyree, Mary; Cayan, Daniel

    2013-01-01

    Background Understanding global seasonal patterns of Kawasaki disease (KD) may provide insight into the etiology of this vasculitis that is now the most common cause of acquired heart disease in children in developed countries worldwide. Methods Data from 1970-2012 from 25 countries distributed over the globe were analyzed for seasonality. The number of KD cases from each location was normalized to minimize the influence of greater numbers from certain locations. The presence of seasonal variation of KD at the individual locations was evaluated using three different tests: time series modeling, spectral analysis, and a Monte Carlo technique. Results A defined seasonal structure emerged demonstrating broad coherence in fluctuations in KD cases across the Northern Hemisphere extra-tropical latitudes. In the extra-tropical latitudes of the Northern Hemisphere, KD case numbers were highest in January through March and approximately 40% higher than in the months of lowest case numbers from August through October. Datasets were much sparser in the tropics and the Southern Hemisphere extra-tropics and statistical significance of the seasonality tests was weak, but suggested a maximum in May through June, with approximately 30% higher number of cases than in the least active months of February, March and October. The seasonal pattern in the Northern Hemisphere extra-tropics was consistent across the first and second halves of the sample period. Conclusion Using the first global KD time series, analysis of sites located in the Northern Hemisphere extra-tropics revealed statistically significant and consistent seasonal fluctuations in KD case numbers with high numbers in winter and low numbers in late summer and fall. Neither the tropics nor the Southern Hemisphere extra-tropics registered a statistically significant aggregate seasonal cycle. These data suggest a seasonal exposure to a KD agent that operates over large geographic regions and is concentrated during winter

  12. Reproducibility and Validity of a Food Frequency Questionnaire for Assessing Dietary Consumption via the Dietary Pattern Method in a Chinese Rural Population.

    Science.gov (United States)

    Liu, Xudong; Wang, Xiaorong; Lin, Sihao; Song, Qingkun; Lao, Xiangqian; Yu, Ignatius Tak-Sun

    2015-01-01

    This study was conducted to assess the reproducibility and validity of a food frequency questionnaire (FFQ) that was developed to assess the overall dietary consumption via dietary pattern method in a rural population in southwest China. A total of 179 participants aged between 40 and 70 years old were included in this study. Participants administered FFQ at baseline (FFQ1) and one year later (FFQ2) to assess the reproducibility. Six 3-day 24-hour recalls (24HRs) were completed between the administrations of two FFQs to determine the validity. Dietary patterns from three separate dietary sources were derived by using principle component factor analysis. Comparisons between dietary pattern scores were made by using Pearson or intraclass correlation coefficient, cross-classification analysis, weighted kappa (κ) statistic and Bland-Altman analysis. The de-attenuated method was adopted to correct the monthly and seasonally variation and the partial correlation analysis was used correct the influence by total energy intake. Two major dietary factors, labeled as prudent pattern and processed food pattern, were identified. The prudent pattern was characterized by higher factor loadings of wheat, rice, fresh vegetables, bean products, nuts, red meat, white meat and fresh eggs; and the processed food pattern was characterized by higher factor loadings of pickled vegetables, preserved vegetables and salted meat. Between Two FFQs, intraclass correlation coefficients were 0.57 for prudent pattern and 0.55 for processed food pattern, partial Pearson correlation coefficients were 0.51 for the prudent pattern and 0.56 for the processed food pattern; weighted κ statistic ranged from 0.45 (for the prudent pattern) to 0.56 (for the processed food pattern). Between FFQs and 24HRs, de-attenuated correlation coefficients ranged from 0.54 to 0.78 for the prudent pattern and from 0.55 to 0.61 for the processed food pattern; partial Pearson correlation coefficients ranged from 0.41 to 0

  13. Reproducibility and Validity of a Food Frequency Questionnaire for Assessing Dietary Consumption via the Dietary Pattern Method in a Chinese Rural Population.

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    Full Text Available This study was conducted to assess the reproducibility and validity of a food frequency questionnaire (FFQ that was developed to assess the overall dietary consumption via dietary pattern method in a rural population in southwest China.A total of 179 participants aged between 40 and 70 years old were included in this study. Participants administered FFQ at baseline (FFQ1 and one year later (FFQ2 to assess the reproducibility. Six 3-day 24-hour recalls (24HRs were completed between the administrations of two FFQs to determine the validity. Dietary patterns from three separate dietary sources were derived by using principle component factor analysis. Comparisons between dietary pattern scores were made by using Pearson or intraclass correlation coefficient, cross-classification analysis, weighted kappa (κ statistic and Bland-Altman analysis. The de-attenuated method was adopted to correct the monthly and seasonally variation and the partial correlation analysis was used correct the influence by total energy intake.Two major dietary factors, labeled as prudent pattern and processed food pattern, were identified. The prudent pattern was characterized by higher factor loadings of wheat, rice, fresh vegetables, bean products, nuts, red meat, white meat and fresh eggs; and the processed food pattern was characterized by higher factor loadings of pickled vegetables, preserved vegetables and salted meat. Between Two FFQs, intraclass correlation coefficients were 0.57 for prudent pattern and 0.55 for processed food pattern, partial Pearson correlation coefficients were 0.51 for the prudent pattern and 0.56 for the processed food pattern; weighted κ statistic ranged from 0.45 (for the prudent pattern to 0.56 (for the processed food pattern. Between FFQs and 24HRs, de-attenuated correlation coefficients ranged from 0.54 to 0.78 for the prudent pattern and from 0.55 to 0.61 for the processed food pattern; partial Pearson correlation coefficients ranged

  14. Bilinear modulation models for seasonal tables of counts

    NARCIS (Netherlands)

    B.D. Marx (Brian); P.H.C. Eilers (Paul); J. Gampe (Jutta); R. Rau (Roland)

    2010-01-01

    textabstractWe propose generalized linear models for time or age-time tables of seasonal counts, with the goal of better understanding seasonal patterns in the data. The linear predictor contains a smooth component for the trend and the product of a smooth component (the modulation) and a periodic

  15. Seasonal Patterns of Japanese Encephalitis and Associated Meteorological Factors in Taiwan.

    Science.gov (United States)

    Lin, Che-Liang; Chang, Hsiao-Ling; Lin, Chuan-Yao; Chen, Kow-Tong

    2017-10-29

    The persistent transmission of Japanese encephalitis virus (JEV) in Taiwan necessitates exploring the risk factors of occurrence of Japanese encephalitis (JE). The purpose of this study was to assess the relationship between meteorological factors and the incidence of JE in Taiwan. We collected data for cases of JE reported to the Taiwan Centers for Disease Control (Taiwan CDC) from 2000 to 2014. Meteorological data were obtained from the Taiwan Central Weather Bureau. The relationships between weather variability and the incidence of JE in Taiwan were determined via Poisson regression analysis and a case-crossover methodology. During the 15-year study period, a total of 379 cases of JE were reported. The incidence of JE showed significant seasonality, with the majority of cases occurring in summertime (for oscillation, p Taiwan. Therefore, these factors could be regarded as warning signals indicating the need to implement preventive measures.

  16. Seasonal and biogeographical patterns of gastrointestinal parasites in large carnivores: wolves in a coastal archipelago.

    Science.gov (United States)

    Bryan, Heather M; Darimont, Chris T; Hill, Janet E; Paquet, Paul C; Thompson, R C Andrew; Wagner, Brent; Smits, Judit E G

    2012-05-01

    Parasites are increasingly recognized for their profound influences on individual, population and ecosystem health. We provide the first report of gastrointestinal parasites in gray wolves from the central and north coasts of British Columbia, Canada. Across 60 000 km(2), wolf feces were collected from 34 packs in 2005-2008. At a smaller spatial scale (3300 km(2)), 8 packs were sampled in spring and autumn. Parasite eggs, larvae, and cysts were identified using standard flotation techniques and morphology. A subset of samples was analysed by PCR and sequencing to identify tapeworm eggs (n=9) and Giardia cysts (n=14). We detected ≥14 parasite taxa in 1558 fecal samples. Sarcocystis sporocysts occurred most frequently in feces (43·7%), followed by taeniid eggs (23·9%), Diphyllobothrium eggs (9·1%), Giardia cysts (6·8%), Toxocara canis eggs (2·1%), and Cryptosporidium oocysts (1·7%). Other parasites occurred in ≤1% of feces. Genetic analyses revealed Echinococcus canadensis strains G8 and G10, Taenia ovis krabbei, Diphyllobothrium nehonkaiense, and Giardia duodenalis assemblages A and B. Parasite prevalence differed between seasons and island/mainland sites. Patterns in parasite prevalence reflect seasonal and spatial resource use by wolves and wolf-salmon associations. These data provide a unique, extensive and solid baseline for monitoring parasite community structure in relation to environmental change.

  17. Patterns of activity and use of time in rural Bangladesh: class, gender, and seasonal variations.

    Science.gov (United States)

    Zaman, H

    1995-04-01

    Tarapur is a village in the district of Rajshahi, Bangladesh, covering an area of 821.05 acres. 342 households with a total population of 1981 were identified in the village by the 1985 census. The author investigated the use of time during 1984 and 1985 in busy, intermediate, and slack seasons among the village population to examine the variation in time use by gender and social class. Activity patterns were found to vary from one season to another, and also across social classes. The study highlights the need to refine some of the conceptual and methodological issues in the collection of data on women and work. The study also presents useful data on home-based production and market-oriented work. It could be useful to adopt an anthropological approach in order to understand the allocation of time by men and women from the perspective of household production and the local economy and culture. Study findings focus upon the following policy issues: the need for a better understanding and recognition of the significant role of women in field agriculture and postharvest processing, creation of further nontraditional employment and business opportunities for poor women in rural areas, and consciousness-raising and the challenge of cultural barriers affecting women. Rural women, especially those in need of employment and involved in market-oriented production, should be the target of mainstream development activities in future planning.

  18. Seasonal climate variation and caribou availability: Modeling sequential movement using satellite-relocation data

    Science.gov (United States)

    Nicolson, Craig; Berman, Matthew; West, Colin Thor; Kofinas, Gary P.; Griffith, Brad; Russell, Don; Dugan, Darcy

    2013-01-01

    Livelihood systems that depend on mobile resources must constantly adapt to change. For people living in permanent settlements, environmental changes that affect the distribution of a migratory species may reduce the availability of a primary food source, with the potential to destabilize the regional social-ecological system. Food security for Arctic indigenous peoples harvesting barren ground caribou (Rangifer tarandus granti) depends on movement patterns of migratory herds. Quantitative assessments of physical, ecological, and social effects on caribou distribution have proven difficult because of the significant interannual variability in seasonal caribou movement patterns. We developed and evaluated a modeling approach for simulating the distribution of a migratory herd throughout its annual cycle over a multiyear period. Beginning with spatial and temporal scales developed in previous studies of the Porcupine Caribou Herd of Canada and Alaska, we used satellite collar locations to compute and analyze season-by-season probabilities of movement of animals between habitat zones under two alternative weather conditions for each season. We then built a set of transition matrices from these movement probabilities, and simulated the sequence of movements across the landscape as a Markov process driven by externally imposed seasonal weather states. Statistical tests showed that the predicted distributions of caribou were consistent with observed distributions, and significantly correlated with subsistence harvest levels for three user communities. Our approach could be applied to other caribou herds and could be adapted for simulating the distribution of other ungulates and species with similarly large interannual variability in the use of their range.

  19. Seasonal Climate Variation and Caribou Availability: Modeling Sequential Movement Using Satellite-Relocation Data

    Directory of Open Access Journals (Sweden)

    Craig Nicolson

    2013-06-01

    Full Text Available Livelihood systems that depend on mobile resources must constantly adapt to change. For people living in permanent settlements, environmental changes that affect the distribution of a migratory species may reduce the availability of a primary food source, with the potential to destabilize the regional social-ecological system. Food security for Arctic indigenous peoples harvesting barren ground caribou (Rangifer tarandus granti depends on movement patterns of migratory herds. Quantitative assessments of physical, ecological, and social effects on caribou distribution have proven difficult because of the significant interannual variability in seasonal caribou movement patterns. We developed and evaluated a modeling approach for simulating the distribution of a migratory herd throughout its annual cycle over a multiyear period. Beginning with spatial and temporal scales developed in previous studies of the Porcupine Caribou Herd of Canada and Alaska, we used satellite collar locations to compute and analyze season-by-season probabilities of movement of animals between habitat zones under two alternative weather conditions for each season. We then built a set of transition matrices from these movement probabilities, and simulated the sequence of movements across the landscape as a Markov process driven by externally imposed seasonal weather states. Statistical tests showed that the predicted distributions of caribou were consistent with observed distributions, and significantly correlated with subsistence harvest levels for three user communities. Our approach could be applied to other caribou herds and could be adapted for simulating the distribution of other ungulates and species with similarly large interannual variability in the use of their range.

  20. Group A rotavirus and norovirus display sharply distinct seasonal profiles in Belém, northern Brazil

    Directory of Open Access Journals (Sweden)

    Jones Anderson Monteiro Siqueira

    2013-08-01

    Full Text Available Several viruses have been associated with acute gastroenteritis (AGE, and group A rotavirus (RVA and nor-ovirus (NoV are the most prevalent. This study aimed to assess their prevalence among children hospitalised for diarrhoea during a three-year surveillance study. From May 2008-April 2011, overall positivity rates of 21.6% (628/2904 and 35.4% (171/483 were observed for RVA and NoV, respectively. The seasonality observed indicated distinct patterns when both viruses were compared. This finding may explain why hospitalisation for AGE remains constant throughout the year. Continuous AGE monitoring is needed to better assess the patterns of infection.

  1. Influence of seasonal variation in mood and behavior on cognitive test performance among young adults.

    Science.gov (United States)

    Merikanto, Ilona; Lahti, Tuuli; Castaneda, Anu E; Tuulio-Henriksson, Annamari; Aalto-Setälä, Terhi; Suvisaari, Jaana; Partonen, Timo

    2012-10-01

    Seasonal variations in mood and behavior are common among the general population and may have a deteriorating effect on cognitive functions. In this study the effect of seasonal affective disorder (SAD-like symptoms) on cognitive test performance were evaluated in more detail. The data were derived from the study Mental Health in Early Adulthood in Finland. Participants (n = 481) filled in a modified Seasonal Pattern Assessment Questionnaire (SPAQ) and performed cognitive tests in verbal and visual skills, attention and general intelligence. SAD-like symptoms, especially regarding the seasonal variations in weight and appetite, had a significant effect on working memory (Digit Span Backward, P = 0.008) and auditory attention and short-term memory (Digit Span Forward, P = 0.004). The seasonal variations in sleep duration and mood had an effect on auditory attention and short-term memory (Digit Span Forward, P = 0.02 and P = 0.0002, respectively). The seasonal variations in social activity and energy level had no effect. Seasonal changes in mood, appetite and weight have an impairing effect on auditory attention and processing speed. If performance tests are not to repeated in different seasons, attention needs to be given to the most appropriate season in which to test.

  2. Patterns of Storage, Synthesis and Changing Light Levels Revealed by Carbon Isotope Microsampling within Eocene Metasequoia Tree Rings

    Science.gov (United States)

    Jahren, H.; Sternberg, L.

    2005-12-01

    Fossil tree rings from Axel Heiberg Island were microanalyzed for δ13C value in order to assess patterns of tree growth and carbon storage within the Middle Eocene (~45 Ma) Arctic paleoenvironment. Wood from four Metasequoia-type individuals was subsampled for analysis: each individual fossil consisted of between 4 and 10 large (~1 cm thick) consecutive tree rings. One of the fossils displayed an obvious concentric pattern, allowing for the determination of the direction of growth with isotopic pattern. Each ring was divided into ~1 mm thick subsamples, resulting in 5-10 δ13C value determinations per period of ring growth (i.e., growing season). All rings revealed a distinct pattern that was characteristic across growing seasons and across individual fossils. Early in the season, δ13C was at its highest value but descended systematically and sharply to its lowest value at the end of the growing season. Total decrease ranged between 3 and 5 ‰ over the course of each growing season. Identical patterns were observed in the δ13C value of alpha-cellulose isolated from each subsample, indicating that the trends observed did not represent changing levels of secondary metabolites, but rather a seasonal adjustment in the bulk source of carbon used during biosynthesis. Our results are consistent with the following annual pattern of wood synthesis 1.) complete dependence on the mobilization of stored carbon compounds early in the growing season; 2.) systematically increasing use of actively-acquired photosynthate during the growing season; 3.) complete reliance on active photosynthate by the end of the growing season. An additional and significant source of 13C discrimination is declining light levels late in the growing season, and likely contributes to the extreme pattern of δ13C decrease seen across each ring. Our results mimic those seen from modern broadleaf deciduous trees (Helle & Schlesser 2004), but differ from those seen in modern conifers (Barbour et al 2002

  3. Seasonality and dietary requirements: will eating seasonal food contribute to health and environmental sustainability?

    Science.gov (United States)

    Macdiarmid, Jennie I

    2014-08-01

    Eating more seasonal food is one proposal for moving towards more sustainable consumption patterns, based on the assumption that it could reduce the environmental impact of the diet. The aim of the present paper is to consider the implications of eating seasonal food on the different elements of sustainability (i.e. health, economics, society), not just the environment. Seasonality can be defined as either globally seasonal (i.e. produced in the natural production season but consumed anywhere in the world) or locally seasonal (i.e. produced in the natural production season and consumed within the same climatic zone). The environmental, health, economic and societal impact varies by the definition used. Global seasonality has the nutritional benefit of providing a more varied and consistent supply of fresh produce year round, but this increases demand for foods that in turn can have a high environmental cost in the country of production (e.g. water stress, land use change with loss of biodiversity). Greenhouse gas emissions of globally seasonal food are not necessarily higher than food produced locally as it depends more on the production system used than transportation. Eating more seasonal food, however, is only one element of a sustainable diet and should not overshadow some of the potentially more difficult dietary behaviours to change that could have greater environmental and health benefits (e.g. reducing overconsumption or meat consumption). For future guidelines for sustainable diets to be realistic they will need to take into account modern lifestyles, cultural and social expectations in the current food environment.

  4. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  5. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir

    Directory of Open Access Journals (Sweden)

    Yue Jiang

    2018-01-01

    Full Text Available Qingcaosha Reservoir is an important drinking water source in Shanghai. The occurrence of five groups of antibiotics was investigated in the surface water of this reservoir over a one-year period. Seventeen antibiotics were selected in this study based on their significant usage in China. Of these antibiotics, 16 were detected, while oxytetracycline was not detected in any sampling site. The detected frequency of tylosin was only 47.92% while the other 15 antibiotics were above 81.25%. The dominant antibiotic was different in four seasons: norfloxacin was dominant in spring, and penicillinV was dominant in summer, autumn and winter, with medium concentrations of 124.10 ng/L, 89.91 ng/L, 180.28 ng/L, and 216.43 ng/L, respectively. The concentrations and detection frequencies of antibiotics were notably higher in winter than in other seasons, demonstrating that low temperature and low flow may result in the persistence of antibiotics in the aquatic environment. Risk assessment suggested that norfloxacin, ciprofloxacin, penicillinV, and doxycycline in the surface water presented high ecological risks.

  6. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  7. Exploring the physical controls of regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and associated process controls

    Directory of Open Access Journals (Sweden)

    M. Sivapalan

    2012-11-01

    Full Text Available The goal of this paper is to explore the process controls underpinning regional patterns of variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of another signature of streamflow variability, namely the flow duration curve (FDC. The construction of the FDC removes the time dependence of flows. Thus in order to better understand the physical controls in regions that exhibit strong seasonal dependence, the regime curve (RC, which is closely connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict

  8. Assessing patterns and determinants of latrine use in rural settings: A longitudinal study in Odisha, India.

    Science.gov (United States)

    Sinha, Antara; Nagel, Corey L; Schmidt, Wolf P; Torondel, Belen; Boisson, Sophie; Routray, Parimita; Clasen, Thomas F

    2017-07-01

    Monitoring of sanitation programs is often limited to sanitation access and coverage, with little emphasis on use of the facilities despite increasing evidence of widespread non-use. We assessed patterns and determinants of individual latrine use over 12 months in a low- income rural study population that had recently received latrines as part of the Government of India's Total Sanitation Campaign (TSC) in coastal Puri district in Odisha, India. We surveyed 1938 individuals (>3years) in 310 rural households with latrines from 25 villages over 12 months. Data collection rounds were timed to correspond with the seasons. The primary outcome was reported use by each member of the household over the prior 48h. We classified use into three categories-"never", "sometimes" and "always/usually". We also assessed consistency of use over six days across the three seasons (dry cold, dry hot, rainy). We explored the association between individual and household-level variables and latrine use in any given season and longitudinally using multinomial logistic regression. We also inquired about reasons for non-use. Overall, latrine use was poor and inconsistent. The average response probability at any given round of never use was 43.5% (95% CI=37.9, 49.1), sometimes use was 4.6% (95% CI=3.8, 5.5), and always/usual use was 51.9% (95% CI=46.2, 57.5). Only two-thirds of those who reported always/usually using a latrine in round one reported the same for all three rounds. Across all three rounds, the study population was about equally divided among those who reported never using the latrine (30.1%, 95% CI=23.0, 37.2), sometimes using the latrine (33.2%, 95% CI=28.3, 38.1) and always/usually using the latrine (36.8%, 95% CI=31.8, 41.8). The reported likelihood of always/usually versus never using the latrine was significantly greater in the dry cold season (OR=1.50, 95% CI=1.18, 1.89, p=0.001) and in the rainy season (OR=1.34, 95% CI=1.07, 1.69, p=0.012), than in the dry hot season

  9. Patterns and Seasonal Variations of Perforated Peptic Ulcer Disease

    African Journals Online (AJOL)

    multiruka1

    treatment is surgical. Objective: To describe the socio- demographics of the patients, seasonal variation in its incidence, modes of surgical management and outcome of patients. ... of Helicobacter pylori (H. pylori) as a causative agent in the 1980s. ... treatment is usually delayed hence with advanced peritonitis and sepsis.

  10. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia

    International Nuclear Information System (INIS)

    Hlavcova, K; Szolgay, J; Kohnova, S; Balint, G

    2008-01-01

    The hydrological scenarios of future seasonal distributions of runoff in the upper Hron River basin, which was chosen as a representative mountainous region in Central Slovakia, were evaluated. Changes in the future climate were expressed by three different climate change scenarios developed within the framework of the Central and Eastern Europe Climate Change Impact and Vulnerability Assessment Project (CECILIA). The climate change scenarios were constructed using the pattern scaling method from the outputs of transient simulations made by 3 GCMs - ECHAM4/OPYC3, HadCM2 and NCAR DOE-PCM. A conceptual hydrological balance model calibrated with data from the period 1971-2000 was used for modelling changes in runoff with monthly time steps. The runoff change scenarios for the selected basin in the future time horizons of 2025, 2050 and 2100 show changes in the seasonal runoff distribution.

  11. Seasonal variation in kangaroo tooth enamel oxygen and carbon isotopes in southern Australia

    Science.gov (United States)

    Brookman, Tom H.; Ambrose, Stanley H.

    2012-09-01

    Serial sampling of tooth enamel growth increments for carbon and oxygen isotopic analyses of Macropus (kangaroo) teeth was performed to assess the potential for reconstructing paleoseasonality. The carbon isotope composition of tooth enamel apatite carbonate reflects the proportional intake of C3 and C4 vegetation. The oxygen isotopic composition of enamel reflects that of ingested and metabolic water. Tooth enamel forms sequentially from the tip of the crown to the base, so dietary and environmental changes during the tooth's formation can be detected. δ13C and δ18O values were determined for a series of enamel samples drilled from the 3rd and 4th molars of kangaroos that were collected along a 900 km north-south transect in southern Australia. The serial sampling method did not yield pronounced seasonal isotopic variation patterns in Macropus enamel. The full extent of dietary isotopic variation may be obscured by attenuation of the isotopic signal during enamel mineralisation. Brachydont (low-crowned) Macropus teeth may be less sensitive to seasonal variation in isotopic composition due to time-averaging during mineralisation. However, geographic variations observed suggest that there may be potential for tracking latitudinal shifts in vegetation zones and seasonal environmental patterns in response to climate change.

  12. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  13. Using crowd-sourced photos to assess seasonal patterns of visitor use in mountain-protected areas.

    Science.gov (United States)

    Walden-Schreiner, Chelsey; Rossi, Sebastian Dario; Barros, Agustina; Pickering, Catherine; Leung, Yu-Fai

    2018-02-12

    Managing protected areas effectively requires information about patterns of visitor use, but these data are often limited. We explore how geotagged photos on Flickr, a popular photo-sharing social-media site, can generate hotspot maps and distribution models of temporal and spatial patterns of use in two mountain-protected areas of high conservation value. In Aconcagua Provincial Park (Argentina), two routes to the summit of Aconcagua were used in summer, but most visitors stayed close to the main road, using formal and informal walking trails and the Visitor Centre, while in winter, there was very limited visitation. In Kosciuszko National Park (Australia), alpine walking trails were popular in summer, but in winter, most visitors stayed in the lower altitude ski resorts and ski trails. Results demonstrate the usefulness of social-media data alone as well as a complement for visitor monitoring, providing spatial and temporal information for site-specific and park-level management of visitors and potential impacts in conservation areas.

  14. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival.

    Directory of Open Access Journals (Sweden)

    Kaja Wierucka

    Full Text Available Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus, mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941-0.996 than females (0.869, 95% CI: 0.727-0.937. Survival rates of females declined with the progression of the breeding season (from May to August, while males showed constant survival during this period. We also found a clear pattern within the female (but not male nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898-0.958, when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00-1.000, when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality.

  15. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  16. Landscape seasons and air mass dynamics in Latvia

    International Nuclear Information System (INIS)

    Krauklis, A.; Draveniece, A.

    2004-01-01

    Latvia is located in the middle of an area where the boreal and nemoral zones and the regions of oceanic and continental climate meet, and it was studied as a model territory of the most typical variation of boreo-nemoral ecotone. The subject of this study was seasonal dynamics of the state of landscapes and diachronous links between seasons. It was found that landscapes undergo 12 seasonal states or seasons during the annual cycle of insulation and air mass occurrence. Each season may be distinguished by a definite amount of solar radiation, distinctive state of heat and water balance, phenological state of vegetation, and a distinctive occurrence of different air mass types and their particular 'association'. During each season these variables show a particular combination of numerical values and a distinctive landscape pattern

  17. Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence

    Science.gov (United States)

    Patterson Ross, Zoe; Komadina, Naomi; Deng, Yi-Mo; Spirason, Natalie; Kelly, Heath A.; Sullivan, Sheena G.; Barr, Ian G.; Holmes, Edward C.

    2015-01-01

    The factors that determine the characteristic seasonality of influenza remain enigmatic. Current models predict that occurrences of influenza outside the normal surveillance season within a temperate region largely reflect the importation of viruses from the alternate hemisphere or from equatorial regions in Asia. To help reveal the drivers of seasonality we investigated the origins and evolution of influenza viruses sampled during inter-seasonal periods in Australia. To this end we conducted an expansive phylogenetic analysis of 9912, 3804, and 3941 hemagglutinnin (HA) sequences from influenza A/H1N1pdm, A/H3N2, and B, respectively, collected globally during the period 2009-2014. Of the 1475 viruses sampled from Australia, 396 (26.8% of Australian, or 2.2% of global set) were sampled outside the monitored temperate influenza surveillance season (1 May – 31 October). Notably, rather than simply reflecting short-lived importations of virus from global localities with higher influenza prevalence, we documented a variety of more complex inter-seasonal transmission patterns including “stragglers” from the preceding season and “heralds” of the forthcoming season, and which included viruses sampled from clearly temperate regions within Australia. We also provide evidence for the persistence of influenza B virus between epidemic seasons, in which transmission of a viral lineage begins in one season and continues throughout the inter-seasonal period into the following season. Strikingly, a disproportionately high number of inter-seasonal influenza transmission events occurred in tropical and subtropical regions of Australia, providing further evidence that climate plays an important role in shaping patterns of influenza seasonality. PMID:26107631

  18. Season and preterm birth in Norway: A cautionary tale.

    Science.gov (United States)

    Weinberg, Clarice R; Shi, Min; DeRoo, Lisa A; Basso, Olga; Skjærven, Rolv

    2015-06-01

    Preterm birth is a common, costly and dangerous pregnancy complication. Seasonality of risk would suggest modifiable causes. We examine seasonal effects on preterm birth, using data from the Medical Birth Registry of Norway (2,321,652 births), and show that results based on births are misleading and a fetuses-at-risk approach is essential. In our harmonic-regression Cox proportional hazards model we consider fetal risk of birth between 22 and 37 completed weeks of gestation. We examine effects of both day of year of conception (for early effects) and day of ongoing gestation (for seasonal effects on labour onset) as modifiers of gestational-age-based risk. Naïve analysis of preterm rates across days of birth shows compelling evidence for seasonality (P distribution of the fetal population at risk. When we instead properly treat fetuses as the individuals at risk, restrict analysis to pregnancies with relatively accurate ultrasound-based assessment of gestational age (available since 1998) and adjust for socio-demographic factors and maternal smoking, we find modest effects of both time of year of conception and time of year at risk, with peaks for early preterm near early January and early July. Analyses of seasonal effects on preterm birth are demonstrably vulnerable to confounding by seasonality of conception, measurement error in conception dating, and socio-demographic factors. The seasonal variation based on fetuses reveals two peaks for early preterm, coinciding with New Year's Day and the early July beginning of Norway's summer break, and may simply reflect a holiday-related pattern of unintended conception. Published by Oxford University Press on behalf of the International Epidemiological Association 2015. This work is written by a US Government employee and is in the public domain in the US.

  19. Assessment of the Growing Season Regime Region of Tanzania ...

    African Journals Online (AJOL)

    The growing period for most crops continues beyond the rainy season and, to a greater or lesser extent, crops often mature on moisture reserves stored in the soil profile. When the rains start early the season is likely to be· longer, however, early rainfall (November) over unimodal areas is variable (Mhita and Nassib, 1988).

  20. National Assessment of Climate Resources for Tourism Seasonality in China Using the Tourism Climate Index

    Directory of Open Access Journals (Sweden)

    Yan Fang

    2015-01-01

    Full Text Available Tourism is a very important industry, and it is deeply affected by climate. This article focuses on the role of climate in tourism seasonality and attempts to assess the impacts of climate resources on China’s tourism seasonality by using the Tourism Climate Index (TCI. Seasonal distribution maps of TCI scores indicate that the climates of most regions in China are comfortable for tourists during spring and autumn, while the climate conditions differ greatly in summer and winter, with “excellent”, “good”, “acceptable” and “unfavorable” existing almost by a latitudinal gradation. The number of good months throughout China varies from zero (the Tibetan Plateau area to 10 (Yunnan Province, and most localities have five to eight good months. Moreover, all locations in China can be classified as winter peak, summer peak and bi-modal shoulder peak. The results will provide some useful information for tourist destinations, travel agencies, tourism authorities and tourists.

  1. Mood Sensitivity to Seasonal Changes in African College Students Living in the Greater Washington D.C. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Alvaro Guzman

    2007-01-01

    Full Text Available The purpose of this study was to estimate the degree of seasonality and prevalence of winter- and summer-type seasonal affective disorder (SAD in African immigrant college students in comparison with African American peers. A convenience sample of 246 African immigrants and 599 African Americans studying in Washington, D.C. completed the Seasonal Pattern Assessment Questionnaire (SPAQ, which was used to calculate a global seasonality score (GSS and to estimate the prevalence of winter- and summer-type SAD. Degree of seasonality was related to a complex interaction between having general awareness of SAD, ethnicity, and gender. A greater percentage of African students reported experiencing a problem with seasonal changes relative to African American students, and had summer SAD, but the groups did not differ on GSS and winter SAD. African students reported more difficulties with seasonal changes than their African American peers, which could represent a manifestation of incomplete acclimatization to a higher latitude and temperate climate. As Africans also had a greater rate of summer SAD, this argues against acclimatization to heat.

  2. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    Science.gov (United States)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  3. Reservoir release patterns for hydropower operations at the Aspinall Unit on the Gunnison River, Colorado

    International Nuclear Information System (INIS)

    Yin, S.C.L.; Sedlacek, J.

    1995-05-01

    This report presents the development of reservoir release patterns for the Aspinall Unit, which includes Blue Mesa, Morrow Point, and Crystal Reservoirs on the Gunnison River in Colorado. Release patterns were assessed for two hydropower operational scenarios--seasonally adjusted steady flows and seasonally adjusted high fluctuating flows--and three representative hydrologic years--moderate (1987), dry (1989), and wet (1983). The release patterns for the operational scenarios were developed with the aid of monthly, daily, and hourly reservoir operational models, which simulate the linked operation of the three Aspinall Unit reservoirs. Also presented are reservoir fluctuations and downstream water surface elevations corresponding to the reservoir release patterns. Both of the hydropower operational scenarios evaluated are based on the ecological research flows proposed by the US Fish and Wildlife Service for the Aspinall Unit. The first operational scenario allows only seasonally adjusted steady flows (no hourly fluctuations at any dam within one day), whereas the second scenario permits high fluctuating flows from Blue Mesa and Morrow Point Reservoirs during certain times of the year. Crystal Reservoir would release a steady flow within each day under both operational scenarios

  4. Seasonality in depressive and anxiety symptoms among primary care patients and in patients with depressive and anxiety disorders; results from the Netherlands Study of Depression and Anxiety

    Science.gov (United States)

    2011-01-01

    Background Little is known about seasonality of specific depressive symptoms and anxiety symptoms in different patient populations. This study aims to assess seasonal variation of depressive and anxiety symptoms in a primary care population and across participants who were classified in diagnostic groups 1) healthy controls 2) patients with a major depressive disorder, 3) patients with any anxiety disorder and 4) patients with a major depression and any anxiety disorder. Methods Data were used from the Netherlands Study of Depression and Anxiety (NESDA). First, in 5549 patients from the NESDA primary care recruitment population the Kessler-10 screening questionnaire was used and data were analyzed across season in a multilevel linear model. Second, in 1090 subjects classified into four groups according to psychiatric status according to the Composite International Diagnostic Interview, overall depressive symptoms and atypical versus melancholic features were assessed with the Inventory of Depressive Symptoms. Anxiety and fear were assessed with the Beck Anxiety Inventory and the Fear questionnaire. Symptom levels across season were analyzed in a linear regression model. Results In the primary care population the severity of depressive and anxiety symptoms did not show a seasonal pattern. In the diagnostic groups healthy controls and patients with any anxiety disorder, but not patients with a major depressive disorder, showed a small rise in depressive symptoms in winter. Atypical and melancholic symptoms were both elevated in winter. No seasonal pattern for anxiety symptoms was found. There was a small gender related seasonal effect for fear symptoms. Conclusions Seasonal differences in severity or type of depressive and anxiety symptoms, as measured with a general screening instrument and symptom questionnaires, were absent or small in effect size in a primary care population and in patient populations with a major depressive disorder and anxiety disorders. PMID

  5. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  6. Environmental Determinants Influencing Fish Community Structure and Diversity in Two Distinct Seasons among Wetlands of Northern Region (Ghana

    Directory of Open Access Journals (Sweden)

    Collins Ayine Nsor

    2016-01-01

    Full Text Available Fish community structure was assessed in six wetlands using cast nets, to correlate with environmental variables with diversity and distribution patterns, from 2010 to 2012. A total of 2,239 individuals belonging to 44 species and 1,938 individuals belonging to 40 species were sampled in the dry and wet seasons. Mochokid and Mormyrid families dominated fish community and constituted 14.8%, respectively, followed by Alestids (12.9% and Chlariids (11.1%. Rarer taxons were centropomids, channids, malapteruds, and oesteoglossids and represented 1.9%, respectively. Overall, CPUE per net did not vary significantly (Tukey HSD test, p=0.27 in the dry and wet seasons. Wuntori marsh consistently showed dominance in mean monthly CPUE per net (dry = 115±4.5; wet = 107±7.7 seasons, while Bunglung constructed wetland was the least recorded (dry = 56.5±6.2; wet = 58.3±4.1 seasons. Fish diversity and richness differed significantly (F=0.11, p=0.03 among seasons. Environmental disturbances were season-specific and did not differ significantly (F=0.16, df=14, p=0.97 among sites. A DCA ordination explained 69% variability in fish distribution patterns, while PCA showed that 81.8% of nitrate-nitrogen, phosphate, and grazing intensity on axis 1 and conductivity, temperature, and turbidity on axis 2 influenced fish community structure. Wetland conservation must be promoted to sustain fish abundance and overall ecosystem stability.

  7. World climate patterns in grassland and savanna and their relation to growing seasons

    Directory of Open Access Journals (Sweden)

    R. Kirk Steinhorst

    1977-11-01

    Full Text Available The climate at eleven IBP savanna or grassland study sites from five continents are described and principal components analysis is used to compare them. A multivariate linear discriminant function based on mean monthly precipitation, mean monthly temperature, latitude and altitude, is used to predict the length of the growing season at each site. At most sites, the actual and predicted start and end of the growing season agreed closely. It is concluded that growing season on a world-wide basis may be predicted fairly reliably from a small number of abiotic variables by means of a multivariate discriminant function.

  8. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    International Nuclear Information System (INIS)

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-01-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013–2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results. - Highlights: • The definition of the pollen season has an impact on the calculated symptom load. • Pollen season definitions based on percentages of total pollen are a practical solution. • The symptom load index is a robust tool to assess the allergy burden in a population. • Local, regional and national burdens of pollen allergy sufferers are comparable. - The symptom load index is a robust tool to assess the allergy burden in a population. Local, regional and national burdens of pollen allergy sufferers are comparable

  9. Behavioural activity of wild rabbits (Oryctolagus cuniculus under semi-natural rearing systems: establishing a seasonal pattern

    Directory of Open Access Journals (Sweden)

    Carlos Díez Valle

    2013-12-01

    Full Text Available The activity of 2 populations of wild rabbits (Oryctolagus cuniculus, L. 1758, consisting of 14 adults (>9 mo of age each (4 males and 10 females, was analysed over 2 consecutive years. Rabbits were captured in the wild and kept in 2 separate enclosures of 0.5 ha, with each enclosure divided into 2 zones: a smaller area where warrens were located (breeding area and a larger area where food and water were provided (feeding area. Seven rabbits in each enclosure were individually tagged with a microchip (2 males and 5 females and, after installing 2 detection devices, it was possible to identify which of the 2 areas they were located in and record the length of time spent in each. To regulate the size of the breeding population, young rabbits produced in the enclosures were captured and removed regularly. Considering the number of movements between areas and the time spent in the feeding area, a circadian activity pattern was found, reporting 2 maximum activity peaks coinciding with twilight (18.35% of the total movements, 6-8 a.m. and daybreak (22.95%, 7-10 p.m. while activity was dramatically decreased during the midday hours (1.86%, 10 a.m.-4 p.m.. Rabbits displayed a seasonal pattern throughout the year, with maximum activity levels during winter (45.76% of the total movements, January-March and spring (42.91%, April-June, which could be related to higher reproductive activity at this time of the year as a higher breeding output was reported in June and September. The levels of activity exhibited by males (13.44% daily activity rate were significantly higher than those displayed by females (9.80%. No significant differences were found regarding time spent on the feeding area in relation to season or gender. The average duration of each foray to the feeding area was higher during the summer, higher for females than males and higher during the middle of the night than the rest of the day.

  10. Spatiotemporal patterns of High Mountain Asia's snowmelt season identified with an automated snowmelt detection algorithm, 1987–2016

    Directory of Open Access Journals (Sweden)

    T. Smith

    2017-10-01

    Full Text Available High Mountain Asia (HMA – encompassing the Tibetan Plateau and surrounding mountain ranges – is the primary water source for much of Asia, serving more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in situ weather networks. Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications – such as agriculture, drinking-water generation, and hydropower – rely on consistent and predictable snowmelt runoff. Here, we examine passive microwave data across HMA with five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM from 1987 to 2016 to track the timing of the snowmelt season – defined here as the time between maximum passive microwave signal separation and snow clearance. We validated our method against climate model surface temperatures, optical remote-sensing snow-cover data, and a manual control dataset (n = 2100, 3 variables at 25 locations over 28 years; our algorithm is generally accurate within 3–5 days. Using the algorithm-generated snowmelt dates, we examine the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29-year time series, along with complex interannual snowfall variations, makes determining trends in snowmelt dates at a single point difficult. We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine trends in self-similar regions. We make the following four key observations. (1 The end of the snowmelt season is trending almost universally earlier in HMA (negative trends. Changes in the end of the snowmelt season are generally between 2 and 8 days decade−1 over the 29-year study period (5–25 days total. The length of the snowmelt season is thus shrinking in many, though not all, regions of HMA. Some areas exhibit later peak signal separation (positive

  11. Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China.

    Science.gov (United States)

    Zhang, Zhiming; Ouyang, Zhiyun; Xiao, Yi; Xiao, Yang; Xu, Weihua

    2017-06-01

    Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 10 3  km 2 , which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.

  12. The European Market for Seasonal Gas Storage

    International Nuclear Information System (INIS)

    Mahan, A.

    2006-02-01

    European demand for gas will grow in the years to come. Simultaneously, gas production in Europe will decrease and imported gas will be needed to replace indigenous production. Gas demand is not constant during the year. There are variations in demand on different timescales ranging from seasonal to hourly. Variations in demand are characterised by two main parameters: working volume and deliverability. Working volume - the amount of gas that can be supplied above the baseload production volume during a long (cold) period- is primarily needed to cope with the summer-winter pattern of gas consumption. Most of the summer-winter pattern comes from the temperature sensitive gas consumption by households and service industries. Gas usage by industry and the power sector are more evenly spread throughout the year and need less working volume. Deliverability - the amount of gas per hour that can be generated on a (very) cold day above the baseload capacity - is the ability to produce large volumes during short periods, e.g. for extremely cold days, or during peak periods during a day. In this paper we argue that a large amount of additional working volume will be required over the coming years. First, flexible European production will be replaced by long-distance import gas, and second, the gas market is expected to grow further. Todays market appears focus mainly on cavems for storage volume. Cavems have little working volume but are ideal for trading purposes. Consequently, Europe may be facing a deficit in working volume, i.e. the ability to cope with seasonal changes in demand. This paper aims to widen the discussion of this matter and give rise to this concern by setting out a broad analysis, exploring the market drivers for seasonal storage and identifying the public interest issues for this market. Chapter 2 gives an overview of demand for and supply characteristics of gas flexibility. Chapter 3 describes the role of gas storage facilities in the gas market

  13. Response of Amazon Fires to the 2015/2016 El Niño and Evaluation of a Seasonal Fire Season Severity Forecast

    Science.gov (United States)

    Randerson, J. T.

    2016-12-01

    temporal pattern of fires within the Amazon during the 2016 dry season and evaluate the success of our forecast. As a part of this analysis, we will compare fires from 2016 with other years of extreme drought (i.e., 2005 and 2010), and assess how trends in land use, including regional changes in deforestation, modify El Niño-driven fire risk.

  14. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling.

    Science.gov (United States)

    Kuptz, Daniel; Fleischmann, Frank; Matyssek, Rainer; Grams, Thorsten E E

    2011-07-01

    • The CO(2) efflux of adult trees is supplied by recent photosynthates and carbon (C) stores. The extent to which these C pools contribute to growth and maintenance respiration (R(G) and R(M), respectively) remains obscure. • Recent photosynthates of adult beech (Fagus sylvatica) and spruce (Picea abies) trees were labeled by exposing whole-tree canopies to (13) C-depleted CO(2). Label was applied three times during the year (in spring, early summer and late summer) and changes in the stable C isotope composition (δ(13) C) of trunk and coarse-root CO(2) efflux were quantified. • Seasonal patterns in C translocation rate (CTR) and fractional contribution of label to CO(2) efflux (F(Label-Max)) were found. CTR was fastest during early summer. In beech, F(Label-Max) was lowest in spring and peaked in trunks during late summer (0.6 ± 0.1, mean ± SE), whereas no trend was observed in coarse roots. No seasonal dynamics in F(Label-Max) were found in spruce. • During spring, the R(G) of beech trunks was largely supplied by C stores. Recent photosynthates supplied growth in early summer and refilled C stores in late summer. In spruce, CO(2) efflux was constantly supplied by a mixture of stored (c. 75%) and recent (c. 25%) C. The hypothesis that R(G) is exclusively supplied by recent photosynthates was rejected for both species. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  15. Assessment of DSDs of GPM-DPR with ground-based disdrometer at seasonal scale over Gadanki, India

    Science.gov (United States)

    Radhakrishna, Basivi; Satheesh, S. K.; Narayana Rao, T.; Saikranthi, K.; Sunilkumar, K.

    2016-10-01

    Characteristics of raindrop size distribution (DSD) obtained by Global Precipitation Measurement (GPM) mission dual-frequency precipitation radar (DPR) are assessed over Gadanki region during southwest (SW) and northeast (NE) monsoon seasons utilizing 2 years (2014-2015) of DSD measurements by an impact-type disdrometer. The mass weighted mean diameter (Dm in mm) and normalized DSD scaling parameter for concentration (Nw in mm-1 m-3) show pronounced seasonal differences at low to medium rain rates in the disdrometer data, in accordance with the previous studies, but not in the GPM-DPR data. Similar features are observed every year in disdrometer measurements and over different spatial domains in GPM-DPR measurements, indicating that sampling mismatch errors are insignificant. The reasons for the absence of seasonal differences in DSDs derived from GPM-DPR are examined by simulating the reflectivities at Ku- and Ka-bands, utilizing the disdrometer measurements and T-matrix scattering indices. Results suggest that the Dm and Nw retrieved from single-frequency and dual-frequency algorithms utilizing the disdrometer data also show seasonal differences in accordance with the observations with under and overestimation of Dm and Nw, respectively. When compared with the disdrometer, the Dm values retrieved from the GPM-DPR (official products) are severely underestimated at high rain rates (R > 8 mm h-1) during the SW monsoon season. On the other hand, during low rain rates (R NE) monsoon. The mean Nw values retrieved from GPM-DPR agree poorly with disdrometer data during both the monsoon seasons.

  16. Response patterns in adult forest trees to chronic ozone stress: identification of variations and consistencies

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Reiter, Ilja M.; Haeberle, Karl-Heinz; Langebartels, Christian; Bahnweg, Guenther; Pretzsch, Hans; Sandermann, Heinrich; Matyssek, Rainer

    2005-01-01

    The responsiveness of adult beech and spruce trees to chronic O 3 stress was studied at a free-air O 3 exposure experiment in Freising/Germany. Over three growing seasons, gas exchange characteristics, biochemical parameters, macroscopic O 3 injury and the phenology of leaf organs were investigated, along with assessments of branch and stem growth as indications of tree performance. To assess response pattern to chronic O 3 stress in adult forest trees, we introduce a new evaluation approach, which provides a comprehensive, readily accomplishable overview across several tree-internal scaling levels, different canopy regions and growing seasons. This new approach, based on a three-grade colour coding, combines statistical analysis and the proficient ability of the 'human eye' in pattern recognition. - Responses of adult forest trees to chronic O 3 stress can be visualized in a survey table applying a three-grade colour coding to each investigated parameter

  17. Seasonal anomalies in electricity intensity across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.

    2013-01-01

    Highlights: ► We analyze seasonal anomalies in electricity intensity in China. ► Regional and time dimensions are investigated from 2003 to 2009. ► Results suggest that seasonality is stochastic. ► We find four main effects: Summer, Winter, Spring and Lunar New Year effects. ► Differences are observed between northern regions and east-south of China. - Abstract: This paper provides evidence on the relevance of modeling the seasonal nature of electricity intensity across Chinese regions in a suitable manner with monthly data from 2003 to 2009. In contrast to previous works, this study relaxes the assumption of deterministic seasonality, allowing for time and regional variation in the Chinese economy. In doing so, unobserved-components models are used to analyze the type of seasonality – stochastic or deterministic – that prevails. Regional differences in the seasonal patterns and their evolution over time are also examined. Results provide new empirical evidence on the stochastic nature of electricity intensity in the majority of the provinces. In addition, we find four main effects as regards seasonal patterns: (i) Lunar New Year, (ii) Summer, (iii) Spring, and (iv) Winter effects. In the first two effects seasonality becomes positive, thus indicating that electricity intensity increases, and the last two are negative, showing improvements in the use of electricity per unit of output. However, differences are observed between northern regions and the east-south of China. In addition, once we control our estimates for temperature and prices, no significant differences are seen in the results. Conclusions from this analysis are useful for empirical modeling in the energy-economics literature, and also for designing energy policies to improve the efficiency of the use of energy resources across Chinese regions

  18. Seasonal and geographical distribution of bacillary dysentery (shigellosis) and associated climate risk factors in Kon Tam Province in Vietnam from 1999 to 2013.

    Science.gov (United States)

    Lee, Hu Suk; Ha Hoang, T T; Pham-Duc, Phuc; Lee, Mihye; Grace, Delia; Phung, Dac Cam; Thuc, Vu Minh; Nguyen-Viet, Hung

    2017-06-21

    Bacillary dysentery (BD) is an acute bacterial infection of the intestine caused by Shigella spp., with clinical symptoms ranging from fever to bloody diarrhoea to abdominal cramps to tenesmus. In Vietnam, enteric bacterial pathogens are an important cause of diarrhoea and most cases in children under 5 years of age are due to Shigella strains. The serogroups S. flexneri and S. sonnei are considered to be the most common. The main objective of this study was to, for the first time, assess the seasonal patterns and geographic distribution of BD in Vietnam, and to determine the climate risk factors associated with the incidence of BD in Kon Tum Province, where the highest rate of bacillary dysentery was observed from 1999 to 2013. The seasonal patterns and geographic distribution of BD was assessed in Vietnam using a seasonal-trend decomposition procedure based on loess. In addition, negative binomial regression models were used to determine the climate risk factors associated with the incidence of BD in Kon Tum Province, from 1999 to 2013. Overall, incidence rates of BD have slightly decreased over time (except for an extremely high incidence in 2012 in the north of Vietnam). The central regions (north/south central coast and central highlands) had relatively high incidence rates, whereas the northwest/east and Red River Delta regions had low incidence rates. Overall, seasonal plots showed a high peak in the mid-rainy reason and a second smaller peak in the early or late rainy season. The incidence rates significantly increased between May and October ("wet season") across the country. In Kon Tum Province, temperature, humidity, and precipitation were found to be positively associated with the incidence of BD. Our findings provide insights into the seasonal patterns and geographic distribution of BD in Vietnam and its associated climate risk factors in Kon Tum Province. This study may help clinicians and the general public to better understand the timings of

  19. Seasonality of Suicidal Behavior

    Science.gov (United States)

    Woo, Jong-Min; Okusaga, Olaoluwa; Postolache, Teodor T.

    2012-01-01

    A seasonal suicide peak in spring is highly replicated, but its specific cause is unknown. We reviewed the literature on suicide risk factors which can be associated with seasonal variation of suicide rates, assessing published articles from 1979 to 2011. Such risk factors include environmental determinants, including physical, chemical, and biological factors. We also summarized the influence of potential demographic and clinical characteristics such as age, gender, month of birth, socioeconomic status, methods of prior suicide attempt, and comorbid psychiatric and medical diseases. Comprehensive evaluation of risk factors which could be linked to the seasonal variation in suicide is important, not only to identify the major driving force for the seasonality of suicide, but also could lead to better suicide prevention in general. PMID:22470308

  20. Seasonal and socio-economic variations in clinical and self-reported ...

    African Journals Online (AJOL)

    Seasonal and socio-economic variations in clinical and self-reported malaria in Accra, Ghana: Evidence from facility data and a community survey. ... Conclusions: Understanding these seasonal and geographic patterns have implications for both prevention and treatment of malaria-like morbidity in both children and adults ...

  1. Evidences of Seasonal Variation in Altimetry Derived Ocean Tides in the Subarctic Ocean

    Directory of Open Access Journals (Sweden)

    Hok Sum Fok

    2013-01-01

    Full Text Available While the barotropic ocean tides in the deep ocean are well modeled to ~2 cm RMS, accurate tidal prediction in the ice-covered polar oceans and near coastal regions remain elusive. A notable reason is that the most accurate satellite altimeters (TOPEX/Jason-1/-2, whose orbits are optimized to minimize the tidal aliasing effect, have spatial coverage limited to largely outside of the polar ocean. Here, we update the assessment of tidal models using 7 contemporary global and regional models, and show that the altimetry sea surface height (SSH anomaly residual after tidal correction is 9 - 12 cm RMS in the Subarctic Ocean. We then address the hypothesis whether plausible evidence of variable tidal signals exist in the seasonally ice-covered Subarctic Ocean, where the sea ice cover is undergoing rapid thinning. We first found a difference in variance reduction for multi-mission altimeter SSH anomaly residuals during the summer and winter seasons, with the residual during winter season 15 - 30% larger than that during the summer season. Experimental seasonal ocean tide solutions derived from satellite altimetry reveals that the recovered winter and summer tidal constituents generally differ by a few cm in amplitude and tens of degrees in phase. Relatively larger seasonal tidal patterns, in particular for M2, S2 and K1 tides, have been identified in the Chukchi Sea study region near eastern Siberia, coincident with the seasonal presence and movement of sea ice.

  2. Using Accretionary Hard Parts to Study Changes in Seasonality over Geologic Time

    Science.gov (United States)

    Ivany, L. C.; Judd, E. J.

    2017-12-01

    Seasonality has been an enigma for deep-time research. Proxies for mean annual temperature (MAT) are the mainstay of paleoclimate studies, and while these are tremendously informative, seasonal extremes are the variables that matter most for many paleoclimatic, paleoceanographic, and physiologic processes. Seasonality has been difficult to constrain in the rock record, however, because of the need for subannual resolution - very few such archives exist. One of the most promising comes in the form of the mineralized hard parts of organisms that grow by accretion, e.g., mollusks, corals, fish otoliths. Such materials carry a chemical signature of temperature at the time of precipitation, allowing for assessment of the seasonal temperature extremes experienced by the organism. Interpretation of these records in the context of climate, however, are complicated by the overprint of biology - organisms don't necessarily grow all year long, resulting in a truncation of the seasonal cycle regardless of sampling resolution. Furthermore, unrecognized differences in depositional environment or taxon ecology among samples can make comparisons over time even more tenuous. Even with internally consistent datasets, assessment of pattern is rarely based on more than visual inspection. An iterative computational procedure predicated on the assumption of sinusoidal variation in temperature and growth rate can circumvent these concerns. Deviations in the shape of oxygen isotope profiles from the predicted sinusoid allow recovery of the mean and amplitude of temperature variation as well as the timing and duration of growth within years. Estimates of such parameters from multiple specimens allow for meaningful comparisons over time, both for seasonality and the growth response of organisms. We apply this approach to datasets of seasonal variation through the Paleogene of the US Gulf Coastal Plain and the Eocene of Antarctica derived largely from marine bivalve mollusks. In the

  3. Morbidity, Mortality, and Seasonality of Influenza Hospitalizations in Egypt, November 2007-November 2014.

    Directory of Open Access Journals (Sweden)

    Amr Kandeel

    Full Text Available Influenza typically comprises a substantial portion of acute respiratory infections, a leading cause of mortality worldwide. However, influenza epidemiology data are lacking in Egypt. We describe seven years of Egypt's influenza hospitalizations from a multi-site influenza surveillance system.Syndromic case definitions identified individuals with severe acute respiratory infection (SARI admitted to eight hospitals in Egypt. Standardized demographic and clinical data were collected. Nasopharyngeal and oropharyngeal swabs were tested for influenza using real-time reverse transcription polymerase chain reaction and typed as influenza A or B, and influenza A specimens subtyped.From November 2007-November 2014, 2,936/17,441 (17% SARI cases were influenza-positive. Influenza-positive patients were more likely to be older, female, pregnant, and have chronic condition(s (all p<0.05. Among them, 53 (2% died, and death was associated with older age, five or more days from symptom onset to hospitalization, chronic condition(s, and influenza A (all p<0.05. An annual seasonal influenza pattern occurred from July-June. Each season, the proportion of the season's influenza-positive cases peaked during November-May (19-41%.In Egypt, influenza causes considerable morbidity and mortality and influenza SARI hospitalization patterns mirror those of the Northern Hemisphere. Additional assessment of influenza epidemiology in Egypt may better guide disease control activities and vaccine policy.

  4. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  5. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  6. The spatial diffusion of norovirus epidemics over three seasons in Tokyo.

    Science.gov (United States)

    Inaida, S; Shobugawa, Y; Matsuno, S; Saito, R; Suzuki, H

    2015-02-01

    We studied the spatial trend of norovirus (NoV) epidemics using sentinel gastroenteritis surveillance data for patients aged spreading pattern of NoV epidemics using sentinel surveillance data. Correlations of sentinel cases between the seasons and with demographic data were examined to identify the trend and related factors. A similar pattern of diffusion was observed over the seasons, and its mean correlation between seasons was significantly high. A higher number of cases were found in the peripheral area, which surrounds the most populated central area, and showed a correlation with the ratio of the children population (r = 0·321, P epidemic factor. Prevention with focus on the peripheral area is desirable.

  7. Satellite assessment of early-season forecasts for vegetation conditions of grazing allotments in Nevada, United States

    Science.gov (United States)

    Fifteen years of enhanced vegetation index data from the MODIS sensor are examined in conjunction with precipitation and the Palmer drought severity index to assess how well growing season conditions for vegetation within grazing allotments of Nevada can be predicted at different times of the year. ...

  8. Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum.

    Science.gov (United States)

    Saxena, Anuj

    2006-01-01

    Present study was undertaken as an attempt to study the effect of pollutants on biological responses of Sphagnum growing at Kainchi, Kumaon hills (Uttranchal). Sphagnum plants of almost identical size, collected from the marked sites of Kainchi in different seasons viz., monsoon, winter, summer and again in monsoon, were analysed for chlorophyll, protein, shoot length and nitrate reductase and peroxidase activities. Maximum chlorophyll, protein, shoots length and nitrate reductase activities were observed during the monsoon while minimum in summers. The abundance of Sphagnum and two other bryophytes, Marchantia and Plagiochasma was also higher in monsoon than in other seasons. The study also indicated that Sphagnum has more bioaccumulation and tolerance potential for heavy metals than Marchantia and Plagiochasma.

  9. Effects of Age, Season, Gender and Urban-Rural Status on Time-Activity: Canadian Human Activity Pattern Survey 2 (CHAPS 2)

    OpenAIRE

    Matz, Carlyn J.; Stieb, David M.; Davis, Karelyn; Egyed, Marika; Rose, Andreas; Chou, Benedito; Brion, Orly

    2014-01-01

    Estimation of population exposure is a main component of human health risk assessment for environmental contaminants. Population-level exposure assessments require time-activity pattern distributions in relation to microenvironments where people spend their time. Societal trends may have influenced time-activity patterns since previous Canadian data were collected 15 years ago. The Canadian Human Activity Pattern Survey 2 (CHAPS 2) was a national survey conducted in 2010–2011 to collect time-...

  10. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  11. The family receiving home care: functional health pattern assessment.

    Science.gov (United States)

    Hooper, J I

    1996-01-01

    The winds of change in health care make assessment of the family more important than ever as a tool for health care providers seeking to assist the family move themselves toward high-level wellness. Limited medical care and imposed self-responsibility for health promotion and illness prevention, which are natural consequences of these changes, move the locus of control for health management back to the family. The family's teachings, modeling, and interactions are greater influences than ever on the health of the patient. Gordon's functional health patterns provide a holistic model for assessment of the family because assessment data are classified under 11 headings: health perception and health management, nutritional-metabolic, elimination, activity and exercise, sleep and rest, cognition and perception, self-perception and self-concept, roles and relationships, sexuality and reproduction, coping and stress tolerance, and values and beliefs. Questions posed under each of the health patterns can be varied to reflect the uniqueness of the individual family as well as to inquire about family strengths and weaknesses in all patterns. Data using this model provide a comprehensive base for including the family in designing a plan of care.

  12. Seasonality affects dietary diversity of school-age children in northern Ghana.

    Directory of Open Access Journals (Sweden)

    Abdul-Razak Abizari

    Full Text Available Dietary diversity score (DDS is relatively easy to measure and is shown to be a very useful indicator of the probability of adequate micronutrient intake. Dietary diversity, however, is usually assessed during a single period and little is known about the effect of seasonality on it. This study investigates whether dietary diversity is influenced by seasonality.Two cross-sectional surveys were conducted in two different seasons-dry season (October 2010 and rainy season (May 2011 among the same school-age children (SAC in two rural schools in northern Ghana. The study population consisted of 228 school-age children. A qualitative 24-hour dietary recall was conducted in both seasons. Based on 13 food groups, a score of 1 was given if a child consumed a food item belonging to a particular food group, else 0. Individual scores were aggregated into DDS for each child. Differences in mean DDS between seasons were compared using linear mixed model analysis.The dietary pattern of the SAC was commonly plant foods with poor consumption of animal source foods. The mean DDS was significantly higher (P < 0.001 in the rainy season (6.95 ± 0.55 compared to the dry season (6.44 ± 0.55 after adjusting for potential confounders such as age, sex, occupation (household head and mother and education of household head. The difference in mean DDS between dry and rainy seasons was mainly due to the difference in the consumption of Vitamin A-rich fruits and vegetables between the seasons. While vitamin A-rich fruits (64.0% vs. 0.9%; P < 0.0001 and vitamin A rich dark green leafy vegetables (52.6% vs. 23.3%, P < .0001 were consumed more during the rainy season than the dry season, more children consumed vitamin A-rich deep yellow, orange and red vegetables during the dry season than during the rainy season (73.7% vs. 36.4%, P <0.001.Seasonality has an effect on DDS and may affect the quality of dietary intake of SAC; in such a context, it would be useful to measure DDS

  13. Seasonality of macroalgal communities in a subtropical drainage basin in Paraná state, southern Brazil.

    Science.gov (United States)

    Branco, C C Z; Krupek, R A; Peres, C K

    2008-11-01

    Seasonal dynamics of macroalgal communities was analyzed monthly by samplings in three stream segments of the Pedras River Basin, mid-south region of Paraná State, southern Brazil, from April 2004 to March 2005. The seasonal fluctuations in macroalgal species richness and abundance were correlated with selected environmental variables. In general, the seasonal distribution patterns of these communities were distinct from those reported from other tropical and temperate regions, with higher macroalgal richness and abundance observed from late spring to late fall. Multiple linear regression analysis revealed that the stream variable most closely related with the temporal distribution pattern observed was temperature, which had a very similar seasonal pattern to the biological parameters. On the other hand, the floristic composition was quite diverse in the streams sampled. Among the 25 taxa identified, only two were common to the three streams whereas 15 were restricted to a single sampling site. These data indicate that, although temperature seems to be an effective relationship with global temporal pattern, particular characteristics of each stream can strongly influence the seasonal tendencies in local scale. The results of Detrended Correspondence Analysis (DCA) and Cluster Analysis corroborated this observation.

  14. Seasonality of macroalgal communities in a subtropical drainage basin in Paraná state, southern Brazil

    Directory of Open Access Journals (Sweden)

    CCZ. Branco

    Full Text Available Seasonal dynamics of macroalgal communities was analyzed monthly by samplings in three stream segments of the Pedras River Basin, mid-south region of Paraná State, southern Brazil, from April 2004 to March 2005. The seasonal fluctuations in macroalgal species richness and abundance were correlated with selected environmental variables. In general, the seasonal distribution patterns of these communities were distinct from those reported from other tropical and temperate regions, with higher macroalgal richness and abundance observed from late spring to late fall. Multiple linear regression analysis revealed that the stream variable most closely related with the temporal distribution pattern observed was temperature, which had a very similar seasonal pattern to the biological parameters. On the other hand, the floristic composition was quite diverse in the streams sampled. Among the 25 taxa identified, only two were common to the three streams whereas 15 were restricted to a single sampling site. These data indicate that, although temperature seems to be an effective relationship with global temporal pattern, particular characteristics of each stream can strongly influence the seasonal tendencies in local scale. The results of Detrended Correspondence Analysis (DCA and Cluster Analysis corroborated this observation.

  15. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Science.gov (United States)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  16. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Zulkarnain

    2018-01-01

    Full Text Available The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015 data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM, as compared to Southwest monsoon (SWM. Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  17. Contrasting recruitment seasonality of sea urchin species in Gran Canaria, Canary Islands (eastern Atlantic

    Directory of Open Access Journals (Sweden)

    S. GARCIA-SANZ

    2014-03-01

    Full Text Available Despite sea-urchins can play an important role affecting the community structure of subtidal bottoms, factors controlling the dynamics of sea-urchin populations are still poorly understood. We assessed the seasonal variation in recruitment of three sea-urchin species (Diadema africanum, Paracentrotus lividus and Arbacia lixula at Gran Canaria Island (eastern Atlantic via monthly deployment of artificial collectors throughout an entire annual cycle on each of four adjacent habitat patches (seagrasses, sandy patches, ‘urchin-grazed’ barrens and macroalgal-dominated beds within a shallow coastal landscape. Paracentrotus lividus and A. lixula had exclusively one main recruitment peak in late winter-spring. Diadema africanum recruitment was also seasonal, but recruits appeared in late summer-autumn, particularly on ‘urchin-grazed’ barrens with large abundances of adult conspecifics. In conclusion, this study has demonstrated non-overlapping seasonal recruitment patterns of the less abundant species (P. lividus and A. lixula with the most conspicuous species (D. africanum in the study area.

  18. Peripartal rumination dynamics and health status in cows calving in hot and cool seasons.

    Science.gov (United States)

    Paudyal, S; Maunsell, F; Richeson, J; Risco, C; Donovan, A; Pinedo, P

    2016-11-01

    Our objective was to evaluate the effect of season of calving, associated with variable levels of heat stress, on the dynamics of rumination during the prepartum period and early lactation of cows that were healthy or affected by peripartal health disorders. Three weeks before the estimated due date, 210 multiparous Holstein cows at the University of Florida Dairy Unit were affixed with a neck collar containing rumination loggers, providing rumination time (RT) in 2-h periods. One blood sample was collected in a subpopulation of cows (n=76) at 12 to 48h postcalving to assess metabolic status by determining serum calcium, nonesterified fatty acid, and β-hydroxybutyrate concentrations. The occurrence of peripartal health disorders (dystocia, clinical ketosis, clinical hypocalcemia, metritis, and mastitis) was assessed by University of Florida veterinarians and trained farm personnel. We analyzed the dynamics of daily RT over ± 14d relative to parturition in cows that were healthy or affected by specific health disorders by season of calving [hot season, June to September (n=77); cool season, November to April (n=118)] using repeated measures analysis and comparison of least squares means at different time points relative to calving. Rumination was consistently reduced on the day of calving in both healthy and sick cows in both the hot and cool seasons. Only hot-season calvings had shorter average daily RT prepartum and postpartum in cows affected by severe negative energy balance and subclinical ketosis. Dystocia during the hot season was associated with shorter daily RT prepartum; for cool-season calvings, cows with dystocia had reduced RT postpartum. We also observed reduced RT in cows with ketosis prepartum and postpartum in both the hot and cool seasons. Daily RT was reduced postpartum in cows with hypocalcemia and mastitis that calved during the cool season, and it was shorter in cows with metritis in both the hot and cool seasons. Our results indicated that

  19. Influence of oceanographic features on the spatial and seasonal patterns of mesozooplankton in the southern Patagonian shelf (Argentina, SW Atlantic)

    Science.gov (United States)

    Sabatini, M. E.; Reta, R.; Lutz, V. A.; Segura, V.; Daponte, C.

    2016-05-01

    Surveys conducted during spring, summer and late winter in 2005-2006 over the southern Patagonian shelf have allowed the seasonal distribution of mesozooplankton communities in relation to water masses and circulation to be investigated. In this system, most of the shelf is dominated by a distinct low salinity plume that is related to the runoff from the Magellan Strait (MSW), while the outer shelf is highly influenced by the cold and salty Subantarctic water (SAW) of the boundary Malvinas Current. Separating these two, the Subantarctic Shelf water mass (SASW) extends over the middle shelf. Correspondingly, the structure of the MSW and SAW mesozooplankton communities was found to be clearly different, while the former and the SASW assemblages were barely separable. This relatively fresh water mass is actually a variant of Subantarctic water that enters into the region from the south and the shelf-break, and hence its mesozooplankton community was not significantly different from that of the SAW water mass. Dissimilar species abundance, in turn associated with different life histories and population development, was more important than species composition in defining the assemblages. Total mesozooplankton abundance increased about 2.5-fold from the beginning of spring to late summer, and then decreased at least two orders of magnitude in winter. Across all seasons copepods represented > 70-80% of total mesozooplankton over most of the shelf. Copepod species best represented through all seasons, in terms of both relative abundance and occurrence, were Drepanopus forcipatus and Oithona helgolandica. Although seasonal differences in abundance were striking, the spatial distribution of mesozooplankton was largely similar across seasons, with relatively higher concentrations occurring mainly in Grande Bay and surroundings. The well defined spatial patterns of mesozooplankton that appear from our results in conjunction with the southward wide extension of the shelf and

  20. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  1. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. V. Seasonal drought characteristics division and assessment in southern China].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-10-01

    Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was

  2. Seasonal abundance of the dolphinfish, Coryphaena hippurus, in Hawaii and the tropical Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Syd Kraul

    1999-12-01

    Full Text Available This report looks at possible explanations for the seasonal abundance of the dolphinfish, Coryphaena hippurus, in Hawaii. In Hawaii and many parts of the Pacific Ocean, the abundance of C. hippurus (called mahimahi in Hawaii varies seasonally in a pattern that is fairly consistent from year to year. Size frequency analysis shows that this pattern of seasonal landings matches the pattern of cohort abundance in certain years. The strongest cohorts are spawned in July, often stay in our fishing zone for at least 5 months, and may comprise the predominant portion of the catch through October. Even though mahimahi spawn copiously all year in captivity, the data here suggest that wild mahimahi either spawn less frequently, or their larvae survive better at certain times of the year. Thus, seasonal abundance of mahimahi in Hawaii might be a function of cohort survival. The abundance pattern also fits the pattern of change in seasonal surface temperatures, and it is quite possible that mahimahi migrate north and south to stay in the sea surface thermocline associated with the 23°C isotherm. Natural growth rates were derived from our size frequency analyses, and the rates matched growth rates reported in a previous study of otolith ring deposition. A significant increase in longline fishing in 1989 increased total landings but did not reduce the catch quantity or sales price for charter boat mahimahi.

  3. Distributional patterns of fall armyworm parasitoids in a corn field and pasture field in Florida

    Science.gov (United States)

    An assessment of parasitoids and their selective patterns among Spodoptera frugiperda corn and rice host strains was performed from August 2008-August 2010 in a corn crop and a grass pasture in northern Florida under different seasonal conditions (spring and fall). Sentinel larvae from our laborator...

  4. Seasonal development of phytoplankton populations in offshore Lake Michigan in 1975

    International Nuclear Information System (INIS)

    Parker, J.I.; Conway, H.L.; Yaguchi, E.M.

    1975-01-01

    Relationships between phytoplankton bloom sequences and environmental factors that may account for seasonal variations have not been thoroughly evaluated in Lake Michigan. We investigated the seasonal periodicity of phytoplankton in the offshore water from April to December, 1975. The seasonal distributions of phytoplankton biomass, chlorophyll a, and primary productivity per unit of lake surface area were measured at station 5. These measurements demonstrated a bimodal seasonal distribution, with maxima occurring in June and October. Previous investigators have shown that the seasonal periodicity was unimodal, with a summer maximum. Our observations demonstrated year to year variations in this abundance pattern

  5. Influence of the Anomalous Patterns of the Mascarene and Australian Highs on Precipitation during the Prerainy Season in South China

    Directory of Open Access Journals (Sweden)

    Xue Han

    2017-01-01

    Full Text Available The authors investigate the features of precipitation during the prerainy season in South China (PSCPRS and the atmospheric circulation in the Southern Hemisphere (SH, which is expected to influence the PSCPRS significantly. The Morlet wavelet method revealed that the PSCPRS has significant interannual variability, especially in its quasi-biennial oscillation. The PSCPRS exhibits a significant monsoonal precipitation pattern. Using singular value decomposition (SVD and composite analysis, the anomalous characteristics of SH atmospheric circulations and their impacts on the PSCPRS are studied. The results reveal that eastward movements or extensions of the Mascarene high (MH and Australian high (AH, which have quasi-baroclinic geopotential height structures in the lower and middle troposphere, are the most significant factors affecting the PSCPRS. Their impacts on the PSCPRS anomalies are further studied using the index east of the MH (IEMH and index east of the AH (IEAH. The IEMH and IEAH have notable significant positive correlations with the PSCPRS. When either the IEMH or IEAH is stronger (weaker, more (less rainfall occurs during the prerainy season in South China.

  6. Assessment of plant biomass and nitrogen nutrition with plant height in early-to mid-season corn.

    Science.gov (United States)

    Yin, Xinhua; Hayes, Robert M; McClure, M Angela; Savoy, Hubert J

    2012-10-01

    The physiological basis for using non-destructive high-resolution measurements of plant height through plant height sensing to guide variable-rate nitrogen (N) applications on corn (Zea mays L.) during early (six-leaf growth stage, V6) to mid (V12) season is largely unknown. This study was conducted to assess the relationships of plant biomass and leaf N with plant height in early- to mid-season corn under six different N rate treatments. Corn plant biomass was significantly and positively related to plant height under an exponential model when both were measured at V6. This relationship explained 62-78% of the variations in corn biomass production. Leaf N concentration was, in general, significantly and positively related to plant height when both were measured at V6, V8, V10 and V12. This relationship became stronger as the growing season progressed from V6 to V12. The relationship of leaf N with plant height in early- to mid-season corn was affected by initial soil N fertility and abnormal weather conditions. The relationship of leaf N concentration with plant height may provide a physiological basis for using plant height sensing to guide variable-rate N applications on corn. Copyright © 2012 Society of Chemical Industry.

  7. Seasonal changes in the assembly mechanisms structuring tropical fish communities.

    Science.gov (United States)

    Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M

    2017-01-01

    Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.

  8. Aspects of Seasonal and Long-term Trends in Fisheries and ...

    African Journals Online (AJOL)

    ... Schilbe moebiusii and Hydrocynus tanzaniae. A distinct seasonal pattern in fish catches was found, where more fish were landed in the dry months (June, July, August and September) and less during peak of the rainy season (March to May). Reduction of fishing effort, crop farming and inaccessibility of fish landing sites ...

  9. EFFECTS OF SEASON OF SOWING ON WATER USE AND YIELD ...

    African Journals Online (AJOL)

    (Received 9 May, 2000; accepted 5 May, 2002) Abstract Soil water availability is a major constraint to crop production in the post-rainy season period in the humid tropics. The seasonal pattern of water use was, therefore, studied in field-grown tomato (Lycopersicum esculentum) during two consecutive rainy and post-rainy ...

  10. Polycyclic aromatic hydrocarbons (PAH) in superficial water from a tropical estuarine system: Distribution, seasonal variations, sources and ecological risk assessment.

    Science.gov (United States)

    Santos, Ewerton; Souza, Michel R R; Vilela Junior, Antônio R; Soares, Laiane S; Frena, Morgana; Alexandre, Marcelo R

    2018-02-01

    This study aimed to evaluate the PAH distribution, sources, seasonal variations and ecological risk assessment in superficial water from the Japaratuba River, Brazil. PAH concentrations ranged from 4 to 119ngL -1 . It was observed that the PAH total concentrations and profiles showed significant differences when comparing the dry season (summer) with the rainy season (winter). Furthermore, most of the PAH originated from pyrogenic sources in the winter, whereas a mixture of sources was observed in the summer. PAH concentration levels found in this study were considered lower than those obtained in other estuarine systems. Ecological risk assessment was determined for individual PAH, based on the risk quotient (RQ) to evaluate the risk of aquatic biota's exposure to PAH. Results suggested that the Japaratuba River has achieved a moderate degree of ecological risk for high molecular weight, showing the importance of identifying these carcinogenic and mutagenic compounds in aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. How do seasonality and host traits influence the distribution patterns of parasites on juveniles and adults of Columba livia?

    Science.gov (United States)

    Amaral, Hugo Leonardo da Cunha; Bergmann, Fabiane Borba; Dos Santos, Paulo Roberto Silveira; Silveira, Tony; Krüger, Rodrigo Ferreira

    2017-12-01

    Parasites may influence host fitness and consequently exert a selective pressure on distinct phenotypes of the host population. This pressure can result in an evolutionary response, maintaining only individuals with certain traits in the population. The present study was aimed at identifying the morphological characteristics of juveniles and adults of Columba livia that may influence the distribution patterns of lice, Pseudolynchia canariensis and Haemoproteus columbae and how the populations of these parasites vary throughout the seasons of the year. Between July 2012 and July 2014, 377 specimens of C. livia were captured. We observed a significant increase in the mean intensities of infestation by pigeon flies and lice, as well as in species richness of ectoparasites during the warmest seasons, suggesting a reproductive synchrony between ectoparasites and host species. Bill length, body mass, and body length did not affect the infestation levels of ectoparasites on adults and juveniles of C. livia with three distinct plumage colors. In juveniles, plumage color affected only the mean intensity of infestation by lice, with Spread individuals as the most infested. This indicates that melanin in feathers was not an effective barrier against ectoparasites. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Seasonal Variations in Color Preference.

    Science.gov (United States)

    Schloss, Karen B; Nelson, Rolf; Parker, Laura; Heck, Isobel A; Palmer, Stephen E

    2017-08-01

    We investigated how color preferences vary according to season and whether those changes could be explained by the ecological valence theory (EVT). To do so, we assessed the same participants' preferences for the same colors during fall, winter, spring, and summer in the northeastern United States, where there are large seasonal changes in environmental colors. Seasonal differences were most pronounced between fall and the other three seasons. Participants liked fall-associated dark-warm colors-for example, dark-red, dark-orange (brown), dark-yellow (olive), and dark-chartreuse-more during fall than other seasons. The EVT could explain these changes with a modified version of Palmer and Schloss' (2010) weighted affective valence estimate (WAVE) procedure that added an activation term to the WAVE equation. The results indicate that color preferences change according to season, as color-associated objects become more/less activated in the observer. These seasonal changes in color preferences could not be characterized by overall shifts in weights along cone-contrast axes. Copyright © 2016 Cognitive Science Society, Inc.

  13. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration.

    Science.gov (United States)

    Carbone, Mariah S; Still, Christopher J; Ambrose, Anthony R; Dawson, Todd E; Williams, A Park; Boot, Claudia M; Schaeffer, Sean M; Schimel, Joshua P

    2011-09-01

    Moisture inputs drive soil respiration (SR) dynamics in semi-arid and arid ecosystems. However, determining the contributions of root and microbial respiration to SR, and their separate temporal responses to periodic drought and water pulses, remains poorly understood. This study was conducted in a pine forest ecosystem with a Mediterranean-type climate that receives seasonally varying precipitation inputs from both rainfall (in the winter) and fog-drip (primarily in the summer). We used automated SR measurements, radiocarbon SR source partitioning, and a water addition experiment to understand how SR, and its separate root and microbial sources, respond to seasonal and episodic changes in moisture. Seasonal changes in SR were driven by surface soil water content and large changes in root respiration contributions. Superimposed on these seasonal patterns were episodic pulses of precipitation that determined the short-term SR patterns. Warm season precipitation pulses derived from fog-drip, and rainfall following extended dry periods, stimulated the largest SR responses. Microbial respiration dominated these SR responses, increasing within hours, whereas root respiration responded more slowly over days. We conclude that root and microbial respiration sources respond differently in timing and magnitude to both seasonal and episodic moisture inputs. These findings have important implications for the mechanistic representation of SR in models and the response of dry ecosystems to changes in precipitation patterns.

  14. Seasonal variations of stable isotope in precipitation and moisture transport at Yushu,eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Precipitation δ 18O at Yushu, eastern Tibetan Plateau, shows strong fluctuation and lack of clear seasonality. The seasonal pattern of precipitation stable isotope at Yushu is apparently different from either that of the southwest monsoon region to the south or that of the inland region to the north. This different seasonal pattern probably reflects the shift of different moisture sources. In this paper, we present the spatial comparison of the seasonal patterns of precipitation δ 18O, and calculate the moisture transport flux by using the NCAR/NCEP reanalysis data. This allows us to discuss the relation between moisture transport flux and precipitation δ 18O. This study shows that both the southwest monsoon from south and inland air mass transport from north affected the seasonal precipitation δ 18O at Yushu, eastern Tibetan Plateau. Southwest monsoon brings the main part of the moisture, but southwest transport flux is weaker than in the southern part of the Tibetan Plateau. However, contribution of the inland moisture from north or local evaporation moisture is enhanced. The combined effect is the strong fluctuation of summer precipitation δ 18O at Yushu and comparatively poor seasonality.

  15. PM 2.5 and NO 2 assessment in 21 European study centres of ECRHS II: annual means and seasonal differences

    Science.gov (United States)

    Hazenkamp-von Arx, Marianne E.; Götschi, Thomas; Ackermann-Liebrich, Ursula; Bono, Roberto; Burney, Peter; Cyrys, Josef; Jarvis, Deborah; Lillienberg, Linnea; Luczynska, Christina; Maldonado, Jose A.; Jaén, Angeles; de Marco, Roberto; Mi, Yahong; Modig, Lars; Bayer-Oglesby, Lucy; Payo, Felix; Soon, Argo; Sunyer, Jordi; Villani, Simona; Weyler, Joost; Künzli, Nino

    The follow-up of cohorts of adults from more than 20 European centres of the former ECRHS I (1989-1992) investigates long-term effects of exposure to ambient air pollution on respiratory health, in particular asthma and change of pulmonary function. Since PM 2.5 is not routinely monitored in Europe, we measured PM 2.5 concentrations in 21 participating centres to estimate 'background' exposure in these cities. Winter (November-February), summer (May-August) and annual mean (all months) values of PM 2.5 were determined from measuring periods between June 2000 and November 2001. Sampling was conducted for 7 days per month for a year. Annual and winter mean concentrations of PM 2.5 vary substantially being lowest in Iceland and highest in centres in Northern Italy. Annual mean concentrations ranged from 3.7 to 44.9 μg m -3, winter mean concentrations from 4.8 to 69.2 μg m -3, and summer mean concentrations from 3.3 to 23.1 μg m -3. Seasonal variability occurred but did not follow the same pattern across all centres. Therefore, ranking of centres varied from summer to winter. Simultaneously, NO 2 concentrations were measured using passive sampling tubes. Annual mean NO 2 concentrations range from 4.9 to 72.1 μg m -3 with similar seasonal variations across centres and constant ranking of centres between seasons. The correlation between annual NO 2 and PM 2.5 concentrations is fair (Spearman correlation coefficient rs=0.75), but when considered as monthly means the correlation is far less consistent and varies substantially between centres. The range of PM 2.5 mass concentrations obtained in ECRHS II is larger than in other current cohort studies on long-term effects of air pollution. This substantial variation in PM 2.5 exposure will improve statistical power in future multi-level health analyses and to some degree may compensate for the lack of information on within-city variability. Seasonal means may be used to indicate potential differences in the toxicity

  16. Effects of seasonality on drosophilids (Insecta, Diptera) in the northern part of the Atlantic Forest, Brazil.

    Science.gov (United States)

    Coutinho-Silva, R D; Montes, M A; Oliveira, G F; de Carvalho-Neto, F G; Rohde, C; Garcia, A C L

    2017-10-01

    Seasonality is an important aspect associated with population dynamic and structure of tropical insect assemblages. This study evaluated the effects of seasonality on abundance, richness, diversity and composition of an insect group, drosophilids, including species native to the Neotropical region and exotic ones. Three preserved fragments of the northern Atlantic Forest were surveyed, where temperatures are above 20 °C throughout the year and rainfall regimes define two seasons (dry and rainy). As opposed to other studies about arthropods in tropical regions, we observed that abundance of drosophilids was significantly higher in the dry season, possibly due to biological aspects and the colonization strategy adopted by the exotic species in these environments. Contrarily to abundance, we did not observe a seasonal pattern for richness. As for other parts of the Atlantic Forest, the most representative Neotropical species (Drosophila willistoni, D. sturtevanti, D. paulistorum and D. prosaltans) were significantly more abundant in the rainy season. Among the most abundant exotic species, D. malerkotliana, Zaprionus indianus and Scaptodrosophila latifasciaeformis were more importantly represented the dry season, while D. simulans was more abundant in the rainy period. The seasonality patterns exhibited by the most abundant species were compared to findings published in other studies. Our results indicate that exotic species were significantly more abundant in the dry season, while native ones exhibited an opposite pattern.

  17. Prediction uncertainty in seasonal partial duration series

    DEFF Research Database (Denmark)

    Rasmussen, Peter Funder; Rosbjerg, Dan

    1991-01-01

    In order to obtain a good description of the exceedances in a partial duration series it is often necessary to divide the year into a number (2-4) of seasons. Hereby a stationary exceedance distribution can be maintained within each season. This type of seasonal models may, however, not be suitable...... for prediction purposes due to the large number of parameters required. In the particular case with exponentially distributed exceedances and Poissonian occurrence times the precision of the T year event estimator has been thoroughly examined considering both seasonal and nonseasonal models. The two......-seasonal probability density function of the T year event estimator has been deduced and used in the assessment of the precision of approximate moments. The nonseasonal approach covered both a total omission of seasonality by pooling data from different flood seasons and a discarding of nonsignificant season(s) before...

  18. Lithogenic and biogenic particle deposition in an Antarctic coastal environment (Marian Cove, King George Island): Seasonal patterns from a sediment trap study

    Science.gov (United States)

    Khim, B. K.; Shim, J.; Yoon, H. I.; Kang, Y. C.; Jang, Y. H.

    2007-06-01

    Particulate suspended material was recovered over a 23-month period using two sediment traps deployed in shallow water (˜30 m deep) off the King Sejong Station located in Marian Cove of King George Island, West Antarctica. Variability in seasonal flux and geochemical characteristics of the sediment particles highlights seasonal patterns of sedimentation of both lithogenic (terrigenous) and biogenic particles in the coastal glaciomarine environment. All components including total mass flux, lithogenic particle flux and biogenic particle flux show distinct seasonal variation, with high recovery rates during the summer and low rates under winter fast ice. The major contributor to total mass flux is the lithogenic component, comprising from 88% during the summer months (about 21 g m -2 d -1) up to 97% during the winter season (about 2 g m -2 d -1). The lithogenic particle flux depends mainly on the amount of snow-melt (snow accumulation) delivered into the coastal region as well as on the resuspension of sedimentary materials. These fine-grained lithogenic particles are silt-to-clay sized, composed mostly of clay minerals weathered on King George Island. Biogenic particle flux is also seasonal. Winter flux is ˜0.2 g m -2 d -1, whereas the summer contribution increases more than tenfold, up to 2.6 g m -2 d -1. Different biogenic flux between the two summers indicates inter-annual variability to the spring-summer phytoplankton bloom. The maximum of lithogenic particle flux occurs over a short period of time, and follows the peak of biogenic particle flux, which lasts longer. The seasonal warming and sea-ice retreat result in change in seawater nutrient status and subsequent ice-edge phytoplankton production. Meanwhile, the meltwater input to Marian Cove from the coastal drainage in January to February plays a major role in transporting lithogenic particles into the shallow water environment, although the tidal currents may be the main agents of resuspension in this

  19. Assessment of validation of health-economics decision models in intervention studies of seasonal influenza and breast cancer

    NARCIS (Netherlands)

    De Boer, P.T.; Frederix, G.W.; Al, M.J.; Feenstra, T.F.; Vemer, P.

    2015-01-01

    Objectives: We aimed to review recently published health-economic (HE) decision models to assess the reporting of validation efforts. An infectious disease (seasonal influenza, SI) and a chronic disease (breast cancer, BC) were used as examples, giving a preliminary insight in the reporting of

  20. Seasonal Variation of Total Mercury Burden in the American Alligator (Alligator Mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), Florida

    Science.gov (United States)

    Nilsen, Frances M.; Dorsey, Jonathan E.; Long, Stephen E.; Schock, Tracey B.; Bowden, John A.; Lowers, Russell H.; Guillette, Louis J., Jr.

    2016-01-01

    Seasonal variation of mercury (Hg) is not well studied in free-ranging wildlife. Atmospheric deposition patterns of Hg have been studied in detail and have been modeled for both global and specific locations with great accuracy and correlates to environment impact. However, monitoring these trends in wildlife is complicated due to local environmental parameters (e.g., rainfall, humidity, pH, bacterial composition) that can affect the transformation of atmospheric Hg to the biologically available forms. Here, we utilized an abundant and healthy population of American alligators (Alligator mississippiensis) at Merritt Island National Wildlife Refuge (MINWR), FL, and assessed Hg burden in whole blood samples over a span of 7 years (2007 2014; n 174) in an effort to assess seasonal variation of total [Hg]. While the majority of this population is assumed healthy, 18 individuals with low body mass indices (BMI, defined in this study) were captured throughout the 7 year sampling period. These individual alligators exhibited [Hg] that were not consistent with the observed overall seasonal [Hg] variation, and were statistically different from the healthy population of alligators. The alligators with low BMI had elevated concentrations of Hg compared to their age/sex/season matched counterparts with normal BMI. Statistically significant differences were found between the winter and spring seasons for animals with normal BMI. The data in this report supports the conclusion that organismal total [Hg] do fluctuate directly with seasonal deposition rates as well as other seasonal environmental parameters, such as average rainfall and prevailing wind direction. This study highlights the unique environment of MINWR to permit annual assessment of apex predators, such as the American alligator, to determine detailed environmental impact of contaminants of concern.

  1. Westernization of dietary patterns among young Japanese and Polish females -- a comparison study.

    Science.gov (United States)

    Morinaka, Tomoko; Wozniewicz, Malgorzata; Jeszka, Jan; Bajerska, Joanna; Nowaczyk, Paulina; Sone, Yoshiaki

    2013-01-01

    Nowadays, the process of the westernization of eating habits is perceived to be one of the main causes of epidemics of civilization diseases, such as metabolic syndrome. The aim of the study was to assess the westernization of eating habits among 100 Japanese (aged 18-23 years) and 111 Polish female students (aged 19-25 years) of nutrition science related faculties. Food-frequency questionnaires were used to assess a dietary pattern during the four seasons of a one-year investigation. Data obtained in each season was pooled. The frequency of consumption of different foods (servings/week) between the two countries was compared and characterization of the dietary patterns of both studied populations was analyzed by factor analysis. When food consumption between the two countries was compared, apart from total meat and meat products and high-energy drink intake, significant differences were observed in all foods and food groups. Three dietary patterns were identified in both groups. Among Japanese participants, the first pattern was 'traditional Japanese', the second 'sweets and beverages', and the third 'Western', explaining 9.0%, 8.5% and 6.4% of the total variance, respectively. Among Polish participants, the first pattern was 'prudent', the second 'Western', and the third 'sweets and alcoholic beverages', explaining 8.2%, 7.7%, 6.4% of the total variance, respectively. Although the 'Western' dietary pattern was found in both groups, there were some differences in the remaining dietary patterns between the two countries. In the Japanese participants, significant cultural influences on habitual food intake could still be observed, and the extent of diet westernization seems to be smaller compared to the Polish participants.

  2. Seasonal variation of 228Ra/226Ra ratio in seaweed: implications for water circulation patterns in coastal areas of the Noto Peninsula, Japan

    International Nuclear Information System (INIS)

    Inoue, M.; Kofuji, H.; Yamamoto, M.; Komura, K.

    2005-01-01

    To examine water circulation patterns of coastal water, 72 seaweed (Sargasso) samples and 27 coastal water samples were collected from coastal areas of the Noto Peninsula, Japan, during the period from December 1998 to June 2002. The 228 Ra and 226 Ra activities of those samples were measured by low-background γ-ray spectrometry. There was a wide range of activities of 228 Ra (0.5-2 Bq/kg-fresh) and 226 Ra (0.5-1.2 Bq/kg-fresh) in the Sargasso samples. The 228 Ra/ 226 Ra activity ratio of Sargasso samples exhibited seasonal variation with minimum values in June ( 228 Ra/ 226 Ra = ∼1) and maximum values in December (1.5-2.5), which was mainly governed by changes in 228 Ra activity. It is also notable that the seasonal variation of the 228 Ra/ 226 Ra ratio of Sargasso is in approximate agreement with that of the ambient coastal water. Sargasso samples appear to have retained the 228 Ra/ 226 Ra ratio of the ambient coastal waters, and the temporal variations in that ratio provide insight into seasonal changes in water circulation in the Noto Peninsula coastal area

  3. Three years of seasonal dose assessment from outdoors gamma exposure in Sao Paulo city, Brazil

    International Nuclear Information System (INIS)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Betti, Flavio; Pecequilo, Brigitte R.S.

    2011-01-01

    Measurements of external (outdoors) gamma exposure from natural background radiation have been used to estimate the average annual doses in Sao Paulo city. Twelve monitoring stations were placed in different regions of the town including both urban (where building materials are present) and outskirts areas. Seasonally surveys observing the four seasons from 2008 to 2010 have been carried out. The data were drawn from a 3-month sampling using the thermoluminescent dosimetry. The effective doses values are quite similar (slightly higher during the winter), so it can be considered that these results are not under significant influence (or variability) of seasonal environmental conditions like temperature, wind or rain. Dose values over the three years period, from Vila Carrao district, exclusively an urban location with mostly no green areas, present the highest values, while the lower values were always obtained for Tucuruvi district, near the biggest urban forest, Parque Estadual da Cantareira. Over the assessed period, the mean of the average annual effective doses was 1.3 ± 0.1 mSv.y -1 . For the same period, the average annual background from nuclear and radioactive facility at IPEN was 0.75 ± 0.12 mSv.y -1 . (author)

  4. Three years of seasonal dose assessment from outdoors gamma exposure in Sao Paulo city, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Betti, Flavio; Pecequilo, Brigitte R.S., E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Measurements of external (outdoors) gamma exposure from natural background radiation have been used to estimate the average annual doses in Sao Paulo city. Twelve monitoring stations were placed in different regions of the town including both urban (where building materials are present) and outskirts areas. Seasonally surveys observing the four seasons from 2008 to 2010 have been carried out. The data were drawn from a 3-month sampling using the thermoluminescent dosimetry. The effective doses values are quite similar (slightly higher during the winter), so it can be considered that these results are not under significant influence (or variability) of seasonal environmental conditions like temperature, wind or rain. Dose values over the three years period, from Vila Carrao district, exclusively an urban location with mostly no green areas, present the highest values, while the lower values were always obtained for Tucuruvi district, near the biggest urban forest, Parque Estadual da Cantareira. Over the assessed period, the mean of the average annual effective doses was 1.3 {+-} 0.1 mSv.y{sup -1}. For the same period, the average annual background from nuclear and radioactive facility at IPEN was 0.75 {+-} 0.12 mSv.y{sup -1}. (author)

  5. The Incidence and Differential Seasonal Patterns of Plasmodium vivax Primary Infections and Relapses in a Cohort of Children in Papua New Guinea.

    Directory of Open Access Journals (Sweden)

    Amanda Ross

    2016-05-01

    Full Text Available Plasmodium vivax has the ability to relapse from dormant parasites in the liver weeks or months after inoculation, causing further blood-stage infection and potential onward transmission. Estimates of the force of blood-stage infections arising from primary infections and relapses are important for designing intervention strategies. However, in endemic settings their relative contributions are unclear. Infections are frequently asymptomatic, many individuals harbor multiple infections, and while high-resolution genotyping of blood samples enables individual infections to be distinguished, primary infections and relapses cannot be identified. We develop a model and fit it to longitudinal genotyping data from children in Papua New Guinea to estimate the incidence and seasonality of P vivax primary infection and relapse. The children, aged one to three years at enrolment, were followed up over 16 months with routine surveys every two months. Blood samples were taken at the routine visits and at other times if the child was ill. Samples positive by microscopy or a molecular method for species detection were genotyped using high-resolution capillary electrophoresis for P vivax MS16 and msp1F3, and P falciparum msp2. The data were summarized as longitudinal patterns of success or failure to detect a genotype at each routine time-point (eg 001000001. We assume that the seasonality of P vivax primary infection is similar to that of P falciparum since they are transmitted by the same vectors and, because P falciparum does not have the ability to relapse, the seasonality can be estimated. Relapses occurring during the study period can be a consequence of infections occurring prior to the study: we assume that the seasonal pattern of primary infections repeats over time. We incorporate information from parasitological and entomology studies to gain leverage for estimating the parameters, and take imperfect detection into account. We estimate the force of P

  6. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  7. Effects of eutrophication, seasonality and macrofouling on the diversity of bacterial biofilms in equatorial coral reefs.

    Directory of Open Access Journals (Sweden)

    Yvonne Sawall

    Full Text Available Biofilms play an important role as a settlement cue for invertebrate larvae and significantly contribute to the nutrient turnover in aquatic ecosystems. Nevertheless, little is known about how biofilm community structure generally responds to environmental changes. This study aimed to identify patterns of bacterial dynamics in coral reef biofilms in response to associated macrofouling community structure, microhabitat (exposed vs. sheltered, seasonality, and eutrophication. Settlement tiles were deployed at four reefs along a cross-shelf eutrophication gradient and were exchanged every 4 months over 20 months. The fouling community composition on the tiles was recorded and the bacterial community structure was assessed with the community fingerprinting technique Automated Ribosomal Intergenic Spacer Analysis (ARISA. Bacterial operational taxonomic unit (OTU number was higher on exposed tiles, where the fouling community was homogenous and algae-dominated, than in sheltered habitats, which were occupied by a variety of filter feeders. Furthermore, OTU number was also highest in eutrophied near-shore reefs, while seasonal variations in community structure were most pronounced in the oligotrophic mid-shelf reef. In contrast, the macrofouling community structure did not change significantly with seasons. Changes in bacterial community patterns were mostly affected by microhabitat, seasonal and anthropogenically derived changes in nutrient availability, and to a lesser extent by changes in the macrofouling community structure. Path analysis revealed a complex interplay of various environmental and biological factors explaining the spatial and temporal variations in bacterial biofilm communities under natural conditions.

  8. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    Science.gov (United States)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  9. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    Science.gov (United States)

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2017-07-01

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.

  10. Strong seasonality and interannual recurrence in marine myovirus communities.

    Science.gov (United States)

    Pagarete, A; Chow, C-E T; Johannessen, T; Fuhrman, J A; Thingstad, T F; Sandaa, R A

    2013-10-01

    The temporal community dynamics and persistence of different viral types in the marine environment are still mostly obscure. Polymorphism of the major capsid protein gene, g23, was used to investigate the community composition dynamics of T4-like myoviruses in a North Atlantic fjord for a period of 2 years. A total of 160 unique operational taxonomic units (OTUs) were identified by terminal restriction fragment length polymorphism (TRFLP) of the gene g23. Three major community profiles were identified (winter-spring, summer, and autumn), which resulted in a clear seasonal succession pattern. These seasonal transitions were recurrent over the 2 years and significantly correlated with progression of seawater temperature, Synechococcus abundance, and turbidity. The appearance of the autumn viral communities was concomitant with the occurrence of prominent Synechococcus blooms. As a whole, we found a highly dynamic T4-like viral community with strong seasonality and recurrence patterns. These communities were unexpectedly dominated by a group of persistently abundant viruses.

  11. Seasonal patterns in soil N availability in the arctic tundra in response to accelerated snowmelt and warming

    Science.gov (United States)

    Darrouzet-Nardi, A.; Wallenstein, M. D.; Steltzer, H.; Sullivan, P.; Melle, C.; Segal, A.; Weintraub, M. N.

    2010-12-01

    Arctic soils contain large stocks of carbon (C) and may act as a significant CO2 source in response to climate warming. However, nitrogen (N) availability limits both plant growth and decomposition in many Arctic sites, and may thus be a key constraint on climate-carbon feedbacks. While current models of tundra ecosystems and their responses to climate change assume that N limits plant growth and C limits decomposition, there is strong evidence to the contrary showing that N can also limit decomposition. For example, the production of both new microbial biomass and enzymes that degrade organic matter appear to be limited by N during the summer. N availability is strongly seasonal: we have previously observed relatively high availability early in the growing season followed by a pronounced crash in tussock tundra soils. To investigate the drivers of N availability throughout the season, we used a field manipulation of tussock tundra growing season length (~4 days acceleration of snowmelt) and air temperature (open top chambers) and a laboratory soil N addition in both early and late season. Nutrient availability throughout the field season was measured at high temporal resolution (25 measurements from soil thaw through early plant senescence). Results from a laboratory experiment in which N was added to early season and late season soils suggests that soil respiration is in fact N limited at both times of the season, though this limitation is temperature dependent with effects most pronounced at 10°C. High-resolution measurements of nutrients in the soil solution and extractable N throughout the season showed that although a nutrient crash in N can be observed mid-season, N availability can still fluctuate later in the season. Finally, effects of the extended growing season and increased air temperature have so far had few effects on soil nutrient N dynamics throughout the summer growing season, suggesting either an insensitivity of N availability to these

  12. Residential fuelwood assessment, state of Minnesota, 2007-2008 heating season

    Science.gov (United States)

    Mimi Barzen; Ronald Piva; Chun Yi Wy; Rich. Dahlman

    2009-01-01

    During the spring and summer of 2008, the cooperating partners conducted a survey to determine the volume of residential fuelwood burned during the 2007-2008 heating season. Similar surveys were conducted for the 1960, 1969-1970, 1979-1980, 1984-1985, 1988-1989, 1995-1996, and 2002-2003 heating seasons. These surveys are part of a long-term effort to monitor trends in...

  13. Epidemiology and socioeconomic impact of seasonal affective disorder in Austria.

    Science.gov (United States)

    Pjrek, E; Baldinger-Melich, P; Spies, M; Papageorgiou, K; Kasper, S; Winkler, D

    2016-02-01

    Seasonal affective disorder (SAD) is a subtype of recurrent depressive or bipolar disorder that is characterized by regular onset and remission of affective episodes at the same time of the year. The aim of the present study was to provide epidemiological data and data on the socioeconomic impact of SAD in the general population of Austria. We conducted a computer-assisted telephone interview in 910 randomly selected subjects (577 females and 333 males) using the Seasonal Health Questionnaire (SHQ), the Seasonal Pattern Assessment Questionnaire (SPAQ), and the Sheehan Disability Scale (SDS). Telephone numbers were randomly drawn from all Austrian telephone books and transformed using the random last digits method. The last birthday method was employed to choose the target person for the interviews. Out of our subjects, 2.5% fulfilled criteria for the seasonal pattern specifier according to DSM-5 and 2.4% (95% CI=1.4-3.5%) were diagnosed with SAD. When applying the ICD-10 criteria 1.9% (95% CI=0.9-2.8%) fulfilled SAD diagnostic criteria. The prevalence of fall-winter depression according to the Kasper-Rosenthal criteria was determined to be 3.5%. The criteria was fulfilled by 15.1% for subsyndromal SAD (s-SAD). We did not find any statistically significant gender differences in prevalence rates. When using the DSM-5 as a gold standard for the diagnosis of SAD, diagnosis derived from the SPAQ yielded a sensitivity of 31.8% and a specificity of 97.2%. Subjects with SAD had significantly higher scores on the SDS and higher rates of sick leave and days with reduced productivity than healthy subjects. Prevalence estimates for SAD with the SHQ are lower than with the SPAQ. Our data are indicative of the substantial burden of disease and the socioeconomic impact of SAD. This epidemiological data shows a lack of gender differences in SAD prevalence. The higher rates of females in clinical SAD samples might, at least in part, be explained by lower help seeking behaviour in

  14. Quantifying responses of dung beetles to fire disturbance in tropical forests: the importance of trapping method and seasonality.

    Science.gov (United States)

    de Andrade, Rafael Barreto; Barlow, Jos; Louzada, Julio; Vaz-de-Mello, Fernando Zagury; Souza, Mateus; Silveira, Juliana M; Cochrane, Mark A

    2011-01-01

    Understanding how biodiversity responds to environmental changes is essential to provide the evidence-base that underpins conservation initiatives. The present study provides a standardized comparison between unbaited flight intercept traps (FIT) and baited pitfall traps (BPT) for sampling dung beetles. We examine the effectiveness of the two to assess fire disturbance effects and how trap performance is affected by seasonality. The study was carried out in a transitional forest between Cerrado (Brazilian Savanna) and Amazon Forest. Dung beetles were collected during one wet and one dry sampling season. The two methods sampled different portions of the local beetle assemblage. Both FIT and BPT were sensitive to fire disturbance during the wet season, but only BPT detected community differences during the dry season. Both traps showed similar correlation with environmental factors. Our results indicate that seasonality had a stronger effect than trap type, with BPT more effective and robust under low population numbers, and FIT more sensitive to fine scale heterogeneity patterns. This study shows the strengths and weaknesses of two commonly used methodologies for sampling dung beetles in tropical forests, as well as highlighting the importance of seasonality in shaping the results obtained by both sampling strategies.

  15. A Comparison of Seasonal Patterns Observed in ERS 1 / 2 Differential InSAR, Groundwater Level Data, and Groundwater Production Data in Reno, Nevada, USA.

    Science.gov (United States)

    Oppliger, G. L.; Goudy, C.; Widmer, M.

    2005-12-01

    We report on a comparison of repeating seasonal patterns observed in ERS 1 / 2 differential InSAR, (D-InSAR) groundwater level (GWL) data, and water production volume data in Reno, Nevada, USA. Over the 1992-2002 study period we found municipal groundwater utilization in the Reno study area was associated with centimeter and sub-centimeter surface elevation changes which are distributed over aquifer related zones several kilometers in width. In the central Reno area observations define two active anomaly areas which show cyclical surface deflation and inflation with elevation changes of 10 to 30 millimeters over one to nine years. Seasonal groundwater level change associated with these D-InSAR features ranged between 0.3 and 3 meters. Some D-InSAR pattern perimeters are localized by geologic structure while others are more mobile. Most surface deflation appears to be periodically restored by natural and managed aquifer recharge. The area's of active surface inflation-deflation nominally correspond with the area's most significantly utilized groundwater aquifers. To evaluate evidence for the direct relation between D-InSAR and groundwater production in the study area, comparisons between 1992-2002 groundwater levels, production rates and D-InSAR surface inflation-deflation features were developed. Groundwater level change maps showed good direct correlations with D-InSAR observations only in areas where the GWL changes were relatively large (~10 meters), spatially uniform and sustained over several years. Several factors probably contribute to the weak correlation of many GWL's and D-InSAR features including: incomplete GWL coverages, GWL monitoring data representing different aquifer horizons, proximity to production wells, delayed development of aquifer volume change when water levels are altered, and lateral change in aquifer composition. Consistency of the D-InSAR features suggests atmospheric artifacts were not the source of the discrepancies. Some of the

  16. Geospatial approach for assessment of biophysical vulnerability to agricultural drought and its intra-seasonal variations.

    Science.gov (United States)

    Sehgal, Vinay Kumar; Dhakar, Rajkumar

    2016-03-01

    The study presents a methodology to assess and map agricultural drought vulnerability during main kharif crop season at local scale and compare its intra-seasonal variations. A conceptual model of vulnerability based on variables of exposure, sensitivity, and adaptive capacity was adopted, and spatial datasets of key biophysical factors contributing to vulnerability were generated using remote sensing and GIS for Rajasthan State of India. Hazard exposure was based on frequency and intensity of gridded standardized precipitation index (SPI). Agricultural sensitivity was based on soil water holding capacity as well as on frequency and intensity of normalized difference vegetation index (NDVI)-derived trend adjusted vegetation condition index (VCITadj). Percent irrigated area was used as a measure of adaptive capacity. Agricultural drought vulnerability was derived separately for early, mid, late, and whole kharif seasons by composting rating of factors using linear weighting scheme and pairwise comparison of multi-criteria evaluation. The regions showing very low to extreme rating of hazard exposure, drought sensitivity, and agricultural vulnerability were identified at all four time scales. The results indicate that high to extreme vulnerability occurs in more than 50% of net sown area in the state and such areas mostly occur in western, central, and southern parts. The higher vulnerability is on account of non-irrigated croplands, moderate to low water holding capacity of sandy soils, resulting in higher sensitivity, and located in regions with high probability of rainfall deficiency. The mid and late season vulnerability has been found to be much higher than that during early and whole season. Significant correlation of vulnerability rating with food grain productivity, drought recurrence period, crop area damaged in year 2009 and socioeconomic indicator of human development index (HDI) proves the general soundness of methodology. Replication of this methodology

  17. Seasonality of Congenital Anomalies in Europe

    NARCIS (Netherlands)

    Luteijn, Johannes Michiel; Dolk, Helen; Addor, Marie-Claude; Arriola, Larraitz; Barisic, Ingeborg; Bianchi, Fabrizio; Calzolari, Elisa; Draper, Elizabeth; Garne, Ester; Gatt, Miriam; Haeusler, Martin; Khoshnood, Babak; McDonnell, Bob; Nelen, Vera; O'Mahony, Mary; Mullaney, Carmel; Queisser-Luft, Annette; Rankin, Judith; Tucker, David; Verellen-Dumoulin, Christine; de Walle, Hermien; Yevtushok, Lyubov

    BackgroundThis study describes seasonality of congenital anomalies in Europe to provide a baseline against which to assess the impact of specific time varying exposures such as the H1N1 pandemic influenza, and to provide a comprehensive and recent picture of seasonality and its possible relation to

  18. Seasonality of congenital anomalies in Europe

    DEFF Research Database (Denmark)

    Luteijn, Johannes Michiel; Dolk, Helen; Addor, Marie-Claude

    2014-01-01

    BACKGROUND: This study describes seasonality of congenital anomalies in Europe to provide a baseline against which to assess the impact of specific time varying exposures such as the H1N1 pandemic influenza, and to provide a comprehensive and recent picture of seasonality and its possible relatio...

  19. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    Science.gov (United States)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  20. Harvest Trails in Australia: Patterns of Seasonal Migration in the Fruit and Vegetable Industry

    Science.gov (United States)

    Hanson, Jayde; Bell, Martin

    2007-01-01

    Against a background of declining employment in agriculture, a mobile workforce plays a crucial role in meeting seasonal labour demand in Australia. The dynamics of this labour force have received surprisingly little attention. We situate seasonal migration within the rising diversity of present-day mobility, and capture images of its early…

  1. The duration of light treatment and therapy outcome in seasonal affective disorder

    NARCIS (Netherlands)

    Knapen, S. E.; van de Werken, M.; Gordijn, Marijke; Meesters, Y.

    Background: Seasonal affective disorder (SAD) is characterized by recurrent episodes of major depression with a seasonal pattern, treated with light therapy (LT). Duration of light therapy differs. This study investigates retrospectively whether a single week of LT is as effective as two weeks,

  2. Vertical patterns of ichthyoplankton at the interface between a temperate estuary and adjacent coastal waters: Seasonal relation to diel and tidal cycles

    Science.gov (United States)

    Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.

    2012-07-01

    Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.

  3. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  4. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China.

    Science.gov (United States)

    Li, Nan; Zhang, Xinbo; Wu, Wei; Zhao, Xinhua

    2014-09-01

    The occurrence and seasonal variability of five groups (tetracycline, quinolone, chloramphenicol, macrolide and sulfonamide) of antibiotics were investigated in the surface water of four reservoirs. The dissolved concentrations of 29 antibiotics were in the ngL(-1) level. Trace levels of all target antibiotics were analyzed using solid-phase extraction followed by liquid chromatography electrospray tandem mass spectrometry. All of the antibiotics were detected at all sampling sites, indicating widespread occurrence of antibiotics in the study area. The detection of florfenicol, josamycin, kitasamycin, spiramycin and sulfameter is the first report of these compounds in reservoir samples. The results showed an association between the presence of some antibiotics at Panjiakou reservoir and cage culture of fish. Twenty-three types of antibiotics showed significant seasonal variations (prisk assessment showed that all antibiotics detected could cause very low risk to algae, daphnid and fish. Further health risk need to be investigated because these reservoirs are drinking water sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Seasonal and year-round use of the Kushiro Wetland, Hokkaido, Japan by sika deer (Cervus nippon yesoensis

    Directory of Open Access Journals (Sweden)

    Hino Takafumi

    2017-10-01

    Full Text Available The sika deer (Cervus nippon yesoensis population in the Ramsar-listed Kushiro Wetland has increased in recent years, and the Ministry of the Environment of Japan has decided to take measures to reduce the impact of deer on the ecosystem. However, seasonal movement patterns of the deer (i.e., when and where the deer inhabit the wetland remain unclear. We examined the seasonal movement patterns of sika deer in the Kushiro Wetland from 2013 to 2015 by analyzing GPS location data for 28 hinds captured at three sites in the wetland. Seasonal movement patterns were quantitatively classified as seasonal migration, mixed, dispersal, nomadic, resident, or atypical, and the degree of wetland utilization for each individual was estimated. The area of overlap for each individual among intra-capture sites and inter-capture sites was calculated for the entire year and for each season. Our results showed that the movement patterns of these deer were classified not only as resident but also as seasonal migration, dispersal, and atypical. Approximately one-third of the individuals moved into and out of the wetland during the year as either seasonal migrants or individuals with atypical movement. Some of the individuals migrated to farmland areas outside the wetland (the farthest being 69.9 km away. Half of the individuals inhabited the wetland all or most of the year, i.e., 81–100% of their annual home range was within the wetland area. Even among individuals captured at the same site, different seasonal movement patterns were identified. The overlap areas of the home ranges of individuals from the same capture sites were larger than those for individuals from different capture sites (e.g., mean of annual home range overlap with intra-capture sites: 47.7% vs. inter-sites: 1.3%. To achieve more effective ecosystem management including deer management in the wetland, management plans should cover inside and outside of the wetland and separate the population

  6. The seasonal predictability of blocking frequency in two seasonal prediction systems (CMCC, Met-Office) and the associated representation of low-frequency variability.

    Science.gov (United States)

    Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea

    2014-05-01

    Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at

  7. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    Science.gov (United States)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  8. Assessing diel variation of CH4 flux from rice paddies through temperature patterns

    Science.gov (United States)

    Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole

    2017-10-01

    The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.

  9. Regulation of seasonal patterns in seed dormancy

    NARCIS (Netherlands)

    Derkx, M.P.M.

    1993-01-01

    Buried seeds of many wild species pass annually through a pattern of induction and release of dormancy. These reversible changes in dormancy may be repeated for numbers of years when seeds are deprived from light and other germination-stimulating factors, and are a highly useful adaptation

  10. Dry season distribution of hydroids in a small tropical estuary, Pernambuco, Brazil

    NARCIS (Netherlands)

    Calder, D.R.; Maÿal, E.M.

    1998-01-01

    Hydroid distribution patterns along a horizontal ecocline in the Rio Formoso/Rio Ariquindá/Rio Porto Alegre system, a small and seasonally poikilohaline estuary on the tropical northeast coast of Brazil, were investigated. Collecting was undertaken during the dry season, in November 1993, by diving

  11. Seasonality of mood and behavior in the Old Order Amish.

    Science.gov (United States)

    Raheja, Uttam K; Stephens, Sarah H; Mitchell, Braxton D; Rohan, Kelly J; Vaswani, Dipika; Balis, Theodora G; Nijjar, Gagan V; Sleemi, Aamar; Pollin, Toni I; Ryan, Kathleen; Reeves, Gloria M; Weitzel, Nancy; Morrissey, Mary; Yousufi, Hassaan; Langenberg, Patricia; Shuldiner, Alan R; Postolache, Teodor T

    2013-05-01

    We examined seasonality and winter seasonal affective disorder (SAD) in the Old Order Amish of Lancaster County, Pennsylvania, a unique population that prohibits use of network electric light in their homes. We estimated SAD using the seasonal pattern assessment questionnaire (SPAQ) in 1306 Amish adults and compared the frequencies of SAD and total SAD (i.e., presence of either SAD or subsyndromal-SAD) between men and women, young and old, and awareness of (ever vs. never heard about) SAD. Heritability of global seasonality score (GSS) was estimated using the maximum likelihood method, including a household effect to capture shared environmental effects. The mean (±SD) GSS was 4.36 (±3.38). Prevalence was 0.84% (95% CI: 0.36-1.58) for SAD and 2.59% (95% CI: 1.69-3.73) for total SAD. Heritability of GSS was 0.14±0.06 (SE) (p=0.002) after adjusting for age, gender, and household effects. Limitations include likely overestimation of the rates of SAD by SPAQ, possible selection bias and recall bias, and limited generalizability of the study. In the Amish, GSS and SAD prevalence were lower than observed in earlier SPAQ-based studies in other predominantly Caucasian populations. Low heritability of SAD suggests dominant environmental effects. The effects of awareness, age and gender on SAD risk were similar as in previous studies. Identifying factors of resilience to SAD in the face of seasonal changes in the Amish could suggest novel preventative and therapeutic approaches to reduce the impact of SAD in the general population. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Amygdala response to emotional faces in seasonal affective disorder

    DEFF Research Database (Denmark)

    Borgsted, Camilla; Ozenne, Brice; Mc Mahon, Brenda

    2018-01-01

    BACKGROUND: Seasonal affective disorder (SAD) is characterized by seasonally recurring depression. Heightened amygdala activation to aversive stimuli is associated with major depressive disorder but its relation to SAD is unclear. We evaluated seasonal variation in amygdala activation in SAD......, we correlated change in symptom severity, assessed with The Hamilton Rating Scale for Depression - Seasonal Affective Disorder version (SIGH-SAD), with change in amygdala activation. RESULTS: We found no season-by-group, season or group effect on our aversive contrast. Independent of season, SAD...... of the presence of depressive symptoms....

  13. Internal Revenue Service: Assessment of Budget Request for Fiscal Year 2003 and Interim Results of 2002 Tax Filing Season

    National Research Council Canada - National Science Library

    White, James

    2002-01-01

    ...) and the 2002 tax filing season. As you requested, our statement assesses the support for various aspects of IRS s budget request, including the linkage between resources requested and expected results, and IRS's performance...

  14. Cold-Season Tornadoes: Climatological, Meteorological, and Social Perspectives

    Science.gov (United States)

    Childs, Samuel J.

    Tornadoes that occur during the cold season, defined here as November-February (NDJF), pose many unique societal risks. For example, people can be caught off-guard because in general one does not expect severe weather and tornadoes during winter months. The public can also be unsuspecting of significant weather due to the bustle of major holidays like Thanksgiving, Christmas, and New Year's, when most people are concerned with family activities and not thinking about the weather. Cold-season tornadoes also have a propensity to be nocturnal and occur most frequently in the South and Southeastern U.S., where variable terrain, inadequate resources, and a relatively high mobile home density add additional social vulnerabilities. Over the period 1953-2015 within a study domain of (25-42.5°N, 75-100°W), some 937 people lost their lives as a result of NDJF tornadoes. Despite this enhanced societal risk of cold-season tornadoes in the South, very little attention has been given to their meteorological characteristics and climate patterns, and public awareness of their potential impacts is lacking. This thesis aims to greatly advance the current state of knowledge of NDJF tornadoes by providing an in-depth investigation from three different science perspectives. First, a climatology of all (E)F1-(E)F5 NDJF tornadoes is developed, spanning the period 1953-2015 within a domain of (25-42.5°N, 75-100°W), in order to assess frequency and spatial changes over time. A large increasing trend in cold-season tornado occurrence is found across much of the Southeastern U.S., with the greatest uptick in Tennessee, while a decreasing trend is found across eastern Oklahoma. Spectral analysis reveals a cyclic pattern of enhanced NDJF counts every 3-7 years, coincident with the known period for ENSO. Indeed, La Nina episodes are found to be correlated with NDJF tornado counts, although a stronger teleconnection correlation exists with the Arctic Oscillation (AO), which explains 25% of

  15. Daily and seasonal rhythms in the respiratory sensitivity of red-eared sliders (Trachemys scripta elegans).

    Science.gov (United States)

    Reyes, Catalina; Milsom, William K

    2009-10-01

    The purpose of the present study was to determine whether the daily and seasonal changes in ventilation and breathing pattern previously documented in red-eared sliders resulted solely from daily and seasonal oscillations in metabolism or also from changes in chemoreflex sensitivity. Turtles were exposed to natural environmental conditions over a one year period. In each season, oxygen consumption, ventilation and breathing pattern were measured continuously for 24 h while turtles were breathing air and for 24 h while they were breathing a hypoxic-hypercapnic gas mixture (H-H). We found that oxygen consumption was reduced equally during the day and night under H-H in all seasons except spring. Ventilation was stimulated by H-H but the magnitude of the response was always less at night. On average, it was also less in the winter and greater in the reproductive season. The data indicate that the day-night differences in ventilation and breathing pattern seen previously resulted from daily changes in chemoreflex sensitivity whereas the seasonal changes were strictly due to changes in metabolism. Regardless of mechanism, the changes resulted in longer apneas at night and in the winter at any given level of total ventilation, facilitating longer submergence at times of the day and year when turtles are most vulnerable.

  16. Links between root carbohydrates and seasonal pattern of soil microbial activity of diverse european populations of Pinus sylvestris grown in a provenance plantation

    Directory of Open Access Journals (Sweden)

    Barbara Kaliszewska-Rokicka

    2011-01-01

    Full Text Available Activity of soil dehydrogenase (DHA was measured in the mineral soil in a forest stand of 15 to 16-year-old Scots pine (Pinus sylvestris L. from geographically diverse populations, as an indicator of biological activity of soil microorganisms, in a provenance experiment in Poland. The pine populations originated from six European countries (Sweden, Russia, Latvia, Poland, Germany, France and differed widely in aboveground biomass and productivity. Soil DHA during two growing seasons showed pronounced seasonal variability, which was significantly related to the fine root concentration of nonstructural carbohydrates. Higher DHA was found in soil under canopies of the central and southern European populations than in those from more northern parts of the Scots pine range. Significant positive correlation between soil DHA and aboveground tree biomass suggest that these patterns most likely resulted from differences in carbon dynamics and productivity among populations.

  17. Ammonia-Oxidizing Archaea Are More Resistant Than Denitrifiers to Seasonal Precipitation Changes in an Acidic Subtropical Forest Soil

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-07-01

    Full Text Available Seasonal precipitation changes are increasingly severe in subtropical areas. However, the responses of soil nitrogen (N cycle and its associated functional microorganisms to such precipitation changes remain unclear. In this study, two projected precipitation patterns were manipulated: intensifying the dry-season drought (DD and extending the dry-season duration (ED but increasing the wet-season storms following the DD and ED treatment period. The effects of these two contrasting precipitation patterns on soil net N transformation rates and functional gene abundances were quantitatively assessed through a resistance index. Results showed that the resistance index of functional microbial abundance (-0.03 ± 0.08 was much lower than that of the net N transformation rate (0.55 ± 0.02 throughout the experiment, indicating that microbial abundance was more responsive to precipitation changes compared with the N transformation rate. Spring drought under the ED treatment significantly increased the abundances of both nitrifying (amoA and denitrifying genes (nirK, nirS, and nosZ, while changes in these gene abundances overlapped largely with control treatment during droughts in the dry season. Interestingly, the resistance index of the ammonia-oxidizing archaea (AOA amoA abundance was significantly higher than that of the denitrifying gene abundances, suggesting that AOA were more resistant to the precipitation changes. This was attributed to the stronger environmental adaptability and higher resource utilization efficiency of the AOA community, as indicated by the lack of correlations between AOA gene abundance and environmental factors [i.e., soil water content, ammonium (NH4+ and dissolved organic carbon concentrations] during the experiment.

  18. Pattern of exposure to information and its impact on seasonal influenza vaccination uptake in nurses.

    Science.gov (United States)

    Cheung, E K H; Lee, S; Lee, S S

    2017-12-01

    Uptake of annual influenza vaccination of healthcare workers (HCWs) varies, and remains at a suboptimal level in many countries. As HCWs are often exposed to a variety of information about vaccination, the pattern of exposure may impact their decision; this deserves further investigation. Practising nurses in Hong Kong were invited to participate in an anonymous online survey in February 2016, after the winter seasonal peak. The questionnaire covered demographics, work nature and experiences, vaccination uptake history and reasons for vaccination decisions. Two behavioural categories for access to information were defined - passive exposure to information and active information-seeking - differentiated by the source, type and nature of information accessed. Chi-squared test, Mann-Whitney U-test and logistic regression were performed to compare vaccinated and unvaccinated nurses. In total, 1177 valid returns were received from nurses. The median age of respondents was 32 years and 86% were female. The overall vaccination rate was 33%. Passive exposure to information from the workplace, professional body and social network was not predictive of vaccination decision, but passive exposure to information from mass media was predictive [odds ratio (OR) 1.78]. Active information-seeking, such as consulting a senior (OR 2.46), organizing promotional activities (OR 2.85) and undertaking an information search (OR 2.43), was significantly associated with increased vaccination uptake. A cumulative effect could be demonstrated for active information-seeking (OR 1.86), but not for passive exposure to information. The current strategy of promotions and campaigns for seasonal influenza vaccination in HCWs may not be effective in increasing vaccination coverage. Measures targeting information-seeking behaviours may serve as an alternative approach. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Quantitative assessment of breast density from digitized mammograms into Tabar's patterns

    International Nuclear Information System (INIS)

    Jamal, N; Ng, K-H; Looi, L-M; McLean, D; Zulfiqar, A; Tan, S-P; Liew, W-F; Shantini, A; Ranganathan, S

    2006-01-01

    We describe a semi-automated technique for the quantitative assessment of breast density from digitized mammograms in comparison with patterns suggested by Tabar. It was developed using the MATLAB-based graphical user interface applications. It is based on an interactive thresholding method, after a short automated method that shows the fibroglandular tissue area, breast area and breast density each time new thresholds are placed on the image. The breast density is taken as a percentage of the fibroglandular tissue to the breast tissue areas. It was tested in four different ways, namely by examining: (i) correlation of the quantitative assessment results with subjective classification, (ii) classification performance using the quantitative assessment technique, (iii) interobserver agreement and (iv) intraobserver agreement. The results of the quantitative assessment correlated well (r 2 = 0.92) with the subjective Tabar patterns classified by the radiologist (correctly classified 83% of digitized mammograms). The average kappa coefficient for the agreement between the readers was 0.63. This indicated moderate agreement between the three observers in classifying breast density using the quantitative assessment technique. The kappa coefficient of 0.75 for intraobserver agreement reflected good agreement between two sets of readings. The technique may be useful as a supplement to the radiologist's assessment in classifying mammograms into Tabar's pattern associated with breast cancer risk

  20. Long-term monitoring of molecular markers can distinguish different seasonal patterns of fecal indicating bacteria sources.

    Science.gov (United States)

    Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A

    2015-03-15

    Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Determination of seasonal, diurnal, and height resolved average number concentration in a pollution impacted rural continental location

    Science.gov (United States)

    Bullard, Robert L.; Stanier, Charles O.; Ogren, John A.; Sheridan, Patrick J.

    2013-05-01

    The impact of aerosols on Earth's radiation balance and the associated climate forcing effects of aerosols represent significant uncertainties in assessment reports. The main source of ultrafine aerosols in the atmosphere is the nucleation and subsequent growth of gas phase aerosol precursors into liquid or solid phase particles. Long term records of aerosol number, nucleation event frequency, and vertical profiles of number concentration are rare. The data record from multiagency monitoring assets at Bondville, IL can contribute important information on long term and vertically resolved patterns. Although particle number size distribution data are only occasionally available at Bondville, highly time-resolved particle number concentration data have been measured for nearly twenty years by the NOAA ESRL Global Monitoring Division. Furthermore, vertically-resolved aerosol counts and other aerosol physical parameters are available from more than 300 flights of the NOAA Airborne Aerosol Observatory (AAO). These data sources are used to better understand the seasonal, diurnal, and vertical variation and trends in atmospheric aerosols. The highest peaks in condensation nuclei greater than 14 nm occur during the spring months (May, April) with slightly lower peaks during the fall months (September, October). The diurnal pattern of aerosol number has a midday peak and the timing of the peak has seasonal patterns (earlier during warm months and later during colder months). The seasonal and diurnal patterns of high particle number peaks correspond to seasons and times of day associated with low aerosol mass and surface area. Average vertical profiles show a nearly monotonic decrease with altitude in all months, and with peak magnitudes occurring in the spring and fall. Individual flight tracks show evidence of plumes (i.e., enhanced aerosol number is limited to a small altitude range, is not homogeneous horizontally, or both) as well as periods with enhanced particle number

  2. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton

    KAUST Repository

    Alonso-Sáez, Laura

    2015-04-08

    Summary: Rare microbial taxa are increasingly recognized to play key ecological roles, but knowledge of their spatio-temporal dynamics is lacking. In a time-series study in coastal waters, we detected 83 bacterial lineages with significant seasonality, including environmentally relevant taxa where little ecological information was available. For example, Verrucomicrobia had recurrent maxima in summer, while the Flavobacteria NS4, NS5 and NS2b clades had contrasting seasonal niches. Among the seasonal taxa, only 4 were abundant and persistent, 20 cycled between rare and abundant and, remarkably, most of them (59) were always rare (contributing <1% of total reads). We thus demonstrate that seasonal patterns in marine bacterioplankton are largely driven by lineages that never sustain abundant populations. A fewer number of rare taxa (20) also produced episodic \\'blooms\\', and these events were highly synchronized, mostly occurring on a single month. The recurrent seasonal growth and loss of rare bacteria opens new perspectives on the temporal dynamics of the rare biosphere, hitherto mainly characterized by dormancy and episodes of \\'boom and bust\\', as envisioned by the seed-bank hypothesis. The predictable patterns of seasonal reoccurrence are relevant for understanding the ecology of rare bacteria, which may include key players for the functioning of marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Recent changes in seasonal variations of climate within the range of northern caribou populations

    Directory of Open Access Journals (Sweden)

    Paul H. Whitfield

    2005-05-01

    Full Text Available The Arctic is one region where it is expected that the impacts of a globally changing climate will be readily observed. We present results that indicate that climate derivatives of potential significance to caribou changed during the past 50 years. Many temperature derivatives reflect the increasing overall temperature in the Arctic such as decreases in the number of days with low temperatures, increases in the number of days with thaw, and days with extremely warm temperatures. Other derivatives reflect changes in the precipitation regime such as days with heavy precipitation and number of days when rain fell on snow. Our results indicate that specific caribou herds from across the Arctic were subjected to different variations of these derivatives in different seasons in the recent past. Examination of temperature and precipitation at finer time-steps than annual or monthly means, shows that climatic variations in the region are neither consistent through the seasons nor across space. Decadal changes in seasonal patterns of temperature and precipitation are shown for selected herds. A process for assessing caribou-focused climate derivatives is proposed.

  4. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  5. A prospective epidemiological study of injury incidence and injury patterns in a Hong Kong male professional football league during the competitive season

    Directory of Open Access Journals (Sweden)

    Justin Wai-Yuk Lee

    2014-10-01

    Full Text Available The aim of this study was to investigate the match and training injury incidence, injury patterns and severity, and their monthly variation in a Hong Kong male professional football league. The study design was a prospective cohort study. Seven teams in the Hong Kong Football Association first division league and 152 players from 10 professional teams participated in this study. On a weekly basis throughout the 9-month season, time-loss injuries and individual exposure were collected from injury recorders team visits. Operational injury definitions and procedures followed the recommendations of a football consensus. The overall injury incidence was 7.4 injuries/1000 player hours and 296 injuries were recorded. The relative risk of match injury was 17 times greater than the risk of training injury [relative ratio (RR, 17.3; 95% confidence injury (CI, 11.6–25.7; p < 0.001]. Ankle sprain was the most common injury type (16.2% of all injuries and 52% of these injuries were recurrent. Thigh strain was the second most common injury type with 82% of the injuries involving the hamstring muscle and 80% of hamstring strains were noncontact injuries. During the competitive season, the relative risk of injury was highest in October (RR, 6.8; 95% CI, 6.7–6.9; p < 0.001 and February (RR, 4.7; 95% CI, 4.3–5.2; p < 0.001. This highlighted that Hong Kong professional football has a high match injury incidence. The relative risk of injury was highest at the beginning of the competitive season. A prospective multicentre epidemiological study is warranted to examine regional differences in injury risks. Coaches, players, health professionals, and researchers should join their efforts to investigate the effect on injury incidence and injury pattern associated with the duration and content of the preseason period, and the number of friendly matches held during preseason.

  6. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  7. Seasonal dynamics of snail populations in coastal Kenya: Model calibration and snail control

    Science.gov (United States)

    Gurarie, D.; King, C. H.; Yoon, N.; Wang, X.; Alsallaq, R.

    2017-10-01

    A proper snail population model is important for accurately predicting Schistosoma transmission. Field data shows that the overall snail population and that of shedding snails have a strong pattern of seasonal variation. Because human hosts are infected by the cercariae released from shedding snails, the abundance of the snail population sets ultimate limits on human infection. For developing a predictive dynamic model of schistosome infection and control strategies we need realistic snail population dynamics. Here we propose two such models based on underlying environmental factors and snail population biology. The models consist of two-stage (young-adult) populations with resource-dependent reproduction, survival, maturation. The key input in the system is seasonal rainfall which creates snail habitats and resources (small vegetation). The models were tested, calibrated and validated using dataset collected in Msambweni (coastal Kenya). Seasonal rainfall in Msambweni is highly variable with intermittent wet - dry seasons. Typical snail patterns follow precipitation peaks with 2-4-month time-lag. Our models are able to reproduce such seasonal variability over extended period of time (3-year study). We applied them to explore the optimal seasonal timing for implementing snail control.

  8. Development of bilingual tools to assess functional health patterns.

    Science.gov (United States)

    Krozy, R E; McCarthy, N C

    1999-01-01

    The theory and process of developing bilingual assessment tools based on Gordon's 11 functional health patterns. To facilitate assessing the individual, family, and community in a student clinical practicum in a Spanish-speaking country. Multiple family and community health promotion theories; translation theories, Gordon's Manual of Nursing Diagnosis (1982); translation/back-translation involving Ecuadorian faculty and students; student community assessments; faculty and staff workshops in Ecuador. Bilingual, culturally sensitive health assessment tools facilitate history taking, establish nursing diagnoses and interventions, and promote mutual learning. These outcomes demonstrate potential application to other systems in the international nursing community.

  9. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers

    Science.gov (United States)

    Poveda, Germán.; Jaramillo, Liliana; Vallejo, Luisa F.

    2014-01-01

    We study the seasonal dynamics of the eastern Pacific (CHOCO) and Caribbean low-level jets (LLJ), and aerial rivers (AR) acting on tropical and subtropical South America. Using the ERA-Interim reanalysis (1979-2012), we show that the convergence of both LLJs over the eastern Pacific-western Colombia contributes to the explanation of the region's world-record rainfall. Diverse variables involved in the transport and storage of moisture permit the identification of an AR over northern South America involving a midtropospheric easterly jet that connects the Atlantic and Pacific Oceans across the Andes, with stronger activity in April to August. Other major seasonal AR pathways constitute part of a large gyre originating over the tropical North Atlantic, veering to the southeast over the eastern Andes and reaching regions of northern Argentina and southeastern Brazil. We illustrate the distribution of average seasonal precipitation along the LLJs and AR pathways with data from the Tropical Rainfall Measuring Mission (1998-2011), combined with considerations of CAPE, topography, and land cover. In addition, the theory of the biotic pump of atmospheric moisture (BiPAM) is tested at seasonal time scales, and found to hold in 8 out of 12 ARs, and 22 out of 32 forest-covered tracks (64% in distance) along the ARs. Deviations from BiPAM's predictions of rainfall distribution are explained by the effects of topography, orography, and land cover types different from forests. Our results lend a strong observational support to the BiPAM theory at seasonal time scales over South American forested flat lands.

  10. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  11. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    Science.gov (United States)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  12. Application of large underground seasonal thermal energy storage in district heating system : a model-based energy performance assessment of a pilot system in Chifeng, China

    NARCIS (Netherlands)

    Xu, L.; Torrens Galdiz, J.I.; Guo, F.; Yang, X.; Hensen, J.L.M.

    Seasonal thermal energy storage (STES) technology is a proven solution to resolve the seasonal discrepancy between heating energy generation from renewables and building heating demands. This research focuses on the performance assessment of district heating (DH) systems powered by low-grade energy

  13. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    Science.gov (United States)

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  14. Timing of floods in southeastern China: Seasonal properties and potential causes

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  15. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  16. Seasonal variation in the behaviour of a short-lived rodent.

    Science.gov (United States)

    Eccard, Jana A; Herde, Antje

    2013-11-15

    Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring).We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled.We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as

  17. Seasonal Variations of Some Physico-Chemical Properties of River ...

    African Journals Online (AJOL)

    The influence of seasonal changes on the properties of water from Ethiope River at Abraka was investigated. Composite samples from six different sampling points were collected and assessed for both dry and wet seasons. The sampling points represent the villages within Abraka clan along the river. The seasonal ...

  18. A probabilistic risk assessment for the Kirtland's warbler potentially exposed to chlorpyrifos and malathion during the breeding season and migration.

    Science.gov (United States)

    Moore, Dwayne Rj; Priest, Colleen D; Olson, Adric D; Teed, R Scott

    2018-03-01

    Two organophosphate pesticides, chlorpyrifos and malathion, are currently undergoing reregistration in the United States and were recently used by the US Environmental Protection Agency (USEPA) as case studies to develop a national procedure for evaluating risks to endangered species. One of the endangered bird species considered by the USEPA was the Kirtland's warbler (Setophaga kirtlandii). The Kirtland's warbler is an endangered migratory species that nests exclusively in young jack pine stands in Michigan and Wisconsin, and winters in the Bahamas. We developed probabilistic models to assess the risks of chlorpyrifos and malathion to Kirtland's warblers during the breeding season and the spring and fall migrations. The breeding area model simulates acute and chronic exposure and risk to each of 10 000 birds over a 60-d period following initial pesticide application. The model is highly species specific with regard to the foraging behavior of Kirtland's warblers during the breeding season. We simulated the maximum application rate and number of applications allowed on the labels for representative use patterns that could be found within 3 km of the breeding areas of Kirtland's warbler. The migration model simulates 10 000 birds during the course of their 12- to 23-d migration between their breeding area and the Bahamas. The model takes advantage of more than a century of observations of when, where, and for how long Kirtland's warblers forage in different habitats during the course of their migration. The data indicate that warblers only infrequently stop over in habitats that could be treated with chlorpyrifos and malathion. The breeding area and migration models resulted in predictions of very low acute and chronic risk for both pesticides to Kirtland's warblers. These results were expected, given that field observations indicate that the Kirtland's warbler has dramatically increased in abundance in recent decades. Integr Environ Assess Manag 2018

  19. Dietary patterns and household food insecurity in rural populations of Kilosa district, Tanzania.

    Directory of Open Access Journals (Sweden)

    Julius Edward Ntwenya

    Full Text Available Few studies have investigated the relationship between dietary pattern and household food insecurity. The objective of the present analysis was to describe the food consumption patterns and to relate these with the prevalence of food insecurity in the context of a rural community.Three hundred and seven (307 randomly selected households in Kilosa district participated in the study. Data were collected during the rainy season (February-May and post harvest season (September-October in the year 2011. Food consumption pattern was determined using a 24-h dietary recall method. Food insecurity data were based on the 30 day recall experience to food insecurity in the household. Factor analysis method using Principal Components extraction function was used to derive the dietary patterns and correlation analysis was used to establish the existing relationship between household food insecurity and dietary patterns factor score.Four food consumption patterns namely (I Meat and milk; (II Pulses, legumes, nuts and cooking oils; (III fish (and other sea foods, roots and tubers; (IV Cereals, vegetables and fruits consumption patterns were identified during harvest season. Dietary patterns identified during the rainy season were as follows: (I Fruits, cooking oils, fats, roots and tubers (II Eggs, meat, milk and milk products (III Fish, other sea foods, vegetables, roots and tubers and (IV Pulses, legumes, nuts, cereals and vegetables. Household food insecurity was 80% and 69% during rainy and harvest-seasons, respectively (P = 0.01. Household food insecurity access scale score was negatively correlated with the factor scores on household dietary diversity.Food consumption patterns and food insecurity varied by seasons with worst scenarios most prevalent during the rainy season. The risk for inadequate dietary diversity was higher among food insecure households compared to food secure households. Effort geared at alleviating household food insecurity could

  20. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Science.gov (United States)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  1. Changes in seasonal climate patterns from 34-4 ka in a Soreq Cave (Israel) speleothem: Sub-annual resolution by ion microprobe and CLFM

    Science.gov (United States)

    Orland, I. J.; Bar-Matthews, M.; Kita, N.; Ayalon, A.; Valley, J. W.

    2009-12-01

    Speleothems provide an important proxy-record of paleoclimate. Isotopic data from calcite-dominated cave formations have been used to identify changes in annual rainfall, monsoon strength, telecommunication of Northern Hemisphere climate aberrations, changes in vegetation cover, and other region-specific paleoclimate time-series over annual to millennial timescales. As more research is devoted to understanding abrupt climate change events, there is a need to develop high-temporal-resolution records from continental regions. However, in most isotopic studies, seasonality information is lost due to technical limitations. This study focuses on a speleothem from the semi-arid Eastern Mediterranean region (Soreq Cave, Israel) where prior research shows that conventional drill-sampling methods permit a temporal resolution of ~10-50 years in speleothem paleoclimate records. The WiscSIMS lab has developed analytical protocols for ion microprobe analysis that yield a precision of ~0.3‰ (2 s.d.) in δ18O from 10 μm-diameter spots, which permit multiple analyses/year in many speleothems. Orland et al. (2009, Quat. Res.) establish the methodology for the current study by identifying seasonal variability using a combination of confocal laser fluorescent microscopy (CLFM) and ion microprobe analysis in a younger (~2-1 ka) Soreq speleothem that has a consistent bright-grading-to-dark fluorescence pattern within each annual band. Further, Orland et al. define a quantitative measure of seasonality, Δ18O, that measures the difference in δ18O between bright and dark fluorescent portions of individual annual growth bands [Δ18O = δ18Odark - δ18Obright]. Smaller values of Δ18O are interpreted to be caused by dry years. The current study employs the aforementioned methods to examine seasonality trends in a sample that covers a much longer time period. We report δ18O from >1000 spots across a radial traverse of Soreq Cave sample 2N matched to imaging of annual growth bands by

  2. Do diurnal patterns of branch carbon uptake and transpiration recover after heat waves? Results from a Mediterranean-type ecosystem experiencing seasonal and exceptional drought

    Science.gov (United States)

    Pivovaroff, A. L.; Pesqueira, A.; Sun, W.; Seibt, U.

    2016-12-01

    Mediterranean-type ecosystems are biodiversity hotspots, but increasing temperature and changes in precipitation will have significant impacts on vegetation, as evidenced by the current die-back of many woody species in southern California, USA, due to exceptional drought conditions. We installed flow-through chambers on four native woody plant species at Stunt Ranch, a University of California Natural Reserve System site, in order to continuously monitor fluxes of carbon and water at the branch-scale from the growing season through the annual seasonal drought period. Study species included Heteromeles arbutifolia, Malosma laurina, Salvia leucophylla, and Quercus agrifolia. Here we present the results of diurnal flux patterns before, during, and after two extreme heat waves events, when daily maximum temperatures doubled. Under typical summer conditions, which include hot, sunny days, study species exhibited two peaks in carbon assimilation during a diurnal cycle: a peak in the morning and a smaller, secondary peak in the afternoon, separated by a midday depression. During heat wave events, which generally lasted 3 days, species exhibited a small morning peak and no afternoon peak at all. All study species returned to their pre-heat wave diurnal flux patterns, which included the second afternoon peak, when weather conditions returned to normal. Since soil moisture was not affected by the short-term heat wave events, we conclude that the pronounced changes in diurnal patterns, including disappearance of the secondary afternoon peak, are the result of stomatal regulation in response to atmospheric water demand rather than root responses to soil moisture deficits. Our results demonstrate that carbon uptake of native species may be impacted under ongoing climate change when increased temperatures and drought conditions may be sustained.

  3. Seasonality and vertical structure of microbial communities in an ocean gyre

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A

    2009-01-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change...

  4. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest

    Science.gov (United States)

    Knapp, E.E.; Keeley, J.E.

    2006-01-01

    Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

  5. Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history.

    Science.gov (United States)

    Zerbe, Philipp; Clauss, Marcus; Codron, Daryl; Bingaman Lackey, Laurie; Rensch, Eberhard; Streich, Jürgen W; Hatt, Jean-Michel; Müller, Dennis W H

    2012-11-01

    Many ruminant species show seasonal patterns of reproduction. Causes for this are widely debated, and include adaptations to seasonal availability of resources (with cues either from body condition in more tropical, or from photoperiodism in higher latitude habitats) and/or defence strategies against predators. Conclusions so far are limited to datasets with less than 30 species. Here, we use a dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos to describe their reproductive patterns quantitatively [determining the birth peak breadth (BPB) as the number of days in which 80% of all births occur]; then we link this pattern to various biological characteristics [latitude of origin, mother-young-relationship (hider/follower), proportion of grass in the natural diet (grazer/browser), sexual size dimorphism/mating system], and compare it with reports for free-ranging animals. When comparing taxonomic subgroups, variance in BPB is highly correlated to the minimum, but not the maximum BPB, suggesting that a high BPB (i.e. an aseasonal reproductive pattern) is the plesiomorphic character in ruminants. Globally, latitude of natural origin is highly correlated to the BPB observed in captivity, supporting an overruling impact of photoperiodism on ruminant reproduction. Feeding type has no additional influence; the hider/follower dichotomy, associated with the anti-predator strategy of 'swamping', has additional influence in the subset of African species only. Sexual size dimorphism and mating system are marginally associated with the BPB, potentially indicating a facilitation of polygamy under seasonal conditions. The difference in the calculated Julian date of conception between captive populations and that reported for free-ranging ones corresponds to the one expected if absolute day length was the main trigger in highly seasonal species: calculated day length at the time of conception between free-ranging and captive populations followed a y = x

  6. Assessment of Sulphate and Iron Contamination and Seasonal Variations in the Water Resources of a Damodar Valley Coalfield, India: A Case Study.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; De Maio, Marina

    2018-02-01

    The aim of the present study was to assess the sulphate [Formula: see text] and iron (Fe) contamination and seasonal variations in the water resources (groundwater, surface water, and mine water) of the West Bokaro coalfield region, India. One hundred and twenty-four water resources samples were collected from the coalfield during the post- and pre-monsoon seasons. The concentrations of [Formula: see text] were determined using ion chromatography and Fe concentrations were analyzed using inductively coupled plasma mass spectrometry. A statistical analysis was used to easily understand the seasonal variations of the elements in the water resources of the area. The concentrations of [Formula: see text] and Fe in the water resources were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location. The water resources of the coalfield were contaminated with high concentrations of [Formula: see text] and Fe, and would require suitable treatment before drinking, domestic and industrial uses.

  7. Multivariate analysis of seasonal variation in the composition and thermal properties of butterfat with an emphasis on authenticity assessment

    International Nuclear Information System (INIS)

    Tomaszewska-Gras, J.

    2016-01-01

    The aim of this study was to analyze the seasonal variation in the composition and thermal properties of butterfat (BF) in order to evaluate the applicability of differential scanning calorimetry (DSC) for the authenticity assessment of butter. The composition of fatty acids (FA) and triacylglycerols (TAG) and the thermal properties of genuine BF purchased in the summer and in the winter from six producers were determined. Principal component analysis (PCA) was used to recognize variation and as a result, all BF samples were classified into two groups: one composed of mixed samples from the summer and winter and the other comprising only summer BF samples. DSC and GC analysis revealed that the group of only summer BF samples was characterized by lower melting temperatures and peak heights of low- and medium melting fractions and the highest proportions of unsaturated FAs (ΣC18:1, ΣC18:2, ΣC18:3). The results indicated that most of the variation in the composition and thermal properties was affected by summer BF samples, which may result from the alternative animal feeding systems employed in the summer season, i.e., pasture vs. indoor. Therefore, seasonal variation should be taken into consideration during the elaboration of the analytical method of authenticity assessment. [es

  8. Control of plankton seasonal succession by adaptive grazing

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Andersen, Ken Haste; Visser, Andre

    2013-01-01

    The ecological succession of phytoplankton communities in temperate seas is characterized by the dominance of nonmotile diatoms during spring and motile flagellates during summer, a pattern often linked to the seasonal variation in the physical environment and nutrient availability. We focus...

  9. Examining secular trend  and seasonality in count data using dynamic generalized linear modelling

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren; Dethlefsen, Claus; Gorst-Rasmussen, Anders

    series regression model for Poisson counts. It differs in allowing the regression coefficients to vary gradually over time in a random fashion. Data  In the period January 1980 to 1999, 17,989 incidents of acute myocardial infarction were recorded in the county of Northern Jutland, Denmark. Records were......Aims  Time series of incidence counts often show secular trends and seasonal patterns. We present a model for incidence counts capable of handling a possible gradual change in growth rates and seasonal patterns, serial correlation and overdispersion. Methods  The model resembles an ordinary time...... updated daily. Results  The model with a seasonal pattern and an approximately linear trend was fitted to the data, and diagnostic plots indicate a good model fit. The analysis with the dynamic model revealed peaks coinciding with influenza epidemics. On average the peak-to-trough ratio is estimated...

  10. Seasonal variations in sleep disorders of nurses.

    Science.gov (United States)

    Chang, Yuanmay; Lam, Calvin; Chen, Su-Ru; Sithole, Trevor; Chung, Min-Huey

    2017-04-01

    To investigate the difference between nurses and the general population regarding seasonal variations in sleep disorders during 2004-2008. The effects of season and group interaction on sleep disorders with regard to different comorbidities were also examined. Studies on seasonal variations in sleep disorders were mainly conducted in Norway for the general population. Furthermore, whether different comorbidities cause seasonal variations in sleep disorders in nurses remains unknown. A retrospective study. Data from the Taiwan National Health Insurance Research Database were used in generalised estimating equation Poisson distribution models to investigate the differences in sleep disorders between nurses and the general population diagnosed with sleep disorders (each n = 7643) as well as the interaction effects of sleep disorders between the groups with respect to different seasons. Furthermore, the interaction effects between groups and seasons on sleep disorders in the subgroups of comorbid anxiety disorders and depressive disorders were studied. Both the nurses and the general population had fewer outpatient visits for sleep disorders in winter than in other seasons. The nurses had fewer outpatient visits for sleep disorders than the general population did in each season. The nurses had more outpatient visits for sleep disorders in winter than in summer compared with the general population in the comorbid depressive disorder subgroup but not in the comorbid anxiety disorder subgroup. Nurses and the general population exhibited similar seasonal patterns of sleep disorders, but nurses had fewer outpatient visits for sleep disorders than the general population did in each season. For nurses with comorbid depressive disorders, outpatient visits for sleep disorders were more numerous in winter than in summer, potentially because nurses with comorbid depressive disorders are affected by shorter daylight exposure during winter. Depression and daylight exposure may

  11. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    Science.gov (United States)

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Seasonal trends in sleep-disordered breathing: evidence from Internet search engine query data.

    Science.gov (United States)

    Ingram, David G; Matthews, Camilla K; Plante, David T

    2015-03-01

    The primary aim of the current study was to test the hypothesis that there is a seasonal component to snoring and obstructive sleep apnea (OSA) through the use of Google search engine query data. Internet search engine query data were retrieved from Google Trends from January 2006 to December 2012. Monthly normalized search volume was obtained over that 7-year period in the USA and Australia for the following search terms: "snoring" and "sleep apnea". Seasonal effects were investigated by fitting cosinor regression models. In addition, the search terms "snoring children" and "sleep apnea children" were evaluated to examine seasonal effects in pediatric populations. Statistically significant seasonal effects were found using cosinor analysis in both USA and Australia for "snoring" (p search term in Australia (p = 0.13). Seasonal patterns for "snoring children" and "sleep apnea children" were observed in the USA (p = 0.002 and p search volume to examine these search terms in Australia. All searches peaked in the winter or early spring in both countries, with the magnitude of seasonal effect ranging from 5 to 50 %. Our findings indicate that there are significant seasonal trends for both snoring and sleep apnea internet search engine queries, with a peak in the winter and early spring. Further research is indicated to determine the mechanisms underlying these findings, whether they have clinical impact, and if they are associated with other comorbid medical conditions that have similar patterns of seasonal exacerbation.

  13. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  14. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Benoit Parmentier

    2014-12-01

    Full Text Available Characterizing biophysical changes in land change areas over large regions with short and noisy multivariate time series and multiple temporal parameters remains a challenging task. Most studies focus on detection rather than the characterization, i.e., the manner by which surface state variables are altered by the process of changes. In this study, a procedure is presented to extract and characterize simultaneous temporal changes in MODIS multivariate times series from three surface state variables the Normalized Difference Vegetation Index (NDVI, land surface temperature (LST and albedo (ALB. The analysis involves conducting a seasonal trend analysis (STA to extract three seasonal shape parameters (Amplitude 0, Amplitude 1 and Amplitude 2 and using principal component analysis (PCA to contrast trends in change and no-change areas. We illustrate the method by characterizing trends in burned and unburned pixels in Alaska over the 2001–2009 time period. Findings show consistent and meaningful extraction of temporal patterns related to fire disturbances. The first principal component (PC1 is characterized by a decrease in mean NDVI (Amplitude 0 with a concurrent increase in albedo (the mean and the annual amplitude and an increase in LST annual variability (Amplitude 1. These results provide systematic empirical evidence of surface changes associated with one type of land change, fire disturbances, and suggest that STA with PCA may be used to characterize many other types of land transitions over large landscape areas using multivariate Earth observation time series.

  15. Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence.

    Science.gov (United States)

    Pitzer, Virginia E; Viboud, Cécile; Lopman, Ben A; Patel, Manish M; Parashar, Umesh D; Grenfell, Bryan T

    2011-11-07

    Rotavirus is a major cause of mortality in developing countries, and yet the dynamics of rotavirus in such settings are poorly understood. Rotavirus is typically less seasonal in the tropics, although recent observational studies have challenged the universality of this pattern. While numerous studies have examined the association between environmental factors and rotavirus incidence, here we explore the role of intrinsic factors. By fitting a mathematical model of rotavirus transmission dynamics to published age distributions of cases from 15 countries, we obtain estimates of local transmission rates. Model-predicted patterns of seasonal incidence based solely on differences in birth rates and transmission rates are significantly correlated with those observed (Spearman's ρ = 0.65, p birth rates and transmission rates and explore how vaccination may impact these patterns. Our results suggest that the relative lack of rotavirus seasonality observed in many tropical countries may be due to the high birth rates and transmission rates typical of developing countries rather than being driven primarily by environmental conditions. While vaccination is expected to decrease the overall burden of disease, it may increase the degree of seasonal variation in the incidence of rotavirus in some settings.

  16. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Science.gov (United States)

    de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  17. Seasonality in Violent and Nonviolent Methods of Suicide Attempts: A Cross-Sectional Study on Systematic Registry Data.

    Science.gov (United States)

    Veisani, Yousef; Delpisheh, Ali; Sayehmiri, Kourosh; Moradi, Ghobad; Hassanzadeh, Jafar

    2017-08-01

    Little attention has been paid to seasonality in suicide in Iran. Time pattern in suicide deaths and suicide attempts for some related factors such as gender, mental disorders has been found. In present study, we focus on suicide methods and the association with seasonality and other putative covariates such as gender. Through a cross-sectional study, overall identified suicide attempts and suicide deaths in the province of Ilam from 1 January 2010 and 31 December 2014 were enrolled. We used Edwards' test for test of seasonality in suicide methods. Seasonal effect (peak/trough seasons) and (deaths/attempts suicide) was explored by ratio statistics, the null hypothesis being that the attempted suicides in each method group are evenly distributed over a year. More suicide attempts by hanging 29.4% and self-immolation 41.4% were observed in spring and differ by season pattern in both genders. The overall distribution of suicides by violent and non-violent methods was (males x2=6.3, P=0.041, females x2=7.7, P=0.021) and (males x2=44.5, P=0.001, females x2=104.7, P=0.001), respectively. The peak and trough seasons was observed in taking medications and self-poisoning for spring and winter. Suicide with alcohol was no differ by season pattern (x2=1.0, P=0.460). Suicide in Ilam illustrates a significant seasonality for both violent and non-violent methods of suicide, in both genders, the two peaks were observed in spring and autumn for violent suicides, and spring and summer in non-violent suicides.

  18. Asymmetric seasonal march from autumn to the next spring in East Asia (Toward interdisciplinary education on the climate systems and the "seasonal feeling" such as around the Japan Islands area)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Sato, Sari; Akagi, Rikako; Haga, Yuichi; Miyake, Shoji

    2014-05-01

    There are many steps of seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around the Japan Islands. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High, although the air temperature around the Japan Islands is still rather higher than in midwinter. On the other hand, since the southward retreat of the warm moist air mass in the western Pacific area delays rather greatly to the advances of those northern systems. Thus it would be interesting to re-examine the whole seasonal cycle around the Japan Islands at the view point of how the phase differences among seasonal marches of the Asian monsoon subsystems affect the variety of the seasonal cycle there, together with their effects on the "seasonal feeling". As such, the present study will examine the asymmetric seasonal march from autumn to the next spring through midwinter around the Japan Islands as an interesting example, and will also report the joint activity with music, and so on, toward the development of an interdisciplinary study plan on such topics for the students in junior high school, high school and the faculty of education of the university. The wintertime weather pattern, i.e., precipitation in the Japan Sea side and clear day in the Pacific side of the Japan Islands, prevails from early November to early March, reflected by the seasonal cycle of the Siberian Air Mass and the Siberian High. However, the air temperature shows the minimum from late January to early February around the Japan Islands. In other words, although the dominant weather patterns around November and in early March are nearly the same as each other, air temperature is still lower in early March (early spring). In spite of that, the solar radiation is rather stronger in early

  19. Height and seasonal growth pattern of jack pine full-sib families

    Science.gov (United States)

    Don E. Riemenschneider

    1981-01-01

    Total tree height, seasonal shoot elongation, dates of growth initiation and cessation, and mean daily growth rate were measured and analyzed for a population of jack pine full-sib families derived from inter-provenance crosses. Parental provenance had no effect on these variables although this may have been due to small sample size. Progenies differed significantly...

  20. Fire and Spillage Risk Assessment Pattern in Scientific Laboratories

    OpenAIRE

    Manouchehr Omidvari; N. Mansouri

    2015-01-01

        Material hazards are the most important risk in scientific laboratories. In risk assessment processing, the potential impact of assessor personal judgment is the most important issue. This study tried to develop a risk assessment pattern based on Failure Mode and Effect Analysis (FMEA) and Analytical Hierarchy Process (AHP) logics and empirical data in scientific laboratories. The most important issues were high pressure reservoirs and hardware failure fuel. The other type of data about b...

  1. Different Patterns of Changes in the Dry Season Diameter at Breast Height of Dominant and Evergreen Tree Species in a Mature Subtropical Forest in South China

    Institute of Scientific and Technical Information of China (English)

    Jun-Hua Yan; Guo-Yi Zhou; De-Qiang Zhang; Xu-Li Tang; Xu Wang

    2006-01-01

    Information on changes in diameter at breast height (DBH) is important for net primary production (NPP)estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species,different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsl. exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.

  2. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  3. Seasonality and vertical structure of microbial communities in an ocean gyre.

    Science.gov (United States)

    Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J

    2009-10-01

    Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.

  4. Meerkat close calling patterns are linked to sex, social category, season and wind, but not fecal glucocorticoid metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Jelena Mausbach

    Full Text Available It is well established that animal vocalizations can encode information regarding a sender's identity, sex, age, body size, social rank and group membership. However, the association between physiological parameters, particularly stress hormone levels, and vocal behavior is still not well understood. The cooperatively breeding African meerkats (Suricata suricatta live in family groups with despotic social hierarchies. During foraging, individuals emit close calls that help maintain group cohesion. These contact calls are acoustically distinctive and variable in rate across individuals, yet, information on which factors influence close calling behavior is missing. The aim of this study was to identify proximate factors that influence variation in call rate and acoustic structure of meerkat close calls. Specifically, we investigated whether close calling behavior is associated with sex, age and rank, or stress hormone output (i.e., measured as fecal glucocorticoid metabolite (fGCM concentrations as individual traits of the caller, as well as with environmental conditions (weather and reproductive seasonality. To disentangle the effects of these factors on vocal behavior, we analyzed sound recordings and assessed fGCM concentrations in 64 wild but habituated meerkats from 9 groups during the reproductive and non-reproductive seasons. Dominant females and one-year old males called at significantly higher rates compared to other social categories during the reproductive season. Additionally, dominant females produced close calls with the lowest mean fundamental frequencies (F0 and the longest mean pulse durations. Windy conditions were associated with significantly higher call rates during the non-reproductive season. Fecal GCM concentrations were unrelated to close calling behavior. Our findings suggest that meerkat close calling behavior conveys information regarding the sex and social category of the caller, but shows no association with f

  5. NEW SEASON NEW HOPES: OFF-SEASON OPTIMISM

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2017-12-01

    Full Text Available While literature on the relation between on-field sports performance and stock returns is ample, there is very limited evidence on off-season stage. Constituting around 3 months, off-seasons do not only occupy a significant part of the year but also represent totally different characteristics than on-seasons. They lack the periodic, unambiguous news events in on-seasons (match results, instead they are associated with highly uncertain transfer news and rumors. We show that this distinction has several impacts on the stock market performances of soccer clubs. Most notably, off-seasons generate substantially higher (excess returns. After controlling for other variables, the estimated effect of off-season periods is as high as 38.75%, annually. In line with several seminal studies, we link this fact to increased optimism and betting behavior through uncertain periods; and periods prior to the start of a new calendar (in our case, new season. For all of the examined 7 clubs (3 from Italy and 4 from Turkey, mean excess returns over the market are positive (negative in off-seasons (on-seasons. On-seasons are associated with increased trading activity due to more frequent news. Stocks of Italian clubs are evidently more volatile through off-seasons while volatility results for the stocks of Turkish clubs are not consistent.

  6. Influenza Seasonal Summary, 2014-2015 Season

    Science.gov (United States)

    2015-08-14

    Influenza Seasonal Summarv 2014-2015 Season EpiData Center Department Communicable Disease Division NMCPHC-EDC-TR-394-2015 REPORT DOCUMENTATION... Influenza Seasonal Summary, 2014-2015 Season Sb. GRANT NUMBER $c. PROGRAM ELEMENT NUMBER 6. AUTHORjS) Sd. PROJECT NUMBER Ashleigh K McCabe, Kristen R...SUPPLEMENTARY NOTES 1<l. ABSTRACT This report summartzes influenza activity among Department of Navy (DON) and Depar1ment of Defense (DOD

  7. Novel Stable Isotope Methods for Assessing Changes in Seasonality of Precipitation from Sediments of Ombrotrophic Peatlands

    Science.gov (United States)

    Nichols, J. E.; Booth, R. K.; Jackson, S. T.; Pendall, E. G.; Walcott, M.; Bradley, R.; Pilcher, J.; Huang, Y.

    2007-12-01

    The seasonality of precipitation is a key but often elusive climate parameter in paleoclimate reconstructions. Sediments from ombrotrophic peatlands are excellent archives of past changes in precipitation/evaporation balance. Here we show that these peatland sediments can also be used to assess changes in the seasonality of precipitation. We have recently determined that distributions of Sphagnum and vascular plant biomarkers sensitively record changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513), but biomarker distributions alone do not offer detailed information for the changes in seasonal precipitation. In this study, we combine biomarker and compound-specific H and C isotope ratios to create a more comprehensive picture of the changing climate affecting these sensitive ombrotrophic systems. We present here two sets of downcore data from sites in Arctic Europe as well as Eastern North America. Basic paleohydrology is established using a ratio of Sphagnum to vascular plant biomarkers (C23 and C29 n-alkanes, respectively. We further describe paleohydrology using novel stable isotope proxies based on δD and δ13C measurements of Sphagnum and vascular plant biomarkers. Because Sphagnum has no vascular system and loses water directly by evaporation, Sphagnum biomarkers enriched in deuterium indicate an evaporative growing season (summer). Vascular plants use their root systems to take up water stored within the peatland, so deuterium-depleted vascular plant biomarkers should indicate increased winter recharge of the peatland. A methanotrophic symbiont living inside the Sphagnum's hyaline (water-holding) cells is more active when the Sphagnum is wet and therefore provides more 13C depleted (methane- derived) carbon dioxide for biomass production when the growing season is less evaporative. Hence, 13C depleted Sphagnum biomarkers indicate increased methanotrophy and therefore a wetter summer. We corroborate our stable isotope proxies by

  8. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  9. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.; Wallenius, M.; Mayer, K. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2010-07-01

    The rare-earth element pattern was used as an additional tool for the identification and origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. By this means, the source of an unknown material can be straightforwardly verified by comparing the pattern with that of a known or declared sample. In contrast to other indicators used for nuclear forensic studies, the provenance of the material can also be assessed in several cases even if no comparison sample is available due to the characteristic pattern. The milling process was found not to change the pattern and no significant elemental fractionation occurs between the rare-earth elements, thus the pattern in the yellow cakes corresponds to that found in the uranium ore. (orig.)

  10. Energy Balance over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; Müller, Manfred J; Heymsfield, Steven B; Sardinha, Luís B

    2017-08-01

    Magnitude and variation in energy balance (EB) components over an athletic season are largely unknown. We investigated the longitudinal changes in EB over one season and explored the association between EB variation and change in the main fat-free mass (FFM) components in highly trained athletes. Eighty athletes (54 males; handball, volleyball, basketball, triathlete, and swimming) were evaluated from the beginning of the season to the main competition stage. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively. Physical activity energy expenditure was calculated as TEE - 0.1 TEE - REE. Fat mass (FM), FFM, and bone mineral were evaluated with dual-energy x-ray absorptiometry; changed body energy stores were calculated as 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). Total-body water (TBW) and its compartments were assessed through dilution techniques, and total-body protein was calculated from a four-compartment model, with body volume assessed by air displacement plethysmography. Although a negative EB of -17.4 ± 72.7 kcal·d was observed (P sports and across sex groups resulting in a net weight increase (0.7 ± 2.3 kg) that is attributable to significant changes in FFM (1.2 ± 1.6 kg) and FM (-0.7 ± 1.5 kg) (P sports, and age. The mean negative EB observed over the season resulted from the rate of FM use and FFM accretion, but with a large variation by sex and sports. TBW, but not total-body protein or mineral balance, explained the magnitude of EB, which means that athletes under a positive or a negative EB showed a TBW expansion or shrinkage, respectively, specifically within the cells, over one athletic season.

  11. Trend and Seasonal Patterns of Injuries and Mortality Due to Motorcyclists Traffic Accidents; A Hospital-Based Study.

    Science.gov (United States)

    Hosseinpour, Marjan; Mohammadian-Hafshejani, Abdollah; Esmaeilpour Aghdam, Mohammad; Mohammadian, Mahdi; Maleki, Farzad

    2017-01-01

    To investigate trend and seasonal pattern of occurrence and mortality of motorcycle accidents in patients referred to hospitals of Isfahan. This cross-sectional study was carried out using traffic accidents data of Isfahan province, extracted from Ministry of Health (MOH) database from 2006 to 2010. During the study period, 83648 people injured due to motorcycle traffic accidents were referred to hospitals, all of them entered in the study. Logistic regression model was used to calculate the hospital mortality odds ratio, and Cochrane-Armitage test was used for assessment of linear trend. During the study period, the hospital admission for motorcycle accident was 83,648 and 89.3% (74743) of them were men. Mean age in accidents time was 26.41±14.3 years. The injuries and death sex ratio were 8.4 and 16.9, respectively. Lowest admission rate was during autumn and highest during summer. The injury mortality odds ratio was 1.01 (CI 95% 0.73-1.39) in the Spring, 1.34 (CI95% 1.01-1.79) in summer and 1.17 (CI95% 0.83-1.63). It was also calculated to be 2.51 (CI95% 1.36-4.64) in age group 40-49, 2.39 (CI95% 1.51-5.68) in 50-59 and 4.79 (CI95% 2.49-9.22) in 60-69 years. The mortality odds ratio was 3.53 (CI95% 2.77-4.5) in rural place, 1.33 (CI95% 1.15-1.54) in men, and 2.44 (CI95% 2.09-2.85) in the road out of town and village. In addition, trend of motorcycle accidents mortality was increasing ( p accidents injuries are more common in men, summer, young age and rural roads. These high risk groups need more attention, care and higher training.

  12. Intrusion detection in cloud computing based attack patterns and risk assessment

    Directory of Open Access Journals (Sweden)

    Ben Charhi Youssef

    2017-05-01

    Full Text Available This paper is an extension of work originally presented in SYSCO CONF.We extend our previous work by presenting the initial results of the implementation of intrusion detection based on risk assessment on cloud computing. The idea focuses on a novel approach for detecting cyber-attacks on the cloud environment by analyzing attacks pattern using risk assessment methodologies. The aim of our solution is to combine evidences obtained from Intrusion Detection Systems (IDS deployed in a cloud with risk assessment related to each attack pattern. Our approach presents a new qualitative solution for analyzing each symptom, indicator and vulnerability analyzing impact and likelihood of distributed and multi-steps attacks directed to cloud environments. The implementation of this approach will reduce the number of false alerts and will improve the performance of the IDS.

  13. A mechanistic assessment of seasonal microhabitat selection by drift-feeding rainbow trout Oncorhynchus mykiss in a southwestern headwater stream

    Science.gov (United States)

    Kalb, Bradley W.; Huntsman, Brock M.; Caldwell, Colleen A.; Bozek, Michael A.

    2018-01-01

    The positioning of fishes within a riverscape is dependent on the proximity of complementary habitats. In this study, foraging and non-foraging habitat were quantified monthly over an entire year for a rainbow trout (Oncorhynchus mykiss) population in an isolated, headwater stream in southcentral New Mexico. The stream follows a seasonal thermal and hydrologic pattern typical for a Southwestern stream and was deemed suitable for re-introduction of the native and close relative, Rio Grande cutthroat trout (O. clarkii virginalis). However, uncertainty associated with limited habitat needed to be resolved if repatriation of the native fish was to be successful. Habitat was evaluated using resource selection functions with a mechanistic drift-foraging model to explain trout distributions. Macroinvertebrate drift was strongly season- and temperature-dependent (lower in winter and spring, higher in summer and fall). Models identified stream depth as the most limiting factor for habitat selection across seasons and size-classes. Additionally, positions closer to cover were selected during the winter by smaller size-classes (0, 1, 2), while net energy intake was important during the spring for most size-classes (0, 1, 2, 3). Drift-foraging models identified that 81% of observed trout selected positions that could meet maintenance levels throughout the year. Moreover, 40% of selected habitats could sustain maximum growth. Stream positions occupied by rainbow trout were more energetically profitable than random sites regardless of season or size-class. Larger size-classes (3, 4+) were energetically more limited throughout the year than were smaller size-classes. This research suggests that habitat in the form of deep pools is of paramount importance for rainbow trout or native cutthroat trout.

  14. Capital versus income breeding in a seasonal environment

    DEFF Research Database (Denmark)

    Sainmont, Julie; Andersen, Ken Haste; Varpe, Oystein

    2014-01-01

    and thereby achieve a high annual growth rate, outcompeting capital breeders in long feeding seasons. Therefore, we expect to find a dominance of small income breeders in temperate waters, while large capital breeders should dominate high latitudes where the spring is short and intense. This pattern...

  15. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    Science.gov (United States)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  16. An Assessment of the Skill of GEOS-5 Seasonal Forecasts

    Science.gov (United States)

    Ham, Yoo-Geun; Schubert, Siegfried D.; Rienecker, Michele M.

    2013-01-01

    The seasonal forecast skill of the NASA Global Modeling and Assimilation Office coupled global climate model (CGCM) is evaluated based on an ensemble of 9-month lead forecasts for the period 1993 to 2010. The results from the current version (V2) of the CGCM consisting of the GEOS-5 AGM coupled to the MOM4 ocean model are compared with those from an earlier version (V1) in which the AGCM (the NSIPP model) was coupled to the Poseidon Ocean Model. It was found that the correlation skill of the Sea Surface Temperature (SST) forecasts is generally better in V2, especially over the sub-tropical and tropical central and eastern Pacific, Atlantic, and Indian Ocean. Furthermore, the improvement in skill in V2 mainly comes from better forecasts of the developing phase of ENSO from boreal spring to summer. The skill of ENSO forecasts initiated during the boreal winter season, however, shows no improvement in terms of correlation skill, and is in fact slightly worse in terms of root mean square error (RMSE). The degradation of skill is found to be due to an excessive ENSO amplitude. For V1, the ENSO amplitude is too strong in forecasts starting in boreal spring and summer, which causes large RMSE in the forecast. For V2, the ENSO amplitude is slightly stronger than that in observations and V1 for forecasts starting in boreal winter season. An analysis of the terms in the SST tendency equation, shows that this is mainly due to an excessive zonal advective feedback. In addition, V2 forecasts that are initiated during boreal winter season, exhibit a slower phase transition of El Nino, which is consistent with larger amplitude of ENSO after the ENSO peak season. It is found that this is due to weak discharge of equatorial Warm Water Volume (WWV). In both observations and V1, the discharge of equatorial WWV leads the equatorial geostrophic easterly current so as to damp the El Nino starting in January. This process is delayed by about 2 months in V2 due to the slower phase

  17. Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder – a meta-analysis of genetic studies

    Science.gov (United States)

    Byrne, Enda M; Raheja, Uttam; Stephens, Sarah H.; Heath, Andrew C; Madden, Pamela AF; Vaswani, Dipika; Nijjar, Gagan V.; Ryan, Kathleen A.; Youssufi, Hassaan; Gehrman, Philip R; Shuldiner, Alan R; Martin, Nicholas G; Montgomery, Grant W; Wray, Naomi R; Nelson, Elliot C; Mitchell, Braxton D; Postolache, Teodor T

    2015-01-01

    Objective To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. Methods A meta-analysis of genome-wide association studies (GWAS) conducted in Australian and Amish populations in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered. The total sample size was 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ) were calculated to test for overlap in risk between psychiatric disorders and seasonality. Results The most significant association was with rs11825064 (p = 1.7 × 10−6, β = 0.64, S.E = 0.13), an intergenic SNP found on chromosome 11. The evidence for overlap in risk factors was strongest for SCZ and seasonality, with the SCZ genetic profile scores explaining 3% of the variance in log-transformed GSS. BD genetic profile scores were also significantly associated with seasonality, although at much weaker levels, and no evidence for overlap in risk was detected between MDD and seasonality. Conclusions Common SNPs of very large effect likely do not exist for seasonality in the populations examined. As expected, there was overlapping genetic risk factors for BD (but not MDD) with seasonality. Unexpectedly, the risk for SCZ and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations, and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and SCZ PMID:25562672

  18. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  19. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Directory of Open Access Journals (Sweden)

    Niels J de Winter

    Full Text Available The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  20. Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter?

    Science.gov (United States)

    Griebeler, E M; Caprano, T; Böhning-Gaese, K

    2010-05-01

    Birds display a latitudinal gradient in clutch size with smaller clutches in the tropics and larger in the temperate region. Three factors have been proposed to affect this pattern: seasonality of resources (SR), nest predation and length of the breeding season (LBS). Here, we test the importance of these factors by modelling clutch size evolution within bird populations under different environmental settings. We use an individual-based ecogenetic simulation model that combines principles from population ecology and life history theory. Results suggest that increasing SR from the tropics to the poles by itself or in combination with a decreasing predation rate and LBS can generate the latitudinal gradient in clutch size. Annual fecundity increases and annual adult survival rate decreases from the tropics to the poles. We further show that the annual number of breeding attempts that (together with clutch size) determines total annual egg production is an important trait to understand latitudinal patterns in these life history characteristics. Field experiments that manipulate environmental factors have to record effects not only on clutch size, but also on annual number of breeding attempts. We use our model to predict the outcome of such experiments under different environmental settings.

  1. Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison.

    Directory of Open Access Journals (Sweden)

    Gaddy T Bergmann

    Full Text Available North American bison (Bison bison are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.

  2. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  3. Cultural variation in seasonal depression: cross-national differences in winter versus summer patterns of seasonal affective disorder.

    Science.gov (United States)

    Kasof, Joseph

    2009-05-01

    Research suggests that two dimensions of national culture, individualism-collectivism and power distance, predict affective responses to the seasonally varying levels of ambient sunlight that may underlie regular cycles of mood and behavior in Seasonal Affective Disorder (SAD). Specifically, negative affect is predicted by the diminished sunlight of fall-winter in countries higher in individualism and lower in power distance, and by the increased sunlight of spring-summer in countries lower in individualism and higher in power distance. This study tests whether individualism correlates positively, and power distance negatively, with the frequency of winter-SAD relative to that of summer-SAD. A search for studies reporting frequencies of both winter-SAD and summer-SAD identified 55 samples encompassing 18 countries and 38,408 participants, including 1931 with SAD. The frequency of winter-SAD, relative to that of summer-SAD, correlated positively with individualism (r=.67, p=.001) and negatively with power distance (r=-.72, p=.0001). Countries in which winter-SAD was more common than summer-SAD were significantly more individualistic and less power-distant than countries in which summer-SAD was more common than winter-SAD. Results survived various tests of threats to validity. The study is limited by the quantity, quality, diversity, and representativeness of the research under review and by its correlational design. Individualism and power distance are strongly related to the relative prevalence of winter-SAD and summer-SAD. Culture may play an important but previously overlooked role in the etiology of SAD.

  4. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  5. It's about time: a comparison of Canadian and American time-activity patterns.

    Science.gov (United States)

    Leech, Judith A; Nelson, William C; Burnett, Richard T; Aaron, Shawn; Raizenne, Mark E

    2002-11-01

    This study compares two North American time-activity data bases: the National Human Activity Pattern Survey (NHAPS) of 9386 interviewees in 1992-1994 in the continental USA with the Canadian Human Activity Pattern Survey (CHAPS) of 2381 interviewees in 1996-1997 in four major Canadian cities. Identical surveys and methodology were used to collect this data: random sample telephone selection within the identified telephone exchanges, computer-assisted telephone interviews, overselection of children and weekends in the 24-h recall diary and the same interviewers. Very similar response rates were obtained: 63% (NHAPS) and 64.5% (CHAPS). Results of comparisons by age within major activity and location groups suggest activity and location patterns are very similar (most differences being less than 1% or 14 min in a 24-h day) with the exception of seasonal differences. Canadians spend less time outdoors in winter and less time indoors in summer than their U.S. counterparts. When exposure assessments use time of year or outdoor/indoor exposure gradients, these differences may result in significant differences in exposure assessments. Otherwise, the 24-h time activity patterns of North Americans are remarkably similar and use of the combined data set for some exposure assessments may be feasible.

  6. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    Science.gov (United States)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39

  7. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  8. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie.

    Science.gov (United States)

    Branson, David H

    2017-06-01

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  9. A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns

    Directory of Open Access Journals (Sweden)

    Xin-Gang Dai

    2017-03-01

    Full Text Available This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the Köppen climate classification. There are different collocations of seasonal temperature and precipitation: 1 in phase for the East and South Asia monsoon regimes, 2 anti-phase for the Central Asia regime, 3 out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition

  10. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples: an attempt to discern recurrences and trends

    Directory of Open Access Journals (Sweden)

    M. Ribera d'Alcalà

    2004-04-01

    Full Text Available The annual cycle of plankton was studied over 14 years from 1984 to 2000 at a coastal station in the Gulf of Naples, with the aim of assessing seasonal patterns and interannual trends. Phytoplankton biomass started increasing over the water column in February-early March, and generally achieved peak values in the upper layers in late spring. Another peak was often recorded in autumn. Diatoms and phytoflagellates dominated for the largest part of the year. Ciliates showed their main peaks in phase with phytoplankton and were mainly represented by small (< 30 mm naked choreotrichs. Mesozooplankton increased in March-April, reaching maximum concentrations in summer. Copepods were always the most abundant group, followed by cladocerans in summer. At the interannual scale, a high variability and a decreasing trend were recorded over the sampling period for autotrophic biomass. Mesozooplankton biomass showed a less marked interannual variability. From 1995 onwards, phytoplankton populations increased in cell number but decreased in cell size, with intense blooms of small diatoms and undetermined coccoid species frequently observed in recent years. In spite of those interannual variations, the different phases of the annual cycle and the occurrence of several plankton species were remarkably regular.

  11. Patterns of circulating corticosterone in a population of rattlesnakes afflicted with snake fungal disease: Stress hormones as a potential mediator of seasonal cycles in disease severity and outcomes

    Science.gov (United States)

    Lind, Craig M.; Moore, Ignacio T.; Akçay, Çağlar; Vernasco, Ben J.; Lorch, Jeffrey M.; Farrell, Terence M.

    2018-01-01

    Snake fungal disease (SFD) is an emerging threat to snake populations in the United States. Fungal pathogens are often associated with a physiological stress response mediated by the hypothalamo-pituitary-adrenal axis (HPA), and afflicted individuals may incur steep coping costs. The severity of SFD can vary seasonally; however, little is known regarding (1) how SFD infection relates to HPA activity and (2) how seasonal shifts in environment, life history, or HPA activity may interact to drive seasonal patterns of infection severity and outcomes. To test the hypothesis that SFD is associated with increased HPA activity and to identify potential environmental or physiological drivers of seasonal infection, we monitored baseline corticosterone, SFD infection severity, foraging success, body condition, and reproductive status in a field-active population of pigmy rattlesnakes. Both plasma corticosterone and the severity of clinical signs of SFD peaked in the winter. Corticosterone levels were also elevated in the fall before the seasonal rise in SFD severity. Severely symptomatic snakes were in low body condition and had elevated corticosterone levels compared to moderately infected and uninfected snakes. The monthly mean severity of SFD in the population was negatively related to population-wide estimates of body condition and temperature measured in the precedent month and positively correlated with corticosterone levels measured in the precedent month. Symptomatic females were less likely to enter reproductive bouts compared to asymptomatic females. We propose the hypothesis that the seasonal interplay among environment, host energetics, and HPA activity initiates trade-offs in the fall that drive the increase in SFD prevalence, symptom severity, and decline in condition observed in the population through winter.

  12. Morbidity, Mortality, and Seasonality of Influenza Hospitalizations in Egypt, November 2007-November 2014

    Science.gov (United States)

    Kandeel, Amr; Labib, Manal; Said, Mayar; El-Refai, Samir; El-Gohari, Amani; Talaat, Maha

    2016-01-01

    Background Influenza typically comprises a substantial portion of acute respiratory infections, a leading cause of mortality worldwide. However, influenza epidemiology data are lacking in Egypt. We describe seven years of Egypt’s influenza hospitalizations from a multi-site influenza surveillance system. Methods Syndromic case definitions identified individuals with severe acute respiratory infection (SARI) admitted to eight hospitals in Egypt. Standardized demographic and clinical data were collected. Nasopharyngeal and oropharyngeal swabs were tested for influenza using real-time reverse transcription polymerase chain reaction and typed as influenza A or B, and influenza A specimens subtyped. Results From November 2007–November 2014, 2,936/17,441 (17%) SARI cases were influenza-positive. Influenza-positive patients were more likely to be older, female, pregnant, and have chronic condition(s) (all p<0.05). Among them, 53 (2%) died, and death was associated with older age, five or more days from symptom onset to hospitalization, chronic condition(s), and influenza A (all p<0.05). An annual seasonal influenza pattern occurred from July–June. Each season, the proportion of the season’s influenza-positive cases peaked during November–May (19–41%). Conclusions In Egypt, influenza causes considerable morbidity and mortality and influenza SARI hospitalization patterns mirror those of the Northern Hemisphere. Additional assessment of influenza epidemiology in Egypt may better guide disease control activities and vaccine policy. PMID:27607330

  13. Accumulation pattern of total nonstructural carbohydrate in ...

    African Journals Online (AJOL)

    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. eCamarosaf, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high ...

  14. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil).

    Science.gov (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S

    2015-08-01

    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.

  15. Seasonal Changes in Sleep Duration in African American and African College Students Living In Washington, D.C.

    Directory of Open Access Journals (Sweden)

    Janna Volkov

    2007-01-01

    Full Text Available Duration of nocturnal melatonin secretion, a marker of “biological night” that relates to sleep duration, is longer in winter than in summer in patients with seasonal affective disorder (SAD, but not in healthy controls. In this study of African and African American college students, we hypothesized that students who met criteria for winter SAD or subsyndromal SAD (S-SAD would report sleeping longer in winter than in summer. In addition, based on our previous observation that Africans report more “problems” with change in seasons than African Americans, we expected that the seasonal changes in sleep duration would be greater in African students than in African American students. Based on Seasonal Pattern Assessment Questionnaire (SPAQ responses, African American and African college students in Washington, D.C. (N = 575 were grouped into a winter SAD/S-SAD group or a no winter diagnosis group, and winter and summer sleep length were determined. We conducted a 2 (season × 2 (sex × 2 (ethnicity × 2 (winter diagnosis group ANCOVA on reported sleep duration, controlling for age. Contrary to our hypothesis, we found that African and African American students with winter SAD/S-SAD report sleeping longer in the summer than in the winter. No differences in seasonality of sleep were found between African and African American students. Students with winter SAD or S-SAD may need to sacrifice sleep duration in the winter, when their academic functioning/efficiency may be impaired by syndromal or subsyndromal depression, in order to meet seasonally increased academic demands.

  16. Differences in Reporting the Ragweed Pollen Season Using Google Trends across 15 Countries.

    Science.gov (United States)

    Bousquet, Jean; Agache, Ioana; Berger, Uwe; Bergmann, Karl-Christian; Besancenot, Jean-Pierre; Bousquet, Philippe J; Casale, Tom; d'Amato, Gennaro; Kaidashev, Igor; Khaitov, Musa; Mösges, Ralph; Nekam, Kristof; Onorato, Gabrielle L; Plavec, Davor; Sheikh, Aziz; Thibaudon, Michel; Vautard, Robert; Zidarn, Mihaela

    2018-05-09

    Google Trends (GT) searches trends of specific queries in Google, which potentially reflect the real-life epidemiology of allergic rhinitis. We compared GT terms related to ragweed pollen allergy in American and European Union countries with a known ragweed pollen season. Our aim was to assess seasonality and the terms needed to perform the GT searches and to compare these during the spring and summer pollen seasons. We examined GT queries from January 1, 2011, to January 4, 2017. We included 15 countries with a known ragweed pollen season and used the standard 5-year GT graphs. We used the GT translation for all countries and the untranslated native terms for each country. The results of "pollen," "ragweed," and "allergy" searches differed between countries, but "ragweed" was clearly identified in 12 of the 15 countries. There was considerable heterogeneity of findings when the GT translation was used. For Croatia, Hungary, Romania, Serbia, and Slovenia, the GT translation was inappropriate. The country patterns of "pollen," "hay fever," and "allergy" differed in 8 of the 11 countries with identified "ragweed" queries during the spring and the summer, indicating that the perception of tree and grass pollen allergy differs from that of ragweed pollen. To investigate ragweed pollen allergy using GT, the term "ragweed" as a plant is required and the translation of "ragweed" in the native language needed. © 2018 S. Karger AG, Basel.

  17. Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus)

    Energy Technology Data Exchange (ETDEWEB)

    Christian, K.; Tracy, C.R.; Porter, W.P.

    1983-06-01

    Seasonal differences in the body temperatures (T/sub b/) of free-ranging Galapagos land iguanas (Conolophus pallidus) were detected by temperature sensitive telemetry transmitters. Midday T/sub b/'s of iguanas average 4.4/sup 0/C lower in the Garua (cool) season than in the Hot season. Measured T/sub b/'s and those predicted from biophysical models permitted the following conclusions: (1) lower T/sub b/'s during the Garua season represent an active shift in thermoregulation by the iguanas rather than a passive result of a cooler season; (2) the average midday T/sub b/ selected by the iguanas in either season is the T/sub b/ that allows maintenance of a constant T/sub b/ for the longest possible portion of the day; (3) by exploiting the warmer microclimate created by a cliff face, the iguanas are able to maintain a constant T/sub b/ for a full hour longer than they could elsewhere in their home range. Census data demonstrated that the iguanas exploited the warmer microclimate created by the cliff extensively during the Garua season, and the cliff face was visited by the iguanas relatively infrequently during the Hot season. Thus, the exploitation of the microclimate created by the cliff results in seasonal differences in the pattern of space utilization within the home ranges of the iguanas. Within the Garua season the iguanas moved away from the cliff more often on sunny days than during cloudy days. It is concluded that the physical environment is an important determinant of patterns of space utilization both within and between seasons.

  18. Trophic roles of scavenger beetles in relation to decomposition stages and seasons

    Directory of Open Access Journals (Sweden)

    Noelia I. Zanetti

    2015-06-01

    Full Text Available Carcasses represent a trophic and reproductive resource or shelter for arthropods, which are a representative component of the decomposition process. Four experiments, one per season, were conducted in a semi-rural area of Bahía Blanca, Argentina, to study the trophic roles of cadaveric beetles, evaluating the abundance, composition and dominance during all decomposition stages and seasons. Species of necrophagous, necrophilous and omnivorous habits were found. Abundance, composition and dominance of beetles in relation to their trophic roles changed according to seasons and decomposition stages. Guilds and patterns of succession were established in relation to those periods. Trophic roles could be an indicator of beetle associations with decomposition stages and seasons.

  19. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    Science.gov (United States)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  20. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality

    Science.gov (United States)

    2012-01-01

    Background More people die in the winter from cardiac disease, and there are competing hypotheses to explain this. The authors conducted a study in 48 US cities to determine how much of the seasonal pattern in cardiac deaths could be explained by influenza epidemics, whether that allowed a more parsimonious control for season than traditional spline models, and whether such control changed the short term association with temperature. Methods The authors obtained counts of daily cardiac deaths and of emergency hospital admissions of the elderly for influenza during 1992–2000. Quasi-Poisson regression models were conducted estimating the association between daily cardiac mortality, and temperature. Results Controlling for influenza admissions provided a more parsimonious model with better Generalized Cross-Validation, lower residual serial correlation, and better captured Winter peaks. The temperature-response function was not greatly affected by adjusting for influenza. The pooled estimated increase in risk for a temperature decrease from 0 to −5°C was 1.6% (95% confidence interval (CI) 1.1-2.1%). Influenza accounted for 2.3% of cardiac deaths over this period. Conclusions The results suggest that including epidemic data explained most of the irregular seasonal pattern (about 18% of the total seasonal variation), allowing more parsimonious models than when adjusting for seasonality only with smooth functions of time. The effect of cold temperature is not confounded by epidemics. PMID:23025494

  1. A Principal Component Analysis (PCA Approach to Seasonal and Zooplankton Diversity Relationships in Fishing Grounds of Mannar Gulf, India

    Directory of Open Access Journals (Sweden)

    Selvin J. PITCHAIKANI

    2017-06-01

    Full Text Available Principal component analysis (PCA is a technique used to emphasize variation and bring out strong patterns in a dataset. It is often used to make data easy to explore and visualize. The primary objective of the present study was to record information of zooplankton diversity in a systematic way and to study the variability and relationships among seasons prevailed in Gulf of Mannar. The PCA for the zooplankton seasonal diversity was investigated using the four seasonal datasets to understand the statistical significance among the four seasons. Two different principal components (PC were segregated in all the seasons homogeneously. PCA analyses revealed that Temora turbinata is an opportunistic species and zooplankton diversity was significantly different from season to season and principally, the zooplankton abundance and its dynamics in Gulf of Mannar is structured by seasonal current patterns. The factor loadings of zooplankton for different seasons in Tiruchendur coastal water (GOM is different compared with the Southwest coast of India; particularly, routine and opportunistic species were found within the positive and negative factors. The copepods Acrocalanus gracilis and Acartia erythrea were dominant in summer and Southwest monsoon due to the rainfall and freshwater discharge during the summer season; however, these species were replaced by Temora turbinata during Northeast monsoon season.

  2. Seasonality of Yersinia enterocolitica bioserotype 1B/O:8 infections in Poland.

    Science.gov (United States)

    Rastawicki, W; Szych, J; Rokosz, N; Zacharczuk, K; Gierczyński, R

    2013-10-01

    Both serological and bacteriological investigations revealed a cyclic, seasonal pattern of Yersinia enterocolitica 1B/O8 infections in Poland during the years 2008–2011. A large increase in incidence was observed in the second quarter and a decrease in the third quarter of each year. Such seasonal changes were not seen in the case of infections caused by the other enteropathogenic Yersinia bioserotypes.

  3. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    Science.gov (United States)

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  4. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau.

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-15

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations show a winter (November-February) high (413.2ngm -3 ) and spring (March-June) low (139.1ngm -3 ) at Ranwu, but in contrast a winter low and spring high at Beiluhe (204.8 and 621.6ngm -3 , respectively). By examining the meteorological conditions at various scales, we found that the monthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. The winter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwu sampling site showed a significant diurnal cycle with a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Two distinct patterns of seasonal variation of airborne black carbon over Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, Baiqing; Wang, Ninglian; Cao, Junji; Tie, Xuexi; Wang, Hailong; Zhu, Chongshu; Yang, Wei

    2016-12-01

    Airborne black carbon (BC) mass concentrations were measured from November 2012 to June 2013 at Ranwu and Beiluhe, located in the southeastern and central Tibetan Plateau, respectively. Monthly mean BC concentrations showawinter (November–February) high (413.2 ng m$-$3) and spring (March–June) low(139.1 ng m$-$3) at Ranwu, but in contrast awinter lowand spring high at Beiluhe (204.8 and 621.6 ng m$-$3, respectively). By examining the meteorological conditions at various scales, we found that themonthly variation of airborne BC over the southeastern Tibetan Plateau (TP) was highly influenced by regional precipitation and over the hinterland by winds. Local precipitation at both sites showed little impact on the seasonal variation of airborne BC concentrations. Potential BC source regions are identified using air mass backward trajectory analysis. At Ranwu, BC was dominated by the air masses from the northeastern India and Bangladesh in both winter and spring, whereas at Beiluhe it was largely contributed by air masses from the south slope of Himalayas in winter, and from the arid region in the north of the TP in spring. Thewinter and spring seasonal peak of BC in the southern TP is largely contributed by emissions from South Asia, and this seasonal variation is heavily influenced by the regional monsoon. In the northern TP, BC had high concentrations during spring and summer seasons, which is very likely associated with more efficient transport of BC over the arid regions on the north of Tibetan Plateau and in Central Asia. Airborne BC concentrations at the Ranwusampling site showed a significant diurnal cyclewith a peak shortly after sunrise followed by a decrease before noon in both winter and spring, likely shaped by local human activities and the diurnal variation of wind speed. At the Beiluhe sampling site, the diurnal variation of BC is different and less distinct.

  6. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    Directory of Open Access Journals (Sweden)

    Mark A Hayes

    Full Text Available Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus, a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  7. Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development.

    Science.gov (United States)

    Hayes, Mark A; Cryan, Paul M; Wunder, Michael B

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  8. Seasonally-dynamic presence-only species distribution models for a cryptic migratory bat impacted by wind energy development

    Science.gov (United States)

    Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.

    2015-01-01

    Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.

  9. Seasonal variation in food supply and breeding success in European Coots Fulica atra

    NARCIS (Netherlands)

    Brinkhof, M.W.G.

    1997-01-01

    Chick survival in the European Coot typically shows a convex seasonal pattern. Previous experiments revealed that this pattern is directly linked to hatching date and that food supply within the first ten days after hatching is a causal factor in this relationship. However, the precise mechanism

  10. Seasonal variation in internet keyword searches: a proxy assessment of sex mating behaviors.

    Science.gov (United States)

    Markey, Patrick M; Markey, Charlotte N

    2013-05-01

    The current study investigated seasonal variation in internet searches regarding sex and mating behaviors. Harmonic analyses were used to examine the seasonal trends of Google keyword searches during the past 5 years for topics related to pornography, prostitution, and mate-seeking. Results indicated a consistent 6-month harmonic cycle with the peaks of keyword searches related to sex and mating behaviors occurring most frequently during winter and early summer. Such results compliment past research that has found similar seasonal trends of births, sexually transmitted infections, condom sales, and abortions.

  11. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Flore Samaran

    Full Text Available Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda populations while the fourth is the Antarctic blue whale (B.m. intermedia. Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.

  12. Quantitative assessment of breast density from digitized mammograms into Tabar's patterns

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, N [Medical Technology Division, Malaysian Institute for Nuclear Technology Research (MINT) 43000 Kajang (Malaysia); Ng, K-H [Department of Radiology, University of Malaya, 50603 Kuala Lumpur (Malaysia); Looi, L-M [Department of Pathology, University of Malaya, 50603 Kuala Lumpur (Malaysia); McLean, D [Medical Physics Department, Westmead Hospital, Sydney, NSW 2145 (Australia); Zulfiqar, A [Department of Radiology, Hospital Universiti Kebangsaan Malaysia, 56000 Malaysia, Kuala Lumpur, Malaysia (Malaysia); Tan, S-P [Department of Radiology, Hospital Universiti Kebangsaan Malaysia, 56000 Malaysia, Kuala Lumpur, Malaysia (Malaysia); Liew, W-F [Department of Radiology, Hospital Universiti Kebangsaan Malaysia, 56000 Malaysia, Kuala Lumpur, Malaysia (Malaysia); Shantini, A [Department of Radiology, Kuala Lumpur Hospital, 50586 Kuala Lumpur (Malaysia); Ranganathan, S [Department of Radiology, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2006-11-21

    We describe a semi-automated technique for the quantitative assessment of breast density from digitized mammograms in comparison with patterns suggested by Tabar. It was developed using the MATLAB-based graphical user interface applications. It is based on an interactive thresholding method, after a short automated method that shows the fibroglandular tissue area, breast area and breast density each time new thresholds are placed on the image. The breast density is taken as a percentage of the fibroglandular tissue to the breast tissue areas. It was tested in four different ways, namely by examining: (i) correlation of the quantitative assessment results with subjective classification, (ii) classification performance using the quantitative assessment technique, (iii) interobserver agreement and (iv) intraobserver agreement. The results of the quantitative assessment correlated well (r{sup 2} = 0.92) with the subjective Tabar patterns classified by the radiologist (correctly classified 83% of digitized mammograms). The average kappa coefficient for the agreement between the readers was 0.63. This indicated moderate agreement between the three observers in classifying breast density using the quantitative assessment technique. The kappa coefficient of 0.75 for intraobserver agreement reflected good agreement between two sets of readings. The technique may be useful as a supplement to the radiologist's assessment in classifying mammograms into Tabar's pattern associated with breast cancer risk.

  13. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  14. Seasonal pattern of Fasciola hepatica antibodies in dairy herds in Northern Germany.

    Science.gov (United States)

    Kuerpick, Birte; Schnieder, Thomas; Strube, Christina

    2012-09-01

    Fasciolosis, caused by the liver fluke Fasciola hepatica, is one of the most important parasitoses in cattle farming worldwide. In dairy cows, the trematode leads to economic losses due to decreased milk yield, a negative impact on reproduction parameters, and liver condemnations. In the present study, the seasonal patterns of F. hepatica antibodies in bulk-tank milk from dairy herds located in East Frisia, a region of the federal state Lower Saxony in the north of Germany, were investigated. This region was chosen since it is known as a high risk area for fluke infections due to its coastal location at the North Sea with the consequence of rather moist pastures. Between 669 and 868 bulk-tank milk samples were collected in January, September and November 2008 and 2010, respectively, and analysed for antibodies against F. hepatica with an in-house ELISA based on excretory-secretory antigens of the liver fluke. The overall East Frisian prevalence was 49.1%, 57.1% and 53.9% in January, September and November 2008 and 45.1%, 49.5% and 48.4% in 2010. From a number of 606 farms, which were sampled in all six investigated months, 34.5% of the farms continued to remain positive, whereas 30.9% continued to remain negative. A percentage of 69.1% (419 farms) were positive on at least one sampling occasion during the study period. The distributions of optical density ratio (ODR) values were skewed to the left but showed a second, lower peak in a high ODR range. Statistical analysis revealed a significant difference concerning the prevalence increase from January to September 2008. Furthermore, the prevalence decrease from September as well as November 2008 to these months in 2010 was significantly different, what might result from a more frequent use of anthelminthics or different climatic conditions.

  15. Blood indicators of seasonal metabolic patterns in captive adult gray wolves

    Science.gov (United States)

    Seal, U.S.; Mech, L.D.

    1983-01-01

    Blood samples and physical data were collected weekly from a colony of gray wolves (Canis lupus) maintained under natural weather arid light conditions. Sampling over 33 continuous months indicated that hemoglobin, hematocrit, red blood cells, mean corpuscular hemoglobin concentration (MCHC), and thyroxine exhibited consistent circannual patterns of variation in both males and females. Hemoglobin levels peaked at 15-16 g/dl in January in females and at 16-17 g/dl in February in males, and were lowest in August at 10.5-11.5 g/dl (P patterns of hematocrit, red blood cells, and MCHC were similarly timed. Females also had a cyclic pattern of white blood cell counts and body weight; their weight peaked in early February and was lowest in August (P pattern.

  16. Pattern of diseases among visitors to Mina health centers during the Hajj season, 1429 H (2008 G).

    Science.gov (United States)

    Alzahrani, Abdullah G; Choudhry, Abdul Jamil; Al Mazroa, Mohammad A; Turkistani, Abdul Hafiz M; Nouman, Ghassan S; Memish, Ziad A

    2012-03-01

    While performing the Hajj, hajjis face different risks related to the environment, their behaviors and their health conditions that can result in a variety of diseases. The objective of this study was to determine the pattern of diseases among pilgrims seeking medical services in Mina primary health care centers (PHCCs) during the Hajj season in 1429 (2008). This is a descriptive study based on the medical records of a random sample of 4136 patients who attended 13 randomly selected Mina PHCCs from 8 to 12 Dhu-Alhijja, 1429 H (6-10 December 2008). The majority of the patients were men (70.7%), and most of the patients were between 45 and 64 years of age (42.8%). One-fifth (20.2%) of the patients suffered from multiple diseases. Respiratory diseases were the most common (60.8%), followed by musculoskeletal (17.6%), skin (15.0%) and gastrointestinal (13.1%) diseases. Diabetes, asthma and hypertension each constituted less than 3% of the total diseases. Respiratory diseases were the most common independent of nationality or the day of visit, while the frequency of the other diseases varied according to nationality and the day of visit. The most frequently prescribed drugs were analgesics, antipyretics, antibiotics and cough syrups. This study describes the pattern of diseases among pilgrims attending Mina PHCCs, which may aid in providing the best possible health care services to pilgrims. Copyright © 2011 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  17. Seasonality in the Austrian Economy: Common Seasonals and Forecasting

    OpenAIRE

    Kunst, Robert M.

    1992-01-01

    Abstract: Seasonal cointegration generalizes the idea of cointegration to processes with unit roots at frequencies different from 0. Here, also the dual notion of common trends, "common seasonals", is adopted for the seasonal case. Using a five-variable macroeconomic core system of the Austrian economy, it is demonstrated how common seasonals and seasonal cointegrating vectors look in practice. Statistical tests provide clear evidence on seasonal cointegration in the system. However, it is sh...

  18. Seasonal variations of neuromotor development by 14 months of age: Hamamatsu Birth Cohort for mothers and children (HBC Study.

    Directory of Open Access Journals (Sweden)

    Kenji J Tsuchiya

    Full Text Available The present study aimed at investigating whether neuromotor development, from birth to 14 months of age, shows seasonal, cyclic patterns in association with months of birth. Study participants were 742 infants enrolled in the Hamamatsu Birth Cohort (HBC Study and followed-up from birth to the 14th month of age. Gross motor skills were assessed at the ages of 6, 10, and 14 months, using Mullen Scales of Early Learning. The score at each assessment was regressed onto a trigonometric function of months of birth, with an adjustment for potential confounders. Gross motor scores at the 6th and 10th months showed significant 1-year-cycle variations, peaking among March- and April-born infants, and among February-born infants, respectively. Changes in gross motor scores between the 10th and 14th months also showed a cyclic variation, peaking among July- and August-born infants. Due to this complementary effect, gross motor scores at the 14th month did not show seasonality. Neuromotor development showed cyclic seasonality during the first year of life. The effects brought about by month of birth disappeared around 1 year of age, and warmer months seemed to accelerate the neuromotor development.

  19. Particulate trace metals in Cochin backwaters: Distribution of seasonal indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; Jayalakshmy, K.V.; Joseph, T.

    that surface distribution pattern of the trace metal concentration of cobalt, nickel and iron was almost similar at the four stations thereby stressing the fact that seasonal fluctuations contributed a major part in the surface distribution of these metals...

  20. Analysis of seasonal, diurnal, and noctural growth patterns of young longleaf pine

    Science.gov (United States)

    John C. Gilbert; Ralph S. Meldahl; John S. Kush; William D. Boyer

    2006-01-01

    Forty longleaf pine (Pinus palustris Mill.) trees initially ranging from 1 to 1.5 m in height were measured on the Escambia Experimental Forest from 1969 through 1980. The trees were evenly divided between two soil types. From 1969 through 1970, height and diameter measurements were recorded one to four times weekly during the growing seasons and...

  1. Assessment of GloSea4 seasonal forecasts for SADC and the global oceans

    CSIR Research Space (South Africa)

    Landman, WA

    2012-10-01

    Full Text Available totals during the austral spring (SON), mid-summer (DJF) and autumn (MAM) seasons in the region, and by testing for monthly sea-surface temperature anomalies during mid-summer. The model’s ability to simulate the region’s intra-seasonal rainfall and low...

  2. Seasonal temperature prediction skill over Southern Africa and human health

    CSIR Research Space (South Africa)

    Lazenby, MJ

    2014-10-01

    Full Text Available An assessment of probabilistic prediction skill of seasonal temperature extremes over Southern Africa is presented. Verification results are presented for six run-on seasons; September to November, October to December, November to January, December...

  3. Activity patterns of free-ranging koalas (Phascolarctos cinereus revealed by accelerometry.

    Directory of Open Access Journals (Sweden)

    Michelle A Ryan

    Full Text Available An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting and active (grooming, feeding and moving behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA] for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

  4. Activity patterns of free-ranging koalas (Phascolarctos cinereus) revealed by accelerometry.

    Science.gov (United States)

    Ryan, Michelle A; Whisson, Desley A; Holland, Greg J; Arnould, John P Y

    2013-01-01

    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

  5. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    Science.gov (United States)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  6. Seasonal dependence of high-latitude electric fields

    International Nuclear Information System (INIS)

    de la Beaujardiere, O.; Leger, C.; Alcayde, D.; Fontanari, J.

    1991-01-01

    The seasonal dependence of the high-latitude electric field was investigated using Sondrestrom incoherent scatter radar data. Average ExB drifts were derived from 5 years of measurements centered around solar minimum. The electrostatic potentials that best fit the observed average electric field were calculated. It was found that the large-scale convection pattern significantly changes with season. This change involves the overall shape of the convection pattern, as well as the electric field intensity, and thus the total dawn-dusk potential across the polar cap. The cross polar cap potential drop is largest in fall, followed by winter, spring and summer. The small difference found between the summer and winter cross polar cap potential can be attributed to differing field-aligned potential drops. In view of the well-known relationship between field-aligned currents and parallel potential drop, this is consistent with the observations that Birkeland currents are larger in the summer than in winter. Changes in the overall shape of the convection pattern are consistent with the simple notion that the whole pattern is shifted toward the nightside as well as, to a lesser extent, toward the dawnside in summer as compared to winter. This assumption is based on the following observed effects: (1) The rotation of the overall convection pattern toward earlier local times with respect to the noon-midnight direction is maximum for summer on the dayside. (2) On the nightside, the Harang discontinuity is typically located within the radar field of view (Λ=67 to 82) in the winter averaged patterns, but it is equatorward of the field of view in summer. (3) The line that joins the dawn and dusk potential maxima is shifted toward the midnight sector in summer as compared to winter by about 5 degree. (4) In the dawn cell, the latitude of the convection reversal is the lowest during summer; in the dusk cell the latitude of the reversal is the lowest during winter

  7. Seasonal pattern of infestation by the carob moth Ectomyelois ceratoniae in pomegranate cultivars

    NARCIS (Netherlands)

    Hosseini, S.A.; Goldansaz, S.H.; Fotoukkiaii, S.M.; Menken, S.B.J.; Groot, A.T.

    2017-01-01

    Pomegranate (Punica granatum L.) orchards in the Middle East are typically composed of a mix of different cultivars in which variation in fruit infestation by carob moth Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae) has been observed. However, seasonal variation in infestation and

  8. Seasonal variation in human reproduction: environmental factors.

    Science.gov (United States)

    Bronson, F H

    1995-06-01

    Almost all human populations exhibit seasonal variation in births, owing mostly to seasonal variation in the frequency of conception. This review focuses on the degree to which environmental factors like nutrition, temperature and photoperiod contribute to these seasonal patterns by acting directly on the reproductive axis. The reproductive strategy of humans is basically that of the apes: Humans have the capacity to reproduce continuously, albeit slowly, unless inhibited by environmental influences. Two, and perhaps three, environmental factors probably act routinely as seasonal inhibitors in some human populations. First, it seems likely that ovulation is regulated seasonally in populations experiencing seasonal variation in food availability. More specifically, it seems likely that inadequate food intake or the increased energy expenditure required to obtain food, or both, can delay menarche, suppress the frequency of ovulation in the nonlactating adult, and prolong lactational amenorrhea in these populations on a seasonal basis. This action is most easily seen in tropical subsistence societies where food availability often varies greatly owing to seasonal variation in rainfall; hence births in these populations often correlate with rainfall. Second, it seems likely that seasonally high temperatures suppress spermatogenesis enough to influence the incidence of fertilization in hotter latitudes, but possibly only in males wearing clothing that diminishes scrotal cooling. Since most of our knowledge about this phenomenon comes from temperate latitudes, the sensitivity of spermatogenesis in both human and nonhuman primates to heat in the tropics needs further study. It is quite possible that high temperatures suppress ovulation and early embryo survival seasonally in some of these same populations. Since we know less than desired about the effect of heat stress on ovulation and early pregnancy in nonhuman mammals, and nothing at all about it in humans or any of the

  9. Physiological implications of seasonal variation in membrane-associated calcium in red spruce mesophyll cells

    Science.gov (United States)

    D.H. DeHayes; P.G. Schaberg; G.J. Hawley; C.H. Borer; J.R. Cumming; J.R. Strimbeck

    1997-01-01

    We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from...

  10. Seasonal patterns of seismicity and deformation at the Alutu geothermal reservoir, Ethiopia, induced by hydrological loading

    Science.gov (United States)

    Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias

    2018-05-01

    Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.

  11. Effects of thermal discharges on the seasonal patterns of nutrient concentrations in brackish water

    International Nuclear Information System (INIS)

    Nitchals, D.

    1985-05-01

    Massiv quantities of water are used in power plant cooling systems, especially nuclear power plants, and are often returned to the donor ecosystem at significantly elevated temperatures. Few studies of the environmental effects of such a situation have looked extensively at the effects on nutrients in the water. The present study examined the effects of cooling water discharges from a nuclear power plant on the seasonal nutrient patterns within and outside a brackish water, research artificial lake, the 0.9 km 2 Biotest Basin on Sweden's east coast. The lack of ice cover in winter is the most apparent effect. In a portion of the lake with a relatively long water residence time, on the order of a few days, the vernal nutrient depletion of phosphate, nitrate, and nitrite apparently began sooner than outside the lake. Benthic influence on nutrient concentrations in the free water mass may be very significant in coastal areas receiving heat inputs. This study's data apparently support the conclusion by other researchers that phosphorus may be the nutrient limiting algal growth in the spring in this area of the central Baltic Sea. Determination of a nutrient budget for the Basin was unachievable because inlet and outlet nutrient concentrations were insufficiently different to override experimental variation. Implications for management of heat inputs to coastal ecosystems include avoidance of areas with high nutrient content, rich organic sediment, or poor flushing. (author)

  12. Seasonal carbohydrate storage and mobilization in bearing and non-bearing pistachio (Pistacia vera) trees.

    Science.gov (United States)

    Spann, Timothy M; Beede, Robert H; Dejong, Theodore M

    2008-02-01

    We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission.

  13. Assessment of the information content of patterns: an algorithm

    Science.gov (United States)

    Daemi, M. Farhang; Beurle, R. L.

    1991-12-01

    A preliminary investigation confirmed the possibility of assessing the translational and rotational information content of simple artificial images. The calculation is tedious, and for more realistic patterns it is essential to implement the method on a computer. This paper describes an algorithm developed for this purpose which confirms the results of the preliminary investigation. Use of the algorithm facilitates much more comprehensive analysis of the combined effect of continuous rotation and fine translation, and paves the way for analysis of more realistic patterns. Owing to the volume of calculation involved in these algorithms, extensive computing facilities were necessary. The major part of the work was carried out using an ICL 3900 series mainframe computer as well as other powerful workstations such as a RISC architecture MIPS machine.

  14. Contrasting latitudinal patterns of life-history divergence in two genera of new world thrushes (Turdinae)

    Science.gov (United States)

    Boyce, Andy J.; Martin, Thomas E.

    2017-01-01

    Several long-standing hypotheses have been proposed to explain latitudinal patterns of life-history strategies. Here, we test predictions of four such hypotheses (seasonality, food limitation, nest predation and adult survival probability) by examining life-history traits and age-specific mortality rates of several species of thrushes (Turdinae) based on field studies at temperate and tropical sites and data gathered from the literature. Thrushes in the genus Catharus showed the typical pattern of slower life-history strategies in the tropics while co-occuring Turdus thrushes differed much less across latitudes. Seasonality is a broadly accepted hypothesis for latitudinal patterns, but the lack of concordance in latitudinal patterns between co-existing genera that experience the same seasonal patterns suggests seasonality cannot fully explain latitudinal trait variation in thrushes. Nest-predation also could not explain patterns based on our field data and literature data for these two genera. Total feeding rates were similar, and per-nestling feeding rates were higher at tropical latitudes in both genera, suggesting food limitation does not explain trait differences in thrushes. Latitudinal patterns of life histories in these two genera were closely associated with adult survival probability. Thus, our data suggest that environmental influences on adult survival probability may play a particularly strong role in shaping latitudinal patterns of life-history traits.

  15. Intrinsic and extrinsic drivers of succession: Effects of habitat age and season on an aquatic insect community.

    Science.gov (United States)

    Murrell, Ebony G; Ives, Anthony R; Juliano, Steven A

    2014-06-01

    1. Classical studies of succession, largely dominated by plant community studies, focus on intrinsic drivers of change in community composition, such as interspecific competition and changes to the abiotic environment. They often do not consider extrinsic drivers of colonization, such as seasonal phenology, that can affect community change. 2. We investigated both intrinsic and extrinsic drivers of succession for dipteran communities that occupy ephemeral pools, such as those in artificial containers. By initiating communities at different times in the season and following them over time, we compared the relative importance of intrinsic (i.e., habitat age) vs. extrinsic (i.e., seasonal phenology) drivers of succession. 3. We placed water-filled artificial containers in a deciduous forest with 20 containers initiated in each of three months. Containers were sampled weekly to assess community composition. Repeated-measures mixed-effects analysis of community correspondence analysis (CA) scores enabled us to partition intrinsic and extrinsic effects on succession. Covariates of temperature and precipitation were also tested. 4. Community trajectories (as defined by CA) differed significantly with habitat age and season, indicating that both intrinsic and extrinsic effects influence succession patterns. Comparisons of AICcs showed that habitat age was more important than season for species composition. Temperature and precipitation did not explain composition changes beyond those explained by habitat age and season. 5. Quantification of relative strengths of intrinsic and extrinsic effects on succession in dipteran and other ephemeral communities enables us to disentangle processes that must be understood for predicting changes in community composition.

  16. Discovery of temporal and disease association patterns in condition-specific hospital utilization rates.

    Directory of Open Access Journals (Sweden)

    Julian S Haimovich

    Full Text Available Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to apply a data-driven approach to characterize temporal variation in condition-specific hospitalizations. Using a dataset of 34 million inpatient discharges gathered from hospitals in New York State from 2008-2011, we grouped all discharges into 263 clinical conditions based on the principal discharge diagnosis using Clinical Classification Software in order to mitigate the limitation that administrative claims data reflect clinical conditions to varying specificity. After applying Seasonal-Trend Decomposition by LOESS, we estimated the periodicity of the seasonal component using spectral analysis and applied harmonic regression to calculate the amplitude and phase of the condition's seasonal utilization pattern. We also introduced four new indices of temporal variation: mean oscillation width, seasonal coefficient, trend coefficient, and linearity of the trend. Finally, K-means clustering was used to group conditions across these four indices to identify common temporal variation patterns. Of all 263 clinical conditions considered, 164 demonstrated statistically significant seasonality. Notably, we identified conditions for which seasonal variation has not been previously described such as ovarian cancer, tuberculosis, and schizophrenia. Clustering analysis yielded three distinct groups of conditions based on multiple measures of seasonal variation. Our study was limited to New York State and results may not directly apply to other regions with distinct climates and health burden. A substantial proportion of medical conditions, larger than previously described, exhibit seasonal variation in hospital utilization. Moreover, the application of clustering

  17. Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China

    Science.gov (United States)

    Zhu, Xuxu; Gao, Aiguo; Lin, Jianjie; Jian, Xing; Yang, Yufeng; Zhang, Yanpo; Hou, Yuting; Gong, Songbai

    2017-09-01

    With the aim of elucidating the spatial and seasonal behaviors of rare earth elements (REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3-785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations (ΣREE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow (SHF), normal flow (NF), low flow (LF) and high flow (HF) season, respectively. The R (L/M) and R (H/M) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEs-enrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fluctuate and positively correlate to salinity in estuary, probably because of the geochemical

  18. [On the seasonality of dermatoses: a retrospective analysis of search engine query data depending on the season].

    Science.gov (United States)

    Köhler, M J; Springer, S; Kaatz, M

    2014-09-01

    The volume of search engine queries about disease-relevant items reflects public interest and correlates with disease prevalence as proven by the example of flu (influenza). Other influences include media attention or holidays. The present work investigates if the seasonality of prevalence or symptom severity of dermatoses correlates with search engine query data. The relative weekly volume of dermatological relevant search terms was assessed by the online tool Google Trends for the years 2009-2013. For each item, the degree of seasonality was calculated via frequency analysis and a geometric approach. Many dermatoses show a marked seasonality, reflected by search engine query volumes. Unexpected seasonal variations of these queries suggest a previously unknown variability of the respective disease prevalence. Furthermore, using the example of allergic rhinitis, a close correlation of search engine query data with actual pollen count can be demonstrated. In many cases, search engine query data are appropriate to estimate seasonal variability in prevalence of common dermatoses. This finding may be useful for real-time analysis and formation of hypotheses concerning pathogenetic or symptom aggravating mechanisms and may thus contribute to improvement of diagnostics and prevention of skin diseases.

  19. Degradation patterns of natural and synthetic textiles on a soil surface during summer and winter seasons studied using ATR-FTIR spectroscopy

    Science.gov (United States)

    Ueland, Maiken; Howes, Johanna M.; Forbes, Shari L.; Stuart, Barbara H.

    2017-10-01

    Textiles are a valuable source of forensic evidence and the nature and condition of textiles collected from a crime scene can assist investigators in determining the nature of the death and aid in the identification of the victim. Until now, much of the knowledge of textile degradation in forensic contexts has been based on the visual inspection of material collected from soil environments. The purpose of the current study was to investigate the potential of a more quantitative approach to the understanding of forensic textile degradation through the application of infrared spectroscopy. Degradation patterns of natural and synthetic textile materials as they were subjected to a natural outdoor environment in Australia were investigated. Cotton, polyester and polyester - cotton blend textiles were placed on a soil surface during the summer and winter seasons and were analysed over periods 1 and 1.5 years, respectively, and examined using attenuated total reflectance (ATR) spectroscopy. Statistical analysis of the spectral data obtained for the cotton material correlated with visual degradation and a difference in the onset of degradation between the summer and winter season was revealed. The synthetic material did not show any signs of degradation either visually or statistically throughout the experimental period and highlighted the importance of material type in terms of preservation. The cotton section from the polyester - cotton blend samples was found to behave in a similar manner to that of the 100% cotton samples, however principal component analysis (PCA) demonstrated that the degradation patterns were less distinct in both the summer and winter trial for the blend samples. These findings indicated that the presence of the synthetic material may have inhibited the degradation of the natural material. The use of statistics to analyse the spectral data obtained for textiles of forensic interest provides a better foundation for the interpretation of the data

  20. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis.

    Directory of Open Access Journals (Sweden)

    Ilona Carneiro

    Full Text Available BACKGROUND: There is evidence that the age-pattern of Plasmodium falciparum malaria varies with transmission intensity. A better understanding of how this varies with the severity of outcome and across a range of transmission settings could enable locally appropriate targeting of interventions to those most at risk. We have, therefore, undertaken a pooled analysis of existing data from multiple sites to enable a comprehensive overview of the age-patterns of malaria outcomes under different epidemiological conditions in sub-Saharan Africa. METHODOLOGY/PRINCIPAL FINDINGS: A systematic review using PubMed and CAB Abstracts (1980-2005, contacts with experts and searching bibliographies identified epidemiological studies with data on the age distribution of children with P. falciparum clinical malaria, hospital admissions with malaria and malaria-diagnosed mortality. Studies were allocated to a 3x2 matrix of intensity and seasonality of malaria transmission. Maximum likelihood methods were used to fit five continuous probability distributions to the percentage of each outcome by age for each of the six transmission scenarios. The best-fitting distributions are presented graphically, together with the estimated median age for each outcome. Clinical malaria incidence was relatively evenly distributed across the first 10 years of life for all transmission scenarios. Hospital admissions with malaria were more concentrated in younger children, with this effect being even more pronounced for malaria-diagnosed deaths. For all outcomes, the burden of malaria shifted towards younger ages with increasing transmission intensity, although marked seasonality moderated this effect. CONCLUSIONS: The most severe consequences of P. falciparum malaria were concentrated in the youngest age groups across all settings. Despite recently observed declines in malaria transmission in several countries, which will shift the burden of malaria cases towards older children, it

  1. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    KAUST Repository

    Gasol, Josep M.

    2016-10-11

    phytoplankton composition played a minor role. Daily integrated primary production was fairly constant throughout the year: similar to previous oxygen-based estimates in winter but considerably lower than these in summer. The difference between 14C- and oxygen-based estimates of primary production could be explained by community respiration. Annually integrated primary production amounted to a rather modest 48 g C m–2 yr–1 (equivalent to 130 mg C m–2 d–1). Although no interannual patterns were detected, our work soundly establishes the seasonal trends for the coastal NW Mediterranean, therefore setting the basis for future detection of change.

  2. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2016-09-01

    phytoplankton composition played a minor role. Daily integrated primary production was fairly constant throughout the year: similar to previous oxygen-based estimates in winter but considerably lower than these in summer. The difference between 14C- and oxygen-based estimates of primary production could be explained by community respiration. Annually integrated primary production amounted to a rather modest 48 g C m–2 yr–1 (equivalent to 130 mg C m–2 d–1. Although no interannual patterns were detected, our work soundly establishes the seasonal trends for the coastal NW Mediterranean, therefore setting the basis for future detection of change.

  3. Spider Web Pattern

    Science.gov (United States)

    2006-01-01

    A delicate pattern, like that of a spider web, appears on top of the Mars residual polar cap, after the seasonal carbon-dioxide ice slab has disappeared. Next spring, these will likely mark the sites of vents when the carbon-dioxide ice cap returns. This Mars Global Surveyor, Mars Orbiter Camera image is about 3-kilometers wide (2-miles).

  4. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. The distribution and seasonal variations of diffuse fraction

    International Nuclear Information System (INIS)

    Anane-Fenin, K.

    1989-06-01

    A moving average approach is used to develop linear and polynomial regression models for the diffuse fraction averaged over 10, 15, 20 and 30 days. The correlations do not appear to be influenced by climate conditions or altitude. It is noted that the correlations vary with season. The time-dependent variations of the diffuse fraction correlations are examined by studying the residual differences between the measured diffuse fraction and those calculated from the over-all best-fit correlation. The residuals exhibit no pronounced pattern leading to the conclusion that the observed seasonal variation is caused by air mass and water vapour and that atmospheric turbidity plays little or no part. (author). 14 refs, 9 figs, 8 tabs

  6. Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern

    Science.gov (United States)

    Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.

    2017-09-01

    Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.

  7. Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling

    International Nuclear Information System (INIS)

    Janczura, Joanna; Trück, Stefan; Weron, Rafał; Wolff, Rodney C.

    2013-01-01

    An important issue in fitting stochastic models to electricity spot prices is the estimation of a component to deal with trends and seasonality in the data. Unfortunately, estimation routines for the long-term and short-term seasonal pattern are usually quite sensitive to extreme observations, known as electricity price spikes. Improved robustness of the model can be achieved by (a) filtering the data with some reasonable procedure for outlier detection, and then (b) using estimation and testing procedures on the filtered data. In this paper we examine the effects of different treatments of extreme observations on model estimation and on determining the number of spikes (outliers). In particular we compare results for the estimation of the seasonal and stochastic components of electricity spot prices using either the original or filtered data. We find significant evidence for a superior estimation of both the seasonal short-term and long-term components when the data have been treated carefully for outliers. Overall, our findings point out the substantial impact the treatment of extreme observations may have on these issues and, therefore, also on the pricing of electricity derivatives like futures and option contracts. An added value of our study is the ranking of different filtering techniques used in the energy economics literature, suggesting which methods could be and which should not be used for spike identification. - Highlights: • First comprehensive study on the impact of spikes on seasonal pattern estimation • The effects of different treatments of spikes on model estimation are examined. • Cleaning spot prices for outliers yields superior estimates of the seasonal pattern. • Removing outliers provides better parameter estimates for the stochastic process. • Rankings of filtering techniques suggested in the literature are provided

  8. Bioburden assessment and gamma radiation inactivation patterns in parchment documents

    International Nuclear Information System (INIS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; Carolino, Maria Manuela; Portugal, António; Botelho, Maria Luísa

    2013-01-01

    Parchment documents are part of our cultural heritage and, as historical artifacts that they are, should be preserved. The aim of this study was to validate an appropriate methodology to characterize the bioburden of parchment documents, and to assess the growth and gamma radiation inactivation patterns of the microbiota present in that material. Another goal was to estimate the minimum gamma radiation dose (D min ) to be applied for the decontamination of parchment as an alternative treatment to the current toxic chemical and non-chemical decontamination methods. Two bioburden assessment methodologies were evaluated: the Swab Method (SM) and the Destructive Method (DM). The recovery efficiency of each method was estimated by artificial contamination, using a Cladosporium cladosporioides spore suspension. The parchment samples' microbiota was typified using morphological methods and the fungal isolates were identified by ITS-DNA sequencing. The inactivation pattern was assessed using the DM after exposure to different gamma radiation doses, and using C. cladosporioides as reference. Based on the applied methodology, parchment samples presented bioburden values lower than 5×10 3 CFU/cm 2 for total microbiota, and lower than 10 CFU/cm 2 for fungal propagules. The results suggest no evident inactivation trend for the natural parchment microbiota, especially regarding the fungal community. A minimum gamma radiation dose (D min ) of 5 kGy is proposed for the decontamination treatment of parchment. Determining the minimal decontamination dose in parchment is essential for a correct application of gamma radiation as an alternative decontamination treatment for this type of documents avoiding the toxicity and the degradation promoted by the traditional chemical and non-chemical treatments. - Highlights: • Characterization of the microbial population of parchment documents. • Study the inactivation pattern of parchment microbiota by gamma radiation. • Assessment of

  9. Assessing senescence patterns in populations of large mammals

    Directory of Open Access Journals (Sweden)

    Gaillard, J.-M.

    2004-06-01

    Full Text Available Theoretical models such as those of Gompertz and Weibull are commonly used to study senescence in survival for humans and laboratory or captive animals. For wild populations of vertebrates, senescence in survival has more commonly been assessed by fitting simple linear or quadratic relationships between survival and age. By using appropriate constraints on survival parameters in Capture-Mark-Recapture (CMR models, we propose a first analysis of the suitability of the Gompertz and the two-parameter Weibull models for describing aging-related mortality in free-ranging populations of ungulates. We first show how to handle the Gompertz and the two-parameter Weibull models in the context of CMR analyses. Then we perform a comparative analysis of senescence patterns in both sexes of two ungulate species highly contrasted according to the intensity of sexual selection. Our analyses provide support to the Gompertz model for describing senescence patterns in ungulates. Evolutionary implications of our results are discussed

  10. Seasonal Dependence of Geomagnetic Active-Time Northern High-Latitude Upper Thermospheric Winds

    Science.gov (United States)

    Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; Conde, Mark G.; Doornbos, Eelco; Shepherd, Gordon G.; Makela, Jonathan J.; Wu, Qian; Nieciejewski, Richard J.; Ridley, Aaron J.

    2018-01-01

    This study is focused on improving the poorly understood seasonal dependence of northern high-latitude F region thermospheric winds under active geomagnetic conditions. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. With current observational facilities, it is infeasible to construct a synoptic picture of thermospheric winds, but enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis. We use long-term data from eight ground-based and two space-based instruments to derive climatological wind patterns as a function of magnetic local time, magnetic latitude, and season. These diverse data sets possess different geometries and different spatial and solar activity coverage. The major challenge is to combine these disparate data sets into a coherent picture while overcoming the sampling limitations and biases among them. In our previous study (focused on quiet time winds), we found bias in the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) cross-track winds. Here we empirically quantify the GOCE bias and use it as a correction profile for removing apparent bias before empirical wind formulation. The assimilated wind patterns exhibit all major characteristics of high-latitude neutral circulation. The latitudinal extent of duskside circulation expands almost 10∘ from winter to summer. The dawnside circulation subsides from winter to summer. Disturbance winds derived from geomagnetic active and quiet winds show strong seasonal and latitudinal variability. Comparisons between wind patterns derived here and Disturbance Wind Model (DWM07) (which have no seasonal dependence) suggest that DWM07 is skewed toward summertime conditions.

  11. Non-Oxygenated Sesquiterpenes in the Essential Oil of Copaifera langsdorffii Desf. Increase during the Day in the Dry Season.

    Science.gov (United States)

    de Almeida, Luiz Fernando Rolim; Portella, Roberto de Oliveira; Bufalo, Jennifer; Marques, Márcia Ortiz Mayo; Facanali, Roselaine; Frei, Fernando

    2016-01-01

    The present study aimed to evaluate the effect of seasonal and diurnal events on the chemical profile of the essential oil obtained from the leaves of Copaifera langsdorffii Desf. This study was performed in a Brazilian savanna named Cerrado. We identified the best harvesting period for obtaining the highest amount of compounds used for commercial and industrial purposes. The chemical profile of the essential oils was evaluated by GC-FID and GC-MS, and the results were assessed through multivariate analyses. The data showed that the time of day and seasonal variations affect the quality of the essential oil obtained. Leaves harvested at the end of the day (5:00 pm) in the dry season resulted in richer essential oils with higher amounts of non-oxygenated sesquiterpenes. To the best of our knowledge, environmental conditions induce metabolic responses in the leaves of C. langsdorffii, which changes the patterns of sesquiterpene production. Therefore, these factors need to be considered to obtain better concentrations of bioactive compounds for pharmacological studies.

  12. Gender differences in seasonal movement of dice snakes in Histria, southeastern Romania

    Czech Academy of Sciences Publication Activity Database

    Kärvemo, S.; Carlsson, M.; Tudor, M.; Sloboda, M.; Mihalca, A. D.; Ghira, I.; Bel, L.; Modrý, David

    2011-01-01

    Roč. 18, 20 September 2011 (2011), s. 245-254 ISSN 0934-6643 Institutional support: RVO:60077344 Keywords : Squamata * Natrix tessellata * dice snake * seasonal movements * activity patterns * sex ratio Subject RIV: EG - Zoology

  13. Evaluation of a new CNRM-CM6 model version for seasonal climate predictions

    Science.gov (United States)

    Volpi, Danila; Ardilouze, Constantin; Batté, Lauriane; Dorel, Laurant; Guérémy, Jean-François; Déqué, Michel

    2017-04-01

    This work presents the quality assessment of a new version of the Météo-France coupled climate prediction system, which has been developed in the EU COPERNICUS Climate Change Services framework to carry out seasonal forecast. The system is based on the CNRM-CM6 model, with Arpege-Surfex 6.2.2 as atmosphere/land component and Nemo 3.2 as ocean component, which has directly embedded the sea-ice component Gelato 6.0. In order to have a robust diagnostic, the experiment is composed by 60 ensemble members generated with stochastic dynamic perturbations. The experiment has been performed over a 37-year re-forecast period from 1979 to 2015, with two start dates per year, respectively in May 1st and November 1st. The evaluation of the predictive skill of the model is shown under two perspectives: on the one hand, the ability of the model to faithfully respond to positive or negative ENSO, NAO and QBO events, independently of the predictability of these events. Such assessment is carried out through a composite analysis, and shows that the model succeeds in reproducing the main patterns for 2-meter temperature, precipitation and geopotential height at 500 hPa during the winter season. On the other hand, the model predictive skill of the same events (positive and negative ENSO, NAO and QBO) is evaluated.

  14. A methodology for investigation of the seasonal evolution in proglacial hydrograph form

    Science.gov (United States)

    Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.

    1999-11-01

    This paper advances an objective method of diurnal hydrograph classification as an aid to exploring changes in the hydrological functioning of glacierized catchments over the ablation season. The temporal sequencing of different hydrograph classes allows identification of seasonal evolution in hydrograph form and also assists delimitation of hydrologically-meaningful time periods of similar diurnal discharge response. The effectiveness of this approach is illustrated by applying it to two contrasting summer discharge records for a small cirque basin. By comparing the results with patterns of surface energy receipt and glacier ablation, the seasonally transient relative influences of: (i) surface meltwater production and (ii) meltwater routing and storage conditions within the intervening glacier drainage system in determining runoff are elucidated. The method successfully characterizes distinct seasonal-scale changes in the diurnal outflow hydrograph during the ablation-dominated 1995 melt season but is also able to reveal underlying trends and short-term fluctuations in the precipitation-dominated, poorly ablation-regulated 1996 melt season. The limitations and benefits of this hydrograph classification technique are evaluated.

  15. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers

    Science.gov (United States)

    Xing, Xiaogang; Claustre, Hervé; Wang, Haili; Poteau, Antoine; D`Ortenzio, Fabrizio

    2014-01-01

    Two autonomous profiling “Bio-Argo” floats were deployed in the northwestern and eastern sub-basins of the Mediterranean Sea in 2008. They recorded at high vertical (1 m) and temporal (5 day) resolution, the vertical distribution and seasonal variation of colored dissolved organic matter (CDOM), as well as of chlorophyll-a concentration and hydrological variables. The CDOM standing stock presented a clear seasonal dynamics with the progressive summer formation and winter destruction of subsurface CDOM maxima (YSM, for Yellow Substance Maximum). It was argued that subsurface CDOM is a by-product of phytoplankton, based on two main characteristics, (1) the YSM was located at the same depth than the deep chlorophyll maximum (DCM) and (2) the CDOM increased in summer parallels the decline in chlorophyll-a. These observations suggested an indirect but tight coupling between subsurface CDOM and phytoplankton via microbial activity or planktonic foodweb interactions. Moreover, the surface CDOM variations observed both by floats and MODIS displayed different seasonal dynamics from what recorded at subsurface one. This implies that CDOM standing stock can be hardly detected by satellite. It is worthnoting that surface CDOM was found to be more related to the sea surface temperature (SST) than chlorophyll-a concentration, suggesting its physical origin, in contrast to the biological origin of YSM and subsurface standing stocks.

  16. Seasonal variations in biochemical composition of some seaweeds from Goa coast

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan; Rajagopal, M.D.; Wafar, M.V.M.

    high in H. musciformis, whereas P. tetrastromatica, C. media and U. fasciata were rich in protein. The biochemical constituents in general did not show marked seasonal variations and it was attributed to the reproductive pattern of the algae studied...

  17. Seasonality of livebirths and climatic factors in Italian regions (1863-1933

    Directory of Open Access Journals (Sweden)

    Gabriele Ruiu

    2017-07-01

    Full Text Available Birth seasonality is a phenomenon that characterizes almost all the populations of the world. In spite of this, the causes underlying these seasonal fluctuations represent an as yet unsolved puzzle. Two main theoretical approaches have been proposed to explain birth seasonality. The first encompasses a social explanation and emphasizes the role of social, economic and cultural factors in determining the optimal moment (from a social perspective for conception (e.g., according to the cycle of agricultural workload, religious festivity, marriage seasonality, etc.. The second theoretical approach encompasses an environmental explanation and focuses on the role that climatic factors (e.g., temperature, rainfall, light intensity, etc. play in determining the optimal moment of conception from a biological perspective. Our paper may be collocated in the latter strand of the literature. The aim is to investigate the effects of temperature on conceptions, and subsequently on the seasonality of livebirths, while controlling for a possible social confounding effect, i.e. the seasonal pattern of marriage. To achieve this end, we empirically investigate the role of temperature as well as that of marriage seasonality in Italian regions for the period stretching from the Italian unification to the eve of World War II. We find that extreme temperatures (both cold and hot negatively affect the number of births. At the same time, marriage seasonality also seems to be an important explicative factor of the seasonal fluctuation of live births.

  18. Modeling and Statistical Analysis of the Spatio-Temporal Patterns of Seasonal Influenza in Israel

    Science.gov (United States)

    Katriel, Guy; Yaari, Rami; Roll, Uri; Stone, Lewi

    2012-01-01

    Background Seasonal influenza outbreaks are a serious burden for public health worldwide and cause morbidity to millions of people each year. In the temperate zone influenza is predominantly seasonal, with epidemics occurring every winter, but the severity of the outbreaks vary substantially between years. In this study we used a highly detailed database, which gave us both temporal and spatial information of influenza dynamics in Israel in the years 1998–2009. We use a discrete-time stochastic epidemic SIR model to find estimates and credible confidence intervals of key epidemiological parameters. Findings Despite the biological complexity of the disease we found that a simple SIR-type model can be fitted successfully to the seasonal influenza data. This was true at both the national levels and at the scale of single cities.The effective reproductive number Re varies between the different years both nationally and among Israeli cities. However, we did not find differences in Re between different Israeli cities within a year. R e was positively correlated to the strength of the spatial synchronization in Israel. For those years in which the disease was more “infectious”, then outbreaks in different cities tended to occur with smaller time lags. Our spatial analysis demonstrates that both the timing and the strength of the outbreak within a year are highly synchronized between the Israeli cities. We extend the spatial analysis to demonstrate the existence of high synchrony between Israeli and French influenza outbreaks. Conclusions The data analysis combined with mathematical modeling provided a better understanding of the spatio-temporal and synchronization dynamics of influenza in Israel and between Israel and France. Altogether, we show that despite major differences in demography and weather conditions intra-annual influenza epidemics are tightly synchronized in both their timing and magnitude, while they may vary greatly between years. The predominance of

  19. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease.

    Directory of Open Access Journals (Sweden)

    Carrie A Cizauskas

    Full Text Available Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP, Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity.

  20. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease.

    Science.gov (United States)

    Cizauskas, Carrie A; Turner, Wendy C; Pitts, Neville; Getz, Wayne M

    2015-01-01

    Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI) parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP), Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia) were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity.