WorldWideScience

Sample records for season climatic oscillation

  1. Seasonal predictability of the North Atlantic Oscillation

    Science.gov (United States)

    Vellinga, Michael; Scaife, Adam

    2015-04-01

    Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  2. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  3. The Response of African Land Surface Phenology to Large Scale Climate Oscillations

    Science.gov (United States)

    Brown, Molly E.; de Beurs, Kirsten; Vrieling, Anton

    2010-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa.

  4. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  5. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature

    Science.gov (United States)

    Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier

    2018-02-01

    The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.

  6. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    Science.gov (United States)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  7. Advising caution in studying seasonal oscillations in crime rates.

    Directory of Open Access Journals (Sweden)

    Kun Dong

    Full Text Available Most types of crime are known to exhibit seasonal oscillations, yet the annual variations in the amplitude of this seasonality and their causes are still uncertain. Using a large collection of data from the Houston and Los Angeles Metropolitan areas, we extract and study the seasonal variations in aggravated assault, break in and theft from vehicles, burglary, grand theft auto, rape, robbery, theft, and vandalism for many years from the raw daily data. Our approach allows us to see various long term and seasonal trends and aberrations in crime rates that have not been reported before. We then apply an ecologically motivated stochastic differential equation to reproduce the data. Our model relies only on social interaction terms, and not on any exigent factors, to reproduce both the seasonality, and the seasonal aberrations observed in our data set. Furthermore, the stochasticity in the system is sufficient to reproduce the variations seen in the seasonal oscillations from year to year. Researchers should be very careful about trying to correlate these oscillations with external factors.

  8. Climate Prediction Center - Outlooks: CFS Forecast of Seasonal Climate

    Science.gov (United States)

    National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. CFS Seasonal Climate Forecasts CFS Forecast of Seasonal Climate discontinued after October 2012. This page displays seasonal climate anomalies from the NCEP coupled forecast

  9. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2018-06-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  10. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  11. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  12. A robust empirical seasonal prediction of winter NAO and surface climate.

    Science.gov (United States)

    Wang, L; Ting, M; Kushner, P J

    2017-03-21

    A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.

  13. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  14. An empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  15. Strongly seasonal Proterozoic glacial climate in low palaeolatitudes: Radically different climate system on the pre-Ediacaran Earth

    Directory of Open Access Journals (Sweden)

    George E. Williams

    2016-07-01

    Full Text Available Proterozoic (pre-Ediacaran glaciations occurred under strongly seasonal climates near sea level in low palaeolatitudes. Metre-scale primary sand wedges in Cryogenian periglacial deposits are identical to those actively forming, through the infilling of seasonal (winter thermal contraction-cracks in permafrost by windblown sand, in present-day polar regions with a mean monthly air temperature range of 40 °C and mean annual air temperatures of −20 °C or lower. Varve-like rhythmites with dropstones in Proterozoic glacial successions are consistent with an active seasonal freeze–thaw cycle. The seasonal (annual oscillation of sea level recorded by tidal rhythmites in Cryogenian glacial successions indicates a significant seasonal cycle and extensive open seas. Palaeomagnetic data determined directly for Proterozoic glacial deposits and closely associated rocks indicate low palaeolatitudes: Cryogenian deposits in South Australia accumulated at ≤10°, most other Cryogenian deposits at 54° during Proterozoic low-latitude glaciations, whereby the equator would be cooler than the poles, on average, and global seasonality would be greatly amplified.

  16. A global empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  17. Seasonal climate prediction for North Eurasia

    International Nuclear Information System (INIS)

    Kryjov, Vladimir N

    2012-01-01

    An overview of the current status of the operational seasonal climate prediction for North Eurasia is presented. It is shown that the performance of existing climate models is rather poor in seasonal prediction for North Eurasia. Multi-model ensemble forecasts are more reliable than single-model ones; however, for North Eurasia they tend to be close to climatological ones. Application of downscaling methods may improve predictions for some locations (or regions). However, general improvement of the reliability of seasonal forecasts for North Eurasia requires improvement of the climate prediction models. (letter)

  18. Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.

    Science.gov (United States)

    Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E

    2017-07-19

    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  19. Seasonal Prediction of Taiwan's Streamflow Using Teleconnection Patterns

    Science.gov (United States)

    Chen, Chia-Jeng; Lee, Tsung-Yu

    2017-04-01

    Seasonal streamflow as an integrated response to complex hydro-climatic processes can be subject to activity of prevailing weather systems potentially modulated by large-scale climate oscillations (e.g., El Niño-Southern Oscillation, ENSO). To develop a seamless seasonal forecasting system in Taiwan, this study assesses how significant Taiwan's precipitation and streamflow in different seasons correlate with selected teleconnection patterns. Long-term precipitation and streamflow data in three major precipitation seasons, namely the spring rains (February to April), Mei-Yu (May and June), and typhoon (July to September) seasons, are derived at 28 upstream and 13 downstream catchments in Taiwan. The three seasons depict a complete wet period of Taiwan as well as many regions bearing similar climatic conditions in East Asia. Lagged correlation analysis is then performed to investigate how the precipitation and streamflow data correlate with predominant teleconnection indices at varied lead times. Teleconnection indices are selected only if they show certain linkage with weather systems and activity in the three seasons based on previous literature. For instance, the ENSO and Quasi-Biennial Oscillation, proven to influence East Asian climate across seasons and summer typhoon activity, respectively, are included in the list of climate indices for correlation analysis. Significant correlations found between Taiwan's precipitation and streamflow and teleconnection indices are further examined by a climate regime shift (CRS) test to identify any abrupt changes in the correlations. The understanding of existing CRS is useful for informing the forecasting system of the changes in the predictor-predictand relationship. To evaluate prediction skill in the three seasons and skill differences between precipitation and streamflow, hindcasting experiments of precipitation and streamflow are conducted using stepwise linear regression models. Discussion and suggestions for coping

  20. Heartbeat of the Southern Oscillation explains ENSO climatic resonances

    Science.gov (United States)

    Bruun, John T.; Allen, J. Icarus; Smyth, Timothy J.

    2017-08-01

    The El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and human activities. The up to 10 year quasi-period cycle of the El Niño and subsequent La Niña is known to be dominated in the tropics by nonlinear physical interaction of wind with the equatorial waveguide in the Pacific. Long-term cyclic phenomena do not feature in the current theory of the ENSO process. We update the theory by assessing low (>10 years) and high (features. The observational data sets of the Southern Oscillation Index (SOI), North Pacific Index Anomaly, and ENSO Sea Surface Temperature Anomaly, as well as a theoretical model all confirm the existence of long-term and short-term climatic cycles of the ENSO process with resonance frequencies of {2.5, 3.8, 5, 12-14, 61-75, 180} years. This fundamental result shows long-term and short-term signal coupling with mode locking across the dominant ENSO dynamics. These dominant oscillation frequency dynamics, defined as ENSO frequency states, contain a stable attractor with three frequencies in resonance allowing us to coin the term Heartbeat of the Southern Oscillation due to its characteristic shape. We predict future ENSO states based on a stable hysteresis scenario of short-term and long-term ENSO oscillations over the next century.Plain Language SummaryThe Pacific El Niño-Southern Oscillation (ENSO) nonlinear oscillator phenomenon has a far reaching influence on the climate and our human activities. This work can help predict both long-term and short-term future ENSO events and to assess the risk of future climate hysteresis changes: is the elastic band that regulates the ENSO climate breaking? We update the current theory of the ENSO process with a sophisticated analysis approach (Dominant Frequency State Analysis) to include long-term oscillations (up to 200 years) as well as tropical and extratropical interaction dynamics. The analysis uses instrumental and paleoproxy data

  1. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    Science.gov (United States)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern

  2. Oscillations in a simple climate-vegetation model

    Science.gov (United States)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  3. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  4. Seasonal and decadal information towards climate services: EUPORIAS

    Science.gov (United States)

    Buontempo, Carlo; Hewitt, Chris

    2013-04-01

    Societies have always faced challenges and opportunities arising from variations in climate, and have often flourished or collapsed depending on their ability to adapt to such changes. Recent advances in our understanding and ability to forecast climate variability and climate change have meant that skilful predictions are beginning to be routinely made on seasonal to decadal (s2d) timescales. Such forecasts have the potential to be of great value to a wide range of decision-making, where outcomes are strongly influenced by variations in the climate. The European Commission have recently commissioned a major four year long project (EUPORIAS) to develop prototype end-to-end climate impact prediction services operating on a seasonal to decadal timescale, and assess their value in informing decision-making. EUPORIAS commenced on 1 November 2012, coordinated by the UK Met Office leading a consortium of 24 organisations representing world-class European climate research and climate service centres, expertise in impacts assessments and seasonal predictions, two United Nations agencies, specialists in new media, and commercial companies in climate-vulnerable sectors such as energy, water and tourism. The paper describes the setup of the project, its main outcome and some of the very preliminary results.

  5. On the reliability of seasonal climate forecasts

    Science.gov (United States)

    Weisheimer, A.; Palmer, T. N.

    2014-01-01

    Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559

  6. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  7. Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, PO Box 1, Melbourne (Australia)

    2008-04-15

    Outputs from a 10,000-year simulation with a coupled global climatic model for present climatic conditions have been used to investigate the behaviour of the Pacific Decadal Oscillation (PDO), the North Pacific Oscillation (NPO) and related phenomena. The analysis reveals a wide range of temporal variability for these Oscillations, suggesting that observations to date provide only a limited sample of possible outcomes. In addition, the simulation suggests that the current observed phase relation between the PDO and NPO may not be typical of longer-term variability. Climatic jumps appear to be a ubiquitous feature of climatic variability, and while, as observed, the most common interval between such jumps is about 20 years, intervals of up to 100 years occur in the simulation. The probability density functions of the PDO and NPO are very close to Gaussian, with the PDO being represented by an auto-regressive function of order one, while the NPO consisted of white noise. An FFT analysis of PC1 of the PDO revealed periodicities concentrated near 10 years, while for the NPO the principal periodicities were decadal to bidecadal. Global distributions of the distributions of the correlations between PC1 or the NPO and selected climatic variables were similar, and in agreement with observations. These correlations highlight the inter-relationships between these two Oscillations. The above correlations were not necessarily stable in time for a given geographical point, with transitions occurring between positive and negative extremes. Climatic jumps were identified with transitions of both the PDO and NPO, with magnitudes of importance as regards climatic perturbations. Spatial patterns of the changes associated with such jumps have global scales, and the need to consider the implications of these jumps in regard to greenhouse induced climatic change is noted. (orig.)

  8. Intra-Seasonal Monthly Oscillations in Stratospheric NCEP Data and Model Results

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-01-01

    Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements-and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996-2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.

  9. Prediction of the Arctic Oscillation in Boreal Winter by Dynamical Seasonal Forecasting Systems

    Science.gov (United States)

    Kang, Daehyun; Lee, Myong-In; Im, Jungho; Kim, Daehyun; Kim, Hye-Mi; Kang, Hyun-Suk; Schubert, Siegfried D.; Arribas, Alberto; MacLachlan, Craig

    2014-01-01

    This study assesses the skill of boreal winter Arctic Oscillation (AO) predictions with state-of-the-art dynamical ensemble prediction systems (EPSs): GloSea4, CFSv2, GEOS-5, CanCM3, CanCM4, and CM2.1. Long-term reforecasts with the EPSs are used to evaluate how well they represent the AO and to assess the skill of both deterministic and probabilistic forecasts of the AO. The reforecasts reproduce the observed changes in the large-scale patterns of the Northern Hemispheric surface temperature, upper level wind, and precipitation associated with the different phases of the AO. The results demonstrate that most EPSs improve upon persistence skill scores for lead times up to 2 months in boreal winter, suggesting some potential for skillful prediction of the AO and its associated climate anomalies at seasonal time scales. It is also found that the skill of AO forecasts during the recent period (1997-2010) is higher than that of the earlier period (1983-1996).

  10. National Assessment of Climate Resources for Tourism Seasonality in China Using the Tourism Climate Index

    Directory of Open Access Journals (Sweden)

    Yan Fang

    2015-01-01

    Full Text Available Tourism is a very important industry, and it is deeply affected by climate. This article focuses on the role of climate in tourism seasonality and attempts to assess the impacts of climate resources on China’s tourism seasonality by using the Tourism Climate Index (TCI. Seasonal distribution maps of TCI scores indicate that the climates of most regions in China are comfortable for tourists during spring and autumn, while the climate conditions differ greatly in summer and winter, with “excellent”, “good”, “acceptable” and “unfavorable” existing almost by a latitudinal gradation. The number of good months throughout China varies from zero (the Tibetan Plateau area to 10 (Yunnan Province, and most localities have five to eight good months. Moreover, all locations in China can be classified as winter peak, summer peak and bi-modal shoulder peak. The results will provide some useful information for tourist destinations, travel agencies, tourism authorities and tourists.

  11. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    Science.gov (United States)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  12. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

    KAUST Repository

    Umakanth, U.

    2015-11-07

    The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20

  13. Seasonal forecasts: communicating current climate variability in southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available seasonal time scale. Seasonal climate forecasts are defined as probabilistic predictions of how much rain is expected during the season and how warm or cool it will be, based primarily on the principle that the ocean (sea-surface temperatures) influences...

  14. Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case

    Science.gov (United States)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2014-12-01

    The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.

  15. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    Science.gov (United States)

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  16. Climate Prediction Center (CPC) Madden-Julian Oscillation (MJO) Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center (CPC) Madden Julian Oscillation index (MJO) is a dataset that allows evaluation of the strength and phase of the MJO during the dataset...

  17. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    Science.gov (United States)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically

  18. Visualizing the uncertainty in the relationship between seasonal average climate and malaria risk.

    Science.gov (United States)

    MacLeod, D A; Morse, A P

    2014-12-02

    Around $1.6 billion per year is spent financing anti-malaria initiatives, and though malaria morbidity is falling, the impact of annual epidemics remains significant. Whilst malaria risk may increase with climate change, projections are highly uncertain and to sidestep this intractable uncertainty, adaptation efforts should improve societal ability to anticipate and mitigate individual events. Anticipation of climate-related events is made possible by seasonal climate forecasting, from which warnings of anomalous seasonal average temperature and rainfall, months in advance are possible. Seasonal climate hindcasts have been used to drive climate-based models for malaria, showing significant skill for observed malaria incidence. However, the relationship between seasonal average climate and malaria risk remains unquantified. Here we explore this relationship, using a dynamic weather-driven malaria model. We also quantify key uncertainty in the malaria model, by introducing variability in one of the first order uncertainties in model formulation. Results are visualized as location-specific impact surfaces: easily integrated with ensemble seasonal climate forecasts, and intuitively communicating quantified uncertainty. Methods are demonstrated for two epidemic regions, and are not limited to malaria modeling; the visualization method could be applied to any climate impact.

  19. Assessing impact of climate change on season length in Karnataka

    Indian Academy of Sciences (India)

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, ...

  20. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  1. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records

    Directory of Open Access Journals (Sweden)

    I. Dormoy

    2009-10-01

    Full Text Available Pollen-based climate reconstructions were performed on two high-resolution pollen marines cores from the Alboran and Aegean Seas in order to unravel the climatic variability in the coastal settings of the Mediterranean region between 15 000 and 4000 years BP (the Lateglacial, and early to mid-Holocene. The quantitative climate reconstructions for the Alboran and Aegean Sea records focus mainly on the reconstruction of the seasonality changes (temperatures and precipitation, a crucial parameter in the Mediterranean region. This study is based on a multi-method approach comprising 3 methods: the Modern Analogues Technique (MAT, the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM and Partial Least Squares regression (PLS. The climate signal inferred from this comparative approach confirms that cold and dry conditions prevailed in the Mediterranean region during the Oldest and Younger Dryas periods, while temperate conditions prevailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East gradient of decreasing precipitation across the Mediterranean region during the cooler Late-glacial and early Holocene periods, similar to present-day conditions. Winter precipitation was highest during warm intervals and lowest during cooling phases. Several short-lived cool intervals (i.e. Older Dryas, another oscillation after this one (GI-1c2, Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events connected to the North Atlantic climate system are documented in the Alboran and Aegean Sea records indicating that the climate oscillations associated with the successive steps of the deglaciation in the North Atlantic area occurred in both the western and eastern Mediterranean regions. This observation confirms the presence of strong climatic linkages between the North Atlantic and Mediterranean regions.

  2. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    Science.gov (United States)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  3. Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive

    Science.gov (United States)

    Harzhauser, Mathias; Piller, Werner E.; Müllegger, Stefan; Grunert, Patrick; Micheels, Arne

    2011-03-01

    The Western Tethyan estuarine oyster Crassostrea gryphoides is an excellent climate archive due to its large size and rapid growth. It is geologically long lived and allows a stable isotope-based insight into climatic trends during the Miocene. Herein we utilised the climate archive of 5 oyster shells from the Miocene Climate Optimum (MCO) and the subsequent Miocene Climate Transition (MCT) to evaluate changes of seasonality patterns. MCO shells exhibit highly regular seasonal rhythms of warm-wet and dry-cool seasons. Optimal conditions resulted in extraordinary growth rates of the oysters. δ 13C profiles are in phase with δ 18O although phytoplankton blooms may cause a slight offset. Estuarine waters during the MCO in Central Europe display a seasonal temperature range of c. 9-10 °C. Absolute water temperatures have ranged from 17 to 19 °C during cool seasons and up to 28 °C in warm seasons. Already during the early phase of the MCO, the growth rates are distinctly declining, although gigantic and extremely old shells have been formed at that time. Still, a very regular and well expressed seasonality is dominating the isotope profiles, but episodically occurring extreme climate events influence the environments. The seasonal temperature range is still c. 9 °C but the cool season temperature seems to be slightly lower (16 °C) and the warm season water temperature does not exceed c. 25 °C. In the later MCT at c. 12.5-12.0 Ma the seasonality pattern is breaking down and is replaced by successions of dry years with irregular precipitation events. No correlation between δ 18O and δ 13C is documented maybe due to a suboptimal nutrition level which would explain the low growth rates and small sizes. The amplitude of seasonal temperature range is decreasing to 5-8 °C. No clear cooling trend can be postulated for that time as the winter season water temperatures range from 15 to 20 °C. This may point to unstable precipitation rhythms on a multi-annual to

  4. Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany

    Directory of Open Access Journals (Sweden)

    Susanne Pfeifer

    2015-05-01

    Full Text Available Climate signal maps can be used to identify regions where robust climate changes can be derived from an ensemble of climate change simulations. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Climate signal maps do not show all information available from the model ensemble, but give a condensed view in order to be useful for non-climate scientists who have to assess climate change impact during the course of their work. Three different ensembles of regional climate projections have been analyzed regarding changes of seasonal mean and extreme precipitation (defined as the number of days exceeding the 95th percentile threshold of daily precipitation for Germany, using climate signal maps. Although the models used and the scenario assumptions differ for the three ensembles (representative concentration pathway (RCP 4.5 vs. RCP8.5 vs. A1B, some similarities in the projections of future seasonal and extreme precipitation can be seen. For the winter season, both mean and extreme precipitation are projected to increase. The strength, robustness and regional pattern of this increase, however, depends on the ensemble. For summer, a robust decrease of mean precipitation can be detected only for small regions in southwestern Germany and only from two of the three ensembles, whereas none of them projects a robust increase of summer extreme precipitation.

  5. Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G - II. El Nino Southern Oscillation and North Atlantic Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seung-Ki; Hense, Andreas [Univ. of Bonn (Germany). Meteorological Inst.; Legutke, Stephanie [Max Planck Inst. for Meteorology, Hamburg (Germany); Kwon, Won-Tae [Meteorological Research Inst., Seoul (Korea, Republic of)

    2005-08-01

    A 1000-yr control simulation (CTL) performed with the atmosphere-ocean global climate model ECHO-G is analysed with regard to the El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), the two major natural climatic variabilities, in comparison with observations and other model simulations. The ENSO-related sea surface temperature climate and its seasonal cycle in the tropical Pacific and a single Intertropical Convergence Zone in the eastern tropical Pacific are simulated reasonably, and the ENSO phase-locking to the annual cycle and the subsurface ocean behaviour related to equatorial wave dynamics are also reproduced well. The simulated amplitude of the ENSO signal is however too large and its occurrence is too regular and frequent. Also, the observed westward propagation of zonal wind stress over the equatorial Pacific is not captured by the model. Nevertheless, the ENSO-related teleconnection patterns of near-surface temperature (T2m), precipitation (PCP) and mean sea level pressure (MSLP) are reproduced realistically. The NAO index, defined as the MSLP difference between Gibraltar and Iceland, has a 'white' noise spectrum similar to that of the detrended index obtained from observed data. The correlation and regression patterns of T2m, PCP and MSLP with the NAO index are also successfully simulated. However, the model overestimates the warming over the North Pacific in the high index phase of the NAO, a feature it shares with other coupled models. This might be associated with an enhanced Atlantic/Pacific teleconnection, which is hardly seen in the observations. A detection analysis of the NAO index shows that the observed recent 4060 yr trend cannot be explained by the model's internal variability while the recent 2030 yr trend occurs with a more than 1% chance in ECHO-G CTL.

  6. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  7. Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation.

    Science.gov (United States)

    Cassou, Christophe

    2008-09-25

    Bridging the traditional gap between the spatio-temporal scales of weather and climate is a significant challenge facing the atmospheric community. In particular, progress in both medium-range and seasonal-to-interannual climate prediction relies on our understanding of recurrent weather patterns and the identification of specific causes responsible for their favoured occurrence, persistence or transition. Within this framework, I here present evidence that the main climate intra-seasonal oscillation in the tropics-the Madden-Julian Oscillation (MJO)-controls part of the distribution and sequences of the four daily weather regimes defined over the North Atlantic-European region in winter. North Atlantic Oscillation (NAO) regimes are the most affected, allowing for medium-range predictability of their phase far exceeding the limit of around one week that is usually quoted. The tropical-extratropical lagged relationship is asymmetrical. Positive NAO events mostly respond to a mid-latitude low-frequency wave train initiated by the MJO in the western-central tropical Pacific and propagating eastwards. Precursors for negative NAO events are found in the eastern tropical Pacific-western Atlantic, leading to changes along the North Atlantic storm track. Wave-breaking diagnostics tend to support the MJO preconditioning and the role of transient eddies in setting the phase of the NAO. I present a simple statistical model to quantitatively assess the potential predictability of the daily NAO index or the sign of the NAO regimes when they occur. Forecasts are successful in approximately 70 per cent of the cases based on the knowledge of the previous approximately 12-day MJO phase used as a predictor. This promising skill could be of importance considering the tight link between weather regimes and both mean conditions and the chances of extreme events occurring over Europe. These findings are useful for further stressing the need to better simulate and forecast the tropical

  8. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Braconnot, P.; Zheng, W. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Luan, Y. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Chinese Academy of Sciences (CAS), State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Brewer, Simon [University of Wyoming, Department of Botany, Laramie, WY (United States)

    2012-03-15

    We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Nina events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Nino events. The impact of ice-sheet melting may have offset the impact of insolation on El Nino Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records. (orig.)

  9. Seasonal oscillation of liver-derived hibernation protein complex in the central nervous system of non-hibernating mammals

    Science.gov (United States)

    Seldin, Marcus M.; Byerly, Mardi S.; Petersen, Pia S.; Swanson, Roy; Balkema-Buschmann, Anne; Groschup, Martin H.; Wong, G. William

    2014-01-01

    Mammalian hibernation elicits profound changes in whole-body physiology. The liver-derived hibernation protein (HP) complex, consisting of HP-20, HP-25 and HP-27, was shown to oscillate circannually, and this oscillation in the central nervous system (CNS) was suggested to play a role in hibernation. The HP complex has been found in hibernating chipmunks but not in related non-hibernating tree squirrels, leading to the suggestion that hibernation-specific genes may underlie the origin of hibernation. Here, we show that non-hibernating mammals express and regulate the conserved homologous HP complex in a seasonal manner, independent of hibernation. Comparative analyses of cow and chipmunk HPs revealed extensive biochemical and structural conservations. These include liver-specific expression, assembly of distinct heteromeric complexes that circulate in the blood and cerebrospinal fluid, and the striking seasonal oscillation of the HP levels in the blood and CNS. Central administration of recombinant HPs affected food intake in mice, without altering body temperature, physical activity levels or energy expenditure. Our results demonstrate that HP complex is not unique to the hibernators and suggest that the HP-regulated liver–brain circuit may couple seasonal changes in the environment to alterations in physiology. PMID:25079892

  10. Linking seasonal climate forecasts with crop models in Iberian Peninsula

    Science.gov (United States)

    Capa, Mirian; Ines, Amor; Baethgen, Walter; Rodriguez-Fonseca, Belen; Han, Eunjin; Ruiz-Ramos, Margarita

    2015-04-01

    Translating seasonal climate forecasts into agricultural production forecasts could help to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. In this study, we use seasonal rainfall forecasts and crop models to improve predictability of wheat yield in the Iberian Peninsula (IP). Additionally, we estimate economic margins and production risks associated with extreme scenarios of seasonal rainfall forecast. This study evaluates two methods for disaggregating seasonal climate forecasts into daily weather data: 1) a stochastic weather generator (CondWG), and 2) a forecast tercile resampler (FResampler). Both methods were used to generate 100 (with FResampler) and 110 (with CondWG) weather series/sequences for three scenarios of seasonal rainfall forecasts. Simulated wheat yield is computed with the crop model CERES-wheat (Ritchie and Otter, 1985), which is included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5, Hoogenboom et al., 2010). Simulations were run at two locations in northeastern Spain where the crop model was calibrated and validated with independent field data. Once simulated yields were obtained, an assessment of farmer's gross margin for different seasonal climate forecasts was accomplished to estimate production risks under different climate scenarios. This methodology allows farmers to assess the benefits and risks of a seasonal weather forecast in IP prior to the crop growing season. The results of this study may have important implications on both, public (agricultural planning) and private (decision support to farmers, insurance companies) sectors. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Hoogenboom, G. et al., 2010. The Decision

  11. Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau.

    Science.gov (United States)

    Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi

    2015-04-01

    The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau-lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.

  12. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  13. Density and climate influence seasonal population dynamics in an Arctic ungulate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Moshøj, Charlotte; Forchhammer, Mads C.

    2016-01-01

    The locally migratory behavior of the high arctic muskox (Ovibos muschatus) is a central component of the breeding and winter survival strategies applied to cope with the highly seasonal arctic climate. However, altered climate regimes affecting plant growth are likely to affect local migration...... cover), forage availability (length of growth season), and the number of adult females available per male (operational sex ratio) influence changes in the seasonal density dependence, abundance, and immigration rate of muskoxen into the valley. The results suggested summer temperature as the major...... controlling factor in the seasonal, local-scale migration of muskoxen at Zackenberg. Specifically, higher summer temperatures, defined as the cumulative average daily positive degrees in June, July, and August, resulted in decreased density dependence and, consequently, increase in the seasonal abundance...

  14. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast.

    Science.gov (United States)

    Ceglar, Andrej; Toreti, Andrea; Prodhomme, Chloe; Zampieri, Matteo; Turco, Marco; Doblas-Reyes, Francisco J

    2018-01-22

    Seasonal crop yield forecasting represents an important source of information to maintain market stability, minimise socio-economic impacts of crop losses and guarantee humanitarian food assistance, while it fosters the use of climate information favouring adaptation strategies. As climate variability and extremes have significant influence on agricultural production, the early prediction of severe weather events and unfavourable conditions can contribute to the mitigation of adverse effects. Seasonal climate forecasts provide additional value for agricultural applications in several regions of the world. However, they currently play a very limited role in supporting agricultural decisions in Europe, mainly due to the poor skill of relevant surface variables. Here we show how a combined stress index (CSI), considering both drought and heat stress in summer, can predict maize yield in Europe and how land-surface initialised seasonal climate forecasts can be used to predict it. The CSI explains on average nearly 53% of the inter-annual maize yield variability under observed climate conditions and shows how concurrent heat stress and drought events have influenced recent yield anomalies. Seasonal climate forecast initialised with realistic land-surface achieves better (and marginally useful) skill in predicting the CSI than with climatological land-surface initialisation in south-eastern Europe, part of central Europe, France and Italy.

  15. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001-2099)

    Science.gov (United States)

    Fernández-Montes, S.; Gómez-Navarro, J. J.; Rodrigo, F. S.; García-Valero, J. A.; Montávez, J. P.

    2017-04-01

    Precipitation and surface temperature are interdependent variables, both as a response to atmospheric dynamics and due to intrinsic thermodynamic relationships and feedbacks between them. This study analyzes the covariability of seasonal temperature (T) and precipitation (P) across the Iberian Peninsula (IP) using regional climate paleosimulations for the period 1001-1990, driven by reconstructions of external forcings. Future climate (1990-2099) was simulated according to SRES scenarios A2 and B2. These simulations enable exploring, at high spatial resolution, robust and physically consistent relationships. In winter, positive P-T correlations dominate west-central IP (Pearson correlation coefficient ρ = + 0.43, for 1001-1990), due to prevalent cold-dry and warm-wet conditions, while this relationship weakens and become negative towards mountainous, northern and eastern regions. In autumn, negative correlations appear in similar regions as in winter, whereas for summer they extend also to the N/NW of the IP. In spring, the whole IP depicts significant negative correlations, strongest for eastern regions (ρ = - 0.51). This is due to prevalent frequency of warm-dry and cold-wet modes in these regions and seasons. At the temporal scale, regional correlation series between seasonal anomalies of temperature and precipitation (assessed in 31 years running windows in 1001-1990) show very large multidecadal variability. For winter and spring, periodicities of about 50-60 years arise. The frequency of warm-dry and cold-wet modes appears correlated with the North Atlantic Oscillation (NAO), explaining mainly co-variability changes in spring. For winter and some regions in autumn, maximum and minimum P-T correlations appear in periods with enhanced meridional or easterly circulation (low or high pressure anomalies in the Mediterranean and Europe). In spring and summer, the Atlantic Multidecadal Oscillation shows some fingerprint on the frequency of warm/cold modes. For

  16. The Relationship between El nino Southern Oscillation (ENSO) Phenomenon and Seasonal Precipitation Variability in Eastern Kenya with Special Reference to Katumani: Its Implication to Crop Production

    International Nuclear Information System (INIS)

    Kitheka, S.K

    1999-01-01

    Climatic variability has been defined as a major limitation to agricultural production in semi arid Kenya. The major difficulty to both farmers and research community, has been the inability to to predict seasonal rainfall prior to the season onset. Although several researches have attempted and made advances in predicting rainfall amount, solutions to the problem have not been achieved. This study has examined and related rainfall at Katumani with the El Nino-Southern Oscillation (ENSO) phenomenon. Rainfall variations during different phases of ENSO were established. Some advances in the early prediction of March-May and October -January rains for, both, the warm and cold phases of ENSO have been made. Crop production is closely related to the rainfall and therefore a need for revision of agronomic recommendation to tie them with rainfall variation

  17. Measuring the potential utility of seasonal climate predictions

    Science.gov (United States)

    Tippett, Michael K.; Kleeman, Richard; Tang, Youmin

    2004-11-01

    Variation of sea surface temperature (SST) on seasonal-to-interannual time-scales leads to changes in seasonal weather statistics and seasonal climate anomalies. Relative entropy, an information theory measure of utility, is used to quantify the impact of SST variations on seasonal precipitation compared to natural variability. An ensemble of general circulation model (GCM) simulations is used to estimate this quantity in three regions where tropical SST has a large impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We find the yearly variation of relative entropy is strongly correlated with shifts in ensemble mean precipitation and weakly correlated with ensemble variance. Relative entropy is also found to be related to measures of the ability of the GCM to reproduce observations.

  18. Intra-seasonal Oscillations (ISO of zonal-mean meridional winds and temperatures as measured by UARS

    Directory of Open Access Journals (Sweden)

    F. T. Huang

    2005-06-01

    Full Text Available Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI on the UARS spacecraft in the upper mesosphere (95km, persistent and regular intra-seasonal oscillations (ISO with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here on an analysis of concurrent UARS temperature measurements, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55km, their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  19. Effects of climate oscillations on wildland fire potential in the continental United States

    Science.gov (United States)

    Shelby A. Mason; Peter E. Hamlington; Benjamin D. Hamlington; W. Matt Jolly; Chad M. Hoffman

    2017-01-01

    The effects of climate oscillations on spatial and temporal variations in wildland fire potential in the continental U.S. are examined from 1979 to 2015 using cyclostationary empirical orthogonal functions (CSEOFs). The CSEOF analysis isolates effects associated with the modulated annual cycle and the El Niño–Southern Oscillation (ENSO). The results show that, in early...

  20. The Effect of Soil Temperature Seasonality on Climate Reconstructions from Paleosols

    Science.gov (United States)

    Gallagher, T. M.; Hren, M. T.; Sheldon, N. D.

    2017-12-01

    Accurate continental temperature reconstructions provide important constraints on climate sensitivity to changes in atmospheric pCO2, the timing and rates of tectonic uplift, and the driving mechanisms and feedbacks associated with major climate events. Temperature seasonality is an important variable to consider, because not only does it exert a strong control on the biosphere, but it can obfuscate changes in mean annual air temperature (MAAT) in the geologic record. In order to better understand the effect temperature seasonality has on paleosol temperature proxies, soil temperature data was compiled from over 200 stations that comprise the NCDC Soil Climate Analysis Network. Observed soil temperature variations were then compared to predicted soil temperature values based on normal seasonal air temperature trends. Approximately one quarter of sites record less temperature variation than predicted. This reduction in soil temperature seasonality is a result of warmer than predicted cold-season temperatures, driven by cold-season processes such as snow cover insulation. The reduction in soil temperature seasonality explains why pedo-transfer functions to break down below MAAT values of 6-8 °C. Greater than predicted soil temperature seasonality is observed at nearly half of the sites, driven primarily by direct heating of the soil surface by solar radiation. Deviations larger than 2 °C are not common until mean annual precipitation falls below 300 mm, suggesting that complications introduced by ground heating are primarily restricted to paleosols that formed in more arid environments. Clumped isotope measurements of pedogenic carbonate and bulk paleosol elemental data from a stacked series of paleosols spanning the Eocene-Oligocene in Northeastern Spain are also examined to demonstrate how the documented seasonal trends in modern soils can help inform paleo-applications.

  1. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Tree growth responses to North Atlantic Ocean dynamics

    Science.gov (United States)

    Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor

    2018-06-01

    The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in

  2. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  3. The effect of seasonal changes and climatic factors on suicide attempts of young people.

    Science.gov (United States)

    Akkaya-Kalayci, Türkan; Vyssoki, Benjamin; Winkler, Dietmar; Willeit, Matthaeus; Kapusta, Nestor D; Dorffner, Georg; Özlü-Erkilic, Zeliha

    2017-11-15

    Seasonal changes and climatic factors like ambient temperature, sunlight duration and rainfall can influence suicidal behavior. This study analyses the relationship between seasonal changes and climatic variations and suicide attempts in 2131 young patients in Istanbul, Turkey. In our study sample, there was an association between suicide attempts in youths and seasonal changes, as suicide attempts occurred most frequently during summer in females as well as in males. Furthermore, there was a positive correlation between the mean temperature over the past 10 days and temperature at the index day and suicide attempts in females. After seasonality effects were mathematically removed, the mean temperature 10 days before a suicide attempt remained significant in males only, indicating a possible short-term influence of temperature on suicide attempts. This study shows an association between suicide attempts of young people and climatic changes, in particular temperature changes as well as seasonal changes. Therefore, the influence of seasonal changes and climatic factors on young suicide attempters should get more attention in research to understand the biopsychosocial mechanisms playing a role in suicide attempts of young people. As suicide attempts most frequently occur in young people, further research is of considerable clinical importance.

  4. Visualization of uncertainties and forecast skill in user-tailored seasonal climate predictions for agriculture

    Science.gov (United States)

    Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Flubacher, Moritz; Maurer, Felix; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia

    2017-04-01

    Seasonal climate forecast products potentially have a high value for users of different sectors. During the first phase (2012-2015) of the project CLIMANDES (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), a demand study conducted with Peruvian farmers indicated a large interest in seasonal climate information for agriculture. The study further showed that the required information should by precise, timely, and understandable. In addition to the actual forecast, two complex measures are essential to understand seasonal climate predictions and their limitations correctly: forecast uncertainty and forecast skill. The former can be sampled by using an ensemble of climate simulations, the latter derived by comparing forecasts of past time periods to observations. Including uncertainty and skill information in an understandable way for end-users (who are often not technically educated) poses a great challenge. However, neglecting this information would lead to a false sense of determinism which could prove fatal to the credibility of climate information. Within the second phase (2016-2018) of the project CLIMANDES, one goal is to develop a prototype of a user-tailored seasonal forecast for the agricultural sector in Peru. In this local context, the basic education level of the rural farming community presents a major challenge for the communication of seasonal climate predictions. This contribution proposes different graphical presentations of climate forecasts along with possible approaches to visualize and communicate the associated skill and uncertainties, considering end users with varying levels of technical knowledge.

  5. Engaging farmers on climate risk through targeted integration of bio-economic modelling and seasonal climate forecasts

    NARCIS (Netherlands)

    Nidumolu, U.B.; Lubbers, M.; Kanellopoulos, A.; Ittersum, van M.K.; Kadiyala, D.M.; Sreenivas, G.

    2016-01-01

    Seasonal climate forecasts (SCFs) can be used to identify appropriate risk management strategies and to reduce the sensitivity of rural industries and communities to climate risk. However, these forecasts have low utility among farmers in agricultural decision making, unless translated into a

  6. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  7. Exploring Connections between Global Climate Indices and African Vegetation Phenology

    Science.gov (United States)

    Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton

    2009-01-01

    Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.

  8. Non-climatic factors and long-term, continental-scale changes in seasonally frozen ground

    Science.gov (United States)

    Shiklomanov, Nikolay I.

    2012-03-01

    ). In their recent paper entitled 'An observational 71-year history of seasonally frozen ground changes in Eurasian high latitudes', Frauenfeld and Zhang (2011) provided detailed analysis of soil temperature data to assess 1930-2000 trends in seasonal freezing depth. The data were obtained from 387 Soviet non-permafrost meteorological stations. The authors performed systematic, quality-controlled, integrative analysis over the entire former Soviet Union domain. The long-term changes in depth of seasonal freezing were discussed in relation to such forcing variables as air temperature, degree days of freezing/thawing, snow depth and summer precipitation as well as modes of the North Atlantic Oscillation. The spatially average approach adopted for the study provides a generalized continental-scale trend. The study greatly improves, expands and extends previous 1956-90 analysis of the ground thermal regime over the Eurasian high latitudes (Frauenfeld et al 2004). Although the work of Frauenfeld and Zhang (2011) is the most comprehensive assessment of the continental-scale long-term trends in seasonal freezing available to date, more detailed analysis is needed to determine the effect of climate change on seasonally frozen ground. It should be noted that, in addition to the variables considered for analysis, other non-climatic factors affect the depth of freezing propagation. Unlike the surface, which is influenced by the climate directly, the ground even at shallow depth receives a climatic signal that is substantially modified by edaphic processes, contributing to highly localized thermal sensitivities of the ground to climatic forcing. Subsurface properties, soil moisture, and snow and vegetation covers influence the depth of freezing. Topography also plays an important role in establishing the ground thermal regime. It is an important determinant of the amount of heat received by the ground surface, affects the distribution of snow and vegetation, and influences the

  9. Prediction of seasonal climate-induced variations in global food production

    Science.gov (United States)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki; Luo, Jing-Jia; Challinor, Andrew J.; Brown, Molly E.; Sakurai, Gen; Yamagata, Toshio

    2013-10-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased attention to the cropping forecasts of important food-exporting countries as well as to their own domestic food production. Given the increased volatility of food markets and the rising incidence of climatic extremes affecting food production, food price spikes may increase in prevalence in future years. Here we present a global assessment of the reliability of crop failure hindcasts for major crops at two lead times derived by linking ensemble seasonal climatic forecasts with statistical crop models. We found that moderate-to-marked yield loss over a substantial percentage (26-33%) of the harvested area of these crops is reliably predictable if climatic forecasts are near perfect. However, only rice and wheat production are reliably predictable at three months before the harvest using within-season hindcasts. The reliabilities of estimates varied substantially by crop--rice and wheat yields were the most predictable, followed by soybean and maize. The reasons for variation in the reliability of the estimates included the differences in crop sensitivity to the climate and the technology used by the crop-producing regions. Our findings reveal that the use of seasonal climatic forecasts to predict crop failures will be useful for monitoring global food production and will encourage the adaptation of food systems toclimatic extremes.

  10. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    Science.gov (United States)

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P effects of global climate change on disease development.

  11. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    Science.gov (United States)

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  12. The Value of Seasonal Climate Forecasts in Managing Energy Resources.

    Science.gov (United States)

    Brown Weiss, Edith

    1982-04-01

    Research and interviews with officials of the United States energy industry and a systems analysis of decision making in a natural gas utility lead to the conclusion that seasonal climate forecasts would only have limited value in fine tuning the management of energy supply, even if the forecasts were more reliable and detailed than at present.On the other hand, reliable forecasts could be useful to state and local governments both as a signal to adopt long-term measures to increase the efficiency of energy use and to initiate short-term measures to reduce energy demand in anticipation of a weather-induced energy crisis.To be useful for these purposes, state governments would need better data on energy demand patterns and available energy supplies, staff competent to interpret climate forecasts, and greater incentive to conserve. The use of seasonal climate forecasts is not likely to be constrained by fear of legal action by those claiming to be injured by a possible incorrect forecast.

  13. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Model Biases Using data Assimilation

    Energy Technology Data Exchange (ETDEWEB)

    Sumant Nigam

    2013-02-05

    These five publications are summarized: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains; A Sub-Seasonal Teleconnection Analysis: PNA Development and Its Relationship to the NAO; AMO's Structure and Climate Footprint in Observations and IPCC AR5 Climate Simulations; The Atlantic Multidecadal Oscillation in 20th Century Climate Simulations: Uneven Progress from CMIP3 to CMIP5; and Tropical Atlantic Biases in CCSM4.

  14. Analysis of climatic variations in seasonal precipitation and temperature in Salamanca (Spain); Analisis de las variaciones climaticas en series estacionales de temperatura y precipitacion en Salamanca (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Casado, A.; Encinas, A.H.; Rodriguez Puebla, C. [Dpto. de Fisica General y de la Atmosfera Universidad de Salamanca, Salamanca (Spain)

    1996-12-31

    This paper describes the seasonal precipitation and temperature variability in Salamanca. The objectives of the study are: to determine the climate signals on inter annual time-scale within the time series; to redefine the series as a function of the significant oscillation components and to predict local precipitation and temperature variables. The methods used are spectral analysis to obtain the periods of the significant components, linear and nonlinear regression models to obtain the analytical functions that best fit the data. (Author) 14 refs.

  15. Effects of seasonal and climate variations on calves' thermal comfort and behaviour.

    Science.gov (United States)

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced (P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence (P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly (P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence (P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  16. Nudging atmosphere and ocean reanalyses for seasonal climate predictions

    Science.gov (United States)

    Piontek, Robert; Baehr, Johanna; Kornblueh, Luis; Müller, Wolfgang Alexander; Haak, Helmuth; Botzet, Michael; Matei, Daniela

    2010-05-01

    Seasonal climate forecasts based on state-of-the-art climate models have been developed recently. Here, we critically discuss the obstacles encountered in the setup of the ECHAM6/MPIOM global coupled climate model to perform climate predictions on seasonal to decadal time scales. We particularly focus on the initialization procedure, especially on the implementation of the nudging scheme, in which different reanalysis products are used in the atmosphere (e.g.ERA40), and the ocean (e.g., GECCO). Nudging in the atmosphere appears to be sensitive to the following choices: limiting the spectral range of nudging, whether or not temperature is nudged, the strength of the nudging coefficient for surface pressure, and the height at which the planetary boundary layer is excluded from nudging. We find that including nudging in both the atmosphere and the ocean gives improved results over nudging only the ocean or the atmosphere. For the implementation of the nudging in the atmosphere, we find the most significant improvements in the solution when either the planetary boundary layer is excluded, or if nudging of temperature is omitted. There are significant improvements in the solution when resolution is increased in both the atmosphere and in the ocean. Our tests form the basis for the prediction system introduced in the abstract of Müller et al., where hindcasts are analysed as well.

  17. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68

  18. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna

    Directory of Open Access Journals (Sweden)

    Anna Maria Mercuri

    2016-12-01

    Full Text Available Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change.

  19. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna)

    Science.gov (United States)

    Mercuri, Anna Maria; Torri, Paola; Fornaciari, Rita; Florenzano, Assunta

    2016-01-01

    Aerobiological data have especially demonstrated that there is correlation between climate warming and the pollination season of plants. This paper focuses on airborne pollen monitoring of Betulaceae and Poaceae, two of the main plant groups with anemophilous pollen and allergenic proprieties in Northern Italy. The aim is to investigate plant responses to temperature variations by considering long-term pollen series. The 15-year aerobiological analysis is reported from the monitoring station of Vignola (located near Modena, in the Emilia-Romagna region) that had operated in the years 1990–2004 with a Hirst spore trap. The Yearly Pollen Index calculated for these two botanical families has shown contrasting trends in pollen production and release. These trends were well identifiable but fairly variable, depending on both meteorological variables and anthropogenic causes. Based on recent reference literature, we considered that some oscillations in pollen concentration could have been a main effect of temperature variability reflecting global warming. The duration of pollen seasons of Betulaceae and Poaceae, depending on the different species included in each family, has not unequivocally been determined. Phenological responses were particularly evident in Alnus and especially in Corylus as a general moving up of the end of pollination. The study shows that these trees can be affected by global warming more than other, more tolerant, plants. The research can be a contribution to the understanding of phenological plant responses to climate change and suggests that alder and hazelnut trees have to be taken into high consideration as sensible markers of plant responses to climate change. PMID:27929423

  20. Winter Season Mortality: Will Climate Warming Bring Benefits?

    Science.gov (United States)

    Kinney, Patrick L; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Tertre, Alain Le; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  1. [Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China.

    Science.gov (United States)

    Wang, Hua; Chen, Hui Hua; Tang, Li Sheng; Wang, Juan Huai; Tang, Hai Yan

    2018-01-01

    Trend analysis method was applied to analyze the general variation characteristics of the climate resources and meteorological disasters of growing season of the winter planting in Guangdong before (1961-1996) and after climate warming (1997-2015). Percentile method was employed to determine thresholds for extreme cold and drought in major planting regions, and the characteristics of extreme disasters since climate warming were analyzed. The results showed that, by comparing 1997-2015 with 1961-1996, the heat value in winter growing season increased significantly. The belt with a higher heat value, where the average temperature was ≥15 ℃ and accumulated temperature was ≥2200 ℃·d, covered the main winter production regions as Shaoguan, Zhanjiang, Maoming, Huizhou, Meizhou and Guangzhou. Meanwhile, the precipitation witnessed a slight increase. The regions with precipitations of 250-350 mm included Zhanjiang, Maoming, Huizhou, Guangzhou and Meizhou. Chilling injury in the winter planting season in the regions decreased, the belt with an accumulated chilling of climate resources and the occurrence law of meteorological disasters in growing season.

  2. Climate Research and Seasonal Forecasting for West Africans: Perceptions, Dissemination, and Use?.

    Science.gov (United States)

    Tarhule, Aondover; Lamb, Peter J.

    2003-12-01

    Beginning in response to the disastrous drought of 1968 73, considerable research and monitoring have focused on the characteristics, causes, predictability, and impacts of West African Soudano Sahel (10° 18°N) rainfall variability and drought. While these efforts have generated substantial information on a range of these topics, very little is known of the extent to which communities, activities at risk, and policy makers are aware of, have access to, or use such information. This situation has prevailed despite Glantz&;s provocative BAMS paper on the use and value of seasonal forecasts for the Sahel more than a quarter century ago. We now provide a systematic reevaluation of these issues based on questionnaire responses of 566 participants (in 13 communities) and 26 organizations in Burkina Faso, Mali, Niger, and Nigeria. The results reveal that rural inhabitants have limited access to climate information, with nongovernmental organizations (NGOs) being the most important source. Moreover, the pathways for information flow are generally weakly connected and informal. As a result, utilization of the results of climate research is very low to nonexistent, even by organizations responsible for managing the effects of climate variability. Similarly, few people have access to seasonal climate forecasts, although the vast majority expressed a willingness to use such information when it becomes available. Those respondents with access expressed great enthusiasm and satisfaction with seasonal forecasts. The results suggest that inhabitants of the Soudano Sahel savanna are keen for changes that improve their ability to cope with climate variability, but the lack of information on alternative courses of action is a major constraint. Our study, thus, essentially leaves unchanged both Glantz&;s negative “tentative conclusion” and more positive “preliminary assessment” of 25 years ago. Specifically, while many of the infrastructural deficiencies and socioeconomic

  3. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  4. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1990-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed

  5. The Southern Oscillation in a coupled GCM: Implications for climate sensitivity and climate change

    International Nuclear Information System (INIS)

    Meehl, G.A.

    1991-01-01

    Results are presented from a global coupled ocean-atmosphere general circulation climate model developed at the National Center for Atmospheric Research. The atmospheric part of the coupled model is a global spectral (R15, 4.5 degree latitude by 7.5 degree longitude, 9 layers in the vertical) general circulation model. The ocean is coarse-grid (5 degree latitude by 5 degree longitude, 4 layers in the vertical) global general circulation model. The coupled model includes a simple thermodynamic sea-ice model. Due mainly to inherent limitations in the ocean model, the coupled model simulates sea surface temperatures that are too low in the tropics and too high in the extratropics in the mean. In spite of these limitations, the coupled model simulates active interannual variability of the global climate system involving signals in the tropical Pacific that resemble, in some respects, the observed Southern Oscillation. These signals in the tropics are associated with teleconnections to the extratropics of both hemispheres. The implications of this model-simulated interannual variability of the coupled system relating to climate sensitivity and climate change due to an increase of atmospheric carbon dioxide are discussed. 25 refs.; 9 figs

  6. Intraseasonal oscillations and their predictability in a hemispheric barotropic model with seasonal forcing

    International Nuclear Information System (INIS)

    Strong, C.; Jin, F.; Ghil, M.

    1994-01-01

    Intraseasonal oscillations with a period of 40-50 days were discovered in zonal winds over the tropical Pacific by Madden and Julian in the 1970s. Since that time, considerable modeling and observational literature on intraseasonal tropical variability has emerged. Links have been established between such fluctuations and those in global atmospheric angular momentum (AAM). This study sheds further light on the seasonal dependence of intraseasonal variability. Floquet theory is used to study the stability of the large-scale, midlatitude atmospheric system's periodic basic state

  7. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    Science.gov (United States)

    S, S. A.; Ghosh, S.

    2015-12-01

    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  8. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  9. Impact of climate change on mid-twenty-first century growing seasons in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kerry H.; Vizy, Edward K. [The University of Texas at Austin, Department of Geological Sciences, Jackson School of Geosciences, Austin, TX (United States)

    2012-12-15

    Changes in growing seasons for 2041-2060 across Africa are projected using a regional climate model at 90-km resolution, and confidence in the predictions is evaluated. The response is highly regional over West Africa, with decreases in growing season days up to 20% in the western Guinean coast and some regions to the east experiencing 5-10% increases. A longer growing season up to 30% in the central and eastern Sahel is predicted, with shorter seasons in parts of the western Sahel. In East Africa, the short rains (boreal fall) growing season is extended as the Indian Ocean warms, but anomalous mid-tropospheric moisture divergence and a northward shift of Sahel rainfall severely curtails the long rains (boreal spring) season. Enhanced rainfall in January and February increases the growing season in the Congo basin by 5-15% in association with enhanced southwesterly moisture transport from the tropical Atlantic. In Angola and the southern Congo basin, 40-80% reductions in austral spring growing season days are associated with reduced precipitation and increased evapotranspiration. Large simulated reductions in growing season over southeastern Africa are judged to be inaccurate because they occur due to a reduction in rainfall in winter which is over-produced in the model. Only small decreases in the actual growing season are simulated when evapotranspiration increases in the warmer climate. The continent-wide changes in growing season are primarily the result of increased evapotranspiration over the warmed land, changes in the intensity and seasonal cycle of the thermal low, and warming of the Indian Ocean. (orig.)

  10. Where the wild things are: Seasonal variation in caribou distribution in relation to climate change

    Directory of Open Access Journals (Sweden)

    Philippa McNeil

    2005-05-01

    Full Text Available In this study, we develop a method to analyse the relationships between seasonal caribou distribution and climate, to estimate how climatic conditions affect interactions between humans and caribou, and ultimately to predict patterns of distribution relative to climate change. Satellite locations for the Porcupine (Rangifer tarandus granti and Bathurst (R. t. groenlandicus caribou herds were analysed for eight ecologically-defined seasons. For each season, two levels of a key environmental factor influencing caribou distribution were identified, as well as the best climate data available to indicate the factor's annual state. Satellite locations were grouped according to the relevant combination of season and environmental factor. Caribou distributions were compared for opposing environmental factors; this comparison was undertaken relative to hunting access for the Porcupine Herd and relative to exposure to mining activity for the Bathurst Herd. Expected climate trends suggest an overall increase in access to Porcupine caribou for Aklavik (NWT hunters during the winter and rut seasons, for Venetie (Alaska hunters during midsummer and fall migration and for Arctic Village (Alaska during midsummer. Arctic Village may experience reduced availability with early snowfalls in the fall, but we expect there to be little directional shift in the spring migration patterns. For the Bathurst Herd, we expect that fewer caribou would be exposed to the mines during the winter, while more caribou would be exposed to the combined Ekati and Diavik mining zone in the early summer and to the Lupin-Jericho mining zone during the fall migration. If changes in climate cause an increased presence of caribou in the mining sites, monitoring and mitigation measures may need to be intensified.

  11. Recent changes in seasonal variations of climate within the range of northern caribou populations

    Directory of Open Access Journals (Sweden)

    Paul H. Whitfield

    2005-05-01

    Full Text Available The Arctic is one region where it is expected that the impacts of a globally changing climate will be readily observed. We present results that indicate that climate derivatives of potential significance to caribou changed during the past 50 years. Many temperature derivatives reflect the increasing overall temperature in the Arctic such as decreases in the number of days with low temperatures, increases in the number of days with thaw, and days with extremely warm temperatures. Other derivatives reflect changes in the precipitation regime such as days with heavy precipitation and number of days when rain fell on snow. Our results indicate that specific caribou herds from across the Arctic were subjected to different variations of these derivatives in different seasons in the recent past. Examination of temperature and precipitation at finer time-steps than annual or monthly means, shows that climatic variations in the region are neither consistent through the seasons nor across space. Decadal changes in seasonal patterns of temperature and precipitation are shown for selected herds. A process for assessing caribou-focused climate derivatives is proposed.

  12. A unified nonlinear stochastic time series analysis for climate science.

    Science.gov (United States)

    Moon, Woosok; Wettlaufer, John S

    2017-03-13

    Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.

  13. A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns

    Directory of Open Access Journals (Sweden)

    Xin-Gang Dai

    2017-03-01

    Full Text Available This study aims to develop a large-scale climate classification for investigating the characteristics of the climate regimes around the Tibetan Plateau based on seasonal precipitation, moisture transport and moisture divergence using in situ observations and ERA40 reanalysis data. The results indicate that the climate can be attributed to four regimes around the Plateau. They situate in East Asia, South Asia, Central Asia and the semi-arid zone in northern Central Asia throughout the dryland of northwestern China, in addition to the Köppen climate classification. There are different collocations of seasonal temperature and precipitation: 1 in phase for the East and South Asia monsoon regimes, 2 anti-phase for the Central Asia regime, 3 out-of-phase for the westerly regime. The seasonal precipitation concentrations are coupled with moisture divergence, i.e., moisture convergence coincides with the Asian monsoon zone and divergence appears over the Mediterranean-like arid climate region and westerly controlled area in the warm season, while it reverses course in the cold season. In addition, moisture divergence is associated with meridional moisture transport. The northward/southward moisture transport corresponds to moisture convergence/divergence, indicating that the wet and dry seasons are, to a great extent, dominated by meridional moisture transport in these regions. The climate mean southward transport results in the dry-cold season of the Asian monsoon zone and the dry-warm season, leading to desertification or land degradation in Central Asia and the westerly regime zone. The mean-wind moisture transport (MMT is the major contributor to total moisture transport, while persistent northward transient eddy moisture transport (TEMT plays a key role in dry season precipitation, especially in the Asian monsoon zone. The persistent TEMT divergence is an additional mechanism of the out-of-phase collocation in the westerly regime zone. In addition

  14. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    Directory of Open Access Journals (Sweden)

    Flavio Justino

    2016-01-01

    Full Text Available Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.

  15. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    Science.gov (United States)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  16. The seasonal influence of climate and environment on yellow fever transmission across Africa.

    Science.gov (United States)

    Hamlet, Arran; Jean, Kévin; Perea, William; Yactayo, Sergio; Biey, Joseph; Van Kerkhove, Maria; Ferguson, Neil; Garske, Tini

    2018-03-01

    Yellow fever virus (YFV) is a vector-borne flavivirus endemic to Africa and Latin America. Ninety per cent of the global burden occurs in Africa where it is primarily transmitted by Aedes spp, with Aedes aegypti the main vector for urban yellow fever (YF). Mosquito life cycle and viral replication in the mosquito are heavily dependent on climate, particularly temperature and rainfall. We aimed to assess whether seasonal variations in climatic factors are associated with the seasonality of YF reports. We constructed a temperature suitability index for YFV transmission, capturing the temperature dependence of mosquito behaviour and viral replication within the mosquito. We then fitted a series of multilevel logistic regression models to a dataset of YF reports across Africa, considering location and seasonality of occurrence for seasonal models, against the temperature suitability index, rainfall and the Enhanced Vegetation Index (EVI) as covariates alongside further demographic indicators. Model fit was assessed by the Area Under the Curve (AUC), and models were ranked by Akaike's Information Criterion which was used to weight model outputs to create combined model predictions. The seasonal model accurately captured both the geographic and temporal heterogeneities in YF transmission (AUC = 0.81), and did not perform significantly worse than the annual model which only captured the geographic distribution. The interaction between temperature suitability and rainfall accounted for much of the occurrence of YF, which offers a statistical explanation for the spatio-temporal variability in transmission. The description of seasonality offers an explanation for heterogeneities in the West-East YF burden across Africa. Annual climatic variables may indicate a transmission suitability not always reflected in seasonal interactions. This finding, in conjunction with forecasted data, could highlight areas of increased transmission and provide insights into the occurrence of

  17. Timing of seasonal migration in mule deer: effects of climate, plant phenology, and life-history characteristics

    Science.gov (United States)

    Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry

    2011-01-01

    Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants

  18. Perceived and Actual Motivational Climate of a Mastery-Involving Sport Education Season

    Science.gov (United States)

    Hastie, Peter; Sinelnikov, Oleg; Wallhead, Tristan; Layne, Todd

    2014-01-01

    The purpose of the study was to implement a Sport Education season designed to be mastery-involving and examine the degree of congruence between the objective measure of the presented climate with the students' perceptions of the saliency of this motivational climate. Twenty-one male high school students (mean age of 15.9 years) and one expert…

  19. Contingent valuation study of the benefits of seasonal climate forecasts for maize farmers in the Republic of Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Cocou Jaurès Amegnaglo

    2017-04-01

    Full Text Available This study aims to assess the economic benefits of seasonal climate forecasts in West Africa based on a random survey of 354 maize farmers and to use the contingent valuation method. Results indicate that farmers need accurate seasonal climate forecasts between 1 and 2 months before the onset of rains. The most desirable dissemination channels are radio, local elders, local farmer meetings and extension agents. The most likely used farming strategies are change of: planting date, crop acreage, crop variety, and production intensification. The vast majority of farmers are willing to pay for seasonal climate forecasts, and the average annual economic value of seasonal climate forecasts are about USD 5492 for the 354 sampled farmers and USD 66.5 million dollar at the national level. Furthermore, benefits of seasonal climate forecasts are likely to increase with better access to farmer based organisation, to extension services, to financial services, to modern communication tools, intensity of use of fertilizer and with larger farm sizes. Seasonal climate forecasts are a source of improvement of farmers’ performance and the service should be integrated in extension programmes and in national agricultural development agenda.

  20. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years

    Science.gov (United States)

    Sharma, Sapna; Magnuson, John J.; Batt, Ryan D.; Winslow, Luke; Korhonen, Johanna; Yasuyuki Aono,

    2016-01-01

    Lake and river ice seasonality (dates of ice freeze and breakup) responds sensitively to climatic change and variability. We analyzed climate-related changes using direct human observations of ice freeze dates (1443–2014) for Lake Suwa, Japan, and of ice breakup dates (1693–2013) for Torne River, Finland. We found a rich array of changes in ice seasonality of two inland waters from geographically distant regions: namely a shift towards later ice formation for Suwa and earlier spring melt for Torne, increasing frequencies of years with warm extremes, changing inter-annual variability, waning of dominant inter-decadal quasi-periodic dynamics, and stronger correlations of ice seasonality with atmospheric CO2 concentration and air temperature after the start of the Industrial Revolution. Although local factors, including human population growth, land use change, and water management influence Suwa and Torne, the general patterns of ice seasonality are similar for both systems, suggesting that global processes including climate change and variability are driving the long-term changes in ice seasonality.

  1. Birth seasonality and offspring production in threatened neotropical primates related to climate

    Science.gov (United States)

    Wiederholt, R.; Post, E.

    2011-01-01

    Given the threatened status of many primate species, the impacts of global warming on primate reproduction and, consequently, population growth should be of concern. We examined relations between climatic variability and birth seasonality, offspring production, and infant sex ratios in two ateline primates, northern muriquis, and woolly monkeys. In both species, the annual birth season was delayed by dry conditions and El Ni??o years, and delayed birth seasons were linked to lower birth rates. Additionally, increased mean annual temperatures were associated with lower birth rates for northern muriquis. Offspring sex ratios varied with climatic conditions in both species, but in different ways: directly in woolly monkeys and indirectly in northern muriquis. Woolly monkeys displayed an increase in the proportion of males among offspring in association with El Ni??o events, whereas in northern muriquis, increases in the proportion of males among offspring were associated with delayed onset of the birth season, which itself was related, although weakly, to warm, dry conditions. These results illustrate that global warming, increased drought frequency, and changes in the frequency of El Ni??o events could limit primate reproductive output, threatening the persistence and recovery of ateline primate populations. ?? 2011 Blackwell Publishing Ltd.

  2. The Impact of Ocean Observations in Seasonal Climate Prediction

    Science.gov (United States)

    Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena

    2010-01-01

    The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.

  3. Role of the seasonal cycle in coupling climate and carbon cycling in subanartic zone

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2010-08-01

    Full Text Available There is increasing evidence in the Southern Ocean that mesoscales and seasonal scales play an important role in the coupling of ocean carbon cycling and climate. The seasonal cycle is one of the strongest modes of variability in different...

  4. Sub-seasonal prediction over East Asia during boreal summer using the ECCC monthly forecasting system

    Science.gov (United States)

    Liang, Ping; Lin, Hai

    2018-02-01

    A useful sub-seasonal forecast is of great societal and economical value in the highly populated East Asian region, especially during boreal summer when frequent extreme events such as heat waves and persistent heavy rainfalls occur. Despite recent interest and development in sub-seasonal prediction, it is still unclear how skillful dynamical forecasting systems are in East Asia beyond 2 weeks. In this study we evaluate the sub-seasonal prediction over East Asia during boreal summer in the operational monthly forecasting system of Environment and Climate Change Canada (ECCC).Results show that the climatological intra-seasonal oscillation (CISO) of East Asian summer monsoonis reasonably well captured. Statistically significant forecast skill of 2-meter air temperature (T2m) is achieved for all lead times up to week 4 (days 26-32) over East China and Northeast Asia, which is consistent with the skill in 500 hPa geopotential height (Z500). Significant forecast skill of precipitation, however, is limited to the week of days 5-11. Possible sources of predictability on the sub-seasonal time scale are analyzed. The weekly mean T2m anomaly over East China is found to be linked to an eastward propagating extratropical Rossby wave from the North Atlantic across Europe to East Asia. The Madden-Julian Oscillation (MJO) and El Nino-Southern Oscillation (ENSO) are also likely to influence the forecast skill of T2m at the sub-seasonal timescale over East Asia.

  5. Exploratory Long-Range Models to Estimate Summer Climate Variability over Southern Africa.

    Science.gov (United States)

    Jury, Mark R.; Mulenga, Henry M.; Mason, Simon J.

    1999-07-01

    Teleconnection predictors are explored using multivariate regression models in an effort to estimate southern African summer rainfall and climate impacts one season in advance. The preliminary statistical formulations include many variables influenced by the El Niño-Southern Oscillation (ENSO) such as tropical sea surface temperatures (SST) in the Indian and Atlantic Oceans. Atmospheric circulation responses to ENSO include the alternation of tropical zonal winds over Africa and changes in convective activity within oceanic monsoon troughs. Numerous hemispheric-scale datasets are employed to extract predictors and include global indexes (Southern Oscillation index and quasi-biennial oscillation), SST principal component scores for the global oceans, indexes of tropical convection (outgoing longwave radiation), air pressure, and surface and upper winds over the Indian and Atlantic Oceans. Climatic targets include subseasonal, area-averaged rainfall over South Africa and the Zambezi river basin, and South Africa's annual maize yield. Predictors and targets overlap in the years 1971-93, the defined training period. Each target time series is fitted by an optimum group of predictors from the preceding spring, in a linear multivariate formulation. To limit artificial skill, predictors are restricted to three, providing 17 degrees of freedom. Models with colinear predictors are screened out, and persistence of the target time series is considered. The late summer rainfall models achieve a mean r2 fit of 72%, contributed largely through ENSO modulation. Early summer rainfall cross validation correlations are lower (61%). A conceptual understanding of the climate dynamics and ocean-atmosphere coupling processes inherent in the exploratory models is outlined.Seasonal outlooks based on the exploratory models could help mitigate the impacts of southern Africa's fluctuating climate. It is believed that an advance warning of drought risk and seasonal rainfall prospects will

  6. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes

    Directory of Open Access Journals (Sweden)

    N. Romano

    2011-12-01

    Full Text Available We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM. The single-layer BM of Guswa et al. (2002 is employed, whereas the Richards equation (RE based Soil Water Atmosphere Plant (SWAP model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002. Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are

  7. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    Science.gov (United States)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  8. Climate model biases in seasonality of continental water storage revealed by satellite gravimetry

    Science.gov (United States)

    Swenson, Sean; Milly, P.C.D.

    2006-01-01

    Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.

  9. Do planetary seasons play a role in attaining stable climates?

    Science.gov (United States)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2018-05-01

    A simple phenomenological account for planetary climate instabilities is presented. The description is based on the standard model where the balance of incoming stellar radiation and outward thermal radiation is described by the effective planet temperature. Often, it is found to have three different points, or temperatures, where the influx of radiation is balanced with the out-flux, even with conserved boundary conditions. Two of these points are relatively long-term stable, namely the point corresponding to a cold climate and the point corresponding to a hot climate. In a classical sense these points are equilibrium balance points. The hypothesis promoted in this paper is the possibility that the intermediate third point can become long-term stable by being driven dynamically. The initially unstable point is made relatively stable over a long period by the presence of seasonal climate variations.

  10. The Seasonal cycle of the Tropical Lower Stratospheric Water Vapor in Chemistry-Climate Models in Comparison with Observations

    Science.gov (United States)

    Wang, X.; Dessler, A. E.

    2017-12-01

    The seasonal cycle is one of the key features of the tropical lower stratospheric water vapor, so it is important that the climate models reproduce it. In this analysis, we evaluate how well the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and the Whole Atmosphere Community Climate Model (WACCM) reproduce the seasonal cycle of tropical lower stratospheric water vapor. We do this by comparing the models to observations from the Microwave Limb Sounder (MLS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERAi). We also evaluate if the chemistry-climate models (CCMs) reproduce the key transport and dehydration processes that regulate the seasonal cycle using a forward, domain filling, diabatic trajectory model. Finally, we explore the changes of the seasonal cycle during the 21st century in the two CCMs. Our results show general agreement in the seasonal cycles from the MLS, the ERAi, and the CCMs. Despite this agreement, there are some clear disagreements between the models and the observations on the details of transport and dehydration in the TTL. Finally, both the CCMs predict a moister seasonal cycle by the end of the 21st century. But they disagree on the changes of the seasonal amplitude, which is predicted to increase in the GEOSCCM and decrease in the WACCM.

  11. Extracting climate signals from large hydrological data cubes using multivariate statistics - an example for the Mediterranean basin

    Science.gov (United States)

    Kauer, Agnes; Dorigo, Wouter; Bauer-Marschallinger, Bernhard

    2017-04-01

    Global warming is expected to change ocean-atmosphere oscillation patterns, e.g. the El Nino Southern Oscillation, and may thus have a substantial impact on water resources over land. Yet, the link between climate oscillations and terrestrial hydrology has large uncertainties. In particular, the climate in the Mediterranean basin is expected to be sensitive to global warming as it may increase insufficient and irregular water supply and lead to more frequent and intense droughts and heavy precipitation events. The ever increasing need for water in tourism and agriculture reinforce the problem. Therefore, the monitoring and better understanding of the hydrological cycle are crucial for this area. This study seeks to quantify the effect of regional climate modes, e.g. the Northern Atlantic Oscillation (NAO) on the hydrological cycle in the Mediterranean. We apply Empirical Orthogonal Functions (EOF) to a wide range of hydrological datasets to extract the major modes of variation over the study period. We use more than ten datasets describing precipitation, soil moisture, evapotranspiration, and changes in water mass with study periods ranging from one to three decades depending on the dataset. The resulting EOFs are then examined for correlations with regional climate modes using Spearman rank correlation analysis. This is done for the entire time span of the EOFs and for monthly and seasonally sampled data. We find relationships between the hydrological datasets and the climate modes NAO, Arctic Oscillation (AO), Eastern Atlantic (EA), and Tropical Northern Atlantic (TNA). Analyses of monthly and seasonally sampled data reveal high correlations especially in the winter months. However, the spatial extent of the data cube considered for the analyses have a large impact on the results. Our statistical analyses suggest an impact of regional climate modes on the hydrological cycle in the Mediterranean area and may provide valuable input for evaluating process

  12. 20th-Century Climate Change over Africa: Seasonal Variation in Hydroclimate Trends and Sahara Desert Extent

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational data sets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one which can mask off-setting but agriculturally-sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and Northern Africa where largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of Niger river in West Africa, and in the Congo river basin. Rainfall over the African Great Lakes - one of the largest freshwater repositories - has however increased. We show that the Sahara Desert has expanded significantly over the 20th century - by 12-20% depending on the season. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt; and to the north in winter, indicating potential impact of the widening of the Tropics. Specific mechanisms driving the expansion in each season are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate models from a comparison of the 20th-century hydroclimate trends with those manifest in historical climate simulations. The evaluation shows that modeling regional hydroclimate change over the Africa continent remains challenging.

  13. Mediterranean climate and some tropical teleconnections

    International Nuclear Information System (INIS)

    Alpert, P.; Price, C.; Krichak, S.; Saaroni, H.; Osetinsky, I.; Barkan, J.; Kishcha, P.; Ziv, B.

    2006-01-01

    Some strong natural fluctuations of climate in the Eastern Mediterranean (EM) region are shown to be connected to the major tropical systems, e.g., El Ni no Southern Oscillation, South Asian Monsoon and hurricanes. Modelling of the severe floods suggests a relation to tropical hurricanes. For a specific event, high-resolution modelling of the severe flood on December 3-5, 2001 in Israel suggests a relation to hurricane Olga. In order to understand the factors governing the Eastern Mediterranean climate variability in the summer season, the relationship between extreme summer temperatures and the South Asian Monsoon was examined. Other tropical factors, like the Red Sea Trough system and the Saharan dust, also contribute to the Mediterranean climate variability

  14. Seasonal streamflow prediction by a combined climate-hydrologic system for river basins of Taiwan

    Science.gov (United States)

    Kuo, Chun-Chao; Gan, Thian Yew; Yu, Pao-Shan

    2010-06-01

    SummaryA combined, climate-hydrologic system with three components to predict the streamflow of two river basins of Taiwan at one season (3-month) lead time for the NDJ and JFM seasons was developed. The first component consists of the wavelet-based, ANN-GA model (Artificial Neural Network calibrated by Genetic Algorithm) which predicts the seasonal rainfall by using selected sea surface temperature (SST) as predictors, given that SST are generally predictable by climate models up to 6-month lead time. For the second component, three disaggregation models, Valencia and Schaake (VS), Lane, and Canonical Random Cascade Model (CRCM), were tested to compare the accuracy of seasonal rainfall disaggregated by these three models to 3-day time scale rainfall data. The third component consists of the continuous rainfall-runoff model modified from HBV (called the MHBV) and calibrated by a global optimization algorithm against the observed rainfall and streamflow data of the Shihmen and Tsengwen river basins of Taiwan. The proposed system was tested, first by disaggregating the predicted seasonal rainfall of ANN-GA to rainfall of 3-day time step using the Lane model; then the disaggregated rainfall data was used to drive the calibrated MHBV to predict the streamflow for both river basins at 3-day time step up to a season's lead time. Overall, the streamflow predicted by this combined system for the NDJ season, which is better than that of the JFM season, will be useful for the seasonal planning and management of water resources of these two river basins of Taiwan.

  15. Using large-scale climate indices in climate change ecology studies

    DEFF Research Database (Denmark)

    Forchhammer, Mads Cedergreen; Post, Eric

    2004-01-01

    Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns......Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns...

  16. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  17. Impacts of Seasonal Patterns of Climate on Recurrent Fluctuations in Tourism Demand: Evidence from Aruba

    NARCIS (Netherlands)

    Ridderstaat, J.R.; Oderber, M.; Croes, R.; Nijkamp, P.; Martens, P.

    2014-01-01

    This study estimates the effect of seasonal patterns of pull and push climate elements (rainfall, temperature, wind, and cloud coverage) on recurrent fluctuations in tourism demand from the United States (USA) and Venezuela to Aruba. The seasonal patterns were first isolated from the series using

  18. ENSO and interdecadal climate variability over the last century documented by geochemical records of two coral cores from the South West Pacific

    Directory of Open Access Journals (Sweden)

    T. Ourbak

    2006-01-01

    Full Text Available The south west Pacific is affected by climatic phenomena such as ENSO (El Niño Southern Oscillation or the PDO (Pacific Decadal Oscillation. Near-monthly resolution calibrations of Sr/Ca, U/Ca and δ18Oc were made on corals taken from New Caledonia and Wallis Island. These geochemical variations could be linked to SST (sea surface temperature and SSS (sea surface salinity variations over the last two decades, itselves dependent on ENSO occurrences. On the other hand, near-half-yearly resolution over the last century smoothes seasonal and interannual climate signals, but emphasizes low frequency climate variability.

  19. Sub-Seasonal Climate Forecast Rodeo

    Science.gov (United States)

    Webb, R. S.; Nowak, K.; Cifelli, R.; Brekke, L. D.

    2017-12-01

    The Bureau of Reclamation, as the largest water wholesaler and the second largest producer of hydropower in the United States, benefits from skillful forecasts of future water availability. Researchers, water managers from local, regional, and federal agencies, and groups such as the Western States Water Council agree that improved precipitation and temperature forecast information at the sub-seasonal to seasonal (S2S) timescale is an area with significant potential benefit to water management. In response, and recognizing NOAA's leadership in forecasting, Reclamation has partnered with NOAA to develop and implement a real-time S2S forecasting competition. For a year, solvers are submitting forecasts of temperature and precipitation for weeks 3&4 and 5&6 every two weeks on a 1x1 degree grid for the 17 western state domain where Reclamation operates. The competition began on April 18, 2017 and the final real-time forecast is due April 3, 2018. Forecasts are evaluated once observational data become available using spatial anomaly correlation. Scores are posted on a competition leaderboard hosted by the National Integrated Drought Information System (NIDIS). The leaderboard can be accessed at: https://www.drought.gov/drought/sub-seasonal-climate-forecast-rodeo. To be eligible for cash prizes - which total $800,000 - solvers must outperform two benchmark forecasts during the real-time competition as well as in a required 11-year hind-cast. To receive a prize, competitors must grant a non-exclusive license to practice their forecast technique and make it available as open source software. At approximately one quarter complete, there are teams outperforming the benchmarks in three of the four competition categories. With prestige and monetary incentives on the line, it is hoped that the competition will spur innovation of improved S2S forecasts through novel approaches, enhancements to established models, or otherwise. Additionally, the competition aims to raise

  20. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Science.gov (United States)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  1. A change of seasons in Saturn's stratosphere from Cassini/CIRS: evolution of the equatorial oscillation and reversal of hemispheric transport.

    Science.gov (United States)

    Guerlet, Sandrine; Fouchet, Thierry; Hesman, Brigette; Bjoraker, Gordon; Spiga, Aymeric; Cassini/CIRS Team

    2016-10-01

    Due to its axial tilt of 26.7°, Saturn's atmosphere undergoes significant seasonal variations in insolation that impact its thermal structure, chemistry and dynamics. The exceptional longevity of the Cassini mission enables us to uniquely investigate these changes over almost half a Saturn year. In this study, thermal infrared spectra acquired in 2015 by CIRS in limb viewing geometry are analyzed to map the temperature and the meridional distribution of five hydrocarbons from the lower to the upper stratosphere (10 mbar - 10 microbar). These new maps represent a snapshot of Saturn's atmosphere at the end of the northern spring and are compared to previous results obtained during northern winter (2005/2006) and early spring (2010/2011) (Guerlet et al., Icarus, 2009; Sylvestre et al., Icarus, 2015). Spectacular seasonal changes in temperature are observed, not only at high latitudes where the most extreme insolation variations take place, but also at 20N-20S where the mechanical forcing of the equatorial oscillation induces temperature anomalies of up to +/-20K. These results are compared with predictions from a radiative climate model (Guerlet et al., Icarus, 2014). Apart from the equatorial region, the seasonal warming and cooling trends observed by CIRS are, to first order, consistent with the predictions. One notable exception is that the region under the ring's shadow is found warmer than expected from the radiative model, both in 2005 and 2015. The spatial distribution of hydrocarbons, by-products of the methane photochemistry, also undergoes significant seasonal change in the upper stratosphere. In 2005, a local maximum of hydrocarbons was observed at 20-30N, at odds with the low photochemical production in this region (under the ring's shadow at that time). Together with the high temperature anomaly, we had interpreted this result as the signature of a downwelling branch of the meridional circulation. In 2015, not only has this local maximum vanished, but a

  2. Seasonality of livebirths and climatic factors in Italian regions (1863-1933

    Directory of Open Access Journals (Sweden)

    Gabriele Ruiu

    2017-07-01

    Full Text Available Birth seasonality is a phenomenon that characterizes almost all the populations of the world. In spite of this, the causes underlying these seasonal fluctuations represent an as yet unsolved puzzle. Two main theoretical approaches have been proposed to explain birth seasonality. The first encompasses a social explanation and emphasizes the role of social, economic and cultural factors in determining the optimal moment (from a social perspective for conception (e.g., according to the cycle of agricultural workload, religious festivity, marriage seasonality, etc.. The second theoretical approach encompasses an environmental explanation and focuses on the role that climatic factors (e.g., temperature, rainfall, light intensity, etc. play in determining the optimal moment of conception from a biological perspective. Our paper may be collocated in the latter strand of the literature. The aim is to investigate the effects of temperature on conceptions, and subsequently on the seasonality of livebirths, while controlling for a possible social confounding effect, i.e. the seasonal pattern of marriage. To achieve this end, we empirically investigate the role of temperature as well as that of marriage seasonality in Italian regions for the period stretching from the Italian unification to the eve of World War II. We find that extreme temperatures (both cold and hot negatively affect the number of births. At the same time, marriage seasonality also seems to be an important explicative factor of the seasonal fluctuation of live births.

  3. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble

    Science.gov (United States)

    Toh, Ying Ying; Turner, Andrew G.; Johnson, Stephanie J.; Holloway, Christopher E.

    2018-02-01

    The fidelity of 28 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating mean climate over the Maritime Continent in the Atmospheric Model Intercomparison Project (AMIP) experiment is evaluated in this study. The performance of AMIP models varies greatly in reproducing seasonal mean climate and the seasonal cycle. The multi-model mean has better skill at reproducing the observed mean climate than the individual models. The spatial pattern of 850 hPa wind is better simulated than the precipitation in all four seasons. We found that model horizontal resolution is not a good indicator of model performance. Instead, a model's local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon. The comparison with coupled models in CMIP5 shows that AMIP models generally performed better than coupled models in the simulation of the global monsoon and local Hadley circulation but less well at simulating the Maritime Continent annual cycle of precipitation. To characterize model systematic biases in the AMIP runs, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I models are able to capture both the winter monsoon and summer monsoon shift, but they overestimate the precipitation; especially during the JJA and SON seasons. Cluster II models simulate weaker seasonal migration than observed, and the maximum rainfall position stays closer to the equator throughout the year. The tropics-wide properties of these clusters suggest a connection between the skill of simulating global properties of the monsoon circulation and the skill of simulating the regional scale of Maritime Continent precipitation.

  4. World climate patterns in grassland and savanna and their relation to growing seasons

    Directory of Open Access Journals (Sweden)

    R. Kirk Steinhorst

    1977-11-01

    Full Text Available The climate at eleven IBP savanna or grassland study sites from five continents are described and principal components analysis is used to compare them. A multivariate linear discriminant function based on mean monthly precipitation, mean monthly temperature, latitude and altitude, is used to predict the length of the growing season at each site. At most sites, the actual and predicted start and end of the growing season agreed closely. It is concluded that growing season on a world-wide basis may be predicted fairly reliably from a small number of abiotic variables by means of a multivariate discriminant function.

  5. Seasonal changes in climatic parameters and their relationship with the incidence of pneumococcal bacteraemia in Denmark

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Lundbye-Christensen, Søren; Thomsen, R.W.

    2008-01-01

    The seasonal variation in the incidence of invasive pneumococcal disease is well recognized, but little is known about its relationship with actual changes in climatic parameters. In this 8-year longitudinal population-based study in Denmark, a harmonic sinusoidal regression model was used...... to examine whether preceding changes in climatic parameters corresponded with subsequent variations in the incidence of pneumococcal bacteraemia, independently of seasonal variation. The study shows that changes in temperature can be used to closely predict peaks in the incidence of pneumococcal bacteraemia...

  6. CARICOF - The Caribbean Regional Climate Outlook Forum

    Science.gov (United States)

    Van Meerbeeck, Cedric

    2013-04-01

    Regional Climate Outlook Forums (RCOFs) are viewed as a critical building block in the Global Framework for Climate Services (GFCS) of the World Meteorological Organization (WMO). The GFCS seeks to extend RCOFs to all vulnerable regions of the world such as the Caribbean, of which the entire population is exposed to water- and heat-related natural hazards. An RCOF is initially intended to identify gaps in information and technical capability; facilitate research cooperation and data exchange within and between regions, and improve coordination within the climate forecasting community. A focus is given on variations in climate conditions on a seasonal timescale. In this view, the relevance of a Caribbean RCOF (CARICOF) is the following: while the seasonality of the climate in the Caribbean has been well documented, major gaps in knowledge exist in terms of the drivers in the shifts of amplitude and phase of seasons (as evidenced from the worst region-wide drought period in recent history during 2009-2010). To address those gaps, CARICOF has brought together National Weather Services (NWSs) from 18 territories under the coordination of the Caribbean Institute for Meteorology and Hydrology (CIMH), to produce region-wide, consensus, seasonal climate outlooks since March 2012. These outlooks include tercile rainfall forecasts, sea and air surface temperature forecasts as well as the likely evolution of the drivers of seasonal climate variability in the region, being amongst others the El Niño Southern Oscillation or tropical Atlantic and Caribbean Sea temperatures. Forecasts for both the national-scale forecasts made by the NWSs and CIMH's regional-scale forecast amalgamate output from several forecasting tools. These currently include: (1) statistical models such as Canonical Correlation Analysis run with the Climate Predictability Tool, providing tercile rainfall forecasts at weather station scale; (2) a global outlooks published by the WMO appointed Global Producing

  7. Seasonal and Interannual Trends in Largest Cholera Endemic Megacity: Water Sustainability - Climate - Health Challenges in Dhaka, Bangladesh

    Science.gov (United States)

    Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.

    2014-05-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the

  8. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    Directory of Open Access Journals (Sweden)

    A. Schepen

    2018-03-01

    Full Text Available Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S, which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  9. Changes in seasonal climate outpace compensatory density-dependence in eastern brook trout

    Science.gov (United States)

    Bassar, Ronald D.; Letcher, Benjamin H.; Nislow, Keith H.; Whiteley, Andrew R.

    2016-01-01

    Understanding how multiple extrinsic (density-independent) factors and intrinsic (density-dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density-dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) versus density-dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10-year capture-mark-recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete-time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density-dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate-driven environmental change.

  10. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    Science.gov (United States)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of

  11. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  12. Causes of skill in seasonal predictions of the Arctic Oscillation

    Science.gov (United States)

    Kumar, Arun; Chen, Mingyue

    2017-11-01

    Based on an analysis of hindcasts from a seasonal forecast system, complemented by the analysis of a large ensemble of AMIP simulations, possible causes for skillful prediction of the winter Arctic Oscillation (AO) on a seasonal time-scale are analyzed. The possibility that the recent increase in AO skill could be due to model improvements, or due to changes in the persistence characteristics of the AO, is first discounted. The analysis then focuses on exploring the possibility that the recent increase in prediction skill in AO may be due to sampling variations or could have physical causes. Temporal variations in AO skill due entirely to sampling alone cannot be discounted as this is a fundamental constraint on verifications over a short time-series. This notion is supported from theoretical considerations, and from the analysis of the temporal variations in the perfect model skill where substantial variations in skill due to sampling alone are documented. As for the physical causes, the analysis indicates possible links in the prediction skill of AO with the SST forcing from the tropics, particularly related to the SST variations associated with the Trans-Niño Index (TNI). Interannual and low frequency variations in the TNI could have contributed to similar temporal variations in AO skill. For example, a dominance of central Pacific El Niño events after 2000 (a reflection of low-frequency variations in TNI) coincided with an increase in the prediction skill of AO. The analysis approach and results provide an avenue for further investigations; for example, model simulations forced with the SST pattern associated with the TNI, to establish or reaffirm causes for AO skill.

  13. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    Science.gov (United States)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  14. A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae

    Directory of Open Access Journals (Sweden)

    John Jacobs

    2015-01-01

    Full Text Available Climate change is expected to alter coastal ecosystems in ways which may have predictable consequences for the seasonality and geographical distribution of human pathogens and harmful algae. Here we demonstrate relatively simple approaches for evaluating the risk of occurrence of pathogenic bacteria in the genus Vibrio and outbreaks of toxin-producing harmful algae in the genus Alexandrium, with estimates of uncertainty, in U.S. coastal waters under future climate change scenarios through the end of the 21st century. One approach forces empirical models of growth, abundance and the probability of occurrence of the pathogens and algae at specific locations in the Chesapeake Bay and Puget Sound with ensembles of statistically downscaled climate model projections to produce first order assessments of changes in seasonality. In all of the case studies examined, the seasonal window of occurrence for Vibrio and Alexandrium broadened, indicating longer annual periods of time when there is increased risk for outbreaks. A second approach uses climate model projections coupled with GIS to identify the potential for geographic range shifts for Vibrio spp. in the coastal waters of Alaska. These two approaches could be applied to other coastal pathogens that have climate sensitive drivers to investigate potential changes to the risk of outbreaks in both time (seasonality and space (geographical distribution under future climate change scenarios.

  15. Seasonal Climate Signals in Multiple Tree-Ring Parameters: A Pilot Study of Pinus ponderosa in the Columbia River Basin

    Science.gov (United States)

    Dannenberg, M.; Wise, E. K.; Keung, J. H.

    2014-12-01

    Proxy-based reconstructions of past climate have played an integral role in assessments of historical climate change, and tree-ring widths (TRW) have a long history of use in this paleoclimate research due to their annual resolution, widespread availability, and sensitivity of growth processes to variation in temperature and water availability. Increasingly, studies have shown that additional tree-ring metrics—including earlywood and latewood widths (EW and LW, respectively), maximum latewood density, and the intensity of reflected blue light from latewood (BI)—can provide additional information on seasonal climatic variability that is not present in TRW alone due to different processes that affect growth in different parts of the growing season. Studies of these additional tree-ring metrics highlight their utility in climate reconstructions, but to date they have mostly been limited to a few tree species and regions. Here, we extend the range of previous studies on alternative tree-ring metrics by evaluating the seasonal climate signals in TRW, EW, LW, and BI of Pinus ponderosa at six semiarid sites surrounding the Columbia River basin in the U.S. Pacific Northwest (PNW). Cores from each site were cross-dated and EW, LW, and TRW were measured using standard dendrochronological procedures. BI was obtained using a high-resolution flatbed scanner and CooRecorder software. To evaluate the unique climate processes and seasonalities contributing to different dendrochronological metrics, monthly temperature and precipitation from each site were obtained from the PRISM climate model and were correlated with each of the tree-ring metrics using the MATLAB program SEASCORR. We also evaluate the potential of using multiple tree-ring metrics (rather than a single proxy) in reconstructions of precipitation in the PNW. Initial results suggest that 1) tree growth at each site is water-limited but with substantial differences among the sites in the strength and seasonality of

  16. The Asian-Australian Monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model*.

    Science.gov (United States)

    Meehl, Gerald A.; Arblaster, Julie M.

    1998-06-01

    Features associated with the Asian-Australian monsoon system and El Niño-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomalies in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1°-2°C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1-2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year. Time series of area-averaged SSTs for the NINO3 region in the eastern equatorial Pacific show that the CSM is producing about 60% of the amplitude of the observed variability in that region, consistent

  17. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  18. How seasonal forecast could help a decision maker: an example of climate service for water resource management

    Science.gov (United States)

    Viel, Christian; Beaulant, Anne-Lise; Soubeyroux, Jean-Michel; Céron, Jean-Pierre

    2016-04-01

    The FP7 project EUPORIAS was a great opportunity for the climate community to co-design with stakeholders some original and innovative climate services at seasonal time scales. In this framework, Météo-France proposed a prototype that aimed to provide to water resource managers some tailored information to better anticipate the coming season. It is based on a forecasting system, built on a refined hydrological suite, forced by a coupled seasonal forecast model. It particularly delivers probabilistic river flow prediction on river basins all over the French territory. This paper presents the work we have done with "EPTB Seine Grands Lacs" (EPTB SGL), an institutional stakeholder in charge of the management of 4 great reservoirs on the upper Seine Basin. First, we present the co-design phase, which means the translation of classical climate outputs into several indices, relevant to influence the stakeholder's decision making process (DMP). And second, we detail the evaluation of the impact of the forecast on the DMP. This evaluation is based on an experiment realised in collaboration with the stakeholder. Concretely EPTB SGL has replayed some past decisions, in three different contexts: without any forecast, with a forecast A and with a forecast B. One of forecast A and B really contained seasonal forecast, the other only contained random forecasts taken from past climate. This placebo experiment, realised in a blind test, allowed us to calculate promising skill scores of the DMP based on seasonal forecast in comparison to a classical approach based on climatology, and to EPTG SGL current practice.

  19. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    Science.gov (United States)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future

  20. The Effect of Agricultural Growing Season Change on Market Prices in Africa

    Science.gov (United States)

    deBeurs, K.M.; Brown, M. E.

    2013-01-01

    to plan effective adaptation strategies. Remote sensing data can also provide some understanding of the spatial extent of these changes and whether they are likely to continue. Given the agricultural nature of most economies on the African continent, agricultural production continues to be a critical determinant of both food security and economic growth (Funk and Brown, 2009). Crop phenological parameters, such as the start and end of the growing season, the total length of the growing season, and the rate of greening and senescence are important for planning crop management, crop diversification, and intensification. The World Food Summit of 1996 defined food security as: "when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life". Food security roughly depends on three factors: 1) availability of food; 2) access to food and 3) appropriate use of food, as well as adequate water and sanitation. The first factor is dependent on growing conditions and weather and climate. In a previous paper we have investigated this factor by evaluating the effect of large scale climate oscillation on land surface phenology (Brown et al., 2010). We found that all areas in Africa are significantly affected by at least one type of large scale climate oscillations and concluded that these somewhat predictable oscillations could perhaps be used to forecast agricultural production. In addition, we have evaluated changes in agricultural land surface phenology over time (Brown et al., 2012). We found that land surface phenology models, which link large-scale vegetation indices with accumulated humidity, could successfully predict agricultural productivity in several countries around the world. In this chapter we are interested in the effect of variability in peak timing of the growing season, or phenology, on the second factor of food security, food access. In this chapter we want to determine if there is a link between market prices

  1. Impacts of climate change on the seasonality of low flows in 134 catchments in the river Rhine basin using an ensemble of bias-corrected regional climate simulations.

    NARCIS (Netherlands)

    Demirel, M.C.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2013-01-01

    The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR), weighted mean occurrence day (WMOD) and

  2. Arctic and Antarctic Oscillation signatures in tropical coral proxies over the South China Sea

    Directory of Open Access Journals (Sweden)

    D.-Y. Gong

    2009-05-01

    Full Text Available Arctic Oscillation (AO and Antarctic Oscillation (AAO are the leading modes of atmospheric circulation in mid-high latitudes. Previous studies have revealed that the climatic influences of the two modes are dominant in extra-tropical regions. This study finds that AO and AAO signals are also well recorded in coral proxies in the tropical South China Sea. There are significant interannual signals of AO and AAO in the strontium (Sr content, which represents the sea surface temperature (SST. Among all the seasons, the most significant correlation occurs during winter in both hemispheres: the strongest AO-Sr and AAO-Sr coral correlations occur in January and August, respectively. This study also determined that the Sr content lags behind AO and AAO by 1–3 months. Large-scale anomalies in sea level pressure and horizontal wind at 850 hPa level support the strength of AO/AAO-coral teleconnections. In addition, a comparison with oxygen isotope records from two coral sites in neighboring oceans yields significant AO and AAO signatures with similar time lags. These results help to better understand monsoon climates and their teleconnection to high-latitude climate changes.

  3. Subseasonal to Seasonal Predictions of U.S. West Coast High Water Levels

    Science.gov (United States)

    Khouakhi, A.; Villarini, G.; Zhang, W.; Slater, L. J.

    2017-12-01

    Extreme sea levels pose a significant threat to coastal communities, ecosystems, and assets, as they are conducive to coastal flooding, coastal erosion and inland salt-water intrusion. As sea levels continue to rise, these sea level extremes - including occasional minor coastal flooding experienced during high tide (nuisance floods) - are of concern. Extreme sea levels are increasing at many locations around the globe and have been attributed largely to rising mean sea levels associated with intra-seasonal to interannual climate processes such as the El Niño-Southern Oscillation (ENSO). Here, intra-seasonal to seasonal probabilistic forecasts of high water levels are computed at the Toke Point tide gage station on the US west coast. We first identify the main climate drivers that are responsible for high water levels and examine their predictability using General Circulation Models (GCMs) from the North American Multi-Model Ensemble (NMME). These drivers are then used to develop a probabilistic framework for the seasonal forecasting of high water levels. We focus on the climate controls on the frequency of high water levels using the number of exceedances above the 99.5th percentile and above the nuisance flood level established by the National Weather Service. Our findings indicate good forecast skill at the shortest lead time, with the skill that decreases as we increase the lead time. In general, these models aptly capture the year-to-year variability in the observational records.

  4. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    Science.gov (United States)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  5. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Impact of climate seasonality on catchment yield: A parameterization for commonly-used water balance formulas

    Science.gov (United States)

    de Lavenne, Alban; Andréassian, Vazken

    2018-03-01

    This paper examines the hydrological impact of the seasonality of precipitation and maximum evaporation: seasonality is, after aridity, a second-order determinant of catchment water yield. Based on a data set of 171 French catchments (where aridity ranged between 0.2 and 1.2), we present a parameterization of three commonly-used water balance formulas (namely, Turc-Mezentsev, Tixeront-Fu and Oldekop formulas) to account for seasonality effects. We quantify the improvement of seasonality-based parameterization in terms of the reconstitution of both catchment streamflow and water yield. The significant improvement obtained (reduction of RMSE between 9 and 14% depending on the formula) demonstrates the importance of climate seasonality in the determination of long-term catchment water balance.

  7. Socio-hydrological model to inform community adaptation to seasonal drought and climate variability in rural agricultural watersheds in Costa Rica

    Science.gov (United States)

    Hund, S. V.; Johnson, M. S.; Morillas, L.; McDaniels, T.; Romero Valpreda, J.; Allen, D. M.

    2017-12-01

    Climate variability and seasonal droughts associated with ENSO (El Niño Southern Oscillation) and increasing water demand due to growing population are leading to serious water conflicts in the wet-dry tropics of Central America. Integrated methods are needed to understand the linkages of these complex socio-hydrological systems and design reliable adaption strategies in a period of global change. With increasing pressure on surface and groundwater resources during long annual dry seasons, rural agricultural communities suffer water shortages, especially in those years preceded by wet seasons with lower rainfall (and reduced groundwater recharge). To support community resilience to rainfall variability and droughts, we conducted a combination of fieldwork (development of hydrologic monitoring system and local stakeholder cooperation), and hydrological modeling for two watersheds with a shared aquifer (Potrero and Caimital) in Northwestern Costa Rica. The agricultural land use of the region and the many rural villages that draw directly on their local water resource and live in close interaction with their watersheds necessitated a socio-hydrological systems approach. In this talk we present results from our hydrologic modeling, for which we used the WEAP (Water Evaluation and Planning) model and locally recorded data. With the integrated water supply and demand features of the WEAP model, we were able to synthesize both the hydrological system and the societal system (specifically, household and agricultural water use), and show feedbacks such as that water use tends to increase during the dry season, likely exacerbating water shortages issues. Further, applying a range of ENSO related rainfall scenarios to the model demonstrated that community adaptation will become in particular important in response to lower water availability in future El Niño years. In collaboration with local stakeholders, we identified a set of feasible adaptation strategies to seasonal

  8. On the use and potential use of seasonal to decadal climate predictions for decision-making in Europe

    Science.gov (United States)

    Soares, Marta Bruno; Dessai, Suraje

    2014-05-01

    The need for climate information to help inform decision-making in sectors susceptible to climate events and impacts is widely recognised. In Europe, developments in the science and models underpinning the study of climate variability and change have led to an increased interest in seasonal to decadal climate predictions (S2DCP). While seasonal climate forecasts are now routinely produced operationally by a number of centres around the world, decadal climate predictions are still in its infancy restricted to the realm of research. Contrary to other regions of the world, where the use of these types of forecasts, particularly at seasonal timescales, has been pursued in recent years due to higher levels of predictability, little is known about the uptake and climate information needs of end-users regarding S2DCP in Europe. To fill this gap we conducted in-depth interviews with experts and decision-makers across a range of European sectors, a workshop with European climate services providers, and a systematic literature review on the use of S2DCP in Europe. This study is part of the EUropean Provision Of Regional Impact Assessment on a Seasonal-to-decadal timescale (EUPORIAS) project which aims to develop semi-operational prototypes of impact prediction systems in Europe on seasonal to decadal timescales. We found that the emerging landscape of users and potential users of S2DCP in Europe is complex and heterogeneous. Differences in S2DCP information needs across and within organisations and sectors are largely underpinned by factors such as the institutional and regulatory context of the organisations, the plethora of activities and decision-making processes involved, the level of expertise and capacity of the users, and the availability of resources within the organisations. In addition, although the use of S2DCP across Europe is still fairly limited, particular sectors such as agriculture, health, energy, water, (re)insurance, and transport are taking the lead on

  9. Climate-driven seasonal geocenter motion during the GRACE period

    Science.gov (United States)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  10. Modeled seasonality of glacial abrupt climate events

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Jacqueline [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zuerich, Zurich (Switzerland); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zuerich, Zurich (Switzerland); White, James W.C. [Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO (United States); Renssen, Hans [Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam (Netherlands)

    2008-11-15

    Greenland ice cores, as well as many other paleo-archives from the northern hemisphere, recorded a series of 25 warm interstadial events, the so-called Dansgaard-Oeschger (D-O) events, during the last glacial period. We use the three-dimensional coupled global ocean-atmosphere-sea ice model ECBILT-CLIO and force it with freshwater input into the North Atlantic to simulate abrupt glacial climate events, which we use as analogues for D-O events. We focus our analysis on the Northern Hemisphere. The simulated events show large differences in the regional and seasonal distribution of the temperature and precipitation changes. While the temperature changes in high northern latitudes and in the North Atlantic region are dominated by winter changes, the largest temperature increases in most other land regions are seen in spring. Smallest changes over land are found during the summer months. Our model simulations also demonstrate that the temperature and precipitation change patterns for different intensifications of the Atlantic meridional overturning circulation are not linear. The extent of the transitions varies, and local non-linearities influence the amplitude of the annual mean response as well as the response in different seasons. Implications for the interpretation of paleo-records are discussed. (orig.)

  11. Circular Migration as Climate Change Adaptation: Reconceptualising New Zealand´s and Australia’s Seasonal Worker Programs

    Directory of Open Access Journals (Sweden)

    Christine Brickenstein

    2013-12-01

    Full Text Available This paper looks into an aspect of adaptation, namely the role of the circular migration as climate change adaptation. It focuses on two of the Pacific region’s recently well -known seasonal labor schemes, Namely Australia’s Seasonal Workers Program (SWP and New Zealand ‘s recognized Seasonal Employer Scheme (RSE, and asks if beyond the current goals the schemes May be reconceptualsed as adaptation programs responsive not only towards developmental and economic Concerns but the wider (and interconnected With the first two climate change challenges. According to MacDermott and Opeskin, labor mobility schemes, for the sending country focus on the “development perspective “such as (a Employment Opportunities, (b Regular benefits of Remittances and (c skills enhancement, while receiving countries country can meet the challenges posed by labor shortages in seasonal industries where “a reliable workforce is lacking”.

  12. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    Science.gov (United States)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  13. Impacts of climate change on the seasonality of low flows in 134 catchments in the River Rhine basin using an ensemble of bias-corrected regional climate simulations

    Directory of Open Access Journals (Sweden)

    M. C. Demirel

    2013-10-01

    Full Text Available The impacts of climate change on the seasonality of low flows were analysed for 134 sub-catchments covering the River Rhine basin upstream of the Dutch-German border. Three seasonality indices for low flows were estimated, namely the seasonality ratio (SR, weighted mean occurrence day (WMOD and weighted persistence (WP. These indices are related to the discharge regime, timing and variability in timing of low flow events respectively. The three indices were estimated from: (1 observed low flows; (2 simulated low flows by the semi-distributed HBV model using observed climate as input; (3 simulated low flows using simulated inputs from seven combinations of General Circulation Models (GCMs and Regional Climate Models (RCMs for the current climate (1964–2007; (4 simulated low flows using simulated inputs from seven combinations of GCMs and RCMs for the future climate (2063–2098 including three different greenhouse gas emission scenarios. These four cases were compared to assess the effects of the hydrological model, forcing by different climate models and different emission scenarios on the three indices. Significant differences were found between cases 1 and 2. For instance, the HBV model is prone to overestimate SR and to underestimate WP and simulates very late WMODs compared to the estimated WMODs using observed discharges. Comparing the results of cases 2 and 3, the smallest difference was found for the SR index, whereas large differences were found for the WMOD and WP indices for the current climate. Finally, comparing the results of cases 3 and 4, we found that SR decreases substantially by 2063–2098 in all seven sub-basins of the River Rhine. The lower values of SR for the future climate indicate a shift from winter low flows (SR > 1 to summer low flows (SR < 1 in the two Alpine sub-basins. The WMODs of low flows tend to be earlier than for the current climate in all sub-basins except for the Middle Rhine and Lower Rhine sub

  14. Effects of hurricanes and climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.

    Science.gov (United States)

    Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E

    2018-06-01

    Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.

  15. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    Science.gov (United States)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  16. CMIP5 model simulations of Ethiopian Kiremt-season precipitation: current climate and future changes

    Science.gov (United States)

    Li, Laifang; Li, Wenhong; Ballard, Tristan; Sun, Ge; Jeuland, Marc

    2016-05-01

    Kiremt-season (June-September) precipitation provides a significant water supply for Ethiopia, particularly in the central and northern regions. The response of Kiremt-season precipitation to climate change is thus of great concern to water resource managers. However, the complex processes that control Kiremt-season precipitation challenge the capability of general circulation models (GCMs) to accurately simulate precipitation amount and variability. This in turn raises questions about their utility for predicting future changes. This study assesses the impact of climate change on Kiremt-season precipitation using state-of-the-art GCMs participating in the Coupled Model Intercomparison Project Phase 5. Compared to models with a coarse resolution, high-resolution models (horizontal resolution <2°) can more accurately simulate precipitation, most likely due to their ability to capture precipitation induced by topography. Under the Representative Concentration Pathway (RCP) 4.5 scenario, these high-resolution models project an increase in precipitation over central Highlands and northern Great Rift Valley in Ethiopia, but a decrease in precipitation over the southern part of the country. Such a dipole pattern is attributable to the intensification of the North Atlantic subtropical high (NASH) in a warmer climate, which influences Ethiopian Kiremt-season precipitation mainly by modulating atmospheric vertical motion. Diagnosis of the omega equation demonstrates that an intensified NASH increases (decreases) the advection of warm air and positive vorticity into the central Highlands and northern Great Rift Valley (southern part of the country), enhancing upward motion over the northern Rift Valley but decreasing elsewhere. Under the RCP 4.5 scenario, the high-resolution models project an intensification of the NASH by 15 (3 × 105 m2 s-2) geopotential meters (stream function) at the 850-hPa level, contributing to the projected precipitation change over Ethiopia. The

  17. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  18. Response of seasonal soil freeze depth to climate change across China

    Science.gov (United States)

    Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui

    2017-05-01

    The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.

  19. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam.

    Science.gov (United States)

    Thai, Pham Quang; Choisy, Marc; Duong, Tran Nhu; Thiem, Vu Dinh; Yen, Nguyen Thu; Hien, Nguyen Tran; Weiss, Daniel J; Boni, Maciej F; Horby, Peter

    2015-12-01

    Experimental and ecological studies have shown the role of climatic factors in driving the epidemiology of influenza. In particular, low absolute humidity (AH) has been shown to increase influenza virus transmissibility and has been identified to explain the onset of epidemics in temperate regions. Here, we aim to study the potential climatic drivers of influenza-like illness (ILI) epidemiology in Vietnam, a tropical country characterized by a high diversity of climates. We specifically focus on quantifying and explaining the seasonality of ILI. We used 18 years (1993-2010) of monthly ILI notifications aggregated by province (52) and monthly climatic variables (minimum, mean, maximum temperatures, absolute and relative humidities, rainfall and hours of sunshine) from 67 weather stations across Vietnam. Seasonalities were quantified from global wavelet spectra, using the value of the power at the period of 1 year as a measure of the intensity of seasonality. The 7 climatic time series were characterized by 534 summary statistics which were entered into a regression tree to identify factors associated with the seasonality of AH. Results were extrapolated to the global scale using simulated climatic times series from the NCEP/NCAR project. The intensity of ILI seasonality in Vietnam is best explained by the intensity of AH seasonality. We find that ILI seasonality is weak in provinces experiencing weak seasonal fluctuations in AH (annual power power >17.6). In Vietnam, AH and ILI are positively correlated. Our results identify a role for AH in driving the epidemiology of ILI in a tropical setting. However, in contrast to temperate regions, high rather than low AH is associated with increased ILI activity. Fluctuation in AH may be the climate factor that underlies and unifies the seasonality of ILI in both temperate and tropical regions. Alternatively, the mechanism of action of AH on disease transmission may be different in cold-dry versus hot-humid settings

  20. Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: sensitivity to the background climate state

    Energy Technology Data Exchange (ETDEWEB)

    Arzel, Olivier [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France); England, Matthew H. [The University of New South Wales, Climate Change Research Centre (CCRC), Sydney (Australia); Verdiere, Alain Colin de; Huck, Thierry [Universite de Bretagne Occidentale, Laboratoire de Physique des Oceans (LPO), Brest (France)

    2012-07-15

    The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO{sub 2} levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30-40 years time scale associated with the Atlantic multidecadal oscillation. (orig.)

  1. Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador.

    Science.gov (United States)

    Lowe, Rachel; Stewart-Ibarra, Anna M; Petrova, Desislava; García-Díez, Markel; Borbor-Cordova, Mercy J; Mejía, Raúl; Regato, Mary; Rodó, Xavier

    2017-07-01

    El Niño and its effect on local meteorological conditions potentially influences interannual variability in dengue transmission in southern coastal Ecuador. El Oro province is a key dengue surveillance site, due to the high burden of dengue, seasonal transmission, co-circulation of all four dengue serotypes, and the recent introduction of chikungunya and Zika. In this study, we used climate forecasts to predict the evolution of the 2016 dengue season in the city of Machala, following one of the strongest El Niño events on record. We incorporated precipitation, minimum temperature, and Niño3·4 index forecasts in a Bayesian hierarchical mixed model to predict dengue incidence. The model was initiated on Jan 1, 2016, producing monthly dengue forecasts until November, 2016. We accounted for misreporting of dengue due to the introduction of chikungunya in 2015, by using active surveillance data to correct reported dengue case data from passive surveillance records. We then evaluated the forecast retrospectively with available epidemiological information. The predictions correctly forecast an early peak in dengue incidence in March, 2016, with a 90% chance of exceeding the mean dengue incidence for the previous 5 years. Accounting for the proportion of chikungunya cases that had been incorrectly recorded as dengue in 2015 improved the prediction of the magnitude of dengue incidence in 2016. This dengue prediction framework, which uses seasonal climate and El Niño forecasts, allows a prediction to be made at the start of the year for the entire dengue season. Combining active surveillance data with routine dengue reports improved not only model fit and performance, but also the accuracy of benchmark estimates based on historical seasonal averages. This study advances the state-of-the-art of climate services for the health sector, by showing the potential value of incorporating climate information in the public health decision-making process in Ecuador. European Union

  2. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  3. Rain-season trends in precipitation and their effect in different climate regions of China during 1961-2008

    International Nuclear Information System (INIS)

    Song Yanling; Achberger, Christine; Linderholm, Hans W

    2011-01-01

    Using high-quality precipitation data from 524 stations, the trends of a set of precipitation variables during the main rain season (May-September) from 1961 to 2008 for different climate regions in China were analysed. However, different characteristics were displayed in different regions of China. In most temperate monsoon regions (north-eastern China), total rain-season precipitation and precipitation days showed decreasing trends; positive tendencies in precipitation intensity were, however, noted for most stations in this region. It is suggested that the decrease in rain-season precipitation is mainly related to there being fewer rain days and a change towards drier conditions in north-eastern China, and as a result, the available water resources have been negatively affected in the temperate monsoon regions. In most subtropical and tropical monsoon climate regions (south-eastern China), the rain-season precipitation and precipitation days (11-50, with > 50 mm) showed slightly positive trends. However, precipitation days with ≤ 10 mm decreased in these regions. Changes towards wetter conditions in this area, together with more frequent heavy rainfall events causing floods, have a severe impact on peoples' lives and socio-economic development. In general, the rain-season precipitation, precipitation days and rain-season precipitation intensity had all increased in the temperate continental and plateau/mountain regions of western China. This increase in rain-season precipitation has been favourable to pasture growth.

  4. Real-time monitoring of smallholder farmer responses to intra-seasonal climate variability in central Kenya

    Science.gov (United States)

    Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.

    2017-12-01

    While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.

  5. Application of remote sensing for analyzing climatic variation in the boreal and subarctic regions of Canada and for validating the Canadian Regional Climate Model; Application de la teledetection a l'analyse de la variabilite climatique des regions boreales et subarctiques du Canada et a la validation du modele regional canadien du climat

    Energy Technology Data Exchange (ETDEWEB)

    Fillol, E.J.

    2003-07-01

    This study examined climate variations over the past few decades as well as the tools used to model future climate. The study included an interpretation of the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA-AVHRR) time series data at the continental spatial scale. Data collected over a period of two decades was used to study and monitor Canada's boreal ecosystem activity and to observe recent climatic change. The study involved the use of classical parameters associated with remote sensing in the visible and thermal infrared spectra for vegetation activity and land-surface temperatures. Problems associated with instrumental drift and inter-satellite adjustment were minimized by choosing indicators for the length of the growing season, annual growing degree-days and ecotone displacement. Climate variations over the past twenty years were compared with daily meteorological data of temperature, precipitation and snow cover. Rapid cycle climatic phenomena such as the El Nino and La Nina appear to have influenced the central region of Canada. The North Atlantic Oscillation and Arctic Oscillation also influenced the climate regime of Canada and annual growing degree-days. Indicators for vegetation activity and land-surface temperature suggest that a North-South disparity exists over Canada. A warming trend with an increased growing season was observed for the region north of the 55 parallel, while southern regions appear to be cooling. This study also used remote sensing to validate the Canadian Regional Climate Model (CRCM) through a comparison of ground temperature values modelled by the CRCM with composite satellite temperatures. The results indicate a small under-estimation of the CRCM ground temperature during the summer due to an overestimation of the precipitation rate. It was concluded that climate models such as the CRCM are useful in making reliable predictions of future climate trends.

  6. Season-specific climate signal and reconstruction from a new tree-ring network in the southwestern U.S

    Science.gov (United States)

    Griffin, D.; Woodhouse, C. A.; Meko, D. M.; Stahle, D. W.; Faulstich, H.; Leavitt, S. W.; Touchan, R.; Castro, C. L.; Carrillo, C.

    2011-12-01

    Our research group has updated existing tree-ring collections from over 50 sampling sites in the southwestern U.S. The new and archived specimens, carefully dated with dendrochronology, have been analyzed for width variations of "earlywood" and "latewood." These are the two components of annual rings in conifers that form in spring and summer, respectively. The network of primary tree-ring data has been used to develop a suite of well-replicated chronologies that extend through the 2008 growing season and are sensitive to the season-specific climate variability of the Southwest. Correlation function analysis indicates that the earlywood chronologies are closely related to cool season (October-April) precipitation variability and the chronologies derived from latewood are generally sensitive to precipitation and temperature conditions during the warm season (June-August). These proxy data originate from biological organisms and are not without bias; however, they do constitute a new means for evaluating the recent paleoclimatic history of the North American summer monsoon. The monsoon is a major component of the region's climate, impacting social and environmental systems and delivering up to 60% of the annual precipitation in the southwestern U.S. We have developed latewood-based retrodictions of monsoon precipitation that explain over half of the variance in the instrumental record, pass standard verification tests, and point to periods of persistent drought and wetness during the last 300-500 years. These reconstructions are being used to evaluate the monsoon's long-term spatiotemporal variability and its relationship to cool season climate and the major modes of ocean-atmosphere variability.

  7. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    Science.gov (United States)

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  8. The role of seasonal, climatic and meteorological conditions in modifying nuclear accident consequences

    International Nuclear Information System (INIS)

    Mueller, H.; Proehl, G.

    1989-01-01

    One of the most important factors which influence the ingestion doses after an accidental release of radionuclides is the season of the year at which the release occurs. This is demonstrated with some examples for German conditions. This seasonal effect depends strongly on the growing periods of the different plants. Therefore it is influenced by the climatic conditions which vary to a large degree in the different countries causing very different growing periods. The influence of the meteorological conditions during and after the passing of a radioactive cloud on the initial contamination of the plants is discussed

  9. Severe Weather Events over Southeastern Brazil during the 2016 Dry Season

    Directory of Open Access Journals (Sweden)

    Amanda Rehbein

    2018-01-01

    Full Text Available Southeastern Brazil is the most populated and economically developed region of this country. Its climate consists of two distinct seasons: the dry season, extending from April to September, the precipitation is significantly reduced in comparison to that of the wet season, which extends from October to March. However, during nine days of the 2016 dry season, successive convective systems were associated with atypical precipitation events, tornadoes and at least one microburst over the southern part of this region. These events led to flooding, damages to buildings, shortages of electricity and water in several places, many injuries, and two documented deaths. The present study investigates the synoptic and dynamical features related to these anomalous events. The convective systems were embedded in an unstable environment with intense low-level jet flow and strong wind shear and were supported by a sequence of extratropical cyclones occurring over the Southwest Atlantic Ocean. These features were intensified by the Madden–Julian oscillation (MJO in its phase 8 and by intense negative values of the Pacific South America (PSA 2 mode.

  10. Will seasonal and climatic conditions influence living habits and socio-economic activities in such a way that nuclear accident are affected

    International Nuclear Information System (INIS)

    Baeverstam, U.

    1989-01-01

    The paper discusses to which extent climatic and seasonal effects can influence living habits and socio-economic activities in such a way that consequences of a nuclear accident might be affected. A number of examples from Sweden are given, related to dwellings (building standards and location), diet, seasonal effects in agriculture and tourism. The reindeer are discussed separately. Although climate and season do change man's habits in a way relevant to accident consequences, the conclusion of this paper is that in most cases this mechanism is severely mixed with other, sometimes more important ones

  11. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model

    Science.gov (United States)

    Baehr, J.; Fröhlich, K.; Botzet, M.; Domeisen, D. I. V.; Kornblueh, L.; Notz, D.; Piontek, R.; Pohlmann, H.; Tietsche, S.; Müller, W. A.

    2015-05-01

    A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2-4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.

  12. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    OpenAIRE

    Flavio Justino; Frode Stordal; Edward K. Vizy; Kerry H. Cook; Marcos P. S. Pereira

    2016-01-01

    Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly ...

  13. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  14. Diagnosing observed characteristics of the wet season across Africa to identify deficiencies in climate model simulations

    Science.gov (United States)

    Dunning, C.; Black, E.; Allan, R. P.

    2017-12-01

    The seasonality of rainfall over Africa plays a key role in determining socio-economic impacts for agricultural stakeholders, influences energy supply from hydropower, affects the length of the malaria transmission season and impacts surface water supplies. Hence, failure or delays of these rains can lead to significant socio-economic impacts. Diagnosing and interpreting interannual variability and long-term trends in seasonality, and analysing the physical driving mechanisms, requires a robust definition of African precipitation seasonality, applicable to both observational datasets and model simulations. Here we present a methodology for objectively determining the onset and cessation of multiple wet seasons across the whole of Africa. Compatibility with known physical drivers of African rainfall, consistency with indigenous methods, and generally strong agreement between satellite-based rainfall data sets confirm that the method is capturing the correct seasonal progression of African rainfall. Application of this method to observational datasets reveals that over East Africa cessation of the short rains is 5 days earlier in La Nina years, and the failure of the rains and subsequent humanitarian disaster is associated with shorter as well as weaker rainy seasons over this region. The method is used to examine the representation of the seasonality of African precipitation in CMIP5 model simulations. Overall, atmosphere-only and fully coupled CMIP5 historical simulations represent essential aspects of the seasonal cycle; patterns of seasonal progression of the rainy season are captured, for the most part mean model onset/ cessation dates agree with mean observational dates to within 18 days. However, unlike the atmosphere-only simulations, the coupled simulations do not capture the biannual regime over the southern West African coastline, linked to errors in Gulf of Guinea Sea Surface Temperature. Application to both observational and climate model datasets, and

  15. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections

    Science.gov (United States)

    Lucarini, Valerio

    2017-04-01

    We review the skill of thirty coupled climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in terms of reproducing properties of the seasonal cycle of precipitation over the major river basins of South and Southeast Asia (Indus, Ganges, Brahmaputra and Mekong) for the historical period (1961-2000). We also present how these models represent the impact of climate change by the end of century (2061-2100) under the extreme scenario RCP8.5. First, we assess the models' ability to reproduce the observed timings of the monsoon onset and the rate of rapid fractional accumulation (RFA) slope — a measure of seasonality within the active monsoon period. Secondly, we apply a threshold-independent seasonality index (SI) — a multiplicative measure of precipitation (P) and extent of its concentration relative to uniform distribution (relative entropy — RE). We apply SI distinctly over the monsoonal precipitation regime (MPR), westerly precipitation regime (WPR) and annual precipitation. For the present climate, neither any single model nor the multi-model mean performs best in all chosen metrics. Models show overall a modest skill in suggesting right timings of the monsoon onset while the RFA slope is generally underestimated. One third of the models fail to capture the monsoon signal over the Indus basin. Mostly, the estimates for SI during WPR are higher than observed for all basins. When looking at MPR, the models typically simulate an SI higher (lower) than observed for the Ganges and Brahmaputra (Indus and Mekong) basins, following the pattern of overestimation (underestimation) of precipitation. Most of the models are biased negative (positive) for RE estimates over the Brahmaputra and Mekong (Indus and Ganges) basins, implying the extent of precipitation concentration for MPR and number of dry days within WPR lower (higher) than observed for these basins. Such skill of the CMIP5 models in representing the present-day monsoonal

  16. Is Information Enough? User Responses to Seasonal Climate Forecasts in Southern Africa. Report to the World Bank, AFTE1-ENVGC. Adaptation to Climate Change and Variability in Sub{sub S}aharan Africa, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Karen; Sygna, Linda; Naess, Lars Otto; Kingamkono, Robert; Hochobeb, Ben

    2000-05-01

    Since the mid-1980s, long-lead climate forecasts have been developed and used to predict the onset of El Nino events and their impact on climate variability. This report discusses user responses to seasonal climate forecasts in southern Africa, with an emphasis on small-scale farmers in Namibia and Tanzania. The study examines how farmers received and used the forecasts in the agricultural season of 1997/1998. It also summarises a workshop on user responses to seasonal forecasts in southern Africa. Comparison of case studies across south Africa revealed differences in forecast dissemination strategies and in the capacity to respond to extreme events. However, improving these strategies and the capacity to respond to the forecasts would yield net profit to agriculture in southern Africa. In anticipation of potential changes in the frequency or magnitude of extreme events associated with global climate change, there clearly is a need for improved seasonal forecasts and improved information dissemination.

  17. What is the climate system able to do ‘on its own’?

    Directory of Open Access Journals (Sweden)

    Lennart Bengtsson

    2013-03-01

    Full Text Available The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO, are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further.

  18. Spatial patterns and recent trends in the climate of tropical rainforest regions.

    Science.gov (United States)

    Malhi, Yadvinder; Wright, James

    2004-03-29

    We present an analysis of the mean climate and climatic trends of tropical rainforest regions over the period 1960-1998, with the aid of explicit maps of forest cover and climatological databases. Until the mid-1970s most regions showed little trend in temperature, and the western Amazon experienced a net cooling probably associated with an interdecadal oscillation. Since the mid-1970s, all tropical rainforest regions have experienced a strong warming at a mean rate of 0.26 +/- 0.05 degrees C per decade, in synchrony with a global rise in temperature that has been attributed to the anthropogenic greenhouse effect. Over the study period, precipitation appears to have declined in tropical rainforest regions at a rate of 1.0 +/- 0.8% per decade (p Africa (at 3-4% per decade), declining marginally in tropical Asia and showing no significant trend in Amazonia. There is no evidence so far of a decline in precipitation in eastern Amazonia, a region thought vulnerable to climate-change-induced drying. The strong drying trend in Africa suggests that this should be a priority study region for understanding the impact of drought on tropical rainforests. We develop and use a dry-season index to study variations in the length and intensity of the dry season. Only African and Indian tropical rainforests appear to have seen a significant increase in dry-season intensity. In terms of interannual variability, the El Niño-Southern Oscillation (ENSO) is the primary driver of temperature variations across the tropics and of precipitation fluctuations for large areas of the Americas and southeast Asia. The relation between ENSO and tropical African precipitation appears less direct.

  19. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  20. A study of the effect of seasonal climatic factors on the electrical resistivity response of three experimental graves

    Science.gov (United States)

    Jervis, John R.; Pringle, Jamie K.

    2014-09-01

    Electrical resistivity surveys have proven useful for locating clandestine graves in a number of forensic searches. However, some aspects of grave detection with resistivity surveys remain imperfectly understood. One such aspect is the effect of seasonal changes in climate on the resistivity response of graves. In this study, resistivity survey data collected over three years over three simulated graves were analysed in order to assess how the graves' resistivity anomalies varied seasonally and when they could most easily be detected. Thresholds were used to identify anomalies, and the ‘residual volume' of grave-related anomalies was calculated as the area bounded by the relevant thresholds multiplied by the anomaly's average value above the threshold. The residual volume of a resistivity anomaly associated with a buried pig cadaver showed evidence of repeating annual patterns and was moderately correlated with the soil moisture budget. This anomaly was easiest to detect between January and April each year, after prolonged periods of high net gain in soil moisture. The resistivity response of a wrapped cadaver was more complex, although it also showed evidence of seasonal variation during the third year after burial. We suggest that the observed variation in the graves' resistivity anomalies was caused by seasonal change in survey data noise levels, which was in turn influenced by the soil moisture budget. It is possible that similar variations occur elsewhere for sites with seasonal climate variations and this could affect successful detection of other subsurface features. Further research to investigate how different climates and soil types affect seasonal variation in grave-related resistivity anomalies would be useful.

  1. Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE.

    Science.gov (United States)

    Zou, Rong; Wang, Qi; Freymueller, Jeffrey T; Poutanen, Markku; Cao, Xuelian; Zhang, Caihong; Yang, Shaomin; He, Ping

    2015-12-04

    In southern Tibet, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic deformation using GPS more precisely, seasonal elastic deformation signals associated with surface loading must be removed from the observations. In this study, we focus on seasonal variation in vertical and horizontal motions of southern Tibet by performing a joint analysis of GRACE (Gravity Recovery and Climate Experiment) and GPS data, not only using continuous sites but also GPS campaign-mode sites. We found that the GPS-observed and GRACE-modeled seasonal oscillations are in good agreements, and a seasonal displacement model demonstrates that the main reason for seasonal variations in southern Tibet is from the summer monsoon and its precipitation. The biggest loading appears from July to August in the summer season. Vertical deformations observed by GPS and modeled by GRACE are two to three times larger than horizontal oscillations, and the north components demonstrate larger amplitudes than the east components. We corrected the GPS position time series using the GRACE-modeled seasonal variations, which gives significant reductions in the misfit and weighted root-mean-squares (WRMS). Misfit (χ2 divided by degree of freedom) reductions for campaign sites range between 20% and 56% for the vertical component, and are much smaller for the horizontal components. Moreover, time series of continuous GPS (cGPS) sites near the 2015 Nepal earthquakes must be corrected using appropriate models of seasonal loading for analyzing postseismic deformation to avoid biasing estimates of the postseismic relaxation.

  2. Past and future climate change in the context of memorable seasonal extremes

    Directory of Open Access Journals (Sweden)

    T. Matthews

    2016-01-01

    Full Text Available It is thought that direct personal experience of extreme weather events could result in greater public engagement and policy response to climate change. Based on this premise, we present a set of future climate scenarios for Ireland communicated in the context of recent, observed extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in the long-term observational record, and explore how frequently such extremes might occur in a changed Irish climate according to the latest model projections. Over the period (1900–2014 records suggest a greater than 50-fold increase in the likelihood of the warmest recorded summer (1995, whilst the likelihood of the wettest winter (1994/95 and driest summer (1995 has respectively doubled since 1850. The most severe end-of-century climate model projections suggest that summers as cool as 1995 may only occur once every ∼7 years, whilst winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ∼8 and ∼10 respectively. Contrary to previous research, we find no evidence for increased wintertime storminess as the Irish climate warms, but caution that this conclusion may be an artefact of the metric employed. It is hoped that framing future climate scenarios in the context of extremes from living memory will help communicate the scale of the challenge climate change presents, and in so doing bridge the gap between climate scientists and wider society.

  3. Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain

    Science.gov (United States)

    Garijo, Carlos; Mediero, Luis

    2018-04-01

    Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.

  4. California Getting Wetter to the North, Drier to the South: Natural Variability or Climate Change?

    Directory of Open Access Journals (Sweden)

    Dan Killam

    2014-08-01

    Full Text Available Current climate change projections anticipate that global warming trends will lead to changes in the distribution and intensity of precipitation at a global level. However, few studies have corroborated these model-based results using historical precipitation records at a regional level, especially in our study region, California. In our analyses of 14 long-term precipitation records representing multiple climates throughout the state, we find northern and central regions increasing in precipitation while southern regions are drying. Winter precipitation is increasing in all regions, while other seasons show mixed results. Rain intensity has not changed since the 1920s. While Sacramento shows over 3 more days of rain per year, Los Angeles has almost 4 less days per year in the last century. Both the El Niño-Southern Oscillation (ENSO and the Pacific Decadal Oscillation (PDO greatly influence the California precipitation record. The climate change signal in the precipitation records remains unclear as annual variability overwhelms the precipitation trends.

  5. Using Seasonal Climate Forecasts to Guide Disaster Management: The Red Cross Experience during the 2008 West Africa Floods

    Directory of Open Access Journals (Sweden)

    Arame Tall

    2012-01-01

    Full Text Available In 2008, the seasonal forecast issued at the Seasonal Climate Outlook Forum for West Africa (PRESAO announced a high risk of above-normal rainfall for the July–September rainy season. With probabilities for above-normal rainfall of 0.45, this forecast indicated noteworthy increases in the risk of heavy rainfall. When this information reached the International Federation of Red Cross and Red Crescent Societies (IFRC West and Central Africa Office, it led to significant changes in the organization’s flood response operations. The IFRC regional office requested funds in advance of anticipated floods, prepositioned disaster relief items in strategic locations across West Africa to benefit up to 9,500 families, updated its flood contingency plans, and alerted vulnerable communities and decision-makers across the region. This forecast-based preparedness resulted in a decrease in the number of lives, property, and livelihoods lost to floods, compared to just one year prior in 2007 when similar floods claimed above 300 lives in the region. This article demonstrates how a science-based early warning informed decisions and saved lives by triggering action in anticipation of forecast events. It analyses what it took to move decision-makers to action, based on seasonal climate information, and to overcome traditional barriers to the uptake of seasonal climate information in the region, providing evidence that these barriers can be overcome. While some institutional, communication and technical barriers were addressed in 2008, many challenges remain. Scientists and humanitarians need to build more common ground.

  6. Predictability of Seasonal Rainfall over the Greater Horn of Africa

    Science.gov (United States)

    Ngaina, J. N.

    2016-12-01

    The El Nino-Southern Oscillation (ENSO) is a primary mode of climate variability in the Greater of Africa (GHA). The expected impacts of climate variability and change on water, agriculture, and food resources in GHA underscore the importance of reliable and accurate seasonal climate predictions. The study evaluated different model selection criteria which included the Coefficient of determination (R2), Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Fisher information approximation (FIA). A forecast scheme based on the optimal model was developed to predict the October-November-December (OND) and March-April-May (MAM) rainfall. The predictability of GHA rainfall based on ENSO was quantified based on composite analysis, correlations and contingency tables. A test for field-significance considering the properties of finiteness and interdependence of the spatial grid was applied to avoid correlations by chance. The study identified FIA as the optimal model selection criterion. However, complex model selection criteria (FIA followed by BIC) performed better compared to simple approach (R2 and AIC). Notably, operational seasonal rainfall predictions over the GHA makes of simple model selection procedures e.g. R2. Rainfall is modestly predictable based on ENSO during OND and MAM seasons. El Nino typically leads to wetter conditions during OND and drier conditions during MAM. The correlations of ENSO indices with rainfall are statistically significant for OND and MAM seasons. Analysis based on contingency tables shows higher predictability of OND rainfall with the use of ENSO indices derived from the Pacific and Indian Oceans sea surfaces showing significant improvement during OND season. The predictability based on ENSO for OND rainfall is robust on a decadal scale compared to MAM. An ENSO-based scheme based on an optimal model selection criterion can thus provide skillful rainfall predictions over GHA. This study concludes that the

  7. Seasonal variation in the incidence of preeclampsia and eclampsia in tropical climatic conditions

    Directory of Open Access Journals (Sweden)

    Subramaniam Vidya

    2007-10-01

    Full Text Available Abstract Background Observational studies have demonstrated various correlations between hypertensive disorders of pregnancy and different weather parameters. We aim to study if a correlation exists between the incidence of eclampsia and pre-eclampsia and various weather parameters in the tropical coastal city of Mumbai which has the distinction of having relatively uniform meteorological variables all throughout the year, except for the monsoon season. Methods We retrospectively analysed data from a large maternity centre in Mumbai, India over a period of 36 months from March 1993 to February 1996, recording the incidence of preeclampsia and eclampsia. Meteorological data was acquired from the regional meteorological centre recording the monthly average temperature, humidity, barometric pressure and rainfall during the study period. Study period was then divided into two climate conditions: monsoon season (June to August and dry season September to May. The incidence of preeclampsia and eclampsia and the meteorological differences between the two seasons were compared. Results Over a 36-month period, a total of 29562 deliveries were recorded, of which 1238 patients developed preeclampsia (4.18% and 34 developed eclampsia (0.11%. The incidence of preeclampsia did not differ between the monsoon and the dry season (4.3% vs. 4.15%, p = 0.5. The incidence of eclampsia was significantly higher in the monsoon (0.2% vs. 0.08%, p = 0.01. The monsoon was significantly cooler (median maximum temperature 30.7°C vs. 32.3°C, p = 0.01, more humid (median relative humidity 85% vs. 70%, p = 0.0008, and received higher rainfall (median 504.9 mm vs. 0.3 mm, p = 0.0002 than the rest of the year. The median barometric pressure (1005 mb during the monsoon season was significantly lower than the rest of the year (1012 mb, p Conclusion In the tropical climate of Mumbai, the incidence of eclampsia is significantly higher in monsoon, when the weather is cooler and

  8. Sub-Seasonal Prediction of the Maritime Continent Rainfall of Wet-Dry Transitional Seasons in the NCEP Climate Forecast Version 2

    Directory of Open Access Journals (Sweden)

    Tuantuan Zhang

    2016-02-01

    Full Text Available This study investigates the characteristics and prediction of the Maritime Continent (MC rainfall for the transitional periods between wet and dry seasons. Several observational data sets and the output from the 45-day hindcast by the U.S. National Centers for Environmental Prediction (NCEP Climate Forecast System version 2 (CFSv2 are used. Results show that the MC experiences a sudden transition from wet season to dry season (WTD around the 27th pentad, and a gradual transition from dry season to wet season (DTW around the 59th pentad. Correspondingly, the westerlies over the equatorial Indian Ocean, the easterlies over the equatorial Pacific Ocean, and the Australia High become weaker, contributing to weakening of the convergence over the MC. The subtropical western Pacific high intensifies and extends northeastward during the WTD. The Mascarene High becomes weaker, an anomalous anticyclonic circulation forms over the northeast of the Philippines, and an anomalous low-level convergence occurs over the western MC during the DTW. The NCEP CFSv2 captures the major features of rainfall and related atmospheric circulation when forecast lead time is less than three weeks for WTD and two weeks for DTW. The model predicts a weaker amplitude of the changes in rainfall and related atmospheric circulation for both WTD and DTW as lead time increases.

  9. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts

    DEFF Research Database (Denmark)

    Tommasi, Desiree; Stock, Charles A.; Hobday, Alistair J.

    2017-01-01

    and industry operations, as well as new research avenues in fisheries science. LMRs respond to climate variability via changes in physiology and behavior. For species and systems where climate-fisheries links are well established, forecasted LMR responses can lead to anticipatory and more effective decisions......Recent developments in global dynamical climate prediction systems have allowed for skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and managing LMRs. Such predictions present opportunities for improved LMR management......, benefitting both managers and stakeholders. Here, we provide an overview of climate prediction systems and advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months...

  10. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  11. Impacts of climate change on rainfall, seasonal flooding, and evapotranspiration in the Okavango Delta, Botswana

    Science.gov (United States)

    Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.

    2016-12-01

    The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture

  12. The Influence of Climatic Seasonality on the Diversity of Different Tropical Pollinator Groups

    Science.gov (United States)

    Abrahamczyk, Stefan; Kluge, Jürgen; Gareca, Yuvinka; Reichle, Steffen; Kessler, Michael

    2011-01-01

    Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds) in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern. PMID:22073268

  13. The influence of climatic seasonality on the diversity of different tropical pollinator groups.

    Directory of Open Access Journals (Sweden)

    Stefan Abrahamczyk

    Full Text Available Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern.

  14. Empirically derived climate predictability over the extratropical northern hemisphere

    Directory of Open Access Journals (Sweden)

    J. B. Elsner

    1994-01-01

    Full Text Available A novel application of a technique developed from chaos theory is used in describing seasonal to interannual climate predictability over the Northern Hemisphere (NH. The technique is based on an empirical forecast scheme - local approximation in a reconstructed phase space - for time-series data. Data are monthly 500 hPa heights on a latitude-longitude grid covering the NH from 20° N to the equator. Predictability is estimated based on the linear correlation between actual and predicted heights averaged over a forecast range of one- to twelve.month lead. The method is capable of extracting the major climate signals on this time scale including ENSO and the North Atlantic Oscillation.

  15. Refuge behaviour from outdoor thermal environmental stress and seasonal differences of thermal sense in tropical urban climate

    Science.gov (United States)

    Kurazumi, Y.; Ishii, J.; Fukagawa, K.; Kondo, E.; Aruninta, A.

    2017-12-01

    Thermal sensation affects body temperature regulation. As a starting point for behavioral body temperature regulation taken to improve from a poor thermal environment to a more pleasant environment, thermal sense of thermal environment stimulus is important. The poupose of this sutudy is to use the outdoor thermal environment evaluation index ETFe to quantify effects on thermal sensations of the human body of a tropical region climate with small annual temperature differences, and to examine seasonal differences in thermal sensation. It was found temperature preferences were lower in the winter season than in the dry season, and that a tolerance for higher temperatures in the dry season than in the winter season. It was found effects of seasonal differences of the thermal environment appear in quantitative changes in thermal sensations. It was found that effects of seasonal differences of the thermal environment do not greatly affect quantitative changes in thermal comfort.

  16. Changing characteristics of streamflow in the Midwest and its relation to oceanic-atmospheric oscillations

    Science.gov (United States)

    Thakur, B.; Pathak, P.; Kalra, A.; Ahmad, S.

    2016-12-01

    The identification of primary drivers of streamflow may prove beneficial in forecasting streamflow in the Midwestern U.S. In the past researches, streamflow in the region have been strongly correlated with El Niño-Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The present study takes in to account the pre-defined Pacific and Atlantic Ocean regions (e.g., ENSO, PDO, AMO) along with new regions with an intent to identify new significantly correlated regions. This study assesses the interrelationship between sea surface temperatures (SST) anomalies in the Pacific and Atlantic Ocean and seasonal streamflow in the Midwestern U.S. Average Pacific and Atlantic Ocean SST anomalies, were calculated for 2 different 3 month series: September-November and December-February so as to create a lead time varying from 3 to 9 months. Streamflow were averaged for three seasons: spring (April-June), spring-summer (April-August) and summer (June-August). The correlation between streamflow and SST is analyzed using singular value decomposition for a period of 1960-2013. The result of the study showed several regions-other than the known Pacific and Atlantic Ocean regions- that were significantly correlated with streamflow stations. Higher correlation between the climate indices and streamflow were observed as the lead time decreased. The identification of the associations between SST and streamflow and significant SST regions in the Pacific and Atlantic Ocean may enhance the skill of streamflow predictability and water management in the region.

  17. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by ∼0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation

  18. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  19. Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru

    Science.gov (United States)

    Manzanas, R.; Gutiérrez, J. M.

    2018-05-01

    This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981-2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile-quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.

  20. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    Science.gov (United States)

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  1. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  2. CO{sub 2} threshold for millennial-scale oscillations in the climate system: implications for global warming scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Katrin J.; Eby, Michael; Weaver, Andrew J. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Saenko, Oleg A. [Canadian Centre for Climate Modelling and Analysis, Victoria (Canada)

    2008-02-15

    We present several equilibrium runs under varying atmospheric CO{sub 2} concentrations using the University of Victoria Earth System Climate Model (UVic ESCM). The model shows two very different responses: for CO{sub 2} concentrations of 400 ppm or lower, the system evolves into an equilibrium state. For CO{sub 2} concentrations of 440 ppm or higher, the system starts oscillating between a state with vigorous deep water formation in the Southern Ocean and a state with no deep water formation in the Southern Ocean. The flushing events result in a rapid increase in atmospheric temperatures, degassing of CO{sub 2} and therefore an increase in atmospheric CO{sub 2} concentrations, and a reduction of sea ice cover in the Southern Ocean. They also cool the deep ocean worldwide. After the flush, the deep ocean warms slowly again and CO{sub 2} is taken up by the ocean until the stratification becomes unstable again at high latitudes thousands of years later. The existence of a threshold in CO{sub 2} concentration which places the UVic ESCM in either an oscillating or non-oscillating state makes our results intriguing. If the UVic ESCM captures a mechanism that is present and important in the real climate system, the consequences would comprise a rapid increase in atmospheric carbon dioxide concentrations of several tens of ppm, an increase in global surface temperature of the order of 1-2 C, local temperature changes of the order of 6 C and a profound change in ocean stratification, deep water temperature and sea ice cover. (orig.)

  3. Climate Prediction Center - Seasonal Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Forecast Discussion PROGNOSTIC DISCUSSION FOR MONTHLY OUTLOOK NWS CLIMATE PREDICTION CENTER COLLEGE PARK MD INFLUENCE ON THE MONTHLY-AVERAGED CLIMATE. OUR MID-MONTH ASSESSMENT OF LOW-FREQUENCY CLIMATE VARIABILITY IS

  4. Late mid-Holocene sea-level oscillation: A possible cause

    Science.gov (United States)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  5. Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator

    Directory of Open Access Journals (Sweden)

    Kruczyk Michał

    2015-12-01

    Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.

  6. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  7. The influence of climate variability on numbers of three waterbird species in Western Port, Victoria, 1973 2002

    Science.gov (United States)

    Chambers, Lynda E.; Loyn, Richard H.

    2006-05-01

    Seasonal and annual movements of Australian waterbirds are generally more complex than those of their Northern Hemisphere counterparts, and long-term data are needed to understand their relationships with climatic variables. This paper explores a long-term (1973 2002) set of waterbird counts from coastal Victoria and relates them to climatic data at local and continental scales. Three species (Black Swan Cygnus atratus, White-faced Heron Egretta novaehollandiae and Grey Teal Anas gracilis) were chosen for this analysis. Black Swans have large local breeding populations near the study region; White-faced Herons have smaller local breeding populations and Grey Teal breed extensively in ephemeral inland floodplains, such as those in the Murray-Darling Basin. All showed significant relationships with streamflow, regional rainfall and the Southern Oscillation Index (SOI) at appropriate scales and time-lags, with streamflow explaining the most variance. Black Swans showed a strong seasonal cycle in abundance and local climate variables had the greatest influence on the counts. Numbers were positively correlated with streamflow in southern Victoria three to six seasons before each count. Broader-scale climatic patterns were more important for the other two species. Numbers of White-faced Herons were positively correlated with streamflow or rainfall over various parts of Australia seven to nine seasons before each count. Numbers of Grey Teal showed weak seasonal cycles, and were negatively correlated with rainfall in Victoria or the Murray-Darling Basin in the seasons before or during each count, and positively with streamflow in the Murray-Darling Basin 15 18 months before each count.

  8. Climate Prediction Center Southern Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and Sea Surface Temperature (SST)Indices. It contains Southern Oscillation Index which is standardized sea level...

  9. Historical and future seasonal rainfall variability in Nusa Tenggara Barat Province, Indonesia: Implications for the agriculture and water sectors

    Directory of Open Access Journals (Sweden)

    Dewi G.C. Kirono

    2016-01-01

    Full Text Available Climate change impacts are most likely to be felt by resource-dependent communities, and consequently locally-relevant data are necessary to inform livelihood adaptation planning. This paper presents information for historical and future seasonal rainfall variability in Nusa Tenggara Barat (NTB Province, Indonesia, where rural livelihoods are highly vulnerable to current climate variability and future change. Historical rainfall variability is investigated using observational data from two stations located on the islands of Lombok and Sumbawa. Future rainfall is examined using an ensemble of six downscaled climate model simulations at a spatial resolution of 14 km for 1971–2100, applying the IPCC SRES-A2 ‘Business as Usual’ emissions scenario, and the six original global climate models (GCMs. Analyses of the observed seasonal rainfall data highlight cyclical variability and long-term declines. The observed periodicities are of about 2–4, 5, 8, 11, and 40–50 years. Furthermore, dry season rainfall is significantly correlated with the El Niño Southern Oscillation (ENSO, while wet season rainfall is weakly correlated with ENSO. The simulated rainfall data reproduce the observed seasonal cycle very well, but overestimate the magnitude of rainfall and underestimate inter-annual rainfall variability. The models also show that the observed rainfall periodicities will continue throughout the 21st century. The models project that rainfall will decline, although with wide ranges of uncertainty, depending on season and location. Crop water demand estimates show that the projected changes will potentially impact the first growing period for rice during November–March. Rainfall may also be insufficient to meet water demand for many crops in the second growing period of March–June, when high value commodities such as chillies and tobacco are produced. The results reinforce the importance to consider all uncertainties when utilizing climate

  10. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene

    Science.gov (United States)

    Scafetta, Nicola; Milani, Franco; Bianchini, Antonio; Ortolani, Sergio

    2017-04-01

    evolves from more circular shapes (e≈0.590) to a more elliptical ones (e≈0.598), that is while the orbital system is slowly exploding or bursting outward. Since at this timescale the PMC eccentricity variation is relatively small (e=0.594±0.004), the physical origin of the astronomical 2318 yr cycle is better identified and distinguished from faster orbital oscillations by the times it takes the PMC to make pericycles and epicycles around the Sun and the times it takes to move from minimum to maximum distance from the Sun within those arcs. These particular proxies reveal a macroscopic 2318 yr period oscillation, together with other three stable outer planet orbital resonances with periods of 159, 171 and 185 yr. This 2318 yr oscillation is found to be spectrally coherent with the Δ14C Holocene record with a statistical confidence above 95%, as determined by spectral analysis and cross wavelet and wavelet coherence analysis. At the Hallstatt time scale, maxima of the radionucleotide production occurred when, within each pericycle-apocycle orbital arc, the time required by the PMC to move from the minimum to the maximum distance from the Sun varies from about 8 to 16 years while the time required by the same to move from the maximum to the minimum distance from the Sun varies from about 7 to 14 years, and viceversa. Thus, we found that a fast expansion of the Sun-PMC orbit followed by a slow contraction appears to prevent cosmic rays to enter within the system inner region while a slow expansion followed by a fast contraction favors it. Similarly, the same dynamics could modulate the amount of interplanetary/cosmic dust falling on Earth. Indeed, many other stable orbital resonance frequencies (e.g. at periods of 20 yr, 45 yr, 60 yr, 85 yr, 159-171-185 yr, etc.) are found in radionucleotide, solar, aurora and climate records, as determined in the scientific literature. Thus, the result supports a planetary theory of solar and/or climate variation that has recently

  11. Climate-induced seasonal changes in smallmouth bass growth rate potential at the southern range extent

    Science.gov (United States)

    Middaugh, Christopher R.; Kessinger, Brin; Magoulick, Daniel D.

    2018-01-01

    Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater-dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g−1 day−1 in runoff streams and 0.002 g g−1 day−1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g−1 day−1 in runoff and 0.0014 g g−1 day−1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end-of-century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.

  12. Climate variability in a coupled GCM. Pt. 2

    International Nuclear Information System (INIS)

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1993-01-01

    The seasonal cycle and the interannual variability of the tropical Indian Ocean circulation are investigated and the Indian Summer Monsoon is simulated by a coupled ocean-atmosphere general circulation model in a 26 year integration. Although the model exhibits significant climate drift, it simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian Summer Monsoon. The amplitudes of the seasonal changes, however, are somewhat underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation which is partly related to the El Nino/Southern Oscillation (ENSO) phenomenon and the associated changes in the Walker Circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in Monsoon rainfall is simulated by the coupled GCM only about half as strongly as observed. (orig.)

  13. Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature

    Science.gov (United States)

    Cao, Qing; Hao, Zhenchun; Shao, Quanxi; Hao, Jie; Nyima, Tsring

    2018-02-01

    Precipitation plays an important role in both environment and human society and is a significant factor in many scientific researches such as water resources, agriculture and climate impact studies. The onset and retreat of rainy season are useful features to understand the variability of precipitation under the influence of climate change. In this study, the characteristics of onset and retreat in mainland China are investigated. The multi-scale moving t-test was applied to determine rainy season and K-means cluster analysis was used to divide China into sub-regions to better investigate rainy season features. The possible linkage of changing characteristics of onset and retreat to climate factors were also explored. Results show that: (1) the onset started from middle March in the southeast of China to early June in the northwest and rainy season ended earliest in the northwest and southeast while the central China had the latest retreat; (2) Delayed onset and advanced retreat over time were observed in many parts of China, together with overall stable or increased rainy-season precipitation, would likely lead to higher probability of flooding; (3) The onset (retreat) was associated with the increased (decreased) number of cyclones in eastern China and anticyclone near the South China Sea. Delayed onset, and advanced retreat were likely related to cold and warm sea surface temperature (SST) in the conventional El Niño-Southern Oscillation (ENSO) regions, respectively. These results suggest that predictability of rainy season can be improved through the atmospheric circulation and SST, and help water resources management and agricultural planning.

  14. Developing the Capacity of Farmers to Understand and Apply Seasonal Climate Forecasts through Collaborative Learning Processes

    Science.gov (United States)

    Cliffe, Neil; Stone, Roger; Coutts, Jeff; Reardon-Smith, Kathryn; Mushtaq, Shahbaz

    2016-01-01

    Purpose: This paper documents and evaluates collaborative learning processes aimed at developing farmer's knowledge, skills and aspirations to use seasonal climate forecasting (SCF). Methodology: Thirteen workshops conducted in 2012 engaged over 200 stakeholders across Australian sugar production regions. Workshop design promoted participant…

  15. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  16. Skilful seasonal forecasts of streamflow over Europe?

    Science.gov (United States)

    Arnal, Louise; Cloke, Hannah L.; Stephens, Elisabeth; Wetterhall, Fredrik; Prudhomme, Christel; Neumann, Jessica; Krzeminski, Blazej; Pappenberger, Florian

    2018-04-01

    This paper considers whether there is any added value in using seasonal climate forecasts instead of historical meteorological observations for forecasting streamflow on seasonal timescales over Europe. A Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts (produced by forcing the Lisflood model with the ECMWF System 4 seasonal climate forecasts), benchmarked against the ensemble streamflow prediction (ESP) forecasting approach (produced by forcing the Lisflood model with historical meteorological observations), is undertaken. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only (in terms of hindcast accuracy, sharpness and overall performance). However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to 7 months of lead time, for certain months within a season. In terms of hindcast reliability, the EFAS seasonal streamflow hindcasts are on average less skilful than the ESP for all lead times. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making (measured in terms of the hindcast discrimination for the lower and upper terciles of the simulated streamflow). Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for almost 40 % of Europe. Patterns in the EFAS seasonal streamflow hindcast skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting at the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim of improving climate

  17. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2015-02-16

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  18. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim

    2015-01-01

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  19. Predictability of rainy season onset and cessation in east Africa

    Science.gov (United States)

    Joseph, B.-M.

    2012-04-01

    PREDICTABILITY OF RAINY SEASONS ONSET AND CESSATION IN EAST AFRICA Boyard-Micheau Joseph, joseph.boyard-micheau@u-bourgogne.fr Camberlin Pierre, Kenya and northern Tanzania mainly display bimodal rainfall regimes, which are controlled by the annual migration of the Intertropical Convergence Zone on both sides of the equator. In the low-income, semi-arid areas, food security is highly dependent on cereal yields (maize, millet and sorghum). Vulnerability is aggravated by the fact that these crops are mostly rainfed, and rely on the performance of the two, relatively brief rainy seasons. This performance depends on a combination of several rainy season characteristics, or rainfall descriptors, such as the onset and cessation dates of the rains, the frequency of rainy days, their intensity and the occurrence of wet/dry spells. The prediction of these descriptors some time (>15 days) before the real onset of the rainy season can be seen as a useful tool to help in the establishment of agricultural adaptation strategies. The main objective consists to understand linkages between regional variability of these rainfall descriptors and global modes of the climate system, in order to set up efficient predictive tools based on Model Output Statistics (MOS). The rainfall descriptors are computed from daily rainfall data collected for the period 1961-2001 from the Kenya Meteorological Department, the IGAD Climate Prediction and Application Center and the Tanzania Meteorological Agency. An initial spatial coherence analysis assesses the potential predictability of each descriptor, permitting eventually to eliminate those which are not spatially coherent, on the assumption that low spatial coherence denotes low potential predictability. Rainfall in East Africa simulated by a 24-ensemble member of the ECHAM 4.5 atmospheric general circulation model is compared with observations, to test the reproducibility of the rainfall descriptors. Canonical Correlation Analysis is next used to

  20. Seasonality of Influenza and Respiratory Syncytial Viruses and the Effect of Climate Factors in Subtropical-Tropical Asia Using Influenza-Like Illness Surveillance Data, 2010 -2012.

    Science.gov (United States)

    Kamigaki, Taro; Chaw, Liling; Tan, Alvin G; Tamaki, Raita; Alday, Portia P; Javier, Jenaline B; Olveda, Remigio M; Oshitani, Hitoshi; Tallo, Veronica L

    2016-01-01

    The seasonality of influenza and respiratory syncytial virus (RSV) is well known, and many analyses have been conducted in temperate countries; however, this is still not well understood in tropical countries. Previous studies suggest that climate factors are involved in the seasonality of these viruses. However, the extent of the effect of each climate variable is yet to be defined. We investigated the pattern of seasonality and the effect of climate variables on influenza and RSV at three sites of different latitudes: the Eastern Visayas region and Baguio City in the Philippines, and Okinawa Prefecture in Japan. Wavelet analysis and the dynamic linear regression model were applied. Climate variables used in the analysis included mean temperature, relative and specific humidity, precipitation, and number of rainy days. The Akaike Information Criterion estimated in each model was used to test the improvement of fit in comparison with the baseline model. At all three study sites, annual seasonal peaks were observed in influenza A and RSV; peaks were unclear for influenza B. Ranges of climate variables at the two Philippine sites were narrower and mean variables were significantly different among the three sites. Whereas all climate variables except the number of rainy days improved model fit to the local trend model, their contributions were modest. Mean temperature and specific humidity were positively associated with influenza and RSV at the Philippine sites and negatively associated with influenza A in Okinawa. Precipitation also improved model fit for influenza and RSV at both Philippine sites, except for the influenza A model in the Eastern Visayas. Annual seasonal peaks were observed for influenza A and RSV but were less clear for influenza B at all three study sites. Including additional data from subsequent more years would help to ascertain these findings. Annual amplitude and variation in climate variables are more important than their absolute values for

  1. Seasonality of Influenza and Respiratory Syncytial Viruses and the Effect of Climate Factors in Subtropical-Tropical Asia Using Influenza-Like Illness Surveillance Data, 2010 -2012.

    Directory of Open Access Journals (Sweden)

    Taro Kamigaki

    Full Text Available The seasonality of influenza and respiratory syncytial virus (RSV is well known, and many analyses have been conducted in temperate countries; however, this is still not well understood in tropical countries. Previous studies suggest that climate factors are involved in the seasonality of these viruses. However, the extent of the effect of each climate variable is yet to be defined.We investigated the pattern of seasonality and the effect of climate variables on influenza and RSV at three sites of different latitudes: the Eastern Visayas region and Baguio City in the Philippines, and Okinawa Prefecture in Japan. Wavelet analysis and the dynamic linear regression model were applied. Climate variables used in the analysis included mean temperature, relative and specific humidity, precipitation, and number of rainy days. The Akaike Information Criterion estimated in each model was used to test the improvement of fit in comparison with the baseline model.At all three study sites, annual seasonal peaks were observed in influenza A and RSV; peaks were unclear for influenza B. Ranges of climate variables at the two Philippine sites were narrower and mean variables were significantly different among the three sites. Whereas all climate variables except the number of rainy days improved model fit to the local trend model, their contributions were modest. Mean temperature and specific humidity were positively associated with influenza and RSV at the Philippine sites and negatively associated with influenza A in Okinawa. Precipitation also improved model fit for influenza and RSV at both Philippine sites, except for the influenza A model in the Eastern Visayas.Annual seasonal peaks were observed for influenza A and RSV but were less clear for influenza B at all three study sites. Including additional data from subsequent more years would help to ascertain these findings. Annual amplitude and variation in climate variables are more important than their

  2. Climate Prediction Center - Monitoring and Data

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News monthly data, time series, and maps for various climate parameters, such as precipitation, temperature Oscillations (ENSO) and other climate patterns such as the North Atlantic and Pacific Decadal Oscillations, and

  3. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition

    Science.gov (United States)

    Kim, Taereem; Shin, Ju-Young; Kim, Sunghun; Heo, Jun-Haeng

    2018-02-01

    Climate indices characterize climate systems and may identify important indicators for long-term precipitation, which are driven by climate interactions in atmosphere-ocean circulation. In this study, we investigated the climate indices that are effective indicators of long-term precipitation in South Korea, and examined their relationships based on statistical methods. Monthly total precipitation was collected from a total of 60 meteorological stations, and they were decomposed by ensemble empirical mode decomposition (EEMD) to identify the inherent oscillating patterns or cycles. Cross-correlation analysis and stepwise variable selection were employed to select the significant climate indices at each station. The climate indices that affect the monthly precipitation in South Korea were identified based on the selection frequencies of the selected indices at all stations. The NINO12 indices with four- and ten-month lags and AMO index with no lag were identified as indicators of monthly precipitation in South Korea. Moreover, they indicate meaningful physical information (e.g. periodic oscillations and long-term trend) inherent in the monthly precipitation. The NINO12 indices with four- and ten- month lags was a strong indicator representing periodic oscillations in monthly precipitation. In addition, the long-term trend of the monthly precipitation could be explained by the AMO index. A multiple linear regression model was constructed to investigate the influences of the identified climate indices on the prediction of monthly precipitation. Three identified climate indices successfully explained the monthly precipitation in the winter dry season. Compared to the monthly precipitation in coastal areas, the monthly precipitation in inland areas showed stronger correlation to the identified climate indices.

  4. On the seasonal transition from winter to spring in Europe and the "seasonal feeling" relating to "Fasnacht" in comparison with those in East Asia (Toward an interdisciplinary activity on climate and cultural understanding education)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko; Hamaki, Tatsuya

    2016-04-01

    As mentioned in the introduction of the EGU2016 abstract (Kato et al., submitted to CL5.06/AS4.9), there are many stages with rapid seasonal transitions in East Asia, resulting in the variety of "seasonal feeling". The seasonal cycle has been an important background for generation of the arts. On the other hand, around Germany located near the western edge of the Eurasian Continent, there are so many music or literature works in which the "May" is treated as the special season (comparison of the climate and songs on "spring" (or "May") between Japan and Germany was tried in a book by Kato, H. and K. Kato, although written in Japanese). The Japanese researchers on German Literature suggested that there are basically two seasons "winter" and "summer" around Germany, with the transitional stages of spring and autumn. The concepts of the battle between winter and summer, and driving winter away, and so on, around Germany seem to show rather different seasonal feelings from that around the Japan Islands (Oshio 1982; Miyashita 1982; Takeda 1980). A traditional event there called "Fasnacht" for driving winter away is held in March or slightly earlier stage (Takeda 1980; Ueda and Ebato 1988). Kato et al. (EGU2016, submitted to CL5.06/AS4.9) will report the synoptic climatological features on the seasonal transition from winter to spring in Europe based on the daily data, by comparing with that in East Asia. In this presentation, we will discuss on the climatological background for the "seasonal feeling" leading to such as the battle between winter and summer, driving winter away, including "Fasnacht", also by referring to some songs (children's songs, etc.). At the same time, the analysis results on the seasonal transition from winter to spring in Europe in comparison with those in East Asia by Kato et al. (EGU2016) will be also referred to. On the other hand, although it is around the end of March when the "wintertime pressure pattern" on the daily surface weather maps in

  5. Assessing the vulnerability of economic sectors to climate variability to improve the usability of seasonal to decadal climate forecasts in Europe - a preliminary concept

    Science.gov (United States)

    Funk, Daniel

    2015-04-01

    Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the

  6. Climate and the complexity of migratory phenology: sexes, migratory distance, and arrival distributions

    Science.gov (United States)

    Macmynowski, Dena P.; Root, Terry L.

    2007-05-01

    The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979 2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.

  7. [Characteristics and adaptation of seasonal drought in southern China under the background of climate change. V. Seasonal drought characteristics division and assessment in southern China].

    Science.gov (United States)

    Huang, Wan-Hua; Sui, Yue; Yang, Xiao-Guang; Dai, Shu-Wei; Li, Mao-Song

    2013-10-01

    Zoning seasonal drought based on the study of drought characteristics can provide theoretical basis for formulating drought mitigation plans and improving disaster reduction technologies in different arid zones under global climate change. Based on the National standard of meteorological drought indices and agricultural drought indices and the 1959-2008 meteorological data from 268 meteorological stations in southern China, this paper analyzed the climatic background and distribution characteristics of seasonal drought in southern China, and made a three-level division of seasonal drought in this region by the methods of combining comprehensive factors and main factors, stepwise screening indices, comprehensive disaster analysis, and clustering analysis. The first-level division was with the annual aridity index and seasonal aridity index as the main indices and with the precipitation during entire year and main crop growing season as the auxiliary indices, dividing the southern China into four primary zones, including semi-arid zone, sub-humid zone, humid zone, and super-humid zone. On this basis, the four primary zones were subdivided into nine second-level zones, including one semi-arid area-temperate-cold semi-arid hilly area in Sichuan-Yunnan Plateau, three sub-humid areas of warm sub-humid area in the north of the Yangtze River, warm-tropical sub-humid area in South China, and temperate-cold sub-humid plateau area in Southwest China, three humid areas of temperate-tropical humid area in the Yangtze River Basin, warm-tropical humid area in South China, and warm humid hilly area in Southwest China, and two super-humid areas of warm-tropical super-humid area in South China and temperate-cold super-humid hilly area in the south of the Yangtze River and Southwest China. According to the frequency and intensity of multiple drought indices, the second-level zones were further divided into 29 third-level zones. The distribution of each seasonal drought zone was

  8. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  9. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats.

    NARCIS (Netherlands)

    Both, C.; Turnhout, van C.A.M.; Bijlsma, R.G.; Siepel, H.; Strien, van A.J.; Foppen, R.P.B.

    2010-01-01

    One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that

  10. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats

    NARCIS (Netherlands)

    Both, Christiaan; Van Turnhout, Chris A. M.; Bijlsma, Rob G.; Siepel, Henk; Van Strien, Arco J.; Foppen, Ruud P. B.

    2010-01-01

    One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that

  11. The Southern Oscillation and northern hemisphere temperature variability

    International Nuclear Information System (INIS)

    Ropelewski, C.F.; Halpert, M.S.

    1990-01-01

    The Southern Oscillation (SO) is the best defined and understood mode of interannual climate variability. The extreme phases of the SO have been identified with global-scale variations in the atmosphere/ocean circulation system and with the modulation of monsoon precipitation on the global scale. While SO-related precipitation has been the subject of several studies, the magnitude of the SO-related temperature variability on the global scale has not been well documented. In this paper the authors provide an estimate of the SO-related temperature variability in the context of monitoring global warming related to the increase in greenhouse gases. This analysis suggested that traditional time series of hemispheric and global temperature anomalies for the calendar year may confuse interannual temperature variability associated with the SO and perceived climate trend. Analyses based on calendar-year data are likely to split the effects of the SO-related temperature variability over two years. The Northern Hemisphere cold season (october through March) time series may be more appropriate to separate the SO-related effects on the hemispheric temperature from other modes of variability. mean interannual temperature anomaly differences associated with the extremes of the So are estimated to be 0.2 C for the October-to-March season in the Northern Hemisphere. In areas directly linked to the SO, the mean interannual differences amount to over 0.5 C. The So cannot account for all the variability in the hemispheric times series of surface temperature estimates, but the SO signal must be properly accounted for if these time series are to be understood

  12. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  13. A generalized theory of sun-climate/weather link and climatic change

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-07-01

    We generalize the theory of Sun-Climate/weather links and climatic change developed earlier by the author. On the basis of this theory, we show mathematically that key climatic/weather parameters are continuously subjected to determinable amplitude modulations and other variations which may be useful in climatic prediction work. A number of new and known terrestrial oscillations in climate and atmospheric behaviour in general, including the known quasi-biennial oscillations and many others, are deduced from the theory and accounted for in terms of their causative physical processes. Finally we briefly discuss the possibility of applying the theory to the planets Mars and Venus as well as Saturn's largest satellite, Titan. (author). 30 refs, 1 fig

  14. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva Ribeiro Gonçalves

    Full Text Available Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition, in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  15. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  16. Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland

    Directory of Open Access Journals (Sweden)

    P. PELTONEN-SAINIO

    2008-12-01

    Full Text Available Climate change offers new opportunities for Finnish field crop production, which is currently limited by the short growing season. A warmer climate will extend the thermal growing season and the physiologically effective part of it. Winters will also become milder, enabling introduction of winter-sown crops to a greater extent than is possible today. With this study we aim to characterise the likely regional differences in capacity to grow different seed producing crops. Prolongation of the Finnish growing season was estimated using a 0.5º latitude × 0.5º longitude gridded dataset from the Finnish Meteorological Institute. The dataset comprised an average estimate from 19 global climate models of the response of Finnish climate to low (B1 and high (A2 scenarios of greenhouse gas and aerosol emissions for 30-year periods centred on 2025, 2055 and 2085 (Intergovernmental Panel on Climate Change. Growing season temperature sums that suit crop growth and are agronomically feasible in Finland are anticipated to increase by some 140 °Cd by 2025, 300 °Cd by 2055 and 470 °Cd by 2085 in scenario A2, when averaged over regions, and earlier sowing is expected to take place, but not later harvests. Accordingly, the extent of cultivable areas for the commonly grown major and minor crops will increase considerably. Due to the higher base temperature requirement for maize (Zea mays L. growth than for temperate crops, we estimate that silage maize could become a Finnish field crop for the most favourable growing regions only at the end of this century. Winters are getting milder, but it will take almost the whole century until winters such as those that are typical for southern Sweden and Denmark are experienced on a wide scale in Finland. It is possible that introduction of winter-sown crops (cereals and rapeseed will represent major risks due to fluctuating winter conditions, and this could delay their adaptation for many decades. Such risks need to be

  17. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate

    Science.gov (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert

    2017-11-01

    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias

  18. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  19. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    Science.gov (United States)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  20. Seasonal response of biomass growth and allocation of a boreal bioenergy crop (Phalaris arundinacea L.) to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhang

    2013-06-01

    in the growing season. Compared to CON, ET and ETC increased LMF and SMF, and decreased RMF over the whole growing season under NW and HW. Under LW, ET and ETC decreased LMF and increased RMF throughout the growing season, and increased SMF in early periods and then decreased later in the growing season. EC decreased the LMF and SMF and increased the RMF over the growing season but did not significantly affect the seasonal biomass allocation pattern between plant organs. The LMF was higher and the RMF was lower throughout the growing season in response to the higher groundwater level, while the effect of groundwater level on the SMF depended on the developmental phase of the plants. Our results show that climatic treatments affected biomass growth and biomass allocation to each of the three plant organs, while the direction and extent of climate-related changes in biomass growth and allocation depended on the availability of groundwater. The influence of groundwater level appeared to be crucial for the carbon gain regarding the production of RCG biomass for energy purposes and the concurrent sequestration of carbon in soils under changing climates in the mire sites used to cultivate RCG. (orig.)

  1. Evaluation of a new CNRM-CM6 model version for seasonal climate predictions

    Science.gov (United States)

    Volpi, Danila; Ardilouze, Constantin; Batté, Lauriane; Dorel, Laurant; Guérémy, Jean-François; Déqué, Michel

    2017-04-01

    This work presents the quality assessment of a new version of the Météo-France coupled climate prediction system, which has been developed in the EU COPERNICUS Climate Change Services framework to carry out seasonal forecast. The system is based on the CNRM-CM6 model, with Arpege-Surfex 6.2.2 as atmosphere/land component and Nemo 3.2 as ocean component, which has directly embedded the sea-ice component Gelato 6.0. In order to have a robust diagnostic, the experiment is composed by 60 ensemble members generated with stochastic dynamic perturbations. The experiment has been performed over a 37-year re-forecast period from 1979 to 2015, with two start dates per year, respectively in May 1st and November 1st. The evaluation of the predictive skill of the model is shown under two perspectives: on the one hand, the ability of the model to faithfully respond to positive or negative ENSO, NAO and QBO events, independently of the predictability of these events. Such assessment is carried out through a composite analysis, and shows that the model succeeds in reproducing the main patterns for 2-meter temperature, precipitation and geopotential height at 500 hPa during the winter season. On the other hand, the model predictive skill of the same events (positive and negative ENSO, NAO and QBO) is evaluated.

  2. Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin

    Science.gov (United States)

    Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun

    2018-01-01

    Climate change is expected to have severe impacts on natural systems as well as various socio-economic aspects of human life. This has urged scientific communities to improve the understanding of future climate and reduce the uncertainties associated with projections. In the present study, ten statistically downscaled CMIP5 GCMs at 1/16th deg. spatial resolution from two different downscaling procedures are utilized over the Columbia River Basin (CRB) to assess the changes in climate variables and characterize the associated uncertainties. Three climate variables, i.e. precipitation, maximum temperature, and minimum temperature, are studied for the historical period of 1970-2000 as well as future period of 2010-2099, simulated with representative concentration pathways of RCP4.5 and RCP8.5. Bayesian Model Averaging (BMA) is employed to reduce the model uncertainty and develop a probabilistic projection for each variable in each scenario. Historical comparison of long-term attributes of GCMs and observation suggests a more accurate representation for BMA than individual models. Furthermore, BMA projections are used to investigate future seasonal to annual changes of climate variables. Projections indicate significant increase in annual precipitation and temperature, with varied degree of change across different sub-basins of CRB. We then characterized uncertainty of future projections for each season over CRB. Results reveal that model uncertainty is the main source of uncertainty, among others. However, downscaling uncertainty considerably contributes to the total uncertainty of future projections, especially in summer. On the contrary, downscaling uncertainty appears to be higher than scenario uncertainty for precipitation.

  3. Role of climate variability in the heatstroke death rates of Kanto region in Japan

    Science.gov (United States)

    Akihiko, Takaya; Morioka, Yushi; Behera, Swadhin K.

    2014-07-01

    The death toll by heatstroke in Japan, especially in Kanto region, has sharply increased since 1994 together with large interannual variability. The surface air temperature and humidity observed during boreal summers of 1980-2010 were examined to understand the role of climate in the death toll. The extremely hot days, when the daily maximum temperature exceeds 35°C, are more strongly associated with the death toll than the conventional Wet Bulb Globe Temperature index. The extremely hot days tend to be associated with El Niño/Southern Oscillation or the Indian Ocean Dipole, suggesting a potential link with tropical climate variability to the heatstroke related deaths. Also, the influence of these climate modes on the death toll has strengthened since 1994 probably related to global warming. It is possible to develop early warning systems based on seasonal climate predictions since recent climate models show excellent predictability skills for those climate modes.

  4. The Impact of Climate Change on the Duration and Division of Flood Season in the Fenhe River Basin, China

    Directory of Open Access Journals (Sweden)

    Hejia Wang

    2016-03-01

    Full Text Available This study analyzes the duration and division of the flood season in the Fenhe River Basin over the period of 1957–2014 based on daily precipitation data collected from 14 meteorological stations. The Mann–Kendall detection, the multiscale moving t-test, and the Fisher optimal partition methods are used to evaluate the impact of climate change on flood season duration and division. The results show that the duration of the flood season has extended in 1975–2014 compared to that in 1957–1974. Specifically, the onset date of the flood season has advanced 15 days, whereas the retreat date of the flood season remains almost the same. The flood season of the Fenhe River Basin can be divided into three stages, and the variations in the onset and retreat dates of each stage are also examined. Corresponding measures are also proposed to better utilize the flood resources to adapt to the flood season variations.

  5. An idealized study of the impact of extratropical climate change on El Nino-Southern Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiong [Chinese Academy of Sciences, LASG, Institute of Atmospheric Science, Beijing (China); Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, Beijing (China); Zhong, Yafang [University of Wisconsin-Madison, Center for Climatic Research and Department of Atmospheric and Oceanic Sciences, Madison, WI (United States); Wang, Dongxiao [Chinese Academy of Sciences, Laboratory of Tropical Marine Environmental Dynamics, Guangzhou (China); South China Sea Institute of Oceanology, Guangzhou (China)

    2005-12-01

    Extratropical impacts on the tropical El Nino-Southern Oscillation (ENSO) are studied in a coupled climate model. Idealized experiments show that the remote impact of the extratropics on the equatorial thermocline through oceanic tunnel can substantially modulate the ENSO in both magnitude and frequency. First of all, an extratropical warming can be conveyed to the equator by the mean subduction current, resulting in a warming of the equatorial thermocline. Second, the extratropical warming can weaken the Hadley cells, which in turn slow down the mean shallow meridional overturning circulations in the upper Pacific, reducing the equatorward cold water supply and the equatorial upwelling. These oceanic dynamic processes would weaken the stratification of the equatorial thermocline and retard a buildup (purge) of excess heat content along the equator, and finally result in a weaker and longer ENSO cycle. This study highlights a nonlocal mechanism in which ENSO behavior is related to the extratropical climate conditions. (orig.)

  6. Reconstructing the history of the Atlantic Multidecadal Oscillation using high-resolution Mg/Ca paleothermometry from a Cariaco Basin core

    Science.gov (United States)

    Wurtzel, J. B.; Black, D. E.; Rahman, S.; Thunell, R.; Peterson, L. C.; Tappa, E.

    2010-12-01

    Instrumental and proxy-reconstructions show the existence of an approximately 70-year periodicity in Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO). The AMO is correlated with circum-tropical Atlantic climate phenomena such as Sahel and Nordeste rainfall, and Atlantic hurricane patterns. Though it has been suggested that the AMO is controlled by thermohaline circulation, much debate exists as to whether the SST fluctuations are a result of anthropogenic forcing or a natural climate mode, or even if the AMO is a true oscillation at all. Our ability to address this issue has been limited by instrumental SST records that rarely extend back more than 50-100 years and proxy reconstructions that are mostly terrestrial-based. Additionally, the modern instrumental variability likely contains an anthropogenic component that is not easily distinguished from the natural background of the system. From a marine sediment core taken in the Cariaco Basin, we have developed a high-resolution SST reconstruction for the past ca. 1500 years using Mg/Ca paleothermometry on seasonally-representative foraminifera, with the most recent data calibrated to the instrumental record. Previous studies have shown Cariaco Basin Mg/Ca-SSTs to be well-correlated to the Caribbean Sea and much of the western tropical Atlantic, which allows us to create a record that can be used to determine pre-anthropogenic rates and ranges of SST variability and observe how they change over time. Averaging the seasonal temperatures derived from the two foraminiferal species over the instrumental period yields a strong correlation to the AMO index from A. D. 1880 through 1970 (r = 0.44, p<0.0001). Wavelet analysis of the proxy average annual SST data indicates that modern AMO variability is not a consistent feature through time, and may be a function of warm-period climate.

  7. A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai

    2010-05-01

    Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo

  8. Seasonal variation in AF-related admissions to a coronary care unit in a "hot" climate: fact or fiction?

    Science.gov (United States)

    Kiu, Andrew; Horowitz, John D; Stewart, Simon

    2004-01-01

    Seasonal variations in atrial fibrillation (AF)-related morbidity and mortality have been demonstrated in "cold" northern European climates, but there are few data describing such a phenomenon in a "hot" climate. To examine the pattern of AF-related admissions to a coronary care unit (CCU) in South Australia operating within a Mediterranean climate, and to determine potential differences according to mean daily temperatures. PATIENT COHORT AND METHODS: A total of 144 admissions to the CCU during the 30 hottest and coldest days (60 days in total) during the calendar year 2001 were analyzed in respect to the absolute number of admissions and the profile of those admitted during "hot" and "cold" days. Overall, there were significantly more admissions to the CCU on "cold" as opposed to "hot" days (90 vs 54 patients in 30 days, P < or = .001). Of the 24 patients found to be in AF on presentation to hospital, 18 (75%) were admitted on cold days (P < .05). Alternatively, during "hot" days, patients were more likely to be diagnosed with unstable angina rather than acute myocardial infarction (46% vs 30%, P = .07) with proportionately fewer patients in AF at the time (11% vs 20%, P = NS). These preliminary data suggest that the phenomenon of seasonal variations in AF-related morbidity extend beyond colder climates to hotter climates with sufficiently large relative (as opposed to absolute) changes in ambient temperatures during the year.

  9. [Climate-growth relationships of Picea koraiensis and causes of its recent decline in Xiaoxing' an Mountains, China].

    Science.gov (United States)

    Yao, Qi-chao; Wang, Xiao-chun; Xiao, Xing-wei

    2015-07-01

    Two tree-ring width chronologies of Picea koraiensis at two altitudes in Fenglin National Nature Reserve of Xiaoxing'an Mountains, China were developed by using dendrochronological methods. To identify main limiting factors of P. koraiensis radial growth at the two altitudes, the relationships between the chronologies and local temperature, precipitation, Palmer drought severity index (PDSI), and large-scale climatic factors were investigated. Meanwhile, the reasons of P. koraiensis growth decline in recent years were also explored. Results showed that radial growth of P. koraiensis in Xiaoxing'an Mountains was mainly limited by temperatures, especially by the minimum temperature in growing season, while the limiting effect of precipitation was relatively weak. Climate responses of P. koraiensis growth at the different altitudes showed significant differences. Radial growths of P. koraiensis at the low altitude were positively correlated with precipitation in the current growth season (June-September) and whole year, and negatively correlated with soil temperatures at different depths, especially at 80 cm depth in growing season. Meanwhile, it was signi-ficantly positively correlated with PDSI in growing season. However, the relationships between radial growth of P. koraiensis at the high altitude and precipitation, air and soil temperatures, and PDSI were not significant as that at the low altitude. Growth decline of P. koraiensis in Xiaoxing'an Mountains could be related to the phase changes in Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) and the significant global warming since 1980. The coupling effects of the above changes might result in increased soil evaporation and exacerbated warming and drying phenomena, consequently causing the growth decline of P. koraiensis at the low altitude.

  10. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  11. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Science.gov (United States)

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of

  12. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  13. The climate: Earth and men

    International Nuclear Information System (INIS)

    Poitou, Jean; Braconnot, Pascale; Masson-Delmotte, Valerie

    2015-01-01

    In this book, the authors first present the climate system as it operates under the influence of the atmosphere and oceans: Earth heated by the Sun, temperatures and movements within the atmosphere, surface and deep circulation in the oceans, exchanges between the atmosphere and the oceans. They present the various actors of climate and their interactions: water cycle, carbon cycle, greenhouse effect, clouds, aerosols, ocean, cryosphere-climate interaction, interaction between continental biosphere and climate, interactions between climate, continents and lithosphere, feedbacks and climate sensitivity. They comment the variety of climates and their variability when considered on a large scale (role of the Sun, ocean-atmosphere oscillations in El Nino and La Nina, North Atlantic oscillation, other examples of oscillations). The next part addresses climate modelling: model fundamentals (parameters and other components, coupling between components), model adjustment (simulation types, multi-model sets, and model assessment), models of intermediate complexity, regional models. The authors discuss the warming phenomenon: history of temperature measurements, clues of global warming, how to make climate change. They propose a presentation and discussion of anthropogenic and natural factors which disturb the climate: CO 2 and other greenhouse gases, changes in soil uses, other possible causes of climate disturbance (aerosol, aircraft wakes, volcanoes, and sun), combination of these disturbances, and identification of anthropogenic disturbances. They discuss past climate evolutions, and finally discuss how the climate could evolve in the future

  14. Estimation of Seasonal Efficiency of Sochi Resort Climate Therapy by Means of Psychologic Testing of Patients with Cardiometabolic Pathology

    OpenAIRE

    Irina N. Sorochinskaya; Andrei V. Chernyshev

    2012-01-01

    Cardiovascular diseases are major reasons for population mortality in majority of countries, including Russia. Metabolic syndrome is considered to be one of the main pathologic states, leading to enhancement of atherogenesis, ischemic heart diseases and cerebrovascular diseases. Physical methods, including resort treatment play great role in metabolic syndrome prevention and treatment. Climate therapy depends on resort climate and season and is a major component of resort treatment. Psycholog...

  15. Multidecadal oscillations in rainfall and hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2013-04-01

    Many studies have anticipated a worldwide increase in the frequency and intensity of precipitation extremes and floods since the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extreme quantiles, it is shown that hydrological extremes have oscillatory behaviour at multidecadal time scales. Results are based on nearly independent extremes extracted from long-term historical time series of precipitation intensities and river flows. Study regions include Belgium - The Netherlands (Meuse basin), Ethiopia (Blue Nile basin) and Ecuador (Paute basin). For Belgium - The Netherlands, the past 100 years showed larger and more hydrological extremes around the 1910s, 1950-1960s, and more recently during the 1990-2000s. Interestingly, the oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930-1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years. References: Ntegeka V., Willems P. (2008), 'Trends and multidecadal oscillations in rainfall extremes, based on a more than 100 years time series of 10 minutes rainfall intensities at Uccle, Belgium', Water Resources Research, 44, W07402, doi:10.1029/2007WR006471 Mora, D., Willems, P. (2012), 'Decadal oscillations in rainfall and air temperature in the Paute River Basin - Southern Andes of Ecuador', Theoretical and Applied Climatology, 108(1), 267-282, doi:0.1007/s00704-011-0527-4 Taye, M.T., Willems, P. (2011). 'Influence of climate variability on representative QDF predictions of the upper Blue Nile Basin', Journal of Hydrology, 411, 355-365, doi:10.1016/j.jhydrol.2011.10.019 Taye, M.T., Willems, P. (2012). 'Temporal variability of hydro-climatic extremes in the Blue Nile basin', Water

  16. Post-Fire Recovery of Eco-Hydrologic Behavior Given Historic and Projected Climate Variability in California Mediterranean Type Environments

    Science.gov (United States)

    Seaby, L. P.; Tague, C. L.; Hope, A. S.

    2006-12-01

    The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.

  17. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    Science.gov (United States)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  18. Impacts of Climate Change on the Timing of the Production Season of Maple Syrup in Eastern Canada.

    Science.gov (United States)

    Houle, Daniel; Paquette, Alain; Côté, Benoît; Logan, Travis; Power, Hugues; Charron, Isabelle; Duchesne, Louis

    2015-01-01

    Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999-2011 period from 121 maple stands in 11 regions of Québec (Canada) to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88) using the average temperature from January to April (TJ-A). A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15-19 days earlier on average in the 2080-2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low.

  19. Impacts of Climate Change on the Timing of the Production Season of Maple Syrup in Eastern Canada.

    Directory of Open Access Journals (Sweden)

    Daniel Houle

    Full Text Available Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999-2011 period from 121 maple stands in 11 regions of Québec (Canada to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88 using the average temperature from January to April (TJ-A. A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15-19 days earlier on average in the 2080-2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low.

  20. Impacts of Climate Change on the Timing of the Production Season of Maple Syrup in Eastern Canada

    Science.gov (United States)

    Côté, Benoît; Logan, Travis; Power, Hugues; Charron, Isabelle; Duchesne, Louis

    2015-01-01

    Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999–2011 period from 121 maple stands in 11 regions of Québec (Canada) to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88) using the average temperature from January to April (TJ-A). A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15–19 days earlier on average in the 2080–2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low. PMID:26682889

  1. Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-Scale Atmospheric Circulation in the Atlantic Region in Summer

    Science.gov (United States)

    Semenov, V. A.; Cherenkova, E. A.

    2018-02-01

    The influence of the Atlantic Multidecadal Oscillation (AMO) on large-scale atmospheric circulation in the Atlantic region in summer for the period of 1950-2015 is investigated. It is shown that the intensification of the summer North Atlantic Oscillation (NAO) with significant changes in sea level pressure anomalies in the main centers of action (over Greenland and the British Isles) occurred while the North Atlantic was cooler. Sea surface temperature anomalies, which are linked to the AMO in the summer season, affect both the NAO index and fluctuations of the Eastern Atlantic/Western Russia (EAWR) centers of action. The positive (negative) phase of the AMO is characterized by a combination of negative (positive) values of the NAO and EAWR indices. The dominance of the opposite phases of the teleconnection indices in summer during the warm North Atlantic and in its colder period resulted in differences in the regional climate in Europe.

  2. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    Science.gov (United States)

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Development of an integrated method for long-term water quality prediction using seasonal climate forecast

    Directory of Open Access Journals (Sweden)

    J. Cho

    2016-10-01

    Full Text Available The APEC Climate Center (APCC produces climate prediction information utilizing a multi-climate model ensemble (MME technique. In this study, four different downscaling methods, in accordance with the degree of utilizing the seasonal climate prediction information, were developed in order to improve predictability and to refine the spatial scale. These methods include: (1 the Simple Bias Correction (SBC method, which directly uses APCC's dynamic prediction data with a 3 to 6 month lead time; (2 the Moving Window Regression (MWR method, which indirectly utilizes dynamic prediction data; (3 the Climate Index Regression (CIR method, which predominantly uses observation-based climate indices; and (4 the Integrated Time Regression (ITR method, which uses predictors selected from both CIR and MWR. Then, a sampling-based temporal downscaling was conducted using the Mahalanobis distance method in order to create daily weather inputs to the Soil and Water Assessment Tool (SWAT model. Long-term predictability of water quality within the Wecheon watershed of the Nakdong River Basin was evaluated. According to the Korean Ministry of Environment's Provisions of Water Quality Prediction and Response Measures, modeling-based predictability was evaluated by using 3-month lead prediction data issued in February, May, August, and November as model input of SWAT. Finally, an integrated approach, which takes into account various climate information and downscaling methods for water quality prediction, was presented. This integrated approach can be used to prevent potential problems caused by extreme climate in advance.

  4. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  5. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  6. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy L.; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-01-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  7. Sensitivity of the Regional Climate in the Middle East and North Africa to Volcanic Perturbations

    KAUST Repository

    Dogar, Muhammad Mubashar

    2017-07-27

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/NCEP Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory\\'s High-Resolution Atmospheric Model (HiRAM). A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  8. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    Science.gov (United States)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  9. Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates

    Science.gov (United States)

    Garcia-Anton, Elena; Cuezva, Soledad; Fernandez-Cortes, Angel; Alvarez-Gallego, Miriam; Pla, Concepcion; Benavente, David; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio

    2017-09-01

    This study characterizes the processes involved in seasonal CO2 exchange between soils and shallow underground systems and explores the contribution of the different biotic and abiotic sources as a function of changing weather conditions. We spatially and temporally investigated five karstic caves across the Iberian Peninsula, which presented different microclimatic, geologic and geomorphologic features. The locations present Mediterranean and Oceanic climates. Spot air sampling of CO2 (g) and δ13CO2 in the caves, soils and outside atmospheric air was periodically conducted. The isotopic ratio of the source contribution enhancing the CO2 concentration was calculated using the Keeling model. We compared the isotopic ratio of the source in the soil (δ13Cs-soil) with that in the soil-underground system (δ13Cs-system). Although the studied field sites have different features, we found common seasonal trends in their values, which suggests a climatic control over the soil air CO2 and the δ13CO2 of the sources of CO2 in the soil (δ13Cs-soil) and the system (δ13Cs-system). The roots respiration and soil organic matter degradation are the main source of CO2 in underground environments, and the inlet of the gas is mainly driven by diffusion and advection. Drier and warmer conditions enhance soil-exterior CO2 interchange, reducing the CO2 concentration and increasing the δ13CO2 of the soil air. Moreover, the isotopic ratio of the source of CO2 in both the soil and the system tends to heavier values throughout the dry and warm season. We conclude that seasonal variations of soil CO2 concentration and its 13C/12C isotopic ratio are mainly regulated by thermo-hygrometric conditions. In cold and wet seasons, the increase of soil moisture reduces soil diffusivity and allows the storage of CO2 in the subsoil. During dry and warm seasons, the evaporation of soil water favours diffusive and advective transport of soil-derived CO2 to the atmosphere. The soil CO2 diffusion is

  10. How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Picea abies.

    Science.gov (United States)

    Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco

    2017-04-01

    During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our

  11. Dengue dynamics in Binh Thuan province, southern Vietnam: periodicity, synchronicity and climate variability.

    Science.gov (United States)

    Thai, Khoa T D; Cazelles, Bernard; Nguyen, Nam Van; Vo, Long Thi; Boni, Maciej F; Farrar, Jeremy; Simmons, Cameron P; van Doorn, H Rogier; de Vries, Peter J

    2010-07-13

    Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam. Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i) to detect and quantify dengue periodicity, (ii) to describe synchrony patterns in both time and space, (iii) to investigate the spatio-temporal waves and (iv) to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO) indices in Binh Thuan province, southern Vietnam. We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2-3-years was solely observed from 1996-2001. Synchrony in time and between districts was detected for both the annual and 2-3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2-3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2-3-year periodic band was found. A multi-annual mode of oscillation was observed and these 2-3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam.

  12. Dengue dynamics in Binh Thuan province, southern Vietnam: periodicity, synchronicity and climate variability.

    Directory of Open Access Journals (Sweden)

    Khoa T D Thai

    2010-07-01

    Full Text Available Dengue is a major global public health problem with increasing incidence and geographic spread. The epidemiology is complex with long inter-epidemic intervals and endemic with seasonal fluctuations. This study was initiated to investigate dengue transmission dynamics in Binh Thuan province, southern Vietnam.Wavelet analyses were performed on time series of monthly notified dengue cases from January 1994 to June 2009 (i to detect and quantify dengue periodicity, (ii to describe synchrony patterns in both time and space, (iii to investigate the spatio-temporal waves and (iv to associate the relationship between dengue incidence and El Niño-Southern Oscillation (ENSO indices in Binh Thuan province, southern Vietnam.We demonstrate a continuous annual mode of oscillation and a multi-annual cycle of around 2-3-years was solely observed from 1996-2001. Synchrony in time and between districts was detected for both the annual and 2-3-year cycle. Phase differences used to describe the spatio-temporal patterns suggested that the seasonal wave of infection was either synchronous among all districts or moving away from Phan Thiet district. The 2-3-year periodic wave was moving towards, rather than away from Phan Thiet district. A strong non-stationary association between ENSO indices and climate variables with dengue incidence in the 2-3-year periodic band was found.A multi-annual mode of oscillation was observed and these 2-3-year waves of infection probably started outside Binh Thuan province. Associations with climatic variables were observed with dengue incidence. Here, we have provided insight in dengue population transmission dynamics over the past 14.5 years. Further studies on an extensive time series dataset are needed to test the hypothesis that epidemics emanate from larger cities in southern Vietnam.

  13. Extending to seasonal scales the current usage of short range weather forecasts and climate projections for water management in Spain

    Science.gov (United States)

    Rodriguez-Camino, Ernesto; Voces, José; Sánchez, Eroteida; Navascues, Beatriz; Pouget, Laurent; Roldan, Tamara; Gómez, Manuel; Cabello, Angels; Comas, Pau; Pastor, Fernando; Concepción García-Gómez, M.°; José Gil, Juan; Gil, Delfina; Galván, Rogelio; Solera, Abel

    2016-04-01

    This presentation, first, briefly describes the current use of weather forecasts and climate projections delivered by AEMET for water management in Spain. The potential use of seasonal climate predictions for water -in particular dams- management is then discussed more in-depth, using a pilot experience carried out by a multidisciplinary group coordinated by AEMET and DG for Water of Spain. This initiative is being developed in the framework of the national implementation of the GFCS and the European project, EUPORIAS. Among the main components of this experience there are meteorological and hydrological observations, and an empirical seasonal forecasting technique that provides an ensemble of water reservoir inflows. These forecasted inflows feed a prediction model for the dam state that has been adapted for this purpose. The full system is being tested retrospectively, over several decades, for selected water reservoirs located in different Spanish river basins. The assessment includes an objective verification of the probabilistic seasonal forecasts using standard metrics, and the evaluation of the potential social and economic benefits, with special attention to drought and flooding conditions. The methodology of implementation of these seasonal predictions in the decision making process is being developed in close collaboration with final users participating in this pilot experience.

  14. Seasonal predictions of equatorial Atlantic SST in a low-resolution CGCM with surface heat flux correction

    Science.gov (United States)

    Dippe, Tina; Greatbatch, Richard; Ding, Hui

    2016-04-01

    The dominant mode of interannual variability in tropical Atlantic sea surface temperatures (SSTs) is the Atlantic Niño or Zonal Mode. Akin to the El Niño-Southern Oscillation in the Pacific sector, it is able to impact the climate both of the adjacent equatorial African continent and remote regions. Due to heavy biases in the mean state climate of the equatorial-to-subtropical Atlantic, however, most state-of-the-art coupled global climate models (CGCMs) are unable to realistically simulate equatorial Atlantic variability. In this study, the Kiel Climate Model (KCM) is used to investigate the impact of a simple bias alleviation technique on the predictability of equatorial Atlantic SSTs. Two sets of seasonal forecasting experiments are performed: An experiment using the standard KCM (STD), and an experiment with additional surface heat flux correction (FLX) that efficiently removes the SST bias from simulations. Initial conditions for both experiments are generated by the KCM run in partially coupled mode, a simple assimilation technique that forces the KCM with observed wind stress anomalies and preserves SST as a fully prognostic variable. Seasonal predictions for both sets of experiments are run four times yearly for 1981-2012. Results: Heat flux correction substantially improves the simulated variability in the initialization runs for boreal summer and fall (June-October). In boreal spring (March-May), however, neither the initialization runs of the STD or FLX-experiments are able to capture the observed variability. FLX-predictions show no consistent enhancement of skill relative to the predictions of the STD experiment over the course of the year. The skill of persistence forecasts is hardly beat by either of the two experiments in any season, limiting the usefulness of the few forecasts that show significant skill. However, FLX-forecasts initialized in May recover skill in July and August, the peak season of the Atlantic Niño (anomaly correlation

  15. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    Science.gov (United States)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  16. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Science.gov (United States)

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  17. Nonstationary modeling of a long record of rainfall and temperature over Rome

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Napolitano, Francesco

    2010-10-01

    A long record (1862-2004) of seasonal rainfall and temperature from the Rome observatory of Collegio Romano are modeled in a nonstationary framework by means of the Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to characterize nonstationarities in rainfall and related climate variables. It is shown that the GAMLSS models are able to represent the magnitude and spread in the seasonal time series with parameters which are a smooth function of time. Covariate analyses highlight the role of seasonal and interannual variability of large-scale climate forcing, as reflected in three teleconnection indexes (Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Mediterranean Index), for modeling seasonal rainfall and temperature over Rome. In particular, the North Atlantic Oscillation is a significant predictor during the winter, while the Mediterranean Index is a significant predictor for almost all seasons.

  18. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Yen Yi Loo

    2015-11-01

    Full Text Available Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment. Although there are enough historical evidence to support the theory that climate change is a natural phenomenon, many research scientists are widely in agreement that the increase in temperature in the 20th century is anthropologically related. The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally. In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness. This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia. The comparison of decadal variation of precipitation and temperature anomalies before the 1970s found general increases which were mostly varying. But beyond the 1970s, global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period. There are frequent changes and a shift westward of the Indian summer monsoon. Although precipitation is observed to be 70% below normal levels, in some areas the topography affects the intensity of rainfall. These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future. The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human, financial, infrastructure and food security of the region.

  19. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Seidenkrantz, Marit-Solveig; Jacobsen, B. H.

    2011-01-01

    Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin...... of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ~55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test...... and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ~55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest...

  20. Global Wildfire Forecasts Using Large Scale Climate Indices

    Science.gov (United States)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  1. Incorporating probabilistic seasonal climate forecasts into river management using a risk-based framework

    Science.gov (United States)

    Sojda, Richard S.; Towler, Erin; Roberts, Mike; Rajagopalan, Balaji

    2013-01-01

    [1] Despite the influence of hydroclimate on river ecosystems, most efforts to date have focused on using climate information to predict streamflow for water supply. However, as water demands intensify and river systems are increasingly stressed, research is needed to explicitly integrate climate into streamflow forecasts that are relevant to river ecosystem management. To this end, we present a five step risk-based framework: (1) define risk tolerance, (2) develop a streamflow forecast model, (3) generate climate forecast ensembles, (4) estimate streamflow ensembles and associated risk, and (5) manage for climate risk. The framework is successfully demonstrated for an unregulated watershed in southwest Montana, where the combination of recent drought and water withdrawals has made it challenging to maintain flows needed for healthy fisheries. We put forth a generalized linear modeling (GLM) approach to develop a suite of tools that skillfully model decision-relevant low flow characteristics in terms of climate predictors. Probabilistic precipitation forecasts are used in conjunction with the GLMs, resulting in season-ahead prediction ensembles that provide the full risk profile. These tools are embedded in an end-to-end risk management framework that directly supports proactive fish conservation efforts. Results show that the use of forecasts can be beneficial to planning, especially in wet years, but historical precipitation forecasts are quite conservative (i.e., not very “sharp”). Synthetic forecasts show that a modest “sharpening” can strongly impact risk and improve skill. We emphasize that use in management depends on defining relevant environmental flows and risk tolerance, requiring local stakeholder involvement.

  2. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus

    Science.gov (United States)

    Saunders, Sarah P.; Ries, Leslie; Oberhasuer, Karen S.; Thogmartin, Wayne E.; Zipkin, Elise F.

    2017-01-01

    Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site-specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site-specific crop cover, and county-level herbicide (glyphosate) application. We also incorporated cross-seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county-level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide-resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site-specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine-resolution temporal fluctuations in population-level responses to environmental

  3. Relationship between the precipitation variability in Montenegro and the Mediterranean oscillation

    Directory of Open Access Journals (Sweden)

    Burić Dragan

    2014-01-01

    Full Text Available This study investigates the influence of atmospheric circulation in the Mediterranean region on the precipitation in Montenegro. Nine precipitation parameters have been used in the analysis and the relationship has been investigated by the Mediterranean and West Mediterranean Oscillation change index (MO and WeMO. According to a 60 - year observed period (1951-2010, the research results show that nothing characteristic happens with seasonal and annual precipitation sums because the trend is mainly insignificant. However, precipitation extremes are getting more extreme, which corresponds with a general idea of global warming. Negative consequences of daily intensity increase and frequency of precipitation days above fixed and percentile thresholds have been recorded recently in the form of torrents, floods, intensive erosive processes, etc., but it should be pointed out that human factor is partly a cause of such events. The estimate of the influence of teleconnection patterns primarily related to the Mediterranean Basin has shown that their variability affects the observed precipitation parameters on the territory of Montenegro regarding both seasonal and annual sums and frequency and intensity of extreme events shown by climate indices.

  4. Towards a Seamless Framework for Drought Analysis and Prediction from Seasonal to Climate Change Time Scales (Plinius Medal Lecture)

    Science.gov (United States)

    Sheffield, Justin

    2013-04-01

    Droughts arguably cause the most impacts of all natural hazards in terms of the number of people affected and the long-term economic costs and ecosystem stresses. Recent droughts worldwide have caused humanitarian and economic problems such as food insecurity across the Horn of Africa, agricultural economic losses across the central US and loss of livelihoods in rural western India. The prospect of future increases in drought severity and duration driven by projected changes in precipitation patterns and increasing temperatures is worrisome. Some evidence for climate change impacts on drought is already being seen for some regions, such as the Mediterranean and east Africa. Mitigation of the impacts of drought requires advance warning of developing conditions and enactment of drought plans to reduce vulnerability. A key element of this is a drought early warning system that at its heart is the capability to monitor evolving hydrological conditions and water resources storage, and provide reliable and robust predictions out to several months, as well as the capacity to act on this information. At longer time scales, planning and policy-making need to consider the potential impacts of climate change and its impact on drought risk, and do this within the context of natural climate variability, which is likely to dominate any climate change signal over the next few decades. There are several challenges that need to be met to advance our capability to provide both early warning at seasonal time scales and risk assessment under climate change, regionally and globally. Advancing our understanding of drought predictability and risk requires knowledge of drought at all time scales. This includes understanding of past drought occurrence, from the paleoclimate record to the recent past, and understanding of drought mechanisms, from initiation, through persistence to recovery and translation of this understanding to predictive models. Current approaches to monitoring and

  5. Drought or humidity oscillations? The case of coastal zone of Lebanon

    Science.gov (United States)

    Shaban, Amin; Houhou, Rola

    2015-10-01

    There is discrepancy in classifying Lebanon according to the different climatic zones; however, it is often described as a semi-arid region. Lately, Lebanon has been witnessing climatic oscillations in the meteorological parameters. The impact of these oscillations on water sector has been reflected also on energy-food nexus. Yet, there are a number of studies obtained to identify the climate of Lebanon, and they show contradictory results; especially these studies elaborated different datasets and applied diverse methods which often modeled only on large-scale regions. Therefore, the analysis of climatic data depended on complete and long-term climatic records that can be applied to assess the existing climatic status of Lebanon, as well as to assure whether Lebanon is under drought, humidity or it is oscillating between both. This study utilized considerable datasets, from different sources including the remotely sensed systems (e.g. TRMM). These datasets were interpolated and analyzed statistically according to De Martonne Aridity Index. Aiming to affirm the climatic attribute of Lebanon; however, ten climatic stations were investigated. They are with representative geographic setting and diverse time series in the coastal zone of Lebanon were investigated. Even though, Lebanon is known as a semi-arid region, yet results in this study show that the studied zone does not evidence any drought, since around 70% of the investigated years are characterized by semi-humid to humid climate. This climatic figure is well pronounced since rainfall rate exceeds 900 mm, average temperature rate is about 19 °C, and snow remains for a couple of months annually.

  6. Timing of seasonal migration in mule deer: effects of climate, plant phenology, andlife-history characteristics

    OpenAIRE

    Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Becky M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry

    2011-01-01

    Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, ...

  7. Climate variability and Port wine quality

    Science.gov (United States)

    Gouveia, Celia; Liberato, Margarida L. R.; Trigo, Ricardo M.; Dacamara, Carlos

    2010-05-01

    Recent warming trends for Portugal have been found to be steepest in winter and spring and more pronounced for minimum than for maximum values of temperature (Miranda et al, 2002). These trends and associated changes in temperature and precipitation regimes may exert strong influences on agriculture systems. For instance, high values of the North Atlantic Oscillation (NAO) index have been shown to significantly reduce precipitation over Iberia and therefore induce low yield wheat crops in Portugal (Gouveia and Trigo, 2006). Port wine is produced from grapes grown in selected areas of the Douro valley, the so-called Região Demarcada do Douro, the first wine-producing region of the world (dating from 1758). A vintage wine is made from grapes that were grown and harvested in a single specified year and is classified as such because of the above average quality, a status that is attributed by Port houses in their best years. The Douro region presents distinctive climatic, topographic and soil characteristics. While the latest factors are fixed in time, the former may considerably change from year to year, exposing the Port wine productions to a large risk associated to interannual and intra-seasonal climatic variations. It is therefore to be expected that high quality wines are generally associated to optimum climatic conditions. In this work we have performed an analysis of the distinct behaviour of several meteorological fields in vintage versus non-vintage years. The relative importance of maximum and minimum temperature, precipitation and frost days is assessed for each individual month of the vegetative cycle and their importance to a high quality wine year is evaluated. Composites of 500 hPa geopotential height and sea level pressure fields over the Euro Atlantic region are also compared for vintage and non-vintage years. Results reveal a strong dependence of vintage production on maximum temperature and precipitation during spring and summer (the growing season

  8. A trial of music composition work on the theme of the marching season from spring to summer (An interdisciplinary class between music and climate education for the university students)

    Science.gov (United States)

    Kato, Kuranoshin; Kato, Haruko

    2017-04-01

    The seasonality is a common important feature characterizing the climate in mid-latitude regions. However, many different factors relating to the seasonal cycles result in the great variety of the seasonal climate features from region to region even of the mid-latitudes. For example, there are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems. This also brings the remarkable change in the "seasonal feeling" from month to month around the Japan Islands. The seasonal increase in air temperature is especially large from March to April around the Japan Islands due to the rapid seasonal weakening of the Siberian High and the alternative passages of the extratropical cyclones and anticyclones there become more dominant in April (Kato et al. 2009). In May appearance frequency of the warm and dry clear day increases around the Japan Islands, in association with seasonal formation of the quasi-stationary Baiu front to its south (Kato and Kodama 1992). In the middle of June, the significant rainy season called the Baiu becomes the mature stage around the Japan Islands. The Baiu there terminates to be the midsummer around the middle of July. As such, people could feel rather great seasonal differences or rather various seasonal phenomena around the Japan Islands only within a few months, even for who do not have enough scientific knowledge on the climate. Inversely, the detailed perception or imagination of the seasonal features could help the scientific understanding of the climate and season. Following such viewpoint, an interdisciplinary class between music and science education was practiced for the students of Teaching Course of Music, Faculty of Education, Gifu Shotoku Gakuen Univesity. They are specialized in music and music education to become a teacher of primary school or a music teacher of junior high school. As for natural science, they have

  9. Two sides of the same coin: extinctions and originations across the Atlantic/Indian Ocean boundary as consequences of the same climate oscillation

    Directory of Open Access Journals (Sweden)

    Peter R. Teske

    2013-04-01

    Full Text Available Global climate change is correlated not only with variation in extinction rates, but also with speciation rates. However, few mechanisms have been proposed to explain how climate change may have driven the emergence of new evolutionary lineages that eventually became distinct species. Here, we discuss a model of range extension followed by divergence, in which the same climate oscillations that resulted in the extinction of coastal species across the Atlantic/Indian Ocean boundary in southwestern Africa also sowed the seeds of new biodiversity. We present evidence for range extensions and evolutionary divergence from both fossil and genetic data, but also point out the many challenges to the model that need to be addressed before its validity can be accepted.

  10. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Science.gov (United States)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought

  11. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    Directory of Open Access Journals (Sweden)

    M. Freund

    2017-11-01

    Full Text Available Australian seasonal rainfall is strongly affected by large-scale ocean–atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April–September and warm (October–March season rainfall in eight natural resource management (NRM regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997–2009 appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental

  12. Examining Dynamical Processes of Tropical Mountain Hydroclimate, Particularly During the Wet Season, Through Integration of Autonomous Sensor Observations and Climate Modeling

    Science.gov (United States)

    Hellstrom, R. A.; Fernandez, A.; Mark, B. G.; Covert, J. M.

    2016-12-01

    Peru is facing imminent water resource issues as glaciers retreat and demand increases, yet limited observations and model resolution hamper understanding of hydrometerological processes on local to regional scales. Much of current global and regional climate studies neglect the meteorological forcing of lapse rates (LRs) and valley and slope wind dynamics on critical components of the Peruvian Andes' water-cycle, and herein we emphasize the wet season. In 2004 and 2005 we installed an autonomous sensor network (ASN) within the glacierized Llanganuco Valley, Cordillera Blanca (9°S), consisting of discrete, cost-effective, automatic temperature loggers located along the valley axis and anchored by two automatic weather stations. Comparisons of these embedded hydrometeorological measurements from the ASN and climate modeling by dynamical downscaling using the Weather Research and Forecasting model (WRF) elucidate distinct diurnal and seasonal characteristics of the mountain wind regime and LRs. Wind, temperature, humidity, and cloud simulations suggest that thermally driven up-valley and slope winds converging with easterly flow aloft enhance late afternoon and evening cloud development which helps explain nocturnal wet season precipitation maxima measured by the ASN. Furthermore, the extreme diurnal variability of along-valley-axis LR, and valley wind detected from ground observations and confirmed by dynamical downscaling demonstrate the importance of realistic scale parameterizations of the atmospheric boundary layer to improve regional climate model projections in mountainous regions. We are currently considering to use intermediate climate models such as ICAR to reduce computing cost and we continue to maintain the ASN in the Cordillera Blanca.

  13. Climate and vegetational regime shifts in the late Paleozoic ice age earth.

    Science.gov (United States)

    DiMichele, W A; Montañez, I P; Poulsen, C J; Tabor, N J

    2009-03-01

    The late Paleozoic earth experienced alternation between glacial and non-glacial climates at multiple temporal scales, accompanied by atmospheric CO2 fluctuations and global warming intervals, often attended by significant vegetational changes in equatorial latitudes of Pangaea. We assess the nature of climate-vegetation interaction during two time intervals: middle-late Pennsylvanian transition and Pennsylvanian-Permian transition, each marked by tropical warming and drying. In case study 1, there is a catastrophic intra-biomic reorganization of dominance and diversity in wetland, evergreen vegetation growing under humid climates. This represents a threshold-type change, possibly a regime shift to an alternative stable state. Case study 2 is an inter-biome dominance change in western and central Pangaea from humid wetland and seasonally dry to semi-arid vegetation. Shifts between these vegetation types had been occurring in Euramerican portions of the equatorial region throughout the late middle and late Pennsylvanian, the drier vegetation reaching persistent dominance by Early Permian. The oscillatory transition between humid and seasonally dry vegetation appears to demonstrate a threshold-like behavior but probably not repeated transitions between alternative stable states. Rather, changes in dominance in lowland equatorial regions were driven by long-term, repetitive climatic oscillations, occurring with increasing intensity, within overall shift to seasonal dryness through time. In neither case study are there clear biotic or abiotic warning signs of looming changes in vegetational composition or geographic distribution, nor is it clear that there are specific, absolute values or rates of environmental change in temperature, rainfall distribution and amount, or atmospheric composition, approach to which might indicate proximity to a terrestrial biotic-change threshold.

  14. Climate change in winter versus the growing-season leads to different effects on soil microbial activity in northern hardwood forests

    Science.gov (United States)

    Sorensen, P. O.; Templer, P. H.; Finzi, A.

    2014-12-01

    Mean winter air temperatures have risen by approximately 2.5˚ C per decade over the last fifty years in the northeastern U.S., reducing the maximum depth of winter snowpack by approximately 26 cm over this period and the duration of winter snow cover by 3.6 to 4.2 days per decade. Forest soils in this region are projected to experience a greater number of freeze-thaw cycles and lower minimum winter soil temperatures as the depth and duration of winter snow cover declines in the next century. Climate change is likely to result not only in lower soil temperatures during winter, but also higher soil temperatures during the growing-season. We conducted two complementary experiments to determine how colder soils in winter and warmer soils in the growing-season affect microbial activity in hardwood forests at Harvard Forest, MA and Hubbard Brook Experimental Forest, NH. A combination of removing snow via shoveling and buried heating cables were used to induce freeze-thaw events during winter and to warm soils 5˚C above ambient temperatures during the growing-season. Increasing the depth and duration of soil frost via snow-removal resulted in short-term reductions in soil nitrogen (N) production via microbial proteolytic enzyme activity and net N mineralization following snowmelt, prior to tree leaf-out. Declining mass specific rates of carbon (C) and N mineralization associated with five years of snow removal at Hubbard Brook Experimental Forest may be an indication of microbial physiological adaptation to winter climate change. Freeze-thaw cycles during winter reduced microbial extracellular enzyme activity and the temperature sensitivity of microbial C and N mineralization during the growing-season, potentially offsetting nutrient and soil C losses due to soil warming in the growing-season. Our multiple experimental approaches show that winter climate change is likely to contribute to reduced microbial activity in northern hardwood forests.

  15. Combining satellite derived phenology with climate data for climate change impact assessment

    Science.gov (United States)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  16. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change.

    Science.gov (United States)

    Garcia-Mozo, Herminia; Galan, Carmen; Jato, Victoria; Belmonte, Jordina; de la Guardia, Consuelo; Fernandez, Delia; Gutierrez, Montserrat; Aira, M; Roure, Joan; Ruiz, Luis; Trigo, Mar; Dominguez-Vilches, Eugenio

    2006-01-01

    The main characteristics of the Quercus pollination season were studied in 14 different localities of the Iberian Peninsula from 1992-2004. Results show that Quercus flowering season has tended to start earlier in recent years, probably due to the increased temperatures in the pre-flowering period, detected at study sites over the second half of the 20th century. A Growing Degree Days forecasting model was used, together with future meteorological data forecast using the Regional Climate Model developed by the Hadley Meteorological Centre, in order to determine the expected advance in the start of Quercus pollination in future years. At each study site, airborne pollen curves presented a similar pattern in all study years, with different peaks over the season attributable in many cases to the presence of several species. High pollen concentrations were recorded, particularly at Mediterranean sites. This study also proposes forecasting models to predict both daily pollen values and annual pollen emission. All models were externally validated using data for 2001 and 2004, with acceptable results. Finally, the impact of the highly-likely climate change on Iberian Quercus pollen concentration values was studied by applying RCM meteorological data for different future years, 2025, 2050, 2075 and 2099. Results indicate that under a doubled CO(2) scenario at the end of the 21st century Quercus pollination season could start on average one month earlier and airborne pollen concentrations will increase by 50 % with respect to current levels, with higher values in Mediterranean inland areas.

  17. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh.

    Science.gov (United States)

    Banu, Shahera; Guo, Yuming; Hu, Wenbiao; Dale, Pat; Mackenzie, John S; Mengersen, Kerrie; Tong, Shilu

    2015-11-05

    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

  18. The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Kovach, Robin; Molod, Andrea M.; Pawson, Steven

    2018-01-01

    The 2017 hurricane season was extremely active with six major hurricanes, the third most on record. The sea-surface temperatures (SSTs) over the eastern Main Development Region (EMDR), where many tropical cyclones (TCs) developed during active months of August/September, were approximately 0.96 degrees Centigrade above the 1901-2017 average (warmest on record): about 0.42 degrees Centigrade from a long-term upward trend and the rest (around 80 percent) attributed to the Atlantic Meridional Mode (AMM). The contribution to the SST from the North Atlantic Oscillation over the EMDR was a weak warming, while that from ENSO was negligible. Nevertheless, ENSO, the NAO, and the AMM all contributed to favorable wind shear conditions, while the AMM also produced enhanced atmospheric instability. Compared with the strong hurricane years of 2005-2010, the ocean heat content (OHC) during 2017 was larger across the tropics, with higher SST anomalies over the EMDR and Caribbean Sea. On the other hand, the dynamical/thermodynamical atmospheric conditions, while favorable for enhanced TC activity, were less prominent than in 2005-2010 across the tropics. The results suggest that unusually warm SST in the EMDR together with the long fetch of the resulting storms in the presence of record-breaking OHC were key factors in driving the strong TC activity in 2017.

  19. The Effects of Climate Change on Variability of the Growing Seasons in the Elbe River Lowland, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Potopová, V.; Zahradníček, Pavel; Türkot, L.; Štěpánek, Petr; Soukup, J.

    2015-01-01

    Roč. 2015, č. 546920 (2015), s. 546920 ISSN 1687-9309 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : Central Europe * extremes * climate change * growing seasons * Elbe River Lowland Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.107, year: 2015

  20. Reconstructing medieval climate in the tropical North Atlantic with corals from Anegada, British Virgin Islands

    Science.gov (United States)

    Kilbourne, K. H.; Xu, Y. Y.

    2014-12-01

    Resolving the patterns of climate variability during the Medieval Climate Anomaly (MCA) is key for exploring forced versus unforced variability during the last 1000 years. Tropical Atlantic climate is currently not well resolved during the MCA despite it being an important source of heat and moisture to the climate system today. To fill this data gap, we collected cores from Diploria strigosa corals brought onto the low-lying island of Anegada, British Virgin Islands (18.7˚N, 64.3˚S) during an overwash event and use paired analysis of Sr/Ca and δ18O in the skeletal aragonite to explore climate in the tropical Atlantic at the end of the MCA. The three sub-fossil corals used in this analysis overlap temporally and together span the years 1256-1372 C.E. An assessment of three modern corals from the study site indicates that the most robust features of climate reconstructions using Sr/Ca and δ18O in this species are the seasonal cycle and inter-annual variability. The modern seasonal temperature range is 2.8 degrees Celsius and the similarity between the modern and sub-fossil coral Sr/Ca indicates a similar range during the MCA. Today seasonal salinity changes locally are driven in large part by the migration of a regional salinity front. The modern corals capture the related large seasonal seawater δ18O change, but the sub-fossil corals indicate stable seawater δ18O throughout the year, supporting the idea that this site remained on one side of the salinity front continuously throughout the year. Inter-annual variability in the region is influenced by the cross-equatorial SST gradient, the North Atlantic Oscillation and ENSO. Gridded instrumental SST from the area surrounding Anegada and coral geochemical records from nearby Puerto Rico demonstrate concentrations of variance in specific frequency bands associated with these phenomena. The sub-fossil coral shows no concentration of variance in the modern ENSO frequency band, consistent with reduced ENSO

  1. Effects of Global Warming on Predatory Bugs Supported by Data Across Geographic and Seasonal Climatic Gradients

    Science.gov (United States)

    Schuldiner-Harpaz, Tarryn; Coll, Moshe

    2013-01-01

    Global warming may affect species abundance and distribution, as well as temperature-dependent morphometric traits. In this study, we first used historical data to document changes in Orius (Heteroptera: Anthocoridae) species assemblage and individual morphometric traits over the past seven decades in Israel. We then tested whether these changes could have been temperature driven by searching for similar patterns across seasonal and geographic climatic gradients in a present survey. The historical records indicated a shift in the relative abundance of dominant Orius species; the relative abundance of O. albidipennis, a desert-adapted species, increased while that of O. laevigatus decreased in recent decades by 6 and 10–15 folds, respectively. These shifts coincided with an overall increase of up to 2.1°C in mean daily temperatures over the last 25 years in Israel. Similar trends were found in contemporary data across two other climatic gradients, seasonal and geographic; O. albidipennis dominated Orius assemblages under warm conditions. Finally, specimens collected in the present survey were significantly smaller than those from the 1980’s, corresponding to significantly smaller individuals collected now during warmer than colder seasons. Taken together, results provide strong support to the hypothesis that temperature is the most likely driver of the observed shifts in species composition and body sizes because (1) historical changes in both species assemblage and body size were associated with rising temperatures in the study region over the last few decades; and (2) similar changes were observed as a result of contemporary drivers that are associated with temperature. PMID:23805249

  2. The Modulation of Tropical Storm Activity in the Western North Pacific by the Madden-Julian Oscillation in GEOS-5 AGCM Experiments

    Science.gov (United States)

    Kim, Dongmin; Lee, Myong-In; Kim, Hye-Mi; Schubert, Siegfried D.; Yoo, Jin Ho

    2014-01-01

    This study examines the influence of the Madden-Julian Oscillation (MJO) on tropical storm (TS) activity in the western North Pacific, using observations and GEOS-5 simulations at 50-km horizontal resolution. While GEOS-5 produces an MJO of faster propagation and weaker amplitude, it nevertheless reproduces the observed modulation of TS activity by the MJO with the highest TS genesis and increased track density in the active phases of MJO. The study suggests that the simulation of the sub-seasonal variability of TS activity could be improved by improving the simulations of the MJO in climate models.

  3. The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan.

    Science.gov (United States)

    Ohnishi, N; Uno, R; Ishibashi, Y; Tamate, H B; Oi, T

    2009-06-01

    The Asian black bear (Ursus thibetanus) inhabits two of the main islands, Honshu and Shikoku, in Japan. To determine how climatic oscillations during the Quaternary Era affected the genetic structure of the black bear populations in Japan, we examined their phylogeographic relationships and compared their genetic structure. We analysed an approximately 700-bp sequence in the D-loop region of mitochondrial DNA collected from 589 bears in this study with 108 bears from a previous study. We observed a total of 57 haplotypes and categorized them into three clusters (Eastern, Western and Southern) based on the spatial distribution of the haplotypes. All but 2 of the 41 haplotypes in the Eastern cluster were distributed locally. Genetic diversity was generally low in northern Japan and high in central Japan. Demographic tests rejected the expansion model in northern populations. Haplotypes of the Western and Southern clusters were unique to local populations. We conclude that the extant genetic structure of the Asian black bear populations arose as follows: first, populations became small and genetic drift decreased genetic diversity in the northern area during the last glacial period, whereas large continuous populations existed in the southern part of central Japan. These patterns were essentially maintained until the present time. In western and southern Japan, the effects of climatic oscillations were smaller, and thus, local structure was maintained.

  4. Seasonal Forecast Skill And Teleconnections Over East Africa

    Science.gov (United States)

    MacLeod, D.; Palmer, T.

    2017-12-01

    Many people living in East Africa are significantly exposed to risks arising from climate variability. The region experiences two rainy seasons and poor performance of either or both of these (such as seen recently in 2016/17) reduces agricultural productivity and threatens food security. In combination with other factors this can lead to famine. By utilizing seasonal climate forecasts, preparatory actions can be taken in order to mitigate the risks arising from such climate variability. As part of the project ForPAc: "Towards forecast-based preparedness action", we are working with humanitarian agencies in Kenya to build such early warning systems on subseasonal-to-seasonal timescales. Here, the seasonal predictability and forecast skill of the two East African rainy seasons will be presented. Results from the new ECMWF operational forecasting system SEAS5 will be shown and compared to the previous System 4. Analysis of a new 110 year long atmosphere-only simulation will also be discussed, demonstrating impacts of atmosphere-ocean coupling as well as putting operational forecast skill in a long-term context. Particular focus will be given to the model representation of teleconnections of seasonal climate with global sea surface temperatures; highlighting sources of forecast error and informing future model development.

  5. From Fall to Spring, or Spring to Fall? Seasonal Cholera Transmission Cycles and Implications for Climate Change

    Science.gov (United States)

    Akanda, A. S.; Jutla, A. S.; Huq, A.; Colwell, R.; Islam, S.; WE Reason

    2010-12-01

    Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and the annual recurrence of this infectious disease in endemic areas continues to be of considerable interest to scientists and public health workers. Despite major advances in the ecological, and microbiological understanding of Vibrio cholerae, the causative agent, the role of underlying macro-scale hydroclimatic processes in propagating the disease in different seasons and years is not well understood. The incidence of cholera in the Bengal Delta region, the ‘native homeland’ of cholera, shows distinct biannual peaks in the southern floodplains, as opposed to single annual peaks in coastal areas and the northern parts of Bangladesh, as well as other cholera-endemic regions in the world. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the spatio-temporal variability of incidence peaks with seasonal processes and extreme events. At a seasonal scale, the cycles indicate a spring-fall transmission pattern, contrary to the prevalent notion of a fall-spring transmission cycle. We show that the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating transmission to fall by flooding. This seasonal interpretation of the progression of cholera has important implications, for formulating effective cholera intervention and mitigation efforts through improved water management and understanding the impacts of changing climate patterns on seasonal cholera transmission. (Water Environental Research Education Actionable Solutions Network)

  6. Climate Prediction Center (CPC) Daily Antarctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Oscillation (AAO) is a leading teleconnection pattern in the Southern Hemisphere circulation. It is calculated as the first Empirical Orthogonal...

  7. Climate Prediction Center(CPC)Monthly Antarctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Oscillation (AAO) is a leading teleconnection pattern in the Southern Hemisphere circulation. It is calculated as the first Empirical Orthogonal...

  8. Theory of quasi-biennial and some other oscillations in meteorological parameters

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We show that quasi-biennial and several other oscillations in meteorological parameters are caused by ''foldover distortions'' in the physical processes represented by the formulations contained in our recent theory. The periods of all these oscillations extend from about 50 days up to over 200,000 years. Additional oscillations within and outside this periodicity range are correspondingly generated primarily as a result of non-linearities in the earth-atmosphere system. Our analysis agrees quite well with past observations as well as results of analyses on climatic records from different locations on the earth and can, therefore, be useful in attempts to make climatic predictions as briefly indicated in the text. (author). 15 refs, 4 figs, 2 tabs

  9. Climate Prediction Center Monthly(CPC)Arctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic Oscillation (AO) is a leading teleconnection pattern in the Northern Hemisphere circulation. It is calculated as the first Empirical Orthogonal Function...

  10. Climate Prediction Center(CPC)Daily Arctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic Oscillation (AO) is a leading teleconnection pattern in the Northern Hemisphere circulation. It is calculated as the first Empirical Orthogonal Function...

  11. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  12. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change

    Science.gov (United States)

    Tsanis, I.; Tapoglou, E.

    2018-01-01

    The North Atlantic Oscillation (NAO) is responsible for the climatic variability in the Northern Hemisphere, in particular, in Europe and is related to extreme events, such as droughts. The purpose of this paper is to study the correlation between precipitation and winter (December-January-February-March (DJFM)) NAO both for the historical period (1951-2000) and two future periods (2001-2050 and 2051-2100). NAO is calculated for these three periods by using sea level pressure, while precipitation data from seven climate models following the representative concentration pathway (RCP) 8.5 are also used in this study. An increasing trend in years with positive DJFM NAO values in the future is defined by this data, along with higher average DJFM NAO values. The correlation between precipitation and DJFM NAO is high, especially in the Northern (high positive) and Southern Europe (high negative). Therefore, higher precipitation in Northern Europe and lower precipitation in Southern Europe are expected in the future. Cross-spectral analysis between precipitation and DJFM NAO time series in three different locations in Europe revealed the best coherence in a dominant cycle between 3 and 4 years. Finally, the maximum drought period in terms of consecutive months with drought is examined in these three locations. The results can be used for strategic planning in a sustainable water resources management plan, since there is a link between drought events and NAO.

  13. Climate Change in the Pacific Islands

    Science.gov (United States)

    Hamnett, Michael P.

    Climate change have been a major concern among Pacific Islanders since the late 1990s. During that period, Time Magazine featured a cover story that read: Say Goodbye to the Marshall Islands, Kiribati, and Tuvalu from sea level rise. Since that time, the South Pacific Regional Environment Programme, UN and government agencies and academic researchers have been assessing the impacts of long-term climate change and seasonal to inter-annual climate variability on the Pacific Islands. The consensus is that long-term climate change will result in more extreme weather and tidal events including droughts, floods, tropical cyclones, coastal erosion, and salt water inundation. Extreme weather events already occur in the Pacific Islands and they are patterned. El Niño Southern Oscillation (ENSO) events impact rainfall, tropical cyclone and tidal patterns. In 2000, the first National Assessment of the Consequences of Climate Variability and Change concluded that long-term climate change will result in more El Niño events or a more El Niño like climate every year. The bad news is that will mean more natural disasters. The good news is that El Niño events can be predicted and people can prepare for them. The reallly bad news is that some Pacific Islands are already becoming uninhabitable because of erosion of land or the loss of fresh water from droughts and salt water intrusion. Many of the most vulnerable countries already overseas populations in New Zealand, the US, or larger Pacific Island countries. For some Pacific Islander abandoning their home countries will be their only option.

  14. Seasonal timing in a warming world : Plasticity of seasonal timing of growth and reproduction

    NARCIS (Netherlands)

    Salis, Lucia

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the

  15. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    Science.gov (United States)

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  16. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts

    Science.gov (United States)

    Tommasi, Desiree; Stock, Charles A.; Hobday, Alistair J.; Methot, Rick; Kaplan, Isaac C.; Eveson, J. Paige; Holsman, Kirstin; Miller, Timothy J.; Gaichas, Sarah; Gehlen, Marion; Pershing, Andrew; Vecchi, Gabriel A.; Msadek, Rym; Delworth, Tom; Eakin, C. Mark; Haltuch, Melissa A.; Séférian, Roland; Spillman, Claire M.; Hartog, Jason R.; Siedlecki, Samantha; Samhouri, Jameal F.; Muhling, Barbara; Asch, Rebecca G.; Pinsky, Malin L.; Saba, Vincent S.; Kapnick, Sarah B.; Gaitan, Carlos F.; Rykaczewski, Ryan R.; Alexander, Michael A.; Xue, Yan; Pegion, Kathleen V.; Lynch, Patrick; Payne, Mark R.; Kristiansen, Trond; Lehodey, Patrick; Werner, Francisco E.

    2017-03-01

    Recent developments in global dynamical climate prediction systems have allowed for skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and managing LMRs. Such predictions present opportunities for improved LMR management and industry operations, as well as new research avenues in fisheries science. LMRs respond to climate variability via changes in physiology and behavior. For species and systems where climate-fisheries links are well established, forecasted LMR responses can lead to anticipatory and more effective decisions, benefitting both managers and stakeholders. Here, we provide an overview of climate prediction systems and advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to decades, before highlighting a range of pioneering case studies using climate predictions to inform LMR decisions. The success of these case studies suggests that many additional applications are possible. Progress, however, is limited by observational and modeling challenges. Priority developments include strengthening of the mechanistic linkages between climate and marine resource responses, development of LMR models able to explicitly represent such responses, integration of climate driven LMR dynamics in the multi-driver context within which marine resources exist, and improved prediction of ecosystem-relevant variables at the fine regional scales at which most marine resource decisions are made. While there are fundamental limits to predictability, continued advances in these areas have considerable potential to make LMR managers and industry decision more resilient to climate variability and help sustain valuable resources. Concerted dialog between scientists, LMR managers and industry is essential to realizing this potential.

  17. Seasonal and geographical distribution of bacillary dysentery (shigellosis) and associated climate risk factors in Kon Tam Province in Vietnam from 1999 to 2013.

    Science.gov (United States)

    Lee, Hu Suk; Ha Hoang, T T; Pham-Duc, Phuc; Lee, Mihye; Grace, Delia; Phung, Dac Cam; Thuc, Vu Minh; Nguyen-Viet, Hung

    2017-06-21

    Bacillary dysentery (BD) is an acute bacterial infection of the intestine caused by Shigella spp., with clinical symptoms ranging from fever to bloody diarrhoea to abdominal cramps to tenesmus. In Vietnam, enteric bacterial pathogens are an important cause of diarrhoea and most cases in children under 5 years of age are due to Shigella strains. The serogroups S. flexneri and S. sonnei are considered to be the most common. The main objective of this study was to, for the first time, assess the seasonal patterns and geographic distribution of BD in Vietnam, and to determine the climate risk factors associated with the incidence of BD in Kon Tum Province, where the highest rate of bacillary dysentery was observed from 1999 to 2013. The seasonal patterns and geographic distribution of BD was assessed in Vietnam using a seasonal-trend decomposition procedure based on loess. In addition, negative binomial regression models were used to determine the climate risk factors associated with the incidence of BD in Kon Tum Province, from 1999 to 2013. Overall, incidence rates of BD have slightly decreased over time (except for an extremely high incidence in 2012 in the north of Vietnam). The central regions (north/south central coast and central highlands) had relatively high incidence rates, whereas the northwest/east and Red River Delta regions had low incidence rates. Overall, seasonal plots showed a high peak in the mid-rainy reason and a second smaller peak in the early or late rainy season. The incidence rates significantly increased between May and October ("wet season") across the country. In Kon Tum Province, temperature, humidity, and precipitation were found to be positively associated with the incidence of BD. Our findings provide insights into the seasonal patterns and geographic distribution of BD in Vietnam and its associated climate risk factors in Kon Tum Province. This study may help clinicians and the general public to better understand the timings of

  18. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya - Coping with the Impacts of Climate Variability.

    Science.gov (United States)

    Sennhenn, Anne; Njarui, Donald M G; Maass, Brigitte L; Whitbread, Anthony M

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean ( Phaseolus vulgaris L.), cowpea ( Vigna unguiculata (L.) Walp.] and lablab [ Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha -1 . An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  19. Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yeung, Andie Y.M.; Chan, Johnny C.L. [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China)

    2012-08-15

    This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850 hPa with a value {>=}450 x 10{sup -6} s{sup -1}, and the temperature at 300 hPa being 1 C higher than the average temperature within 15 latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3. (orig.)

  20. The Growth Periods Responses of Double-season Paddy Rice to Climate Change in Hunan Province, China over the Past Two Decades

    Science.gov (United States)

    Wang, Y.; Li, Y.; Yi, M.; Ye, T.

    2015-12-01

    The shifts of timing and length of the growing season (TLGS) are important indicators of crop response to climate change. With the help of satellite image data, it becomes feasible to retrieve the TLGS in a spatially continuous manner, which also accommodates local variation of TGSs. In this article, the TGSs of paddy rice in Hunan Province, China since 1995 was retrieved using times-series curves of MODIS Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI). The change in TLGS and its connection to regional climate change was discussed. The results showed the advance of TGSs of double-season paddy rice and the reduction of GSL in the past 20 years, which is believed to be linked to the rise in the temperature and precipitation in the growth periods. Understanding the local variation and trend of TLGS influenced by climate change is essential for making agricultural adaptive policies to reduce the risk of crop damaged, also can provide key information for studying how multi-hazards affect crop exposure.

  1. Mean Bias in Seasonal Forecast Model and ENSO Prediction Error.

    Science.gov (United States)

    Kim, Seon Tae; Jeong, Hye-In; Jin, Fei-Fei

    2017-07-20

    This study uses retrospective forecasts made using an APEC Climate Center seasonal forecast model to investigate the cause of errors in predicting the amplitude of El Niño Southern Oscillation (ENSO)-driven sea surface temperature variability. When utilizing Bjerknes coupled stability (BJ) index analysis, enhanced errors in ENSO amplitude with forecast lead times are found to be well represented by those in the growth rate estimated by the BJ index. ENSO amplitude forecast errors are most strongly associated with the errors in both the thermocline slope response and surface wind response to forcing over the tropical Pacific, leading to errors in thermocline feedback. This study concludes that upper ocean temperature bias in the equatorial Pacific, which becomes more intense with increasing lead times, is a possible cause of forecast errors in the thermocline feedback and thus in ENSO amplitude.

  2. Projections of Flood Risk using Credible Climate Signals in the Ohio River Basin

    Science.gov (United States)

    Schlef, K.; Robertson, A. W.; Brown, C.

    2017-12-01

    Estimating future hydrologic flood risk under non-stationary climate is a key challenge to the design of long-term water resources infrastructure and flood management strategies. In this work, we demonstrate how projections of large-scale climate patterns can be credibly used to create projections of long-term flood risk. Our study area is the northwest region of the Ohio River Basin in the United States Midwest. In the region, three major teleconnections have been previously demonstrated to affect synoptic patterns that influence extreme precipitation and streamflow: the El Nino Southern Oscillation, the Pacific North American pattern, and the Pacific Decadal Oscillation. These teleconnections are strongest during the winter season (January-March), which also experiences the greatest number of peak flow events. For this reason, flood events are defined as the maximum daily streamflow to occur in the winter season. For each gage in the region, the location parameter of a log Pearson type 3 distribution is conditioned on the first principal component of the three teleconnections to create a statistical model of flood events. Future projections of flood risk are created by forcing the statistical model with projections of the teleconnections from general circulation models selected for skill. We compare the results of our method to the results of two other methods: the traditional model chain (i.e., general circulation model projections to downscaling method to hydrologic model to flood frequency analysis) and that of using the historic trend. We also discuss the potential for developing credible projections of flood events for the continental United States.

  3. Estimation of Seasonal Efficiency of Sochi Resort Climate Therapy by Means of Psychologic Testing of Patients with Cardiometabolic Pathology

    Directory of Open Access Journals (Sweden)

    Irina N. Sorochinskaya

    2012-11-01

    Full Text Available Cardiovascular diseases are major reasons for population mortality in majority of countries, including Russia. Metabolic syndrome is considered to be one of the main pathologic states, leading to enhancement of atherogenesis, ischemic heart diseases and cerebrovascular diseases. Physical methods, including resort treatment play great role in metabolic syndrome prevention and treatment. Climate therapy depends on resort climate and season and is a major component of resort treatment. Psychological testing showed that combined resort treatment, using climate therapy of patients with stable effort angina at Sochi Health-resort is more efficient in autumn and of patients with metabolic syndrome in summer. The findings have been confirmed by clinic-functional indicators.

  4. Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, N. [Pacific Northwest National Laboratory, Richland, Washington; Kintner-Meyer, M. [Pacific Northwest National Laboratory, Richland, Washington; Wu, D. [Pacific Northwest National Laboratory, Richland, Washington; Skaggs, R. [Pacific Northwest National Laboratory, Richland, Washington; Fu, T. [Pacific Northwest National Laboratory, Richland, Washington; Zhou, T. [Pacific Northwest National Laboratory, Richland, Washington; Nguyen, T. [Pacific Northwest National Laboratory, Richland, Washington; Kraucunas, I. [Pacific Northwest National Laboratory, Richland, Washington

    2018-02-01

    The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes in generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.

  5. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    Science.gov (United States)

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  6. Understanding the Response of Photosynthetic Metabolism in Tropical Forests to Seasonal Climate Variations. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dye, Dennis [U.S. Geological Survey, Menlo Park, CA (United States); Ivanov, Valeriy [Univ. of Michigan, Ann Arbor, MI (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Huete, Alfredo [Univ. of Arizona, Tucson, AZ (United States); Univ. of Technology, Sydney NSW (Australia)

    2017-03-31

    This U.S-Brazil collaboration for GOAmazon has investigated a deceptively simple question: what controls the response of photosynthesis in Amazon tropical forests to seasonal variations in climate? In the past this question has been difficult to answer with modern earth system process models. We hypothesized that observed dry season increases in photosynthetic capacity are controlled by the phenology of leaf flush and litter fall, from which the seasonal pattern of LAI emerges. Our results confirm this hypothesis (Wu et al., 2016). Synthesis of data collected throughout the 3-year project period continues through December 31, 2017 under no-cost extensions granted to the project teams at University of Michigan and University of Arizona (Award 2). The USGS component (Award 1) ceased on the final date of the project performance period, December 31, 2016. This report summarizes the overall activities and achievements of the project, and constitutes the final project report for the USGS component. The University of Michigan will submit a separate final report that includes additional results and deliverables achieved during the period of their and the University of Arizona’s no-cost extension, which will end on December 31, 2017.

  7. Disruption of the European climate seasonal clock in a warming world

    Science.gov (United States)

    Cattiaux, J.; Cassou, C.

    2015-12-01

    Strength and inland penetration of the oceanic westerly flow over Europe control a large part of the temperature variability over most of the continent. Reduced westerlies, linked to high-pressure anomalies over Scandinavia, induce cold conditions in winter and warm conditions in summer. Here we propose to define the onset of these two seasons as the calendar day where the daily circulation/temperature relationship over Western Europe switches sign. According to this meteorologically-based metrics assessed from several observational datasets, we provide robust evidence for an earlier summer onset by ~10 days between the 1960s and 2000s. Results from model ensemble simulations dedicated to detection-attribution show that this calendar advance is incompatible with the sole internal climate variability and can be attributed to anthropogenic forcings. Late winter snow disappearance over Eastern Europe affects cold air intrusion to the West when easterlies blow, and is mainly responsible for the observed present-day and near-future summer advance. Our findings agree with phenological-based trends (earlier spring events) reported for many living species over Europe, for which they provide a novel dynamical interpretation beyond the traditionally evoked global warming effect. Based on business-as-usual scenario, a seasonal shift of ~25 days is expected by 2100 for summer onset, while no clear signal arises for winter onset.

  8. Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI.

    Science.gov (United States)

    Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang

    2001-12-01

    This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.

  9. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    Science.gov (United States)

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  10. Cool-season precipitation in the southwestern USA since AD 1000: comparison of linear and nonlinear techniques for reconstruction

    Science.gov (United States)

    Ni, Fenbiao; Cavazos, Tereza; Hughes, Malcolm K.; Comrie, Andrew C.; Funkhouser, Gary

    2002-11-01

    A 1000 year reconstruction of cool-season (November-April) precipitation was developed for each climate division in Arizona and New Mexico from a network of 19 tree-ring chronologies in the southwestern USA. Linear regression (LR) and artificial neural network (NN) models were used to identify the cool-season precipitation signal in tree rings. Using 1931-88 records, the stepwise LR model was cross-validated with a leave-one-out procedure and the NN was validated with a bootstrap technique. The final models were also independently validated using the 1896-1930 precipitation data. In most of the climate divisions, both techniques can successfully reconstruct dry and normal years, and the NN seems to capture large precipitation events and more variability better than the LR. In the 1000 year reconstructions the NN also produces more distinctive wet events and more variability, whereas the LR produces more distinctive dry events. The 1000 year reconstructed precipitation from the two models shows several sustained dry and wet periods comparable to the 1950s drought (e.g. 16th century mega drought) and to the post-1976 wet period (e.g. 1330s, 1610s). The impact of extreme periods on the environment may be stronger during sudden reversals from dry to wet, which were not uncommon throughout the millennium, such as the 1610s wet interval that followed the 16th century mega drought. The instrumental records suggest that strong dry to wet precipitation reversals in the past 1000 years might be linked to strong shifts from cold to warm El Niño-southern oscillation events and from a negative to positive Pacific decadal oscillation.

  11. Global Seasonality of Rotavirus Disease

    Science.gov (United States)

    Patel, Manish M.; Pitzer, Virginia; Alonso, Wladimir J.; Vera, David; Lopman, Ben; Tate, Jacqueline; Viboud, Cecile; Parashar, Umesh D.

    2012-01-01

    Background A substantial number of surveillance studies have documented rotavirus prevalence among children admitted for dehydrating diarrhea. We sought to establish global seasonal patterns of rotavirus disease before widespread vaccine introduction. Methods We reviewed studies of rotavirus detection in children with diarrhea published since 1995. We assessed potential relationships between seasonal prevalence and locality by plotting the average monthly proportion of diarrhea cases positive for rotavirus according to geography, country development, and latitude. We used linear regression to identify variables that were potentially associated with the seasonal intensity of rotavirus. Results Among a total of 99 studies representing all six geographical regions of the world, patterns of year-round disease were more evident in low- and low-middle income countries compared with upper-middle and high income countries where disease was more likely to be seasonal. The level of country development was a stronger predictor of strength of seasonality (P=0.001) than geographical location or climate. However, the observation of distinctly different seasonal patterns of rotavirus disease in some countries with similar geographical location, climate and level of development indicate that a single unifying explanation for variation in seasonality of rotavirus disease is unlikely. Conclusion While no unifying explanation emerged for varying rotavirus seasonality globally, the country income level was somewhat more predictive of the likelihood of having seasonal disease than other factors. Future evaluation of the effect of rotavirus vaccination on seasonal patterns of disease in different settings may help understand factors that drive the global seasonality of rotavirus disease. PMID:23190782

  12. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    Science.gov (United States)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  13. Linear relations between leaf mass per area (LMA) and seasonal climate discovered through Linear Manifold Clustering (LMC)

    Science.gov (United States)

    Kiang, N. Y.; Haralick, R. M.; Diky, A.; Kattge, J.; Su, X.

    2016-12-01

    Leaf mass per area (LMA) is a critical variable in plant carbon allocation, correlates with leaf activity traits (photosynthetic activity, respiration), and is a controller of litterfall mass and hence carbon substrate for soil biogeochemistry. Recent advances in understanding the leaf economics spectrum (LES) show that LMA has a strong correlation with leaf life span, a trait that reflects ecological strategy, whereas physiological traits that control leaf activity scale with each other when mass-normalized (Osnas et al., 2013). These functional relations help reduce the number of independent variables in quantifying leaf traits. However, LMA is an independent variable that remains a challenge to specify in dynamic global vegetation models (DGVMs), when vegetation types are classified into a limited number of plant functional types (PFTs) without clear mechanistic drivers for LMA. LMA can range orders of magnitude across plant species, as well as vary within a single plant, both vertically and seasonally. As climate relations in combination with alternative ecological strategies have yet to be well identified for LMA, we have assembled 22,000 records of LMA spanning 0.004 - 33 mg/m2 from the numerous contributors to the TRY database (Kattge et al., 2011), with observations distributed over several climate zones and plant functional categories (growth form, leaf type, phenology). We present linear relations between LMA and climate variables, including seasonal temperature, precipitation, and radiation, as derived through Linear Manifold Clustering (LMC). LMC is a stochastic search technique for identifying linear dependencies between variables in high dimensional space. We identify a set of parsimonious classes of LMA-climate groups based on a metric of minimum description to identify structure in the data set, akin to data compression. The relations in each group are compared to Köppen-Geiger climate classes, with some groups revealing continuous linear relations

  14. Association of Seasonal Climate Variability and Age-Specific Mortality in Northern Sweden before the Onset of Industrialization

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2014-07-01

    Full Text Available Background and aims: Little is known about health impacts of climate in pre-industrial societies. We used historical data to investigate the association of temperature and precipitation with total and age-specific mortality in Skellefteå, northern Sweden, between 1749 and 1859. Methods: We retrieved digitized aggregated population data of the Skellefteå parish, and monthly temperature and precipitation measures. A generalized linear model was established for year to year variability in deaths by annual and seasonal average temperature and cumulative precipitation using a negative binomial function, accounting for long-term trends in population size. The final full model included temperature and precipitation of all four seasons simultaneously. Relative risks (RR with 95% confidence intervals (CI were calculated for total, sex- and age-specific mortality. Results: In the full model, only autumn precipitation proved statistically significant (RR 1.02; CI 1.00–1.03, per 1cm increase of autumn precipitation, while winter temperature (RR 0.98; CI 0.95–1.00, per 1 °C increase in temperature and spring precipitation (RR 0.98; CI 0.97–1.00 per 1 cm increase in precipitation approached significance. Similar effects were observed for men and women. The impact of climate variability on mortality was strongest in children aged 3–9, and partly also in older children. Infants, on the other hand, appeared to be less affected by unfavourable climate conditions. Conclusions: In this pre-industrial rural region in northern Sweden, higher levels of rain during the autumn increased the annual number of deaths. Harvest quality might be one critical factor in the causal pathway, affecting nutritional status and susceptibility to infectious diseases. Autumn rain probably also contributed to the spread of air-borne diseases in crowded living conditions. Children beyond infancy appeared most vulnerable to climate impacts.

  15. Potential for western US seasonal snowpack prediction

    Science.gov (United States)

    Kapnick, Sarah B.; Yang, Xiaosong; Vecchi, Gabriel A.; Delworth, Thomas L.; Gudgel, Rich; Malyshev, Sergey; Milly, Paul C. D.; Shevliakova, Elena; Underwood, Seth; Margulis, Steven A.

    2018-01-01

    Western US snowpack—snow that accumulates on the ground in the mountains—plays a critical role in regional hydroclimate and water supply, with 80% of snowmelt runoff being used for agriculture. While climate projections provide estimates of snowpack loss by the end of th ecentury and weather forecasts provide predictions of weather conditions out to 2 weeks, less progress has been made for snow predictions at seasonal timescales (months to 2 years), crucial for regional agricultural decisions (e.g., plant choice and quantity). Seasonal predictions with climate models first took the form of El Niño predictions 3 decades ago, with hydroclimate predictions emerging more recently. While the field has been focused on single-season predictions (3 months or less), we are now poised to advance our predictions beyond this timeframe. Utilizing observations, climate indices, and a suite of global climate models, we demonstrate the feasibility of seasonal snowpack predictions and quantify the limits of predictive skill 8 month sin advance. This physically based dynamic system outperforms observation-based statistical predictions made on July 1 for March snowpack everywhere except the southern Sierra Nevada, a region where prediction skill is nonexistent for every predictor presently tested. Additionally, in the absence of externally forced negative trends in snowpack, narrow maritime mountain ranges with high hydroclimate variability pose a challenge for seasonal prediction in our present system; natural snowpack variability may inherently be unpredictable at this timescale. This work highlights present prediction system successes and gives cause for optimism for developing seasonal predictions for societal needs.

  16. Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective

    Directory of Open Access Journals (Sweden)

    Omar Bellprat

    2015-09-01

    Full Text Available Southern Africa and Southern South America have experienced recent extremes in dry and wet rainy seasons which have caused severe socio-economic damages. Selected past extreme events are here studied, to estimate how human activity has changed the risk of the occurrence of such events, by applying an event attribution approach (Stott et al., 2004comprising global climate models of Coupled Model Intercomparison Project 5 (CMIP5. Our assessment shows that models' representation of mean precipitation variability over Southern South America is not adequate to make a robust attribution statement about seasonal rainfall extremes in this region. Over Southern Africa, we show that unusually dry austral summers as occurred during 2002/2003 have become more likely, whereas unusually wet austral summers like that of 1999/2000 have become less likely due to anthropogenic climate change. There is some tentative evidence that the risk of extreme high 5-day precipitation totals (as observed in 1999/2000 have increased in the region. These results are consistent with CMIP5 models projecting a general drying trend over SAF during December–January–February (DJF but also an increase in atmospheric moisture availability to feed heavy rainfall events when they do occur. Bootstrapping the confidence intervals of the fraction of attributable risk has demonstrated estimates of attributable risk are very uncertain, if the events are very rare. The study highlights some of the challenges in making an event attribution study for precipitation using seasonal precipitation and extreme 5-day precipitation totals and considering natural drivers such as ENSO in coupled ocean–atmosphere models.

  17. Characterization of the rainy season in Burkina Faso and it's representation by regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, B.; Karambiri, H. [Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Ouagadougou 01 (Burkina Faso); Polcher, J. [Laboratoire de Meteorologie Dynamique du CNRS, Institut Pierre Simon Laplace, Paris Cedex 05 (France); Rockel, B. [Helmholtz-Zentrum Geesthacht Institute of Coastal Research/Group Regional Atmospheric Modeling, Geesthacht (Germany)

    2012-09-15

    West African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0.1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0.1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. (orig.)

  18. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Ayansina Ayanlade

    2017-03-01

    Full Text Available This paper examines smallholder farmers’ perceptions of climate change, climate variability and their impacts, and adaptation strategies adopted over the past three decades. We use ethnographic analysis, combined with Cumulative Departure Index (CDI, Rainfall Anomaly Index (RAI analysis, and correlation analysis to compare farmers’ perceptions in Southwestern Nigeria with historical meteorological data, in order to assess the way farmers’ observations mirror the climatic trends. The results show that about 67% of farmers who participated had observed recent changes in climate. Perceptions of rural farmers on climate change and variability are consistent with the climatic trend analysis. RAI and CDI results illustrate that not less than 11 out of 30 years in each study site experienced lower-than-normal rainfall. Climatic trends show fluctuations in both early growing season (EGS and late growing season (LGS rainfall and the 5-year moving average suggests a reduction in rainfall over the 30 years. Climatic trends confirmed farmers’ perceptions that EGS and LGS precipitations are oscillating, that rainfall onset is becoming later, and EGS rainfall is reducing. Overall impacts of climate change on both crops and livestock appear to be highly negative, much more on maize (62.8%, yam (52.2%, poultry (67% and cattle (63.2%. Years of farming experiences and level of income of farmers appear to have a significant relationship with farmers’ choice of adaptation strategies, with r≥0.60@ p<0.05 and r≥0.520@ p<0.05 respectively. The study concluded that farmers’ perceptions of climate change mirror meteorological analysis, though their perceptions were based on local climate parameters. Smallholder farmers are particularly vulnerable to climate change since the majority of them do not have enough resources to cope.

  19. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate

    Science.gov (United States)

    de Freitas, Christopher R.; Grigorieva, Elena A.

    2015-01-01

    Human mortality is closely related to natural climate-determined levels of thermal environmental stress and the resulting thermophysiological strain. Most climate-mortality research has focused on seasonal extremes during winter and summer when mortality is the highest, while relatively little attention has been paid to mortality during the transitional seasons of autumn and spring. The body acclimatizes to heat in the summer and cold in winter and readjusts through acclimatization during the transitions between the two during which time the body experiences the thermophysiological strain of readjustment. To better understand the influences of weather on mortality through the acclimatization process, the aim here is to examine the periods that link very cold and very warms seasons. The study uses the Acclimatization Thermal Strain Index (ATSI), which is a comparative measure of short-term thermophysiological impact on the body. ATSI centers on heat exchange with the body’s core via the respiratory system, which cannot be protected. The analysis is based on data for a major city in the climatic region of the Russian Far East characterized by very hot summers and extremely cold winters. The results show that although mortality peaks in winter (January) and is at its lowest in summer (August), there is not a smooth rise through autumn nor a smooth decline through spring. A secondary peak occurs in autumn (October) with a smaller jump in May. This suggests the acclimatization from warm-to-cold produces more thermophysiological strain than the transition from cold-to-warm. The study shows that ATSI is a useful metric for quantifying the extent to which biophysical adaptation plays a role in increased strain on the body during re-acclimatization and for this reason is a more appropriate climatic indictor than air temperature alone. The work gives useful bioclimatic information on risks involved in transitional seasons in regions characterized by climatic extremes. This

  20. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Science.gov (United States)

    Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.

    2017-11-01

    The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts

  1. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Directory of Open Access Journals (Sweden)

    H. M. Horowitz

    2017-11-01

    Full Text Available The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm and Ångström exponent data from 34 Aerosol Robotic Network (AERONET sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis. The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate

  2. A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder

    NARCIS (Netherlands)

    Koorengevel, Kathelijne M.; Beersma, Domien G.M.; den Boer, Johan; Hoofdakker, Rutger H. van den

    2002-01-01

    The circadian pacemaker is an endogenous clock that regulates oscillations in most physiological and psychological processes with a near 24-h period. In many species, this pacemaker triggers seasonal changes in behavior. The seasonality of symptoms and the efficacy of light therapy suggest

  3. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway.

    Science.gov (United States)

    Nawrotzki, Raphael J; Bakhtsiyarava, Maryia

    2017-05-01

    Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season.

  4. Determining the effect of key climate drivers on global hydropower production

    Science.gov (United States)

    Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.

    2017-12-01

    Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.

  5. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

    Directory of Open Access Journals (Sweden)

    Anne Sennhenn

    2017-05-01

    Full Text Available Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L., cowpea (Vigna unguiculata (L. Walp.] and lablab [Lablab purpureus (L. Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM. The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index. While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and

  6. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

    Science.gov (United States)

    Sennhenn, Anne; Njarui, Donald M. G.; Maass, Brigitte L.; Whitbread, Anthony M.

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  7. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  8. Contrasting population-level responses to Pleistocene climatic oscillations in an alpine bat revealed by complete mitochondrial genomes and evolutionary history inference

    DEFF Research Database (Denmark)

    Alberdi, Antton; Gilbert, M. Thomas P; Razgour, Orly

    2015-01-01

    Aim: We used an integrative approach to reconstruct the evolutionary history of the alpine long-eared bat, Plecotus macrobullaris, to test whether the variable effects of Pleistocene climatic oscillations across geographical regions led to contrasting population-level demographic histories within...... a single species. Location: The Western Palaearctic. Methods: We sequenced the complete mitochondrial genomes of 57 individuals from across the distribution of the species. The analysis integrated ecological niche modelling (ENM), approximate Bayesian computation (ABC), measures of genetic diversity...... and Bayesian phylogenetic methods. Results: We identified two deep lineages: a western lineage, restricted to the Pyrenees and the Alps, and an eastern lineage, which expanded across the mountain ranges east of the Dinarides (Croatia). ENM projections of past conditions predicted that climatic suitability...

  9. CCAA seasonal forecasting

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integrating meteorological and indigenous knowledge-based seasonal climate forecasts in ..... Explanation is based on spiritual and social values. Taught by .... that provided medicine and food became the subject of strict rules and practices ...

  10. Multivariate statistical assessments of greenhouse-gas-induced climatic change and comparison with results from general circulation models

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1990-01-01

    Based on univariate correction and coherence analyses, including techniques moving in time, and taking account of the physical basis of the relationships, a simple multivariate concept is presented which correlates observational climatic time series simultaneously with solar, volcanic, ENSO (El Nino/Souther Oscillation) and anthropogenic greenhouse-gas forcing. The climatic elements considered are air temperature (near the ground and stratosphere), sea surface temperature, sea level and precipitation, and cover at least the period 1881-1980 (stratospheric temperature only since 1960). The climate signal assessments which may be hypothetically attributed to the observed CO 2 or equivalent CO 2 (implying additional greenhouse gases) increase are compared with those resulting from GCM experiments. In case of the Northern hemisphere air temperature these comparisons are performed not only in respect to hemispheric and global means, but also in respect to the regional and seasonal patterns. Autocorrelations and phase shifts of the climate response to natural and anthropogenic forcing complicate the statistical assessments

  11. Climatic potential for tourism in the Black Forest, Germany — winter season

    Science.gov (United States)

    Endler, Christina; Matzarakis, Andreas

    2011-05-01

    Climate change, whether natural or human-caused, will have an impact on human life, including recreation and tourism among other things. In this study, methods from biometeorology and tourism climatology are used to assess the effect of a changed climate on tourism and recreation in particular. The study area is the Black Forest mountainous region of south-west Germany, which is well known for its tourist and recreational assets. Climate model projections for the 2021-2050 period based on REMO-UBA simulations with a high spatial resolution of 10 km are compared to a 30-year reference period (1971-2000) using the IPCC emission scenarios A1B and B1. The results show that the mean winter air temperature will increase by up to 1.8°C, which is the most pronounced warming compared to the other seasons. The annual precipitation amount will increase marginally by 5% in the A1B scenario and 10% in the B1 scenario. Winter precipitation contributes about 10% (A1B) and 30% (B1) to variations in annual precipitation. Although the results show that winter precipitation will increase slightly, snow days affecting skiing will be reduced on average by approximately 40% due to regional warming. Cold stress will be reduced on average by up to 25%. The result is that the thermal environment will be advanced, and warmer winters are likely to lead to an upward altitudinal shift of ski resorts and winter sport activities, thus displacing land-use currently dedicated to nature conservation.

  12. Inter-annual rainfall variability in the eastern Antilles and coupling with the regional and intra-seasonal circulation

    Science.gov (United States)

    Jury, Mark R.

    2016-11-01

    Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.

  13. Dry soil diurnal quasi-periodic oscillations in soil 222Rn concentrations

    International Nuclear Information System (INIS)

    Tommasone Pascale, F.; De Francesco, S.; Carbone, P.; Cuoco, E.; Tedesco, D.

    2014-01-01

    222 Rn concentrations have been monitored during the dry season in August 2009 and August 2010, in a reworked alluvial-pyroclastic soil of the Pietramelara Plain, in Southern Italy, with the aim of determining the role of atmospheric factors in producing the quasi-periodic oscillations in soil 222 Rn concentrations reported in the literature. In this study we present the results of a detailed analysis and matching of soil 222 Rn concentrations, meteorological and solar parameters where the observed oscillations feature a characteristic behavior with second order build-up and depletion limbs, separated by a daily maximum and minimum. All these features are clearly shown to be tied to sunrise and sunset timings and environmental radiative flux regimes. Furthermore, a significant, and previously unreported, second order correlation (r 2  = 0.73) between daily maximum hourly global radiation and the daily range of soil 222 Rn concentrations has been detected, allowing estimates of the amplitude of these oscillations to be made from estimated or measured solar radiation data. The correlation has been found to be valid even in the presence of persistent patchy daytime cloudiness. In this case a daytime prolongation of the night-time build up stage and an attenuation or even suppression of daytime depletion is observed (a previously unreported effect). Neither soil cracking, nor precipitation, both suggested in some studies as causative factors for these oscillations, during the dry season appear to be necessary in explaining their occurrence. We also report the results of an artificial shading experiment, conducted in August 2009, that further support this conclusion. As soil 222 Rn concentrations during the dry season show a characteristic daily cycle, radon monitoring in soils under these conditions necessarily has to be gauged to the timings of the daily maximum and minimum, as well as to the eventual occurrence of cloudiness and to its related effects, in order to

  14. Spatial and Temporal Climatic Variation in Coastal Tanzania

    Science.gov (United States)

    Rohli, R. V.; Ates, S.; Rivera-Monroy, V. H.; Polito, M. J.; Midway, S. R.; Gold, A.; Castañeda-Moya, E.; Uchida, E.; Suwa, M.; Mangora, M. M.

    2017-12-01

    Climatic controls are particularly important to the natural and human systems in coastal Tanzania, where mangrove vegetation is a major component of world-renowned biodiversity. This research provides an improved understanding of the climatic features and forcing mechanisms that support the critical mangroves of Tanzania and the livelihoods of its populace, using updated and complete datasets. Updated data confirm that coastal Tanzania falls in the tropical wet-dry Köppen-Geiger climatic type, except for the extreme north, where tropical rain forest exists north of Pangani. The northeast monsoon, known as the kaskazi, largely corresponds to the rainy November-December and March-May months. The southeast monsoon - known as the kusi - overlaps with the drier June-September. Results suggest that El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are key modulators of precipitation variability in the entire area. More specifically, September-November positive precipitation anomalies occur during positive IOD, especially when combined with El Niño, with slightly negative anomalies during negative IOD, especially when combined with La Niña. The rest of the year tends to show similar precipitation during both IOD phases (March-August) or less precipitation during the positive phase (December-February). Because the literature suggests likelihood of more frequent positive IOD mode and a strengthened relationship of these events to warm-ENSO events, changes to the hydrologic cycle in east Africa may be likely in the future, with a potential for an expanded secondary rainy season and a drier "saddle" between the secondary and primary rainy seasons (i.e., December-February). Therefore, future research should investigate in more detail the influence of the IOD and ENSO on various components of the climatic water balance. Results may be useful to earth, environmental, and social scientists as they seek further understanding of the drivers of ecological and

  15. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    Science.gov (United States)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  16. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  17. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  18. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain.

    Science.gov (United States)

    Garfí, Marianna; Pedescoll, Anna; Bécares, Eloy; Hijosa-Valsero, María; Sidrach-Cardona, Ricardo; García, Joan

    2012-10-15

    The aim of this study was to examine the effects of climate, season and wastewater quality on contaminant removal efficiency of constructed wetlands implemented in Mediterranean and continental-Mediterranean climate region of Spain. To this end, two experimental horizontal subsurface flow constructed wetlands located in Barcelona and León (Spain) were compared. The two constructed wetland systems had the same experimental set-up. Each wetland had a surface area of 2.95 m(2), a water depth of 25 cm and a granular medium of D(60)=7.3 mm, and was planted with Phragmites australis. Both systems were designed in order to operate with a maximum organic loading rate of 6 g(DBO) m(-2) d(-1). Experimental systems operated with a hydraulic loading rate of 28.5 and 98 mm d(-1) in Barcelona and León, respectively. Total suspended solids, biochemical oxygen demand and ammonium mass removal efficiencies followed seasonal trends, with higher values in the summer (97.4% vs. 97.8%; 97.1% vs. 96.2%; 99.9% vs. 88.9%, in Barcelona and León systems, respectively) than in the winter (83.5% vs. 74.4%; 73.2% vs. 60.6%; 19% vs. no net removal for ammonium in Barcelona and León systems, respectively). During the cold season, biochemical oxygen demand and ammonium removal were significantly higher in Barcelona system than in León, as a result of higher temperature and redox potential in Barcelona. During the warm season, statistical differences were observed only for ammonium removal. Results showed that horizontal subsurface flow constructed wetland is a successful technology for both regions considered, even if winter seemed to be a critical period for ammonium removal in continental climate regions. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  1. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  2. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  3. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  4. International Climate Migration: Evidence for the Climate Inhibitor Mechanism and the Agricultural Pathway

    Science.gov (United States)

    Nawrotzki, Raphael J.; Bakhtsiyarava, Maryia

    2016-01-01

    Research often assumes that, in rural areas of developing countries, adverse climatic conditions increase (climate driver mechanism) rather than reduce (climate inhibitor mechanism) migration, and that the impact of climate on migration is moderated by changes in agricultural productivity (agricultural pathway). Using representative census data in combination with high-resolution climate data derived from the novel Terra Populus system, we explore the climate-migration relationship in rural Burkina Faso and Senegal. We construct four threshold-based climate measures to investigate the effect of heat waves, cold snaps, droughts and excessive precipitation on the likelihood of household-level international outmigration. Results from multi-level logit models show that excessive precipitation increases international migration from Senegal while heat waves decrease international mobility in Burkina Faso, providing evidence for the climate inhibitor mechanism. Consistent with the agricultural pathway, interaction models and results from a geographically weighted regression (GWR) reveal a conditional effect of droughts on international outmigration from Senegal, which becomes stronger in areas with high levels of groundnut production. Moreover, climate change effects show a clear seasonal pattern, with the strongest effects appearing when heat waves overlap with the growing season and when excessive precipitation occurs prior to the growing season. PMID:28943813

  5. The Climate Variability & Predictability (CVP) Program at NOAA - Observing and Understanding Processes Affecting the Propagation of Intraseasonal Oscillations in the Maritime Continent Region

    Science.gov (United States)

    Lucas, S. E.

    2017-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.

  6. Analysis of winter climate simulations performed with ARPEGE-Climat (T63) in the framework of PROVOST

    Energy Technology Data Exchange (ETDEWEB)

    Parey, S.; Dichampt-Martineu, Ch.; Caneill, J.Y. [Electricite de France, 78 - Chatou (France). Research Branch, Environment

    1997-12-01

    The interest of EDF for seasonal forecasting is a consequence of the high sensitivity of electricity consumption to temperature, especially during the winter season. That is why the Research branch of EDF is involved in the PROVOST project (PRediction Of climate Variations On Seasonal and inter-annual Timescales). Two sets of simulations are studied. The first one was calculated apart from the PROVOST experiments with the LMD model covering the 1970 to 1992 winters with eleven simulations per winter. The second one was calculated at EDF in the framework of PROVOST with ARPEGE-Climat model, covering the 1979 to 1994 winters (nine simulations per winter). The probabilistic formulation of climatic scenarios in function of the seasonal simulations with ARPEGE-Climat gives good results if the monthly mean temperature is taken into account. (R.P.) 3 refs.

  7. Seasonal timing in a warming world : plasticity of seasonal timing of growth and reproduction

    OpenAIRE

    Salis, L.

    2015-01-01

    In seasonal environments the timing of various biological processes is crucial for growth, survival and reproductive success of an individual. Nowadays, rapid large-scale climate change is altering species’ seasonal timing (phenology) in many eco¬systems. In this thesis Lucia Salis focuses on the study of seasonal timing in the food chain of the oak-winter moth-great tit. As temperature increased over the last decades, both phenologies of the host plant, the oak, and the herbivorous insect, t...

  8. Climate change in Greenland, Denmark and the Levant

    DEFF Research Database (Denmark)

    Schrøder, Niels

    presented their isotopic records it was clear that the records were similar showing a series of climatic fluctuations (Dansgaard/Oescher events) We have re-examined the Yarbrud site in Syria (OSL dating and pollen analysis) in the hope that we could correlate the 25 cultural layers here (Rust 1950......), with the Dansgaard/Oescher events. It is concluded that: The effect of the NAO (North Atlantic Oscillation), given rise to opposite climate conditions in Denmark (NW Europe), the Levant and Greenland in the observation based climatic overview showis an interannual to decadal correlation of the climate...... Oscillation), archaeology, pollen, Blytt-Sernander model....

  9. The Last Interglacial recorded in a Remouchamps cave speleothem (Belgium) -Information on seasonal changes and on the chronology of first climate deteriorations.

    Science.gov (United States)

    Verheyden, Sophie; Genty, Dominique; Blamart, Dominique; Cheng, Hai; Hodel, Florent; Vansteenberghe, Stef; McGavick, Matthew L.; Gillikin, David P.; Quinif, Yves

    2015-04-01

    A ~3m long stalagmite from the Remouchamps and ~15cm long stalagmite from the Han-sur-Lesse caves (Belgium) grew from ~124 to 100ka with growth rates going from 0.8mm/century to 30mm/century. Stable isotope (d18O and d13C) and growth-rate analyses suggest a rather stable climate from 122.0 to 115.8 ka. A clear climate deterioration is observed at ~115.8 ka and lasts until 111.2ka (±0.5ka, 2s), which corresponds well with Greenland Stadial 26. Several short-term but clear changes are observed in the stable isotopic composition at ~121.5, 119.5, 118.4, 117.6 (±0.5ka, 2s)) and are interpreted as climatic events of ~several hundred years long. They correspond with changes in stalagmite diameter and growth rate. Depending on the combination of changes in the d18O, d13C, growth rate and stalagmite diameter, the events are interpreted as corresponding to changes in rainfall amount or temperature. The RSM17 stalagmite exhibits visible seasonal layering during the entire 120-115ka period on which changes in Mg, Sr, Ba en P have been observed. This well pronounced lamination, likely annual as suggested by the U-Th data, demonstrates a strong seasonal character of the climate and/or vegetation activity during this period. We compare these MIS5 seasonality to the present day calcite layering observed in the cave. Both stalagmites, with a growth-rate increase after 125ka globally corresponding to the so-called Eemian optimum, seem to start later than other southern stalagmites from France, Italy or Spain. This observation raises the question of a possible late onset of interglacial conditions in north-west Europe and a progressive S-N advance of warmer conditions between 130 and 125ka through Western Europe.

  10. Seasonal variations of Saanen goat milk composition and the impact of climatic conditions.

    Science.gov (United States)

    Kljajevic, Nemanja V; Tomasevic, Igor B; Miloradovic, Zorana N; Nedeljkovic, Aleksandar; Miocinovic, Jelena B; Jovanovic, Snezana T

    2018-01-01

    The aim of this research was to investigate the effect of climatic conditions and their impact on seasonal variations of physico-chemical characteristics of Saanen goat milk produced over a period of 4 years. Lactation period (early, mid and late) and year were considered as factors that influence physico-chemical composition of milk. Pearson's coefficient of correlation was calculated between the physico-chemical characteristics of milk (fat, proteins, lactose, non-fat dry matter, density, freezing point, pH, titrable acidity) and climatic condition parameters (air temperature, temperature humidity index-THI, solar radiation duration, relative humidity). Results showed that all physico-chemical characteristics of Saanen goat milk varied significantly throughout the lactation period and years. The decrease of fat, protein, non-fat dry matter and lactose content in goat milk during the mid-lactation period was more pronounced than was previously reported in the literature. The highest values for these characteristics were recorded in the late lactation period. Observed variations were explained by negative correlation between THI and the physico-chemical characteristics of Saanen goat milk. This indicated that Saanen goats were very prone to heat stress, which implied the decrease of physico-chemical characteristics during hot summers.

  11. Coastal vulnerability across the Pacific dominated by El Niño-Southern Oscillation

    Science.gov (United States)

    Barnard, Patrick L.; Short, Andrew D.; Harley, Mitchell D.; Splinter, Kristen D.; Vitousek, Sean; Turner, Ian L.; Allan, Jonathan; Banno, Masayuki; Bryan, Karin R.; Doria, André; Hansen, Jeff E.; Kato, Shigeru; Kuriyama, Yoshiaki; Randall-Goodwin, Evan; Ruggiero, Peter; Walker, Ian J.; Heathfield, Derek K.

    2015-01-01

    To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

  12. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    Science.gov (United States)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  13. Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at KINSHASA University clinics, Democratic Republic of CONGO (DRC).

    Science.gov (United States)

    Nkanga, Mireille Solange Nganga; Longo-Mbenza, Benjamin; Adeniyi, Oladele Vincent; Ngwidiwo, Jacques Bikaula; Katawandja, Antoine Lufimbo; Kazadi, Paul Roger Beia; Nzonzila, Alain Nganga

    2017-08-23

    The global burden of hematologic malignancy (HM) is rapidly rising with aging, exposure to polluted environments, and global and local climate variability all being well-established conditions of oxidative stress. However, there is currently no information on the extent and predictors of HM at Kinshasa University Clinics (KUC), DR Congo (DRC). This study evaluated the impact of bio-clinical factors, exposure to polluted environments, and interactions between global climate changes (EL Nino and La Nina) and local climate (dry and rainy seasons) on the incidence of HM. This hospital-based prospective cohort study was conducted at Kinshasa University Clinics in DR Congo. A total of 105 black African adult patients with anaemia between 2009 and 2016 were included. HM was confirmed by morphological typing according to the French-American-British (FAB) Classification System. Gender, age, exposure to traffic pollution and garages/stations, global climate variability (El Nino and La Nina), and local climate (dry and rainy seasons) were potential independent variables to predict incident HM using Cox regression analysis and Kaplan Meier curves. Out of the total 105 patients, 63 experienced incident HM, with an incidence rate of 60%. After adjusting for gender, HIV/AIDS, and other bio-clinical factors, the most significant independent predictors of HM were age ≥ 55 years (HR = 2.4; 95% CI 1.4-4.3; P = 0.003), exposure to pollution and garages or stations (HR = 4.9; 95% CI 2-12.1; P pollution, combined local dry season + La Nina and combined local dry season + El Nino were the most significant predictors of incident hematologic malignancy. These findings highlight the importance of aging, pollution, the dry season, El Nino and La Nina as related to global warming as determinants of hematologic malignancies among African patients from Kinshasa, DR Congo. Cancer registries in DRC and other African countries will provide more robust database for future researches on

  14. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  15. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.; Chowdary, Jasti S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Singh, Prem

    2017-01-01

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  16. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.

    2017-10-26

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  17. Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics

    Science.gov (United States)

    Zipkin, Elise F.; Gardner, Beth; Gilbert, Andrew T.; O'Connell, Allan F.; Royle, J. Andrew; Silverman, Emily D.

    2010-01-01

    Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern coast of the United States and Canada. Yet, despite their seasonal proximity to urbanized areas in this region, there is limited information on patterns of wintering sea duck habitat use. It is difficult to gather information on sea ducks because of the relative inaccessibility of their offshore locations, their high degree of mobility, and their aggregated distributions. To characterize environmental conditions that affect wintering distributions, as well as their geographic ranges, we analyzed count data on five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count data for each species within ten-nautical-mile linear survey segments using a zero-inflated negative binomial model that included four local-scale habitat covariates (sea surface temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if the segment was in a bay or not), one broad-scale covariate (the North Atlantic Oscillation), and a temporal correlation component. Our results indicate that species distributions have strong latitudinal gradients and consistency in local habitat use. The North Atlantic Oscillation was the only environmental covariate that had a significant (but variable) effect on the expected count for all five species, suggesting that broad-scale climatic conditions may be directly or indirectly important to the distributions of wintering sea ducks. Our results provide critical information on species-habitat associations, elucidate the complicated relationship between the North Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and should be useful in assessing the impacts of climate

  18. Time Series Decomposition into Oscillation Components and Phase Estimation.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  19. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  20. Analysing the teleconnection systems affecting the climate of the Carpathian Basin

    Science.gov (United States)

    Kristóf, Erzsébet; Bartholy, Judit; Pongrácz, Rita

    2017-04-01

    Nowadays, the increase of the global average near-surface air temperature is unequivocal. Atmospheric low-frequency variabilities have substantial impacts on climate variables such as air temperature and precipitation. Therefore, assessing their effects is essential to improve global and regional climate model simulations for the 21st century. The North Atlantic Oscillation (NAO) is one of the best-known atmospheric teleconnection patterns affecting the Carpathian Basin in Central Europe. Besides NAO, we aim to analyse other interannual-to-decadal teleconnection patterns, which might have significant impacts on the Carpathian Basin, namely, the East Atlantic/West Russia pattern, the Scandinavian pattern, the Mediterranean Oscillation, and the North-Sea Caspian Pattern. For this purpose primarily the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-20C atmospheric reanalysis dataset and multivariate statistical methods are used. The indices of each teleconnection pattern and their correlations with temperature and precipitation will be calculated for the period of 1961-1990. On the basis of these data first the long range (i. e. seasonal and/or annual scale) forecast ability is evaluated. Then, we aim to calculate the same indices of the relevant teleconnection patterns for the historical and future simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models and compare them against each other using statistical methods. Our ultimate goal is to examine all available CMIP5 models and evaluate their abilities to reproduce the selected teleconnection systems. Thus, climate predictions for the 21st century for the Carpathian Basin may be improved using the best-performing models among all CMIP5 model simulations.

  1. Robustness of a multiple-use reservoir to seasonal runoff shifts associated with climate change

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Brettman, K.L.

    1990-05-01

    Although much remains to be learned about long-term climate change associated with anthropogenic increases in concentrations of the so-called ''greenhouse gases,'' such as carbon dioxide and methane, there is a general consensus that some global warming will result from past and present emissions. In the western United States, the dominant hydrologic effect of such warming, aside from any accompanying changes in precipitation, would be to reduce winter snow accumulations in mountainous headwaters regions. To assess the robustness of reservoir operation to such shifts in seasonal runoff, simulations were developed of monthly runoff for the American River, Washington, using the National Weather Service River Forecast System. The American River is presently unregulated; however, we tested the performance of hypothetical reservoirs with capacity of 0.25 and 0.50 of the mean annual flow for a range of annual temperature changes from 0.0 (present climate) to 4.0 degree C. We considered a multiple-purpose reservoir system operated for water supply ad hydropower, with minimum releases required for fisheries enhancement. In addition to evaluating the sensitivity of water supply, low flow, and hydropower performance using a heuristic operating rule, the relative performance of the system under present and altered climates was evaluated using an optimization algorithm, extended linear quadratic Gaussian control. This paper reports the results of hydrologic simulations for the American River, Washington. 13 refs., 8 figs

  2. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  3. Seasonal variations of solar neutrino rates in lithium detector

    OpenAIRE

    Kopylov, Anatoly; Petukhov, Valery

    2002-01-01

    The presence of two monochromatic lines of approximately equal intensity: $^{7}$Be- and pep-neutrinos in the sensitivity plot of lithium detector makes the pattern of the seasonal variations of the effect from solar neutrinos very characteristic in case if the long-wave vacuum oscillations are realized. This can give the very high accuracy in the measurement of the parameters of neutrino oscillations especially if combined with the results obtained by the detector sensitive mainly to $^{7}$Be...

  4. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    Science.gov (United States)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  5. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  6. Characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).

  7. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    NARCIS (Netherlands)

    Tsyganov, A.N.; Aerts, R.; Nijs, I.; Cornelissen, J.H.C.; Beyens, L.

    2012-01-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming,

  8. The climate of Namaqualand in the nineteenth century

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, C. [Department of Geography and Environmental Management, University of Johannesburg, Private Bag 524, Auckland Park, 2006 Johannesburg (South Africa); Vogel, C. [School of Geography and Environmental Studies, University of the Witwatersrand, Johannesburg, P Bag 3, 2050 (South Africa)

    2007-08-15

    Southern African climatic change research is hampered by a lack of long-term historical data sets. This paper aims to extend the historical climate record for southern Africa to the semi-arid area of Namaqualand in the Northern Cape province of South Africa. This is achieved through extensive archival research, making use of historical documentary sources such as missionary journals and letters, traveller's writings and government reports and letters. References to precipitation and other climatic conditions have been extracted and categorised, providing a proxy precipitation data set for Namaqualand for the nineteenth century. Notwithstanding problems of data accuracy and interpretation the reconstruction enables the detection of severe and extreme periods. Measured meteorological data, available from the late 1870s, was compared to the data set derived from documentary sources in order to ascertain the accuracy of the data set and monthly rainfall data has been used to identify seasonal anomalies. Confidence ratings on derived dry and wet periods, where appropriate, have been assigned to each year. The study extends the geographical area of existing research and extracts the major periods of drought and climatic stress, from the growing body of historical climate research. The most widespread drought periods affecting the southern and eastern Cape, Namaqualand and the Kalahari were 1820-1821; 1825-1827; 1834; 1861-1862; 1874-1875; 1880-1883 and 1894-1896. Finally, a possible correspondence is suggested between some of the widespread droughts and the El Nino Southern Oscillation (ENSO)

  9. The effects of season and meteorology on human mortality in tropical climates: a systematic review.

    Science.gov (United States)

    Burkart, Katrin; Khan, Md Mobarak Hossain; Schneider, Alexandra; Breitner, Susanne; Langner, Marcel; Krämer, Alexander; Endlicher, Wilfried

    2014-07-01

    Research in the field of atmospheric science and epidemiology has long recognized the health effects of seasonal and meteorological conditions. However, little scientific knowledge exists to date about the impacts of atmospheric parameters on human mortality in tropical regions. Working within the scope of this systematic review, this investigation conducted a literature search using different databases; original research articles were chosen according to pre-defined inclusion and exclusion criteria. Both seasonal and meteorological effects were considered. The findings suggest that high amounts of rainfall and increasing temperatures cause a seasonal excess in infectious disease mortality and are therefore relevant in regions and populations in which such diseases are prevalent. On the contrary, moderately low and very high temperatures exercise an adverse effect on cardio-respiratory mortality and shape the mortality pattern in areas and sub-groups in which these diseases are dominant. Atmospheric effects were subject to population-specific factors such as age and socio-economic status and differed between urban and rural areas. The consequences of climate change as well as environmental, epidemiological and social change (e.g., emerging non-communicable diseases, ageing of the population, urbanization) suggest a growing relevance of heat-related excess mortality in tropical regions. © The Author 2014. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo-Pacific domain

    Science.gov (United States)

    Zhang, Tuantuan; Huang, Bohua; Yang, Song; Laohalertchai, Charoon

    2018-06-01

    The seasonal dependence of the prediction skill of 850-hPa monthly zonal wind over the tropical Indo-Pacific domain is examined using the ensemble reforecasts for 1983-2010 from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis and Reforecast (CFSRR) project. According to a maximum signal-to-noise empirical orthogonal function analysis, the most predictable patterns of atmospheric low-level circulation are associated with the developing and maturing phases of El Niño-Southern Oscillation (ENSO). The CFSv2 is capable of predicting these ENSO-related patterns up to 9-months in advance for all months, except for May-June when the effect of the spring barrier is strong. The other predictable climate processes associated with the low-level atmospheric circulation are more seasonally dependent. For winter and spring, the second most predictable patterns are associated with the ENSO decaying phase. Within these seasons, the monthly evolution of the predictable patterns is characterized by a southward shift of westerly wind anomalies, generated by the interaction between the annual cycle and the ENSO signals (i.e., the combination-mode). In general, the CFSv2 hindcast well predicts these patterns at least 5 months in advance for spring, while shows much lower skills for winter months. In summer, the second predictable patterns are associated with the western North Pacific (WNP) monsoon (i.e., the WNP anticyclone/cyclone) in short leads while associated with ENSO in longer leads (after 4-month lead). The second predictable patterns in fall are mainly associated with tropical Indian Ocean Dipole, which can be predicted 3 months in advance.

  11. Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability

    Directory of Open Access Journals (Sweden)

    Zhicai Luo

    2016-05-01

    Full Text Available Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE satellite mission are used to study terrestrial water storage (TWS changes over the Pearl River Basin (PRB for the period 2003–Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long-term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Niño-Southern Oscillation (ENSO events. However, the modulation of the Pacific Decadal Oscillation (PDO may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic influences in the PRB.

  12. A 65--70 year oscillation in observed surface temperatures

    International Nuclear Information System (INIS)

    Schlesinger, M.E.; Ramankutty, N.

    1994-01-01

    There are three possible sources for the 65--70-year ''global'' oscillation: (1) random forcing of the ocean by the atmosphere, such as by white noise; (2) external oscillatory forcing of the climate system, such as by a variation in the solar irradiance; and (3) an internal oscillation of the atmosphere-ocean system. It is unlikely that putative variations in solar irradiance are the source of the oscillation because solar forcing should generate a global response, but the oscillation is not global. It is also unlikely that white-noise forcing is the source of the oscillation because such forcing should generate an oceanwide response, but the oscillation is not panoceanic. Consequently, the most probable cause of the oscillation is an internal oscillation of the atmosphere-ocean system. This conclusion is supported by a growing body of observational evidence and coupled atmosphere/ocean general circulation model simulation results. Comparison of the regional and global-mean temperature changes caused by the oscillation with those induced by GHG + ASA forcing shows that the rapid rise in global-mean temperature between about 1908 and 1946, and the subsequent reversal of this warming until about 1965 were the result of the oscillation. In the North Atlantic and North American regions, the domination of the GHG + ASA-induced warming by the oscillation has obscured and confounded detection of this warming

  13. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  14. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  15. Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gastineau, Guillaume; Frankignoul, Claude [LOCEAN/IPSL, Universite Pierre et Marie Curie, 4 place Jussieu, BP100, Paris Cedex 05 (France)

    2012-07-15

    The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5 hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region. (orig.)

  16. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    Science.gov (United States)

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  17. The impact of global warming on the Southern Oscillation Index

    Energy Technology Data Exchange (ETDEWEB)

    Power, Scott B.; Kociuba, Greg [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-11-15

    The Southern Oscillation Index (SOI) - a measure of air pressure difference across the Pacific Ocean, from Tahiti in the south-east to Darwin in the west - is one of the world's most important climatic indices. The SOI is used to track and predict changes in both the El Nino-Southern Oscillation phenomenon, and the Walker Circulation (WC). During El Nino, for example, the WC weakens and the SOI tends to be negative. Climatic variations linked to changes in the WC have a profound influence on climate, ecosystems, agriculture, and societies in many parts of the world. Previous research has shown that (1) the WC and the SOI weakened in recent decades and that (2) the WC in climate models tends to weaken in response to elevated atmospheric greenhouse gas concentrations. Here we examine changes in the SOI and air pressure across the Pacific in the observations and in numerous WCRP/CMIP3 climate model integrations for both the 20th and 21st centuries. The difference in mean-sea level air pressure (MSLP) between the eastern and western equatorial Pacific tends to weaken during the 21st century, consistent with previous research. Here we show that this primarily arises because of an increase in MSLP in the west Pacific and not a decline in the east. We also show, in stark contrast to expectations, that the SOI actually tends to increase during the 21st century, not decrease. Under global warming MSLP tends to increase at both Darwin and Tahiti, but tends to rise more at Tahiti than at Darwin. Tahiti lies in an extensive region where MSLP tends to rise in response to global warming. So while the SOI is an excellent indicator of interannual variability in both the equatorial MSLP gradient and the WC, it is a highly misleading indicator of long-term equatorial changes linked to global warming. Our results also indicate that the observed decline in the SOI in recent decades has been driven by natural, internally generated variability. The externally forced signal in the

  18. Impact of climate variability on various Rabi crops over Northwest India

    Science.gov (United States)

    Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.

    2018-01-01

    The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.

  19. Seasonal differences in thermal sensation in the outdoor urban environment of Mediterranean climates - the example of Athens, Greece

    Science.gov (United States)

    Tseliou, Areti; Tsiros, Ioannis X.; Nikolopoulou, Marialena

    2017-07-01

    Outdoor urban areas are very important for cities and microclimate is a critical parameter in the design process, contributing to thermal comfort which is important for urban developments. The research presented in this paper is part of extensive field surveys conducted in Athens aimed at investigating people's thermal sensation in a Mediterranean city. Based on 2313 questionnaires and microclimatic data the current work focuses on the relative frequencies of people's evaluation of the thermal along with the sun and wind sensations between two seasons trying to identify the seasonal differences in thermal sensation. The impact of basic meteorological factors on thermal discomfort with respect to season are also examined, as well as the use of the outdoor environment. Results show that psychological adaptation is an important contributing factor influencing perception of the thermal environment between seasons. In addition, the thermal sensation votes during the cool months show that individuals are satisfied to a great extend with the thermal environment whereas the combination of high air temperature, strong solar radiation and weak wind lead to thermal discomfort during summertime. As far as the appropriate urban design in the Mediterranean climate is concerned, priority should be given to the warm months of the year.

  20. An intercomparison of approaches for improving operational seasonal streamflow forecasts

    Science.gov (United States)

    Mendoza, Pablo A.; Wood, Andrew W.; Clark, Elizabeth; Rothwell, Eric; Clark, Martyn P.; Nijssen, Bart; Brekke, Levi D.; Arnold, Jeffrey R.

    2017-07-01

    For much of the last century, forecasting centers around the world have offered seasonal streamflow predictions to support water management. Recent work suggests that the two major avenues to advance seasonal predictability are improvements in the estimation of initial hydrologic conditions (IHCs) and the incorporation of climate information. This study investigates the marginal benefits of a variety of methods using IHCs and/or climate information, focusing on seasonal water supply forecasts (WSFs) in five case study watersheds located in the US Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches - statistical regression against IHCs and model-based ensemble streamflow prediction (ESP) - and then systematically intercompare WSFs across a range of lead times. Additional methods include (i) statistical techniques using climate information either from standard indices or from climate reanalysis variables and (ii) several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone provides considerable improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies within a trace weighting framework. Lower complexity techniques were competitive with more complex methods, and the hierarchical expert regression approach introduced here (hierarchical ensemble streamflow prediction - HESP) provided a robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from this effort are (1) objective approaches supporting methodologically

  1. Cold season emissions dominate the Arctic tundra methane budget

    Science.gov (United States)

    Zona, Donatella; Gioli, Beniamino; Commane, Róisín; Lindaas, Jakob; Wofsy, Steven C.; Miller, Charles E.; Dinardo, Steven J.; Dengel, Sigrid; Sweeney, Colm; Karion, Anna; Chang, Rachel Y.-W.; Henderson, John M.; Murphy, Patrick C.; Goodrich, Jordan P.; Moreaux, Virginie; Liljedahl, Anna; Watts, Jennifer D.; Kimball, John S.; Lipson, David A.; Oechel, Walter C.

    2016-01-01

    Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the "zero curtain" period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y-1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

  2. Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study

    Directory of Open Access Journals (Sweden)

    Simona Fratianni

    2010-10-01

    Full Text Available Snow cover greatly influences the climate in the Alpine region and is one of the most relevant parameters for the climate change analysis. Nevertheless, snow precipitation variability is a relatively underexplored field of research because of the lack of long-term, continuous and homogeneous time series. After a historical research aiming to recover continuous records, three high quality time series of snow precipitation and snow depth recorded in the southwestern Italian Alps were analyzed. The comparison between the climatological indices over the 30 years reference period 1971–2000 and the decade 2000–2009 outlined a general decrease in the amount of snow precipitation, and a shift in the seasonal distribution of the snow precipitation in the most recent period. In the analysis of the last decade snow seasons characteristics, the attention was focused on the heavy snowfalls that occurred in Piedmont during the 2008–2009 snow season: MODerate resolution Imager Spectroradiometer (MODIS snow cover products were used to evaluate snow cover extension at different times during the snow season, and the results were set in relation to the temperatures.

  3. Ecophysiological and phenological strategies in seasonally-dry ecosystems: an ecohydrological approach

    Science.gov (United States)

    Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare

    2015-04-01

    Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.

  4. Phenological cues intrinsic in indigenous knowledge systems for forecasting seasonal climate in the Delta State of Nigeria

    Science.gov (United States)

    Fitchett, Jennifer M.; Ebhuoma, Eromose

    2017-12-01

    Shifts in the timing of phenological events in plants and animals are cited as one of the most robust bioindicators of climate change. Much effort has thus been placed on the collection of phenological datasets, the quantification of the rates of phenological shifts and the association of these shifts with recorded meteorological data. These outputs are of value both in tracking the severity of climate change and in facilitating more robust management approaches in forestry and agriculture to changing climatic conditions. However, such an approach requires meteorological and phenological records spanning multiple decades. For communities in the Delta State of Nigeria, small-scale farming communities do not have access to meteorological records, and the dissemination of government issued daily to seasonal forecasts has only taken place in recent years. Their ability to survive inter-annual to inter-decadal climatic variability and longer-term climatic change has thus relied on well-entrenched indigenous knowledge systems (IKS). An analysis of the environmental cues that are used to infer the timing and amount of rainfall by farmers from three communities in the Delta State reveals a reliance on phenological events, including the croaking of frogs, the appearance of red millipedes and the emergence of fresh rubber tree and cassava leaves. These represent the first recorded awareness of phenology within the Delta State of Nigeria, and a potentially valuable source of phenological data. However, the reliance of these indicators is of concern given the rapid phenological shifts occurring in response to climate change.

  5. Phenology of seed and leaves rain in response to periodic climatic variability in a seasonal wet tropical forest

    Science.gov (United States)

    Matteo, D.; Wright, S. J.; Davies, S. J.; Muller-Landau, H. C.; Wolfe, B.; Detto, M.

    2016-12-01

    Phenology, by controlling the rhythms of plants, plays a fundamental role in regulating access to resources, ecosystem processes, competition among species, interactions with consumers and feedbacks to the climate. In high biodiverse tropical forests, where phenology of flowering and leafing are complex, an adequate representation of phenology must take into account a given set of climatic, edaphic and biotic factors. Climatic factors are particularly important because plants may use them as cues for timing different phenological phases and be influenced by their intensity. Climatic variability can be periodic, if events occur with regular frequency, or aperiodic. One prominent periodic large-scale pattern that causes unusual weather is ENSO event. In general, Central America tends to be dry and warm during a mature phase of an ENSO event, which usually peaks between October and January with a frequency of 2-3 events per decade. Because in many tropical areas the effect of ENSO is highly prominent, it is plausible that plants have adapted their growth and reproduction mechanisms to synchronize ENSO phases, in a similar way that plants do during the seasonal cycle. We used a long dataset (30+ years) of fruits and leaves rains of tropical trees and lianas to determine ecosystem response and species specific response of these phenological events to local climate variability corresponding to the modes of ENSO. Specifically, we tested the hypothesis that phenological responses to ENSO are similar to response to seasonal cycles, i.e., higher litterfall before a warm-dry phase and higher fruiting after such phase, with strong correlation between seeds and leaves. At sub-community level, we evaluated whether evergreen and deciduous, biotic and abiotic dispersers and free and climbing life forms, have the same response to ENSO in terms of leaves and seeds rain. At species level we tested the hypothesis that species with low photosynthetic capacity leaves are more responsive

  6. Non-stationary dynamics of climate variability in synchronous influenza epidemics in Japan

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2015-09-01

    Seasonal variation in the incidence of influenza is widely assumed. However, few studies have examined non-stationary relationships between global climate factors and influenza epidemics. We examined the monthly incidence of influenza in Fukuoka, Japan, from 2000 to 2012 using cross-wavelet coherency analysis to assess the patterns of associations between indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). The monthly incidence of influenza showed cycles of 1 year with the IOD and 2 years with ENSO indices (Multivariate, Niño 4, and Niño 3.4). These associations were non-stationary and appeared to have major influences on the synchrony of influenza epidemics. Our study provides quantitative evidence that non-stationary associations have major influences on synchrony between the monthly incidence of influenza and the dynamics of the IOD and ENSO. Our results call for the consideration of non-stationary patterns of association between influenza cases and climatic factors in early warning systems.

  7. Climate Prediction Center - Site Index

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Means Bulletins Annual Winter Stratospheric Ozone Climate Diagnostics Bulletin (Most Recent) Climate (Hazards Outlook) Climate Assessment: Dec. 1999-Feb. 2000 (Seasonal) Climate Assessment: Mar-May 2000

  8. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    Science.gov (United States)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  9. Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis

    Directory of Open Access Journals (Sweden)

    Jinseob Kim

    2016-02-01

    Full Text Available This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: −0.01%–0.50%, and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57–8.30. Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, −0.57% and −4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%. There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community.

  10. Effect of Climate Factors on the Childhood Pneumonia in Papua New Guinea: A Time-Series Analysis

    Science.gov (United States)

    Kim, Jinseob; Kim, Jong-Hun; Cheong, Hae-Kwan; Kim, Ho; Honda, Yasushi; Ha, Mina; Hashizume, Masahiro; Kolam, Joel; Inape, Kasis

    2016-01-01

    This study aimed to assess the association between climate factors and the incidence of childhood pneumonia in Papua New Guinea quantitatively and to evaluate the variability of the effect size according to their geographic properties. The pneumonia incidence in children under five-year and meteorological factors were obtained from six areas, including monthly rainfall and the monthly average daily maximum temperatures during the period from 1997 to 2006 from national health surveillance data. A generalized linear model was applied to measure the effect size of local and regional climate factor. The pooled risk of pneumonia in children per every 10 mm increase of rainfall was 0.24% (95% confidence interval: −0.01%–0.50%), and risk per every 1 °C increase of the monthly mean of the maximum daily temperatures was 4.88% (95% CI: 1.57–8.30). Southern oscillation index and dipole mode index showed an overall negative effect on childhood pneumonia incidence, −0.57% and −4.30%, respectively, and the risk of pneumonia was higher in the dry season than in the rainy season (pooled effect: 12.08%). There was a variability in the relationship between climate factors and pneumonia which is assumed to reflect distribution of the determinants of and vulnerability to pneumonia in the community. PMID:26891307

  11. Review of middle eastern hydro climatology and seasonal tele connections

    International Nuclear Information System (INIS)

    Pagano, T. C.; Mahani, S.; Nazemosadat, M. J.; Sorooshian, S.

    2003-01-01

    International hydro climatic variability in the Middle East is explored. A review is done on studies linking local climate with large-scale tele connections. These studies suggest that El Nino has a weak tendency of bringing better than normal conditions to the region during fall / winter. This signal is unstable in time and has considerable decadal variability. No consensus exists on the general start and end dates of various climate epochs, nor is there an explanation of the physical causes of the decad al variability, suggesting that the inter annual signal of El Nino in the Middle East may be transient and difficult to predict. In contrast, the influence of the North Atlantic Oscillation on temperature, precipitation and strea flow is strong, with high North Atlantic Oscillation winters favoring dry and cool conditions in the region. Recommendations are made on how to improve the ability to understand and forecast Middle Eastern inter annual variability, namely, 1) improve access to instrumental data, 2) coordinate research, forecasts and user involvement through a regional forum and 3) further explore the impacts of North Atlantic Oscillation in the Middle East

  12. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    Science.gov (United States)

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  13. Impact of Temperature Anomalies Associated with El Niño-Southern Oscillation and Indian Ocean Dipole Events on Wine Grape Maturity in Australia

    Science.gov (United States)

    Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I.

    2016-12-01

    Annual grapevine growth and development are intimately linked with growing season weather conditions. Shifts in circulation patterns resulting from atmospheric teleconnections to changes in sea surface temperature (SST) anomalies associated with El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events can alter seasonal weather across Australia. Both ENSO and IOD events tend to peak in austral spring, when vine and berry development is especially critical and susceptible to damage. To investigate the impacts of ENSO and IOD events on the Australian wine grape growing sector, historical gridded climate data and annual vineyard grape maturity data from a variety of wine growing regions was collected and analysed. The greatest impacts on grape maturity were found when La Niña and IOD positive events occurred in tandem. During these events, significantly dry and hot conditions persist throughout the wine grape growing season, suggesting that the IOD overrides the ENSO signal. These conditions lead to a rapid, compressed growing season, which can cause logistical complications during harvest and impact grape and wine quality. Warming of equatorial SSTs in the Indian Ocean are likely to enhance the amplitude of IOD positive events, which has serious implications for wine grape production in Australia, highlighting the importance of this research.

  14. Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: Part I

    Science.gov (United States)

    Nengker, T.; Choudhary, A.; Dimri, A. P.

    2018-04-01

    The ability of an ensemble of five regional climate models (hereafter RCMs) under Coordinated Regional Climate Downscaling Experiments-South Asia (hereafter, CORDEX-SA) in simulating the key features of present day near surface mean air temperature (Tmean) climatology (1970-2005) over the Himalayan region is studied. The purpose of this paper is to understand the consistency in the performance of models across the ensemble, space and seasons. For this a number of statistical measures like trend, correlation, variance, probability distribution function etc. are applied to evaluate the performance of models against observation and simultaneously the underlying uncertainties between them for four different seasons. The most evident finding from the study is the presence of a large cold bias (-6 to -8 °C) which is systematically seen across all the models and across space and time over the Himalayan region. However, these RCMs with its fine resolution perform extremely well in capturing the spatial distribution of the temperature features as indicated by a consistently high spatial correlation (greater than 0.9) with the observation in all seasons. In spite of underestimation in simulated temperature and general intensification of cold bias with increasing elevation the models show a greater rate of warming than the observation throughout entire altitudinal stretch of study region. During winter, the simulated rate of warming gets even higher at high altitudes. Moreover, a seasonal response of model performance and its spatial variability to elevation is found.

  15. El Niño-Southern Oscillation-based index insurance for floods: Statistical risk analyses and application to Peru

    Science.gov (United States)

    Khalil, Abedalrazq F.; Kwon, Hyun-Han; Lall, Upmanu; Miranda, Mario J.; Skees, Jerry

    2007-10-01

    Index insurance has recently been advocated as a useful risk transfer tool for disaster management situations where rapid fiscal relief is desirable and where estimating insured losses may be difficult, time consuming, or subject to manipulation and falsification. For climate-related hazards, a rainfall or temperature index may be proposed. However, rainfall may be highly spatially variable relative to the gauge network, and in many locations, data are inadequate to develop an index because of short time series and the spatial dispersion of stations. In such cases, it may be helpful to consider a climate proxy index as a regional rainfall index. This is particularly useful if a long record is available for the climate index through an independent source and it is well correlated with the regional rainfall hazard. Here El Niño-Southern Oscillation (ENSO) related climate indices are explored for use as a proxy to extreme rainfall in one of the districts of Peru, Piura. The ENSO index insurance product may be purchased by banks or microfinance institutions to aid agricultural damage relief in Peru. Crop losses in the region are highly correlated with floods but are difficult to assess directly. Beyond agriculture, many other sectors suffer as well. Basic infrastructure is destroyed during the most severe events. This disrupts trade for many microenterprises. The reliability and quality of the local rainfall data are variable. Averaging the financial risk across the region is desirable. Some issues with the implementation of the proxy ENSO index are identified and discussed. Specifically, we explore (1) the reliability of the index at different levels of probability of exceedance of maximum seasonal rainfall, (2) the effect of sampling uncertainties and the strength of the proxy's association to local outcome, (3) the potential for clustering of payoffs, (4) the potential that the index could be predicted with some lead time prior to the flood season, and (5) evidence

  16. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    Science.gov (United States)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur

  17. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    Science.gov (United States)

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  18. Climate variables as predictors for seasonal forecast of dengue occurrence in Chennai, Tamil Nadu

    Science.gov (United States)

    Subash Kumar, D. D.; Andimuthu, R.

    2013-12-01

    Background Dengue is a recently emerging vector borne diseases in Chennai. As per the WHO report in 2011 dengue is one of eight climate sensitive disease of this century. Objective Therefore an attempt has been made to explore the influence of climate parameters on dengue occurrence and use for forecasting. Methodology Time series analysis has been applied to predict the number of dengue cases in Chennai, a metropolitan city which is the capital of Tamil Nadu, India. Cross correlation of the climate variables with dengue cases revealed that the most influential parameters were monthly relative humidity, minimum temperature at 4 months lag and rainfall at one month lag (Table 1). However due to intercorrelation of relative humidity and rainfall was high and therefore for predictive purpose the rainfall at one month lag was used for the model development. Autoregressive Integrated Moving Average (ARIMA) models have been applied to forecast the occurrence of dengue. Results and Discussion The best fit model was ARIMA (1,0,1). It was seen that the monthly minimum temperature at four months lag (β= 3.612, p = 0.02) and rainfall at one month lag (β= 0.032, p = 0.017) were associated with dengue occurrence and they had a very significant effect. Mean Relative Humidity had a directly significant positive correlation at 99% confidence level, but the lagged effect was not prominent. The model predicted dengue cases showed significantly high correlation of 0.814(Figure 1) with the observed cases. The RMSE of the model was 18.564 and MAE was 12.114. The model is limited by the scarcity of the dataset. Inclusion of socioeconomic conditions and population offset are further needed to be incorporated for effective results. Conclusion Thus it could be claimed that the change in climatic parameters is definitely influential in increasing the number of dengue occurrence in Chennai. The climate variables therefore can be used for seasonal forecasting of dengue with rise in minimum

  19. Extended season for northern butterflies.

    Science.gov (United States)

    Karlsson, Bengt

    2014-07-01

    Butterflies are like all insects in that they are temperature sensitive and a changing climate with higher temperatures might effect their phenology. Several studies have found support for earlier flight dates among the investigated species. A comparative study with data from a citizen science project, including 66 species of butterflies in Sweden, was undertaken, and the result confirms that most butterfly species now fly earlier during the season. This is especially evident for butterflies overwintering as adults or as pupae. However, the advancement in phenology is correlated with flight date, and some late season species show no advancement or have even postponed their flight dates and are now flying later in the season. The results also showed that latitude had a strong effect on the adult flight date, and most of the investigated species showed significantly later flights towards the north. Only some late flying species showed an opposite trend, flying earlier in the north. A majority of the investigated species in this study showed a general response to temperature and advanced their flight dates with warmer temperatures (on average they advanced their flight dates by 3.8 days/°C), although not all species showed this response. In essence, a climate with earlier springs and longer growing seasons seems not to change the appearance patterns in a one-way direction. We now see butterflies on the wings both earlier and later in the season and some consequences of these patterns are discussed. So far, studies have concentrated mostly on early season butterfly-plant interactions but also late season studies are needed for a better understanding of long-term population consequences.

  20. Northern tropical Atlantic climate since late Medieval times from Northern Caribbean coral geochemistry

    Science.gov (United States)

    Kilbourne, K. H.; Xu, Y.

    2015-12-01

    Paleoclimate reconstructions of different global climate modes over the last 1000 years provide the basis for testing the relative roles of forced and unforced variability climate system, which can help us improve projections of future climate change. The Medieval Climate Anomaly (MCA) has been characterized by a combination of persistent La Niña-like conditions, a positive North Atlantic Oscillation (+NAO), and increased Atlantic Meridional Overturning Circulation (AMOC). The northern tropical Atlantic is sensitive to each of these climate patterns, but not all of them have the same regional fingerprint in the modern northern tropical Atlantic. The relative influence of different processes related to these climate patterns can help us better understand regional responses to climate change. The regional response of the northern tropical Atlantic is important because the tropical Atlantic Ocean is a large source of heat and moisture to the global climate system that can feedback onto global climate patterns. This study presents new coral Sr/Ca and δ18O data from the northern tropical Atlantic (Anegada, British Virgin Islands). Comparison of the sub-fossil corals that grew during the 13th and 14th Centuries with modern coral geochemical data from this site indicates relatively cooler mean conditions with a decrease in the oxygen isotopic composition of the water consistent with lower salinities. Similar average annual cycles between modern and sub-fossil Sr/Ca indicate no change in seasonal temperature range, but a difference in the relative phasing of the δ18O seasonal cycles indicates that the fresher mean conditions may be due to a more northerly position of the regional salinity front. This localized response is consistent with some, but not all of the expected regional responses to a La Niña-like state, a +NAO state, and increased AMOC. Understanding these differences can provide insight into the relative importance of advection versus surface fluxes for

  1. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  2. The Year Without a Ski Season: An Analysis of the Winter of 2015 for Three Ski Resorts in Western Canada Using Historical and Simulation Model Forecasted Climate Data

    Science.gov (United States)

    Pidwirny, M. J.; Goode, J. D.; Pedersen, S.

    2015-12-01

    The winter of 2015 will go down as "the year without a ski season" for many ski resorts located close to the west coast of Canada and the USA. During this winter season, a large area of the eastern North Pacific Ocean had extremely high sea surface temperatures. These high sea surface temperatures influenced weather patterns on the west coast of North America producing very mild temperatures inland. Further, in alpine environments precipitation that normally arrives in the form of snow instead fell as rain. This research examines the climate characteristics of the winter of 2015 in greater detail for three ski resorts in British Columbia, Canada: Mount Washington, Cypress Mountain and Hemlock Valley. For these resorts, historical (1901 to 2013) and IPCC AR5 climate model forecasted climate data (RCP8.5 for 2025, 2055, and 2085) was generated for the variable winter degree days climate database ClimateBC. A value for winter degree days climate data at nearby meteorological stations for comparative analysis. For all three resorts, the winter of 2015 proved to be warmer than any individual year in the period 1901 to 2013. Interpolations involving the multi-model ensemble forecast means suggest that the climate associated with winter of 2015 will become the average normal for these resorts in only 35 to 45 years under the RCP8.5 emission scenario.

  3. Climate Prediction Center - Monitoring & Data: Seasonal ENSO Impacts on

    Science.gov (United States)

    page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center , state and local government Web resources and services. HOME > Monitoring and Data > U.S. Climate and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland

  4. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    Science.gov (United States)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  5. Calcareous nannoplankton and foraminiferal response to global Oligocene and Miocene climatic oscillations: a case study from the Western Carpathian segment of the Central Paratethys

    Directory of Open Access Journals (Sweden)

    Holcová Katarína

    2017-06-01

    Full Text Available The reactions of foraminiferal and calcareous nannoplankton assemblages to global warming and cooling events in the time intervals of ca. 27 to 19 Ma and 13.5 to 15 Ma (Oligocene and Miocene were studied in subtropical epicontinental seas influenced by local tectonic and palaeogeographic events (the Central Paratethys. Regardless of these local events, global climatic processes significantly influenced the palaeoenvironment within the marine basin. Warm intervals are characterized by a stable, humid climate and a high-nutrient regime, due primarily to increased continental input of phytodetritus and also locally due to seasonal upwelling. Coarse clastics deposited in a hyposaline environment characterize the marginal part of the basin. Aridification events causing decreased riverine input and consequent nutrient decreases, characterized cold intervals. Apparent seasonality, as well as catastrophic climatic events, induced stress conditions and the expansion of opportunistic taxa. Carbonate production and hypersaline facies characterize the marginal part of the basins. Hypersaline surface water triggered downwelling circulation and mixing of water masses. Decreased abundance or extinction of K-specialists during each cold interval accelerated their speciation in the subsequent warm interval. Local tectonic events led to discordances between local and global sea-level changes (tectonically triggered uplift or subsidence or to local salt formation (in the rain shadows of newly-created mountains.

  6. Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM

    Science.gov (United States)

    Kikuchi, Kazuyoshi; Kodama, Chihiro; Nasuno, Tomoe; Nakano, Masuo; Miura, Hiroaki; Satoh, Masaki; Noda, Akira T.; Yamada, Yohei

    2017-04-01

    It is the first time for the non-hydrostatic icosahedral atmospheric model (NICAM), at a horizontal mesh size of approximately 14-km, to conduct a continuous long-term Atmospheric Model Intercomparison Project-type simulation. This study examines the performance of NICAM in simulating the tropical intraseasonal oscillation (ISO) from a statistical point of view using 30-year data (1979-2008) in the context of the bimodal ISO representation concept proposed by Kikuchi et al., which allows us to examine the seasonally varying behavior of the ISO in great detail, in addition to the MJO working group level 2 diagnostics. It is found that many of the fundamental features of the ISO are well captured by NICAM. The evolution of the ISO convection as well as large-scale circulation over the course of its life cycle is reasonably well reproduced throughout the year. As in the observation, the Madden-Julian oscillation (MJO) mode, characterized by prominent eastward propagation of convection, is predominant during boreal winter, whereas the boreal summer ISO (BSISO) mode, by a combination of pronounced eastward and northward propagation, during summer. The overall shape of the seasonal cycle as measured by the numbers of significant MJO and BSISO days in a month is relatively well captured. Two major biases, however, are also identified. The amplitude of the simulated ISO is weaker by a factor of 2. Significant BSISO events sometimes appear even during winter (December-April), amounting to 30 % of the total significant ISO days as opposed to 2 % in the observation. The results here warrant further studies using the simulation dataset to understand not only many aspects of the dynamics and physics of the ISO but also its role in weather and climate. It is also demonstrated that the concept of the bimodal ISO representation provides a useful framework for assessing model's capability to simulate, and illuminating model's deficiencies in reproducing, the ISO. The nature and

  7. Satellite view of seasonal greenness trends and controls in South Asia

    Science.gov (United States)

    Sarmah, Sangeeta; Jia, Gensuo; Zhang, Anzhi

    2018-03-01

    South Asia (SA) has been considered one of the most remarkable regions for changing vegetation greenness, accompanying its major expansion of agricultural activities, especially irrigated farming. The influence of the monsoon climate on the seasonal trends and anomalies of vegetation greenness is poorly understood in this area. Herein, we used the satellite-based Normalized Difference Vegetation Index (NDVI) to investigate various spatiotemporal patterns in vegetation activity during summer and winter monsoon (SM and WM) seasons and among irrigated croplands (IC), rainfed croplands (RC), and natural vegetation (NV) areas during 1982–2013. Seasonal NDVI variations with climatic factors (precipitation and temperature) and land use and cover changes (LUCC) have also been investigated. This study demonstrates that the seasonal dynamics of vegetation could improve the detailed understanding of vegetation productivity over the region. We found distinct greenness trends between two monsoon seasons and among the major land use/cover classes. Winter monsoons contributed greater variability to the overall vegetation dynamics of SA. Major greening occurred due to the increased productivity over irrigated croplands during the winter monsoon season; meanwhile, browning trends were prominent over NV areas during the same season. Maximum temperatures had been increasing tremendously during the WM season; however, the precipitation trend was not significant over SA. Both the climate variability and LUCC revealed coupled effects on the long term NDVI trends in NV areas, especially in the hilly regions, whereas anthropogenic activities (agricultural advancements) played a pivotal role in the rest of the area. Until now, advanced cultivation techniques have proven to be beneficial for the region in terms of the productivity of croplands. However, the crop productivity is at risk under climate change.

  8. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  9. An intercomparison of approaches for improving operational seasonal streamflow forecasts

    Directory of Open Access Journals (Sweden)

    P. A. Mendoza

    2017-07-01

    Full Text Available For much of the last century, forecasting centers around the world have offered seasonal streamflow predictions to support water management. Recent work suggests that the two major avenues to advance seasonal predictability are improvements in the estimation of initial hydrologic conditions (IHCs and the incorporation of climate information. This study investigates the marginal benefits of a variety of methods using IHCs and/or climate information, focusing on seasonal water supply forecasts (WSFs in five case study watersheds located in the US Pacific Northwest region. We specify two benchmark methods that mimic standard operational approaches – statistical regression against IHCs and model-based ensemble streamflow prediction (ESP – and then systematically intercompare WSFs across a range of lead times. Additional methods include (i statistical techniques using climate information either from standard indices or from climate reanalysis variables and (ii several hybrid/hierarchical approaches harnessing both land surface and climate predictability. In basins where atmospheric teleconnection signals are strong, and when watershed predictability is low, climate information alone provides considerable improvements. For those basins showing weak teleconnections, custom predictors from reanalysis fields were more effective in forecast skill than standard climate indices. ESP predictions tended to have high correlation skill but greater bias compared to other methods, and climate predictors failed to substantially improve these deficiencies within a trace weighting framework. Lower complexity techniques were competitive with more complex methods, and the hierarchical expert regression approach introduced here (hierarchical ensemble streamflow prediction – HESP provided a robust alternative for skillful and reliable water supply forecasts at all initialization times. Three key findings from this effort are (1 objective approaches supporting

  10. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    Science.gov (United States)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  11. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    Science.gov (United States)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  12. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  13. Modeling key processes causing climate change and variability

    Energy Technology Data Exchange (ETDEWEB)

    Henriksson, S.

    2013-09-01

    Greenhouse gas warming, internal climate variability and aerosol climate effects are studied and the importance to understand these key processes and being able to separate their influence on the climate is discussed. Aerosol-climate model ECHAM5-HAM and the COSMOS millennium model consisting of atmospheric, ocean and carbon cycle and land-use models are applied and results compared to measurements. Topics at focus are climate sensitivity, quasiperiodic variability with a period of 50-80 years and variability at other timescales, climate effects due to aerosols over India and climate effects of northern hemisphere mid- and high-latitude volcanic eruptions. The main findings of this work are (1) pointing out the remaining challenges in reducing climate sensitivity uncertainty from observational evidence, (2) estimates for the amplitude of a 50-80 year quasiperiodic oscillation in global mean temperature ranging from 0.03 K to 0.17 K and for its phase progression as well as the synchronising effect of external forcing, (3) identifying a power law shape S(f) {proportional_to} f-{alpha} for the spectrum of global mean temperature with {alpha} {approx} 0.8 between multidecadal and El Nino timescales with a smaller exponent in modelled climate without external forcing, (4) separating aerosol properties and climate effects in India by season and location (5) the more efficient dispersion of secondary sulfate aerosols than primary carbonaceous aerosols in the simulations, (6) an increase in monsoon rainfall in northern India due to aerosol light absorption and a probably larger decrease due to aerosol dimming effects and (7) an estimate of mean maximum cooling of 0.19 K due to larger northern hemisphere mid- and high-latitude volcanic eruptions. The results could be applied or useful in better isolating the human-caused climate change signal, in studying the processes further and in more detail, in decadal climate prediction, in model evaluation and in emission policy

  14. Sea ice inertial oscillations in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-10-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  15. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    Science.gov (United States)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  16. Neutrino oscillations in the Earth suggest a terrestrial test of solution to solar neutrino problem

    International Nuclear Information System (INIS)

    Dar, A.; Mann, A.; Technicon-Israel Inst. of Tech., Haifa. Space Research Inst.)

    1987-01-01

    The verification of the Mikheyev-Smirnov-Wolfenstein (MSW) solution of the solar neutrino problem is discussed. One verification experiment concerns the detection of sizeable oscillations of atmospheric neutrinos in the earth, which can be detected with the massive underground proton decay detectors. Diurnal and seasonal modulations of the solar neutrino flux can perhaps be detected by the radiochemical Cl and Ga detectors. Moreover, neutrino oscillations in the Earth may modify the values of the oscillation parameters which can solve the solar neutrino problem and help determine their values. (UK)

  17. Changes in atmospheric variability in a glacial climate and the impacts on proxy data: a model intercomparison

    Directory of Open Access Journals (Sweden)

    F. S. R. Pausata

    2009-09-01

    Full Text Available Using four different climate models, we investigate sea level pressure variability in the extratropical North Atlantic in the preindustrial climate (1750 AD and at the Last Glacial Maximum (LGM, 21 kyrs before present in order to understand how changes in atmospheric circulation can affect signals recorded in climate proxies.

    In general, the models exhibit a significant reduction in interannual variance of sea level pressure at the LGM compared to pre-industrial simulations and this reduction is concentrated in winter. For the preindustrial climate, all models feature a similar leading mode of sea level pressure variability that resembles the leading mode of variability in the instrumental record: the North Atlantic Oscillation (NAO. In contrast, the leading mode of sea level pressure variability at the LGM is model dependent, but in each model different from that in the preindustrial climate. In each model, the leading (NAO-like mode of variability explains a smaller fraction of the variance and also less absolute variance at the LGM than in the preindustrial climate.

    The models show that the relationship between atmospheric variability and surface climate (temperature and precipitation variability change in different climates. Results are model-specific, but indicate that proxy signals at the LGM may be misinterpreted if changes in the spatial pattern and seasonality of surface climate variability are not taken into account.

  18. Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula.

    Science.gov (United States)

    Rozas, Vicente; García-González, Ignacio

    2012-09-01

    The properties of El Niño-Southern Oscillation (ENSO), such as period, amplitude, and teleconnection strength to extratropical regions, have changed since the mid-1970s. ENSO affects the regional climatic regime in SW Europe, thus tree performance in the Iberian Peninsula could be affected by recent ENSO dynamics. We established four Quercus robur chronologies of earlywood and latewood widths in the NW Iberian Peninsula. The relationship between tree growth and the Southern Oscillation Index (SOI), the atmospheric expression of ENSO, showed that only latewood growth was correlated negatively with the SOI of the previous summer-autumn-winter. This relationship was non-stationary, with significant correlations only during the period 1952-1980; and also non-linear, with enhanced latewood growth only in La Niña years, i.e. years with a negative SOI index for the previous autumn. Non-linear relationship between latewood and SOI indicates an asymmetric influence of ENSO on tree performance, biassed towards negative SOI phases. During La Niña years, climate in the study area was warmer and wetter than during positive years, but only for 1952-1980. Winter temperatures became the most limiting factor for latewood growth since 1980, when mean regional temperatures increased by 1°C in comparison to previous periods. As a result, higher winter respiration rates, and the extension of the growing season, would probably cause an additional consumption of stored carbohydrates. The influence of ENSO and winter temperatures proved to be of great importance for tree growth, even at lower altitudes and under mild Atlantic climate in the NW Iberian Peninsula.

  19. An observational and modeling study of the regional impacts of climate variability

    Science.gov (United States)

    Horton, Radley M.

    during El Nino events. Based on the results from Chapter One, the analysis is expanded in several ways in Chapter Two. To gain a more complete and statistically meaningful understanding of ENSO, a 25 year time period is used instead of a single event. To gain a fuller understanding of climate variability, additional patterns are analyzed. Finally analysis is conducted at the regional scales that are of interest to farmers and agricultural planners. Key findings are that GISS ModelE can reproduce: (1) the spatial pattern associated with two additional related modes, the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO); (2) rainfall patterns in Indonesia; and (3) dynamical features such as sea level pressure (SLP) gradients and wind in the study regions. When run in coupled mode, the same model reproduces similar modes spatially but with reduced variance and weak teleconnections. Since Chapter Two identified Western Indonesia as the region where GCMs hold the most promise for agricultural applications, in Chapter Three a finer spatial and temporal scale analysis of ENSO's effects is presented. Agricultural decision-making is also linked to ENSO's climate effects. Early rainy season precipitation and circulation, and same-season planting and harvesting dates, are shown to be sensitive to ENSO. The locus of ENSO convergence and rainfall anomalies is shown to be near the axis of rainy season establishment, defined as the 6--8 mm/day isohyet, an approximate threshold for irrigated rice cultivation. As the axis tracks south and east between October and January, so do ENSO anomalies. Circulation anomalies associated with ENSO are shown to be similar to those associated with rainfall anomalies, suggesting that long lead-time ENSO forecasts may allow more adaptation than 'wait and see' methods, with little loss of forecast skill. Additional findings include: (1) rice and corn yields are lower (higher) during dry (wet) trimesters and El Nino (La Nina) years; and (2

  20. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change

    DEFF Research Database (Denmark)

    Bevis, Michael; Wahr, John; Khan, Shfaqat Abbas

    2012-01-01

    for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR......), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010...

  1. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities.

    Science.gov (United States)

    Wang, Hsiao-Hsuan; Grant, W E; Teel, P D; Hamer, S A

    2015-12-01

    Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities

  2. Seasonal prediction of winter extreme precipitation over Canada by support vector regression

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2011-01-01

    Full Text Available For forecasting the maximum 5-day accumulated precipitation over the winter season at lead times of 3, 6, 9 and 12 months over Canada from 1950 to 2007, two nonlinear and two linear regression models were used, where the models were support vector regression (SVR (nonlinear and linear versions, nonlinear Bayesian neural network (BNN and multiple linear regression (MLR. The 118 stations were grouped into six geographic regions by K-means clustering. For each region, the leading principal components of the winter maximum 5-d accumulated precipitation anomalies were the predictands. Potential predictors included quasi-global sea surface temperature anomalies and 500 hPa geopotential height anomalies over the Northern Hemisphere, as well as six climate indices (the Niño-3.4 region sea surface temperature, the North Atlantic Oscillation, the Pacific-North American teleconnection, the Pacific Decadal Oscillation, the Scandinavia pattern, and the East Atlantic pattern. The results showed that in general the two robust SVR models tended to have better forecast skills than the two non-robust models (MLR and BNN, and the nonlinear SVR model tended to forecast slightly better than the linear SVR model. Among the six regions, the Prairies region displayed the highest forecast skills, and the Arctic region the second highest. The strongest nonlinearity was manifested over the Prairies and the weakest nonlinearity over the Arctic.

  3. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  4. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.

    2016-04-01

    Projected changes in the seasonality of hydroclimatic regimes are likely to have important implications for water resources and terrestrial ecosystems in the U.S. Pacific Northwest. The tree ring record, which has frequently been used to position recent changes in a longer-term context, typically relies on signals embedded in the total ring width of tree rings. Additional climatic inferences at a subannual temporal scale can be made using alternative tree ring metrics such as earlywood and latewood widths and the density of tree ring latewood. Here we examine seasonal precipitation and temperature signals embedded in total ring width, earlywood width, adjusted latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites in and surrounding the upper Columbia River Basin of the U.S. Pacific Northwest. We also evaluate the potential for combining multiple tree ring metrics together in reconstructions of past cool- and warm-season precipitation. The common signal among all metrics and sites is related to warm-season precipitation. Earlywood and latewood widths differ primarily in their sensitivity to conditions in the year prior to growth. Total and earlywood widths from the lowest elevation sites also reflect cool-season moisture. Effective correlation analyses and composite-plus-scale tests suggest that combining multiple tree ring metrics together may improve reconstructions of warm-season precipitation. For cool-season precipitation, total ring width alone explains more variance than any other individual metric or combination of metrics. The composite-plus-scale tests show that variance-scaled precipitation reconstructions in the upper Columbia River Basin may be asymmetric in their ability to capture extreme events.

  5. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, Brenden; Kummu, Matti; Dettinger, Michael D.; Sperna Weiland, Frederiek C.; Winsemius, Hessel C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions. PMID:25331867

  6. Strong influence of El Niño Southern Oscillation on flood risk around the world

    Science.gov (United States)

    Ward, Philip J.; Jongman, B; Kummu, M.; Dettinger, Mike; Sperna Weiland, F.C; Winsemius, H.C

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts, including economic damage and loss of life. However, although ENSO is known to influence hydrology in many regions of the world, little is known about its influence on the socioeconomic impacts of floods (i.e., flood risk). To address this, we developed a modeling framework to assess ENSO’s influence on flood risk at the global scale, expressed in terms of affected population and gross domestic product and economic damages. We show that ENSO exerts strong and widespread influences on both flood hazard and risk. Reliable anomalies of flood risk exist during El Niño or La Niña years, or both, in basins spanning almost half (44%) of Earth’s land surface. Our results show that climate variability, especially from ENSO, should be incorporated into disaster-risk analyses and policies. Because ENSO has some predictive skill with lead times of several seasons, the findings suggest the possibility to develop probabilistic flood-risk projections, which could be used for improved disaster planning. The findings are also relevant in the context of climate change. If the frequency and/or magnitude of ENSO events were to change in the future, this finding could imply changes in flood-risk variations across almost half of the world’s terrestrial regions.

  7. Seasonal Changes in Central England Temperatures

    DEFF Research Database (Denmark)

    Proietti, Tommaso; Hillebrand, Eric

    The aim of this paper is to assess how climate change is reflected in the variation of the seasonal patterns of the monthly Central England Temperature time series between 1772 and 2013. In particular, we model changes in the amplitude and phase of the seasonal cycle. Starting from the seminal work...... by Thomson (“The Seasons, Global Temperature and Precession”, Science, 7 April 1995, vol 268, p. 59–68), a number of studies have documented a shift in the phase of the annual cycle implying an earlier onset of the spring season at various European locations. A significant reduction in the amplitude...... and stochastic trends, as well as seasonally varying autocorrelation and residual variances. The model can be summarized as containing a permanent and a transitory component, where global warming is captured in the permanent component, on which the seasons load differentially. The phase of the seasonal cycle...

  8. Surfing wave climate variability

    Science.gov (United States)

    Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.

    2014-10-01

    International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.

  9. U.S. Annual/Seasonal Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters that provide users with many tools to understand typical climate...

  10. Changes in the seasonality of Arctic sea ice and temperature

    Science.gov (United States)

    Bintanja, R.

    2012-04-01

    Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.

  11. Oscillations in a simple climate–vegetation model

    Directory of Open Access Journals (Sweden)

    J. Rombouts

    2015-05-01

    Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  12. American cutaneous leishmaniasis cases in the metropolitan region of Manaus, Brazil: association with climate variables over time

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto Ferreira de Souza

    2015-05-01

    Full Text Available A temporal series of the normalized difference vegetation index (NDVI and other environmental parameters covering the years 2002- 2009 was used for the study of the potential association between the climate and the number of cases of American cutaneous leishmaniasis (CL in Manaus Metropolitan Region (MMR, State of Amazonas, Brazil. The results show that CL has a marked seasonality and a strong linkage with local climate conditions. Dry and warm conditions favor the vector, while the maximum number of CL cases occurs during the following wet season. This has a clear relation to the El Niño/La Niña Southern Oscillation (ENSO and the results presented here show that uncharacteristic dry conditions in the MMR follow El Niño after a lag period of 3 months, while wet conditions follow La Niña, again after a lag period of 3 months. El Niño brings dry conditions with warming of the land surface leading to increased growth of trees and bushes as indicated by rising NDVI values, eventually producing increased numbers of CL cases, with a peak of new cases occurring 4 to 5 months later. La Niña, on the other hand, produces wet and cool weather, which is less favorable for the leishmaniasis vector and therefore results in comparatively lower number of CL cases. Since these seasonal climate changes affect the dynamics of the CL vector, and thus the number of CL cases, a close watch of the ENSO phenomenon and the weather type it brings should be useful for monitoring and control of CL in the MMR.

  13. Effects of climate change on Forest Service strategic goals

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change affects forests and grasslands in many ways. Changes in temperature and precipitation affect plant productivity as well as some species' habitat. Changes in key climate variables affect the length of the fire season and the seasonality of National Forest hydrological regimes. Also, invasive species tend to adapt to climate change more easily and...

  14. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  15. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  16. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    Science.gov (United States)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as

  17. Detecting quasi-oscillations in the monthly precipitation regimes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    L. Morala

    2003-03-01

    Full Text Available A spectral analysis of the time series corresponding to the main monthly precipitation regimes of the Iberian Peninsula was performed using two methods, the Multi-Taper Method and Monte Carlo Singular Spectrum Analysis. The Multi-Taper Method gave a preliminary view of the presence of signals in some of the time series. Monte Carlo Singular Spectrum Analysis discriminated between potential oscillations and noise. From the results of the two methods it is concluded that there exist three significant quasi-oscillations at the 95% level of confidence: a 5.0 year quasi-oscillation and a long-term trend in the Atlantic pattern of March, a 3.2 year quasi-oscillation in the Cantabrian pattern of January, and a 4.0 year quasi-oscillation in the Catalonian pattern of February. These quasi-oscillations might be related to climatic variations with similar periodicities over the North Atlantic Ocean. The possible simultaneity of high values of precipitation generated by the significant quasi-oscillations and high sea–level pressures was studied by means of composite maps. It was found that high values of precipitation generated by the oscillations of the Atlantic patterns of January and March exist simultaneously with a specific high pressure structure over the North Atlantic Ocean, that allow cyclonic perturbations to cross the Iberian Peninsula. During the non-wet years, this high pressure structure moves northwards, keeping the track of the low pressure centers to the north, far from the Iberian Peninsula. On the other hand, high values of precipitation generated by the oscillation of the Cantabrian pattern of January exist simultaneously with a high pressure structure over the Galicia region and the Cantabrian Sea, that allow a northerly flow over the region. Also, a positive trend in the NAO index for March has been found, starting in the sixties, which is not evident for other winter months. This trend agrees with the decreasing trend found in the

  18. A modelling study of the seasonal snowpack energy balance at three sites along the Andes Cordillera. Regional climate and local effects.

    Science.gov (United States)

    McPhee, James; Mengual, Sebastian; MacDonell, Shelley

    2017-04-01

    Seasonal snowpack melt constitutes the main water source for large portions of extratropical South America, including central Chile and Western Argentina. The properties and distribution of snow in the Andes are threatened by rapid climate change, characterised by warming and drying. This study provides a first attempt at detailed description of the energy balance of the seasonal snowpack and its variability along a latitudinal gradient, which is also correlated with an elevation and precipitation gradient, in the Andes Cordillera. The Snowpack model was validated at semi-arid, Mediterranean and temperate humid sites, where meteorological and snowpack properties have been observed since year 2013. Site elevations decrease from north to south, whereas precipitation climatology increases with latitude. Results show that turbulent energy exchange becomes relatively more important in periods of low snow accumulation, with sensible heat fluxes having a greater effect in cooling the snowpack at the high-altitude, low latitude site. Likewise, daily melt-freeze cycles are important in maintaining positive cold contents throughout the accumulation season at this site, and contribute to extending the duration of snow cover despite low accumulation and high radiation loads. In contrast, the southernmost, lowest elevation site shows smaller daily temperature amplitude and a much more preponderant radiation component to the energy balance. This modelling exercise highlights the nonlinearities of snow dynamics at different geographical settings in a sparsely monitored mountain area of the world, as well as the need for further understanding in order to evaluate the sensitivity of snow-dominated watersheds to global warming and climate change.

  19. Interactions between large-scale modes of climate and their relationship with Australian climate and hydrology

    Science.gov (United States)

    Whan, K. R.; Lindesay, J. A.; Timbal, B.; Raupach, M. R.; Williams, E.

    2010-12-01

    Australia’s natural environment is adapted to low rainfall availability and high variability but human systems are less able to adapt to variability in the hydrological cycle. Understanding the mechanisms underlying drought persistence and severity is vital to contextualising future climate change. Multiple external forcings mean the mechanisms of drought occurrence in south-eastern Australian are complex. The key influences on SEA climate are El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the sub-tropical ridge (STR); each of these large-scale climate modes (LSCM) has been studied widely. The need for research into the interactions among the modes has been noted [1], although to date this has received limited attention. Relationships between LSCM and hydrometeorological variability are nonlinear, making linearity assumptions underlying usual statistical techniques (e.g. correlation, principle components analysis) questionable. In the current research a statistical technique that can deal with nonlinear interactions is applied to a new dataset enabling a full examination of the Australian water balance. The Australian Water Availability Project (AWAP) dataset models the Australian water balance on a fine grid [2]. Hydrological parameters (e.g. soil moisture, evaporation, runoff) are modelled from meteorological data, allowing the complete Australian water balance (climate and hydrology) to be examined and the mechanisms of drought to be studied holistically. Classification and regression trees (CART) are a powerful regression-based technique that is capable of accounting for nonlinear effects. Although it has limited previous application in climate research [3] this methodology is particularly informative in cases with multiple predictors and nonlinear relationships such as climate variability. Statistical relationships between variables are the basis for the decision rules in CART that are used to split

  20. Seasonal variation in the phenol content of Eugenia uniflora L. leaves

    OpenAIRE

    Santos, R.M; Oliveira, M.S; Ferri, P.H; Santos, S.C

    2011-01-01

    Hydrolysable tannins, total phenols and flavonoids in Eugenia uniflora leaves were monthly analysed for one year. The results were correlated with climate conditions (rainfall, humidity, cloudiness and mean temperature) through chemometric methods. Principal component analysis revealed high levels of hydrolysable tannins in the rainy season, whereas flavonoids were mainly produced in the dry season. These facts suggest that climatic changes may be one of the factors affecting phenol levels in...

  1. El Niño-Southern oscillation variability from the late cretaceous marca shale of California

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E.S.; Weedon, Graham P.; Barron, John A.

    2012-01-01

    Changes in the possible behavior of El Niño–Southern Oscillation (ENSO) with global warming have provoked interest in records of ENSO from past “greenhouse” climate states. The latest Cretaceous laminated Marca Shale of California permits a seasonal-scale reconstruction of water column flux events and hence interannual paleoclimate variability. The annual flux cycle resembles that of the modern Gulf of California with diatoms characteristic of spring upwelling blooms followed by silt and clay, and is consistent with the existence of a paleo–North American Monsoon that brought input of terrigenous sediment during summer storms and precipitation runoff. Variation is also indicated in the extent of water column oxygenation by differences in lamina preservation. Time series analysis of interannual variability in terrigenous sediment and diatom flux and in the degree of bioturbation indicates strong periodicities in the quasi-biennial (2.1–2.8 yr) and low-frequency (4.1–6.3 yr) bands both characteristic of ENSO forcing, as well as decadal frequencies. This evidence for robust Late Cretaceous ENSO variability does not support the theory of a “permanent El Niño,” in the sense of a continual El Niño–like state, in periods of warmer climate.

  2. Seasonal variation of ground spiders in a Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Marina Farcic Mineo

    2010-06-01

    Full Text Available The Brazilian Savanna Ecoregion (Cerrado is one of the richest biomes in the world, with a characteristic highly seasonal climate a dry season between May and September and a rainy season from October through April. Ground-dwelling spiders from three Cerrado phytophysiognomies, "campo cerrado", "cerrado" and "cerrad��o", were sampled using pitfall traps during two years, totaling 111 species and 3,529 individuals. The abundance of individuals and species richness was higher during the wet season. Fifty-eight species were captured exclusively during that period, whereas only nineteen were restricted to the dry season. Only two species were found in all samples. The number of juveniles was higher than the number of adults in all phytophysiognomies and in all species during both seasons. The highest abundance was registered in October and the lowest in April. Overall sex ratio was male-biased in all vegetation types sampled. Distinct climate variables affected the abundance of spiders depending on sex, age and vegetal physiognomy where they were sampled. This study involved the longest sampling of spider abundance and diversity on the ground of a Brazilian Savanna.

  3. Evidences of the association among epidemic of malaria buds in Colombia and the phenomenon El Nino - oscillation of the south

    International Nuclear Information System (INIS)

    Poveda J, German; Rojas M, William

    1997-01-01

    The El Nino-Southern Oscillation (ENSO) phenomenon is the main forcing mechanism of climatic variability in tropical South America from seasons to decades. Colombia experience below normal dry periods and above normal air temperatures during the warm phase of ENSO (El Nino), and the converse for the cold phase (La Nina). We analyze records of the annual parasitary incidence (A.P.I) index of malaria in Colombia (Plasmodium vivax and Plasmodium falciparum) for the 1959-1994 period we conclude that: (1) during the occurrence of the El Nino event there is a remarkable increase in the number of cases of malaria in Colombia, with a correlation coefficient of 0.62 (statistically significant at the 95% level) between the malaria 8eries and the sea surface temperature series at the nino-4 region (5 degrades N-5 degrades S, 160 degrades E-150 degrades O); and (2) there is an increasing trend in the number of cases for the aforementioned period these statistically related correlations and modeling results may be used for developing health early warning systems (hews) of climate conditions conducive to outbreaks, facilitating early, environmentally-sound public health interventions to control and mitigate the incidence of diseases related with climate variability

  4. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots

    Science.gov (United States)

    Poveda, Germán; Álvarez, Diana M.; Rueda, Óscar A.

    2011-06-01

    The hydro-climatic variability of the Colombian Andes associated with El Niño-Southern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Niño (La Niña), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO's effects are phase-locked to the seasonal cycle, being stronger during December-February, and weaker during March-May. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Niño (mainly during dry seasons), but saturation values during La Niña. A suite of large-scale and regional mechanisms cooperating at the ocean-atmosphere-land system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region's valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change.

  5. Seasonally-resolved trace element concentrations in stalagmites from a shallow cave in New Mexico

    Science.gov (United States)

    Sekhon, N.; Banner, J.; Miller, N. R.; Carlson, P. E.; Breecker, D.

    2017-12-01

    High-resolution (sub-annual/seasonal) paleoclimate records extending beyond the instrumental period are required to test climate models and better understand how climate warming/cooling and wetting/drying are manifested seasonally. This is particularly the case for areas such as the southwest United States where precipitation and temperature seasonality dictate the regional climate. Study of a 20thcentury stalagmite (Carlson et al., in prep) documented (1) seasonal variation in trace element compositions of a stalagmite from a shallow, well-ventilated cave and (2) demonstrated the seasonal variation in stalagmite Mg to be in agreement with predicted temperature-dependent fractionation between water and calcite. The seasonal nature of variability was constrained by monitoring the cave on a monthly basis (Casteel and Banner, 2015; Carlson et al., in prep). Here we expand on using stalagmites from shallow, well-ventilated caves as archives of seasonally-resolved climate recorders by studying trace element variations in two coeval modern stalagmites (SBFC-1 and SBFC-2) cored from Sitting Bull Falls, southern New Mexico. Seasonal cycles will be confirmed by analyzing Mg, Ba, and Sr in in-situ calcite precipitated on artificial substrates as available (July, Sept., and Nov. 2017). The chronology is constrained by semi-automated peak counting and 14C bomb-peak. In addition, principal component analyses of trace element data identify two primary underlying modes of trace element variability for soil-derived elements (Cu, Zn, and Fe) and bedrock-derived elements (Mg, Sr, and Ba). We hypothesize that the soil-derived elements are transported by seasonal infiltration of organic colloids and the bedrock-derived elements are ­­controlled by variability in cave air temperature, drip water, and calcite growth rate. The two modes of variability will be calibrated against instrumental data over the 20th century. When complete, these new seasonally resolved proxy records will

  6. An integrated, indicator framework for assessing large-scale variations and change in seasonal timing and phenology (Invited)

    Science.gov (United States)

    Betancourt, J. L.; Weltzin, J. F.

    2013-12-01

    As part of an effort to develop an Indicator System for the National Climate Assessment (NCA), the Seasonality and Phenology Indicators Technical Team (SPITT) proposed an integrated, continental-scale framework for understanding and tracking seasonal timing in physical and biological systems. The framework shares several metrics with the EPA's National Climate Change Indicators. The SPITT framework includes a comprehensive suite of national indicators to track conditions, anticipate vulnerabilities, and facilitate intervention or adaptation to the extent possible. Observed, modeled, and forecasted seasonal timing metrics can inform a wide spectrum of decisions on federal, state, and private lands in the U.S., and will be pivotal for international efforts to mitigation and adaptation. Humans use calendars both to understand the natural world and to plan their lives. Although the seasons are familiar concepts, we lack a comprehensive understanding of how variability arises in the timing of seasonal transitions in the atmosphere, and how variability and change translate and propagate through hydrological, ecological and human systems. For example, the contributions of greenhouse warming and natural variability to secular trends in seasonal timing are difficult to disentangle, including earlier spring transitions from winter (strong westerlies) to summer (weak easterlies) patterns of atmospheric circulation; shifts in annual phasing of daily temperature means and extremes; advanced timing of snow and ice melt and soil thaw at higher latitudes and elevations; and earlier start and longer duration of the growing and fire seasons. The SPITT framework aims to relate spatiotemporal variability in surface climate to (1) large-scale modes of natural climate variability and greenhouse gas-driven climatic change, and (2) spatiotemporal variability in hydrological, ecological and human responses and impacts. The hierarchical framework relies on ground and satellite observations

  7. Seasonal Changes of Precipitation and Temperature of Mountainous Watersheds in Future Periods with Approach of Fifth Report of Intergovernmental Panel on Climate Change (Case study: Kashafrood Watershed Basin

    Directory of Open Access Journals (Sweden)

    Amirhosein Aghakhani Afshar

    2017-01-01

    Full Text Available Introduction: Hydrology cycle of river basins and water resources availability in arid and semi-arid regions are highly affected by climate changes, so that recently the increase of temperature due to the increase of greenhouse gases have led to anomaly in the Earth’ climate system. At present, General Circulation Models (GCMs are the most frequently used models for projection of different climatic change scenarios. Up to now, IPCC has released four different versions of GCM models, including First Assessment Report models (FAR in 1990, Second Assessment Report models (SAR in 1996, Third Assessment Report models (TAR in 2001 and Fourth Assessment Report models (AR4 in 2007. In 2011, new generation of GCM, known as phase five of the Coupled Model Intercomparison Project (CMIP5 released which it has been actively participated in the preparation of Intergovernmental Panel on Climate Change (IPCC fifth Assessment report (AR5. A set of experiments such as simulations of 20th and projections of 21st century climate under the new emission scenarios (so called Representative Concentration Pathways (RCPs are included in CMIP5. Iran is a country that located in arid and semi-arid climates mostly characterized by low rainfall and high temperature. Anomalies in precipitation and temperature in Iran play a significant role in this agricultural and quickly developing country. Growing population, extensive urbanization and rapid economic development shows that Iran faces intensive challenges in available water resources at present and especially in the future. The first purpose of this study is to analyze the seasonal trends of future climate components over the Kashafrood Watershed Basin (KWB located in the northeastern part of Iran and in the Khorsan-e Razavi province using fifth report of Intergovernmental Panel on climate change (IPCC under new emission scenarios with Mann-Kendall (MK test. Mann-Kendall is one of the most commonly used nonparametric

  8. Should seasonal rainfall forecasts be used for flood preparedness?

    NARCIS (Netherlands)

    Coughlan, E.R.; Stephens, E.; Bischiniotis, K.; van Aalst, M.; van den Hurk, B.J.J.M.; Mason, S.; Nissan, H.; Pappenberger, F.

    2017-01-01

    In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale

  9. A northern Australian coral record of seasonal rainfall and terrestrial runoff (1775-1986)

    Science.gov (United States)

    Patterson, E. W.; Cole, J. E.; Vetter, L.; Lough, J.

    2017-12-01

    Northern Australia is a climatically dynamic region influenced by both the El Niño-Southern Oscillation (ENSO) and the Australian monsoon. However, this region is largely devoid of long climate records with sub-annual resolution. Understanding long-term climate variations is essential to assess how the storm-prone coasts and rainfall-reliant rangelands of northern Australia have been impacted in the past and may be in the future. In this study, we present a continuous multicentury (1775-1986) coral reconstruction of rainfall and hydroclimate in northern Australia, developed from a Porites spp. coral core collected off the coast of Darwin, Northern Territory, Australia. We combined Ba/Ca measurements with luminescence data as tracers of terrestrial erosion and river discharge respectively. Our results show a strong seasonal cycle in Ba/Ca linked to wet austral summers driven by the Australian monsoon. The Ba/Ca record is corroborated by oxygen isotope data from the same coral and indices of regional river discharge and rainfall. Consistently high levels of Ba measured throughout the record further attest to the importance of river influence on this coral. Our record also shows changes in variability and the baseline level of Ba in coastal waters through time, which may be driven in part by historical land-use change, such as damming or agricultural practices. We will additionally use these records to examine decadal to centennial-scale variability in monsoonal precipitation and regional ENSO signals.

  10. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites

    Science.gov (United States)

    Wang, Q. J.; Robertson, D. E.; Chiew, F. H. S.

    2009-05-01

    Seasonal forecasting of streamflows can be highly valuable for water resources management. In this paper, a Bayesian joint probability (BJP) modeling approach for seasonal forecasting of streamflows at multiple sites is presented. A Box-Cox transformed multivariate normal distribution is proposed to model the joint distribution of future streamflows and their predictors such as antecedent streamflows and El Niño-Southern Oscillation indices and other climate indicators. Bayesian inference of model parameters and uncertainties is implemented using Markov chain Monte Carlo sampling, leading to joint probabilistic forecasts of streamflows at multiple sites. The model provides a parametric structure for quantifying relationships between variables, including intersite correlations. The Box-Cox transformed multivariate normal distribution has considerable flexibility for modeling a wide range of predictors and predictands. The Bayesian inference formulated allows the use of data that contain nonconcurrent and missing records. The model flexibility and data-handling ability means that the BJP modeling approach is potentially of wide practical application. The paper also presents a number of statistical measures and graphical methods for verification of probabilistic forecasts of continuous variables. Results for streamflows at three river gauges in the Murrumbidgee River catchment in southeast Australia show that the BJP modeling approach has good forecast quality and that the fitted model is consistent with observed data.

  11. Response of the North Pacific Oscillation to global warming in the models of the Intergovernmental Panel on Climate Change Fourth Assessment Report

    Science.gov (United States)

    Chen, Zheng; Gan, Bolan; Wu, Lixin

    2017-09-01

    Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.

  12. The impact of global warming on seasonality of ocean primary production

    Directory of Open Access Journals (Sweden)

    S. Henson

    2013-06-01

    Full Text Available The seasonal cycle (i.e. phenology of oceanic primary production (PP is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming regions, typically found at high latitudes, into weakly seasonal (non-bloom regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.

  13. Seasonality intensification and long-term winter cooling as a part of the Late Pliocene climate development

    Science.gov (United States)

    Klotz, Stefan; Fauquette, Séverine; Combourieu-Nebout, Nathalie; Uhl, Dieter; Suc, Jean-Pierre; Mosbrugger, Volker

    2006-01-01

    A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled 'glacial' periods (marine isotope stages 96 to 80) and eight 'interglacial' periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the 'interglacials' as compared to the present-day climate in the study area. During the 'glacials', temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive 'interglacials', a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive 'glacials', a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of 'interglacial-glacial' transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid-cold/dry 'interglacial-glacial' cycles which are superimposed by precession related warm/dry- cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.

  14. Seasonal Synchronization of a Simple Stochastic Dynamical Model Capturing El Niño Diversity

    Science.gov (United States)

    Thual, S.; Majda, A.; Chen, N.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has significant impact on global climate and seasonal prediction. Recently, a simple ENSO model was developed that automatically captures the ENSO diversity and intermittency in nature, where state-dependent stochastic wind bursts and nonlinear advection of sea surface temperature (SST) are coupled to simple ocean-atmosphere processes that are otherwise deterministic, linear and stable. In the present article, it is further shown that the model can reproduce qualitatively the ENSO synchronization (or phase-locking) to the seasonal cycle in nature. This goal is achieved by incorporating a cloud radiative feedback that is derived naturally from the model's atmosphere dynamics with no ad-hoc assumptions and accounts in simple fashion for the marked seasonal variations of convective activity and cloud cover in the eastern Pacific. In particular, the weak convective response to SSTs in boreal fall favors the eastern Pacific warming that triggers El Niño events while the increased convective activity and cloud cover during the following spring contributes to the shutdown of those events by blocking incoming shortwave solar radiations. In addition to simulating the ENSO diversity with realistic non-Gaussian statistics in different Niño regions, both the eastern Pacific moderate and super El Niño, the central Pacific El Niño as well as La Niña show a realistic chronology with a tendency to peak in boreal winter as well as decreased predictability in spring consistent with the persistence barrier in nature. The incorporation of other possible seasonal feedbacks in the model is also documented for completeness.

  15. Taking the pulse of mountains: Ecosystem responses to climatic variability

    Science.gov (United States)

    Fagre, Daniel B.; Peterson, David L.; Hessl, Amy E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  16. Trend Analysis of Droughts during Crop Growing Seasons of Nigeria

    Directory of Open Access Journals (Sweden)

    Mohammed Sanusi Shiru

    2018-03-01

    Full Text Available This study assesses the impacts of recent climate changes on drought-affected areas and the occurrence of droughts during different cropping seasons of Nigeria using the standardized precipitation evapotranspiration index (SPEI. The crop growing seasons are considered because the droughts for those periods are more destructive to national agricultural production. The Mann–Kendall test and binary logistic regression were used to quantify the trends in drought-affected areas and the occurrence of crop droughts with different areal extents, respectively. Gauge-based gridded rainfall and temperature data for the period 1961–2010 with spatial resolutions of 0.5° were used. Results showed an increase in the areal extent of droughts during some of the cropping seasons. The occurrences of droughts, particularly moderate droughts with smaller areal extents, were found to increase for all of the seasons. The SPEI values calculated decreased mostly in the regions where rainfall was decreasing. That is, the recent changes in climate were responsible for the increase in the occurrences of droughts with smaller areal extents. These trends in climate indicate that the occurrence of larger areal extent droughts may happen more frequently in Nigeria in the future.

  17. Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    The impacts of various climate modes on the Red Sea surface heat exchange are investigated using the MERRA reanalysis and the OAFlux satellite reanalysis datasets. Seasonality in the atmospheric forcing is also explored. Mode impacts peak during boreal winter [December–February (DJF)] with average anomalies of 12–18 W m−2 to be found in the northern Red Sea. The North Atlantic Oscillation (NAO), the east Atlantic–west Russia (EAWR) pattern, and the Indian monsoon index (IMI) exhibit the strongest influence on the air–sea heat exchange during the winter. In this season, the largest negative anomalies of about −30 W m−2 are associated with the EAWR pattern over the central part of the Red Sea. In other seasons, mode-related anomalies are considerably lower, especially during spring when the mode impacts are negligible. The mode impacts are strongest over the northern half of the Red Sea during winter and autumn. In summer, the southern half of the basin is strongly influenced by the multivariate ENSO index (MEI). The winter mode–related anomalies are determined mostly by the latent heat flux component, while in summer the shortwave flux is also important. The influence of the modes on the Red Sea is found to be generally weaker than on the neighboring Mediterranean basin.

  18. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    NARCIS (Netherlands)

    Aerts, R.; Callaghan, T.V.; Dorrepaal, E.; van Logtestijn, R.S.P; Cornelissen, J.H.C.

    2012-01-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on

  19. Using Seasonal Forecasting Data for Vessel Routing

    Science.gov (United States)

    Bell, Ray; Kirtman, Ben

    2017-04-01

    We present an assessment of seasonal forecasting of surface wind speed, significant wave height and ocean surface current speed in the North Pacific for potential use of vessel routing from Singapore to San Diego. WaveWatchIII is forced with surface winds and ocean surface currents from the Community Climate System Model 4 (CCSM4) retrospective forecasts for the period of 1982-2015. Several lead time forecasts are used from zero months to six months resulting in 2,720 model years, ensuring the findings from this study are robust. July surface wind speed and significant wave height can be skillfully forecast with a one month lead time, with the western North Pacific being the most predictable region. Beyond May initial conditions (lead time of two months) the El Niño Southern Oscillation (ENSO) Spring predictability barrier limits skill of significant wave height but there is skill for surface wind speed with January initial conditions (lead time of six months). In a separate study of vessel routing between Norfolk, Virginia and Gibraltar we demonstrate the benefit of a multimodel approach using the North American Multimodel Ensemble (NMME). In collaboration with Charles River Analytics an all-encompassing forecast is presented by using machine learning on the various ensembles which can be using used for industry applications.

  20. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  1. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    Science.gov (United States)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior

  2. Strong influence of El Niño Southern Oscillation on flood risk around the world

    NARCIS (Netherlands)

    Ward, P.J.; Jongman, B.; Kummu, M.S.; Dettinger, M.D.; Sperna Weiland, F.C.; Winsemius, H.C.

    2014-01-01

    El Niño Southern Oscillation (ENSO) is the most dominant interannual signal of climate variability and has a strong influence on climate over large parts of the world. In turn, it strongly influences many natural hazards (such as hurricanes and droughts) and their resulting socioeconomic impacts,

  3. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  4. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  5. The relative contribution of climate to changes in lesser prairie-chicken abundance

    Science.gov (United States)

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James

    2016-01-01

    Managing for species using current weather patterns fails to incorporate the uncertainty associated with future climatic conditions; without incorporating potential changes in climate into conservation strategies, management and conservation efforts may fall short or waste valuable resources. Understanding the effects of climate change on species in the Great Plains of North America is especially important, as this region is projected to experience an increased magnitude of climate change. Of particular ecological and conservation interest is the lesser prairie-chicken (Tympanuchus pallidicinctus), which was listed as “threatened” under the U.S. Endangered Species Act in May 2014. We used Bayesian hierarchical models to quantify the effects of extreme climatic events (extreme values of the Palmer Drought Severity Index [PDSI]) relative to intermediate (changes in El Niño Southern Oscillation) and long-term climate variability (changes in the Pacific Decadal Oscillation) on trends in lesser prairie-chicken abundance from 1981 to 2014. Our results indicate that lesser prairie-chicken abundance on leks responded to environmental conditions of the year previous by positively responding to wet springs (high PDSI) and negatively to years with hot, dry summers (low PDSI), but had little response to variation in the El Niño Southern Oscillation and the Pacific Decadal Oscillation. Additionally, greater variation in abundance on leks was explained by variation in site relative to broad-scale climatic indices. Consequently, lesser prairie-chicken abundance on leks in Kansas is more strongly influenced by extreme drought events during summer than other climatic conditions, which may have negative consequences for the population as drought conditions intensify throughout the Great Plains.

  6. Connectivity, topology and dynamics in climate networks

    Czech Academy of Sciences Publication Activity Database

    Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin

    2012-01-01

    Roč. 14, - (2012), s. 8397 ISSN 1607-7962. [European Geosciences Union General Assembly 2012. 22.04.2012-27.04.2012, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * climate network * connectivity * entropy rate * El Nino Southern Oscillation * North Atlantic Oscillation Subject RIV: BB - Applied Statistics, Operational Research

  7. How well do climate models simulate atmospheric teleconnctions over the North Pacific and East Asia associated with ENSO?

    Science.gov (United States)

    Kim, Sunyong; Son, Hye-Young; Kug, Jong-Seong

    2017-02-01

    During the El Niño and La Niña mature phase, atmospheric teleconnections over the North Pacific and East Asia vary considerably on sub-seasonal time scales, and are strongly phase-locked to the sub-seasonal evolution. In this study, we investigate how well climate models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulate the sub-seasonal evolution of teleconnections over the North Pacific and East Asia associated with El Niño-Southern Oscillation (ENSO). In the observations, there is a prominent anticyclone anomaly over the Kuroshio extension region (i.e. Kuroshio anticyclone), which significantly affects East Asian climate in the early winter (November-December) of El Niño years. However, in January, the Kuroshio anticyclone suddenly disappears, and a cyclonic flow dominates over the North Pacific. It is found here that the CMIP5 models simulate the overall extratropical teleconnection patterns, but they fail to reproduce some of these sub-seasonally-varying features in atmospheric circulation. For example, the models tend to simulate a weaker Kuroshio anticyclone in the early winter during El Niño phases, and fail to capture the abrupt decay of the Kuroshio anticyclone in the late winter. We demonstrate here that these systematic errors in ENSO teleconnection can be explained by systematic errors in tropical precipitation associated with ENSO. That is, negative precipitation anomalies over the western North Pacific (WNP) are too weak in the models compared to that in the observations, and their amplitude tends to be strengthened from December to the following January, while they are weakened in the observations. In addition, analyses on the inter-model diversity strongly support that relative magnitudes of WNP and central Pacific precipitation anomalies are critical for determining sub-seasonal evolution of ENSO teleconnections over the North Pacific and East Asia.

  8. Climate Prediction Center (CPC) Monthly North Atlantic Oscillation (NAO) teleconnection index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly tabulated index of the North Atlantic Oscillation (NAO) teleconnection pattern. The data spans the period 1950 to present. The index is derived from a...

  9. Planetary and tidal wave-type oscillations in the ionospheric sporadic E layers over Tehran region

    Science.gov (United States)

    Karami, K.; Ghader, S.; Bidokhti, A. A.; Joghataei, M.; Neyestani, A.; Mohammadabadi, A.

    2012-04-01

    It is believed that in the lower ionosphere, particularly in the ionospheric sporadic E (Es) layers (90-130 km), the planetary and tidal wave-type oscillations in the ionized component indicate the planetary and tidal waves in the neutral atmosphere. In the present work, the presence of wave-type oscillations, including planetary and tidal waves in the ionospheric sporadic E layers over Tehran region is examined. Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran, from July 2006 to June 2007 are used to investigate seasonal variations of planetary and tidal waves activities. For the purpose of accurate comparison between different seasons, wavelet transform is applied to time series of foEs and h‧Es, namely, the critical frequency and virtual height of Es layers, respectively. The results show that the sporadic E layers over Tehran region are strongly under the influence of upward propagation of waves from below. More specifically, among diverse range of periodicities in the sporadic E layers, we found that diurnal (24 hours) and semidiurnal (12 hours) oscillations in all seasons for both parameters. Moreover, terdiurnal (8 hours) tide-like variation is observed during spring and summer for foEs parameter and summer and winter for h‧Es. Furthermore, the results show that diurnal tidal waves obtain their maximum activities during autumn and winter seasons, and their activities decrease during the late spring and summer. In addition, periods of about 2, 4, 6, 10, 14, and 16 days in our observation verifies the hypothesis of upward propagation of planetary waves from lower atmosphere to the ionosphere. Moreover, planetary waves have their maximum activities during equinox.

  10. Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing

    DEFF Research Database (Denmark)

    Salt, Lesley A.; Thomas, Helmuth; Prowe, Friederike

    2013-01-01

    [1] High biological activity causes a distinct seasonality of surface water pH in the North Sea, which is a strong sink for atmospheric CO2 via an effective shelf pump. The intimate connection between the North Sea and the North Atlantic Ocean suggests that the variability of the CO2 system...... of the North Atlantic Ocean may, in part, be responsible for the observed variability of pH and CO2 in the North Sea. In this work, we demonstrate the role of the North Atlantic Oscillation (NAO), the dominant climate mode for the North Atlantic, in governing this variability. Based on three extensive...... observational records covering the relevant levels of the NAO index, we provide evidence that the North Sea pH and CO2 system strongly responds to external and internal expressions of the NAO. Under positive NAO, the higher rates of inflow of water from the North Atlantic Ocean and the Baltic outflow lead...

  11. The North Atlantic Oscillation: variability and interactions with the North Atlantic ocean and Artic sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T

    2000-07-01

    The North Atlantic oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region and describes the strengthening and weakening of the midlatitude westerlies. In this study, variability of the NAO during wintertime and its relationship to the North Atlantic ocean and Arctic sea ice is investigated. For this purpose, observational data are analyzed along with integrations of models for the Atlantic ocean, Arctic sea ice, and the coupled global climate system. From a statistical point of view, the observed NAO index shows unusually high variance on interdecadal time scales during the 20th century. Variability on other time scales is consistent with realizations of random processes (''white noise''). Recurrence of wintertime NAO anomalies from winter-to-winter with missing signals during the inbetween nonwinter seasons is primarily associated with interdecadal variability of the NAO. This recurrence indicates that low-frequency changes of the NAO during the 20th century were in part externally forced. (orig.)

  12. The North Atlantic Oscillation: variability and interactions with the North Atlantic ocean and Artic sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jung, T.

    2000-07-01

    The North Atlantic oscillation (NAO) represents the dominant mode of atmospheric variability in the North Atlantic region and describes the strengthening and weakening of the midlatitude westerlies. In this study, variability of the NAO during wintertime and its relationship to the North Atlantic ocean and Arctic sea ice is investigated. For this purpose, observational data are analyzed along with integrations of models for the Atlantic ocean, Arctic sea ice, and the coupled global climate system. From a statistical point of view, the observed NAO index shows unusually high variance on interdecadal time scales during the 20th century. Variability on other time scales is consistent with realizations of random processes (''white noise''). Recurrence of wintertime NAO anomalies from winter-to-winter with missing signals during the inbetween nonwinter seasons is primarily associated with interdecadal variability of the NAO. This recurrence indicates that low-frequency changes of the NAO during the 20th century were in part externally forced. (orig.)

  13. Seasonal dynamics and micro-climatic preference of two Alpine endemic hypogean beetles

    Directory of Open Access Journals (Sweden)

    Stefano Mammola

    2015-09-01

    Full Text Available Hypogean beetles generally live in stable environments, characterized by constant temperature and high relative humidity. Changes in the underground microclimatic conditions generally induce local migrations of the beetles through the hypogean environment in search of suitable microhabitats. We studied the seasonal dynamics and the micro-climatic preference of two Alpine endemic hypogean beetles - Sphodropsis ghilianii (Coleoptera, Carabidae and Dellabeffaella roccae (Coleoptera, Cholevidae - in the hypogean complex of Pugnetto (Graian Alps, Italy. We surveyed the two species for one year, using baited pitfall traps and measuring temperature and humidity along the two main caves. We used logistic regression mixed models (GLMMs to relate the presence of the two species to several variables, namely microclimate (seasonality, temperature, and humidity, subjacency and cave length. In addition, we tested the attractive power of the bait on the two species. The thermic optimum for S. ghilianii was found to be around 7°C, with an increasing probability of finding the species in the vicinity of the cave entrance during summer, autumn and spring. The species migrates inside the cave in winter, in response to the drop in the mean daily temperature and in the relative humidity occurring in the outer parts of the cave. On the contrary, D. roccae showed a significant preference for the deeper sections of the cave, characterized by an almost constant temperature of 9°C in air saturated with water vapour. Males and females individuals of both species were found to be equally affected by the environmental variables included in the analysis. We also provided information on the life history of the two species and methodological insights about the use of the bait in the traps

  14. WRF-Hydro Simulated Spatiotemporal Characteristics of Streamflow Extremes over the CONUS during 1993-2016 and Possible Connections with Climate Variability

    Science.gov (United States)

    Dugger, A. L.; Zhang, Y.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L.; Rafieeinasab, A.; Sampson, K. M.; Salas, F.; Read, L.; Pan, L.; Yates, D. N.; Cosgrove, B.; Clark, E. P.

    2017-12-01

    Streamflow extremes (lows and peaks) tend to have disproportionately higher impacts on the human and natural systems compared to mean streamflow. Examining and understanding the spatiotemporal distributions of streamflow extremes is of significant interests to both the research community and the water resources management. In this work, the output from the 24-year (1993 through 2016) retrospective runs of the National Water Model (NWM) version of WRF-Hydro will be analyzed for streamflow extremes over the CONUS domain. The CONUS domain was configured at 1-km resolution for land surface grid and 250-m resolution for terrain routing. The WRF-Hydro runs were forced by the regridded and downscaled NLDAS2 data. The analyses focus on daily mean streamflow values over the full water year and within the summer and winter seasons. Connections between NWM streamflow and other hydrologic variables (e.g. snowpack, soil moisture/saturation and ET) with variations in large-scale climate phenomena, e.g., El Niño - Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and North American monsoon are examined. The CONUS domain has a diverse environment and is characterized by complex terrain, heterogeneous land surfaces and ecosystems, and numerous hydrological basins. The potential dependence of streamflow extremes on regional terrain character, climatic conditions, and ecologic zones will also be investigated.

  15. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  16. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth's most important biodiversity hotspots

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, German; Alvarez, Diana M. [Universidad Nacional de Colombia, School of Geosciences and Environment, Medellin (Colombia); Rueda, Oscar A. [Universidad Nacional de Colombia, School of Geosciences and Environment, Medellin (Colombia); Grupo HTM, Medellin (Colombia)

    2011-06-15

    The hydro-climatic variability of the Colombian Andes associated with El Nino-Southern Oscillation (ENSO) is reviewed using records of rainfall, river discharges, soil moisture, and a vegetation index (NDVI) as a surrogate for evapotranspiration. Anomalies in the components of the surface water balance during both phases of ENSO are quantified in terms of their sign, timing, and magnitude. During El Nino (La Nina), the region experiences negative (positive) anomalies in rainfall, river discharges (average and extremes), soil moisture, and NDVI. ENSO's effects are phase-locked to the seasonal cycle, being stronger during December-February, and weaker during March-May. Besides, rainfall and river discharges anomalies show that the ENSO signal exhibits a westerly wave-like propagation, being stronger (weaker) and earlier (later) over the western (eastern) Andes. Soil moisture anomalies are land-cover type dependant, but overall they are enhanced by ENSO, showing very low values during El Nino (mainly during dry seasons), but saturation values during La Nina. A suite of large-scale and regional mechanisms cooperating at the ocean-atmosphere-land system are reviewed to explaining the identified hydro-climatic anomalies. This review contributes to an understanding of the hydro-climatic framework of a region identified as the most critical hotspot for biodiversity on Earth, and constitutes a wake-up call for scientists and policy-makers alike, to take actions and mobilize resources and minds to prevent the further destruction of the region's valuable hydrologic and biodiversity resources and ecosystems. It also sheds lights towards the implementation of strategies and adaptation plans to coping with threats from global environmental change. (orig.)

  17. Current climate and climate change over India as simulated by the Canadian Regional Climate Model

    Science.gov (United States)

    Alexandru, Adelina; Sushama, Laxmi

    2015-08-01

    The performance of the fifth generation of the Canadian Regional Climate Model (CRCM5) in reproducing the main climatic characteristics over India during the southwest (SW)-, post- and pre-monsoon seasons are presented in this article. To assess the performance of CRCM5, European Centre for Medium- Range Weather Forecasts (ECMWF) Re- Analysis (ERA- 40) and Interim re-analysis (ERA-Interim) driven CRCM5 simulation is compared against independent observations and reanalysis data for the 1971-2000 period. Projected changes for two future periods, 2041-2070 and 2071-2100, with respect to the 1971-2000 current period are assessed based on two transient climate change simulations of CRCM5 spanning the 1950-2100 period. These two simulations are driven by the Canadian Earth System Model version 2 (CanESM2) and the Max Planck Institute for Meteorology's Earth System Low Resolution Model (MPI-ESM-LR), respectively. The boundary forcing errors associated with errors in the driving global climate models are also studied by comparing the 1971-2000 period of the CanESM2 and MPI-ESM-LR driven simulations with that of the CRCM5 simulation driven by ERA-40/ERA-Interim. Results show that CRCM5 driven by ERA-40/ERA-Interim is in general able to capture well the temporal and spatial patterns of 2 m-temperature, precipitation, wind, sea level pressure, total runoff and soil moisture over India in comparison with available reanalysis and observations. However, some noticeable differences between the model and observational data were found during the SW-monsoon season within the domain of integration. CRCM5 driven by ERA-40/ERA-Interim is 1-2 °C colder than CRU observations and generates more precipitation over the Western Ghats and central regions of India, and not enough in the northern and north-eastern parts of India and along the Konkan west coast in comparison with the observed precipitation. The monsoon onset seems to be relatively well captured over the southwestern coast of

  18. Revisiting Cholera-Climate Teleconnections in the Native Homeland: ENSO and other Extremes through the Regional Hydroclimatic Drivers

    Science.gov (United States)

    Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.

    2014-12-01

    Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal

  19. Evaluating Downscaling Methods for Seasonal Climate Forecasts over East Africa

    Science.gov (United States)

    Roberts, J. Brent; Robertson, Franklin R.; Bosilovich, Michael; Lyon, Bradfield; Funk, Chris

    2013-01-01

    The U.S. National Multi-Model Ensemble seasonal forecasting system is providing hindcast and real-time data streams to be used in assessing and improving seasonal predictive capacity. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of NMME forecasts specifically for use in impact modeling within hub regions including East Africa, the Hindu Kush-Himalayan (HKH) region and Mesoamerica. One of the participating models in NMME is the NASA Goddard Earth Observing System (GEOS5). This work will present an intercomparison of downscaling methods using the GEOS5 seasonal forecasts of temperature and precipitation over East Africa. The current seasonal forecasting system provides monthly averaged forecast anomalies. These anomalies must be spatially downscaled and temporally disaggregated for use in application modeling (e.g. hydrology, agriculture). There are several available downscaling methodologies that can be implemented to accomplish this goal. Selected methods include both a non-homogenous hidden Markov model and an analogue based approach. A particular emphasis will be placed on quantifying the ability of different methods to capture the intermittency of precipitation within both the short and long rain seasons. Further, the ability to capture spatial covariances will be assessed. Both probabilistic and deterministic skill measures will be evaluated over the hindcast period

  20. Hydrological scenarios of future seasonal runoff distribution in Central Slovakia

    International Nuclear Information System (INIS)

    Hlavcova, K; Szolgay, J; Kohnova, S; Balint, G

    2008-01-01

    The hydrological scenarios of future seasonal distributions of runoff in the upper Hron River basin, which was chosen as a representative mountainous region in Central Slovakia, were evaluated. Changes in the future climate were expressed by three different climate change scenarios developed within the framework of the Central and Eastern Europe Climate Change Impact and Vulnerability Assessment Project (CECILIA). The climate change scenarios were constructed using the pattern scaling method from the outputs of transient simulations made by 3 GCMs - ECHAM4/OPYC3, HadCM2 and NCAR DOE-PCM. A conceptual hydrological balance model calibrated with data from the period 1971-2000 was used for modelling changes in runoff with monthly time steps. The runoff change scenarios for the selected basin in the future time horizons of 2025, 2050 and 2100 show changes in the seasonal runoff distribution.