WorldWideScience

Sample records for sealed radiation sources

  1. Fabrication of sealed radiation sources

    International Nuclear Information System (INIS)

    Mars, Jean.

    1977-01-01

    The description is given for fabricating a sealed radiation source, consisting in depositing on a metal substrate a thin active coat of a radioelement, termed first coat, submitting this coated substrate to an oxidation treatment in order to obtain on the first coat an inactive coat of an oxide of the metal, termed second coat, and depositing a coat of varnish on this second inactive coat [fr

  2. Guidelines for testing sealed radiation sources

    International Nuclear Information System (INIS)

    1989-01-01

    These guidelines are based on article 16(1) of the Ordinance on the Implementation of Atomic Safety and Radiation Protection dated 11 October 1984 (VOAS), in connection with article 36 of the Executory Provision to the VOAS, of 11 October 1984. They apply to the testing of sealed sources to verify their intactness, tightness and non-contamination as well as observance of their fixed service time. The type, scope and intervals of testing as well as the evaluation of test results are determined. These guidelines also apply to the testing of radiation sources forming part of radiation equipment, unless otherwise provided for in the type license or permit. These guidelines enter into force on 1 January 1990

  3. Rendering harmless and deposition of spent sealed radiation sources

    International Nuclear Information System (INIS)

    Cholerzynski, A.

    1999-01-01

    The sealed radiation sources are commonly used in medicine, agriculture, industry and scientific research. There is millions of such sources being used all over the world. The purpose of this article is to present a modes of management and disposal of spent sealed radioactive sources in different countries as well as methods being recommended in Poland

  4. Radiation safety and inventory of sealed radiation sources in Pakistan

    International Nuclear Information System (INIS)

    Ali, M.; Mannan, A.

    2001-01-01

    Sealed radiation sources (SRS) of various types and activities are widely used in industry, medicine, agriculture, research and teaching in Pakistan. The proper maintenance of records of SRS is mandatory for users/licensees. Since 1956, more than 2000 radiation sources of different isotopes having activities of Bq to TBq have been imported. Of these, several hundred sources have been disposed of and some have been exported/returned to the suppliers. To ensure the safety and security of the sources and to control and regulate the safe use of radiation sources in various disciplines, the Directorate of Nuclear Safety and Radiation Protection (DNSRP), the implementing arm of the regulatory authority in the country, has introduced a system for notifying, registering and licensing the use of all types of SRS. In order to update the inventory of SRS used throughout the country, the DNSRP has developed a database. (author)

  5. Potential GTCC LLW sealed radiation source recycle initiatives

    International Nuclear Information System (INIS)

    Fischer, D.

    1992-04-01

    This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities

  6. Radiation safety of sealed sources and equipment containing them

    International Nuclear Information System (INIS)

    1993-01-01

    The guide gives information and requirements concerning the technical construction, installation, use and licensing of devices containing sealed radioactive sources in order to ensure the operational safety. The requirements are in accordance with the international standards ISO 1677, ISO 2919, ISO 7205 and Nordic Recommendations on radiation protection for radionuclide gauges in permanent installation. The guide explains also the practical measures that must be taken into account when a radiation device is repaired, maintained or removed from the use. (8 refs.)

  7. Radiation exposure management over a decade in sealed sources fabrication

    International Nuclear Information System (INIS)

    Chougule, Nitin V.; Swaminathan, N.; Singh, P.; Sreenivas, V.; Bairwa, S.M.; Rath, D.P.; Patil, B.N.; Sastry, K.V.S.

    2008-01-01

    Radioactive sealed sources find innumerable applications in medical and industrial applications. 60 Co teletherapy sources are used for the treatment of cancer. In brachytherapy; 137 Cs and 192 Ir are used. Industrial sources using 60 Co, 137 Cs find applications in nucleonic gauges, tracer studies etc. 60 Co and 192 Ir sources are used in radiography also. In addition, 60 Co is widely used in irradiator facilities. Board of Isotopes and Radiation Technology (BRIT) has committed in supply of these sealed sources to various hospitals and industrial institutions in India. Annually, PetaBq (PBq) level of above mentioned isotopes are handled remotely in hot cells, RLG, BARC. This paper brings out a detailed account on the radiological surveillance provided during the fabrication of these sources implementing ALARA. The decrease in collective dose per activity handled is the outcome of improved operation practices which were carried out at various stages of source fabrication. (author)

  8. Evaluation of methods to leak test sealed radiation sources

    International Nuclear Information System (INIS)

    Arbeau, N.D.; Scott, C.K.

    1987-04-01

    The methods for the leak testing of sealed radiation sources were reviewed. One hundred and thirty-one equipment vendors were surveyed to identify commercially available leak test instruments. The equipment is summarized in tabular form by radiation type and detector type for easy reference. The radiation characteristics of the licensed sources were reviewed and summarized in a format that can be used to select the most suitable detection method. A test kit is proposed for use by inspectors when verifying a licensee's test procedures. The general elements of leak test procedures are discussed

  9. Radiation protection problems with sealed Pu radiation sources

    International Nuclear Information System (INIS)

    Naumann, M.; Wels, C.

    1982-01-01

    A brief outline of the production methods and most important properties of Pu-238 and Pu-239 is given, followed by an overview of possibilities for utilizing the different types of radiation emitted, a description of problems involved in the safe handling of Pu radiation sources, and an assessment of the design principles for Pu-containing alpha, photon, neutron and energy sources from the radiation protection point of view. (author)

  10. Development of quality assurance procedures for production of sealed radiation source

    CERN Document Server

    Nam, J H; Cho, W K; Han, H S; Hong, S B; Kim, K H; Kim, S D; Lee, Y G; Lim, N J

    2001-01-01

    The quality assurance procedures for sealed radiation sources production using HANARO and RIPF have been developed. The detailed quality assurance procedures are essential to manage the whole work process effectively and ensure the quality of the produced sealed sources. Through applying this quality assurance procedures to the entire production works of the sealed radiation sources, it is expected that the quality of the products, the safety of the works and the satisfaction of the customers will be increased.

  11. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  12. Safety assessment of the disposal of sealed radiation sources in boreholes

    International Nuclear Information System (INIS)

    Oliveira, Rosana Lagua de; Vicente, Roberto; Hiromoto, Goro

    2009-01-01

    The Radioactive Waste Management Laboratory (RNML) at the Nuclear Energy Research Institute (NERI) in Sao Paulo, Brazil, is developing the concept of a repository for disused sealed radiation sources in a deep borehole. Several thousands disused sealed radiation sources are stored at NERI awaiting the decision on final disposal and tens of thousands are still under the possession of the licensees. A significant fraction of these sources are long-lived and will require final disposal in a geological repository. The purpose of this paper is to identify and discuss suitable safety assessment strategies for the repository concept and to illustrate a rational approach for a long-term safety assessment methodology. (author)

  13. Experience and problems of the automated measuring and sorting of sealed radiation sources

    International Nuclear Information System (INIS)

    Shmidt, G.

    1979-01-01

    It has been shown that with the help of a serial device for samples changing and a mini-computer with a suitable software it is possible to organize the radioactivity measuring and sorting of sealed gamma-sources with activity in the microcuri region. Application of the computer permits to rise accuracy of the data on the radiation sources radioactivity, sorted according to the preset activity level groups and, in the casa of necessity, to perform the activity measurements with lower error. The method listed, gives the working-time economy of nearly 4 hours in measuring and sorting of some 500 sealed radiation sources [ru

  14. Production of sealed sources

    International Nuclear Information System (INIS)

    Bandi, L.N.

    2016-01-01

    Radioisotope production has been an ongoing activity in India since the sixties. Radioisotopes find wide-ranging applications in various fields, including industry, research, agriculture and medicine. Board of Radiation and Isotope Technology, an industrial unit of Department of Atomic Energy is involved in fabrication and supply of wide variety of sealed sources. The main radioisotopes fabricated and supplied by BRIT are Cobalt-60, Iridium-192. These isotopes are employed in industrial and laboratory irradiators, teletherapy machines, radiography exposure devices, nucleonic gauges. The source fabrication facilities of BRIT are located at Rajasthan Atomic Power Project Cobalt-60 Facility (RAPPCOF), Kota, Radiological Laboratories Group (RLG) and High Intensity Radiation Utilization Project (HIRUP) at Trombay

  15. Sealed radioactive source management

    International Nuclear Information System (INIS)

    2005-01-01

    Sealed radioactive sources have been used in a wide range of application in medicine, agriculture, geology, industry and other fields. Since its utilization many sources have become out of use and became waste but no proper management. This has lead to many accidents causing deaths and serious radiation injuries worldwide. Spent sources application is expanding but their management has seen little improvements. Sealed radioactive sources have become a security risk calling for prompt action. Source management helps to maintain sources in a good physical status and provide means of source tracking and control. It also provides a well documented process of the sources making any future management options safe, secure and cost effective. Last but not least good source management substantially reduces the risk of accidents and eliminates the risk of malicious use. The International Atomic Energy Agency assists Member States to build the infrastructure to properly manage sealed radioactive sources. The assistance includes training of national experts to handle, condition and properly store the sources. For Member States that do not have proper facilities, we provide the technical assistance to design a proper facility to properly manage the radioactive sources and provide for their proper storage. For Member States that need to condition their sources properly but don't have the required infrastructure we provide direct assistance to physically help them with source recovery and provide an international expert team to properly condition their sources and render them safe and secure. We offer software (Radioactive Waste Management Registry) to properly keep a complete record on the sources and provide for efficient tracking. This also helps with proper planning and decision making for long term management

  16. Development of a sealed source radiation detector system for gamma ray scanning of petroleum distillation columns

    International Nuclear Information System (INIS)

    Vasquez Salvador, Pablo Antonio

    2004-01-01

    Gamma Ray Scanning is an online technique to 'view' the hydraulic performance of an operating column, with no disruption to operating processes conditions (pressure and temperature), as a cost-effective solution. The principle of this methodology consists of a small suitably sealed gamma radiation source and a radiation detector experimentally positioned to the column, moving concurrently in small increments on opposite sides and the quantity of gamma transmitted. The source-detector system consists of: a sealed ''6 0 Co radioactive source in a panoramic lead radiator, a scintillator detector coupled to a ratemeter / analyzer and a mobile system. In this work, a gamma scanning sealed source-detector system for distillation columns, was developed, comparing two scintillator detectors: NaI(Tl) (commercial) and CsI(Tl) (IPEN). In order to project the system, a simulated model of a tray-type distillation column was used. The equipment developed was tested in an industrial column for water treatment (6.5 m diameter and 40 m height). The required activities of 6 ''0Co, laboratory (11.1 MBq) and industrial works (1.48 TBq) were calculated by simulation software. Both, the NaI(Tl) and the CsI(Tl) detectors showed good proprieties for gamma scanning applications, determining the position and presence or absence of trays. (author)

  17. Sealed source peer review plan

    International Nuclear Information System (INIS)

    Feldman, Alexander; Leonard, Lee; Burns, Ron

    2009-01-01

    Sealed sources are known quantities of radioactive materials that have been encapsulated in quantities that produce known radiation fields. Sealed sources have multiple uses ranging from instrument calibration sources to sources that produce radiation fields for experimental applications. The Off-Site Source Recovery (OSR) Project at Los Alamos National Laboratory (LANL), created in 1999, under the direction of the Waste Management Division of the U.S. Department of Energy (DOE) Albuquerque has been assigned the responsibility to recover and manage excess and unwanted radioactive sealed sources from the public and private sector. LANL intends to ship drums containing qualified sealed sources to the Waste Isolation Pilot Plant (WIPP) for disposal. Prior to shipping, these drums must be characterized with respect to radiological content and other parameters. The U. S. Environmental Protection Agency (EPA) requires that ten radionulcides be quantified and reported for every container of waste to be disposed in the WIPP. The methods traditionally approved by the EPA include non-destructive assay (NDA) in accordance with Appendix A of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (DOE, 2002) (CH WAC). However, because of the nature and pedigree of historical records for sealed sources and the technical infeasibility of performing NDA on these sources, LANL proposes to characterize the content of these waste drums using qualified existing radiological data in lieu of direct measurement. This plan describes the process and documentation requirements for the use of the peer review process to qualify existing data for sealed radiological sources in lieu of perfonning radioassay. The peer review process will be performed in accordance with criteria provided in 40 CFR (section) 194.22 which specifies the use of the NUREG 1297 guidelines. The plan defines the management approach, resources, schedule, and technical requirements

  18. Radiation protection rules for handling of sealed radioactive sources in medicine

    International Nuclear Information System (INIS)

    1985-02-01

    The rules presented here relate to the use of sealed radioactive sources in medical therapy, with the radioactive sources being temporarily or permanently incorporated into body cavities or body tissues, or fixed to the body surface. They also relate to radioactive sources with dimensions below 5 mm (as e.g. seeds). (orig./HP) [de

  19. Management of spent sealed sources in Indonesia

    International Nuclear Information System (INIS)

    Wisnubroto, D.S.

    2002-01-01

    This paper describes the effort of the Center for Development of Radioactive Waste Management (CDRWM) to develop and implement activities in maintaining and improving the safety of spent sealed radiation sources and the security of radioactive materials over their life cycle. There is a wide variety of uses of radiation sources and radioactive materials in Indonesia, while the CDRWM plan to cover all spent radiation sources. Primary consideration is given to sealed radiation sources with relatively high levels of radioactivity which might necessitate interventional measures should control over them be lost. The policy of the Government of Indonesia for spent radiation sources is, whenever possible, spent sealed sources should be returned to the supplier. CDRWM has a general principle that sealed sources should not be removed from their holders, or the holders physically modified (except for Ra-226 needles, smoke detector and lighting preventer). (author)

  20. S.I. No 17 of 1972, Factories Ionising Radiations (Sealed Sources) Regulations, 1972

    International Nuclear Information System (INIS)

    1972-03-01

    The purpose of the Regulations in general is to prescribe measures which must be taken to ensure the adequate protection of persons employed in factories and other places to which the Factories Act 1955 applies, against ionizing radiations arising from radioactive substances sealed in a container and from any machine or apparatus including irradiating apparatus that is intended to produce ionizing radiations in which charged particles are accelerated by a voltage of not less than 5 kilovolts. The Schedule lays down the maximum permissible doses of radiation for the different categories of workers. The Regulations entered into force on 1 March 1972 [fr

  1. Management of spent and disused sealed radiation sources in Russian Federation

    International Nuclear Information System (INIS)

    Sobolev, I.A.; Ojovan, M.I.; Karlina, O.K.; Arustamov, A.E.

    2001-01-01

    Full text: The system of management of spent and disused sealed radiation sources (SDSRS) in Russian Federation is based on centralised approach. This system involves 16 regional facilities of the system 'Radon' which provide safe management of SDSRS. The scientific and methodical guidance on activities of regional facilities 'Radon' carries out the Scientific and Industrial Association 'Radon', Moscow. Recently the Moscow SIA 'Radon' examined activities at regional facilities 'Radon' accordingly with the program approved by the State Supervision Authority of Russia (GAN). It was revealed that the main type of radioactive waste at these facilities comprises SDSRS. This is the case both on summarised quantity of accumulated radioactivity (more than 99%) and on general quantity of the containers with waste (more than 80%). The average radionuclide composition of the SDSRS accumulated at regional facilities 'Radon' is as follows: Cs-137 (40%), Co-60 (25%), Sr-90 (22%), Ir-192 (8%) and Tm-170 (4%). The content of other radionuclides in SDSRS is not more than 1%. At regional facilities 'Radon' SDSRS mainly are disposed of in bore hole type repositories. Nevertheless SDSRS are also stored in containers being placed into repositories for solid radioactive waste. SDSRS which contain long lived radionuclides are stored until the decision on their final disposal into a deep geological formation. So far as free (not conditioned) storage of SDSRS can not provide safe conditions for environment for a long time, it is necessary to immobilise sources additionally into a suitable matrix material. Supplemental sources inclusion in a lead (or lead based alloy) matrix using Moscow SIA 'Radon' mobile plant was carried out at five regional 'Radon' facilities as follows: Zagorsk branch of Moscow SIA 'Radon', Volgograd, Ekaterinburg, Nizhny Novgorod, and Ufa. More than 1 million Ci of SDSRS are stored at present time in conditioned form in bore hole repositories. In 1998-1999 the Moscow

  2. Comparative Study on Radiological Impact Due To Direct Exposure to a Radiological Dispersal Device Using A Sealed Radiation Source

    International Nuclear Information System (INIS)

    Margeanu, C.A.

    2011-01-01

    Nowadays, one of the most serious terrorist threats implies radiological dispersal devices (RDDs), the so-called dirty bombs, that combine a conventional explosive surrounded by an inflammatory material (like thermit) with radioactive material. The paper objective is to evaluate the radiological impact due to direct exposure to a RDD using a sealed radiation source (used for medical and industrial applications) as radioactive material. The simulations were performed for 60Co, 137Cs and 192Ir radiation sources. In order to model the contamination potential level and radiation exposure due to radioactive material spreading from RDD, Lawrence Livermore National Laboratory's HOTSPOT 2.07 computer code was used. The worst case scenario has been considered, calculations being performed for two radioactive material dispersion models, namely General radioactive Plume and General Explosion. Following parameters evolution with distance from the radiation source was investigated: total effective dose equivalent, time-integrated air concentration, ground surface deposition and ground shine dose rates. Comparisons between considered radiation sources and radioactive material dispersion models have been performed. The most drastic effects on population and the environment characterize 60Co sealed radiation source use in RDD.

  3. Exposure doses of nurses in the radiation therapy using sealed small radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Hatori, N; Yamakawa, K; Eda, T; Habu, T; Endo, H [Gunma Cancer Center Hospital (Japan)

    1979-11-01

    In radiation for malignant tumor, interstitial irradiation and/or intracavitary irradiations are performed in addition to external irradiation. The former two treatments are well applied for the tumors at head and neck region, especially carcinoma of the tongue and for that in gynecological tumor like carcinoma of the cervix. However, nurses are supposed to be irradiated during the treatment, as they help the handling of radiation sourses to insert or to pierce them directly into diseased parts. In this paper, we measured the relationship between working time of nurses for the treatment and exposure doses of nurses, using a thermoluminescence dosimeter, the exposure doses were approximately proportional to the working time, and 3-6 mR working time for a treatment in the cases of the diseases head and neck, and 4 mR working time for a treatment in the cases of gynecological diseases.

  4. Exposure doses of nurses in the radiation therapy using sealed small radiation sources

    International Nuclear Information System (INIS)

    Hatori, Noboru; Yamakawa, Katsumi; Eda, Tetsuo; Habu, Takashi; Endo, Hiroshi

    1979-01-01

    In radiation for malignant tumor, interstitial irradiation and/or intracavitary irradiations are performed in addition to external irradiation. The former two treatments are well applied for the tumors at head and neck region, especially carcinoma of the tongue and for that in gynecological tumor like carcinoma of the cervix. However, nurses are supposed to be irradiated during the treatment, as they help the handling of radiation sourses to insert or to pierce them directly into diseased parts. In this paper, we measured the relationship between working time of nurses for the treatment and exposure doses of nurses, using a thermoluminescence dosimeter, the exposure doses were approximately proportional to the working time, and 3-6 mR working time for a treatment in the cases of the diseases head and neck, and 4 mR working time for a treatment in the cases of gynecological diseases. (author)

  5. Standard operational radiation protection instructions for process instrumentation and control engineering applying radiometric equipment containing sealed sources

    International Nuclear Information System (INIS)

    1989-01-01

    According to article 16(3) of the Ordinance on the Implementation of Atomic Safety and Radiation Protection of 11 October 1984, operational radiation protection instructions have to be worked out for each type of nuclear energy application. Based on the valid legal provisions of the GDR and on experience and knowledge gained in practice, the most important operational instructions and procedures for the operation of radiometric equipment containing sealed sources were compiled. The example should enable the management to make the instructions directly applicable and, if necessary, to modify or supplement them

  6. Procedure to carry out leakage test in beta radiation sealed sources emitters of 90Sr/90Y

    International Nuclear Information System (INIS)

    Alvarez R, J. T.

    2010-09-01

    In the alpha-beta room of the Secondary Laboratory of Dosimetric Calibration of the Metrology Department of Ionizing Radiations ophthalmic applicators are calibrated in absorbed dose terms in water D w ; these applicators, basically are emitter sealed sources of pure beta radiation of 90 Sr / 90 Y. Concretely, the laboratory quality system indicates to use the established procedure for the calibration of these sources, which establishes the requirement of to carry out a leakage test, before to calibrate the source. However, in the Laboratory leakage test certificates sent by specialized companies in radiological protection services have been received, in which are used gamma spectrometry equipment s for beta radiation leakage tests, since it is not reliable to detect pure beta radiation with a scintillating detector with NaI crystal, (because it could detect the braking radiation produced in the detector). Therefore the Laboratory has had to verify the results of the tests with a correct technique, with the purpose of determining the presence of sources with their altered integrity and radioactive material leakage. The objective of this work is to describe a technique for beta activity measurement - of the standard ISO 7503, part 1 (1988) - and its application with a detector Gm plane (type pankage) in the realization of leakage tests in emitter sources of pure beta radiation, inside the mark of quality assurance indicated by the report ICRU 76. (Author)

  7. THE PROBLEMS OF USING EXEMPTION ACTIVITY VALUES FOR REGULATING THE MANAGEMENT OF SEALED RADIONUCLIDE SOURCES OF GAMMA-RADIATION

    Directory of Open Access Journals (Sweden)

    A. N. Barkovsky

    2017-01-01

    Full Text Available The article focuses on the procedure for exemption of the sealed and unsealed radionuclide sources of gamma radiation from regulatory control. The contradictory nature of the existing set of exemption criteria has been noted, leading, in some cases, to paradoxical situations. It is shown that the exempt activity values determined in NRB-99/2009 and in the international basic safety standards of the IAEA are significantly overestimated (in comparison with the activity values of a point source creating the ambient dose equivalent rate of 1 μSv / h at a distance of 0.1 m for a number of the most widely used gamma-emitting radionuclides, including 22Na, 54Mn, 75Se, 152Eu and 154Eu. It is proposed to revise the current values of exempt activity, bringing them in line with the dose rate criterion for the exempt of sealed radionuclide sources of gamma radiation, and to present them with one significant digit. The corrected values of exempt activity for  seven selected radionuclides are proposed for further use in the process of revision of the national radiation safety standards.

  8. Environmental radiation control and quality management system in design and operation of sealed radioactive sources

    International Nuclear Information System (INIS)

    Hussein, A.Z.

    2007-01-01

    New environmental regulations and radiation safety standards are being implemented almost daily to ensure radiation safety, in particular for practices causing exposures to undue radiation doses. A particular emphasis of real challenge for organizations and users of radiation sources has to be for proper radiological safety assessment and is becoming cost effectively to be prepared for auditing. Special concern for the environment is of global . nature, and hence environmental auditing has been and will continue to be an essential practice for improving the environment and for meeting the relevant regulations and standards. In general, most facilities that deal with radioactive sources undertake strict safety measures in terms of personnel radiation protection, handling procedures and security. Hence, those measures should comply with the requirements of the environmental protection standards. Accordingly, a successful quality management system must balance realities of organization and personnel in achieving quality objectives. Organizational principles are found in the technical aspects of' quality management, such as, charting, requirements, measurements, procedures, ... , etc. Human principles are found in the communication side of quality management (e.g. meetings, ,decision making, ,teams, ... , etc). The quality management must understand and balance skills needed to blend them together. Large gamma irradiators present a high potential radiation hazard to the surrounding environment, since the amount of radioactivity is of the order of (P Bq) and a very high dose rates are produced during irradiation. Application of environmental radiation control deemed by regulatory authority and a proper quality management system by the utility would serve public health and safety

  9. Radiation protection: data sheets for use of 11C, 18F, 22Na, 24Na, 33P, 35S, 36Cl, 45Ca in non sealed sources

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    These data sheets give the essential datas for the use of non sealed radioactive sources They are made for users in view of their radiation protection and give the administrative procedures, the radiation protection procedures and equipments to be used in function of the activity

  10. Production of the sealed gamma-radiation sources of with iridium-192 radionuclide at the WWR-K research reactor

    International Nuclear Information System (INIS)

    Petukhov, V.K.; Chernayev, V.P.; Chabeyev, N.T.; Ermakov, E.L.; Chakrov, P.V.

    2005-01-01

    Full text: Conversion orientation of the WWR-K research reactor activity was established after renewal of its operation in 1997. A priority in reactor works was determined in the decision of tasks of practical use of nuclear technologies in a national economy in the next directions: in an industry, public health services and agriculture. The items of prime tasks: development and introduction of radiation technologies and manufacturing of radioisotopes for industry. This task included both scientific and technical program in the list of works of the Republican goals. At the WWR-K reactor within the framework of the this task solution the works on pilot production of the sealed sources of radioactive radiations (SSRR) with Ir-192 radionuclide for an industry of Republic of Kazakhstan were made. Organizational questions related to the Kazakhstan authority body and the regulating documentation were solved the first of all. The second stage was the development of the techniques of creating of devices providing an samples irradiation in reactor, control of sources sealing, measurements of the equivalent radiation doze from sources and high-quality support of SSRR manufacture over all technological way. At the third stage was made a little quantity SSRR with Ir-192 radionuclide, such as GIID-A1 (G6), for 'TEKOPS-660' Gammaray Projectors. This work served as experimental check of the decisions correctness, and has allowed to remove those lacks, to find out which it was possible only during direct manufacturing of radioactive sources. During performance of all these works the following was carried out: development and release of the documents and specifications regulating work on SSRR manufacture at the Institute of Nuclear Physics; personnel preparation and certification; preparation and equipment providing of reactor hot chambers by additional devices for work with irradiated iridium samples; development and manufacturing of the devices for iridium samples irradiation in

  11. Radiation protection rules for the technical application of sealed radioactive sources

    International Nuclear Information System (INIS)

    1982-10-01

    The standard is limited to operation containers and radiation equipment in which the radiation is made useful according to one or both of the following techniques for the application purpose: 1) by opening an aperture on the operation container without driving out the emitter (working position of the emitter in the operation container). 2) By driving out the emitter from the operation container within solid or flexible guide pipes (working position of the emitter outside the operation container). The regulations are not valid furthermore for operation containers and equipment which are to take up emitters with activities greater than 185 ps (5,000 Ci). (orig./HP) [de

  12. Aspects related to the testing of sealed radioactive sources

    International Nuclear Information System (INIS)

    Olteanu, C. M.; Nistor, V.; Valeca, S. C.

    2016-01-01

    Sealed radioactive sources are commonly used in a wide range of applications, such as: medical, industrial, agricultural and scientific research. The radioactive material is contained within the sealed source and the device allows the radiation to be used in a controlled way. Accidents can result if the control over a small fraction of those sources is lost. Sealed nuclear sources fall under the category of special form radioactive material, therefore they must meet safety requirements during transport according to regulations. Testing sealed radioactive sources is an important step in the conformity assessment process in order to obtain the design approval. In ICN Pitesti, the Reliability and Testing Laboratory is notified by CNCAN to perform tests on sealed radioactive sources. This paper wants to present aspects of the verifying tests on sealed capsules for Iridium-192 sources in order to demonstrate the compliance with the regulatory requirements and the program of quality assurance of the tests performed. (authors)

  13. Sealed radionuclide sources - new technical specifications and current practice

    Energy Technology Data Exchange (ETDEWEB)

    Brabec, D

    1987-03-01

    Basic technical specifications are discussed valid in Czechoslovakia for sealed radionuclide sources, based on international ISO and CMEA standards. Described are the standardization of terminology, relationships of tests, testing methods, types of sealed sources and their applications, relations to Czechoslovak regulations on radiation protection and to IAEA specifications for radioactive material shipment, etc. Practical impact is shown of the introduction of the new standards governing sealed sources on the national economy, and the purpose is explained of various documents issued with sealed sources. (author). 2 figs., 45 refs.

  14. Handling, conditioning and disposal of spent sealed sources

    International Nuclear Information System (INIS)

    1990-02-01

    The series entitled ''Technical Manual for the Management of Low and Intermediate Level Wastes Generated at Small Nuclear Research Centres and by Radioisotope Users in Medicine, Research and Industry'' will serve as reference material to experts on technical assistance missions and provide ''direct know-how'' for technical staff in developing countries. This document is the first in the series. It provides the technical guidance and know-how necessary to permit developing Member States to safely handle, condition and store spent sealed radiation sources. It covers: characterization of sealed sources, legislation and regulations, management of spent sealed sources, transportation and disposal of spent sealed sources. 5 refs, 10 figs, 6 tabs

  15. Management of spent sealed radioactive sources

    International Nuclear Information System (INIS)

    Vicente, Roberto; Sordei, Gian-Maria; Hiromoto, Goro

    2002-01-01

    The number of sealed radiation sources used in industrial, medical, and research applications in Brazil amounts to hundreds of thousands. Spent or disused sources are being collected and stored as radioactive waste in nuclear research centers, awaiting for a decision on their final disposal. However, a safe and economically feasible disposal technology is unavailable. The aim of this paper is to report the development of the concept of a repository and a treatment process that will allow the final disposal of all the spent sealed sources in a safe, dedicated, and exclusive repository. The concept of the disposal system is a deep borehole in stable geologic media, meeting the radiological performance standards and safety requirements set by international organizations. (author)

  16. Management of disused sealed sources

    International Nuclear Information System (INIS)

    Lukauskas, D.; Skridaila, N.

    2003-01-01

    The report presents the requirements on management of disused sealed sources in Lithuania; disused sealed source disposal facilities; performed safety analysis and planed repository safety improvements. The requirements on pre-disposal management of Disused Sealed Sources (DSS) are presented. The requirements on disposal of short lived VLLW and LILW (A, B and C classes) radioactive waste approved in 2002-2003. Generic Waste Acceptance Criteria for Near Surface Disposal, P-2003-01 approved in 2003. Requirements on disposal of Low and intermediate level long lived waste do not exist (D and E classes). Requirements for the disposal of disused sealed sources (F class) do not exist. Disposal method for the F class - Near Surface or Deep geological repository, depending on the waste acceptance criteria. Only one repository for institutional radioactive waste exist in Lithuania - Maisiagala repository. It is near surface RADON type disposal facility, built in 1963 and closed in 1988. It was constructed of the monolithic reinforced concrete with the dimensions 5 m x 15 m x 3 m, the thickness of the sidewalls is about 0.25 m and the thickness of the bottom is about 0.2 m. The overall volume is about 200 m 3 . At time of closure only three fifths of the volume had been filled. The empty two fifths of the vault were filled with concrete, then with sand, then with the concrete (0.01 m), hot bitumen and the 0.05 m asphalt layers. Monolithic concrete that was covered with bitumen and 0.05 m thick layer of asphalt closed the vault. Sand layer the thickness of which was not less than 1.2 m formed the cap. Disused radioactive sources embedded in a biological shielding were buried together with their shielding, the sources without the shielding were buried in two stainless steel containers. The total activity of buried radioactive nuclides is 3.42.10 -15 Bq (calculated according the documentation). There are some uncertainties about the inventory: from 1963 to 1973. After the

  17. Sure confinement of spent sealed sources

    International Nuclear Information System (INIS)

    Lizcano, D.

    2013-10-01

    The industrial and technological development of the last decades produced and increment in the radiations application in different human activities. One of the main effects has been the production of radioactive wastes of all the levels. In Mexico, several stages of the waste management of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work the confinement of spent sealed sources is described, maintaining as main objective the security of these sources and the protection to the workers and the people. (author)

  18. Keeping Sealed Radioactive Sources Safe and Secure

    International Nuclear Information System (INIS)

    Potterton, Louise

    2013-01-01

    Radioactive sources are used in a wide variety of devices in medical, industrial, agricultural and research facilities worldwide. These sources, such as cobalt-60 and caesium-137, emit high levels of ionizing radiation, which can treat cancer, measure materials used in industry and sterilize food and medical appliances. Problems may arise when these sources are no longer needed, or if they are damaged or decayed. If these sources are not properly stored they can be a threat to human health and the environment and pose a security risk. Procedures to secure these spent or 'disused' sources are often highly expensive and need specialized assistance. The IAEA helps its States find long term solutions for the safe and secure storage of disused sealed radioactive sources (DSRSs)

  19. C-188 cobalt-60 sealed source integrity: source monitoring

    International Nuclear Information System (INIS)

    Defalco, G.M.; Shah, V.

    1995-01-01

    The integrity of C-188 cobalt-60 sealed sources used for radiation processing will be a key factor in the continued industrial acceptance and growth of gamma irradiation technology. Given the public's relatively poor understanding of most nuclear topics and the news media's tendency to sensationalize events, it is appropriate for suppliers and users of gamma technology to be vigilant and conservative regarding the application of cobalt-60 sources to industrial purposes. Nordion's recent decision to extend the optional warranty on its C-188 cobalt-60 sealed source from 15 years to 20 years is based on over 30 years of data generated from its on-going SOURCE SURVEILLANCE PROGRAM. This paper presents an overview of the C-188 SOURCE SURVEILLANCE PROGRAM. (author)

  20. Repatriation of disused sealed sources in Peru

    International Nuclear Information System (INIS)

    Mallaupoma, Mario; Abeyta, Cristy; Matzke, Jim

    2013-01-01

    Sealed radioactive sources are used around the world in medicine, industry and research within a wide range of applications. Sources may contain a large spectrum of radionuclides, which can have different levels of activity as well as different periods of half-life. At the end of their useful life, they are considered as worn-out or obsolete. However, the residual levels of radioactivity, which have those sources, can be high, representing a high radiation risk. This publication describes the technical actions carried out by the specialized group of the Peruvian Institute of Nuclear energy (IPEN) and Los Alamos National Laboratory which supports the program of 'Global Threat Reduction Initiative's' (GTRI) within the implementation of 'Offsite Source Recovery Program' (OSRP)

  1. INEL storage facility for sealed sources from the commercial sector

    International Nuclear Information System (INIS)

    Kingsford, C.O.; Satterthwaite, B.C.

    1994-08-01

    Commercially owned sealed radiation sources determine by the US Nuclear Regulatory Commission to be a public health or safety hazard are accepted by the US Department of Energy, under the Atomic Energy Act of 1954, as material for reuse of recycle. To implement this policy, the sealed sources must be stored until proper disposition is determined. This report documents the investigation and selection process undertaken to locate a suitable storage facility at the Idaho National Engineering Laboratory

  2. UY 102 standard use of sealed sources in radiation source implants: approve for the Industry Energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requires for radiological safety applied to use of the solid radio actives sources with therapeutic purposes in application radiation source implants in surface area and intra cavities

  3. Control of sealed radioactive sources in Peru

    International Nuclear Information System (INIS)

    Ramirez Quijada, R.

    2001-01-01

    The paper describes the inventory of radioactive sources in Peru and assesses the control. Three groups of source conditions are established: controlled sources, known sources, and lost and orphan sources. The potential risk, described as not significant, for producing accidents is established and the needed measures are discussed. The paper concludes that, while the control on sealed sources is good, there is still room for improvement. (author)

  4. Sealed sources in Peru: advances and outlook

    International Nuclear Information System (INIS)

    Rodriguez, C.G.

    1998-01-01

    Cementation of spent sealed sources is performed by the Radioactive Waste Management Group of the Peruvian Institute of Nuclear Energy (IPEN). The sealed sources are collected in different areas of the country and brought to the RACSO nuclear centre, a national storage and conditioning facility for spent sources from industry and medical institutions. In addition to its amenities dedicated to research and the production of radioisotopes, the RACSO nuclear centre features a complex of some 1.5 ha for radioactive waste management that includes an infiltration bed and chemical treatment plant for liquid waste, compacting equipment and trenches for solid radioactive waste, a tank for the elimination of biological residues and a temporary storage emplacement for radioactive waste immobilized in cement cylinder casings. The steps described are the unpacking, identification of spent sealed sources, placement of the source in shielding, cementation, solidification, tagging and storage, as well as the actions taken to comply with the appropriate measures of radiological protection. (author)

  5. Radioactive sealed sources inventory and management

    International Nuclear Information System (INIS)

    Rodriguez C, G.; Mallaupoma G, M.; Cruz C, W.

    1996-01-01

    This report is related to the management of radioactive wastes, that is to say, related to the sealed sources utilized in industry, medicine and research jobs, that can not be used anymore, because of their life time termination or their activity decay to useless limits. Owing to this fact, it is necessary to take them to the Management Plant of Radioactive waste in the 'RACSO' Nuclear Center, as it is specified by the National Authority Technical Office (OTAN) regulations in Peru. The experience gained by IPEN in the sealed source management is shown in the table which informs about the radionuclide types, activity and volume amount for years. In the 'RACSO' Nuclear Center, 63 sealed sources are stored and right measures are being adopted in order to be conditioned by cementation in 200 lt steel reinforced cylinders, which are proper to their transportation and storage. A flow-chart shows the steps that the national users should follow in order to manage radioactive sealed sources and so that minimize the risks. Resulting from the agreement between the users and managers, a systematic coordination is developed, verifying the information related to the source characterization, the way of transportation and the future conditioning. It also involves the cost aspects, which in some cases, represent a big problem in the management. (authors). 3 refs., 3 figs., 1 tab

  6. Development of radioactive sealed sources in epoxy matrix

    International Nuclear Information System (INIS)

    Benega, Marcos A.G.; Nagatomi, Helio R.; Rostelato, Maria Elisa C.M.; Karan Junior, Dib; Souza, Carla D.; Tiezzi, Rodrigo; Rodrigues, Bruna T.; Peleias Junior, Fernando S.

    2013-01-01

    The aim of the present work is to study and develop commercial resins for manufacturing solid sealed sources. The sources are produced with radionuclides of barium-133, cesium-137 and cobalt-57. They are used in radiation detectors verification. For the immobilization of the radionuclides in the epoxy matrix, it is made use of emulsifying agents that ensure the miscibility between resin and aqueous radioactive solution, as well as curing agents for controlling, curing and sealing the standard radioactive solution completely. As a result, it is expected to obtain standard sealed sources and equivalent to water. The equivalence to water is an important and necessary characteristic. The radioisotopes used in nuclear medicine are supplied in an aqueous form and the resin applied must have a very similar density comparing to the water. The sources must also be comparable in quality to sources produced internationally, but with low cost and wide available materials in the market. It is intended to create a national technology able to meet the demand of this product in the domestic market and achieve excellence in quality through accreditation and certification of the product by the appropriate agencies. The study of the necessary parameters used in the production of these sources, will bring technology for the manufacture of other categories of standard sealed sources, those used for nuclear medicine, image, laboratories and industry. (author)

  7. Installation for producing sealed radioactive sources

    International Nuclear Information System (INIS)

    Fradin, J.; Hayoun, C.

    1969-01-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [fr

  8. Radioactive waste management in sealed sources laboratory production

    International Nuclear Information System (INIS)

    Carvalho, Gilberto

    2001-01-01

    The laboratory of sealed sources production, of Instituto de Pesquisas Energeticas e Nucleares, was created in 1983 and since then, has produced radioactive sources for industry and engineering in general, having specialization in assembly of radiation sources for non destructive testings, by gammagraphy, with Iridium-192, that represents 98% of the production of laboratory and 2% with the Cobalt-60, used in nuclear gages. The aim of this work, is to quantify and qualify the radioactive wastes generated annually, taking into account, the average of radioactive sources produced, that are approximately 220 sources per year

  9. An ideal sealed source life-cycle

    International Nuclear Information System (INIS)

    Tompkins, Joseph Andrew

    2009-01-01

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they

  10. Safety considerations of disposal of disused sealed sources in near surface facilities

    International Nuclear Information System (INIS)

    Pla, E.

    2003-01-01

    The report presents European commission studies on sealed radioactive sources - Management of Spent Radiation Sources in the European Union: Quantities, Storage, Recycling and Disposal. EUR 16960 EN. EC 1996; Management of sealed radioactive sources produced and sold in the Russian Federation. EUR 18191 EN. EC, 1999; Management and Disposal of Disused Sealed Radioactive Sources in the European Union. EUR 18186 EN. EC, 2000; Management of Spent Sealed Radioactive Sources in Central and Eastern Europe. EUR 19842 EN. EC, April 2001; Management of Spent Sealed Radioactive Sources in Bulgaria, Latvia, Lithuania, Romania and Slovakia. EUR 20654 EN. EC, January 2003. The conclusions and recommendations in them are given. The International catalogue of sealed radioactive sources and devices is described

  11. Radioactive sealed sources production process for industrial radiography

    International Nuclear Information System (INIS)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S.

    2017-01-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  12. Radioactive sealed sources production process for industrial radiography

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Paulo de S.; Ngunga, Daniel M.G.; Camara, Julio R.; Vasquez, Pablo A.S., E-mail: psantos@ipen.br, E-mail: hobeddaniel@gmail.com, E-mail: jrcamara@ipen.br, E-mail: pavsalva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    providing products and services to the private and governmental Brazilian users of industrial radiography and nucleonic control systems. Radioactive sealed sources are commonly used in nondestructive tests as radiography to make inspections and verify the internal structure and integrity of materials and in nucleonic gauges to control level, density, viscosity, etc. in on-line industrial processes. One of the most important activities carried out by this laboratory is related to the inspection of source projectors devices used in industrial radiography and its constituent parts as well as remote handle control assembly drive cable and guide tube systems. The laboratory also provide for the users iridium-192, cobalt-60 and selenium-75 sealed sources and performs quality control tests replacing spent or contaminated radiative sources. All discard of radioactive source is treated as radioactive waste. Additionally, administrative and commercial processes and protocols for exportation and transport of radioactive material are developed by specialized departments. In this work are presented the mean processes and procedures used by the Sealed Source Production Laboratory such as the arrival of the radioactive material to the laboratory and the source projectors, mechanical inspections, source loading, source leaking tests, etc. (author)

  13. Characterization of Greater-Than-Class C sealed sources. Volume 2, Sealed source characterization and future production

    International Nuclear Information System (INIS)

    Harris, G.; Griffel, A.

    1994-09-01

    Sealed sources are small, relatively high-activity radioactive sources typically encapsulated in a metallic container. The activities can range from less than 1 mCi to over 1,000 Ci. They are used in a variety of industries and are commonly available. Many of the sources will be classified as Greater-Than-Class C low-level radioactive waste (GTCC LLW) for the purpose of waste disposal. The US Department of Energy is responsible for disposing of this class of low-level radioactive waste. The characterization of a sealed source is essentially a function of the type of radiation it emits, the principal use for which it is applied, and the activity it contains. The types of radiation of most interest to the GTCC LLW Program are gamma rays and neutrons, since these are emitted by the highest activity sources. The principal uses of most importance are gamma irradiators, medical teletherapy, well logging probes, and other general neutron applications. Current annual production rates of potential Greater-Than-Class C (PGTCC) sources sold to specific licensees were estimated based on data collected from device manufacturers. These estimates were then adjusted for current trends in the industry to estimate future annual production rates. It is expected that there will be approximately 8,000 PGTCC sealed sources produced annually for specific licensees

  14. Sealed Radioactive Sources. Information, Resources, and Advice for Key Groups about Preventing the Loss of Control over Sealed Radioactive Sources

    International Nuclear Information System (INIS)

    2013-10-01

    Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents and incidents since the 1980's and publishes findings so that others can learn from them. There are growing concerns today about the possibility that an improperly stored source could be stolen and used for malicious purposes. To improve both safety and security, information needs to be in the hands of those whose actions and decisions can prevent a source from being lost or stolen in the first place. The IAEA developed this booklet to help improve communication with key groups about hazards that may result from the loss of control over sealed radioactive sources and measures that should be implemented to prevent such loss of control. Many people may benefit from the information contained in this booklet, particularly those working with sources and those likely to be involved if control over a source is lost; especially: officials in government agencies, first responders, medical users, industrial users and the metal recycling industry. The general public may also benefit from an understanding of the fundamentals of radiation safety. This booklet is comprised of several stand-alone chapters intended to communicate with these key groups. Various accidents that are described and information that is provided are relevant to more than one key group and therefore, some information is repeated throughout the booklet. This booklet seeks to raise awareness of the importance of the safety and security of sealed radioactive sources. However, it is not intended to be a comprehensive 'how to' guide for implementing safety and security measures for sealed radioactive sources. For more information on these measures, readers are encouraged to consult the key IAEA safety and security-related publications identified in this booklet

  15. Characterization and packaging of disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Aguilar, S.L.

    2013-01-01

    In Bolivia are generated disused sealed sources and radioactive waste resulting from the use of radioactive materials in industrial, research and medicine. The last includes the diagnosis and treatment. Whereas exposure to ionizing radiation is a potential hazard to personnel who applies it, to those who benefit from its use or for the community at large, it is necessary to control the activities in this field. The Instituto Boliviano de Ciencia y Tecnologia Nuclear - IBTEN is working on a regional project from International Atomic Energy Agency - IAEA, RLA/09/062 Project - TSA 4, Strengthening the National Infrastructure and Regulatory Framework for the Safe Management of Radioactive waste in Latin America. This Project has strengthened the regulatory framework regarding the safe management of radioactive waste. The aim of this work was focused primarily on the security aspects in the safe management of disused sealed sources. The tasks are listed below: 1. Characterization of disused sealed sources 2. Preparation for transport to temporary storage 3. Control of all disused radioactive sources. (author)

  16. Disposal of disused sealed sources in France

    International Nuclear Information System (INIS)

    Certes, C.

    2003-01-01

    The current status of the disused sealed sources in France is presented and a proposal for future management is given.About 150 000 disused source are registered, most of which are located in the Centre de l'Aube (130 000) and the rest are in about 250 installations. Since 2002 the tracing of the sources are made bu the IRSN/UES. A scheme of sealed sources management is given consisting of collecting, channeling (recycling, reconditioning, interim storage, denaturation) and elimination (surface disposal, long interim or deep disposal). The capacity of the CDA for disposal is 1 mill. m 3 (about 2 mill. tons of waste). It is intended for waste packages containing (basic safety rule I.2) - Low and Intermediate specific activity levels ( ∼ 103 ∼ 106 Bq/g); Short-lived radionuclides (half-life 60 Co). For sources containing one concentrated long-lived radionuclide in case of non-conformity with the basic safety rule I.2 (heterogeneity and long half-life) for example refusal is received for a few sources containing 241 Am). Radiological capacity id base on inventories nad safety evaluation scenarios. Fixed by decree (TBq) are: 60 Co(5.3 y) - 400 000; 3 H(12.3 y) - 4000; 137 Cs(30 y); - 200 000; 90 Sr(29 y) -40 000; Σ alpha (at 300 years) - 750. Waste acceptance criterion is based on the mass activity limit. The importance of the calculation method in this criterion is emphasised. IRSN reflexion basis for disposal is discussed

  17. Integrated Management Program for Radioactive Sealed Sources in Egypt IMPRSS

    International Nuclear Information System (INIS)

    Hasan, A.; El-Adham, K.

    2004-01-01

    Sealed sources are usually in capsules made of stainless steel. They are the size of a pen or a finger and contain one of hundreds of radioactive elements (e.g., Iridium, Radium) or their isotopes. They are air-tight and very durable, contain the radioactive material but not radiation. They are used in the health sector, industry, military, and universities. Incidents occurred in Met Halfa, Egypt, 2000 (Iridium-192); Goiania, Brazil, 1987 (Cesium-137); Mexico and Southwest U.S., 1977 -1984 (Cobalt-60); Peru, 1999 (Iridium-1992); Poland 2001 (Cobalt-60). The IMPRSS Mission is based on a joined partnership between the Egyptian Atomic Energy Authority, the Egyptian Ministry of Health, the Sandia National Laboratories, the International Atomic Energy Agency and others. The IMPRSS Mission protects human health and the environment in Egypt from mismanaged sealed sources, is developed jointly with MOH and EAEA, provides capabilities for managing radioactive sealed sources in Egypt, increases public awareness, provides education and training, improves emergency response capabilities, develops a permanent disposal facility, ensures the program is self-sustaining and ensures close coordination with the IAEA. Infrastructure how to manage sealed sources is discussed. It includes awareness, tracking and inventory control, security, recovery, conditioning and storage, recycling and disposal. Emergency response, regulatory reform, education and training and its targets are provided. The government of Egypt can protect the people of Egypt and is ready for emergencies. Prevention is the first line of defence and detection is the second line of defence. Adequate Emergency Response saves lives and adequate control reduces risk of mismanaged uses or deliberate misuses of sources. A Cradle-to-Grave approach is built on existing capabilities at EAEA and MOH

  18. Management of Disused Radioactive Sealed Sources in Egypt - 13512

    International Nuclear Information System (INIS)

    Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.

    2013-01-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralized radioactive waste management facility in Egypt by law 7/2010. (authors)

  19. Prototypes of phosphorus-32 sealed sources for use in Brachytherapy

    International Nuclear Information System (INIS)

    Anaya Garro, Olgger; Vela Mora, Mariano; Revilla Silva, Angel Revilla

    2005-01-01

    It has developed prototypes of phosphorus-32 sealed sources for use in Brachytherapy. This one was made in two stages, at the first one, we designed and constructed the container (capsule), the filling system and the sealed system; at the second one, we made the irradiation of the capsules containing the 'target'. The prototypes was made of aluminum in cylindrical geometry. During the irradiation test was made using two different dimensions: one of 1 mm outer diameter and 1 cm length and another one of 0.8 mm outer diameter and 5 mm length. They were radiated in the core of the RP-10 research reactor, at 7.93 x10 13 n/cm 2 .s thermal neutron flux during 27 operation cycles. Activities of 144.53 MBq (3.91 mCi) and 107.67 MBq (2.91 mCi) was obtained for each case. This activities are adequate to restenosis and for some tumors treatment. We can observed that the capsules irradiated passed visual inspection in its physical integrity (leakage and geometry). It has been demonstrated, that the beta radiation for his minor power of penetration and its high interaction, causes major local damage to the malignant tissue, minimizing the damage of the healthy surrounding tissues. It has been advisable to use for the treatment of illnesses of the circulatory system and some tumors. At the present, the source of strontium-90 are the most beta ray source used, but of this one are obtained as fission product of uranium target, where valuable radioactive waste is generated, whereas if we were using phosphorus-32 that we propose, radioactive waste would not be generated since it would take place directly as sealed source, for reaction (n, β). (author)

  20. Control of sealed sources and equipments used in gammagraphy

    International Nuclear Information System (INIS)

    Sahyun, A.; Sordi, G.-M.A.A.; Biazzini Filho, F.L.

    1988-01-01

    The Radiation Protection Department of the IPEN-CNEN/SP, in 1987, formed a section incharged to control all radioactive material: a) received by the IPEN-CNEN/SP; b) produced by the IPEN-CNEN/SP; c) delivered from the IPEN-CNEN/SP. The aim of this section is to maintain a permanent control of all radioactive sources movement got at the IPEN-CNEN/SP. This control is performed with a microcomputer, trademark MICRODIGITAL, model TK3000 //e, 256 KBytes of memory, utilizing the TOTALWORKS program. This program permits to have the origin, characteristics and address of the radioactive sources, its sites in the IPEN, its uses, etc. Already we have put in the microcomputer, the control of the sealed sources produced used in nondestructive test, the inspection control of the gamagraphy irradiator and the control of the depleted sources. The next step is to introduce in the computer the inspection of the remote control of the irradiator. The aim of this paper is to describe the control program that was already put on. This radioactive material control was started with the sealed sources used in gamagraphy because we believe that is the field with the most likelihood of accident in the population, and therefore it's that need the most hard control about the site and the performance of the irradiation facility. (author) [pt

  1. 10 CFR 39.35 - Leak testing of sealed sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Leak testing of sealed sources. 39.35 Section 39.35 Energy....35 Leak testing of sealed sources. (a) Testing and recordkeeping requirements. Each licensee who uses... record of leak test results in units of microcuries and retain the record for inspection by the...

  2. BOSS: Borehole Disposal of Disused Sealed Sources. A Technical Manual

    International Nuclear Information System (INIS)

    2011-01-01

    The management of disused radioactive sources is the responsibility of individual Member States. Accordingly, interest in technologies to allow the safe, secure and sustainable management of disused sealed radioactive sources is growing. This publication is a technical summary on preparing and planning predisposal and disposal activities with regard to the BOSS (borehole disposal of disused sealed sources) system, a safe, simple and cost effective solution for the management of disused sealed radioactive sources. It advises potential implementers and decision makers on the implementation of BOSS, which is expected to provide Member States with a successful tool to contribute to the safety and security of current and future generations.

  3. Safe management of discussed sealed sources in Peru

    International Nuclear Information System (INIS)

    Mallaupoma, M.

    2000-01-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Peru, in the past years have determined the necessity to formulate and apply an Institutional policy to assure harmless and ecologically rational management of disused sealed sources in Peru. Some results of the studies, which served as a basis for design and construction of a facility for treatment, conditioning and storage of conditioned sealed sources are presented in this paper. The waste management system in Peru comprises operational and regulatory capabilities. Both of these activities are performed under a legislation. The Nuclear Research Center RACSO has a radioactive waste management department which is in charge of the management of disused sealed sources produced in the country. It is considered as a centralized waste processing and storage facility (WPSF). (author)

  4. Sealed Source Security and Disposition: Progress and Prospects - 13515

    International Nuclear Information System (INIS)

    Jennison, Meaghan; Martin, David W.; Cuthbertson, Abigail

    2013-01-01

    Due to their high activity and portability, unsecured or abandoned sealed sources could cause significant health or environmental damage. Further, some of these sources could be used either individually or in aggregate in radiological dispersal devices commonly referred to as 'dirty bombs', resulting in significant social disruption and economic impacts in the billions of dollars. Disposal access for disused sealed sources, however, has been a serious challenge. From 2008 to 2012, sealed source disposal was available to only 14 states; additionally, waste acceptance criteria for sealed sources at the low-level waste disposal facilities in operation both prior to and after 2012 exclude some common yet potentially dangerous sealed sources. Recent developments, however, suggest that significant improvement in addressing this challenge is possible, although challenges remain. These developments include 1) the initiation of operations at the Waste Control Specialists (WCS) commercial low-level radioactive waste (LLRW) disposal facility in Andrews County, Texas; 2) the potential for significant revisions of the U.S. Nuclear Regulatory Commission's (NRC) 1995 'Final Branch Technical Position on Concentration Averaging and Encapsulation' (1995 BTP); and 3) the Utah Department of Environmental Quality's (UDEQ) approval of a license variance for sealed source disposal at the EnergySolutions LLRW disposal facility near Clive, Utah. (authors)

  5. Categorization of In-use Radioactive Sealed Sources in Egypt

    International Nuclear Information System (INIS)

    Hasan, M.A.; Mohamed, Y.T.; El Haleim, K.A.

    2006-01-01

    Radioactive sealed sources have widespread applications in industry, medicine, research and education. While most sources are of relatively low activity, there are many of medium or very high activity. The mismanagement of high activity sources is responsible for most of the radiological accidents that result in loss of life or disabling injuries. Because of the variety of applications and activities of radioactive sources, a categorization system is necessary so that the controls that are applied to the sources are adequate with its radiological risk. The aim of this work is to use the international Atomic Energy Agency (IAEA) categorization system to provide a simple, logical system for grading radioactive sealed sources in Egypt. The categorizations of radioactive sealed sources are based on their potential to cause harm to human health. This study revealed that total of 1916 sources have been used in Egypt in the different applications with a total activity of 89400 Ci according to available data in October 2005. (authors)

  6. International Catalogue of Sealed Radioactive Sources and Devices

    International Nuclear Information System (INIS)

    2010-01-01

    The international catalogue of sealed radioactive sources and devices have two major objectives. The first objective is to provide vital information for a wide range of individuals and organizations on industrially manufactured radioactive sources and devices. The second objective is to facilitate identification of design specifications based on limited information from orphan sources and devices to allow safe handling of these items.

  7. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    OpenAIRE

    Marpaung, T

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed ...

  8. R1800: a new Co 60 sealed source

    International Nuclear Information System (INIS)

    Freijo, Jose L.; Gomez, Gonzalo

    2005-01-01

    The increasing demand of Co 60 sealed sources in the international market has made necessary the development of new models of sealed sources. R 1800 type source up to 65 KCi has a design that allows to accommodate a wide spectrum of capsules with different specific activities. The company Dioxitek has developed the fabrication process and the design specifications needed to obtain the approval of the product. A first shipment of 100 KCi has been made with success to the United Kingdom in October of the current year. (author) [es

  9. Management of Disused Sealed Sources in Hungary - 13077

    International Nuclear Information System (INIS)

    Kapitany, Sandor

    2013-01-01

    Since 1976 the spent and disused radioactive sources arisen in Hungary are stored in a central storage facility called Radioactive Waste Treatment and Disposal Facility operated by Public Limited Company for Radioactive Waste Management. The Facility is responsible for the record keeping, the waste acceptance procedure, the shipment and the storage or disposal (whether a certain source meets the waste acceptance criteria for disposal or not) of sources. Based on the more than 35 year old operation of the facility many experiences have been gathered regarding the technology for long-term storage of sources, the attitude of the users of sources, the evolution of the legislation and the national record keeping system. Recently a new legislation for the security of radioactive materials (including sources) was introduced, first in Central-Europe. It requires special security arrangements from the facility for transport and for storage. Due to the ongoing retrieval of radioactive waste formerly disposed of, partly containing sealed sources, there is a new challenge in the physical inventory control of historical waste. The paper would show the effect of the changes in the legislation system of record keeping or security on the users' attitude for discard of sources and on the management of the sources in the facility. The facility has a unique storage technology (shallow boreholes) in the narrow region. The sealed sources are placed into vertical pipes sunk into the surface. In the beginning, each of the sources were dropped into the pipe directly, recently they are placed in a metal tube first ensuring the retrieval. The lessons learned will be presented. There were several issues to introduce the new security arrangements (partly financially supported by US DOE) for storage and for transportation of sealed sources. These issues are addressed. In the past part of the sealed sources were disposed together with solid radioactive waste packaged in plastic bags. A waste

  10. Management of Disused Sealed Sources in Hungary - 13077

    Energy Technology Data Exchange (ETDEWEB)

    Kapitany, Sandor [PURAM, Puskas Tivadar street 11, Budaors, Pest 2040 (Hungary)

    2013-07-01

    Since 1976 the spent and disused radioactive sources arisen in Hungary are stored in a central storage facility called Radioactive Waste Treatment and Disposal Facility operated by Public Limited Company for Radioactive Waste Management. The Facility is responsible for the record keeping, the waste acceptance procedure, the shipment and the storage or disposal (whether a certain source meets the waste acceptance criteria for disposal or not) of sources. Based on the more than 35 year old operation of the facility many experiences have been gathered regarding the technology for long-term storage of sources, the attitude of the users of sources, the evolution of the legislation and the national record keeping system. Recently a new legislation for the security of radioactive materials (including sources) was introduced, first in Central-Europe. It requires special security arrangements from the facility for transport and for storage. Due to the ongoing retrieval of radioactive waste formerly disposed of, partly containing sealed sources, there is a new challenge in the physical inventory control of historical waste. The paper would show the effect of the changes in the legislation system of record keeping or security on the users' attitude for discard of sources and on the management of the sources in the facility. The facility has a unique storage technology (shallow boreholes) in the narrow region. The sealed sources are placed into vertical pipes sunk into the surface. In the beginning, each of the sources were dropped into the pipe directly, recently they are placed in a metal tube first ensuring the retrieval. The lessons learned will be presented. There were several issues to introduce the new security arrangements (partly financially supported by US DOE) for storage and for transportation of sealed sources. These issues are addressed. In the past part of the sealed sources were disposed together with solid radioactive waste packaged in plastic bags. A

  11. Reducing Risks from Sealed Radioactive Sources in Medicine

    International Nuclear Information System (INIS)

    2014-01-01

    Sealed radioactive sources are commonly used in a variety of medical applications for both diagnosis and therapy. The sources used in medical applications usually have high levels of radioactivity and, therefore, have the potential to cause serious and life threatening injuries if used improperly or maliciously, or risky if they become lost or are stolen

  12. The Nonactinide Isotope and Sealed Sources Management Group

    International Nuclear Information System (INIS)

    Low, J. L.; Polansky, G. F.; Parks, D. L.

    2002-01-01

    The Nonactinide Isotope and Sealed Sources Management Group (NISSMG) is sponsored by the Department of Energy (DOE) Office of Environmental Management and managed by Albuquerque Operations Office (DOE/AL) to serve as a complex-wide resource for the management of DOE-owned Nonactinide Isotope and Sealed Source (NISS) materials. NISS materials are defined as including: any isotope in sealed sources or standards; and isotopes, regardless of form, with atomic number less than 90. The NISSMG assists DOE sites with the storage, reuse, disposition, transportation, and processing of these materials. The NISSMG has focused its efforts to date at DOE closure sites due to the immediacy of their problems. Recently, these efforts were broadened to include closure facilities at non-closure sites. Eventually, the NISSMG plans to make its resources available to all DOE sites. This paper documents the lessons learned in managing NISS materials at DOE sites to date

  13. Code of practice for the use of sealed radioactive sources in borehole logging (1998)

    International Nuclear Information System (INIS)

    1989-12-01

    The purpose of this code is to establish working practices, procedures and protective measures which will aid in keeping doses, arising from the use of borehole logging equipment containing sealed radioactive sources, to as low as reasonably achievable and to ensure that the dose-equivalent limits specified in the National Health and Medical Research Council s radiation protection standards, are not exceeded. This code applies to all situations and practices where a sealed radioactive source or sources are used through wireline logging for investigating the physical properties of the geological sequence, or any fluids contained in the geological sequence, or the properties of the borehole itself, whether casing, mudcake or borehole fluids. The radiation protection standards specify dose-equivalent limits for two categories: radiation workers and members of the public. 3 refs., tabs., ills

  14. Regulatory control of radiation sources in Slovakia

    International Nuclear Information System (INIS)

    Auxtova, L.

    2001-01-01

    In Slovakia, there are two regulatory authorities. Regulatory control of the utilization of nuclear energy, based on the Slovak National Council's law No. 130/1998 on the peaceful uses of nuclear energy, is exercised by the Nuclear Regulatory Authority of the Slovak Republic. The second regulatory authority - the Ministry of Health - is empowered by law No. 72/1994 on the protection of human health to license radiation sources and is responsible for radiation protection supervision (there are nearly 3000 establishments with sealed sources, radiation generators and unsealed sources in Slovakia). Pursuant to a new radiation protection regulation based on international standards, radiation sources are to be categorized in six classes according to the associated exposure and contamination hazards. A national strategy for improving the safety of radiation sources over their life-cycle and for the management of disused and orphan sources is being prepared for governmental approval. (author)

  15. Sources of pulsed radiation

    International Nuclear Information System (INIS)

    Sauer, M.C. Jr.

    1981-01-01

    Characteristics of various sources of pulsed radiation are examined from the viewpoint of their importance to the radiation chemist, and some examples of uses of such sources are mentioned. A summary is given of the application of methods of physical dosimetry to pulsed sources, and the calibration of convenient chemical dosimeters by physical dosimetry is outlined. 7 figures, 1 table

  16. Sealed source and device removal and consolidation feasibility study

    International Nuclear Information System (INIS)

    Ward, J.E.; Carter, J.G.; Meyers, R.L.

    1993-02-01

    The purpose of this study is to assess the feasibility of removing Greater-Than-Class C (GTCC) sealed sources from their containment device and consolidating them for transport to a storage or disposal facility. A sealed source is a sealed capsule containing a radioactive material that is placed in a device providing radioactive containment. It is used in the medical, industrial, research, and food-processing communities for calibrating, measuring, gauging, controlling processes, and testing. This feasibility study addresses the key operational, safety, regulatory, and financial requirements of the removal/consolidation process. This report discusses the process to receive, handle, repackage, and ship these sources to an interim or dedicated storage facility until a final disposal repository can be built and become operational (∼ c. 2010). The study identifies operational and facility requirements to perform this work. Hanford, other DOE facilities, and private hot-cell facilities were evaluated to determine which facilities could perform this work. The personnel needed, design and engineering, facility preparation, process waste disposal requirements, and regulatory compliance were evaluated to determine the cost to perform this work. Cost requirements for items that will have to meet future changing regulatory requirements for transportation, transportation container design and engineering, and disposal were not included in this study. The cost associated with in-process consolidation of the sealed sources reported in this study may have not been modified for inflation and were based on 1992 dollars. This study shows that sealed source consolidation is possible with minimal personnel exposure, and would reduce the risk of radioactive releases to the environment. An initial pilot-scale operation could evaluate the possible methods to reduce the cost and consolidate sources

  17. Safe management of spent radiation source

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Valdezco, E.M.; Choi, Kwang-Sub

    2003-01-01

    Presented are 8 investigation reports concerning the safe management of spent radiation source (SRS) during the current 2 years. Four reports from Japan are: Scheme for SRS management (approach and present status of the SRS management and consideration toward solving problems); Current International Atomic Energy Agency (IAEA) activities related to safety of radiation sources (Chronology of action plan development, Outline of revised action plan, and Asian regional activities); Current status of SRS management in Japan (Regulation system, Obligations of licensed users, Regulatory system on sealed sources, Status in the incidents on sources occurred, Incident of source loss, and Incidents of orphan sources); and SRS management system in Japan (Current status of using of sealed sources, collection system of SRS-Japan Radioisotope Association (JRIA) services, and Disposal of SRS). Four reports from the Asian countries also concern the current statuses of SRS management in the Philippine (Radioactive waste sources, Waste management strategies, Conditioning of Ra sources, Ra project action plan, as low as reasonably achievable (ALARA) program, Dose assessment, Regulations on radioactive waste, Action plan on the safety and security of sources, IAEA Regional Demonstration Centers, and sitting studies for a near surface disposal facility); Thailand (Current status of using sealed sources, Inventory of SRS, and Current topics of SRS management); Indonesia (Principles of management of radiation sources, Legislative framework of SRS management practices, Regulatory on SRS, management of sealed SRS, management hurdles, and reported incidents); and Korea (Regulatory frame work, Collection systems of SRS, Radioisotope waste generation, Radiation exposure incident, and Scrap monitoring system). (N.I.)

  18. Management of spent sealed radioactive sources in the European Union

    International Nuclear Information System (INIS)

    Cecille, L.; Taylor, D.

    2000-01-01

    For several years, the European Commission (EC) has been active in the field of spent sealed radioactive sources (SSRS) to improve management schemes and to prepare Euratom Directives that will impact on national legislation and regulatory schemes in European Member States (MS). The main safety issues related to the management of SSRS are described and recommendations made are presented. Additional projects are outlined. (author)

  19. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  20. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  1. Dismantling, conditioning and repatriation of disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Aguilar, S.L.; Miranda, C.A.; Saire, A.E.; Ontiveros, G.P.

    2015-01-01

    In Bolivia sealed radioactive sources for medical, industrial and research applications are used; radioactive sources containing a wide range of radionuclides and have different levels of activity and half-lives, they generated a problem when they stop being used. At the end of its useful life these sources are considered obsolete. However, residual levels of radioactivity, which have these sources can be high constituting a potential hazard to personnel and applies to those who benefit from its use and the general public. The aim of this work has been focused mainly on safety issues in the safe handling and management of disused sealed sources. Assignments listed below: 1. Dismantling; 2. Packaging; 3. Return of disused sealed radioactive sources. The actions taken were carried out by the technical teams of the Bolivian Institute of Nuclear Science and Technology (IBTEN) and Los Alamos National Laboratory (LANS) which supports the program 'Global Threat Reduction Initiative's' (GTRI) in the implementation of 'Off -site Source Recovery Program' (OSRP). [es

  2. R I 800. A new cobalt-60 sealed source design

    International Nuclear Information System (INIS)

    Freijo, Jose L.; Gomez, Gonzalo

    2006-01-01

    The consolidation of the international market of Co-60 sources and the perspective of its growth has encouraged the development of new types of sealed sources. The model R I 800 is designed for activities up to 65 kCi and allows a large spectrum of capsules with different specific activities. During three years Dioxitek developed the process of fabrication and qualifications to comply the design requirements and succeeded in the product approval. Today, the initial lot at an industrial scale of R I 800 sources is under fabrication and a first partial shipment of 100 kCi to the United Kingdom was successfully carried out at the end of October 2005. The whole lot is for export. Due to the versatility of the R I 800 sealed sources it was possible to use as raw material 1 MCi of Co-60 imported from Russia, irradiated in Leningrad nuclear power plant. (author) [es

  3. Safety assessment of borehole disposal of unwanted radioactive sealed sources in Egypt using Goldsim

    International Nuclear Information System (INIS)

    Cochran, John Russell; Mattie, Patrick D.

    2004-01-01

    A radioactive sealed source is any radioactive material that is encased in a capsule designed to prevent leakage or escape of the radioactive material. Radioactive sealed sources are used for a wide variety of applications at hospitals, in manufacturing and research. Typical uses are in portable gauges to measure soil compaction and moisture or to determine physical properties of rocks units in boreholes (well logging). Hospitals and clinics use radioactive sealed sources for teletherapy and brachytherapy. Oil exploration and medicine are the largest users. Accidental mismanagement of radioactive sealed sources each year results in a large number of people receiving very high or even fatal does of ionizing radiation. Deliberate mismanagement is a growing international concern. Sealed sources must be managed and disposed effectively in order to protect human health and the environment. Effective national safety and management infrastructures are prerequisites for efficient and safe transportation, treatment, storage, and disposal. The Integrated Management Program for Radioactive Sealed Sources in Egypt (IMPRSS) is a cooperative development agreement between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), the University of New Mexico (UNM), and Agriculture Cooperative Development International (ACDI/VOCA). The EAEA, teaming with SNL, is conducting a Preliminary Safety Assessment (PSA) of an intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S. Greater Confinement Disposal (GCD). Goldsim has been selected for the preliminary disposal system assessment for the Egyptian GCD Study. The results of the PSA will then be used to decide if Egypt desires to implement such a disposal system

  4. Methods to identify and locate spent radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs and tabs.

  5. Methods to identify and locate spent radiation sources

    International Nuclear Information System (INIS)

    1997-06-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs, tabs

  6. Methods to identify and locate spent radiation sources

    International Nuclear Information System (INIS)

    1995-07-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs and tabs

  7. Management of disused sealed sources from nuclear gauges

    International Nuclear Information System (INIS)

    Reis, Luiz Carlos Alves; Silva, Fabio

    2001-01-01

    In Brazil there are about 600 Radioactive Facilities that operate 3300 nuclear gauges. The management goal for these sources is minimize the waste that must be stored and disposed, through reutilization or a more efficient method of disposal conditioning. A database is being implemented in order to facilitate the organization and retrieval of information about sources stored at CDTN. Examples of the information being included are: radionuclide, activity and date (e.g. 60 Co, 1 GBq, January 14th 1988); physical and chemical form of radionuclide; producer of the source; source type including dimensions and shape; source serial number; results of tests which have been done, for example leak tests; details of the equipment, i.e. dimensions, material, etc.; measured dose rates (at the surface and at I-m distance from it); whether the source was originally conditioned as special form radioactive material; working life of the equipment, etc. It is intended to reutilize only sealed sources containing certified special form radioactive material. Sources received at CDTN with this certification will be wipe tested in a hot-cell. A special Geiger Muller detector for measuring very low level radiation will be used to detect leakage at detection levels, even lower than the established leakage limit in the CNEN-NE-5.01 Standard. If the source does not exhibit leakage and the shutter operation and shielding of the nuclear gauge is in good condition, it will made available for reuse at a cost savings to the user over the purchase of a new source. Nuclear gauges whose sources do not meet these requirements will be dismantled and the sources efficiently conditioned. The CDTN guidelines for establishing a methodology for conditioning disused sources are: Dismantling the nuclear gauges in the hot-cell; Collecting the sources in an double-lead shielded cylindrical cavity below the hot-cell, until the limit of activity or level is reached; Transferring the internal shielding with the

  8. Radiation sources and technical services

    International Nuclear Information System (INIS)

    Stonek, K.; Satorie, Z.; Vyskocil, I.

    1981-01-01

    Work is briefly described of the department for sealed sources production of the Institute, including leak testing and surface contamination of sealed sources. The department also provides technical services including the inspections of sealed sources used in medicine and geology and repair of damaged sources. It carries out research of the mechanical and thermal strength of sealed sources and of the possibility of reprocessing used 226 Ra sources. The despatch department is responsible for supplying the entire country with home and imported radionuclides. The department of technical services is responsible for testing imported radionuclides, assembling materials testing, industrial and medical irradiation devices, and for the collection and storage of low-level wastes on a national scale. (M.D.)

  9. Systematic management of sealed source and nucleonic counting system in field service

    International Nuclear Information System (INIS)

    Mahadi Mustapha; Mohd Fitri Abdul Rahman; Jaafar Abdullah

    2005-01-01

    PAT group have received a lot of service from the oil and gas plant. All the services use sealed source and nucleonic counting system. This paper described the detail of management before going to the field service. This management is important to make sure the job is smoothly done and safe to the radiation worker and public. Furthermore this management in line with the regulation from LPTA. (Author)

  10. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  11. Development of methodology for the characterization of radioactive sealed sources

    International Nuclear Information System (INIS)

    Ferreira, Robson de Jesus

    2010-01-01

    Sealed radioactive sources are widely used in many applications of nuclear technology in industry, medicine, research and others. The International Atomic Energy Agency (IAEA) estimates tens of millions sources in the world. In Brazil, the number is about 500 thousand sources, if the Americium-241 sources present in radioactive lightning rods and smoke detectors are included in the inventory. At the end of the useful life, most sources become disused, constitute a radioactive waste, and are then termed spent sealed radioactive sources (SSRS). In Brazil, this waste is collected by the research institutes of the Nuclear Commission of Nuclear Energy and kept under centralized storage, awaiting definition of the final disposal route. The Waste Management Laboratory (WML) at the Nuclear and Energy Research Institute is the main storage center, having received until July 2010 about 14.000 disused sources, not including the tens of thousands of lightning rod and smoke detector sources. A program is underway in the WML to replacing the original shielding by a standard disposal package and to determining the radioisotope content and activity of each one. The identification of the radionuclides and the measurement of activities will be carried out with a well type ionization chamber. This work aims to develop a methodology for measuring or to determine the activity SSRS stored in the WML accordance with its geometry and determine their uncertainties. (author)

  12. Collaboration and Commitment to Sealed Source Safety, Security, and Disposition - 13627

    International Nuclear Information System (INIS)

    Jennison, Meaghan; Martin, David W.

    2013-01-01

    EnergySolutions, the Division of Radiation Control at the Utah Department of Environmental Quality (UDEQ), the Conference of Radiation Control Program Directors (CRCPD), and the Department of Energy's Global Threat Reduction Initiative (GTRI) are collaborating on a truly innovative effort to expand opportunities for cost-effective sealed source disposal. These entities have developed a first-of-its-kind initiative to dispose of certain sealed sources at the EnergySolutions disposal facility near Clive, Utah, which normally cannot accept sealed sources of any type. This creative and collaborative effort to improve radiation health, safety, and security exemplifies the spirit and commitment represented by the Richard S. Hodes, M.D. Honor Lecture Award, which is presented annually at the Waste Management Symposia by the Southeast Compact Commission to encourage environmental professionals and political leaders to develop innovative approaches to waste management in the United States. The participants in the collaborative initiative are honored to receive special recognition for their efforts thus far. They also recognize that the hard work remains to be done. (authors)

  13. New sources of radiation

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1979-09-01

    An attempt is made to select examples of radiation sources whose application may make new or unconventional demands on radiation protection and dosimetry. A substantial body of knowledge about high energy facilities exists and, partly for this reason, the great high energy accelerators are mentioned only briefly

  14. Management of disused long lived sealed radioactive sources (LLSRS)

    International Nuclear Information System (INIS)

    2003-06-01

    The document provides advice the sealed source users and the national waste management organizations with the technical know-how on the management of disused and spent long lived sealed radioactive sources (LLSRS) and with the particular guidelines required for handling, conditioning for storage, and storage of these sources. The guidance is intended to assist in establishing compliance with the present standards, requirements, and adopted practices. It also provides background material for any possible technical assistance to developing countries and serves as a reference for technical staff involved with IAEA programmes on the subject. Because of the historic nature of many of the sources under this category and the lack of well developed technical procedures recognized on the international level, this publication can serve as a basis for establishing future handling and conditioning procedures. The LLSRS addressed in this publication are primarily those containing radionuclides having half-lives greater than 30 years. These sources may contain long lived alpha-emitters, mainly 238 Pu, 239 Pu, 237 Np, 241 Am, 226 Ra; beta-emitters: 14 C, and 63 Ni and could be neutron sources such as PuBe, RaBe and AmBe

  15. Conditioning and storage of spent sealed radium sources

    International Nuclear Information System (INIS)

    Cholerzynski, A.; Tomczak, W.

    2001-01-01

    In Poland sealed radioactive sources (SRS) are extensively used in medicine and in industry. There are mainly Co-60, Cs-137, lr-192 and also historical sources contain in Ra-226. The Radioactive Waste Management Department (ZDUOP) of the Institute of Atomic Energy at Swierk is the only organization licensed for the management, storage and disposal of radioactive waste in Poland. ZDUOP deals with all radioactive waste in the country. Storage and disposal of SRS is one of the most important part of its activity. Every year ZDUOP collects about 1000 spent SRS which total activity is near 600 GBq. Spent Ra-226 sources are a special case and therefore are required suitable procedures. Due to their production according to earlier standards and their undesirable characteristics, leakage of these sources is highly possible and practically observed. For this reason conditioning of radium sources needs strict requirements and quality assurance procedure to guarantee their safe storage for an extended period of time (e.g. 40-70 years). The National Radioactive Waste Repository is superficial type repository and considered as temporary storage site for long-lived waste. A storage facility for spent SRS has been properly prepared and licensed by the regulatory body. This facility consist of several concrete chambers which floor is lined stainless steel. The existing regulatory framework for sealed radioactive sources entered into force with issue of the Atomic Law in 1986

  16. Synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    van Steenbergen, A.

    1979-01-01

    As a result of the exponential growth of the utilization of synchrotron radiation for research in the domain of the material sciences, atomic and molecular physics, biology and technology, a major construction activity has been generated towards new dedicated electron storage rings, designed optimally for synchrotron radiation applications, also, expansion programs are underway at the existing facilities, such as DORIS, SPEAR, and VEPP. In this report the basic properties of synchrotron radiation will be discussed, a short overview will be given of the existing and new facilities, some aspects of the optimization of a structure for a synchrotron radiation source will be discussed and the addition of wigglers and undulators for spectrum enhancement will be described. Finally, some parameters of an optimized synchrotron radiation source will be given.

  17. Radiation Source Replacement Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  18. Categorization of radiation sources

    International Nuclear Information System (INIS)

    Antonova, M.

    2000-01-01

    Through one-parameter (factor) analysis it is proved a hypothesis that the value of a radiation source (RS) activity of an application correlates with the category (the rank) given to it by the IAEA categorization although it is based on other parameters of the RS applications (practices like devices with radiation sources in industry, science, medicine and agriculture). The principles of the new IAEA categorization, taking into account the potential harm the sources may cause and the necessary regulatory control, are described. (author)

  19. Characterization of Greater-Than-Class C sealed sources. Volume 3, Sealed sources held by general licensees

    International Nuclear Information System (INIS)

    Harris, G.

    1994-09-01

    This is the third volume in a series of three volumes characterizing the population of sealed sources that may become greater-than-Class C low-level radioactive waste (GTCC LLW). In this volume, those sources possessed by general licensees are discussed. General-licensed devices may contain sealed sources with significant amounts of radioactive material. However, the devices are designed to be safe to use without special knowledge of radiological safety practices. Devices containing Am-241 or Cm-244 sources are most likely to become GTCC LLW after concentration averaging. This study estimates that there are about 16,000 GTCC devices held by general licensees; 15,000 of these contain Am-241 sources and 1,000 contain Cm-244 sources. Additionally, this study estimates that there are 1,600 GTCC devices sold to general licensees each year. However, due to a lack of available information on general licensees in Agreement States, these estimates are uncertain. This uncertainty is quantified in the low and high case estimates given in this report, which span approximately an order of magnitude

  20. Lesson Learned from Conditioning of Disused Sealed Radioactive Sources (DSRS) in Malaysia

    International Nuclear Information System (INIS)

    Nik Marzukee Nik Ibrahim; Mohd Abdul Wahab Yusof; Norasalwa Zakaria

    2016-01-01

    This paper presents the conditioning of disused sealed radioactive source (DSRS) in Malaysia. In Malaysia, sealed radioactive sources (SRS) are widely used in Malaysia especially in industry, medicine and research. Once SRS are no longer in use, they are declared disused and managed as radioactive waste. In order to reduce the risk associated with disused sealed radioactive sources (DSRS), the first priority would be to bring them under appropriate controls. This paper describes the experience developed and activities performed by Nuclear Malaysia throughout the period in conditioning of DSRS as well as future programme to further enhancing the infrastructure. Collaborative efforts with the various relevant groups such as Loji and Prototaip Development Centre (PDC) and Industrial Technology Division (BTI) provide an effective avenue in ensuring successful implementation of the programme. Currently, until August 2015, Malaysia has in possession about 12,154 unit of DSRS categories 3-5 and 4 units of DSRS category 2 sources which being stored at the interim storage facility Nuclear Malaysia. A national activity was implemented for the on-the-job training of personnel tasked with the conditioning of DSRS, at the Waste Technology Development Centre (WasTeC) facilities. This is part of -cradle-to-grave- control of radioactive sources to protect the workers and public from the hazards of ionizing radiation. (author)

  1. Design and production of activimeters verification sealed radioactive sources

    International Nuclear Information System (INIS)

    Serra, R.; Hernandez Rivero, A. T.; Oropesa, P.; Rapado, M.; Falcon, L.

    2006-01-01

    Measurement in a radionuclide calibrator (activimeter) of the doses to be administered to a patient for diagnosis or radiotherapeutic treatment is an essential element in Nuclear Medicine practice. To assure that patient will receive the optimal doses that guarantee the necessary quality of the image to be studied or optimum radiotherapeutic effect, the activity determination should fulfil established accuracy requirements. To this aim, the overall uncertainty in activity determination must not surpass a preestablished limit of about 10 % for the expanded uncertainty of the activity value (with a coverage factor k = 3). To have suitable equipment, periodically calibrated for specialized and authorized specialists and frequently verified in inter calibration periods to guarantee detection of any malfunctioning, are essential requirements to assure the compliance with the prescribed regulations and limiting values. This paper describes the design and production of two models of 137 Cs activimeters verification sealed radioactive sources elaborated with this aim at the Radionuclide Metrology Department of the Isotope Centre of Cuba. Taking into account the international experience in this field was defined 3 -10 MBq as convenient activity range, the 137 Cs as a suitable radionuclide, and a classification ISO/99/C22212 (ISO 2919:1999) for the sealed sources to be obtained. In designed and produced models the activity is bonded in a hydrogel copolymer obtained by gamma irradiation, in a 60 Co irradiator, of a mixture of a 137 Cs aqueous solution with an approximate activity of 5 MBq with two proper monomers (acrylamide and methacrylic acid). The density of obtained copolymer is similar to that of the radioactive solutions employed in nuclear medicine departments for diagnosis and therapy. The obtained sources have appropriate physical stability for a temperature range between 40 o C below zero and 80 o C, as well as for defined activity range. The stability of the

  2. Management and disposal of disused sealed radioactive sources in Europe

    International Nuclear Information System (INIS)

    Wells, D.A.; Angus, M.J.; Cecille, L.

    2001-01-01

    Full text: Sealed radioactive sources have been widely used for many decades in industry, medicine and research. Although most countries have laid down a regulatory framework to control sealed sources, there are still a number of uncertainties concerning the management of historical Ra- 226 alpha sources and the possibility of retrieving non-registered sources. Both these uncertainties may represent high radiological risks for the population. In addition, management schemes and practises implemented in different countries can be somewhat conflicting and create problems for storage and disposal. This paper describes the results of three studies that were carried out between 1998 and 2001 to consider the situation relating to the regulation and management of spent sealed radioactive sources (SSRS) in each of the fifteen current European Union (EU) member states and the ten central and eastern European (C and EE) countries that are currently being considered for admission to the European Union (namely, Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia). The general aim of the studies was to acquire a thorough understanding of the management of SSRS in each country, in order to recommend improvements in management schemes and to establish whether the application of common disposal criteria would be advantageous. The studies covered the following activities: Estimation of the inventory of SSRS in store and disposed in each country; Analysis of the relevant regulations and regulatory framework in each country; Description and review of the current management practises in each country; Estimation of the number of unregistered SSRS (including identification of the reasons why SSRS are lost' and recommending ways of recovering lost' sources). It was important to understand the full life-cycle of sealed radioactive sources, from manufacture through to disposal. Much of the information contained in these studies was obtained

  3. The management and disposal of sealed sources in France

    International Nuclear Information System (INIS)

    Drogou, A.

    2005-01-01

    The utilisation of sealed sources is very widespread in France, both in the medical and industrial fields. The rules for the management and retrieval of the sources are defined in the Decree of 4 April 2002. The principle of the retrieval of the sources is reliant on the supplier who is obliged to take back these sources. Financial guarantee systems have consequently been established to provide compensation for any failure by the supplier to take back the sources. The problems today in France are the absence of a disposal route and the management of the orphan sources. These have been integrated into the drawing up of the National Waste Management Plan (PNGDR) issued by the Minister for the Environment. Certain ideas and principles for the disposal of the sources have already been presented: Development of the principles of justification and recycling, development of disposal routes, development of a retrieval system for orphan sources; the importance of the establishment of financial guarantees for all the sources, the importance of consistency between the European regulations in order to have a simple return to the supplier in the case of imported sources. (author)

  4. Sure confinement of spent sealed sources; Confinamiento seguro de fuentes selladas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D., E-mail: david.lizcano@inin.gob.mx [ININ, Departamento de Desechos Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The industrial and technological development of the last decades produced and increment in the radiations application in different human activities. One of the main effects has been the production of radioactive wastes of all the levels. In Mexico, several stages of the waste management of low and intermediate level have not been completely resolved, as the case of the treatment and the final storage. In this work the confinement of spent sealed sources is described, maintaining as main objective the security of these sources and the protection to the workers and the people. (author)

  5. Synchroton Radiation Sources

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Williams, G.P.

    1998-01-01

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light

  6. Review of Sealed Source Designs and Manufacturing Techniques Affecting Disused Source Management

    International Nuclear Information System (INIS)

    2012-10-01

    This publication presents an investigation on the influence of the design and technical features of sealed radioactive sources (SRSs) on predisposal and disposal activities when the sources become disused. The publication also addresses whether design modifications could contribute to safer and/or more efficient management of disused sources without compromising the benefits provided by the use of the sealed sources. This technical publication aims to collect information on the most typical design features and manufacturing techniques of sealed radioactive sources and examines how they affect the safe management of disused sealed radioactive sources (DSRS). The publication also aims to assist source designers and manufacturers by discussing design features that are important from the waste management point of view. It has been identified that most SRS manufacturers use similar geometries and materials for their designs and apply improved and reliable manufacturing techniques e.g. double- encapsulation. These designs and manufacturing techniques have been proven over time to reduce contamination levels in fabrication and handling, and improve source integrity and longevity. The current source designs and materials ensure as well as possible that SRSs will maintain their integrity in use and when they become disused. No significant improvement options to current designs have been identified. However, some design considerations were identified as important to facilitate source retrieval, to increase the possibility of re-use and to ensure minimal contamination risk and radioactive waste generation at recycling. It was also concluded that legible identifying markings on a source are critical for DSRS management. The publication emphasizes the need for a common understanding of the radioactive source's recommended working life (RWL) for manufacturers and regulators. The conditions of use (COU) are important for the determination of RWL. A formal system for specification

  7. Seals

    International Nuclear Information System (INIS)

    Welsher, R.A.G.

    1982-01-01

    An aperture through a biological shield is sealed by a flexible sheath having a beading at one end located on an annular member slidable in the aperture such that the beading bears in sealing engagement against the sides of the aperture. The annular member is retained by a retractable latch and can be rejected by pushing it out of the aperture using a replacement annular member with a replacement sheath thereon to butt against the annular member to be rejected. The replacement annular member may be mounted on a tubular device having an outer co-axial member for operating the latch when the replacement annular member butts against the annular member to be rejected. Applications include effecting a seal between a remote handling equipment and a wall through which the equipment extends. (author)

  8. Strategic planning as a competitive differential: A case study of the Sealed Sources Production Laboratory

    International Nuclear Information System (INIS)

    Vieira, Imário; Nascimento, Fernando C.; Calvo, Wilson A. Parejo

    2017-01-01

    Strategic planning has always been and continues to be one of the most important management tools for decision making. Amidst the uncertainties of the 21"s"t century, public, private and third sector organizations are steadily struggling to improve their strategic plans by using more effective results management tools such as BSC-Balanced Scorecard. Nuclear research institutes and research centers around the world have been using more and more these types of tools in their strategic planning and management. The objective of this article was to recommend the use the BSC as a strategic tool for decision making for the Sealed Sources Production Laboratory located in the Radiation Technology Center, at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in Sao Paulo, Brazil. The methodology used in this academic article was a case study, which considered the object of the study, the Sealed Sources Production Laboratory, from January 2014 to August 2016. Among the main results obtained with this study can be cited: the improvement of the information flow, the visualization and proposition to change the periodicity of analysis of the results, among others. In view of the expected results, it was possible to conclude that this study may be of value to the Sealed Sources Production Laboratory for Industrial Radiography and Industrial Process Control and also to other research centers, as it will allow and contribute with an additional management support tool. (author)

  9. Strategic planning as a competitive differential: A case study of the Sealed Sources Production Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Imário; Nascimento, Fernando C.; Calvo, Wilson A. Parejo, E-mail: imariovieira@yahoo.com, E-mail: wapcalvo@ipen.br, E-mail: fcodelo@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faculdade SENAI de Tecnologia Ambiental, Sao Bernardo do Campo, SP (Brazil)

    2017-11-01

    Strategic planning has always been and continues to be one of the most important management tools for decision making. Amidst the uncertainties of the 21{sup st} century, public, private and third sector organizations are steadily struggling to improve their strategic plans by using more effective results management tools such as BSC-Balanced Scorecard. Nuclear research institutes and research centers around the world have been using more and more these types of tools in their strategic planning and management. The objective of this article was to recommend the use the BSC as a strategic tool for decision making for the Sealed Sources Production Laboratory located in the Radiation Technology Center, at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in Sao Paulo, Brazil. The methodology used in this academic article was a case study, which considered the object of the study, the Sealed Sources Production Laboratory, from January 2014 to August 2016. Among the main results obtained with this study can be cited: the improvement of the information flow, the visualization and proposition to change the periodicity of analysis of the results, among others. In view of the expected results, it was possible to conclude that this study may be of value to the Sealed Sources Production Laboratory for Industrial Radiography and Industrial Process Control and also to other research centers, as it will allow and contribute with an additional management support tool. (author)

  10. Management of Spent Radiation Source from Radiotherapy

    International Nuclear Information System (INIS)

    Aisyah

    2008-01-01

    Nowadays the use of radioactive source for both radiodiagnostic and radiotherapy in Indonesia hospital increases rapidly. Sealed source used in radiotherapy among others for brachytherapy, teletherapy, bone densitometry, whole blood irradiation and gamma knife (radiosurgery). In line with this, the waste of spent radiation sources will be generated in hospitals. Of course these spent radiation sources must be treated correctly in order to maintain the safety of both the public and the environment. According to the Act No. 10/1997, BATAN, in care of the Radioactive Waste Management Center is the national appointed agency for the management of radioactive waste. The option for waste management by hospitals needs to be expound, either by re-exporting to the supplier of origin, re-exporting to other supplier, re-use by other licensee or sending to the Radioactive Waste Management Center. Usually the waste sent by the hospitals to the center comprises of sealed radiation source of 60 Co, 137 Cs or 226 Ra. The management of spent radiation source in the center is carried out in several steps i.e. conditioning, temporary storage, and long-term storage (final disposal). The conditioning of non 226 Ra is carried out by placing the waste in a 200 litter drum shell, 950 or 350 litter concrete shells, depends on the activity and dimension of the spent radiation source. The conditioning of 226 Ra is carried out by encapsulating the waste in a stainless steel container for long-term storage shield which then placed in a 200 litter drum shell. The temporary storage of the conditioned spent radiation source is carried out by storing it in the center’s temporary storages, either low or medium activity waste. Finally, the conditioned spent radiation source is buried in a disposal facility. For medium half-life spent radiation source, the final disposal is burial it in a shallow-land disposal; mean while, for long half-life spent radiation source, the final disposal is burial it in

  11. Safe handling of radiation sources

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    This chapter discussed the subjects related to the safe handling of radiation sources: type of radiation sources, method of use: transport within premises, transport outside premises; Disposal of Gamma Sources

  12. Spent sealed radium sources conditioning in Latin America

    International Nuclear Information System (INIS)

    Mourao, R.P.

    1999-01-01

    The management of spent sealed sources is considered by the International Atomic Energy Agency (IAEA) one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency's initiatives to tackle this problem is the Spent Radium Sources Conditioning Project, a worldwide project relying on the regional co-operation between countries. A team from the Brazilian nuclear research institute Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) was chosen as the expert team to carry out the operations in Latin America; since December 1996 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala, Ecuador and Paraguay. A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,897 mg of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes and contaminated objects were stored in proper conditions and are now under control of the nuclear authorities of the visited countries

  13. Spent sealed radium sources conditioning in Latin America

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta

    1999-01-01

    The management of spent sealed sources is considered by the IAEA one of the greatest challenges faced by nuclear authorities today, especially in developing countries. One of the Agency's initiatives to tackle this problem is the 'Spent Radium Sources Conditioning Project', a worldwide project relying on the regional cooperation between countries. A CDTN team was chooses as the expert team to carry out the operations in Latin America; since Dec 96 radium sources have been safely conditioned in Uruguay, Nicaragua, Guatemala and Ecuador. A Quality Assurance Program was established, encompassing the qualification of the capsule welding process, written operational procedures referring to all major steps of the operation, calibration of monitors and information retrievability. A 200L carbon steel drum-based packaging concept was used to condition the sources, its cavity being designed to receive the lead shield device containing stainless steel capsules with the radium sources. As a result of these operations, a total amount of 2,629 mg (approx. 98 GBq) of needles, tubes, medical applicators, standard sources for calibration, lightning rods, secondary wastes (generated during the operations) and contaminated objects were stored in proper conditions and are now under control, of the nuclear authorities of the visited countries. (author)

  14. Procedure to carry out leakage test in beta radiation sealed sources emitters of {sup 90}Sr/{sup 90}Y; Procedimiento para realizar prueba de fuga en fuentes selladas de radiacion beta emisoras de {sup 90}Sr/{sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J. T., E-mail: trinidad.alvarez@inin.gob.m [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio Secundario de Calibracion Dosimetrica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-09-15

    In the alpha-beta room of the Secondary Laboratory of Dosimetric Calibration of the Metrology Department of Ionizing Radiations ophthalmic applicators are calibrated in absorbed dose terms in water D{sub w}; these applicators, basically are emitter sealed sources of pure beta radiation of {sup 90}Sr / {sup 90}Y. Concretely, the laboratory quality system indicates to use the established procedure for the calibration of these sources, which establishes the requirement of to carry out a leakage test, before to calibrate the source. However, in the Laboratory leakage test certificates sent by specialized companies in radiological protection services have been received, in which are used gamma spectrometry equipment s for beta radiation leakage tests, since it is not reliable to detect pure beta radiation with a scintillating detector with NaI crystal, (because it could detect the braking radiation produced in the detector). Therefore the Laboratory has had to verify the results of the tests with a correct technique, with the purpose of determining the presence of sources with their altered integrity and radioactive material leakage. The objective of this work is to describe a technique for beta activity measurement - of the standard ISO 7503, part 1 (1988) - and its application with a detector Gm plane (type pankage) in the realization of leakage tests in emitter sources of pure beta radiation, inside the mark of quality assurance indicated by the report ICRU 76. (Author)

  15. Categorization of radiation sources

    International Nuclear Information System (INIS)

    2000-12-01

    The objective of this report is to develop a categorization scheme for radiation sources that could be relevant to decisions both in a retrospective application to bring sources under control and in a prospective sense to guide the application of the regulatory infrastructure. The Action Plan envisages that the preparation of guidance on national strategies and programmes for the detection and location of orphan sources and their subsequent management should commence after the categorization of sources has been carried out. In the prospective application of the system of notification, registration, and licensing, the categorization is relevant to prioritize a regulatory authority's resources and training activities; to guide the degree of detail necessary for a safety assessment; and to serve as a measure of the intensity of effort which a regulatory authority should apply to the safety and security of a particular type of source

  16. Development and application of test apparatus for classification of sealed source

    International Nuclear Information System (INIS)

    Kim, Dong Hak; Seo, Ki Seog; Bang, Kyoung Sik; Lee, Ju Chan; Son, Kwang Je

    2007-01-01

    Sealed sources have to conducted the tests be done according to the classification requirements for their typical usages in accordance with the relevant domestic notice standard and ISO 2919. After each test, the source shall be examined visually for loss of integrity and pass an appropriate leakage test. Tests to class a sealed source are temperature, external pressure, impact, vibration and puncture test. The environmental test conditions for tests with class numbers are arranged in increasing order of severity. In this study, the apparatus of tests, except the vibration test, were developed and applied to three kinds of sealed source. The conditions of the tests to class a sealed source were stated and the difference between the domestic notice standard and ISO 2919 were considered. And apparatus of the tests were made. Using developed apparatus we conducted the test for 192 Ir brachytherapy sealed source and two kinds of sealed source for industrial radiography. 192 Ir brachytherapy sealed source is classified by temperature class 5, external pressure class 3, impact class 2 and vibration and puncture class 1. Two kinds of sealed source for industrial radiography are classified by temperature class 4, external pressure class 2, impact and puncture class 5 and vibration class 1. After the tests, Liquid nitrogen bubble test and vacuum bubble test were done to evaluate the safety of the sealed sources

  17. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    Directory of Open Access Journals (Sweden)

    T. Marpaung

    2012-08-01

    Full Text Available In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS, due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle

  18. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    International Nuclear Information System (INIS)

    Marpaung, T.

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle (author)

  19. Management for the prevention of accidents from disused sealed radioactive sources

    International Nuclear Information System (INIS)

    2001-04-01

    The objective of this report is to provide advice to sealed radiation source (SRS) users, radioactive waste operators, and other concerned public sectors on the measures to be taken to reduce the risk of accidents associated with disused or spent SRS. The report also explains policies as well as technical and administrative procedures to minimize the risk of accidents and to mitigate the consequences should an accident occur. The report emphasizes areas of high risk in handling disused or spent SRS in any form and condition to help to save health, life and financial resources

  20. State Register of Sources of Ionizing Radiation and Occupational exposure

    CERN Document Server

    2002-01-01

    One of main tasks of Radiation Protection Centre is to collect, process, systematize, store and provide the data on sources of ionizing radiation and occupational exposures. The number of sources in 2002 is provided and compared with previous year. Distribution of workers according to the type of practice is compared with previous year. Distribution of sealed sources and x-ray machines according their use is presented.

  1. Algorithms for the process management of sealed source brachytherapy

    International Nuclear Information System (INIS)

    Engler, M.J.; Ulin, K.; Sternick, E.S.

    1996-01-01

    Incidents and misadministrations suggest that brachytherapy may benefit form clarification of the quality management program and other mandates of the US Nuclear Regulatory Commission. To that end, flowcharts of step by step subprocesses were developed and formatted with dedicated software. The overall process was similarly organized in a complex flowchart termed a general process map. Procedural and structural indicators associated with each flowchart and map were critiqued and pre-existing documentation was revised. open-quotes Step-regulation tablesclose quotes were created to refer steps and subprocesses to Nuclear Regulatory Commission rules and recommendations in their sequences of applicability. Brachytherapy algorithms were specified as programmable, recursive processes, including therapeutic dose determination and monitoring doses to the public. These algorithms are embodied in flowcharts and step-regulation tables. A general algorithm is suggested as a template form which other facilities may derive tools to facilitate process management of sealed source brachytherapy. 11 refs., 9 figs., 2 tabs

  2. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  3. Nature and magnitude of the problem of spent radiation sources

    International Nuclear Information System (INIS)

    1991-09-01

    Various types of sealed radiation sources are widely used in industry, medicine and research. Virtually all countries have some sealed sources. The activity in the sources varies from kilobecquerels in consumer products to hundreds of pentabecquerels in facilities for food irradiation. Loss or misuse of sealed sources can give rise to accidents resulting in radiation exposure of workers and members of the general public, and can also give rise to extensive contamination of land, equipment and buildings. In extreme cases the exposure can be lethal. Problems of safety relating to spent radiation sources have been under consideration within the Agency for some years. The first objective of the project has been to prepare a comprehensive report reviewing the nature and background of the problem, also giving an overview of existing practices for the management of spent radiation sources. This report is the fulfilment of this first objective. The safe management of spent radiation sources cannot be studied in isolation from their normal use, so it has been necessary to include some details which are relevant to the use of radiation sources in general, although that area is outside the scope of this report. The report is limited to radiation sources made up of radioactive material. The Agency is implementing a comprehensive action plan for assistance to Member States, especially the developing countries, in all aspects of the safe management of spent radiation sources. The Agency is further seeking to establish regional or global solutions to the problems of long-term storage of spent radiation sources, as well as finding routes for the disposal of sources when it is not feasible to set up safe national solutions. The cost of remedial actions after an accident with radiation sources can be very high indeed: millions of dollars. If the Agency can help to prevent even one such single accident, the cost of its whole programme in this field would be more than covered. Refs

  4. Tuned sources of submillimetre radiation

    International Nuclear Information System (INIS)

    Berezhnyj, V.L.

    1981-01-01

    The main present directions of development of sources of frequency coherent tuned radiation of electromagnetic waves in the submillimeter range: nonlinear mixing of different frequencies; semiconductor lasers; molecular lasers with optical pumping; relativistic electron beams in a magnetic field as submillimeter radiation sources; submillimeter radiation sources on the basis of SHF classical electrovacuum devices - are considered. The designs of generator systems and their specifications are presented. The main parameters of electromagnetic radiation of different sources, such as: power, stability, frequency, tuning range - are presented. The methods of improving sources and electromagnetic radiation parameters are proposed. The examples of possible applications of submillimeter radiation in different spheres of science and technology are given [ru

  5. Future Synchrotron Radiation Sources

    CERN Document Server

    Winick, Herman

    2003-01-01

    Sources of synchrotron radiation (also called synchrotron light) and their associated research facilities have experienced a spectacular growth in number, performance, and breadth of application in the past two to three decades. In 1978 there were eleven electron storage rings used as light sources. Three of these were small rings, all below 500 mega-electron volts (MeV), dedicated to this purpose; the others, with energy up to 5 giga-electron volts (GeV), were used parasitically during the operation of the ring for high energy physics research. In addition, at that time synchrotron radiation from nine cyclic electron synchrotrons, with energy up to 5 GeV, was also used parasitically. At present no cyclic synchrotrons are used, while about 50 electron storage rings are in operation around the world as fully dedicated light sources for basic and applied research in a wide variety of fields. Among these fields are structural molecular biology, molecular environmental science, materials, analytic chemistry, micr...

  6. Radiation sources and process

    International Nuclear Information System (INIS)

    Honious, H.B.; Janzow, E.F.; Malson, H.A.; Moyer, S.E.

    1980-01-01

    The invention relates to radiation sources comprising a substrate having an electrically-conductive non-radioactive metal surface, a layer of a metal radioactive isotope of the scandium group, which in addition to scandium, yttrium, lanthanum and actinium, includes all the lanthanide and actinide series of elements, with the actinide series usually being preferred because of the nature of the radioactive isotopes therein, particularly americium-241, curium-244, plutonium-238, californium-252 and promethium-147, and a non-radioactive bonding metal codeposited on the surface by electroplating the isotope and bonding metal from an electrolytic solution, the isotope being present in the layer in minor amount as compared to the bonding metal, and with or without a non-radioactive protective metal coating covering the isotoype and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating. The invention also relates to a process for providing radiation sources comprising codepositing a layer of the metal radioactive isotope with a non-radioactive bonding metal from an electrolytic solution in which the isotope is present in minor molar amount as compared to the bonding metal such that the codeposited layer contains a minor molar amount of the isotope compared to the bonding metal by electroplating on an electrically-conductive non-radioactive metal surface of a cathode substrate, and with or without depositing a nonradioactive protective metal coating over the isotope and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating

  7. Compact synchrotron radiation source

    International Nuclear Information System (INIS)

    Liu, N.; Wang, T.; Tian, J.; Lin, Y.; Chen, S.; He, W.; Hu, Y.; Li, Q.

    1985-01-01

    A compact 800 MeV synchrotron radiation source is discussed. The storage ring has a circumference of 30.3 m, two 90 degree and four 45 degree bending magnet sections, two long straight sections and four short straight sections. The radius of the bending magnet is 2.224m. The critical wave length is 24A. The injector is a 15 Mev Microtron Electrons are accelerated from 15 Mev to 800 Mev by ramping the field of the ring. The expected stored current will be around 100 ma

  8. Safe management of sealed radioactive sources at Karachi nuclear power complex

    International Nuclear Information System (INIS)

    Tahir, T.B.; Qamar, A.

    2000-01-01

    This paper describes the conditioning of sealed radioactive sources, carried out at the Karachi Nuclear Power Complex (KNPC) in co-operation with the IAEA. The radioactive sources were radium needles of various size, used by various radiotherapy units in different hospitals throughout the country. For some time the use of radium needles had been abandoned and they were stored in hospitals awaiting proper disposal. Since their storage conditions were not ideal and there was a potential of leakage of radioactive material into the environment, it was decided to condition and store them safely. A significant logistic effort was required to identify these sources, bring them to a central facility and condition them according to current international standards. Various steps were involved in conditioning the sources: place it in a stainless steel capsule, weld the capsule, test it for a leak, place the capsule in a lead shielded package, put and seal the shielded package in a concrete-lined steel drum and finally store it at the waste storage facility. A total amount of about 1500 mg of Radium needles were conditioned. Radiation exposure during the entire operation was within acceptable limits. (author)

  9. 10 CFR 34.27 - Leak testing and replacement of sealed sources.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Leak testing and replacement of sealed sources. 34.27... SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.27 Leak testing and replacement... radiographic exposure device and leak testing of any sealed source must be performed by persons authorized to...

  10. Management of disused sealed sources from the nuclear industry in China

    International Nuclear Information System (INIS)

    Fan Xuanlin

    2002-01-01

    Since the founding of the nuclear industry in China, more than 8000 disused sealed sources accumulated of which more than 1800 are Radium sources. Most of these sources were produced during the period 1960-1980. The disused radioactive sources are temporarily stored in a user's interim store. A project to manage these disused sealed sources is under way which includes inventory investigation, inspection, collection, transportation and long-term storage. (author)

  11. Control of sources of ionizing radiation in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Mastauskas, Albinas; Ziliukas, Julius; Morkunas, Gendrutis [Radiation Protection Centre, Vilnius (Lithuania)

    1997-12-31

    Aspects connected with regulatory control of radioactive sources in Lithuania, such as keeping of the computer-based registry, investigation of arrested illegal radioactive material, decision making, control of users of radioactive sources are discussed. Most of the sources of ionizing radiation are smoke detectors and x-ray equipment. Potentially most dangerous sources (both sealed and unsealed) of therapy and industry are also presented 2 refs., 2 tabs.; e-mail: rsc at post.omnitel.net

  12. Control of sources of ionizing radiation in Lithuania

    International Nuclear Information System (INIS)

    Mastauskas, Albinas; Ziliukas, Julius; Morkunas, Gendrutis

    1997-01-01

    Aspects connected with regulatory control of radioactive sources in Lithuania, such as keeping of the computer-based registry, investigation of arrested illegal radioactive material, decision making, control of users of radioactive sources are discussed. Most of the sources of ionizing radiation are smoke detectors and x-ray equipment. Potentially most dangerous sources (both sealed and unsealed) of therapy and industry are also presented

  13. Natural sources of ionizing radiations

    International Nuclear Information System (INIS)

    Marej, A.N.

    1984-01-01

    Natural sources of ionizing radiations are described in detail. The sources are subdivided into sources of extraterrestrial origin (cosmic radiation) and sources of terrestrial origin. Data on the concentration of different nuclides in rocks, various soils, ground waters, atmospheric air, tissues of plants and animals, various food stuffs are presented. The content of natural radionuclides in environmental objects, related to human activities, is discussed

  14. The ultimate solution. Disposal of disused sealed radioactive sources (DSRS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2011-01-01

    The borehole disposal concept (BDC) was first presented to ICEM by Potier, J-M in 2005. This paper repeats the basics introduced by Potier and relates further developments. It also documents the history of the development of the BDC. For countries with no access to existing or planned geological disposal facilities for radioactive wastes, the only options for managing high activity or long-lived disused radioactive sources are to store them indefinitely, return them to the supplier or find an alternative method of disposal. Disused sealed radioactive sources (DSRS) pose an unacceptable radiological and security risk if not properly managed. Out of control sources have already led to many high-profile incidents or accidents. One needs only to remember the recent accident in India that occurred earlier this year. Countries without solutions in place need to consider the future management of DSRSs urgently. An on-going problem in developing countries is what to do with sources that cannot be returned to the suppliers, sources for which there is no further use, sources that have not been maintained in a working condition and sources that are no longer suitable for their intended purpose. Disposal in boreholes is intended to be simple and effective, meeting the same high standards of long-term radiological safety as any other type of radioactive waste disposal. It is believed that the BDC can be readily deployed with simple, cost-effective technologies. These are appropriate both to the relatively small amounts and activities of the wastes and the resources that can realistically be found in developing countries. The South African Nuclear Energy Corporation Ltd (Necsa) has carried out project development and demonstration activities since 1996. The project looked into the technical feasibility, safety and economic viability of BDC under the social, economic, environmental and infrastructural conditions currently prevalent in Africa. Implementation is near at hand with

  15. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  16. Radiotracer and Sealed Source Applications in Sediment Transport Studies

    International Nuclear Information System (INIS)

    2014-01-01

    The investigation of sediment transport in seas and rivers is crucial for civil engineering and littoral protection and management. Coastlines and seabeds are dynamic regions, with sediments undergoing periods of erosion, transport, sedimentation and consolidation. The main causes for erosion in beaches include storms and human actions such as the construction of seawalls, jetties and the dredging of stream mouths. Each of these human actions disrupts the natural flow of sand. Current policies and practices are accelerating the beach erosion process. However, there are viable options available to mitigate this damage and to provide for sustainable coastlines. Radioactive methods can help in investigating sediment dynamics, providing important parameters for better designing, maintaining and optimizing civil engineering structures. Radioisotopes as tracers and sealed sources have been useful and often irreplaceable tools for sediment transport studies. The training course material is based on lecture notes and practical works delivered by many experts in IAEA supported activities. Lectures and case studies were reviewed by a number of specialists in this field

  17. The safe use of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  18. The safe use of radiation sources

    International Nuclear Information System (INIS)

    1995-01-01

    As a means of promoting safety in the use of radiation sources, as well as encouraging consistency in regulatory control, the IAEA has from time to time organized training courses with the co-operation of Member State governments and organizations, to inform individuals from developing countries with appropriate responsibilities on the provisions for the safe use and regulation of radiation sources. Three such courses on the safe use of radiation sources have been held in both the USA, with the co-operation of the United States Government, and in Dublin, Ireland, with the co-operation of the Irish Government. The Training Course on the Safe Use and Regulation of Radiation Sources has been successfully given to over 77 participants from over 30 countries during the last years. The course is aimed at providing a basis of radiation protection knowledge in all aspects of the uses of radiation and of radiation sources that are used today. It is the intention of this course to provide a systematic enhancement of radioisotope safety in countries with developing radiological programmes through a core group of national authorities. The IAEA's training programmes provide an excellent opportunity for direct contact with lecturers that have extensive experience in resolving issues faced by developing countries and in providing guidance documents useful in addressing their problems. This document uses this collective experience and provides valuable technical information regarding the safety aspects of the uses not only of sealed and unsealed sources of radiation, but also for those machines that produce ionizing radiation. The first of these training courses, 'Safety and Regulation of Unsealed Sources' was held in Dublin, Ireland, June through July 1989 with the co-operation of the Nuclear Energy Board and Trinity College. This was an interregional training course, the participants came from all over the world. The second and third interregional courses, 'Safety and Regulation

  19. Experience with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Krinsky, S.

    1987-01-01

    The development of synchrotron radiation sources is discussed, emphasizing characteristics important for x-ray microscopy. Bending magnets, wigglers and undulators are considered as sources of radiation. Operating experience at the national Synchrotron Light Source on the VUV and XRAY storage rings is reviewed, with particular consideration given to achieved current and lifetime, transverse bunch dimensions, and orbit stability. 6 refs., 3 figs

  20. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    Chen, Z.; Gautier, C.; Hemez, F.; Bultman, N.K.

    2000-01-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  1. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  2. A general description of the Swedish radiation protection regulations of radioactive sources

    International Nuclear Information System (INIS)

    Staalnacke, C.-G.

    2001-01-01

    The regulation of ionizing radiation in Sweden is based on both the Radiation Protection Act and Ordinance from 1998. The Swedish Radiation Protection Institute (SSI) acts as the regulatory authority for radiation safety and issues detailed regulations in specific areas. The report summarizes how the SSI controls radiation sources, including orphan sources for which a process for analyzing their occurrence has started in Sweden. A number of proposed procedures for the control and follow-up of sealed radioactive sources is provided. (author)

  3. Offsite source recovery project - ten years of sealed source recovery and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, Julia Rose [Los Alamos National Laboratory; Pearson, Mike [Los Alamos National Laboratory; Witkowski, Ioana [Los Alamos National Laboratory; Wald - Hopkins, Mark [Los Alamos National Laboratory; Cuthbertson, A [NNSA

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources (this number has since increased to more than 23,000). This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Decades later, these sources began to exceed their special form certifications or fall out of regular use. As OSRP has collected and stored sealed sources, initially using 'No Path Forward' waste exemptions for storage within the Department of Energy (DOE) complex, it has consistently worked to create disposal pathways for the material it has recovered. The project was initially restricted to recovering sealed sources that would meet the definition of Greater-than-Class-C (GTCC) low-level radioactive waste, assisting DOE in meeting its obligations under the Low-level Radioactive Waste Policy Act Amendments (PL 99-240) to provide disposal for this type of waste. After being transferred from DOE-Environmental Management (EM) to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as GTCC when it became waste, but also any other materials that might constitute a 'national security consideration.' It was recognized at the time that the GTCC category was a waste designation having to do with environmental consequence, rather than the threat posed by deliberate or accidental misuse. The project faces barriers to recovery in many areas, but disposal continues to be one of the more difficult to overcome. This paper discusses OSRP's disposal efforts over its 10-year history. For sources

  4. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a ...

  5. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  6. Order of 25 March 1981 concerning the approval of special form radioactive materials in sealed sources

    International Nuclear Information System (INIS)

    1981-01-01

    This order determines the models of sealed sources which constitute special form radioactive materials within the meaning of the Order of 24 November 1977 concerning the characteristics of such materials. (NEA) [fr

  7. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    International Nuclear Information System (INIS)

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities

  8. Source and special nuclear material sealing and labeling requirements

    International Nuclear Information System (INIS)

    Jordan, K.N.

    1978-04-01

    Purpose of this document is to define requirements for the use of tamper-indicating seals and identifying labels on SS Material containers at Rockwell Hanford Operations. The requirements defined in this document are applicable to all Rockwell Hanford Operation employees involved in handling, processing, packaging, transferring, shipping, receiving or storing SS Material

  9. Incidents with hazardous radiation sources

    International Nuclear Information System (INIS)

    Schoenhacker, Stefan

    2016-01-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  10. Applications of sealed sources in chemical engineering. I

    International Nuclear Information System (INIS)

    Thyn, J.; Pokorny, J.; Cabrnoch, J.

    1977-01-01

    The vertical and horizontal distribution of the concentration of milling balls was observed radiometrically ( 241 Am) on a model (1:4) of the vertical mill of the MOLINEX type. The basic relations are derived for the calculation of the distribution of the density of solid particles and relations for the estimation of errors in measurement. A description is given of the model equipment, of the configuration of the radiation source, of the detector and of the experimental conditions. The results are discussed of measurements for three configurations on the shaft of the excentrically mounted mixing discs (4, 6 and 9 pieces) at 10 rev.s -1 for one revolution direction. The effect of the number of revolutions and of the revolution direction was observed for 6 mixing elements. (B.S.)

  11. Sealed source and device design safety testing. Volume 4: Technical report on the findings of Task 4, Investigation of sealed source for paper mill digester

    International Nuclear Information System (INIS)

    Benac, D.J.; Iddings, F.A.

    1995-10-01

    This report covers the Task 4 activities for the Sealed Source and Device Safety testing program. SwRI was contracted to investigate a suspected leaking radioactive source that was installed in a gauge that was on a paper mill digester. The actual source that was leaking was not available, therefore, SwRI examined another source. SwRI concluded that the encapsulated source examined by SwRI was not leaking. However, the presence of Cs-137 on the interior and exterior of the outer encapsulation and hending tube suggests that contamination probably occurred when the source was first manufactured, then installed in the handling tube

  12. Conditioning of disused sealed sources in countries without disposal facility: Short term gain - long term pain

    International Nuclear Information System (INIS)

    Benitez-Navarro, J.C.; Salgado-Mojena, M.

    2002-01-01

    Owing to the considerable development in managing disused sealed radioactive sources (DSRS), the limited availability of disposal practices for them, and the new recommendations for the use of borehole disposal concept, it was felt that a paper reviewing the existing recommendations could be a starting point of discussion on the retrievability of the sources. Even when no international consensus exists as to an acceptable solution for the challenge of disposal of disused sealed sources, the 'Best Available Technology' for managing most of them, recommended for developing countries, included the cementation of the sources. The waste packages prepared in such a way do not allow any flexibility to accommodate possible future disposal requirements. Therefore, the 'Wait and See' approach could be also recommended for managing not only the sources with long-live radionuclides and high activity, but probably for all kind of existing disused sealed sources. The general aim of the current paper is to identify and review the current recommendations for managing disused sealed sources and to meditate on the most convenient management schemes for disused sealed radioactive sources in Member States without disposal capacities (Latin America, Africa). The risk that cemented DSRS could be incompatible with future disposal requirements was taken into account. (author)

  13. Installation for producing sealed radioactive sources; Installation de fabrication de sources radioactives scellees

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J.; Hayoun, C. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [French] Cette installation a ete concue et realisee pour effectuer des fabrications de sources scellees d'elements de fission: caesium 137 - strontium 90 - promethium 147 - ruthenium 106 - cerium 144 en particulier. L'installation est composee de cellules etanches et protegees, chacune d'elles etant affectee a une fabrication particuliere. La securite et la surete de fonctionnement de l'ensemble sont parmi les elements principaux qui ont guide l'etude. Le rapport decrit l'installation et plus particulierement l'appareillage utilise ainsi que les divers controles et commandes. Le bilan de fonctionnement apres 6 ans d'exploitation sert de conclusion. (auteurs)

  14. Installation for producing sealed radioactive sources; Installation de fabrication de sources radioactives scellees

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J; Hayoun, C [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [French] Cette installation a ete concue et realisee pour effectuer des fabrications de sources scellees d'elements de fission: caesium 137 - strontium 90 - promethium 147 - ruthenium 106 - cerium 144 en particulier. L'installation est composee de cellules etanches et protegees, chacune d'elles etant affectee a une fabrication particuliere. La securite et la surete de fonctionnement de l'ensemble sont parmi les elements principaux qui ont guide l'etude. Le rapport decrit l'installation et plus particulierement l'appareillage utilise ainsi que les divers controles et commandes. Le bilan de fonctionnement apres 6 ans d'exploitation sert de conclusion. (auteurs)

  15. The regulatory control of ionizing radiation sources in Lithuania

    International Nuclear Information System (INIS)

    Mastauskas, A.; Ziliukas, J.; Morkunas, G.

    1998-01-01

    The Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for radiation protection of the public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources, which includes keeping the registry, investigating persons arrested while illegally carrying or in possession of radioactive material, decision making and control of users of radioactive sources. The computer based registry contains a directory of more than 24,000 sources and some 800 users in research, medicine and industry. Most of these sources are found in smoke detectors and X ray equipment. The potentially most dangerous sources for therapy and industry (sealed and unsealed) are also listed in this registry. Problems connected with the regulatory control of radioactive sources in Lithuania are presented and their solution is discussed. (author)

  16. Characterization and packaging of disused sealed radioactive sources; Caracterizacion y acondicionamiento de fuentes radiactivas selladas en desuso

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, S.L. [Instituto Boliviano de Ciencia y Tecnologia Nuclear (IBTEN), La Paz (Bolivia, Plurinational State of)

    2013-07-01

    In Bolivia are generated disused sealed sources and radioactive waste resulting from the use of radioactive materials in industrial, research and medicine. The last includes the diagnosis and treatment. Whereas exposure to ionizing radiation is a potential hazard to personnel who applies it, to those who benefit from its use or for the community at large, it is necessary to control the activities in this field. The Instituto Boliviano de Ciencia y Tecnologia Nuclear - IBTEN is working on a regional project from International Atomic Energy Agency - IAEA, RLA/09/062 Project - TSA 4, Strengthening the National Infrastructure and Regulatory Framework for the Safe Management of Radioactive waste in Latin America. This Project has strengthened the regulatory framework regarding the safe management of radioactive waste. The aim of this work was focused primarily on the security aspects in the safe management of disused sealed sources. The tasks are listed below: 1. Characterization of disused sealed sources 2. Preparation for transport to temporary storage 3. Control of all disused radioactive sources. (author)

  17. Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities

    International Nuclear Information System (INIS)

    2003-08-01

    Sealed radioactive sources are used in medicine, industry and research for a wide range of purposes. They can contain different radionuclides in greatly varying amounts. At the end of their useful lives, they are termed 'disused sources' but their activity levels can still be quite high. They are, for all practical purposes, another type of radioactive waste that needs to be disposed of safely. Disused sealed radioactive sources can represent a significant hazard to people if not managed properly. Many countries have no special facilities for the management or disposal of radioactive waste, as they have no nuclear power programmes requiring such facilities. Even in countries with developed nuclear programmes, disused sealed sources present problems as they often fall outside the common categories of radioactive waste for which disposal options have been identified. As a result, many disused sealed sources are kept in storage. Depending on the nature of the storage arrangements, this situation may represent a high potential risk to workers and to the public. The IAEA has received numerous requests for assistance from Member States faced with the problem of safely managing disused sealed sources. The requests have related to both technical and safety aspects. Particularly urgent requests have involved emergency situations arising from unsafe storage conditions and lost sources. There is therefore an important requirement for the development of safe and cost-effective final disposal solutions. Consequently, a number of activities have been initiated by the IAEA to assist Member States in the management of disused sealed sources. The objective of this report is to address safety issues relevant to the disposal of disused sealed sources, and other limited amounts of radioactive waste, in borehole facilities. It is the first in a series of reports aiming to provide an indication of the present issues related to the use of borehole disposal facilities to safely disposal

  18. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  19. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  20. Radiation sources safety and radioactive materials security regulation in Ukraine

    International Nuclear Information System (INIS)

    Smyshliaiev, A.; Holubiev, V.; Makarovska, O.

    2001-01-01

    Radiation sources are widely used in Ukraine. There are about 2500 users in industry, science, education and about 2800 in medicine. About 80,000 sealed radiation sources with total kerma-equivalent of 450 Gy*M 2 /sec are used in Ukraine. The exact information about the radiation sources and their users will be provided in 2001 after the expected completion of the State inventory of radiation sources in Ukraine. In order to ensure radiation source safety in Ukraine, a State System for regulation of activities dealing with radiation sources has been established. The system includes the following elements: establishment of norms, rules and standards of radiation safety; authorization activity, i.e. issuance of permits (including those in the form of licences) for activities dealing with radiation sources; supervisory activity, i.e. control over observance of norms, rules and standards of radiation safety and fulfilment of conditions of licences for activities dealing with radiation sources, and also enforcement. Comprehensive nuclear legislation was developed and implemented from 1991 to 2000. Radiation source safety is regulated by three main nuclear laws in Ukraine: On the use of nuclear energy and radiation safety (passed on 8 February 1995); On Human Protection from Impact of Ionizing Radiation (passed on 14 January 1998); On permissive activity in the area of nuclear energy utilization (passed on 11 January 2000). The regulatory authorities in Ukraine are the Ministry for Ecology and Natural Resources (Nuclear Regulatory Department) and the Ministry of Health (State sanitary-epidemiology supervision). According to the legislation, activities dealing with radiation sources are forbidden without an officially issued permit in Ukraine. Permitted activities with radiation sources are envisaged: licensing of production, storage and maintenance of radiation sources; licensing of the use of radiation sources; obligatory certification of radiation sources and transport

  1. Stabilization of radionuclides applied in radiation sources

    International Nuclear Information System (INIS)

    Mielcarski, M.

    1989-01-01

    An attempt of comprehensive treatment of problems connected with the production of sealed radiation sources is made. In the introductory part of this work the basic information and definitions are contained. The classification systems currently applied are discussed. Attention was paid to the main fields of application. The methods of stabilization of radionuclides used for preparing radiation sources are discussed. The results of own investigations are presented, comprising the adsorption of some radionuclides on anodic Al 2 O 3 layers, stabilization in glazes and enamels, and the preparation of radioactive ceramics. In the adsorption investigations, these problems were considered as predominant which could form the basis for technological solutions. The results obtained allowed to establish the most favourable conditions of performing the process of stabilization by the use of this technique. In the case of radioactive enamels, the effect of glass composition on the yield of ionization has been investigated. Lowering of the content of radioactive component with simultaneous preserving the useful ionization ability was considered as being important. The mechanism of the observed increase of ionization caused by some inactive glass components is discussed. As concerns radioactive ceramics, a simplified method for preparing the ceramic core of cesium-137 sources is presented. This synthesis is based on the thermal transformation of moulded zeolite pellets into radioactive pollucite. Practical usefulness of different methods for the stabilization is discussed with emphasis given to those elaborated and applied in Poland. 131 refs., 37 figs., 20 tabs. (author)

  2. Searching for Orphan radiation sources

    International Nuclear Information System (INIS)

    Bystrov, Evgenij; Antonau, Uladzimir; Gurinovich, Uladzimir; Kazhamiakin, Valery; Petrov, Vitaly; Shulhovich, Heorhi; Tischenko, Siarhei

    2008-01-01

    Full text: The problem of orphan sources cannot be left unaddressed due high probability of accidental exposure and use of sources for terrorism. Search of objects of this kind is complex particularly when search territory is large. This requires devices capable of detecting sources, identifying their radionuclide composition, and correlating scan results to geographical coordinates and displaying results on a map. Spectral radiation scanner AT6101C can fulfill the objective of search for gamma and neutron radiation sources, radionuclide composition identification, correlation results to geographical coordinates and displaying results on a map. The scanner consists of gamma radiation scintillation detection unit based on NaI(Tl) crystal, neutron detection unit based on two He 3 counters, GPS receiver and portable ruggedized computer. Built-in and application software automates entire scan process, saving all results to memory for further analysis with visual representation of results as spectral information diagrams, count rate profile and gamma radiation dose rates on a geographical map. The scanner informs operator with voice messages on detection of radiation sources, identification result and other events. Scanner detection units and accessories are packed in a backpack. Weighing 7 kg, the scanner is human portable and can be used for scan inside cars. The scanner can also be used for radiation mapping and inspections. (author)

  3. Radioactive sealed sources: Reasonable accountability, exemption, and licensing activity thresholds -- A technical basis

    International Nuclear Information System (INIS)

    Lee, D.W.; Shingleton, K.L.

    1996-01-01

    Perhaps owing to their small size and portability, some radiation accidents/incidents have involved radioactive sealed sources (RSSs). As a result, programs for the control and accountability of RSSs have come to be recommended and emplaced that essentially require RSSs to be controlled in a manner different from bulk, unsealed radioactive material. Crucially determining the total number of RSSs for which manpower-intensive radiation protection surveillance is provided is the individual RSS activity above which such surveillance is required and below which such effort is not considered cost effective. Individual RSS activity thresholds are typically determined through scenarios which impart a chosen internal or external limiting dose to Reference Man under specified exposure conditions. The resultant RSS threshold activity levels have meaning commensurate with the assumed scenario exposure parameters, i.e., if they are realistic and technically based. A review of how the Department of Energy (DOE), the International Atomic Energy Agency (IAEA), and the Nuclear Regulatory Commission (NRC) have determined their respective accountability, exemption, and licensing threshold activity values is provided. Finally, a fully explained method using references readily available to practicing health physicists is developed using realistic, technically-based calculation parameters by which RSS threshold activities may be locally generated

  4. Guide for the preparation of applications for licenses for the use of sealed sources in portable gauging devices

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of this regulatory guide is to provide assistance to applicants and licensees in preparing applications for new licenses, license amendments, and license renewals for the use of sealed sources in portable gauging devices. An example of a portable gauging device is a moisture-density gauge that contains a gamma-emitting sealed source, cesium-137, and a sealed neutron source, americium-242-beryllium

  5. Diagnosis of Catalyst Cooler and Riser in RFCC using Sealed gamma-ray Source

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee; Kim, Jae Ho

    2005-12-01

    With a quantitative growth of the petroleum industry, a lot of budget are spent for the maintenance and repairs of facilities related to the process annually. Among them, the RFCC(residual fluid catalytic cracking) is a highly value-added unit which converts gas oil and heavier streams to lighter, more valuable products such as propylene, gasoline by an injection of atmospheric residue into the fluided catalyst. In this study, field experiments were performed to analyze the reasons of an abnormal operation in the catalyst cooler and the catalyst riser belonged to the RFCC unit respectively and to estimate the amount of seriousness using sealed gamma-ray source( 60 Co). The catalyst cooler functions cooling for the regeneration of a catalyst, which will be used to a new media in the RFCC unit. The catalyst riser, while, plays an important part in transporting to next cyclotron steps by mixing of an oil, steam and a catalyst mechanically. The purposes of this study is what was the condition of catalyst flow pattern and whether the coke was produced in an inside process or not. Gamma radiation counts were measured by the detector(NaI) positioned outside the pipe-wall diametrically opposite to the gamma source with a regular space. From the results, the section different from the distribution pattern of nearby catalyst in a facility was found. And this became the definitive information to a process operator. Diagnosis technique using gamma radiation source is proved to be the effective and reliable method in providing information on the media distribution in a facility

  6. Storage of low-level radioactive waste and regulatory control of sealed sources in Finland

    International Nuclear Information System (INIS)

    Rahola, T.; Markkanen, M.

    2006-01-01

    This paper is concentrated on the non nuclear low-level radioactive waste. The cornerstone for maintaining radioactive sources under control in Finland is that all practices involving sources are subject to authorization and all licensing information, including information on each individual source, are entered into a register which is continuously updated based on applications and notifications received from the licenses. Experiences during the past twenty years have shown that source-specific records of sources combined with regular inspections at the places of use have prevented efficiency losing control over sealed radioactive sources. The current capacity in the interim storage for State owned waste is not adequate for all used sealed sources and other small user waste which are currently kept in the possession of the licensees. Thus, expansion of the storage capacity and other options for taking care of the small user waste is under consideration. (N.C.)

  7. Industrial applications of radiotracer and sealed source technology promoted by IAEA

    International Nuclear Information System (INIS)

    Joon-Ha Jin; Thereska, J.

    2004-01-01

    Great technical and economical benefits can be obtained by applying radioisotope technologies to various industries. The International Atomic Energy Agency (IAEA) has contributed to the development of radiotracer and sealed source technology as applied to industry and environment through coordinated research projects (CRPs). The mature and competitive techniques have been transferred and implemented to developing countries through the Agency's technical co-operation (TC) projects. The paper presents the main achievements in radiotracer and sealed source technology promoted by IAEA as well as the perspective of the technology transfer to developing countries. (author)

  8. Radiation sources working group summary

    International Nuclear Information System (INIS)

    Fazio, M.V.

    1998-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, components technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigation, and phenomena that impact source design such as fatigue in resonant structures due to RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations

  9. Use of reports on accidents with sealed sources to conceive scenarios of human intrusion into waste repositories

    International Nuclear Information System (INIS)

    Leite, Eliana Rodrigues; Oliveira, Rosana Lagua de; Vicente, Roberto

    2011-01-01

    The Radioactive Waste Management Department (GRR) at the Nuclear and Energy Research Institute (IPEN) develops the concept of a repository for disposal of disused sealed radioactive sources (SRS) in a deep borehole. In this concept, the estimated few hundred thousand SRS of the Brazilian inventory will be packaged in lead containers stacked in an encased and cemented borehole, drilled to a depth of a few hundred meters, in a crystalline bedrock geological setting. A generic safety analysis for this concept of repository must achieve two goals: to be acceptable by regulatory bodies and be simple enough so that the engineering of licensing a facility has technical and economical feasibility. It must be kept in mind that the disposition of the SRS must be paid by the users of the sources, and thal the costs of applying the existing methods for the performance and safety assessment of a geological repository dedicated exclusively for sealed sources may be exceedingly high. In this respect, the disposal concept development work includes the search for methodologies that could be applied to the disposal facility for demonstrating safety without unduly increasing the project costs. One line of research is to identify and characterize human intrusion scenarios that could result in significant radiation exposures. Results of a survey on the published literature and on databases of reported accidents involving sealed sources are being used to construct a number of model accident scenarios with which the time evolution of the exposure risks can be assessed for each radioisotope inventory and each relevant disposed of source. Among the 252 accident descriptions recovered in the survey, the 1954 Russian accident report with Po-210 is the oldest, and that of the 2010 accident in Mayapuri, India, with a Co-60 source is the latest. The results of this assessment will be used as a safety indicator of the disposal concept. (author)

  10. Mechanical seals

    CERN Document Server

    Mayer, E

    1977-01-01

    Mechanical Seals, Third Edition is a source of practical information on the design and use of mechanical seals. Topics range from design fundamentals and test rigs to leakage, wear, friction and power, reliability, and special designs. This text is comprised of nine chapters; the first of which gives a general overview of seals, including various types of seals and their applications. Attention then turns to the fundamentals of seal design, with emphasis on six requirements that must be considered: sealing effectiveness, length of life, reliability, power consumption, space requirements, and c

  11. Management of spent sealed sources: The Philippine experience

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Salom, D.S.; Dela Cruz, J.M.; Soriano, V.N.

    2000-01-01

    The Radiation Protection Services (RPS) provide nuclear services to all authorized users of radiation and radioactive materials in the country, including the operation and maintenance of the only centralized facility for the management, treatment and interim storage of conditioned low level radioactive wastes. Two basic waste treatment and conditioning options, adopted by the Philippine Nuclear Research Institute (PNRI) Centralized Waste Management Facility for the types and volume of waste arising in the country, are outlined. International activities within the framework of an IAEA project on a regional demonstration of predisposal waste management methods and procedures for the East Asia Pacific region are described. Information is provided on siting studies and related research and development activities for a waste repository facility. (author)

  12. FRG sealed isotopic heat sources project (C-229) project management plan

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  13. 10 CFR 34.67 - Records of leak testing of sealed sources and devices containing depleted uranium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of leak testing of sealed sources and devices containing depleted uranium. 34.67 Section 34.67 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL... Requirements § 34.67 Records of leak testing of sealed sources and devices containing depleted uranium. Each...

  14. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Anizan, N; Wahl, R L; Frey, E C; Wang, H; Zhou, X C

    2015-01-01

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  15. Comparison of General Purpose Heat Source testing with the ANSI N43.6-1977 (R 1989) sealed source standard

    International Nuclear Information System (INIS)

    Grigsby, C.O.

    1998-01-01

    This analysis provides a comparison of the testing of Radioisotope Thermoelectric Generators (RTGs) and RTG components with the testing requirements of ANSI N43.6-1977 (R1989) ''Sealed Radioactive Sources, Categorization''. The purpose of this comparison is to demonstrate that the RTGs meet or exceed the requirements of the ANSI standard, and thus can be excluded from the radioactive inventory of the Chemistry and Metallurgy Research (CMR) building in Los Alamos per Attachment 1 of DOE STD 1027-92. The approach used in this analysis is as follows: (1) describe the ANSI sealed source classification methodology; (2) develop sealed source performance requirements for the RTG and/or RTG components based on criteria from the accident analysis for CMR; (3) compare the existing RTG or RTG component test data to the CMR requirements; and (4) determine the appropriate ANSI classification for the RTG and/or RTG components based on CMR performance requirements. The CMR requirements for treating RTGs as sealed sources are derived from the radiotoxicity of the isotope ( 238 P7) and amount (13 kg) of radioactive material contained in the RTG. The accident analysis for the CMR BIO identifies the bounding accidents as wing-wide fire, explosion and earthquake. These accident scenarios set the requirements for RTGs or RTG components stored within the CMR

  16. UHV seal studies for the advanced photon source storage ring vacuum system

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Ferry, R.J.; Niemann, R.C.; Roop, B.

    1991-01-01

    The Advanced Photon Source (APS) Storage Ring Vacuum Chambers (SRVC) are constructed of aluminum. The chamber design incorporates aluminum alloy 2219-T87 Conflat flanges welded to an aluminum alloy 6063-T5 extruded chamber body. Vacuum connections to the aluminum Conflat chamber flanges are by means of 304 stainless steel Conflat flanges. To evaluate the Conflat seal assemblies relative to vacuum bake cycles, a Conflat Bake Test Assembly (CBTA) was constructed, and thermal cycling tests were performed between room temperature and 150 degrees C on both stainless steel to aluminum Conflat assemblies and aluminum to aluminum Conflat assemblies. A Helicoflex Bake Test Assembly (HBTA) was similarly constructed to evaluate Helicoflex seals. Both Conflat and Helicoflex seals were studied in a SRVC Sector String Test arrangement of five SRVC sections. The CBTA, HBTA and SRVC tests and their results are reported. 3 refs., 2 figs., 2 tabs

  17. Methods to identify and locate spent radiation sources; Metodos para la identificacion y localizacion de fuentes radiactivas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The objective of this manual is to provide essential guidance to Member States with nuclear applications involving the use of a wide range of sealed radiation sources on the practical task of physically locating spent radiation sources not properly accounted for. Advice is also provided to render the located source safe on location. Refs, figs, tabs.

  18. Sealed radioactive sources and method of their production

    International Nuclear Information System (INIS)

    Benadik, A.; Tympl, M.; Stopek, K.

    1985-01-01

    The active layer of the proposed sources consists of an inorganic sorbent activated with a radioactive component in form of gel, xerogel or glass. The active particles of the inorganic sorbent have the shape of spheres 2 to 2000 μm in diameter. The sources have a tubular, cylindrical or needle shape and are compact with low leachability. They feature minimal radionuclide leakage, they are reliable and safe. Their production technology is proposed. The inorganic sorbent is put in contact with the sollution of the radioactive compound, then separated from the liquid phase, filled into containers, dried, calcined or sintered or otherwise heat-processed into glass at temperatures of 250 -1800 degC. (M.D.)

  19. Challenges in Regulating Radiation Sources and Associated Waste Management

    International Nuclear Information System (INIS)

    Shehzad, A.

    2016-01-01

    Radiation sources are widely used in the fields of medical, industry, agriculture, research, etc. Owing to the inherent risk of exposure to ionizing radiations while using the radiation sources and management of associated waste, safety measures are of utmost importance including robust regulatory control. Pakistan Nuclear Regulatory Authority (PNRA) is responsible for supervising all matters pertaining to nuclear safety and radiation protection in the country. Since its inception, PNRA has made rigorous efforts to regulate the radiation facilities for which regulatory framework was further strengthened by taking into account international norms/practices and implemented afterwards. However, due to vibrant use of these facilities, there are numerous challenges being faced while implementing the regulatory framework. These challenges pertains to shielding design of some facilities, control over service provider for QC/repair maintenance of radiation equipment, assessment of patient doses, and establishment of national diagnostic reference levels for radiological procedures. Further, the regulatory framework also delineate requirements to minimize the generation of associated radioactive waste as low as practicable. The requirements also necessitates that certain sealed radioactive sources (SRS) are returned to the supplier upon completion of their useful life, while other radioactive sources are required to be transported for storage at designated radioactive waste storage facilities in the country, which requires commitment from the licensee. This paper will briefly describe the challenges in regulating the radiation sources and issues related to the waste management associated with these facilities. (author)

  20. Radiation resistant, decontaminable and sealing jointing compounds for application in nuclear facilities

    International Nuclear Information System (INIS)

    Kunze, S.

    1991-09-01

    The sealing jointing compounds applied in practice and already examined for decontaminability will be presented here. Solvent-free sealing compounds, emulsifiable in water, with low molecular epoxy resins as binders, quite a number of curing versions, and little hygroscopic filler mixtures adapted in grain size have been tested with a view to ceramic tile jointing in nuclear facilities. The sealing compounds were examined before and after exposure to gamma irradiation (300 KGy energy dose) for decontaminability, color, gloss and resistance to decontaminants. Out of fourteeen compounds exhaustively investigated ten are very well decontaminable and four well decontaminable. After exposure to radiation no or only minor changes in color and gloss, respectively, were observed. Visible changes such as cracking, bubbles, etc. were not found and the resistance to decontaminants was neither affected. It has even been possible to replace in the well decontaminable sealing compounds developed until now part of the epoxy resin binder with elasticizing components such as Thiokol which is very important as a base material for sealing compounds in the construction industry, but difficult to decontaminate. (orig.) [de

  1. Overview of terahertz radiation sources

    International Nuclear Information System (INIS)

    Gallerano, G.P.; Biedron, S.G.

    2004-01-01

    Although terahertz (THz) radiation was first observed about hundred years ago, the corresponding portion of the electromagnetic spectrum has been for long time considered a rather poorly explored region at the boundary between the microwaves and the infrared. This situation has changed during the past ten years with the rapid development of coherent THz sources, such as solid state oscillators, quantum cascade lasers, optically pumped solid state devices and novel free electron devices, which have in turn stimulated a wide variety of applications from material science to telecommunications, from biology to biomedicine. For a comprehensive review of THz technology the reader is addressed to a recent paper by P. Siegel. In this paper we focus on the development and perspectives of THz radiation sources.

  2. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P.

    2011-01-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  3. Automation system for quality control in manufacture of iodine-125 sealed sources used in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria E.C.M.; Moura, Joao A.; Costa, Osvaldo L.; Calvo, Wilson A.P., E-mail: somessar@ipen.b, E-mail: afeher@ipen.b, E-mail: sprenger@ipen.b, E-mail: elisaros@ipen.b, E-mail: olcosta@ipen.b, E-mail: wapcalvo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The objective of this work is to develop an automation system for Quality Control in the production of Iodine-125 sealed sources, after undergoing the process of laser beam welding. These sources, also known as Iodine-125 seeds are used, successfully, in the treatment of cancer by brachytherapy, with low-dose rates. Each small seed is composed of a welded titanium capsule with 0.8 mm diameter and 4.5 mm in length, containing Iodine-125 adsorbed on an internal silver wire. The seeds are implanted in the human prostate to irradiate the tumor and treat the cancerous cells. The technology to automate the quality control system in the manufacture of Iodine-125 seeds consists in developing and associate mechanical parts, electronic components and pneumatic circuits to control machines and processes. The automation technology for Iodine-125 seed production developed in this work employs programmable logic controller, step motors, drivers of control, electrical-electronic interfaces, photoelectric sensors, interfaces of communication and software development. Industrial automation plays an important role in the production of Iodine-125 seeds, with higher productivity and high standard of quality, facilitating the implementation and operation of processes with good manufacturing practices. Nowadays, the Radiation Technology Center at IPEN-CNEN/SP imports and distributes 36,000 Iodine-125 seeds per year for clinics and hospitals in the whole country. However, the Brazilian potential market is of 8,000 Iodine-125 seeds per month. Therefore, the local production of these radioactive seeds has become a priority for the Institute, aiming to reduce the price and increase the supply to the population in Brazil. (author)

  4. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions.

  5. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    International Nuclear Information System (INIS)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak

    2006-01-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions

  6. Experience and Lessons Learned from Conditioning of Spent Sealed Sources in Singapore - 13107

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dae-Seok; Kang, Il-Sik; Jang, Kyung-Duk; Jang, Won-Hyuk [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon (Korea, Republic of); Hoo, Wee-Teck [National Environment Agency, 40 Scotts Road 228231 (Singapore)

    2013-07-01

    In 2010, IAEA requested KAERI (Korea Atomic Energy Research Institute) to support Singapore for conditioning spent sealed sources. Those that had been used for a lightning conductor, check source, or smoke detector, various sealed sources had been collected and stored by the NEA (National Environment Agency) in Singapore. Based on experiences for the conditioning of Ra-226 sources in some Asian countries since 2000, KAERI sent an expert team to Singapore for the safe management of spent sealed sources in 2011. As a result of the conditioning, about 575.21 mCi of Am-241, Ra-226, Co-60, and Sr-90 were safely conditioned in 3 concrete lining drums with the cooperation of the KAERI expert team, the IAEA supervisor, the NEA staff and local laborers in Singapore. Some lessons were learned during the operation: (1) preparations by a local authority are very helpful for an efficient operation, (2) a preliminary inspection by an expert team is helpful for the operation, (3) brief reports before and after daily operation are useful for communication, and (4) a training opportunity is required for the sustainability of the expert team. (authors)

  7. Study and methodology development for quality control in the production process of iodine-125 radioactive sealed sources applied to brachytherapy

    International Nuclear Information System (INIS)

    Moura, Joao Augusto

    2009-01-01

    Today cancer is the second cause of death by disease in several countries, including Brazil. Excluding skin cancer, prostate cancer is the most incident in the population. Prostate tumor can be treated by several ways, including brachytherapy, which consists in introducing sealed radioactive sources (Iodine - 125 seeds) inside the tumor. The target region of treatment receives a high radiation dose, but healthy neighbor tissues receive a significantly reduced radiation dose. The seed is made of a welding sealed titanium capsule, 0.8 mm external diameter and 4.5 mm length, enclosing a 0.5 mm diameter silver wire with Iodine-125 adsorbed. After welded, the seeds have to be submitted to a leak test to prevent any radioactive material release. The aims of this work were: (a) the study of the different leakage test methods applied to radioactive seeds and recommended by the ISO 997820, (b) the choice of the appropriate method and (c) the flowchart determination of the process to be used during the seeds production. The essays exceeded the standards with the use of ultra-sound during immersion and the corresponding benefits to leakage detection. Best results were obtained with the immersion in distilled water at 20 degree C for 24 hours and distilled water at 70 degree C for 30 minutes. These methods will be used during seed production. The process flowchart has all the phases of the leakage tests according to the sequence determined in the experiments. (author)

  8. Radiation stability of some sealing materials used in nuclear power plants

    International Nuclear Information System (INIS)

    Lukac, P.; Foeldesova, M.; Dillinger, P.

    1987-01-01

    The radiation stability was investigated of sealing strips by Wonisch, Silhoffer and Dehtochema. Samples of the strips were irradiated with various single doses at a dose rate 5.27 kGy.h -1 . Changes in mechanical properties were studied by measuring tensile strength, ductility, compressibility and resistance against aqueous decontamination solutions. The results of the measurement were compared with values for non-irradiated materials and were expressed in percentage. The experiments showed that the materials were stable within the given region of absorbed radiation doses. The highest stability for a dose of 0.25 MGy was shown by the sealing strip Asfaretan by Dehtochema which in many properties compares well with foreign-made materials and in some respects is even better. Its compressibility is, however, worse. The experimental results have shown that polymerization processes (cross-linking) prevail at doses of up to 0.33 MGy and that material degradation prevails above this level. (author)

  9. Experience with first aid in radiation sources accidents

    International Nuclear Information System (INIS)

    Klener, V.

    1979-01-01

    More than 20 years of experience at the Radiation Hygiene Centre of the Prague Institute of Hygiene and Epidemiology with prevention of accidents involving sources of radiation and the Centre's participation in providing medical aid in such accidents are described. A list is given of major types of accidents over the past decade. Prevalent were accidents involving sealed gamma sources, resulting in excessive local irradiation with serious skin damage or injury to some of the deeper structures of the hands, requiring plastic operation. Chromosomal picture investigation allows the estimation of the equivalent body dose which only reached higher values in a single case recorded (1.5 Gy = 150 rad). Organisational measures are described for emergencies and the task is shown by radiation hygiene departments attached to regional hygiene stations. The present system is capable of providing adequate, prompt and effective assistance. (author)

  10. Standard review plan for applications for sealed source and device evaluations and registrations

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this document is to provide the reviewer of a request for a sealed source or device safety evaluation with the information and materials necessary to make a determination that the product is acceptable for licensing purposes. It provides the reviewer with a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, certain administrative procedures to be followed, and information on how to perform the evaluation and write the registration certificate. Standard review plans are prepared for the guidance of the Office of Nuclear Material Safety and Safeguards staff responsible for the review of a sealed source or device application. This document is made available to the public as part of the Commission's policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission's regulations and compliance with them is not required

  11. Standard review plan for applications for sealed source and device evaluations and registrations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this document is to provide the reviewer of a request for a sealed source or device safety evaluation with the information and materials necessary to make a determination that the product is acceptable for licensing purposes. It provides the reviewer with a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, certain administrative procedures to be followed, and information on how to perform the evaluation and write the registration certificate. Standard review plans are prepared for the guidance of the Office of Nuclear Material Safety and Safeguards staff responsible for the review of a sealed source or device application. This document is made available to the public as part of the Commission`s policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission`s regulations and compliance with them is not required.

  12. Identification of radioisotopes in bulks with disused sealed sources using a high performance portable spectrometer

    International Nuclear Information System (INIS)

    Zapata, Luis; Mallaupoma, Mario

    2013-01-01

    Sealed radioactive sources are widely used in many industrial applications, and after completing its useful life must be managed as radioactive wastes. One of the most common problems of disused sealed radioactive sources is that many times they lack proper identification and their certificates of manufacture. In that context, it is necessary to identify them, prior to any other management step. There are a number of techniques which can be used; however they are sometimes complex. This technical paper shows a simple way for its identification using the InSpector 1000 monitor which allows to know their energy spectra. These modern instruments and detectors have been obtained thanks to the Project Global Threat Reduction Initiative (Programa de Reduccion de Amenazas) between IPEN and the US DOE. (authors).

  13. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  14. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  15. Management of disused high-activity sealed radioactive sources: Opting for removal from the national territory

    Energy Technology Data Exchange (ETDEWEB)

    Mourão, Rogério Pimenta, E-mail: mouraor@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Since 2007 Brazil has been using the removal from its territory as a strategy for the management of sealed sources. Three campaigns have been carried out so far, each aiming at specific source types or categories. In the first of these campaigns in 2007, 126 neutron sources of American origin were repatriated to the USA, followed in 2010 by around 900 low activity sources (Categories 3 to 5, according to the IAEA classification system). Both operations were conducted by teams of the American institute Los Alamos National Laboratory. A third campaign, focused on high activity sources – essentially Cobalt-60 sources for teletherapy – was carried out between 2016 and 2017 and resulted in 81 spent high activity radioactive sources of American- and Canadian-origin been sent to Germany and the USA. This operation was carried out by a team of South Africa using a dedicated Mobile Hot Cell. The benefits to Brazil resulting from these operations are clear: increase in safety and security; availability of new precious storage space; less effort dedicated to the disused sealed sources storage; less space in the future borehole facility; financial gains in the selling or reuse of steel, lead and depleted uranium from the original shields. An overexposure incident occurred during the operation, in which a worker was exposed to a dose above the annual statutory limit. (author)

  16. Development of sealed sheet sources for calibration of whole-body counters

    International Nuclear Information System (INIS)

    Miyamoto, Mai; Ishigure, Nobuhito; Ogata, Yoshimune; Narita, Norihiko; Kawaura, Chiyo; Nakano, Takashi

    2009-01-01

    Whole body counters are usually calibrated with the aid of a whole body phantom assembled with simply-shaped plastic vessels that are filled with an aqueous solution of the relevant radioisotopes. Most vessel-type phantoms represent only a human body in which radioisotopes are homogeneously distributed, whereas the radioisotopes in vivo are sometimes localized to specific organs. Each set of the vessels is usually applicable only to a specific combination of radioisotopes, because the replacement of radioisotopes requires troublesome procedures. Possible leakage of the solution is another disadvantage of the vessel-type phantom. The authors are developing a new-type calibration phantom that is free from these disadvantages, in which sealed sheet sources are sandwiched between sections of a sliced anthropomorphic phantom. This paper describes a method to prepare sealed sheet sources for this calibration phantom. Instead of γ-ray emitters a pure β-ray emitter 32 P was used. This isotope is suitable for autoradiography and is easy to handle as its half-life is relatively short. An ink-jet printer was used to spread the solution of 32 P mixed with ink on a sheet of paper. The surface concentration of radioactivity was regulated by the function of color density adjustment of an image processing software. The radioisotope-printed paper was laminated for sealing. Through the measurement of surface concentration of radioactivity with a liquid scintillation counter, the autoradiographical investigation of the pattern of the radioactivity distributed on the sheet sources, the immersion test of the sealed sheet sources and the monitoring of the concentration of 32 P in air during the printing, it was demonstrated that sealed sheet sources for the calibration phantom can be prepared safely by the method described in this paper. Furthermore, by using sheet sources of 99m Tc prepared as a trial it was confirmed that discrete arrangement of sheet sources in a phantom at a

  17. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  18. Soil Monitor: an open source web application for real-time soil sealing monitoring and assessment

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Giannecchini, Simone; Iamarino, Michela; Munafò, Michele; Terribile, Fabio

    2016-04-01

    Soil sealing is one of the most important causes of land degradation and desertification. In Europe, soil covered by impermeable materials has increased by about 80% from the Second World War till nowadays, while population has only grown by one third. There is an increasing concern at the high political levels about the need to attenuate imperviousness itself and its effects on soil functions. European Commission promulgated a roadmap (COM(2011) 571) by which the net land take would be zero by 2050. Furthermore, European Commission also published a report in 2011 providing best practices and guidelines for limiting soil sealing and imperviousness. In this scenario, we developed an open source and an open source based Soil Sealing Geospatial Cyber Infrastructure (SS-GCI) named as "Soil Monitor". This tool merges a webGIS with parallel geospatial computation in a fast and dynamic fashion in order to provide real-time assessments of soil sealing at high spatial resolution (20 meters and below) over the whole Italy. Common open source webGIS packages are used to implement both the data management and visualization infrastructures, such as GeoServer and MapStore. The high-speed geospatial computation is ensured by a GPU parallelism using the CUDA (Computing Unified Device Architecture) framework by NVIDIA®. This kind of parallelism required the writing - from scratch - all codes needed to fulfil the geospatial computation built behind the soil sealing toolbox. The combination of GPU computing with webGIS infrastructures is relatively novel and required particular attention at the Java-CUDA programming interface. As a result, Soil Monitor is smart because it can perform very high time-consuming calculations (querying for instance an Italian administrative region as area of interest) in less than one minute. The web application is embedded in a web browser and nothing must be installed before using it. Potentially everybody can use it, but the main targets are the

  19. Radioactivity determination of sealed pure beta-sources by surface dose measurements and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Seongmoon [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Choi, Kanghyuk; Son, Kwang-Jae; Lee, Jun Sig [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Center for Convergence Research on Robotics, Advance Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2016-04-21

    This study aims to determine the activity of a sealed pure beta-source by measuring the surface dose rate using an extrapolation chamber. A conversion factor (cGy s{sup −1} Bq{sup −1}), which was defined as the ratio of surface dose rate to activity, can be calculated by Monte Carlo simulations of the extrapolation chamber measurement. To validate this hypothesis the certified activities of two standard pure beta-sources of Sr/Y-90 and Si/P-32 were compared with those determined by this method. In addition, a sealed test source of Sr/Y-90 was manufactured by the HANARO reactor group of KAERI (Korea Atomic Energy Research Institute) and used to further validate this method. The measured surface dose rates of the Sr/Y-90 and Si/P-32 standard sources were 4.615×10{sup −5} cGy s{sup −1} and 2.259×10{sup −5} cGy s{sup −1}, respectively. The calculated conversion factors of the two sources were 1.213×10{sup −8} cGy s{sup −1} Bq{sup −1} and 1.071×10{sup −8} cGy s{sup −1} Bq{sup −1}, respectively. Therefore, the activity of the standard Sr/Y-90 source was determined to be 3.995 kBq, which was 2.0% less than the certified value (4.077 kBq). For Si/P-32 the determined activity was 2.102 kBq, which was 6.6% larger than the certified activity (1.971 kBq). The activity of the Sr/Y-90 test source was determined to be 4.166 kBq, while the apparent activity reported by KAERI was 5.803 kBq. This large difference might be due to evaporation and diffusion of the source liquid during preparation and uncertainty in the amount of weighed aliquot of source liquid. The overall uncertainty involved in this method was determined to be 7.3%. We demonstrated that the activity of a sealed pure beta-source could be conveniently determined by complementary combination of measuring the surface dose rate and Monte Carlo simulations.

  20. Radiation protection and regulatory aspects in the use of radiation sources

    International Nuclear Information System (INIS)

    Sen, Amit; Dash Sharma, P.K.; Sonawane, A.U.

    2012-01-01

    The uses of ionising radiation sources (i.e. radioisotopes and radiation generating equipment such as accelerators and X-ray machines) for multifarious applications in industry, medicine, agriculture, research and teaching have been significantly increasing all over the world. In India, the application of radiation sources in various fields has registered phenomenal growth during the last decade. The use of radiation sources mainly include radiation processing for food preservation and sterilization of healthcare products, radiotherapy for treatment of cancer, nuclear medicine for diagnosis and therapy, gamma chambers for several R and D studies, blood irradiators, industrial radiography for non destructive examinations of steel structures, industrial ionising radiation gauging devices for monitoring/measurement of on-line quality control parameters (e.g. thickness, level, density, moisture, elemental analysis), consumer products such as gaseous tritium light sources (GTLS), gaseous tritium light devices (GTLD), ionisation chamber smoke detectors (ICSD), fluorescent light starters, antistatic devices and incandescent gas mantles containing thorium etc. All these beneficial applications involve use of both sealed and unsealed radioactive sources and amount of radioactivity varies from few kBq (μCi) to hundreds of TBq (thousands of curies). Radiation sources emit ionising radiations and if not handled properly and safely, may give rise to potential exposures leading to an unacceptable hazard. Therefore, it is necessary to ensure a high standard of safety and reliability in handling of radiation equipment and sources through their careful design by ensuring adequate built-in-safety as per applicable national/international standard, safe operation and periodic maintenance procedures, safe transport from one place to another, secured storage when not in use, physical security to radiation sources, effective emergency response plans and preparedness, including safe

  1. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  2. Current approaches on the management of disused sealed sources in Bulgaria

    International Nuclear Information System (INIS)

    Benitez-Navarro, J. C.; Canizares, J.; Asuar, O.; Tapia, J.; Demireva, E.; Yordanova, O.; Stefanova, I.; Karadzhov, S.

    2005-01-01

    The main options for the safe management of existing Disused Sealed Radioactive Sources (DSRS) in Bulgaria are discussed. The specific installations for handling and conditioning of all type of DSRS are being designed. The necessary equipment and materials for all conditioning operations have been defined. As the final disposal route for the radioactive wastes in Bulgaria is not defined yet, the proposed conditioning process for the DSRS ensures that end-point disposal of DSRS is not jeopardized by actions taken at present. All the DSRS would be packaged in secure, safe, monitorable and retrievable manner for interim storage

  3. Radiation attenuation gauge with magnetically coupled source

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1978-01-01

    Disclosed is a radiation attenuation gauge for measuring thickness and density of a material which includes, in combination, a source of gamma radiation contained within a housing of magnetic or ferromagnetic material, and a means for measuring the intensity of gamma radiation. The measuring means has an aperture and magnetic means disposed adjacent to the aperture for attracting and holding the housed source in position before the aperture. The material to be measured is placed between the source and the measuring means

  4. Global threat reduction initiative efforts to address transportation challenges associated with the recovery of disused radioactive sealed sources - 10460

    International Nuclear Information System (INIS)

    Whitworth, Julie; Abeyta, Cristy L.; Griffin, Justin M.; Matzke, James L.; Pearson, Michael W.; Cuthbertson, Abigail; Rawl, Richard; Singley, Paul

    2010-01-01

    Proper disposition of disused radioactive sources is essential for their safe and secure management and necessary to preclude their use in malicious activities. Without affordable, timely transportation options, disused sealed sources remain in storage at hundreds of sites throughout the country and around the world. While secure storage is a temporary measure, the longer sources remain disused or unwanted the chances increase that they will become unsecured or abandoned. The Global Threat Reduction Initiative's Off-Site Source Recovery Project (GTRIlOSRP), recovers thousands of disused and unwanted sealed sources annually as part of GTRl's larger mission to reduce and protect high risk nuclear and radiological materials located at civilian sites worldwide. Faced with decreasing availability of certified transportation containers to support movement of disused and unwanted neutron- and beta/gamma-emitting radioactive sealed sources, GTRIlOSRP has initiated actions to ensure the continued success of the project in timely recovery and management of sealed radioactive sources. Efforts described in this paper to enhance transportation capabilities include: (sm b ullet) Addition of authorized content to existing and planned Type B containers to support the movement of non-special form and other Type B-quantity sealed sources; (sm b ullet) Procurement of vendor services for the design, development, testing and certification of a new Type B container to support transportation of irradiators, teletherapy heads or sources removed from these devices using remote handling capabilities such as the IAEA portable hot cell facility; (sm b ullet) Expansion of shielded Type A container inventory for transportation of gamma-emitting sources in activity ranges requiring use of shielding for conformity with transportation requirements; (sm b ullet) Approval of the S300 Type A fissile container for transport of Pu-239 sealed sources internationally; (sm b ullet) Technology transfer of

  5. Control of radiation sources in Japan

    International Nuclear Information System (INIS)

    Maki, S.

    2001-01-01

    The report refers to the regulations for radioactive material in force in Japan, and to the organizations with responsibilities for regulating radiation sources. An outline of the law regulating the use of radiation sources and radioactive materials is provided, including its scope, types of radiation sources under control, exemptions and the system of notification, authorization and inspection. The experience of Japan with orphan sources is presented in three different cases, and the measures carried out to store the orphan sources in safe conditions. (author)

  6. Regulation for radiation protection in applications of radiation sources

    International Nuclear Information System (INIS)

    Sonawane, Avinash U.

    2016-01-01

    Applications of ionising radiation in multifarious field are increasing in the country for the societal benefits. The national regulatory body ensures safety and security of radiation sources by enforcing provisions in the national law and other relevant rules issued under the principle law. In addition, the enforcement of detailed requirements contained in practice specific safety codes and standard and issuance of safety directives brings effectiveness in ensuring safe handling and secure management of radiation sources. The regulatory requirements for control over radiation sources throughout their life-cycle have evolved over the years from experience gained. Nevertheless, some of the regulatory activities which require special attention have been identified such as the development of regulation to deal with advance emerging radiation technology in applications of radiation in medicine and industry; sustaining continuity in ensuring human resource development programme; inspections of category 3 and 4 disused sources and their safe disposal; measures for controlling transboundary movement of radiation sources. The regulatory measures have been contemplated and are being enforced to deal with the above issues in an effective manner. The complete involvement of the management of radiation facilities, radiation workers and their commitment in establishing and maintaining safety and security culture is essential to handle the radiation sources safely and efficiently at all times

  7. Evaluation of the sealing properties and TMA study of multilayer PA/PE film treated with e-beam radiation

    International Nuclear Information System (INIS)

    Ortiz, Angel V.; Gargalaka Junior, Joao; Wiebeck, Helio

    2007-01-01

    Multilayer films are widely used in the food industry as thermoforming as well as non thermoforming vacuum packaging. In this study a PA6/LDPE multilayer film underwent E-beam radiation and its sealing properties were evaluated over 3 years after the film was irradiated. Packaging materials have been widely processed by ionizing radiation in order to improve their chemical and physical properties and also for sterilization purposes. Basically, flexible packaging manufacturers apply specific radiation doses to promote cross-linking and scission of the polymeric chains and thus obtain alterations in certain properties. While enhancing a specific property, significant losses may result in others. We examined the effects of E-beam radiation on the sealing properties of the multilayer film irradiated with doses up to 127 kGy. Results showed that as doses go up, the sealing strength goes down. The TMA study shows that the softening/melting temperatures of the LDPE layer (sealing layer) varies according to the irradiation doses and helps explain the results of the sealing strength tests. (author)

  8. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  9. Regulated control of practices and radiation sources

    International Nuclear Information System (INIS)

    1992-01-01

    Excepting the radiation caused by the natural background radiation, the Executive Secretariat for Nuclear Affairs (SEAN) does not authorize any source no practice within the national territory that may imply exposure of a person to ionizing radiation unless this use is ruled. This document establishes the basic criteria to set up such system as well as to exclude or exempt practices and sources from this regulated control

  10. Radiation sources, radiation environment and risk level at Dubna

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1991-01-01

    The overall information about ionizing radiation sources, which form radiation environment and risk at Dubna, is introduced. Systematization of the measurement results is performed on the basis of the effective dose and losses of life expectancy. The contribution of different sources to total harm of Dubna inhabitants has been revealed. JINR sources carry in ∼ 4% from the total effective dose of natural and medicine radiation sources; the harm from them is much less than the harm from cigarette smoking. 18 refs.; 2 tabs

  11. Radiation exposure by using unsealed radiation sources

    International Nuclear Information System (INIS)

    Preitfellner, J.

    1999-05-01

    Investigations on patients using radioactive substances are performed on a routinely basis in nuclear medicine facilities at many hospitals in our days. These investigations are performed by administering a radiopharmacon to the patient which, depending on several parameters, remains in the body of the patient for various periods of time. All these investigations have in common a g-ray exposure of the environment by the radioactive substance in the body of the patient. Among others, doctors, technical personnel, cleaning personnel, and accompanying persons of patients are exposed to g-rays. Based on these facts, the degree of danger for persons who get into contact with these patients is repeatedly questioned. An additional problem is the health risk of persons employed at a nuclear medicine facility. To answer the first question, the local dose rate in the environment of 102 patients was evaluated immediately after application of the radioactive substance, in intervals from 30 minutes up to several hours, over a period of up to 2 weeks. Depending on the nature of the investigation, the patients were subdivided into 6 groups of 16-20 persons. From the data measured, the effective and the biological half life as well as the local dose were computed. With the aid of concrete case examples, the possible radiation exposure for contact persons was estimated. Postulating unfavorable local and temporal factors in our estimations, the actual radiation exposure is to be estimated about 10-30 % lower. As a reference value for the danger of persons, the maximum permissible boundary values from the Austrian Regulations for Protection against Radiation were used. Referring to these boundary values, for none of the six nuclear medicine investigation methods a danger for contact persons could be derived, indicating that available security measures offer a sufficient protection for affected contact persons. To answer the question about the risk for persons employed at a nuclear

  12. Study of classification and disposed method for disused sealed radioactive source in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl; Lee, Seung Hee [FNC Technology Co., Ltd.,Yongin (Korea, Republic of)

    2016-09-15

    In accordance with the classification system of radioactive waste in Korea, all the disused sealed radioactive sources (DSRSs) fall under the category of EW, VLLW or LILW, and should be managed in compliance with the restrictions for the disposal method. In this study, the management and disposal method are drawn in consideration of half-life of radionuclides contained in the source and A/D value (i.e. the activity A of the source dividing by the D value for the relevant radionuclide, which is used to provide an initial ranking of relative risk for sources) in addition to the domestic classification scheme and disposal method, based on the characteristic analysis and review results of the management practices in IAEA and foreign countries. For all the DSRSs that are being stored (as of March 2015) in the centralized temporary disposal facility for radioisotope wastes, applicability of the derivation result is confirmed through performing the characteristic analysis and case studies for assessing quantity and volume of DSRSs to be managed by each method. However, the methodology derived from this study is not applicable to the following sources; i) DSRSs without information on the radioactivity, ii) DSRSs that are not possible to calculate the specific activity and/or the source-specific A/D value. Accordingly, it is essential to identify the inherent characteristics for each of DSRSs prior to implementation of this management and disposal method.

  13. Proposal of conditioning of the not-in-use sealed sources which are stored in the Radioactive Wastes Treatment Facility

    International Nuclear Information System (INIS)

    Jova, L.; Garcia, N.; Benitez, J.C.; Salgado, M.; Hernandez, A.

    1996-01-01

    There is a considerable number of sealed sources which are no longer in use at the radioactive wastes treatment facility. In the present work a methodology is proposed for the final conditioning of these sources, based on their immobilization in a cement matrix. This cementation is accomplished within a 200-liter tank

  14. Regulatory control of radiation sources and radioactive materials in Ireland

    International Nuclear Information System (INIS)

    McGarry, A.T.; Fenton, D.; O'Flaherty, T.

    2001-01-01

    The primary legislation governing safety in uses of ionizing radiation in Ireland is the Radiological Protection Act, 1991. This Act provided for the establishment in 1992 of the Radiological Protection Institute of Ireland, and gives the Institute the functions and powers which enable it to be the regulatory body for all matters relating to ionizing radiation. A Ministerial Order made under the Act in 2000 consolidates previous regulations and, in particular, provides for the implementation in Irish law of the 1996 European Union Directive which lays down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. Under the legislation, the custody, use and a number of other activities involving radioactive substances and irradiating apparatus require a licence issued by the Institute. Currently some 1260 licences are in force. Of these, some 850 are in respect of irradiating apparatus only and are issued principally to dentists and veterinary surgeons. The remaining licences involve sealed radiation sources and/or unsealed radioactive substances used in medicine, industry or education. A schedule attached to each licence fully lists the sealed sources to which the licence applies, and also the quantities of radioactive substances which may be acquired or held under the licence. It is an offence to dispose of, or otherwise relinquish possession of, any licensable material other than in accordance with terms and conditions of the licence. Disused sources are returned to the original supplier or, where this is not possible, stored under licence by the licensee who used them. Enforcement of the licensing provisions relies primarily on the programme of inspection of licensees, carried out by the Institute's inspectors. The Institute's Regulatory Service has a complement of four inspectors, one of whom is the Manager of the Service. The Manager reports to one of the Institute's Principal

  15. Assessment of the properties of disused sealed radioactive sources for disposal in a borehole facility

    International Nuclear Information System (INIS)

    Adjepong, K.

    2015-01-01

    Radioactive wastes arise from applications in which radioactive materials are used. Medicine, industries and agriculture are examples of areas where radioactive materials are used. Most of the radioactive materials used in nuclear applications are in the form of sealed radioactive sources (SRS). After a number of usages, the SRS may no longer be useful enough for its original purpose and will be considered as a disused sealed radioactive source (DSRS). DSRS are potentially dangerous to human health and the environment, and therefore important to manage them safely. Currently in Ghana, DSRS are collected and stored awaiting a final disposal option. There are ongoing plans to implement the Borehole Disposal of Disused Sealed Sources (BOSS) system in Ghana as a final disposal option. There are, however, concerns about the number of DSRS disposal packages that can safely be disposed in a narrow borehole underground in a long term without posing any harm to people and the environment. It is therefore necessary to assess the properties of DSRS that need to be placed into the borehole to determine the safety of this disposal option. For this study, 160 DSRS were selected from the DSRS inventory. The present activity, volume, A/D ratio and thermal output of all the DSRS were determined. The SIMBOD database tool was used to determine the number of capsules and disposal packages that will be required with respect to the DSRS registered into it. Also, verification measurements to confirm the DSRS inventory data were conducted. The assessment have shown that DSRS used in this study would require a total of seven (7) capsules. The estimated total activity of the disposal packages were below the waste acceptance criteria and the thermal output for each disposal package were also below the 50W limit. One borehole with an estimated length of 57 m will be safe to dispose the DSRS used in this study. The verification measurements confirmed the confirmed the DSRS inventory data. It

  16. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  17. Radiation sources and methods for producing them

    International Nuclear Information System (INIS)

    Malson, H.A.; Moyer, S.E.; Honious, H.B.; Janzow, E.F.

    1979-01-01

    The radiation sources contain a substrate with an electrically conducting, non-radioactive metal surface, a layer of a metal isotope of the scandium group as well as a percentage of non-radioactive binding metal being coated on the surface by means of an electroplating method. Besides examples for β sources ( 147 Pm), γ sources ( 241 Am), and neutron sources ( 252 Cf) there is described an α-radiation source ( 241 Am, 244 Cu, 238 Pu) for smoke detectors. There are given extensive tables and a bibliography. (DG) [de

  18. Handling of radioactive sources in Ecuador

    International Nuclear Information System (INIS)

    Benitez, Manuel

    2000-01-01

    This document describes the following aspects: sealed and unsealed radioactive sources, radiation detectors, personnel and area monitoring, surface pollution, radioactive wastes control and radioactive sources transferring. (The author)

  19. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Mason, G.C.

    1990-01-01

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  20. There are radiation sources out there!

    International Nuclear Information System (INIS)

    Bahran, M.Y.

    2001-01-01

    During the past few years we have been working in the area of the safety of radiation sources and radioactive materials. In this paper we summarize our findings and describe the recovery of an abandoned source. We call for further international co-operation in this area. In particular, we suggest an international system for the tagging and tracking of radioactive sources. (author)

  1. Radiological Risk Assessment and Cask Materials Qualification for Disposed Sealed Radioactive Sources Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Olteanu, G.; Bujoreanu, D.

    2009-01-01

    The hazardous waste problem imposes to respect national and international agreed regulations regarding their transport, taking into account both for maintaining humans, goods and environment exposure under specified limits, during transport and specific additional operations, and also to reduce impact on the environment. The paper follows to estimate the radiological risk and cask materials qualification according to the design specifications for disposed sealed radioactive sources normal transport situation. The shielding analysis has been performed by using Oak Ridge National Laboratory's SCALE 5 programs package. For thermal analysis and cask materials qualification ANSYS computer code has been used. Results have been obtained under the framework of Advanced system for monitoring of hazardous waste transport on the Romanian territory Research Project which main objective consists in implementation of a complex dual system for on-line monitoring both for transport special vehicle and hazardous waste packages, with data automatic transmission to a national monitoring center

  2. Radiation protection and the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    These Safety Fundamentals cover the protection of human beings against ionizing radiation (gamma and X rays and alpha, beta and other particles that can induce ionization as they interact with biological materials), referred to herein subsequently as radiation, and the safety of sources that produce ionizing radiation. The Fundamentals do not apply to non-ionizing radiation such as microwave, ultraviolet, visible and infrared radiation. They do not apply either to the control of non-radiological aspects of health and safety. They are, however, part of the overall framework of health and safety

  3. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2014-01-01

    Seals and Sealing Handbook, 6th Edition provides comprehensive coverage of sealing technology, bringing together information on all aspects of this area to enable you to make the right sealing choice. This includes detailed coverage on the seals applicable to static, rotary and reciprocating applications, the best materials to use in your sealing systems, and the legislature and regulations that may impact your sealing choices. Updated in line with current trends this updated reference provides the theory necessary for you to select the most appropriate seals for the job and with its 'Failur

  4. Development of the doubly sealed Ir192 sources for industrial applications

    International Nuclear Information System (INIS)

    Munoz, C.; Sabio Calvett, Manuel; Bianchi, Daniel R.; Banchik, Abraham D.; Mender, Alberto; Gonzalez, Alfredo J.

    2003-01-01

    A Program for Developing Double Sealed Irradiation Sources for industrial and medical applications is in progress at the Argentine Atomic Energy Commission. The present work describes the mechanical and metallurgical procedures for designing and welding dummy capsules of the two types that are required for making double sealed Ir 192 industrial sources with the designation ISO/98/C43515 according to ISO 2919 and leak tight according to ISO/98/9978 standards. That is part of a Project with INVAP company. Four different models, including the typical international model, were designed, machined and TIG-welded. Both the internal and external capsules and the end caps were made from AISI 316L stainless steel. Two types of welding station were made. In the first one the 'end cap' was welded to the capsule keeping the torch and the capsule fixed (stationary process), while in the second type the capsule rotates around its own axes during the process (out of cell dynamic semiautomatic controlled process). The welding parameters for the second welding process were selected from the different parameters used to process 120 'international type' capsules. All the processed units were subject to a visual inspection, 85% of them were considered acceptable, while the rest were rejected because of having, at naked eyes and/or under magnification glasses, different types of welding defects. Metallographic examination of the microstructure at the welding seam and the matrix were made in welded unit selected at random from different lots of all processed units in order to determine the penetration of the weld and the microstructure of the weld seam. Present results are encouraging enough to consider to start with the next step, where the capsules are process inside a 'hot cell' and with a Ir 192 foil inside the inner capsule to reproduce actual fabrication conditions. (author)

  5. Protection during work with ionizing radiation sources; Ochrana pri praci se zdroji ionizujiciho zareni

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The publication has been set up as a textbook for training courses dealing with health protection during work with ionizing radiation, designed for supervisory staff and persons directly responsible for activities which involve the handling of ionizing radiation sources. The book consists of a preface and the following chapters: (1) Fundamentals of ionizing radiation physics; (2) Quantities and units used in ionizing radiation protection; (3) Principles of ionizing radiation dosimetry; (4) Biological effects of ionizing radiation; (5) An overview of sources of public irradiation; (6) Principles and methods of health protection against ionizing radiation; (7) Examples of technical applications of sources of ionizing radiation; (8) Personnel and working environment monitoring; (9) Documentation maintained at sites with ionizing radiation sources; (10) Methods of personnel protection against external irradiation and internal radionuclide contamination; (11) Radiation incidents and accidents; (12) Health care of personnel exposed to the ionizing radiation risk; (12) Additional radiation protection requirements in handling radioactive substances other than sealed sources; (13) Measurement and metrology. (P.A.).

  6. Spent sealed radioactive sources conditioning technology for the disposal at the national repository Baita-Bihor

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Popescu, I.V.

    2006-01-01

    A spent sealed radioactive source(SRS) is a high integrity capsule which contains a small amount of concentrated radionuclide with an activity which ranges from a few MBq up to levels of hundreds TBq. Presently, there are now many spent and unusable SRS in Romania, which have been used a long time in various industrial applications (smoke detectors, weld testing etc.). Considering the activity of the Radioactive Waste Treatment Plant (STDR) at the Institute for Nuclear Research Pitesti regarding radioactive source collecting from various economic agents, several radioactive sources are held in the intermediate storage deposit facility on the institute platform awaiting conditioning for the final disposal. This paper presents the conditioning technology for this sources, which has as ultimate purpose to completion of a product which matches the waste acceptance requirements imposed by the National Authority Control of Nuclear Activities, CNCAN, for the disposal site DNDR Baita - Bihor. The technology used for obtaining the final product allows two options for the immobilization of the sources in the 218 L steel drum and these are: Sources placed in the original packages and which can not be dismantled will be isolated by encapsulation in 10 litters metal capsules and then conditioned in 218 l steel drum, with a concrete biological shielding; Sources removed from the initial package are isolated in stainless steel capsules, which are to be conditioned in the same 218 L steel drum. The final product obtained as a result of the concrete conditioning operations of the spent SRS in 218 L steel drum is the steel drum - concrete - low radioactive waste assembly which presents itself as a concrete block which includes one or more capsules containing SRS. (author)

  7. Radiation Safety and Orphan Sources

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  8. Radiation Safety and Orphan Sources

    Energy Technology Data Exchange (ETDEWEB)

    Janzekovic, H.; Krizman, M. [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2006-07-01

    The wide spread use of radioactive and particularly of nuclear materials which started in the last century very quickly also demonstrated negative sides. The external exposure and radiotoxicity of these materials could be easily used in a malevolent act. Due to the fact that these materials could not be detected without special equipment designed for that purpose, severe control over their use in all phases of a life cycle is required. An orphan source is a radioactive source which is not under regulatory control, either because it has never been under regulatory or because it has been abandoned, lost, misplaced, stolen or transferred without proper authorization. In the last ten years a few international conferences were dedicated to the improvement of the safety and security of radioactive sources. Three main tasks are focused, the maintenance of data bases related to events with orphan sources and the publications of such events, the preparation of recommendations and guidelines to national regulatory bodies in order to prevent and detect the events related to orphan sources as well as to develop the response strategies to radiological or nuclear emergency, appraisals of the national strategies of radioactive sources control. Concerning Slovenia, strengthening control over orphan sources in Slovenia started after the adoption of new legislation in 2002. It was carried out through several tasks with the aim to prevent orphan sources, as well as to identify the sources which could be potentially orphan sources. The comprehensive methodology was developed by the Slovenian nuclear safety administration (S.N.S.A.) based on international guidelines as well as on the study of national lesson learned cases. The methodology was developed and used in close cooperation with all parties involved, namely other regulatory authorities, police, customs, agency for radioactive waste management (A.R.A.O.), technical support organisations (T.S.O.), users of source, authorised

  9. The competent person in radiation protection: practical radiation protection for industry and research - unsealed sources

    International Nuclear Information System (INIS)

    Bruchet, H.

    2009-01-01

    The mission of the competent person in radiation protection has been broadly developed these last years to take an essential function in firm:study of working place, delimitation of regulated areas, monitoring of exposure, relations with authorities. The competent person in radiation protection must follow a training, defined by decree and shared in two parts: a theoretical part used as compulsory subjects and a practical part specific to the different sectors of activity (research, industry, medical centers, nuclear facilities) as well as the radiation use type. This volume corresponds to the practical module devoted to the industrial and research facilities concerned by the possession of management of sealed or unsealed sources. In accordance with the regulations stipulating that this module must allow to apply the theoretical knowledge to concrete situations in work. It includes eight chapters as following: radiation protection in industrial and research facilities, use of sources and associated risks, fitting out professional premises, evaluation of exposure, control of radiation protection; use of detection equipment and radioactive contamination and exposure measurement equipment, associated to methods and calculation tools; radioactive waste management; accidental or damaged situations management; methodology of working place analysis completed by the application to practical cases found in laboratories. (N.C.)

  10. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  11. Ionizing radiation sources. Ionizing radiation interaction with matter

    International Nuclear Information System (INIS)

    Popits, R.

    1976-01-01

    Fundamentals of nuclear physics are reviewed under the headings: obtaining of X-rays and their properties; modes of radioactive decay of natural or man-made radionuclides; radioactive neutron sources; nuclear fission as basis for devising nuclear reactors and weapons; thermonuclear reactions; cosmic radiation. Basic aspects of ionizing radiation interactions with matter are considered with regard to charged particles, photon radiation, and neutrons. (A.B.)

  12. The utilization of radiation sources in Angola

    International Nuclear Information System (INIS)

    Lemos, P.C.D.

    2001-01-01

    The report describes the situation that Angola, which joined the IAEA in September 1999, is facing with the lack of an appropriate infrastructure for the control of radiation sources. It emphasizes the country's needs in technical assistance from the IAEA and other Member States for improving its regulatory infrastructure for radiation safety. (author)

  13. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  14. Characterization of sealed radioactive sources. Uncertainty analysis to improve detection methods

    International Nuclear Information System (INIS)

    Cummings, D.G.; Sommers, J.D.; Adamic, M.L.; Jimenez, M.; Giglio, J.J.; Carney, K.P.

    2009-01-01

    A radioactive 137 Cs source has been analyzed for the radioactive parent 137 Cs and stable decay daughter 137 Ba. The ratio of the daughter to parent atoms is used to estimate the date when Cs was purified prior to source encapsulation (an 'age' since purification). The isotopes were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In addition, Ba was analyzed by isotope dilution ICP-MS (ID-ICP-MS). A detailed error analysis of the mass spectrometric work has been undertaken to identify areas of improvement, as well as quantifying the effect the errors have on the 'age' determined. This paper reports an uncertainty analysis to identifying areas of improvement and alternative techniques that may reduce the uncertainties. In particular, work on isotope dilution using ICP-MS for the 'age' determination of sealed sources is presented. The results will be compared to the original work done using external standards to calibrate the ICP-MS instrument. (author)

  15. Management of Spent Sealed Radioactive Sources in Bulgaria, Latvia, Lithuania, Romania and Slovakia

    International Nuclear Information System (INIS)

    Angus, M.; Cowley, M.; Moreton, T.; Wells, D.

    2003-01-01

    This study has been performed to consider the situation relating to the regulation and management of spent sealed radioactive sources (SSRS) in five of the Central and Eastern European (C and EE) countries that are being considered for admission to the EU, namely, Bulgaria, Latvia, Lithuania, Romania and Slovakia. Two previous studies have considered the situation in the current EU member states(1) and in the Czech Republic, Estonia, Hungary, Poland and Slovenia(2). The general aim of this study has been to acquire a thorough understanding of the management of SSRS in the five countries, in order to recommend improvements in management schemes and to establish whether the application of common disposal criteria would be advantageous. This report is structured in the following manner; following the Introduction (Section 1), there is a description of the current and proposed regulatory requirements in the EU, together with a summarised comparison of the regulatory systems in the five countries with EU standards (Section 2). Sections 3 to 7 are dedicated to each of the five countries. Each of these sections is similarly sub-divided to enable country-by-country and topic-by-topic comparison. In each of Sections 3 to 7 there is an overview, description of the sealed source inventory, regulations, current management practices, retrieval of unregistered (sometimes known as lost or orphan sources) SSRS, conclusions and a description of possible future technical assistance projects. In addition, there is a description in each of Sections 3 to 7 of the management of 226 Ra sources, which is receiving special attention in many countries (Table I provides a summary and comparison of the management of 226 Ra in the five countries).both country-specific and generic recommendations. A common concern in the five countries and many other countries, including the EU member states, is the problem of accidental inclusion of SSRS in consignments of scrap metal. The detection of

  16. Irradiation device using radiation sources

    International Nuclear Information System (INIS)

    Perraudin, Claude; Amarge, Edmond; Guiho, J.-P.; Horiot, J.-C.; Taniel, Gerard; Viel, Georges; Brethon, J.-P.

    1981-01-01

    The invention refers to an irradiation appliance making use of radioactive sources such as cobalt 60. This invention concerns an irradiation appliance delivering an easily adjustable irradiation beam in accurate dimensions and enabling the radioactive sources to be changed without making use of intricate manipulations at the very place where the appliance has to be used. This kind of appliance is employed in radiotherapy [fr

  17. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    Science.gov (United States)

    Vaz, Pedro

    2015-11-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.

  18. Distribution of sealed sources in use or stored by user on-site in Republic of Bulgaria

    International Nuclear Information System (INIS)

    Simeonov, G.

    2001-01-01

    Full text: Distribution of the sealed sources (SS) in use or stored by user on-site in Republic of Bulgaria has been determined by using the categorization system proposed by Institut National des Radioelements (IRE), Belgium. The criteria used to categorize the SS were the handling and monitoring equipment needed for dismantling, checking and treatment of spent sealed sources (SSS) before storage and/or final disposal. The categorization system was proposed as a basis for estimation of the needs of equipment for the new treatment and storage facility for SSS in the site of Novi Han radioactive waste repository. The categorization used to evaluate the distribution of SS in use or stored by user on-site is shown in Table I. Sealed sources are widely used in Bulgaria for industrial, medical, domestic and scientific purposes. Presently, the list of registered users of sealed beta-gamma and neutron SS consists of 387 industrial users, 78 research and control users and 14 medical users. In addition there are 48 registered users of Pu-239 static eliminators and an estimated number shows about 1000 users of Pu-239, Am- 241 or Kr-85 sources in smoke detectors. Wide range of activities with SS is controlled by CUEAPP, as license is required for use and/or storage by user of every single source. An electronic data base of the licenses for use of atomic energy is operated by CUAEPP. The investigation covered the sealed sources registered in the data base. The number of sources in different categories, their use and typical activity have been determined. The same approach has been used separately for sealed sources in use, as well as for spent sources stored by user on-site. Special attention has been paid to high activity gamma-sources used in teletherapy and irradiators, as their activities were corrected for radioactive decay (reference date: March 2001); the exact location and conditions of use or storage of every such source were established. As a result of the

  19. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions which are not photoconductor elements each at the end of a slit. A positioner operates to change the transverse position of the slits and radiation transducing portions relative to the source, wherein each radiation transducing element is positioned within its respective slit between the slit defining walls. Full details and preferred embodiments are given. (U.K.)

  20. Radiation therapy sources, equipment and installations

    International Nuclear Information System (INIS)

    2011-03-01

    The safety code for Telegamma Therapy Equipment and Installations, (AERB/SC/MED-1) and safety code for Brachytherapy Sources, Equipment and Installations, (AERB/SC/MED-3) were issued by AERB in 1986 and 1988 respectively. These codes specified mandatory requirements for radiation therapy facilities, covering the entire spectrum of operations ranging from the setting up of a facility to its ultimate decommissioning, including procedures to be followed during emergency situations. The codes also stipulated requirements of personnel and their responsibilities. With the advent of new techniques and equipment such as 3D-conformal radiation therapy, intensity modulated radiation therapy, image guided radiation therapy, treatment planning system, stereotactic radiosurgery, stereotactic radiotherapy, portal imaging, integrated brachytherapy and endovascular brachytherapy during the last two decades, AERB desires that these codes be revised and merged into a single code titled Radiation Therapy Sources, Equipment, and Installations

  1. Evaluation of the endodontic apical seal after post insertion by synchrotron radiation microtomography

    International Nuclear Information System (INIS)

    Contardo, L.; De Luca, M.; Biasotto, M.; Longo, R.; Olivo, A.; Pani, S.; Di Lenarda, R.

    2005-01-01

    The commonly used methods for evaluating the endodontic apical seal, such as longitudinal and transversal section and diaphanization, show some operative difficulties and intrinsic limitation. This study suggests and describes a new method of analysis using a synchrotron radiation microtomography to analyse the root apex after post insertion, creating a three-dimensional image and analysing sections of the specimen every 5μm. The study was performed at SYRMEP beam line at the Electra Synchrotron in Trieste using monochromatic X-rays of 32KeV. Eleven monoradicular teeth were prepared using NiTi GT Rotary files instruments to an apical size 20 with conicity .06 and divided in four groups: in G1 (n=4) and G2 (n=2), the specimens were endodontically filled with guttapercha and a zinc-oxide sealer, in G3 (n=3) and G4 (n=2) guttapercha and a silicon-based sealer were used. An endodontic post was inserted in specimens of groups 1 and 3 following the manufacturer's instructions. Specimens were analysed using monochromatic X-rays of 32KeV. A CCD detector with pixel dimension pf 5x5μm 2 was used for the acquisition process. Seven hundred and twenty projections were performed over 180 o range using a high-resolution rotator. The projections were reconstructed using standard algorithms for tomographic reconstruction. The apical infiltration was evaluated by verifying if black spots were detectable on the images. The specimens of groups 3 and 4 showed a better apical seal than the ones of groups 1 and 2. Post insertion, when a ZOE-based sealer is used, increases the apical gap even if it does not seem to be clinically relevant and sufficient to be a cause of endodontic failure. The new method for analysis appeared to be effective to detect small defects in endodontic obturation, analysing guttapercha-sealer and sealer-dentin interfaces

  2. U Y 105 standard use of non sealed radioactive sources in nuclear medicine: approve for Industry energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requirements radiological safety for use non sealed radioactive sources in nuclear medicine.The present standard is used in operation or nuclear medicine practices using non sealed radioactive sources with diagnostic and therapeutic purposes in vivo and in vitro

  3. Carbon sources and trophic relationships of ice seals during recent environmental shifts in the Bering Sea.

    Science.gov (United States)

    Wang, Shiway W; Springer, Alan M; Budge, Suzanne M; Horstmann, Lara; Quakenbush, Lori T; Wooller, Matthew J

    2016-04-01

    Dramatic multiyear fluctuations in water temperature and seasonal sea ice extent and duration across the Bering-Chukchi continental shelf have occurred in this century, raising a pressing ecological question: Do such environmental changes alter marine production processes linking primary producers to upper trophic-level predators? We examined this question by comparing the blubber fatty acid (FA) composition and stable carbon isotope ratios of individual FA (δ¹³CFA) of adult ringed seals (Pusa hispida), bearded seals (Erignathus barbatus), spotted seals (Phoca largha), and ribbon seals (Histriophoca fasciata), collectively known as "ice seals," sampled during an anomalously warm, low sea ice period in 2002-2005 in the Bering Sea and a subsequent cold, high sea ice period in 2007-2010. δ¹³C(FA) values, used to estimate the contribution to seals of carbon derived from sea ice algae (sympagic production) relative to that derived from water column phytoplankton (pelagic production), indicated that during the cold period, sympagic production accounted for 62-80% of the FA in the blubber of bearded seals, 51-62% in spotted seals, and 21-60% in ringed seals. Moreover, the δ¹³CFA values of bearded seals indicated a greater incorporation of sympagic FAs during the cold period than the warm period. This result provides the first empirical evidence of an ecosystem-scale effect of a putative change in sympagic production in the Western Arctic. The FA composition of ice seals showed clear evidence of resource partitioning among ringed, bearded, and spotted seals, and little niche separation between spotted and ribbon seals, which is consistent with previous studies. Despite interannual variability, the FA composition of ringed and bearded seals showed little evidence of differences in diet between the warm and cold periods. The findings that sympagic production contributes significantly to food webs supporting ice seals, and that the contribution apparently is less in

  4. Security of radioactive sources in radiation facilities

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and safety standards are formulated on the basis of internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides and guidelines elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Board before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. In India, radiation sources are being widely used for societal benefits in industry, medical practices, research, training and agriculture. It has been reported from all over the world that unsecured radioactive sources caused serious radiological accidents involving radiation injuries and fatalities. Particular concern was expressed regarding radioactive sources that have become orphaned (not under regulatory control) or vulnerable (under weak regulatory control and about to be orphaned). There is a concern about safety and security of radioactive sources and hence the need of stringent regulatory control over the handling of the sources and their security. In view of this, this guide is prepared which gives provisions necessary to safeguard radiation installations against theft of radioactive sources and other malevolent acts that may result in radiological consequences. It is, therefore, required that the radiation sources are used safely and managed securely by only authorised personnel. This guide is intended to be used by users of radiation sources in developing the necessary security plan for

  5. Regulatory control of radiation sources. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The basic requirements for the protection of persons against exposure to ionizing radiation and for the safety of radiation sources were established in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (the Basic Safety Standards), jointly sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (OECD/ NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO) (the Sponsoring Organizations). The application of the Basic Safety Standards is based on the presumption that national infrastructures are in place to enable governments to discharge their responsibilities for radiation protection and safety. Requirements relating to the legal and governmental infrastructure for the safety of nuclear facilities and sources of ionizing radiation, radiation protection, the safe management of radioactive waste and the safe transport of radioactive material are established in the Safety Requirements on Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, Safety Standards Series No. GS-R-1. This Safety Guide, which is jointly sponsored by the FAO, the IAEA, the International Labour Office, the PAHO and the WHO, gives detailed guidance on the key elements for the organization and operation of a national regulatory infrastructure for radiation safety, with particular reference to the functions of the national regulatory body that are necessary to ensure the implementation of the Basic Safety Standards. The Safety Guide is based technically on material first published in IAEA-TECDOC-10671, which was jointly sponsored by the FAO, the IAEA, the OECD/NEA, the PAHO and the WHO. The requirements established in GS-R-1 have been taken into account. The Safety Guide is oriented towards national

  6. Ionization detector with improved radiation source

    International Nuclear Information System (INIS)

    Solomon, E.F.

    1977-01-01

    The detector comprises a chamber having at least one radiation source disposed therein. The chamber includes spaced collector plates which form a part of a detection circuit for sensing changes in the ionization current in the chamber. The radiation source in one embodiment is in the form of a wound wire or ribbon suitably supported in the chamber and preferably a source of beta particles. The chamber may also include an adjustable electrode and the source may function as an adjustable current source by forming the wire or ribbon in an eliptical shape and rotating the structure. In another embodiment the source has a random shape and is homogeneously disposed in the chamber. 13 claims, 5 drawing figures

  7. Radiotracer and sealed source techniques for sediment management. Report of the consultants meeting

    International Nuclear Information System (INIS)

    2008-01-01

    Radioisotopes as tracers and sealed sources have been a useful and often irreplaceable tool for sediment transport studies. Gamma scattering and transmission gauges are used for sediment monitoring. Computational fluid dynamics (CFD) modelling is now an essential tool for the management of the natural systems and are increasingly used to study the fate and behaviour of particulates and contaminants. Radiotracer techniques are often employed to validate CFD models to enhance confidence in the predictive value of the models. Experimental tracing and numerical modelling are complementary methods of studying complex systems. During the last few decades, many radiotracer studies for the investigation of sediment transport in natural systems have been conducted worldwide, and various techniques for tracing and monitoring sediment have been developed by individual tracer groups. However, the developed techniques and methods for sediment tracing have not been compiled yet as a technical document, which is essential for the preservation of the knowledge and transfer of the technology to developing countries. Standard procedures or guidelines for the tracer experiments, which are vital for the reliability of the experiments and the acceptance of end-users, have not been established by the international tracer community either. The use of radiotracers in sediment transport studies demands the additional attention of the community to further develop these techniques and to ensure their transfer to developing countries. The Consultants' Meeting on 'Radiotracer and sealed source techniques for sediment management' was convened at the headquarters of the International Atomic Energy Agency (IAEA) in Vienna, Austria, from 21 to 25 April 2008. Experts from Argentina, Brazil, France, India, Republic of Korea and United Kingdom have been invited to discuss the current status of the tracer and nucleonic gauge technologies as applied for sediment transport investigations and to evaluate

  8. Radiotracer and sealed source techniques for sediment management. Report of the consultants meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Radioisotopes as tracers and sealed sources have been a useful and often irreplaceable tool for sediment transport studies. Gamma scattering and transmission gauges are used for sediment monitoring. Computational fluid dynamics (CFD) modelling is now an essential tool for the management of the natural systems and are increasingly used to study the fate and behaviour of particulates and contaminants. Radiotracer techniques are often employed to validate CFD models to enhance confidence in the predictive value of the models. Experimental tracing and numerical modelling are complementary methods of studying complex systems. During the last few decades, many radiotracer studies for the investigation of sediment transport in natural systems have been conducted worldwide, and various techniques for tracing and monitoring sediment have been developed by individual tracer groups. However, the developed techniques and methods for sediment tracing have not been compiled yet as a technical document, which is essential for the preservation of the knowledge and transfer of the technology to developing countries. Standard procedures or guidelines for the tracer experiments, which are vital for the reliability of the experiments and the acceptance of end-users, have not been established by the international tracer community either. The use of radiotracers in sediment transport studies demands the additional attention of the community to further develop these techniques and to ensure their transfer to developing countries. The Consultants' Meeting on 'Radiotracer and sealed source techniques for sediment management' was convened at the headquarters of the International Atomic Energy Agency (IAEA) in Vienna, Austria, from 21 to 25 April 2008. Experts from Argentina, Brazil, France, India, Republic of Korea and United Kingdom have been invited to discuss the current status of the tracer and nucleonic gauge technologies as applied for sediment transport investigations and to evaluate

  9. Exposures to natural radiation sources. Annex B

    International Nuclear Information System (INIS)

    1982-01-01

    The assessment of the radiation doses from natural sources in humans is presented. Both external sources of extraterrestrial origin (cosmic rays) and of terrestrial origin, and internal sources, comprising the naturally-occurring radionuclides which are taken into the human body, are discussed. This Annex is to a large extent a summary of Annex B of the 1977 report of the Committee. The doses due to the radon isotopes and to their short-lived decay products are briefly reviewed.

  10. X radiation sources based on accelerators

    International Nuclear Information System (INIS)

    Couprie, M.E.; Filhol, J.M.

    2008-01-01

    Light sources based on accelerators aim at producing very high brilliance coherent radiation, tunable from the infrared to X-ray range, with picosecond or femtosecond light pulses. The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce 'synchrotron radiation' when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. These 'synchrotron radiation' storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring. The most effective installations in term of brilliance are the so-called third generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tunable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the V-UV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator. The single pass linear accelerators can produce very short electron bunches (around 100 fs). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as fourth generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns

  11. Cosmical sources of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kuchowicz, B [Warsaw Univ. (Poland)

    1974-01-01

    A brief historical outline of the X-ray and ..gamma..-ray astronomies is given first, then a summary of the recent status of X-ray astronomy follows. Further chapters include information on ..gamma..-ray sources in the solar system, in our Galaxy, and beyond it. In discussing linear gamma spectra attention is paid to the possibility of studying explosive nucleo-synthesis by observation of gamma lines from supernova remnants, etc. Questions of the isotropic gamma background are discussed at the end of the survey.

  12. Devices for obtaining information about radiation sources

    International Nuclear Information System (INIS)

    Tosswill, C.H.

    1981-01-01

    The invention provides a sensitive, fast, high-resolution device for obtaining information about the distribution of gamma and X-radiation sources and provides a radiation detector useful in such a device. It comprises a slit collimator with a multiplicity of slits each with slit-defining walls of material and thickness to absorb beam components impinging on them. The slits extend further in one transverse direction than the other. The detector for separately detecting beam components passing through the slits also provides data output signals. It comprises a plurality of radiation transducing portions, each at the end of a slit. A positioner changes the transverse position of the slits and radiation transducer (a photoconductor) relative to the source. Applications are in nuclear medicine and industry. Full details and preferred embodiments are given. (U.K.)

  13. Radiological protection, safety and security issues in the industrial and medical applications of radiation sources

    International Nuclear Information System (INIS)

    Vaz, Pedro

    2015-01-01

    The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed. - Highlights: • The hazards associated to the use of radioactive sources must be taken into account. • Security issues are of paramount importance in the use of radioactive sources. • Radiation sources can be used to perpetrate terrorist acts (RDDs, INDs, REDs). • DSRS and orphan sources trigger radiological protection, safety and security concerns. • Regulatory control, from cradle to grave, of radioactive sources is mandatory.

  14. The production of Co-60 sealed sources at the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Freijo, Jose L.

    2002-01-01

    The production and sale of Cobalt 60 by CNEA is in a key momentum for its consolidation, after passing through situations dose to un viability. The sealed sources demand is assured for the next six years and strongly concentrated in the exportation, mainly to the United States and Europe. The project is economically viable even keeping in mind the necessary investments to assure the growing and sustentability of the business. Therefore, it is possible to have realistic and optimists expectation of growing in the medium and long term. To this respect it results fundamental to confront these activities with a medium and long term vision in order to avoid future uncertainties in the project and, at the same time, to guide and motivate the personnel involved in the efforts that necessarily must be performed to achieve the proposed target. The fundamental steps to be concreted are the construction of new production cells and the transformation of the activities into a private development frame through the creation of a commercial society. (author)

  15. Assessment of risk from radiation sources

    International Nuclear Information System (INIS)

    Subbaratnam, T.; Madhvanath, U.; Somasundaram, S.

    1976-01-01

    Assessment of risk from exposure to ionizing radiations from man-made radiation sources and nuclear installations has to be viewed from three aspects, namely, dose-effect relationship (genetic and somatic) for humans, calculation of doses or dose-commitments to population groups, assessment of risk to radiation workers and the population at large from the current levels of exposure from nuclear industry and comparison of risk estimates with other industries in a modern society. These aspects are discussed in brief. On the basis of available data, it is shown that estimated incidence of genetic diseases and cancers due to exposure of population to radiation from nuclear industry is negligible in comparison with their natural incidence, and radiation risks to the workers in nuclear industry are much lower than the risks in other occupations. (M.G.B.)

  16. Production techniques and quality control of sealed radioactive sources of palladium-103, iodine-125, iridium-192 and ytterbium-169. Final report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    Radioisotopes have been used extensively for many years for several medical and industrial applications either in the form of an open source or encapsulated in an appropriate metallic container (sealed source). The design and technology for the preparation of radioactive sealed sources is an area of continuous development to satisfy an ever increasing demand for a larger variety of shapes, sizes, type of radioisotope and levels of radioactivity required for newer and specialized applications. In medicine, sealed sources using the radioisotopes of 125 I, 192 Ir and 103 Pd are commonly used for brachytherapy for the treatment of malignant diseases, and for bone density measurements. In industry, they are widely used for non-destructive testing (NDT), radiation processing, 'on-line' process control systems and on-line elemental analysis of mineral resources. Some well-known examples of such sources are 60 Co for industrial nucleonic gauges, 192 Ir sources for industrial radiography, 241 Am sources for smoke detectors and chemical analysers and, more recently, 169 Yb for NDT measurements of thin metallic tubes and plates. The current challenges in development include the production of miniature size sources with a high level of activity, a high degree of uniformity in the distribution of the radioactivity and the highest degree of safety, requiring stringent quality control methods. The IAEA has been promoting and supporting activities designed to increase the utilization of radiation and radioisotopes in several areas. In particular, in view of the proven benefits of, and an increasing demand for radioactive sealed sources for medical and industrial applications, upon the recommendation of several experts, a Coordinated Research Project (CRP) on Development of Radioactive Sources for Emerging Therapeutic and Industrial Applications was begun in 2002. The aim of the CRP was the optimization and testing of procedures and methods for the fabrication and quality control

  17. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  18. Occupational exposure to natural sources of radiation

    International Nuclear Information System (INIS)

    Ortiz, T.; Sciocchetti, G.; Rannou, A.

    1993-01-01

    The most important natural sources of radiation are analyzed. The situation in France, Italy, and Spain concerning protection against natural radiation is described, including the identification of sources, and defined practices, organizations charged of national surveys and the responsibility of regulatory bodies and the role of operating management. The activities of the international organizations (ICRP, CEC and IAEA) are presented and discussed, and existing actions toward harmonization in the CEC, IAEA and other international programs is also discussed. (R.P.) 23 refs., 2 tabs

  19. Photon acceleration-based radiation sources

    International Nuclear Information System (INIS)

    Hoffman, J. R.; Muggli, P.; Katsouleas, T.; Mori, W. B.; Joshi, C.

    1999-01-01

    The acceleration and deceleration of photons in a plasma provides the means for a series of new radiation sources. Previous work on a DC to AC Radiation Converter (DARC source) has shown variable acceleration of photons having zero frequency (i.e., an electrostatic field) to between 6 and 100 GHz (1-3). These sources all had poor guiding characteristics resulting in poor power coupling from the source to the load. Continuing research has identified a novel way to integrate the DARC source into a waveguide. The so called ''pin structure'' uses stainless steel pins inserted through the narrow side of an X band waveguide to form the electrostatic field pattern (k≠0, ω=0). The pins are spaced such that the absorption band resulting from this additional periodic structure is outside of the X band range (8-12 GHz), in which the normal waveguide characteristics are left unchanged. The power of this X band source is predicted theoretically to scale quadratically with the pin bias voltage as -800 W/(kV) 2 and have a pulse width of -1 ns. Cold tests and experimental results are presented. Applications for a high power, short pulse radiation source extends to the areas of landmine detection, improved radar resolution, and experimental investigations of molecular systems

  20. Radiation Sources Working Group Summary Report

    International Nuclear Information System (INIS)

    Fazio, Michael V.

    1999-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, component technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigarion, and phenomena that impact source design such as fatigue in resonant structures due to pulsed RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations

  1. Radiation Sources Working Group Summary Report

    International Nuclear Information System (INIS)

    Fazio, M.V.

    1999-01-01

    The Radiation Sources Working Group addressed advanced concepts for the generation of RF energy to power advanced accelerators. The focus of the working group included advanced sources and technologies above 17 GHz. The topics discussed included RF sources above 17 GHz, pulse compression techniques to achieve extreme peak power levels, component technology, technology limitations and physical limits, and other advanced concepts. RF sources included gyroklystrons, magnicons, free-electron masers, two beam accelerators, and gyroharmonic and traveling wave devices. Technology components discussed included advanced cathodes and electron guns, high temperature superconductors for producing magnetic fields, RF breakdown physics and mitigarion, and phenomena that impact source design such as fatigue in resonant structures due to pulsed RF heating. New approaches for RF source diagnostics located internal to the source were discussed for detecting plasma and beam phenomena existing in high energy density electrodynamic systems in order to help elucidate the reasons for performance limitations. copyright 1999 American Institute of Physics

  2. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  3. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  4. 76 FR 6692 - Radiation Sources on Army Land

    Science.gov (United States)

    2011-02-08

    ... possession of ionizing radiation sources by non-Army entities (including their civilian contractors) on an... Radiation Permit (ARP) from the garrison commander to use, store, or possess ionizing radiation sources on an Army installation. For the purpose of this rule, ``ionizing radiation source'' means any source...

  5. Synchrotron radiation sources in the Soviet Union

    International Nuclear Information System (INIS)

    Kapitza, S.P.

    1987-01-01

    Synchrotron radiation (SR) is now recognized to be an important instrument for experimental work in many fields of science. Recently the application of SR in medicine and industry, especially as a light source for microelectronics production have been demonstrated. Thus the development of SR sources has now grown to become a significant and independent dimension for accelerator research and technology. This article describes SR work in the Soviet Union

  6. Safety Problems of Disposal of Disused Sealed Sources in the Baldone Near Surface Repository

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2003-01-01

    long-term storage; 3. To dispose only those sources capable to decay during functioning of disposal site. 4. To revise and update Waste Acceptance Criteria (WAC), especially for disused sealed sources. 5. To build a 5 m thick cap over the vaults. The activity related criteria and predisposal packing of DSS are presented. The problems and solutions for the construction of new storage and disposal spaces are discussed

  7. Safety considerations of disposal of disused sealed sources in Puspokszilagy Repository, Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents the management of radioactive waste in Hungary Puspokszilagy Repository (RWTDF) including waste acceptance criteria, safety assessments, Action Plan for the safety improvement and present projects. The Puspokszilagy Repository is a typical near-surface repository, sink into the ground 6 m depth. The facility is a shallow land disposal type, appropriated for disposal of short and medium lived LILW, acceptable for temporary storage of long lived LILW. It consists of vaults containing cells for solidified drummed waste, wells for spent sealed sources, work building for treatment and interim storage and office building for environmental measurements. Two safety assessments have been performed in 2000 and 2002. The new safety assessment confirms the main statements of SA 2000, according to which several waste types can cause serious problems in the distant future: Until the finish of passive control the safety of the environment is guaranteed. After that time it is possible to arise events leading to exceeding of dose restricts (more then 10 mSv/yr but less then 100 mSv/yr), because of disposal of long lived radionuclides (mainly C-14,Tc-99, Ra-226, Th-232, U-234) and significant activities of Cs-137 sources.There are uncertainties in radionuclide amounts and distributions, as well as in the physical and chemical characteristics of the wastes that determine radionuclide mobility and toxicity. The recommendations to improve the safety include: Long lived SSRS in the 'B' and 'D' wells should be removed before the closure of repository. Large Cs-137 sources and long lived sources in the 'A' vaults should be recovered (if its feasible); All vaults should be backfilled to provide chemical conditioning; The waste packaged in plastic bags should be repackaged and compacted into drums or containers; The inventory should be revise. Waste acceptance requirements in the future are: The disposal of long lived radionuclides is no permitted. The long lived waste

  8. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  9. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  10. Trade and transport of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The guide specifies the obligations pertaining to the trade in and transport of radiation sources and other matters to be taken into account in safety supervision. It also specifies obligations and procedures relating to transfrontier movements of radioactive waste contained in the EU Council Directive 92/3/Euratom. (7 refs.)

  11. Optimization of industrial processes using radiation sources

    International Nuclear Information System (INIS)

    Salles, Claudio G.; Silva Filho, Edmundo D. da; Toribio, Norberto M.; Gandara, Leonardo A.

    1996-01-01

    Aiming the enhancement of the staff protection against radiation in operational areas, the SAMARCO Mineracao S.A. proceeded a reevaluation and analysis of the real necessity of the densimeters/radioactive sources in the operational area, and also the development of an alternative control process for measurement the ore pulp, and introduced of the advanced equipment for sample chemical analysis

  12. Radiation as a source of risk

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1999-01-01

    Essence and nature of ionizing radiation as a source of risk are reviewed. Following to the appeal of necessity and importance of campaign for enlightening risk management, of individual and of society, background knowledge and information helpful to the promotion and discussion are summarized, also. (author)

  13. Underdense radiation sources: Moving towards longer wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Back, C.A.; Kilkenny, J.D. [General Atomics, San Diego, California (United States); Seely, J.F.; Weaver, J.L. [Naval Research Laboratory, Washington, DC (United States); Feldman, U. [Artep Inc., Ellicott City, MD (United States); Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A. [Lawrence Livermore National Laboratory, California (United States); Tillack, M. [U. C. San Diego, La Jolla, CA (United States)

    2006-06-15

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO{sub 2} aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  14. Underdense radiation sources: Moving towards longer wavelengths

    International Nuclear Information System (INIS)

    Back, C.A.; Kilkenny, J.D.; Seely, J.F.; Weaver, J.L.; Feldman, U.; Tommasini, R.; Glendinning, S.G.; Chung, H.K.; Rosen, M.; Lee, R.W.; Scott, H.A.; Tillack, M.

    2006-01-01

    Underdense radiation sources have been developed to provide efficient laboratory multi-keV radiation sources for radiography and radiation hardening studies. In these plasmas laser absorption by inverse Bremsstrahlung leads to high x-ray conversion efficiency because of efficient ionization of the low density aerogel or gas targets. Now we performing experiments in the soft x-ray energy regime where the atomic physics models are much more complicated. In recent experiments at the NIKE laser, we have irradiated a Ti-doped SiO 2 aerogel with up to 1650 J of 248 nm wavelength light. The absolute Ti L-shell emission in the 200-800 eV range is measured with a diagnostic that uses a transmission grating coupled to Si photodiodes. We will give an overview of the temporally-resolved absolutely calibrated spectra obtained over a range of conditions. (authors)

  15. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  16. General information on licensing process in Bulgaria and disused sealed sources

    International Nuclear Information System (INIS)

    Nizamska, M.

    2003-01-01

    The basic legal framework for radiation protection and the safety of radiation sources is given in the report. The authorisation process is described. Actual data for the system of authorisation about SIR during 2002/2003 are given. The planned activities related to RAW management are:commissioning of the complex for treatment, conditioning and storage of RAW in Kozloduy NPP - by the end of 2003; investigation of Gabra site for construction of institutional waste disposal facility - by the end of 2004; implementation of program for reconstruction and modernisation of Novi Han Repository - by the end of 2007; site selection for the national RAW disposal facility - by the end of 2008. The Nuclear Energy Act defines the following future activities: establishment of the State Enterprise 'RAW' in 2004; development of new secondary legislation for safe management of SF and RAW until July 2004; update of the National Strategy for Safe Management of SF and RAW until the end of 2003

  17. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine

    International Nuclear Information System (INIS)

    Tiezzi, Rodrigo

    2016-01-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133 and Cesium-137,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum miscibility of the resin with the water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical and

  18. Development of sealed radioactive sources immobilized in epoxy resin for verification of detectors used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tiezzi, Rodrigo; Rostelato, Maria Elisa C.M.; Nagatomi, Helio R.; Zeituni, Calos A.; Benega, Marcos A.G.; Souza, Daiane B. de; Costa, Osvaldo L. da; Souza, Carla D.; Rodrigues, Bruna T.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Santos, Rafael Melo dos; Melo, Emerson Ronaldo de, E-mail: rktiezzi@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Karan Junior, Dib [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2015-07-01

    The radioactive sealed sources are used in verification ionization chamber detectors, which measure the activity of radioisotopes used in several areas, such as in nuclear medicine. The measurement of the activity of radioisotopes must be made with accuracy, because it is administered to a patient. To ensure the proper functioning of the ionization chamber detectors, standardized tests are set by the International Atomic Energy Agency (IAEA) and the National Nuclear Energy Commission using sealed radioactive sources of Barium-133, Cesium-137 and Cobalt-57. The tests assess the accuracy, precision, reproducibility and linearity of response of the equipment. The focus of this work was the study and the development of these radioactive sources with standard Barium-133, Cesium-137 and Cobalt-57,using a polymer, in case commercial epoxy resin of diglycidyl ether of bisphenol A (DGEBA) and a curing agent based on modified polyamine diethylenetriamine (DETA), to immobilize the radioactive material. The polymeric matrix has the main function of fix and immobilize the radioactive contents not allowing them to leak within the technical limits required by the standards of radiological protection in the category of characteristics of a sealed source and additionally have the ability to retain the emanation of any gases that may be formed during the manufacture process and the useful life of this artifact. The manufacturing process of a sealed source standard consists of the potting ,into bottle standardized geometry, in fixed volume of a quantity of a polymeric matrix within which is added and dispersed homogeneously to need and exact amount in activity of the radioactive materials standards. Accordingly, a study was conducted for the choice of epoxy resin, analyzing its characteristics and properties. Studies and tests were performed, examining the maximum solubility of the resin in water (acidic solution, simulating the conditions of radioactive solution), loss of mechanical

  19. Investigation of the present management status of calibration source based on the law concerning prevention of radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Igarashi, Hiroshi; Hirano, Kunihiro; Kawaharada, Yasuhiro; Igarashi, Hitoshi; Murase, Ken-ya; Mochizuki, Teruhito

    2007-01-01

    An amendment concerning the enforcement of the law on the prevention of radiation hazards due to radioisotopes, etc., and the medical service law enforcement regulations were promulgated on June 1, 2005. This amendment concerned international basic safety standards and the sealing of radiation sources. Sealed radiation sources ≤3.7 MBq, which had been excluded from regulation, were newly included as an object of regulation. Investigation of the single photon emission computed tomography (SPECT) system instituted in hospitals indicated that almost all institutions adhere to the new amendment, and the calibration source, the checking source, etc., corresponding to this amendment were maintained appropriately. Any institutions planning to return sealed radioisotopes should refer to this report. (author)

  20. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-05-15

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  1. Conditioning of spent radiation sources in developing countries

    International Nuclear Information System (INIS)

    1990-01-01

    This video presents the safe handling and conditioning of radioactive spent sealed sources when technological resources are limited and specialized equipment is not available. The process is divided into three phases which are demonstrated in detail: 1) Planning, including training; 2) Conditioning, which is the actual incorporation of the spent sources; and 3) Follow-up, which includes radiological control, documentation and safe storage

  2. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  3. Source of broadband Jovian Kilometric radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.; Leblanc, Y.

    1987-02-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients.

  4. Source of broadband Jovian Kilometric radiation

    International Nuclear Information System (INIS)

    Jones, D.; Leblanc, Y.

    1987-01-01

    Broadband Jovian Kilometric radiation was observed by Voyagers 1 and 2 to be beamed away from the zenomagnetic equatorial plane. Two theories were proposed for the equatorial shadow zone. One suggested that Io plasma torus forms an obstacle to radiation produced on auroral field lines. The other theory proposed that the source is located on the outer flanks of the torus, the beaming being inherent to the emission mechanism. Results are presented which indicate that the latter is consistent with the observations and it would appear that the emission is produced by linear mode conversion of electrostatic upper hybrid to electromagnetic waves in plasma density gradients

  5. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2007-01-01

    Wherever machinery operates there will be seals of some kind ensuring that the machine remains lubricated, the fluid being pumped does not leak, or the gas does not enter the atmosphere. Seals are ubiquitous, in industry, the home, transport and many other places. This 5th edition of a long-established title covers all types of seal by application: static, rotary, reciprocating etc. The book bears little resemblance to its predecessors, and Robert Flitney has re-planned and re-written every aspect of the subject. No engineer, designer or manufacturer of seals can afford to be without this uniq

  6. Applications and opportunities for radiation sources

    International Nuclear Information System (INIS)

    Round, K.J.

    1984-01-01

    An important spin-off benefit from the nuclear industry has been the ability to produce a wide variety of ionizing radiation sources for industrial, medical and scientific applications. These sources include radionuclides produced by irradiation of target material in reactors and cyclotrons or recovered from spent fuels, and accelerators. The uses of radiation in both medicine and industry can be expected to evolve. Traditional uses such as cancer therapy will mature and in some cases be displaced by new technology. Major new applications, including food processing and waste treatment, are expected to maintain the demand for isotopes such as cobalt 60 and to stimulate the development of economical and reliable accelerator systems. (L.L.) (Tab., 2 figs.)

  7. Facility - Radiation Source Features and User Applications

    International Nuclear Information System (INIS)

    Gover, A.; Abramovich, A.; Eichenbaum, A.L.; Kanter, M.; Sokolowski, J.; Yahalom, A.; Shiloh, J.; Schnitzer, I.; Pinhasi, Y.

    1999-01-01

    Recent measurements of the radiation characteristics of the tandem FEL prove .that the device operates as a high quality, tunable radiation source in the mm wave regime. Tuning range of 60% around a central frequency of 100 GHz was demonstrated by varying the tandem accelerator energy from 1 to 1.5 MeV with 1-1.5 Amp. Beam current. Fourier transform limited linewidth of Δ f/f -5 was measured in single-mode lasing operation. The FEL power in pulse operation (10μsec) was 10 kWatt. Operating the FEL at high repetition rate with 0.1 to 1 mSec pulses will make it possible to obtain high average power (1 kWatt) and narrow linewidth (10 -7 ). Based ,on these exceptional properties of the FEL as a high quality spectroscopic tool and as a source of high average power radiation, the FEL consortium, supported by a body of 10 radiation user groups from various universities and research institutes, embark on a new project for development of an Israeli FEL radiation user laboratory. The laboratory is presently in a design and building stage in the academic campus in Ariel. The FEL will be moved to this laboratory after completion of X-ray protection structure in the allocated building. In the first phase of development, the radiation user laboratory will consist of three user stations: a. Spectroscopic station (low average power). Material studies are planned in the fields of H.T.S.C., submicron semiconductor devices, gases. b. Material processing station (high average power). Experiments are planned in the fields of thin film ceramic sintering (including H.T.S.C.), functionally graded materials, surface treatment of metals, interaction with biological tissues. c. Atmospheric study station. Experiments are planned in the fields of aerosol, dust and clouds mapping, remote sensing of gases, wide-band mm wave communication The FEL experimental results and the user laboratory features will be described

  8. Regulation of radiation sources in Canada

    International Nuclear Information System (INIS)

    Brown, W.R.

    1989-04-01

    This paper describes in general the Canadian program for the regulation of radiation sources, with particular emphasis on radioisotope licences. The Atomic Energy Control Board is described, as are the most significant parts of the Regulations. Licensing, which is the method chosen for control, is explained by describing the assessment of an application through the enforcement of the requirements, and the overall effectiveness of the program is measured by analyzing the incidents and overexposures that have occurred in recent years

  9. Apparatus for radiation source depth determination in a material

    International Nuclear Information System (INIS)

    Campbell, P.J.

    1979-01-01

    An apparatus is disclosed for determining the depth of a radiation source within a body of material utilizing a radiation source holder moving the radiation source within the body. A plurality of switches have contacts that are fixed in relation to the movement of the radiation source within the material. Trigger means activates a particular switch at a preselected depth of the radiation source. Means for indicating the activation of a switch would thus produce a signal as a representative of the depth of the radiation source

  10. Safety of radiation sources in Slovenia

    International Nuclear Information System (INIS)

    Belicic-Kolsek, A.; Sutej, T.

    2001-01-01

    The Republic of Slovenia, a central European country which has been independent since 1991, has about 2 million inhabitants and an area of 20,256 km 2 . The Constitutional Law on Enforcement of the Basic Constitutional Charter on the Autonomy and Independence of the Republic of Slovenia, adopted on 23 June 1991 (Off. Gaz. of the R of Slovenia No. 1/91), provided that all the laws adopted by the Socialist Federal Republic (SFR) of Yugoslavia should remain in force in the Republic of Slovenia pending the adoption of appropriate legislation by the Slovene Parliament. Under the Slovene Constitution, all international treaties ratified by Slovenia constitute an integral part of Slovenia's legislation and can be applied directly. In Slovenia, all regular types of ionizing radiation source are being used for peaceful purposes and are covered by a system for their safe use and control. All radiation sources and radioactive materials are registered and under regulatory control. Inspections are carried out periodically by the Health Inspectorate of the Republic of Slovenia (HIRS) and, in the case of nuclear installations, the Slovene Nuclear Safety Administration (SNSA). Technical checks on radiation sources are carried out periodically by technical support organizations: the Jozef Stefan Institute and the Institute for Occupational Safety (IOS). (author)

  11. Cover-gas seals: 11-LMFBR seal-test program

    International Nuclear Information System (INIS)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    The objective of the Cover Gas Seal Material Development Program is to perform the engineering development required to provide reliable seals for LMFBR application. Specific objectives are to verify the performance of commercial solid cross-section and inflatable seals under reactor environments including radiation, to develop advanced materials and configurations capable of achieving significant improvement in radioactive gas containment and seal temperature capabilities, and to optimize seal geometry for maximum reliability and minimal gas permeation

  12. Standard light source utilizing spontaneous radiation

    International Nuclear Information System (INIS)

    Yamamoto, O.; Takenaga, M.; Tsujimoto, Y.

    1975-01-01

    A standard light source is described utilizing spontaneous radiation made by mixing a fluorescent substance LnVO 4 :X (wherein Ln is Y or Gd, and X is Dy or Eu) with a radioactive substance containing a radioactive isotope which is less in the degree of temperature variation of the intensity of emitted light and excellent in stability. Particularly when used in a light-receiving device having photomultiplier tubes, the said light source emits light quite similar to that of a thermoluminescent substance such as CaSO 4 :X (wherein X is Im, Dy, Sm or Mn), LiF or Mg 2 SiO 4 :Tb, and is excellent as a calibration high-stability standard light source for use in the above-mentioned light-receiving device. (auth)

  13. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  14. Food source and residual efficacy of chlorfenapyr on sealed and unsealed concrete

    Science.gov (United States)

    Adult Tribolium castaneum (Herbst), the red flour beetle, were exposed at 1 day, and 2, 4, and 6 weeks post-treatment on sealed and unsealed concrete arenas treated with chlorfenapyr at rates of 2.8, 6.9, 13.5, 20.6, 27.5 mg active ingredient/m2. Beetles were held either with or without flour, and a...

  15. MODIFIED APPROACH FOR SITE SELECTION OF UNWANTED RADIOACTIVE SEALED SOURCES DISPOSAL IN ARID COUNTRIES (CASE STUDY - EGYPT)

    International Nuclear Information System (INIS)

    ABDEL AZIZ, M.A.H.; COCHRAN, J.R.

    2008-01-01

    The aim of this study is to present a systematic methodology for siting of radioactive sealed sources disposal in arid countries and demonstrate the use of this methodology in Egypt. Availing from the experience gained from the greater confinement disposal (GCD) boreholes in Nevada, USA, the IAEA's approach for siting of near disposal was modified to fit the siting of the borehole disposal which suits the unwanted radioactive sealed sources. The modifications are represented by dividing the surveyed area into three phases; the exclusion phase in which the areas that meet exclusion criteria should be excluded, the site selection phase in which some potential sites that meet the primary criteria should be candidate and the preference stage in which the preference between the potential candidate sites should be carried out based on secondary criteria to select one or two sites at most. In Egypt, a considerable amount of unwanted radioactive sealed sources wastes have accumulated due to the peaceful uses of radio-isotopes.Taking into account the regional aspects and combining of the proposed developed methodology with geographic information system (GIS), the Nile Delta and its valley, the Sinai Peninsula and areas of historical heritage value are excluded from our concern as potential areas for radioactive waste disposal. Using the primary search criteria, some potential sites south Kharga, the Great Sand Sea, Gilf El-Kebear and the central part of the eastern desert have been identified as candidate areas meeting the primary criteria of site selection. More detailed studies should be conducted taking into account the secondary criteria to prefer among the above sites and select one or two sites at most

  16. 75 FR 19302 - Radiation Sources on Army Land

    Science.gov (United States)

    2010-04-14

    ... possession of ionizing radiation sources by non-Army agencies (including their civilian contractors) on an... radiation sources on Army land. The Army requires Non-Army agencies (including their civilian contractors... ionizing radiation sources on an Army Installation. For the purpose of this proposed rule, ``ionizing...

  17. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  18. Capillary discharge sources of hard UV radiation

    International Nuclear Information System (INIS)

    Cachoncinlle, C; Dussart, R; Robert, E; Goetze, S; Pons, J; Mohanty, S R; Viladrosa, R; Fleurier, C; Pouvesle, J M

    2002-01-01

    We developed and studied three different extreme ultraviolet (EUV) capillary discharge sources either dedicated to the generation of coherent or incoherent EUV radiation. The CAPELLA source has been developed especially as an EUV source for the metrology at 13.4 nm. With one of these sources, we were able to produce gain on the Balmer-Hα (18.22 nm) and Hβ (13.46 nm) spectral lines in carbon plasma. By injecting 70 GW cm -3 we measured gain-length products up to 1.62 and 3.02 for the Hα and Hβ, respectively optimization of the EUV capillary source CAPELLA led to the development of an EUV lamp which emits 2 mJ in the bandwidth of the MoSi mirror, per joule stored, per shot and in full solid angle. The wall-plug efficiency is 0.2%. Stability of this lamp is better than 4% and the lamp can operate at repetition rate of 50 Hz

  19. Ionizing radiation source detection by personal TLD

    International Nuclear Information System (INIS)

    Marinkovic, O.; Mirkov, Z.

    2002-01-01

    The Laboratory for personal dosimetry has about 3000 workers under control. The most of them work in medicine. Some institutions, as big health centers, have different ionizing radiation sources. It is usefull to analyze what has been the source of irradiation, special when appears a dosimeter with high dose. Personal dosimetry equipment is Harshaw TLD Reader Model 6600 and dosimeters consist of two chips LiF TLD-100 assembled in bar-coded cards which are wearing in holders with one tissue-equivalent filter (to determine H(10)) and skin-equivalent the other (to determine H(0.07)). The calibration dosimeters have been irradiated in holders by different sources: x-ray (for 80keV and 100keV), 6 0C o, 9 0S r (for different distances from beta source) and foton beem (at radiotherapy accelerator by 6MeV, 10MeV and 18MeV). The dose ratio for two LiF cristals was calculated and represented with graphs. So, it is possible to calculate the ratio H(10)/H(0.07) for a personal TLD and analyze what has been the source of irradiation. Also, there is the calibration for determination the time of irradiation, according to glow curve deconvolution

  20. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  1. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  2. A quality control program for radiation sources

    International Nuclear Information System (INIS)

    Almeida, C.E. de; Sibata, C.H.; Cecatti, E.R.; Kawakami, N.S.; Alexandre, A.C.; Chiavegatti Junior, M.

    1982-01-01

    An extensive quality control program was established covering the following areas: physical parameters of the therapeutical machines, dosimetric standards, preventive maintenance of radiation sources and measuring instruments. A critical evaluation of this program was done after two years (1977-1979) of routine application and the results will be presented. The fluctuation on physical parameters strongly supports the efforts and cost of a quality control program. This program has certainly improved the accuracy required on the delivery of the prescribed dose for radiotherapy treatment. (Author) [pt

  3. The TAC Radiation Source for Bremsstrahlung Application

    International Nuclear Information System (INIS)

    Demir, N.

    2008-01-01

    The TAC is a project for the first Turkish radiation source and currently design study is produced with funding from the DPT (State Planning Unity). Two main part of the project will be IR-FEL and Bremsstrahlung facility. Each LINAC will provide max. electron energy of 20 MeV. The Bremsstrahlung facility at TAC will consist two of the LINAC module and will be obtained 35 MeV photon energy. This would provide a chance to investigate nuclear structure at this energy range and also some application of photonuclear physics. In this work the main parameter and plans for those of facility will be detailed

  4. Regulatory control for safe usage of ionizing radiation sources in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    2008-01-01

    Full text: In Bangladesh, there is a widespread and continuos growth in the use of the ionizing radiation sources both radioactive materials and radiation generating equipment in the field of industry, medicine, agriculture, research, teaching etc. In industry, they are employed in production as well as quality control such as non-destructive testing (radiography), nucleonic gauging, radiotracer techniques and in radiation processing. Medical applications of ionizing radiation include X-ray radiography, X-ray fluoroscopy, CT scan, mammography, nuclear medicine, beam therapy and brachytherapy. Besides radioisotopes are also used for research applications, viz., scattering experiments, tracer studies, etc. In agriculture, the uptake of nutrients by soil, and parts of plants are studied using suitable radionuclides. In all the above applications radioisotopes in two forms namely sealed sources and open sources in different chemical forms are employed with source strengths varying from micro curies to mega curies. The benefits to man from the use of ionizing radiation and sources of radiation are accompanied by risks which may result from exposure of man to ionizing radiation. In order to have an effective control on the use of radiation sources and to ensure radiological safety of the user as well as the public, Government of Bangladesh has promulgated Nuclear Safety and Radiation Control (NSRC) rules 1997 under the NSRC Act 1993. The Bangladesh Atomic Energy commission (BAEC) is the competent authority for formulating rules and regulations for ensuring radiological safety. BAEC is legally responsible for developing and strengthening the necessary radiation protection infrastructure in the country through the effective enforcement and implementation of regulatory requirements, criteria, obligations, guiding, codes etc. in order to save man and the related environment from the deleterious effects of ionizing radiation. In Bangladesh, only those persons who have been

  5. Applications of Indus-1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2003-01-01

    Indus-1 is a 450 MeV electron storage ring. This is a soft X-ray and Vacuum Ultra Violet radiation source with the critical wavelength being 61 A. In this source, the first beam was stored in mid-1999 and was then made available, after initial storage and beam cleaning of the vacuum components, for beamline installation in the early 2000. Two beamlines are commissioned and are working. Other beamlines are in the advanced stage of commissioning. For Indus-1, the injection system consists of a 20 MeV classical microtron as a preinjector and a booster synchrotron that can go up to 700 MeV. For Indus-1, the injection into the storage ring is at full 450 MeV from this booster synchrotron

  6. Regulatory Control of Radiation Sources. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is intended to assist States in implementing the requirements established in Safety Standards Series No. GS-R-1, Legal and Governmental Infrastructure for Nuclear, Radiation, Radioactive Waste and Transport Safety, for a national regulatory infrastructure to regulate any practice involving radiation sources in medicine, industry, research, agriculture and education. The Safety Guide provides advice on the legislative basis for establishing regulatory bodies, including the effective independence of the regulatory body. It also provides guidance on implementing the functions and activities of regulatory bodies: the development of regulations and guides on radiation safety; implementation of a system for notification and authorization; carrying out regulatory inspections; taking necessary enforcement actions; and investigating accidents and circumstances potentially giving rise to accidents. The various aspects relating to the regulatory control of consumer products are explained, including justification, optimization of exposure, safety assessment and authorization. Guidance is also provided on the organization and staffing of regulatory bodies. Contents: 1. Introduction; 2. Legal framework for a regulatory infrastructure; 3. Principal functions and activities of the regulatory body; 4. Regulatory control of the supply of consumer products; 5. Functions of the regulatory body shared with other governmental agencies; 6. Organization and staffing of the regulatory body; 7. Documentation of the functions and activities of the regulatory body; 8. Support services; 9. Quality management for the regulatory system.

  7. Plasma focus - a pulsed radiation source

    International Nuclear Information System (INIS)

    Blagoev, Alexandar; Zapryanov, Stanislav; Gol'tsev, Vasilii; Gemishev, Orlin

    2014-01-01

    The article is devoted to the applications of plasma focus (PF) in radiobiology. Briefly describes the principle of operation of the device and the parameters of the PF type 'Mader' at the Physics Department of the University. Phase pinch discharge zones appear hot and dense plasma, which is a source of X-ray and neutron pulse when the working gas is deuterium. These radiations are essential for biological applications. Besides these bundles are obtained from accelerated charged particles and shock wave of ionized gas. Described are some of the contributions of other authors using PF in radiobiology. Given the results in the exposure of living organisms with soft X-ray emission of PF. We examined the viability of the cells of the two types of yeasts, after irradiation with X-rays at a dose of 65 mSv, where no change was found on the performance. It is shown that soft X-ray radiation doses on the order of tens of mSv, cause a significant change in the productivity of the electronic transport in the photosynthetic apparatus of Chlamydomonas reinhardtii. Trichoderma reesei M7 shows remarkable vitality irradiation with substantial doses of hard X-ray radiation (tens Sv). Appear endoglyukonazata changes in the protein component and the residual mass

  8. Source region of aurora kilometric radiation

    International Nuclear Information System (INIS)

    Morioka, Akira; Oya, Hiroshi; Tokumaru, Munetoshi

    1981-01-01

    This paper discusses the source region of aurora kilometric radiation (AKR), and the relation between the particle acceleration region and the polar ionosphere. The observation was made by the satellite 'Jikiken'. The AKR can be transferred to Jikiken without any interception, when the magnetic latitude of the apogee of the satellite is low. The spectra taken in June, 1980, were analyzed. The observed spectra showed the source regions of the AKR were in the aurora bands of the north and south poles. One example showed that the 200 kHz component of AKR from both poles showed the similar behavior, and another example showed that the AKR spectra from both poles showed different behavior. The altitude distribution of source regions was able to be obtained. The altitude of AKR-A was in the range between 6200 and 12000 km, and that of AKR-B was in the range of 3500 and 5200 km. The source of AKR-A was identified as that in the south hemisphere, and that of AKR-B in the north hemisphere. The asymmetric spectra of AKR-A and B showed that the spread and intensity of the electric field along magnetic lines generated above the polar ionosphere were related with the conditions of the ionosphere. (Kato, T.)

  9. The present problems of hygienic supervising of workplaces with ionizing radiation sources

    International Nuclear Information System (INIS)

    Husar, J.

    1995-01-01

    This paper deals with the problems of hygienic supervising of workplaces with ionizing radiation sources in Bratislava. Most problems consist in present economic transformation of State Corporations. Abolishing of previous State Corporations and arising of new organizations means new field of their activities. It often happens, that previously used ionizing radiation sources, X-ray tubes, or radioactive sources, are not longer to use and it is necessary to remove corresponding workplaces.The big State Corporation with series of subsidiaries in whole Slovakia was divided to many new smaller Joint-stock Corporations. A subsidiary possessed workplace with X-ray tube and sealed radioactive source of medium radioactivity. During a routine hygienic inspection was found, that the original establishment was abolished, all personal dismissed and another organization is going to move at this place. New organization personnel has not known,that the previous workplace was such one with radiation sources. The situation was complicated by the fact, that new management had no connection to previous personnel and had not sufficient information about abolished establishment. The problem of supervising workplaces with ionizing radiation sources is described. (J.K.)

  10. The present problems of hygienic supervising of workplaces with ionizing radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Husar, J [State Health Institute of Slovak Republic, Bratislava (Czech Republic)

    1996-12-31

    This paper deals with the problems of hygienic supervising of workplaces with ionizing radiation sources in Bratislava. Most problems consist in present economic transformation of State Corporations. Abolishing of previous State Corporations and arising of new organizations means new field of their activities. It often happens, that previously used ionizing radiation sources, X-ray tubes, or radioactive sources, are not longer to use and it is necessary to remove corresponding workplaces.The big State Corporation with series of subsidiaries in whole Slovakia was divided to many new smaller Joint-stock Corporations. A subsidiary possessed workplace with X-ray tube and sealed radioactive source of medium radioactivity. During a routine hygienic inspection was found, that the original establishment was abolished, all personal dismissed and another organization is going to move at this place. New organization personnel has not known,that the previous workplace was such one with radiation sources. The situation was complicated by the fact, that new management had no connection to previous personnel and had not sufficient information about abolished establishment. The problem of supervising workplaces with ionizing radiation sources is described. (J.K.).

  11. Assessment of the Proposed Design of a New Spent Sealed Radioactive Sources Storage Facility at Novi Han

    International Nuclear Information System (INIS)

    Alardin, J.M.; Lacroix, J.P.; Glibert, R.; Marneffe, L. de

    2001-09-01

    The NOVI HAN radioactive waste repository (NHRWR) in Bulgaria, built according to a Soviet design, was commissioned in 1964. The State Committee on the Use of Atomic Energy for Peaceful Purposes (CUAEPP) temporarily stopped operations at the repository from October 1994 until measures for improvement of the facility are undertaken. Since 1994, the Spent Sealed Radioactive Sources (SSRS) have been temporarily stored at the facilities at IRT-2000 research reactor of the Bulgarian Academy of Sciences (BAS) in Sofia. In view of the importance of the radiological risks associated with the present management of the SSRS in Bulgaria, the present study contract has been launched to critically review the proposal to provide a new interim storage facility for SSRS at NHRWR. A comprehensive critical review was performed of the feasibility study for the construction of a new SSRS facility at Novi Han, carried out by the local consultant engineering company (EQE), and detailed recommendations were made concerning the proposed new development at the site. The authors think that new concepts and procedures in the management of all categories of SSRS including smoke detectors have to be introduced, taking into account the regulatory framework and the inventories of existing and anticipated SSRS. This should be the basis for the technical specification of the new facilities for conditioning and storage of spent sealed radioactive sources (not only SHARS). (author)

  12. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  13. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  14. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  15. A new radiation source: the 'CASSITRON'

    International Nuclear Information System (INIS)

    Sadat, T.; Aucouturier, J.

    1984-01-01

    The CASSITRON, a radiation source conceived and made by CGR MeV, is intended for food processing, the sterilization of disposable medical supplies, sludge sterilization, and the treatment of polymers and chemical products. Its physical characteristics are described. Also the industrial characteristics, i.e. security, simplicity, reliability, easy insertion in a production line system and multipurpose use are explained. Meeting the physical, industrial and economic needs, the CASSITRON is a secure, reliable and simple electric machine. It is a multipurpose accelerator, and can be easily inserted in a production line system. The machine is composed mainly of an electron generator, a modulator, a conversion-device to produce hard x-ray with the electron beam, and a control console. (Mori, K.)

  16. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  17. Cesium-137 as a radiation source

    International Nuclear Information System (INIS)

    McMullen, W.H.; Sloan, D.P.

    1985-01-01

    The U.S. Department of Energy (DOE) Byproducts Utilization Program (BUP) seeks to develop and encourage widespread commercial use of defense byproducts that are produced by DOE. Cesium-l37 is one such byproduct that is radioactive and decays with emission of gamma rays. The beneficial use of this radiation to disinfect sewage sludge or disinfest food commodities is actively being pursued by the program. The radiation produced by cesium-l37(Cs-l37) is identical in form to that produced by cobalt-60(Co-60), an isotope that is widely used in commercial applications such as medical product sterilization. The choice of isotope to use depends on several factors ranging from inherent properties of the isotopes to availability and cost. The BUP, although centrally concerned with the beneficial use of Cs-l37, by investigating and assessing the feasibility of various uses hopes to define appropriate circumstances where cesium or cobalt might best be used to accomplish specific objectives. This paper discusses some of the factors that should be considered when evaluating potential uses for isotopic sources

  18. Establishing control over nuclear materials and radiation sources in Georgia

    International Nuclear Information System (INIS)

    Basilia, G.

    2010-01-01

    Regulatory control over radiation sources in Georgia was lost after disintegration of the Soviet Union. A number of radiation accidents and illegal events occurred in Georgia. From 1999 Nuclear and Radiation Safety Service of the Ministry of Environmental Protection and Natural Resources is responsible for regulatory control over radiation sources in Georgia. US NRC Regulatory Assistance Program in Georgia Assist the Service in establishing long term regulatory control over sources. Main focuses of US NRC program are country-wide inventory, create National Registry of sources, safe storage of disused sources, upgrade legislation and regulation, implementation licensing and inspection activities

  19. Safety quality classification test of the sealed neutron sources used in start-up neutron source rods for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yao Chunbing; Guo Gang; Chao Jinglan; Duan Liming

    1992-01-01

    According to the regulations listed in the GB4075, the safety quality classification tests have been carried out for the neutron sources. The test items include temperature, external pressure, impact, vibration and puncture, Two dummy sealed sources are used for each test item. The testing equipment used have been examined and verified to be qualified by the measuring department which is admitted by the National standard Bureau. The leak rate of each tested sample is measured by UL-100 Helium Leak Detector (its minimum detectable leak rate is 1 x 10 -10 Pa·m 3 ·s -1 ). The samples with leak rate less than 1.33 x 10 -8 Pa·m 3 ·s -1 are considered up to the standard. The test results show the safety quality classification class of the neutron sources have reached the class of GB/E66545 which exceeds the preset class

  20. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  1. Cradle to Grave: Managing Disused Sealed Radioactive Sources in the Mediterranean Region

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Some countries in the Mediterranean region lack appropriate facilities for the safe management or disposal of radioactive waste such as disused radioactive sources. Disused radioactive sources could be lost, stolen or abandoned and thus fall outside the regulatory control. Such loss of control over disused sources presents a significant risk to the public and the environment

  2. The regulatory control of radiation sources in Turkey

    International Nuclear Information System (INIS)

    Uslu, I.; Birol, E.

    2001-01-01

    In Turkey, the national competent authority for regulating activities involving radioactive sources is the Turkish Atomic Energy Authority, which implements the responsibility for the safety and security of radiation sources through its Radiation Health and Safety Department. The report describes the organization of the regulatory infrastructure for radiation safety in Turkey and, after a brief explanation of the current legal framework for such purpose, it refers to how the management of radiation sources is carried out and to the new provisions regarding radiation sources, including inspections of licensees and training on source safety. Finally, the report provides information on the Ikitelli radiological accident in Turkey and the current public concern about radiation sources after it happened. (author)

  3. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  4. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  5. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Declaration and authorization forms for the fabrication, distribution or use of radioactive sources or electric generators of ionizing radiation

    International Nuclear Information System (INIS)

    2010-01-01

    This document gathers all the forms to be completed when declaring or when asking for an authorization for the fabrication, retailing or use of radioactive sources or electric equipment generating ionizing radiation. These forms can concern all domains (use of sealed radioactive sources, possession and use of a particle accelerator or of radionuclides, import or export of radionuclides or of products containing radionuclides), or the use of such materials or equipment in the medical sector, or the fabrication and use in industry or research, or in user's guides for radioactive sources

  7. Intermittent Astrophysical Radiation Sources and Terrestrial Life

    Science.gov (United States)

    Melott, Adrian

    2013-04-01

    Terrestrial life is exposed to a variety of radiation sources. Astrophysical observations suggest that strong excursions in cosmic ray flux and spectral hardness are expected. Gamma-ray bursts and supernovae are expected to irradiate the atmosphere with keV to GeV photons at irregular intervals. Supernovae will produce large cosmic ray excursions, with time development varying with distance from the event. Large fluxes of keV to MeV protons from the Sun pose a strong threat to electromagnetic technology. The terrestrial record shows cosmogenic isotope excursions which are consistent with major solar proton events, and there are observations of G-stars suggesting that the rate of such events may be much higher than previously assumed. In addition there are unknown and unexplained astronomical transients which may indicate new classes of events. The Sun, supernovae, and gamma-ray bursts are all capable of producing lethal fluences, and some are expected on intervals of 10^8 years or so. The history of life on Earth is filled with mass extinctions at a variety of levels of intensity. Most are not understood. Astrophysical radiation may play a role, particularly from large increases in muon irradiation on the ground, and changes in atmospheric chemistry which deplete ozone, admitting increased solar UVB. UVB is strongly absorbed by DNA and proteins, and breaks the chemical bonds---it is a known carcinogen. High muon fluxes will also be damaging to such molecules, but experiments are needed to pin down the rate. Solar proton events which are not directly dangerous for the biota may nevertheless pose a major threat to modern electromagnetic technology through direct impact on satellites and magnetic induction of large currents in power grids, disabling transformers. We will look at the kind of events that are expected on timescales from human to geological, and their likely consequences.

  8. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis

    Science.gov (United States)

    Bos, Kirsten I.; Harkins, Kelly M.; Herbig, Alexander; Coscolla, Mireia; Weber, Nico; Comas, Iñaki; Forrest, Stephen A.; Bryant, Josephine M.; Harris, Simon R.; Schuenemann, Verena J.; Campbell, Tessa J.; Majander, Kerrtu; Wilbur, Alicia K.; Guichon, Ricardo A.; Wolfe Steadman, Dawnie L.; Cook, Della Collins; Niemann, Stefan; Behr, Marcel A.; Zumarraga, Martin; Bastida, Ricardo; Huson, Daniel; Nieselt, Kay; Young, Douglas; Parkhill, Julian; Buikstra, Jane E.; Gagneux, Sebastien; Stone, Anne C.; Krause, Johannes

    2015-01-01

    Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean. PMID:25141181

  9. [Use of ionizing radiation sources in metallurgy: risk assessment].

    Science.gov (United States)

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  10. Sealing device

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  11. Radiation protection procedures and dose to the staff in brachytherapy with permanent implant of the sources

    International Nuclear Information System (INIS)

    Tosi, G.; Cattani, F.

    2002-01-01

    The treatment of intra capsular prostate cancers with the permanent implantation of low energy sealed radioactive sources (''103 Pd-''125I) offers the same probability of curing the tumours as surgery and external-beam radiotherapy with a minimum incidence of unwanted side-effects. The first attempts of using sealed sources for treating prostate cancers go back to 1917, when Barringer reported the results obtained with the implant of ''236Ra needles. Beginning from that period the interest for prostate brachytherapy has shown a fluctuating trend, due especially to the technological possibilities and to the status of the alternative treatment modalities (surgery, external radiotherapy). The main reason of the substantial failure of brachytherapy as compared to the two other treatment modalities had two main causes: the energy, too high ( E≅ 840 keV), of γ-radiation emitted by ''226 Ra in equilibrium with its decay products and the lack of imaging techniques able to visualize with sufficient accuracy both the prostate and the arrangement, inside it, of the radioactive sources. The employ of low energy γ-emitting radionuclides began in 1974, when Whitmore et al. working at the Sloan Kettering Memorial Cancer Hospital of New York suggested the use of ''125 I sealed sources for the realisation of interstitial permanent implants. Also this attempt, though reducing the side effects typical of the surgical intervention (incontinence, impotence), did non give the expected results in terms of local control of the disease and, as a consequence, of the survival's length. This partial failure was attributed to the fact that, in most cases the dose distribution inside the target volume was not homogeneous, due to the inadequacy of the available imaging techniques used for checking the real position of the sources, during their manual insertion in the tissues. In the last ten years,however, great progresses have been made in the US i maging techniques, in the manufacture of

  12. Radiological control in fires involving radiation sources

    International Nuclear Information System (INIS)

    Franco, J.O.A.; Coelho, C.P.

    1984-01-01

    The copies used during the chatter by techniques from CDTN in the I Mineiro Symposium of Fire Engineering, are presented. The chatter was based on emergency radiation control course, given by CDTN. Basic concepts, such as nuclear physics fundaments, radiation nature and detection, radiation protection and practical aspects of radiological fire emergency, were enphasized. (M.C.K.) [pt

  13. Radiation protection with consumer products containing gaseous tritium light sources

    International Nuclear Information System (INIS)

    Rahders, Erio; Haeusler, Uwe

    2017-01-01

    Consumer products containing gaseous tritium light sources (GTLS) were examined with respect to their radiological safety potential regarding leak tightness or accidents. The maximum tritium leakage rate of 2.7 Bq/d determined from experimental testing is well below the criterion for leak tightness of sealed radioactive sources in DIN 25426-4. In order to investigate the incorporation of tritium due to contact with consumer products, 2 scenarios were reviewed; the correct use of a tritium watch and the accident scenario with a keyring.

  14. Industrial meters with sealed sources: an overview of the situation in Argentina

    International Nuclear Information System (INIS)

    Cateriano, Miguel A.; Truppa, Walter A.

    2003-01-01

    During 2002 the Argentine Nuclear Regulatory Authority decided that it should audit all the owners of licenses to operate industrial meters to verify the sources declared by the users and to evaluate the radiological safety of the installations within the regulatory framework as well as the safety of the sources. This audit has taken place at a national level and included all users that own industrial meters. Almost 380 facilities were inspected in 60 days. An ad-hoc committee was created to achieve this goal; it was made up of 5 groups of three inspectors each who were distributed along different areas of the country where the facilities operate. The knowledge of the situation is an important tool that allows a better planning of the source control policy in order to prevent radiological emergency situations in which radioactive sources might be involved. In this paper the satisfactory results of the audits are presented. No orphan sources were detected. The anomalies found and all the actions taken to early correct these anomalies are described. Additionally, an updated description of the situation concerning all the users of industrial meters is presented. Their distribution per province, an inventory of sources and equipment as well as the number of licenses and individual authorizations are also shown in this paper. (author)

  15. Natural radiation source fabricated from commercially available instant coffee

    International Nuclear Information System (INIS)

    Kawano, Takao; Ando, Yoshiaki; Izumi, Yuuichi

    2015-01-01

    Commercially available instant coffee, Nescafe Excella, contained the radionuclide 40 K. From the instant coffee, sixteen coffee-block radiation sources were successfully fabricated with sufficiently low production dependences. The coffee-block radiation sources were examined their suitability for a radiation protection course. Although a part of radiation counts(cpm) obtained with 1 minute measurement were largely deviated, those determined by 5 minute measurements and five times of 1 minute measurement were less deviated, enabling better comprehension of the three cardinal principles of radiation protection. (author)

  16. Protection in handling ionizing radiation sources in national economy

    International Nuclear Information System (INIS)

    1986-01-01

    The collection of study texts is divided into 13 chapters giving an explanation of the structure of the atom, the properties of ionizing radiation and its interactions, quantities and units used, basic dosimetric methods, biological radiation effects, the sources of population exposure, the principles of radiation protection, technological applications of ionizing radiation, the monitoring of personnel and environment, the method of recording and filing, the method of protection from external radiation and internal contamination, health care, and requirements for protection in handling nonsealed sources. (M.D.)

  17. Detailed observations of the source of terrestrial narrowband electromagnetic radiation

    Science.gov (United States)

    Kurth, W. S.

    1982-01-01

    Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.

  18. Safety of radiation sources and other radioactive materials in Jordan

    International Nuclear Information System (INIS)

    Majali, M.M.

    2001-01-01

    Since joining the IAEA Model Project for upgrading radiation protection infrastructure in countries of West Asia, Jordan has amended its radiation safety legislation. The Regulatory Authority is improving its inventory system for radiation sources and other radioactive materials and also its notification, registration, licensing, inspection and enforcement systems. It has established national provisions for the management of orphan sources after they have been found. The system for the control of the radiation sources and other radioactive materials entering the country has been improved by the Regulatory Authority. (author)

  19. Sterilization plants equipped with the isotopic gamma radiation sources

    International Nuclear Information System (INIS)

    Mehta, K.; Chmielewski, A.G.

    2007-01-01

    Presentation describes different isotopic gamma radiation sources applicable for sterilization of food and medical materials. Certain gamma pallet irradiators, mini gamma irradiators and different scale gamma tote irradiators are presented. It is concluded, that about two hundreds plants with gamma radiation sources operates in different countries. However, industrially developed countries must construct much more plants than operates now

  20. Indirect detection of radiation sources through direct detection of radiolysis products

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Fischer, Larry E [Los Gatos, CA; Felter, Thomas E [Livermore, CA

    2010-04-20

    A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.

  1. Transition undulator radiation as bright infrared sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  2. Ocular exposure to ultraviolet and visible radiation from light sources

    International Nuclear Information System (INIS)

    Hietanen, M.

    1992-01-01

    Exposure of the eyes to UV radiation and blue light of artificial light sources and the sun was evaluated. A spectroradiometer was used to determine the spectral irradiance at 1 nm intervals from 250 to 800 nm. Various groups of workers are at risk of ocular over-exposure to optical radiation, outdoor workers maintenance personnel of bright light source as and wear eye-protectors with effective filtering of UV radiation and blue light. (author)

  3. The technique on handling radiation

    International Nuclear Information System (INIS)

    1997-11-01

    This book describes measurement of radiation and handling radiation. The first part deals with measurement of radiation. The contents of this part are characteristic on measurement technique of radiation, radiation detector, measurement of energy spectrum, measurement of radioactivity, measurement for a level of radiation and county's statistics on radiation. The second parts explains handling radiation with treating of sealed radioisotope, treating unsealed source and radiation shield.

  4. Incidents with hazardous radiation sources; Zwischenfaelle mit gefaehrlichen Strahlenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule

    2016-07-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  5. Cover gas seals: FFTF-LMFBR seal test program

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, T.S.; Shimazaki, T.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor-inert gas environment, (2) demonstrate that these FFTF seals or new seal configurations provide acceptable fission product and cover gas retention capabilities at Clinch River Breeder Reactor Plant (CRBRP) operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the CRBRP to support the national objective to reduce all atmospheric contaminations to low levels

  6. The safety of radiation sources and radioactive materials in China

    International Nuclear Information System (INIS)

    Liu, H.

    2001-01-01

    The report describes the present infrastructure for the safety of radiation sources in China, where applications of radiation sources have become more and more widespread in the past years. In particular, it refers to the main functions of the National Nuclear Safety Administration of the State Environmental Protection Administration (SEPA), which is acting as the regulatory body for nuclear and radiation safety at nuclear installations, the Ministry of Public Health which issues licences for the use of radiation sources, and the Ministry of Public Security, which deals with the security of radiation sources. The report also refers to the main requirements of the existing regulatory system for radiation safety, i.e. the basic dose limits for radiation workers and the public, the licensing system for nuclear installations and for radioisotope-based and other irradiation devices, and the environmental impact assessment system. Information on the nationwide survey of radiation sources carried out by SEPA in 1991 is provided, and on some accidents that occurred in China due to loss of control of radiation sources and errors in the operation of irradiation facilities. (author)

  7. UV radiation sources for artificial skin tanning and protection

    International Nuclear Information System (INIS)

    Zivkovic, D.; Hrnjak, M.

    1999-01-01

    UV radiation sources for artificial tanning are more utilized at the last time. UV radiation is not harmless, so there are not safety devices for tanning. If people do not want to avoid exposure to their radiation, than it is necessary to take the prevention measure: strictly dose of UV radiation according to skin type, use of appropriate protective eye-wears and respect for inhibit of some medicaments and some cosmetic products use. (author)

  8. On the evaluation of rectangular plane-extended sources and their associated radiation fields

    International Nuclear Information System (INIS)

    Oner, Feda

    2007-01-01

    The objective of this paper is to provide an efficient and reliable analytical procedure for the evaluation of rectangular plane-extended sources and their associated radiation fields. Integrals with integer and non-integer values appear in the evaluation of the radiation field distribution. The latter results from a homogeneous rectangular plane target bombarded by hollow-cylindrical ion beams, the elementary areas anisotropically emitting in non-dispersive media, and fast neutrons produced in non-dispersive media by sealed-off neutron generating tubes (NGT) in an axi-symmetric situation [Hubbell, J.H., Bach, R.L., Lamkin, J.C., 1960. Radiation from a rectangular source. J. Res. NBS 64C (2), 121-137; Hubbell, J.H., 1963a. A power series buildup factor formulation. Application to rectangular and offaxis disk source problems. J. Res. NBS 67C, 291-306, Hubbell, J.H., 1963b. Dose fields from plane sources using point-source data. Nucleonics 21 (8), 144-148; Timus et al., 2005a. Plane rectengular tritium target response to excitation by uniform distributed normal accelerated deuteron beam. Appl. Radiat. Isot. 63, 823-839; Timus et al., 2005b. Analytical characterization of radiation fields generated by certain witch-type distributed axi-symmetrical ion beams. Arab J. Nucl. Sci. Appl. 38(I) 253-264]. In these references, the resulting expressions are represented as infinite linear combinations of basic J q (a, b, z) integrals. With the help of relation for J q (a, b, z), we can evaluate the high terms of energy expressions, which have been proposed in the above-mentioned references. The extensive test calculations show that the proposed algorithm in this work is the most efficient one in practical computations

  9. New legislative regulations for ensuring radiation protection using ionizing radiation sources in medicine

    International Nuclear Information System (INIS)

    Boehm, K.

    2018-01-01

    European Commission Directive No. 2013/59 / EURATOM laying down basic safety requirements for the provision of radiation protection regulates the provision of radiation protection for workers with radiation sources and residents in all areas of use of ionizing radiation sources. This Directive also addresses radiation protection in the use of ionizing radiation sources in medicine. The European Commission Directive regulates the requirements for radiation protection but also extends to its scope and provisions on the use of medical radiation sources (so-called m edical exposure ) in the scope of further legislation in the field of health care, which has to be amended and modified or possibly issued new. It was necessary in the preparation of the new act on radiation protection to amend simultaneously Act no. 576/2004 on the provision of health care and services related to provision of health care and Act no. 578/2004 on Health care Providers, Health care Professionals and Organizations in Health Care and to prepare a series of implementing regulations not only to the Law on Radiation Protection but also to the Laws governing the Provision of Health Care. The paper presents changes to existing legislation on radiation protection in medical radiation and new requirements for the construction and operation of health workplaces with radiation sources, the protection of the health of patients, the requirements for instrumentation used for medical radiation and radiological instrumentation tests. (authors)

  10. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  11. Reclamation of greater than Class C sealed sources at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Behrens, R.G.; Jones, S.W.

    1995-01-01

    One of the important overriding themes of the Los Alamos National Laboratory as a world-class scientific institution is to utilize its expertise in enhancing the long-term welfare of society by minimizing negative side effects of nuclear technology over the past five decades. The Los Alamos National Laboratory is therefore committed to the use of its technical competencies and nuclear facilities, developed through programs in the areas of defense and civilian nuclear research, to support activities which will benefit the United States as a whole. As such, this paper discusses the organizational details and requirements of the Neutron Source Reclamation Program at Los Alamos. This program has as its mission the retrieval, interim storage, and chemical reprocessing of 238 PuBe, 239 PuBe and 24l AmBe neutron sources residing in the hands of private companies and industries, academic institutions, and various state and Federal government agencies

  12. Separation of radiation from two sources from their known radiated sum field

    DEFF Research Database (Denmark)

    Laitinen, Tommi; Pivnenko, Sergey

    2011-01-01

    This paper presents a technique for complete and exact separation of the radiated fields of two sources (at the same frequency) from the knowledge of their radiated sum field. The two sources can be arbitrary but it must be possible to enclose the sources inside their own non-intersecting minimum...

  13. Security seal

    Science.gov (United States)

    Gobeli, Garth W.

    1985-01-01

    Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to "fingerprints" are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.

  14. Seal arrangement

    International Nuclear Information System (INIS)

    Dempsey, J.D.

    1978-01-01

    A hydraulically balanced face type shaft seal is provided in which the opening and closing seal face areas retain concentricity with each other in the event of lateral shaft displacement. The seal arrangement is for a vertical high pressure pump, indented for use in the cooling system of a nuclear reactor. (Auth.)

  15. Dosimetric analysis of radiation sources to use in dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures. Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  16. Synchrotron radiation sources: general features and vacuum system

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1985-01-01

    In the last years the electron or positron storage rings, which were until 1970 only used for high energy physics experiments, begun to be built in several countries exclusively as electromagnetic radiation source (synchrotron radiation). The sources are generally made up by injector (linear accelerator or microtron), 'booster' (synchrotron), storage ring, insertions ('Wigglers' and ondulators) and light lines. The interest by these sources are due to the high intensity, large spectrum (from infrared to the X-rays), polarization and pulsed structure of the produced radiation. For the ultra-vacuum obtainement, necessary for the functioning storage rings (p=10 -9 Torr), several special procedures are used. In Brazil the Synchrotron Radiation National Laboratory of the CNPq worked out a conceptual project of synchrotron radiation source, whose execution should begin by the construction of the several components prototypes. (L.C.) [pt

  17. Radiation sources EB and UV curing machines

    International Nuclear Information System (INIS)

    Takashi Sasaki

    1993-01-01

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs

  18. Radiation sources EB and UV curing machines

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takashi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    This paper describes electron beam processors and related technologies for curing applications to facilitate those industrial personals who are trying to understand and evaluate the applicability and benefits of radiation curing to their products. 4 tabs., 10 figs.

  19. Natural sources of ionizing radiation in Europe

    International Nuclear Information System (INIS)

    Green, B.M.R.; Hughes, J.S.; Lomas, P.R.

    1993-01-01

    This publication maps levels of radiation of natural origin throughout the European Community (except in the Lander of the former German Democratic Republic), in Scandinavia and in Austria. The booklet explains in simple terms the basic properties and origin of different types of radiation (cosmic rays, gamma rays and radon) and their contribution to the overall exposure of the population. A glossary, a list of administrative regions used in the maps and detailed references to the data for each country are included

  20. Development of Yb-169 radiation source for new nondestructive inspection

    International Nuclear Information System (INIS)

    Yamabayashi, Hisamichi

    1994-01-01

    As the nondestructive inspection method for large structures, there has been radiography, and X-ray and γ-ray have been used as the radiation. The transmissivity of radiation through materials changes by the energy of the radiation and the density and thickness of the materials. At present about 880 γ-ray radiography apparatuses are used in Japanese private enterprises, and about 70% of them use 192 Ir γ-ray sources, and about 30% use 60 Co or 137 Cs sources. Recently the defect inspection for the worlded parts of thin wall small tubes and so on have become to be regarded as important, and the 169 Yb source that emits lower energy γ-ray is suitable to the purpose. There are many reports that 169 Yb radiography was applied successfully. As the 169 Yb radiation source, pellets and balls are on the market. 169 Yb is made by the neutron irradiation of 168 Yb in nuclear reactors. The characteristics of 169 Yb, the manufacture of 169 Yb radiation sources and the applicability of 169 Yb radiation sources to nondestructive inspection are reported. Also in Japan, many basic experiments on 169 Yb radiation sources have been carried out, and the irradiation apparatuses are small and light, and the control area can be set small. (K.I.)

  1. Challenges in Regulating Radiation Sources and Radioactive Waste in Nigeria

    International Nuclear Information System (INIS)

    Ngwakwe, C.

    2016-01-01

    Identifying challenges that hamper the efficiency and efficacy of Regulatory Infrastructure (People and Processes) as regards ensuring safety & security of radiation sources and radioactive waste is a major step towards planning for improvement. In a world constantly motivated by technological advancements, there has been considerable increase in the use of new technologies incorporating radioactive sources in both medical and industrial applications due to its perceived benefits, hence changing the dynamics of regulation. This paper brings to the fore, contemporary challenges experienced by regulators in the course of regulating radiation sources and radioactive waste in Nigeria. These challenges encountered in the business of regulating radiation sources and radioactive waste in Nigeria amongst others include; knowledge gap in the use of novel technologies for industrial applications (e.g. radiotracers in oil & gas and wastewater management), inadequate collaboration with operators to ensure transparency in their operations, inadequate cooperation from other government agencies using ionizing radiation sources, lack of synergy between relevant government agencies, difficulty in establishing standard radioactive waste management facility for orphan & disused sources, and inadequate control of NORMS encountered in industrial activities (e.g. well logging, mining). Nigerian Nuclear Regulatory Authority (NNRA), the body saddled with the responsibility of regulating the use of ionizing radiation sources in Nigeria is empowered by the Nuclear Safety and Radiation Protection Act to ensure the protection of life, property, and the environment from the harmful effects of ionizing radiation, hence are not immune to the aforementioned challenges. (author)

  2. Data Bank of Nuclear and Radiological Regulatory Authority, Part 2 . Software Package of Statistical Data of Sealed Sources

    International Nuclear Information System (INIS)

    Lashin, R.M.A.; Mahmoud, N.S.; Lashin, M.M.A.

    2012-01-01

    Protection of human, property and the environment is the main concern considered as a principal goal to form the Egyptian Nuclear and Radiological Regulatory Authority. That requires a lot of work, efforts, knowledge and aids for right and quick decision making. Internationally, the International Atomic Energy Agency (IAEA) developed a protection system for control and accounts the radioactive materials for the safe use and transport. Moreover, the protection system can prevent the theft of these materials or their use in terrorism. Here in, all radioactive sources shall be subjected to instructions, serious regulations and laws. In order to exercise these functions, it is necessary to accurately establish the appropriate information system to the regulatory body. This system must depend on using a modern technology to perform the work in most accurate and fullest manner in a Data Bank [1, 2]. The present work is the second part performed for the data bank, which consists of two parts: first part is concern about the open sources which executed before [3]. Second part is deal with the sealed sources. Describing here consolidated guidance help materials licenses. It also provides reviewers of such requests with the information and materials necessary to determine that the products are acceptable for licensing purposes. It provides the applicants and reviewers with information concerning how to file a request, a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, administrative procedures to be followed, information on how to perform the evaluation and write a registration certificate, and the responsibilities of the registration certificate holder.

  3. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  4. Natural radiation sources fabricated from potassic chemical fertilizers and application to radiation education

    International Nuclear Information System (INIS)

    Kawano, Takao

    2010-01-01

    Potassic chemical fertilizers contain potassium, a small part of which is potassium-40. Since potassium-40 is a naturally occurring radioisotope, potassic chemical fertilizers are often used for demonstrations of the existence of natural radioisotopes and radiation. To fabricate radiation sources as educational tools, the compression and formation method developed by our previous study was applied to 13 brands of commercially available chemical fertilizers containing different amounts of potassium. The suitability (size, weight, and solidness) of thus fabricated sources was examined and 12 of them were selected as easy-to-use radiation sources at radiation educational courses. The radiation strength (radiation count rate measured by a GM survey meter) and potassium content of the 12 sources were examined. It was found that the count rate was wholly proportional to the percentage of potassium, and a new educational application was proposed and discussed for understanding that the substance emitting radiation must be the potassium present in the raw fertilizers. (author)

  5. THE ROLE OF RADIATION ACCIDENTS AND INDUSTRIAL APPLICATIONS OF IONIZING RADIATION SOURCES IN THE PROBLEM OF RADIATION DAMAGE

    OpenAIRE

    Кіхтенко, Ігор Миколайович

    2016-01-01

    Subject of research – the relevance of radiation damage at modern development of industry and medicine. In the world of radiation sources used in different fields of practice and their application in the future will increase, which greatly increases the likelihood of injury in a significant contingent of people.Research topic – the definition of the role of nuclear energy and the industrial use of ionizing radiation sources in the problem of radiation damage. The purpose of research – identif...

  6. Introduction to radiation protection practical knowledge for handling radioactive sources

    CERN Document Server

    Grupen, Claus

    2010-01-01

    The book presents an accessible account of the sources of ionising radiation and the methods of radiation protection. The basics of nuclear physics which are directly related to radiation protection are briefly discussed. The book describes the units of radiation protection, the measurement techniques, biological effects of radiation, environmental radiation, and many applications of radiation. For each chapter there is a problem section with full solutions. A detailed glossary and many useful information in appendixes complete the book. The author has addressed the issue of internationality to make sure that the text and, in particular, the complicated regulations can be easily interpreted not only in Europe and the United States but also in other countries. The subject of radiation protection requires a certain amount of mathematics. For those who have forgotten the basic rules of calculus a short refresher course in the form of a mathematical appendix is added.

  7. Regulatory control of radiation sources in Germany

    International Nuclear Information System (INIS)

    Coy, K.

    1998-01-01

    The regulatory programme governing the safe use of radioisotopes in Germany is based on the federal legislation enacted as Atomic Energy Control Act (Atomgesetz) and Radiation Protection Ordinance (Strahlen-schutzverordnung) and its implementation by the competent authorities of the individual states. Despite this highly decentralized infrastructure of enforcement the basic principles of regulations described in this paper such as authorization criteria, conditions imposed as well as depth and intensity of inspection balanced according to the individual radiation hazard involved are harmonized to the greatest possible extent by regular coordination among the competent authorities as well as a series of technical regulations such as standards and guidelines. (author)

  8. Radiation safety aspects in the use of radiation sources in industrial and heath-care applications

    International Nuclear Information System (INIS)

    Venkat Raj, V.

    2001-01-01

    The principle underlying the philosophy of radiation protection and safety is to ensure that there exists an appropriate standard of protection and safety for humans, without unduly limiting the benefits of the practices giving rise to exposure or incurring disproportionate costs in interventions. To realise these objectives, the International Commission on Radiation Protection (ICRP-60) and IAEA's Safety Series (IAEA Safety Series 120, 1996) have enunciated the following criteria for the application and use of radiation: (1) justification of practices; (2) optimisation of protection; (3) dose limitation and (4) safety of sources. Though these criteria are the basic tenets of radiation protection, the radiation hazard potentials of individual applications vary and the methods to achieve the above mentioned objectives principles are different. This paper gives a brief overview of the various applications of radiation and radioactive sources in India, their radiation hazard perspective and the radiation safety measures provided to achieve the basic radiation protection philosophy. (author)

  9. Optical Imaging of Ionizing Radiation from Clinical Sources.

    Science.gov (United States)

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Stochastic electromagnetic radiation of complex sources

    NARCIS (Netherlands)

    Naus, H.W.L.

    2007-01-01

    The emission of electromagnetic radiation by localized complex electric charge and current distributions is studied. A statistical formalism in terms of general dynamical multipole fields is developed. The appearing coefficients are treated as stochastic variables. Hereby as much as possible a

  11. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  12. WADOSE, Radiation Source in Vitrification Waste Storage Apparatus

    International Nuclear Information System (INIS)

    Morita, Jun-ichi; Tashiro, Shingo; Kikkawa, Shizuo; Tsuboi, Takashi

    2007-01-01

    1 - Description of program or function: This is a radiation shielding program which analyzes unknown dose rates using known radiation sources. It can also evaluate radiation sources from measured dose rates. For instance, dose rates measured at several points in the hot cell of WASTEF are introduced into WADOS, and as a result, Ci of radiation sources and their positions are estimated with structural arrangement data of the WASTEF cells. The later functional addition is very useful for actual operation of a hot cell and others. NEA-1142/02: The code was originally written in non standard Fortran dialect and has been fully translated into Fortran 90, Fortran 77 compatible. 2 - Method of solution: Point kernel ray tracing method (the same method as QAD code). 3 - Restrictions on the complexity of the problem: Modeling of source form for input is available for cylinder, plate, point and others which are simplified geometrically

  13. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-12-01

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  14. Rules and regulations on ionizing radiations sources installations

    International Nuclear Information System (INIS)

    1980-01-01

    The finality of this legislative text is to establish the standards and procedures for site, design, building, operation and decommissioning of nuclear installations, radioactive installations and ionizing radiations sources. This text include the commercialization of radioactive substances and equipment fabrication

  15. EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES

    Science.gov (United States)

    The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...

  16. Regulatory requirements of radiation and radioactive sources in India

    International Nuclear Information System (INIS)

    Sundara Rao, I.S.

    1993-01-01

    Manufacture and supply of radiation sources, their use and the disposal of radioactive materials are regulated through the application of Safe Disposal Radioactive Wastes Rules 1987. Salient aspects of these are discussed

  17. Regulatory aspects of radiation sources safety in Albania

    International Nuclear Information System (INIS)

    Dollani, K.; Kushe, R.

    1998-01-01

    In this paper are presented the regulatory aspects of the radiation sources safety in Albania, based in the new Radiological Protection Act and Regulations. The radiation protection infrastructures and procedures are described as well as their functioning for the implementation of relevant activities such as licensing and regular inspection, personal dose monitoring, emergency preparedness which are developed in the frame of the IAEA Technical Co-operation Programme. The issue of the security of radiation sources is dealt in close relation with the preparation and use of the inventory of all radiation sources in the country. A special attention is paid to the identification and location of lost sources for their finding and secure storage. (author)

  18. Guidelines on radiation protection for work with open radioactive sources

    International Nuclear Information System (INIS)

    1995-01-01

    The Danish National Institute of Radiation Protection (SIS) has published this, fourth edition of guidelines on radiation protection for work with open radiation sources. There are few changes compared to the previous edition, film doses are updated and preparation of the Danish legislation with respect to the 1991 ICRP recommendations (ICRP publication 60) is discussed. In this future recommendation the new dose limits will be proposed and new risk factors enlightened. (EG)

  19. Radiation safety aspects of the LINAC coherent light source

    International Nuclear Information System (INIS)

    Vylet, V.; Fasso, A.; Rokni, S.H.

    1998-01-01

    The radiation protection systems, which comprise the Personnel Protection System (PPS), Beam Containment System (BCS), and shielding, are described. The radiation sources and methods of their assessment are highlighted; these include bremsstrahlung and neutrons from electron beam losses, gas bremsstrahlung, synchrotron radiation, muons, and induced activity. By way of example, a plot of tissue dose as a function of distance from beam axis at the end of the experimental hutch is reproduced. (P.A.)

  20. Radiation Source Mapping with Bayesian Inverse Methods

    Science.gov (United States)

    Hykes, Joshua Michael

    We present a method to map the spectral and spatial distributions of radioactive sources using a small number of detectors. Locating and identifying radioactive materials is important for border monitoring, accounting for special nuclear material in processing facilities, and in clean-up operations. Most methods to analyze these problems make restrictive assumptions about the distribution of the source. In contrast, the source-mapping method presented here allows an arbitrary three-dimensional distribution in space and a flexible group and gamma peak distribution in energy. To apply the method, the system's geometry and materials must be known. A probabilistic Bayesian approach is used to solve the resulting inverse problem (IP) since the system of equations is ill-posed. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint flux, discrete ordinates solutions, obtained in this work by the Denovo code, are required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes are then used to form the linear model to map the state space to the response space. The test for the method is simultaneously locating a set of 137Cs and 60Co gamma sources in an empty room. This test problem is solved using synthetic measurements generated by a Monte Carlo (MCNP) model and using experimental measurements that we collected for this purpose. With the synthetic data, the predicted source distributions identified the locations of the sources to within tens of centimeters, in a room with an approximately four-by-four meter floor plan. Most of the predicted source intensities were within a factor of ten of their true value. The chi-square value of the predicted source was within a factor of five from the expected value based on the number of measurements employed. With a favorable uniform initial guess, the predicted source map was nearly identical to the true distribution

  1. Source book of educational materials for radiation therapy. Final report

    International Nuclear Information System (INIS)

    Pijar, M.L.

    1979-08-01

    The Source Book is a listing of educational materials in radiation therapy technology. The first 17 sections correspond to the subjects identified in the ASRT Curriculum Guide for schools of radiation therapy. Each section is divided into publications and in some sections audiovisuals and training aids. Entries are listed without endorsement

  2. Experience with qualification examinations of workers handling ionizing radiation sources

    International Nuclear Information System (INIS)

    Skokanova, K.

    1976-01-01

    The organization is described of examinations which have to be passed by supervising staff and workers using radioactive ionizing radiation sources. The requirements are listed of the examination in which these workers have to prove their professional knowledge and skills. The said examinations significantly contribute to the establishment of a system of safeguards at workplaces using ionizing radiation sources and may help economize operations at these workplaces

  3. Design and Construction of a Radiation Source of Extreme Flux

    OpenAIRE

    Valle Brozas, Francisco

    2017-01-01

    [EN]The present thesis consists of the design and construction of an X-ray source through the interaction of an ultra-intense laser with a solid and/or liquid target. Specifically, the laser technology suitable for this purpose has been investigated, the characteristics of the laser-matter interaction have been studied and possible applications of the generated X-radiation (and accelerated electrons) have been explored. Nowadays, the development of sources of ionizing radiation through la...

  4. Ionizing radiation sources: very diversified means, multiple applications and a changing regulatory environment. Conference proceedings

    International Nuclear Information System (INIS)

    2011-11-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about ionizing radiation source means, applications and regulatory environment. Twenty eight presentations (slides) are compiled in this document and deal with: 1 - Overview of sources - some quantitative data from the national inventory of ionizing radiation sources (Yann Billarand, IRSN); 2 - Overview of sources (Jerome Fradin, ASN); 3 - Regulatory framework (Sylvie Rodde, ASN); 4 - Alternatives to Iridium radiography - the case of pressure devices at the manufacturing stage (Henri Walaszek, Cetim; Bruno Kowalski, Welding Institute); 5 - Dosimetric stakes of medical scanner examinations (Jean-Louis Greffe, Charleroi hospital of Medical University); 6 - The removal of ionic smoke detectors (Bruno Charpentier, ASN); 7 - Joint-activity and reciprocal liabilities - Organisation of labour risk prevention in case of companies joint-activity (Paulo Pinto, DGT); 8 - Consideration of gamma-graphic testing in the organization of a unit outage activities (Jean-Gabriel Leonard, EDF); 9 - Radiological risk control at a closed and independent work field (Stephane Sartelet, Areva); 10 - Incidents and accidents status and typology (Pascale Scanff, IRSN); 11 - Regional overview of radiation protection significant events (Philippe Menechal, ASN); 12 - Incident leading to a tritium contamination in and urban area - consequences and experience feedback (Laurence Fusil, CEA); 13 - Experience feedback - loss of sealing of a calibration source (Philippe Mougnard, Areva); 14 - Blocking incident of a 60 Co source (Bruno Delille, Salvarem); 15 - Triggering of gantry's alarm: status of findings (Philippe Prat, Syctom); 16 - Non-medical electric devices: regulatory changes (Sophie Dagois, IRSN; Jerome Fradin, ASN); 17 - Evaluation of the dose equivalent rate in pulsed fields: method proposed by the IRSN and implementation test (Laurent Donadille, IRSN

  5. Feed network and electromagnetic radiation source

    Science.gov (United States)

    Ardavan, Arzhang; Singleton, John; Linehan, Kevin E.; Ardavan, Houshang; Schmidt-Zwiefel, Andrea Caroline

    2017-01-17

    An antenna may include a volume polarization current radiator and a feed network. The volume polarization current radiator, includes a dielectric solid (such as a dielectric strip), and a plurality of closely-spaced excitation elements (24), each excitation element (24) being configured to induce a volume polarization current distribution in the dielectric solid proximate to the excitation element when a voltage is applied to the excitation element. The feed network is coupled to the volume polarization current radiator. The feed network also includes a plurality of passive power divider elements (32) and a plurality of passive delay elements (d1-d6) coupling the first port (30) and the plurality of second ports (108, 109, 164), the plurality of power divider elements (32) and the plurality of phase delay elements (d1-d6) being configured such that a radio-frequency signal that is applied to the first port (30) experiences a progressive change of phase as it is coupled to the plurality of second ports (108, 109, 164) so as to cause the volume polarization current distribution to propagate along the dielectric solid.

  6. Development of regulatory technologies of key issues of radiation sources in the medical and industrial fields

    International Nuclear Information System (INIS)

    Lee, Jae Seong; Kim, Byung Soo; Ku, Bon Chul

    2006-08-01

    The aim of this research is to provide with rational bases to address the key issues raising up during the expansion of RI/RG usage in the medical and industrial fields, thus eventually contribute to enhancing the effectiveness of national regulatory systems. Related key issues that are introduced in the medical and industrial fields are analyzed and some outcomes are produced. The following results are attained. - Estimation Methodology Development of Regulatory Effects for the Use of Radioactive Substances, - Survey on Domestic Status of Nuclear Materials and Review on Domestic/Foreign Regulatory System for Nuclear Materials Regulation, - Comparative Analysis of KSTAR and Fusion Facilities of Advanced Countries, - Radiological Characteristics of Proton Therapy and Analysis of Foreign Cases and Systems, - Detection and Safety Analysis of Leak Radiation of High Energy Medical Generators, - Survey and Analysis on Usage and Requirements of Sealed Sources, - Incidents/Accidents Reporting System for RI-related Facilities, - Development of Audio-Visual Education Materials for Radiation Workers, - Development of Major Safety Procedures for Portable RIs, - Expansion of Existing DB for Radiation Devices including New Domestic Ones, - Survey of Foreign Status of Quality Maintenance System for Radiation equipment

  7. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  8. Management of Spent Sealed Radioactive Sources in Central and Eastern Europe (Czech Rep., Estonia, Hungary, Poland and Slovenia)

    International Nuclear Information System (INIS)

    Angus, M.J.; Moreton, A.D.; Wells, D.A.

    2001-04-01

    This study has been performed to consider the situation relating to the regulation and management of spent sealed radioactive sources (SSRS) in five central and Eastern European (C and EE) countries currently being considered for admission to the EU: the Czech Republic, Estonia, Hungary, Poland and Slovenia. The general aim of this study has been to acquire a thorough understanding of the management of SSRS in these five countries, in order to recommend improvements in management schemes and to establish whether the application of common disposal criteria would be advantageous. This report is structured in the following manner; following the Introduction (Section 1), there is description of current and proposed regulatory requirements in the EU, together with a summarised comparison of the regulatory systems in C and EE countries with EU standards in Section 2. Sections 3 to 7 are dedicated to the situation in each of the five countries. Each of these sections is similarly sub-divided to enable country-by-country and topic-by-topic comparison. In each of Sections 3 to 7 there is an overview, description of the sealed source inventory, regulations, current management practices, retrieval of unregistered SSRS, conclusions and a description of possible future technical assistance projects. Section 8 brings together a summary of the situation in each country, with conclusions and both country-specific and generic recommendations. A common concern in the five countries and also in existing EU member states is the problem of accidental inclusion of SSRS in consignments of scrap-metal. The detection of radioactive material at entrances to scrap metal facilities and at national borders has therefore received considerable attention in recent years. Practical issues regarding the detection of SSRS in scrap metal are described in Appendix A. None of the five countries considered in this report have any plans to develop regional disposal facilities and no specific common

  9. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  10. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  11. The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    Science.gov (United States)

    Zank, G. P.; Spann, James F.

    2014-01-01

    The goal of this project is to serve the needs of space system designers and operators by developing an interplanetary radiation environment model within 10 AU:Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) toolset: (1) The RISCS toolset will provide specific reference environments for space system designers and nowcasting and forecasting capabilities for space system operators; (2) We envision the RISCS toolset providing the spatial and temporal radiation environment external to the Earth's (and other planets') magnetosphere, as well as possessing the modularity to integrate separate applications (apps) that can map to specific magnetosphere locations and/or perform the subsequent radiation transport and dosimetry for a specific target.

  12. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  13. Background radiation and man-made and sources of radiation

    International Nuclear Information System (INIS)

    Babalola, I.A.

    1997-01-01

    This paper describes the development of the use of the atom and its present applications in food and agriculture, industry medicine and health care, energy-environment and research. These applications have inevitably led to concerns about nuclear safety and radioactive waste management and the need for the adoption of procedures for control, safe use and disposal of radioactive sources

  14. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  15. Future radiation sources and identification of irradiated foods

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1989-01-01

    Two major questions regarding irradiation that are raised today are: (1) Which sources should be used for irradiating food? and (2) How can irradiated foods be identified? This article considers both questions. After briefly mentioning a few of the historical stepping stones in the development of radiation sources, present and future radiation sources are discussed. Next the changes in foods caused by irradiation are considered. These changes are extremely small-so minor in fact that it is difficult to detect if the food has been irradiated. Still, these are several detection methods available, and this article describes them

  16. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  17. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  18. Application of large radiation sources in chemical processing industry

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1977-01-01

    Large radiation sources and their application in chemical processing industry are described. A reference has also been made to the present developments in this field in India. Radioactive sources, notably 60 Co, are employed in production of wood-plastic and concrete-polymer composites, vulcanised rubbers, polymers, sulfochlorinated paraffin hydrocarbons and in a number of other applications which require deep penetration and high reliability of source. Machine sources of electrons are used in production of heat shrinkable plastics, insulation materials for cables, curing of paints etc. Radiation sources have also been used for sewage hygienisation. As for the scene in India, 60 Co sources, gamma chambers and batch irradiators are manufactured. A list of the on-going R and D projects and organisations engaged in research in this field is given. (M.G.B.)

  19. Ionizing radiation sources used in medical applications in Brazil

    International Nuclear Information System (INIS)

    Araujo, A.M.C.; Carlos, M.T.; Cruz, L.R.F.; Domingues, C.; Farias, J.T.; Ferreira, R.; Figueiredo, L.; Peixoto, J.E.; Oliveira, S.M.V.; Drexler, G.

    1991-02-01

    Preliminary data about ionizing radiation sources used in medical applications and obtained through a national programme by IRD/CNEN together with Brazilian health authorities are presented. The data presentation follows, as close as possible, recommendations given by the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR). This programme has two main aims: First: to contribute for research in the field of ionizing radiation effects and risks including information about equipment quality control and procedures adopted by professionals working in Radiation Medicine. Second: to investigate the radiation protection status in Brazil, in order to give assistance to Brazilian health authorities for planning regional radiation programmes and training programmes for medical staffs. (F.E.). 13 refs, 19 figs, 34 tabs

  20. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  1. Radiometric analyzer with plural radiation sources and detectors

    International Nuclear Information System (INIS)

    Arima, S.; Oda, M.; Miyashita, K.; Takada, M.

    1977-01-01

    A radiometric analyzer for measuring characteristics of a material by radiation comprises a plurality of systems in which each consists of a radiation source and a radiation detector which are the same in number as the number of elements of the molecule of the material and a linear calibration circuit having inverse response characteristics (calibration curve) of the respective systems of detectors, whereby the measurement is carried out by four fundamental rules by operation of the mutual outputs of said detector system obtained through said linear calibration circuit. One typical embodiment is a radiometric analyzer for hydrocarbons which measures the density of heavy oil, the sulfur content and the calorific value by three detector systems which include a γ-ray source (E/sub γ/ greater than 50 keV), a soft x-ray source (Ex approximately 20 keV), and a neutron ray source. 2 claims, 6 figures

  2. Control of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Oliveira, Silvia Maria Velasques de; Menezes, Sergio Ferreira; Alves Filho, Aristeu Dacio; Xavier, Ana Maria

    1997-01-01

    The radiological accident occurred in Goiania, in 1987, brought to light several deficiencies in the conduction of the licensing processes of medical, industrial and research facilities that handle radioisotopes as well as int he control of radioactive sources in Brazil. The objective of this article is to describe some of the technical and administrative measures taken to ensure the adoption of appropriate radiological safety standards throughout the country, thus reducing the incidence of radiological accidents. (author)

  3. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  4. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  5. Electronic seal

    International Nuclear Information System (INIS)

    Musyck, E.

    1981-01-01

    An electronic seal is presented for a volume such as container for fissile materials. The seal encloses a lock for barring the space as well as a device for the detection and the recording of the intervention of the lock. (AF)

  6. Ferrules seals

    Science.gov (United States)

    Smith, J.L.

    1984-07-10

    A device is provided for sealing an inner tube and an outer tube without excessively deforming the tubes. The device includes two ferrules which cooperate to form a vacuum-tight seal between the inner tube and outer tube and having mating surfaces such that overtightening is not possible. 3 figs.

  7. Regulatory control for safe usage of radiation sources in India

    International Nuclear Information System (INIS)

    Ghosh, P.K.; Sonawane, A.U.

    1998-01-01

    The widespread applications of radioactive materials and radiation generating equipment in the field of industry, medicine agriculture and research in India necessitated the establishment of an efficient regulatory framework and consequently the Atomic Energy Regulatory Board (AERB) was constituted to exercise regulatory control over the safe usage of the radioactive materials and the radiation generating equipment. The Atomic Energy Act, 1962 and the Radiation Protection Rules, 1971 promulgated under the Act forms the basis of radiation safety in India and Chairman, AERB is the Competent Authority to enforce the regulatory provisions of the Radiation Protection Rules, 1971, for safe use of radiation source in the country. AERB has published a number of documents such as Radiation Surveillance Procedures, Standards, Codes, Guides and Manuals for safe use and handling of radioactive materials and radiation generating equipment. Apart from nuclear fuel cycle documents, these publications pertain to industrial radiography, medical application of radiation, transport of radioactive material, industrial gamma irradiators, X-ray units etc. AERB safety related publications are based on international standards e.g. BSS, IAEA, ICRP, ISO etc. This paper outlines the methodology of regulatory control exercised by AERB for safe use of the radioactive materials and the radiation generating equipment in the country. (author)

  8. Training of human resources on radiation protection and safe use of radiation sources. Argentine experience

    International Nuclear Information System (INIS)

    Biaggio, Alfredo L.; Nasazzi, Nora B.; Arias, Cesar

    2004-01-01

    Argentina has a long experience in Radiation Protection training since 25 years ago. In the present work we analyse those variable and non variable training aspects according to scientific development, increasing radiation source diversity (including new concepts like orphan sources and security), mayor concern about patient in Radiation Protection, previous exposures, etc. We comment what we consider the main steps in the training of Radiation Protection specialists, like university degree, post graduate education distinguishing between formative and informative contents and on the job training. Moreover, we point out the trainees aptitudes and attitudes to be developed in order to work properly in this interdisciplinary field. (author)

  9. Sealing devices

    International Nuclear Information System (INIS)

    Coulson, R.A.

    1980-01-01

    A sealing device for minimising the leakage of toxic or radioactive contaminated environments through a biological shield along an opening through which a flexible component moves that penetrates the shield. The sealing device comprises an outer tubular member which extends over a length not less than the maximum longitudinal movement of the component along the opening. An inner sealing block is located intermediate the length of the component by connectors and is positioned in the bore of the outer tubular member to slide in the bore and effect a seal over the entire longitudinal movement of the component. The cross-section of the device may be circular and the block may be of polytetrafluoroethylene or of nylon impregnated with molybdenum or may be metallic. A number of the sealing devices may be combined into an assembly for a plurality of adjacent longitudinally movable components, each adapted to sustain a tensile load, providing the various drives of a master-slave manipulator. (author)

  10. Radiation in the living environment: sources, exposure and effects

    International Nuclear Information System (INIS)

    Gupta, Rashi

    2013-01-01

    We are living in a milieu of radiations and continuously exposed to radiations from natural sources from conception to death. We are exposed to radiation from Sun and outer space, radioactive materials present in the earth, house we live in, buildings and workplace, food we eat and air we breath. Each flake of snow, grain of soil, drop of rain, a flower, and even each man in the street is a source of this radiation. Even our own bodies contain naturally occurring radioactive elements. The general belief is that the radiations are harmful and everybody is scared of the same. The cancer is the most important concern on account of exposure to Ionizing Radiation which is initiated by the damage to DNA. The level of exposure depends on the environmental and working conditions and may vary from low to moderate to high and depending on the same the exposed humans can be classified as general public, non nuclear workers (NNW) and nuclear workers (NW). Though, the LNT theory which is considered to be the radiation paradigm considers all radiation at all levels to be harmful and the -severity of the deleterious effect increases with the increase in dose, however, the available literature, data and reports (epidemiological and experimental) speaks otherwise particularly at low levels. The purpose of this paper is to address the question, whether the radiation is harmful at all levels or it is simply media hype and the truth is different, and to promote harmony with nature and to improve our quality of life with the knowledge that cancer mortality rates decrease following exposure to LLIR. Various sources of radiation exposure and the subsequent consequences will be discussed. (author)

  11. Environmental radiation safety source term evaluation program

    International Nuclear Information System (INIS)

    Moss, O.R.; Filipy, R.E.; Cannon, W.C.; Craig, D.K.

    1977-04-01

    Plutonium-238 is currently used in the form of a pure refractory oxide as a power source on a number of space vehicles that have already been or will be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere and impact with the earth's surface without releasing any plutonium, the possibility of such an event can never be absolutely excluded. Three separate tasks were undertaken in this study. The interactions between soils and 238 PuO 2 aerosols which might be created in a space launch about environment were examined. Aging of the plutonium-soil mixture under a humid atmosphere showed a trend toward the slow coagulation of two dilute aerosols. Studies on marine animals were conducted to assess the response of 238 PuO 2 pellets to conditions found 60 feet below the ocean surface. Ultrafilterability studies measured the solubility of 238 PuO 2 as a function of time, temperature, suspension concentration and molality of solvent

  12. Molecular environmental science and synchrotron radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E. Jr. [Stanford Univ., CA (United States)

    1995-12-31

    Molecular environmental science is a relatively new field but focuses on the chemical and physical forms of toxic and/or radioactive contaminants in soils, sediments, man-made waste forms, natural waters, and the atmosphere; their possible reactions with inorganic and organic compounds, plants, and organisms in the environment; and the molecular-level factors that control their toxicity, bioavailability, and transport. The chemical speciation of a contaminant is a major factor in determining its behavior in the environment, and synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy is one of the spectroscopies of choice to quantitatively determine speciation of heavy metal contaminants in situ without selective extraction or other sample treatment. The use of high-flux insertion device beam lines at synchrotron sources and multi-element array detectors has permitted XAFS studies of metals such as Se and As in natural soils at concentration levels as low as 50 ppm. The X-ray absorption near edge structure of these metals is particularly useful in determining their oxidation state. Examples of such studies will be presented, and new insertion device beam lines under development at SSRL and the Advanced Photon Source for molecular environmental science applications will be discussed.

  13. Development of an externally controllable sealed isotope generator.

    Science.gov (United States)

    Sasaki, Toru; Aoki, Katsumi; Yamashita, Ryosuke; Hori, Kensuke; Kato, Taiga; Saito, Misaki; Niisawa, Kazuhiro; Nagatsu, Kotaro; Nozaki, Tadashi

    2018-03-01

    An externally controllable sealed isotope generator has been proposed for radiation education activities. Column ( 68 Ge- 68 Ga and 137 Cs- 137m Ba) and solvent extraction ( 68 Ge- 68 Ga)-based isotope generators were applied as radioactive sources. These generators showed high milking efficiencies and low breakthrough after repeated uses, and are expected to promote the use of isotope generators without radioactive contamination or the emission of radioactive waste. This isotope generator provides a new concept for sealed radioisotope sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Possible sources of radiation in indoor environment

    International Nuclear Information System (INIS)

    Djukanovic, M.

    1997-01-01

    More locations and building material will be needed to solve the housing needs, actually the future quantities will equal the total of all the previous building. And presently one quarter of the world population is already homeless. The development of human civilization in the new technological era goes on extremely quickly. In the search for new spaces, in the last decade of the 20th century, in town renovation planning the application of subterranean civil engineering is very popular. Below ground level, the new towns are built with many stories, with exclusively artificial light and artificial climate. There is not the slightest possibility of natural ventilation. These spaces have not been investigated as regards the contents of radon. Man is not adapted to spend most of the time in under artificial conditions. It is still to be discovered how it will affect humans and what is the degree of exposure to ionizing radiation in such conditions. It might be better to abandon underground construction before the adverse effects are proved. Previous mistakes in building must be overcome and new technologies applied as well as sustainable development in the future. (author)

  15. Control of radioisotopes and radiation sources in Indonesia

    International Nuclear Information System (INIS)

    Ridwan, M.

    2001-01-01

    Radioisotopes and radiation sources are extensively used in Indonesia in medicine, industry, mining, agriculture and research. These materials are controlled by the regulatory authority, according to established legal procedures. The Nuclear Energy Control Board of Indonesia (BAPETEN), which was established in 1998 through the Nuclear Energy Act No. 10/1997, is entrusted with the control of any application of nuclear energy, including the application of radioisotopes and radiation sources, through regulation, licensing and inspection. The control is aimed to assure welfare, security and peace, the safety and health of workers and the public, and environmental protection. The number of licences issued to date is around 2400, consisting of 1600 licences for radioisotopes and radiation sources used in hospitals, 347 in radiography, 256 in industry, 53 in mining, and the rest in many other areas such as research and agriculture. A licence can cover one or more radioisotopes or radiation sources, depending on the location of the user institution. These radioisotopes and radiation sources are Co-60, Cs-137, Ir-192, Ra-226, Am-241, Sr-90, Kr-85, Pm-147, linear accelerator and X-ray, and short half-life radioisotopes such as I-125, I-131 and Tc-99m. There are 10 LINACs, 27 X-ray medicines, 61 radioisotope devices for Co-60 and Cs-137, and 10 mHDR Ir-192 for therapeutic purposes currently used in Indonesia and some Ra-226 in storage. Any activity related to the application of nuclear energy is required to be conducted in a manner which observes safety and security. According to the legal requirements, each user has to employ at least one radiation safety officer. To improve the control of the application of radiation sources and radioactive material in the country, BAPETEN introduced some new approaches to the users, including regular dialogues with radiation safety officers and the management of the users, requalification for radiation protection officers twice in five

  16. Evaluation of integrity of radiation sources of nuclear gauges

    International Nuclear Information System (INIS)

    Torohate, Wiclif Francisco

    2016-01-01

    Nuclear equipment meters are mainly used in the industry in quality control and process control. The principle of operation consists in a shielded radioactive source together with a radiation detector such that the radiation interacts with the material to be analyzed before reaching the detector, providing real time data. Can be as their fixed and mobile mobility, the unique properties of ionizing radiation are used in three basic modes, transmission, backscatter or dispersion or induced (reactive). With the advancement and technological modernization in the world, the demand for nuclear gauges becomes increasingly larger. Currently in Brazil there are about 465 process control plants and 21 portable systems and Mozambique about 45 facilities using nuclear gauges. This font registration is done through a process called source inventory that allows also to know the category of the source, the danger or risk to human health that the source offers. The handling of this equipment requires personnel, certified, skilled and well trained in radiation protection area in accordance with the requirements of the various CNEN Rules. Due to the presence of radioactive source and because these devices are used by workers risk because there external radiation. In this context, we made the smear test in two fixed meters from the IRD industry laboratory, which determines the integrity of the source package, mandatory item in periodic integrity testing of the radiation source of this type of device. A set of procedures is made for its implementation as an evaluation of the radiological risk by radiological survey. It was intended to contribute to the learning handling and safe use of these meters. (author)

  17. Dosimetry services for internal and external radiation sources

    International Nuclear Information System (INIS)

    1988-01-01

    The Canadian Atomic Energy Control Board (AECB) sets radiation dose limits for the operation of nuclear facilities and the possession of prescribed substances within Canada. To administer these regulations the AECB must be satisfied that the dosimetry services used by a licensee meet adequate standards. Licensees are required to use the Occupational Dosimetry Service operated by the Bureau of Radiation and Medical Devices, Department of National Health and Welfare (BRMD) to determine doses from external sources of radiation, except where a detailed rationale is given for using another service. No national dosimetry service exists for internal sources of radiation. Licensees who operate or use a dosimetry service other than the BRMD must provide the AECB with evidence of the competence of the staff and adequacy of the equipment, techniques and procedures; provide the AECB with evidence that a quality assurance program has been implemented; and send individual dose or exposure data to the National Dose Registry. (L.L.)

  18. Strengthening the security of radiation sources in Ghana

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Flecther, J.J.; Ennison, I.; Schandorf, C.

    1998-01-01

    Legislative instrument LI 1559 of 1993 established the Radiation Protection Board (RPB) as the National Competent Authority (NCA) on radiation matters in Ghana. The Board advises Government through the Ghana Atomic Energy Commission on matters relating to radiation safety, security of sources, sales, import and export, contamination in food and environment, among others. It has wide ranging regulatory power and works in association with country authorities. The regulations in place for controlling the movement and use of radioactive materials in Ghana are discussed. Accountability for radioactive materials especially for those which were brought in before the establishment of the RPB have been the focus of our discussion. The need to for intensify educational programs for the public on matters relating to effect of radiation on man and environment is recommended. Strengthening of regulatory control of sources and intensifying efforts against smuggling, unauthorised use and systems for notification on radioactive transport accidents are noted. (author)

  19. Radiological Protection Experience with natural sources of radiation

    International Nuclear Information System (INIS)

    Quindos, L. S.; Fernandez, P. L.; Vinuela, J.; Arteche, J.; Sainz, G.; Gomez, J.; Matarranz

    2003-01-01

    During the last twenty five years the research Radon Group of the Medical Physics Unit of the University of Cantabria has been involved in projects concerning the measurement of natural radiation, in special that coming from radon gas. At this moment we have available for this field a lot of information in different formats, as paper, video and CD, interesting not only for public in general but also for professionals interested in the evaluation of doses coming from natural sources of radiation. (Author)

  20. Protection from potential exposures: application to selected radiation sources

    International Nuclear Information System (INIS)

    1997-09-01

    This ICRP Report begins with the general principles of radiation protection in the case of potential exposures, followed by special issues in application and compliance with regulatory aims. The rest of the report uses event trees or fault trees to derive the logical structure of six scenarios of potential exposure, i.e. two irradiators, a large research accelerator, an accelerator for industrial isotope production, an industrial radiography device using a mobile source of radiation, and finally a medical gamma radiotherapy device. (UK)

  1. Exposure of the Spanish population to radiation from natural sources

    International Nuclear Information System (INIS)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L.

    2006-01-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value by a conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  2. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  3. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  4. Dosimetric analysis of radiation sources for use dermatological lesions

    International Nuclear Information System (INIS)

    Tada, Ariane

    2010-01-01

    Skin lesions undergoing therapy with radiation sources may have different patterns of malignancy. Malignant lesions or cancer most commonly found in radiotherapy services are carcinomas. Radiation therapy in skin lesions is performed with low penetration beams and orthovoltage X-rays, electron beams and radioactive sources ( 192 Ir, 198 Au, e 90 Sr) arranged on a surface mold or in metal applicator. This study aims to analyze the therapeutic radiation dose profile produced by radiation sources used in skin lesions radiotherapy procedures . Experimental measurements for the analysis of dosimetric radiation sources were compared with calculations obtained from a computer system based on the Monte Carlo Method. Computational results had a good agreement with the experimental measurements. Experimental measurements and computational results by the MCNP4C code were both physically consistent as expected. These experimental measurements compared with calculations using the MCNP-4C code have been used to validate the calculations obtained by MCNP code and to provide a reliable medical application for each clinical case. (author)

  5. 30 CFR 75.337 - Construction and repair of seals.

    Science.gov (United States)

    2010-07-01

    ... sealed areas. (b) Prior to sealing, the mine operator shall— (1) Remove insulated cables, batteries, and other potential electric ignition sources from the area to be sealed when constructing seals, unless it... after April 18, 2008, the seal at the lowest elevation shall have a corrosion-resistant, non-metallic...

  6. Personnel selection and training for radiation protection and safe use of radiation sources

    International Nuclear Information System (INIS)

    Gomaa, M.A.

    2000-01-01

    For proper implementation of the radiation protection programs in the work place, several persons with different qualifications and training are involved. Among these persons are regulatory personnel managers, operators, workers, health professional, health physics technicians, health physicists, qualified experts, and emergency personnel. The current status of education and training of these persons is discussed in order to build competence in radiation protection and the safe use of radiation sources

  7. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  8. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  9. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    Ritchie, A.; Oldfather, D.; Lindner, A.

    1993-05-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 GeV synchrotron light source facility consisting of a 120 keV electron gun, 50 MeV linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  10. MCNP model for the many KE-Basin radiation sources

    International Nuclear Information System (INIS)

    Rittmann, P.D.

    1997-01-01

    This document presents a model for the location and strength of radiation sources in the accessible areas of KE-Basin which agrees well with data taken on a regular grid in September of 1996. This modelling work was requested to support dose rate reduction efforts in KE-Basin. Anticipated fuel removal activities require lower dose rates to minimize annual dose to workers. With this model, the effects of component cleanup or removal can be estimated in advance to evaluate their effectiveness. In addition, the sources contributing most to the radiation fields in a given location can be identified and dealt with

  11. Reducing the risk from radioactive sources

    International Nuclear Information System (INIS)

    MacKenzie, C.

    2006-01-01

    Each year the IAEA receives reports of serious injuries or deaths due to misuse or accidents involving sealed radioactive sources. Sealed radioactive sources are used widely in medicine, industry, and agriculture - by doctors to treat cancer, by radiographers to check welds in pipelines, or by specialists to irradiate food to prevent it from spoiling, for example. If these sources are lost or improperly discarded, a serious accident may result. In addition, the security of sealed sources has become a growing concern, particularly the potential that such a source could be used as a radioactive dispersal device or 'dirty bomb'. Preventing the loss or theft of sealed radioactive sources reduces both the risk of accidents and the risk that such sources could become an instrument of misuse. In most countries, radioactive materials and activities that produce radiation are regulated. Those working with sealed radioactive sources are required not just to have proper credentials, but also the needed training and support to deal with unexpected circumstances that may arise when a source is used. Despite these measures, accidents involving sealed sources continue to be reported to the IAEA. Among its many activities to improve the safety and security of sealed sources, the IAEA has been investigating the root causes of major accidents since the 1980s and publishing the findings so that others can learn from them. This information needs to be in the hands of those whose actions and decisions can reduce accidents by preventing a lost source from making it's way into scrap metal. The IAEA has also developed an international catalogue of sealed radioactive sources, and provides assistance to countries to safely contain sources no longer in use. To raise awareness, a Sealed Radioactive Sources Toolkit was issued that focuses on the long-term issues in safely and securely managing radioactive sealed sources. The target audiences are government agencies, radioactive sealed source

  12. The international standard for protection from ionizing radiation and safety of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, T [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1995-06-01

    This document is a review in hebrew of the new 1994 international standard of the IAEA. The new standard title is `Basic safety standards for radiation protection and for the safety of radiation sources`, which were published in the ICRP Pub. 9.

  13. Romanian experience on safety and security of radiation sources

    International Nuclear Information System (INIS)

    Botgros, Madalina; Coroianu, Anton; Negreanu, Mircea

    2008-01-01

    Romania has established the first administrative structure for controlling the deployment of the nuclear activities in 1961 and the first Romanian nuclear law was published in 1974. In the present, it is in force the Law no. 111, published in 1996 and republished in 2003. Moreover, there are available facilities and services to the persons authorized to manage radioactive sources. The regulation for safety and security of radioactive sources was amended two times in order to implement the international recommendations for setting up the national system for accounting and control of radiation sources and to coordinate the recovery activities. As part of national control programme, the national inventory of sources and devices is updated permanently, when issuing a new authorization, when modifying an existing one, or when renewing an authorization system and records in the database. The government responsibility for the orphan sources is stated in the law on radioactive waste management and decommissioning fund. There is a protocol between CNCAN, Ministry of Internal and Ministry of Health and Family regarding the co-operation in the case of finding orphan sources. When a radiation source is spent, it becomes radioactive waste that has to be disposed off properly. Depending on the case, the holder of a spent source has the possibility either to return the radioactive source to its manufacturer for regeneration or to transfer it to the Radioactive Waste Treatment Facility. (author)

  14. On the choice of working conditions for isotope radiation sources in irradiation plants

    International Nuclear Information System (INIS)

    Syrkus, N.P.; Breger, A.Kh.; Putilov, A.V.

    1975-01-01

    The problems of selecting an optimal regime for isotopic sources of radiation in powerful radiational installations depending on the costs, parameters of the radiational process (epsilon) and the radioactive isotope halflife are considered. When the radiation sources are simultaneusly replaced, then the optimal time of replacement of sources increases in the radiational installation with the radiation process parameter epsilon<0. Although the cost of a radiational product is lower during continuous replacement of radiation sources, the cost of products in the regime of simultaneous replacement of sources can be decreased, particularly, in the case of a secondary use of the radiactive sources

  15. Sealed ion accelerator tubes (survey)

    International Nuclear Information System (INIS)

    Voitsik, L.R.

    1985-01-01

    The first publications on developing commercial models of small-scale sealed accelerator tubes in which neutrons are generated appeared in the foreign press in 1954 to 1957; they were very brief and were advertising-oriented. The tubes were designed for neutron logging of oil wells instead of ampule neutron sources (Po + Be, Ra + Be). Later, instruments of this type began to be called neutron tubes from the resulting neutron radiation that they gave off. In Soviet Union a neutron tube was developed in 1958 in connection with the development of the pulsed neutron-neutron method of studying the geological profile of oil wells. At that time the tube developed was intended, in the view of its inventors, to replace standard isotope sources with constant neutron yield. A fairly detailed survey of neutron tubes was made in the studies. 8 refs., 8 figs

  16. The German radiation protection infrastructure with emphasis on the safety of radiation sources and radioactive material

    International Nuclear Information System (INIS)

    Czarwinski, R.; Weimer, G.

    2001-01-01

    Through federalism, Germany has a complicated but well functioning regulatory infrastructure for the safety and security of radiation sources based on a clear legal system. The main features of this infrastructure include the legal framework, the authorization and control systems and the responsibilities of different regulatory authorities, which this paper will describe. In connection with the legal framework, the provisions to control the import/export of radiation sources are briefly discussed and some information is given about the registries of sources. Protection and response measures related to unusual events concerning radiation sources, including orphan sources, will be cited. Also, the education and training of different target groups and punitive actions are touched upon in the paper. Conclusions will be drawn for future national and international actions. (author)

  17. Potential sources for the radiation treatment of food

    International Nuclear Information System (INIS)

    Sande, W.E.; Libby, R.A.

    1976-01-01

    The present, near-term, and potential (through year 2000) supply of radiation sources for large-scale radiosterilization applications is discussed. Principal sources considered are 60 Co produced in nuclear power reactors, 137 Cs presently available from ERDA encapsulation operations, and a mixture of 134 Cs- 137 Cs potentially available from the reprocessing of spent nuclear fuel. Some consideration is also given to electron accelerators

  18. Impurity radiation from a beam-plasma neutron source

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1995-01-01

    Impurity radiation, in a worst case evaluation for a beam-plasma neutron source (BPNS), does not limit performance. Impurities originate from four sources: (a) sputtering from walls by charge exchange or alpha particle bombardment, (b) sputtering from limiters, (c) plasma desorption of gas from walls and (d) injection with neutral beams. Sources (c) and (d) are negligible; adsorbed gas on the walls of the confinement chamber and the neutral beam sources is removed by the steady state discharge. Source (b) is negligible for impinging ion energies below the sputtering threshold (T i ≤ 0.025 keV on tungsten) and for power densities to the limiter within the capabilities of water cooling (30-40 MW/m 2 ); both conditions can be satisfied in the BPNS. Source (a) radiates 0.025 MW/m 2 to the neutron irradiation samples, compared with 5 to 10 MW/m 2 of neutrons; and radiates a total of 0.08 MW from the plasma column, compared with 60 MW of injected power. The particle bombardment that yields source (a) deposits an average of 2.7 MW/m 2 on the samples, within the capabilities of helium gas cooling (10 MW/m 2 ). An additional worst case for source (d) is evaluated for present day 2 to 5 s pulsed neutral beams with 0.1% impurity density and is benchmarked against 2XIIB. The total radiation would increase a factor of 1.5 to ≤ 0.12 MW, supporting the conclusion that impurities will not have a significant impact on a BPN. (author). 61 refs, 7 figs, 2 tabs

  19. Management of Spent and Disused Radiation Sources - The Zambian Experience

    International Nuclear Information System (INIS)

    Chabala, F.

    2002-01-01

    Zambia like all other countries in the world is faced with environmental problems brought about by a variety of human activities. In Zambia the major environmental issues as identified by Nation Environmental Action Plan (NEAP) of 1994 are water pollution, poor sanitation, land degradation, air pollution, poor waste management, misuse of chemicals, wildlife depletion and deforestation. Zambian has been using a lot of radioactive materials in its various industries. The country has taken several projects with help of external partners. These partners however left these projects in the hands of the Zambians without developing their capacities to manage these radioactive sources. The Government recognized the need to manage these sources and passed legislation governing the management of radioactive materials. The first act of Parliament on Radiation Protection work was passed in 1975 to legislate the use of ionizing radiation. However, because of financial constraints the Country is facing, these regulations have remained unimplemented. Fortunately the international Community has been working in partnership with the Zambian Government in the Management of Radioactive Material. Therefore this paper will present the following aspects of radioactive waste management in Zambia: review Existing Legislation in Zambia regarding management of spent/radioactive sources; capacity building in the field of management of radioactive waste; management of spent and disused radiation sources; existing disposal systems in Zambia regarding spent/orphaned sources; existing stocks of radioactive sources in the Zambian industries

  20. Analysis of polymer foil heaters as infrared radiation sources

    International Nuclear Information System (INIS)

    Witek, Krzysztof; Piotrowski, Tadeusz; Skwarek, Agata

    2012-01-01

    Infrared radiation as a heat source is used in many fields. In particular, the positive effect of far-infrared radiation on living organisms has been observed. This paper presents two technological solutions for infrared heater production using polymer-silver and polymer-carbon pastes screenprinted on foil substrates. The purpose of this work was the identification of polymer layers as a specific frequency range IR radiation sources. The characterization of the heaters was determined mainly by measurement of the surface temperature distribution using a thermovision camera and the spectral characteristics were determined using a special measuring system. Basic parameters obtained for both, polymer silver and polymer carbon heaters were similar and were as follows: power rating of 10–12 W/dm 2 , continuous working surface temperature of 80–90 °C, temperature coefficient of resistance (TCR) about +900 ppm/K for polymer-carbon heater and about +2000 ppm/K for polymer-silver, maximum radiation intensity in the wavelength range of 6–14 μm with top intensity at 8.5 μm and heating time about 20 min. For comparison purposes, commercial panel heater was tested. The results show that the characteristics of infrared polymer heaters are similar to the characteristics of the commercial heater, so they can be taken into consideration as the alternative infrared radiation sources.

  1. Sources management

    International Nuclear Information System (INIS)

    Mansoux, H.; Gourmelon; Scanff, P.; Fournet, F.; Murith, Ch.; Saint-Paul, N.; Colson, P.; Jouve, A.; Feron, F.; Haranger, D.; Mathieu, P.; Paycha, F.; Israel, S.; Auboiroux, B.; Chartier, P.

    2005-01-01

    Organized by the section of technical protection of the French society of radiation protection ( S.F.R.P.), these two days had for objective to review the evolution of the rule relative to the sources of ionising radiations 'sealed and unsealed radioactive sources, electric generators'. They addressed all the actors concerned by the implementation of the new regulatory system in the different sectors of activities ( research, medicine and industry): Authorities, manufacturers, and suppliers of sources, holders and users, bodies involved in the approval of sources, carriers. (N.C.)

  2. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  3. Mapping of auroral kilometric radiation sources to the aurora

    International Nuclear Information System (INIS)

    Huff, R.L.; Calvert, W.; Craven, J.D.; Frank, L.A.; Gurnett, D.A.

    1988-01-01

    Auroral kilometric radiation (AKR) and optical auroral emissions are observed simultaneously using plasma wave instrumentation and auroral imaging photometers acrried on the DE 1 spacecraft. The DE 1 plasma wave instrument measures the relative phase of signals from orthogonal electric dipole antennas, and from these measurements, apparent source directions can be determined with a high degree of precision. Wave data are analyzed for several strong AKR events, and source directions are determined for several emission frequencies. By assuming that the AKR originates at cyclotron resonant altitudes, a condidate source field line is identified. When the selected source field line is traced down to auroral altitudes on the concurrent DE 1 auroral image, a striking correspondence between the AKR source field line and localized auroral features is produced. The magnetic mapping study provides strong evidence that AKR sources occur on field lines associated with discrete auroral arcs, and it provides confirmation that AKR is generated near the electron cyclotron frequency

  4. Overview in Argentina on spent/disused radiation sources

    International Nuclear Information System (INIS)

    Lavalle, M.B.

    2001-01-01

    Argentine nuclear activities have begun since about 1950. Since those days the peaceful applications of nuclear energy have been developed and together with then radioactive wastes have taken more and more relevance day by day. To deal with this special subject the Radioactive Waste Management Programme (RWMP) has been established. Spent/disused radiation sources are a very important task to consider in the management of radioactive waste. A great number of sources have been received along these years by the RWMP. Different sources categories handled together with their figures and radionuclide activities will be presented. Also described will be the steps that have to be followed by the users/owners of spent/disused radiation sources to transfer them to the RWMP. Once the sources are in the RWMP custody, they can be stored or they can be conditioned in order to be stored in an interim storage or disposed of. It is shown how the different sources are managed, taking into account the radionuclide's half life, its activity and the available facilities. Besides a record-keeping system for tracking all spent/disused radiation sources has been developed. It consists on a computerized database that contains essential information about the sources as well as the whole radioactive wastes managed by the RWMP. The main objective of the waste management registry-database system is to collect, identify, process and follow the related information about the radioactive wastes among al the management steps. It is also able to calculate the actualized activity inventory for the storage and final disposal facilities. In order to implement this system, it was necessary to write the related technical documentation. These documents established the radioactive waste acceptance requirements, that together with others integrates the Quality Assurance System applied to the radioactive waste management. Regarding the disused sources little could be done. They are stored in an appropriate

  5. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards

  6. International basic safety standards for protecting against ionizing radiation and for the safety of radiation sources

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of the Standards is to establish basic requirements for protection against the risks associated with exposure to ionizing radiation (hereinafter termed radiation) and for the safety of radiation sources that may deliver such exposure. The Standards have been developed from widely accepted radiation protection and safety principles, such as those published in the Annals of the ICRP and the IAEA Safety Series. They are intended to ensure the safety of all types of radiation sources and, in doing so, to complement standards already developed for large and complex radiation sources, such as nuclear reactors and radioactive waste management facilities. For the sources, more specific standards, such as those issued by the IAEA, are typically needed to achieve acceptable levels of safety. As these more specific standards are generally consistent with the Standards, in complying with them, such more complex installations will also generally comply with the Standards. The Standards are limited to specifying basic requirements of radiation protection and safety, with some guidance on how to apply them. General guidance on applying some of the requirements is available in the publications of the Sponsoring Organizations and additional guidance will be developed as needed in the light of experience gained in the application of the Standards. Tabs

  7. Sources of ionizing radiation in industry: licensing and control

    International Nuclear Information System (INIS)

    Dimitrov, V.

    2001-01-01

    In this paper are presented several methods, which the Inspection on the Safe Use of Atomic Energy applies for the control on the use of sources of ionizing radiation in industry. It reviews some problems, which we have to solve during our inspections. An analysis and assessment of them is done. The prescribed safety ensuring measures are discussed. (author)

  8. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  9. Control of radiation sources and general regulations for accidental situations

    International Nuclear Information System (INIS)

    Slimani, A.

    1998-01-01

    In order to prevent accidents caused by application of radiation sources the Tunisian O.N.P.C. established straightforward strategy made up of 3 phases: prevention, planning and intervention. Civil Protection conducts prevention studies of all radiation sources by examining normal application conditions as well as possible accidental situations. It keeps up with scientific, technical and statistical aspects of radiation risks, elaborates specific plans and programs for intervention operations and cooperates with administrative and security services as well as international organisations. The O.N.P.C. established a model intervention plan based on observation (according to preliminary information), evaluation of the situation (according to the head of operation) intervention (specialized units) and post intervention (testing of personnel)

  10. Standard Syllabus for Postgraduate Educational Courses in Radiation Protection and the Safe use of Radiation Sources

    International Nuclear Information System (INIS)

    Arias, C.; Biaggio, A.; Nasazzi, N.

    2004-01-01

    The International Atomic Energy Agency (IAEA) published the Standard Syllabus for Post Graduate Educational Courses in Radiation Protection and the Safety of Radiation Sources in 2002. Along more than two decades, Argentina has obtained valuable experience on building professional knowledge at postgraduate level in Radiation Protection and Nuclear Safety. Such experience made advisable to review the IAEA Standard Syllabus and to modify it accordingly. The whole content of the Standard Syllabus is included in the syllabus developed for the Argentinean Regional Post Graduate Course in Radiation Protection and Safety of Radiation Sources. But a few additional topics were incorporated and changes were introduced in the sequence of subjects. The paper describes those modifications and explains the pedagogic motivations that induce them. (Author) 3 refs

  11. Doses arising from natural radiation sources in Hong Kong

    International Nuclear Information System (INIS)

    Tso Man-yin, W.

    1993-01-01

    The first reactor of the Daya Bay Nuclear Power Plant, located 30 km from Hong Kong, should become operational at the end of 1993. People in Hong Kong are more concerned with their exposures to radiation, both man-made and natural. The local environmental background radiation baseline values should be established well before 1993 so that the radiological impact of the power plant on the environment can be assessed. However, there has not been much information on these aspects. In view of the situation, the Radioisotope Unit of the University of Hong Kong has launched a series of studies with the general goal of gaining a better understanding of Hong Kong's natural background radiation and a more accurate estimate of the natural radiation exposure of the local people. The scope of the measurement programmes is described and the doses from the various sources are derived. (1 tab.)

  12. Earth as a radio source: terrestrial kilometric radiation. Progress report

    International Nuclear Information System (INIS)

    Gurnett, D.A.

    1974-02-01

    Radio wave experiments on the IMP-6 and 8 satellites have shown that the earth emits very intense electromagnetic radiation in the frequency range from about 50 kHz to 500 kHz. A peak intensity the total power emitted in this frequency range is about 1 billion watts. The earth is, therefore, a very intense planetary radio source, with a total power output comparable to the decametric radio emission from Jupiter. This radio emission from the earth is referred to as terrestrial kilometric radiation. Terrestrial kilometric radiation appears to originate from low altitudes (less than 3.0 Re) in the auroral region. Possible mechanisms which can explain the generation and propagation of the terrestrial kilometric radiation are discussed. (U.S.)

  13. The handling with orphan sources of ionizing radiation in Belarus

    International Nuclear Information System (INIS)

    Dubrovskij, A.I.; Beresneva, V.A.; Pribylev, S.V.

    2013-01-01

    In Belarus, the emergency response actions, when detecting orphan sources, provide specific organs of government within their competence. Overall coordination and work on the collection, processing, exchange, accounting and transfer in the established order information about the sources of ionizing radiation interacting organs and relevant international organizations assigned to the Emergency Situations Ministry. Created in Belarus response system in case of detection of orphan sources can provide the level of emergency preparedness and response, and generally satisfy international best practice in this area. (authors)

  14. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  15. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial

  16. Research sources of ionizing radiation based on transplutonium elements

    Science.gov (United States)

    Radchenko, V. M.; Ryabinin, M. A.

    2010-03-01

    Scientific and technical demand stimulates an extension of the practical implementation field of TPE, requirements to their ecological safety calling for the development of such materials which could be most resistant to the environment and most suitable for the production of a wide range of sources different in their application and design. Such materials can involve pure metals of transplutonium elements and their alloys with metals of platinum group as well as their chemically stable compounds (such as silicides, carbides etc.) At SSC RIAR production processes of sources of different type and application have been implemented. Examples of the most recent developments of the sources are presented below. Presented is the analysis of the current state of issues related to designing, production and application of radionuclide research sources based on transplutonium elements. Examples of the development of the most up-to-date sources of alpha-, gamma- and neutron radiation and also fission ones are considered.

  17. Training in radiation protection and the safe use of radiation sources

    International Nuclear Information System (INIS)

    2001-01-01

    The need for education and training in the various disciplines of radiation protection has long been recognized by the IAEA, the International Labour Organization (ILO), the United Nations Educational, Scientific and Cultural Organization, the World Health Organization and the Pan American Health Organization (PAHO). This need has been partially met through the many training courses undertaken by these organizations, either individually or in collaboration. The IAEA has assisted developing Member States in the training of specialists in radiation protection and safety through its organized educational and specialized training courses, workshops, seminars, fellowships and scientific visits. Training is an important means of promoting safety culture and enhancing the level of competence of personnel involved in radiation protection activities, and has acquired a place in the IAEA's programme accordingly. For example, the IAEA Post-graduate Educational Course in Radiation Protection and the Safe Use of Radiation Sources is regularly offered in countries around the world, and has been provided in Arabic, English, French, Spanish and Russian. The training provided by the IAEA is primarily aimed at regulators, professionals working in radiation protection and those responsible for the development of training programmes in their own countries. The importance of adequate and appropriate training for all those working with ionizing radiation has been highlighted by the results of the IAEA's investigations of radiological accidents. A significant contributory factor in a number of the accidents has been a lack of adequate training, which gave rise to errors with serious consequences. This report provides assistance in organizing training and complying with the requirements on training of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The previous version of this report. Technical Reports

  18. Definition of loss-of-coolant accident radiation source

    International Nuclear Information System (INIS)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist

  19. Area radiation monitor at the intense pulsed-neutron source

    International Nuclear Information System (INIS)

    Eichholz, J.J.; Lynch, F.J.; Mundis, R.L.; Howe, M.L.; Dolecek, E.H.

    1981-01-01

    A tissue-equivalent ionization chamber with associated circuitry has been developed for area radiation monitoring in the Intense Pulsed-Neutron Source (IPNS) facility at Argonne National Laboratory. The conventional chamber configuration was modified in order to increase the electric field and effective volume thereby achieving higher sensitivity and linearity. The instrument provides local and remote radiation level indications and a high level alarm. Twenty-four of these instruments were fabricated for use at various locations in the experimental area of the IPNS-1 facility

  20. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  1. Overview of physical safety of radiation sources in Brazil

    International Nuclear Information System (INIS)

    Lima, A.R.; Silva, F.C.A. da

    2017-01-01

    The threat of 'radiological terrorism' has been recognized worldwide after the event of September 11, 2001. Radioactive sources can be used for the development of DDR ('dirty bomb') devices. Studies show that the use of a DDR could cause health damage, psychosocial and economic and environmental damage. Brazil follows this worldwide concern, since it has a large medical-industrial park that uses radioactive sources. This paper presents an overview of the physical safety of radioactive sources in Brazil, based on the inventory of radiative facilities, regulatory aspects and international recommendations. For the preparation of the study, the database of radioactive sources of the regulatory body, the current normative status and the international recommendations were used. In Brazil there are approximately 2,500 radiative installations, with about 400 radioactive sources Category 1 and 2, which are the biggest concern in terms of physical safety. The Brazilian licensing standard addresses only some aspects of physical protection, not providing a clear orientation for the elaboration and implementation of physical protection systems, in accordance with international recommendations. For Brazil to be included in the world scenario of physical safety of radioactive sources, it is urgent to elaborate specific legislation with well-defined regulatory criteria. The lack of more detailed requirements makes it difficult to make a more careful regulatory assessment of the physical protection conditions of the facilities, either through the evaluation of plans and other physical protection documents or through regulatory inspections

  2. Upgrading inflatable door seals

    International Nuclear Information System (INIS)

    Sykes, T.M.; Metcalfe, R.; Welch, L.A.; Josefowich, J.M.

    1997-01-01

    Inflatable door seals are used for airlocks in CANDU stations. They have been a significant source of unreliability and maintenance cost. A program is underway to improve their performance and reliability, backed by environmental qualification testing. Only commercial products and suppliers existed in 1993. For historical reasons, these 'existing products' did not use the most durable material then available. In hindsight, neither had they been adapted nor optimized to combat conditions often experienced in the plants-sagging doors, damaged sealing surfaces, and many thousands of openings and closings per year. Initial attempts to involve the two existing suppliers in efforts to upgrade these seals were unsuccessful. Another suitable supplier had therefore to be found, and a 'new,' COG-owned seal developed; this was completed in 1997. This paper summarizes its testing, along with that of the two existing products. Resistance to aging has been improved significantly. Testing has shown that an accident can be safely withstood after 10 years of service or 40,000 openings-closings, whichever comes first. AECL's Fluid Sealing Technology Unit (FSTU) has invested in the special moulds, test fixtures and other necessary tooling and documentation required to begin commercial manufacture of this new quality product. Accordingly, as with FSTU's other nuclear products such as pump seals, the long-term supply of door seals to CANDU plants is now protected from many external uncertainties-e.g., commercial products being discontinued, materials being changed, companies going out of business. Manufacturing to AECL's detailed specifications is being subcontracted to the new supplier. FSTU is performing the quality surveillance, inspection, testing, and customer service activities concomitant with direct responsibility for supply to the plants. (author)

  3. Recovery from Iridium-192 flakes of a radioactive source for industrial use after a radiation incident

    International Nuclear Information System (INIS)

    Cruz, W.H.; Zapata, L.A.

    2013-01-01

    The Iridium-192 ( 192 Ir) is the most used and ideal for industrial radiography applications, especially in petrochemical plants and pipelines and provides better contrast sensitivity for thick (25.4 mm). This source has constructive sealed double encapsulation, the internal capsule containing stainless steel to radioactive material in the form of flakes and welded with TIG process. The radiological incident happened at a gas station fuel sales in circumstances in which there was a homogeneity test welds a tank, the flakes or Ir-192 fell off his ponytail and left scattered over an area of 2 m 2 , some fell flat areas and other land so collected in lead shielding and metal container and ground source. Full recovery of the leaflets was performed at the Division of radioactive waste management (GRRA) gaining a total of 22 flakes with no radiation risk to staff performance and installation and the conclusion was reached that the misapplicaion of TIG welding was the main cause the incident. (author)

  4. Radiological protection issues in endovascular use of radiation sources

    International Nuclear Information System (INIS)

    2006-02-01

    The use of radiation from radioactive materials for cancer treatment is well established. However, examples of uses of radiation therapy for benign conditions have been limited. Placing a radioactive source in the blood vessel so as to irradiate the surrounding inner periphery of the vessel has been attempted in recent years to prevent restenosis after percutaneous coronary and peripheral interventions. This kind of endovascular application provides treatment options that are less invasive for various vascular conditions compared with open surgery. As a part of the International Atomic Energy Agency's (IAEA) function for providing for application of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) that were jointly sponsored by the IAEA, FAO, ILO, OECD/NEA, PAHO and WHO, the IAEA planned a coordinated research project (CRP) that was to start in 2002 on radiological protection problems in endovascular use of radiation sources. However, as experts soon realized that the interest in this modality was waning, the CRP was not initiated. Nevertheless, it was felt that it would be appropriate to compile the information available on radiological protection problems observed so far and their possible solutions. This work was seen as part of a broader IAEA programme that covered accident prevention in radiotherapy. Publications on this topic have included, inter alia, Lessons Learned from Accidental Exposures in Radiotherapy (Safety Reports Series No. 17); Accidental Overexposure of Radiotherapy Patients in Bialystok; Investigation of an Accidental Exposure of Radiotherapy Patients in Panama; Accidental Overexposure of Radiotherapy Patients in San Jose, Costa Rica; and Investigation of an Accidental Exposure of Radiotherapy Patients in Poland. Keeping in mind that endovascular applications involve specialists such as cardiologists, angiologists and surgeons, all of whom might not have a

  5. Medical and industrial radiation sources as radiological weapons

    International Nuclear Information System (INIS)

    Bielefeld, T.; Fischer, H.W.

    2006-01-01

    The execution of attacks with radiological weapons are well within the capabilities of both local terrorist groups and transnational terrorist networks. In a research project, plausible attack scenarios have been developed, based on medical and industrial radioactive sources widely used in Germany. Special emphasis was put on how such sources could be obtained applying criminal tactics. To this end, working procedures in hospitals and companies have been analyzed. Furthermore, by means of simulations, the consequences of a terrorist attack using such sources were estimated. None of the scenarios we investigated led to doses at the site of the explosion which might cause acute radiation effects. However, in some scenarios, an attack would result in the necessity of a potentially very costly clean-up of large urban areas. Therefore, improvements in sources security are recommended. (orig.)

  6. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: dose assessment methodologies; exposure from natural sources; exposures to the public from man-made sources of radiation and occupational radiation exposures

  7. Study of spear as a dedicated source of synchrotron radiation

    International Nuclear Information System (INIS)

    Cerino, J.; Golde, A.; Hastings, J.; Lindau, I.; Salsburg, B.; Winick, H.; Lee, M.; Morton, P.; Garren, A.

    1977-11-01

    A study was made of the potential of SPEAR as a dedicated source of synchrotron radiation, based on the expectation that SPEAR will become increasingly available for this purpose as PEP, the 18-GeV colliding-beam storage ring now under construction by LBL and SLAC, becomes operational. A synchrotron radiation research program has been underway since May, 1974. Two beam ports capable of serving 9 simultaneous users are now operational. In single-beam multi-bunch operation high currents are possible (225 mA has been achieved and > approximately 300 mA is expected) and the electron beam emittance can be made smaller, resulting in higher source point brightness. Descriptions are given of SPEAR capabilities and of plans to expand the research capability by adding beam runs and by inserting wiggler magnets in SPEAR straight sections

  8. Regulatory control of radiation sources in the Philippines

    International Nuclear Information System (INIS)

    Daroy, Rosita R.

    1995-01-01

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI's regulatory functions are presented. (author)

  9. Science experiments via telepresence at a synchrotron radiation source facility

    International Nuclear Information System (INIS)

    Warren, J. E.; Diakun, G.; Bushnell-Wye, G.; Fisher, S.; Thalal, A.; Helliwell, M.; Helliwell, J. R.

    2008-01-01

    The application of a turnkey communication system for telepresence at station 9.8 of the Synchrotron Radiation Source, Daresbury, is described and demonstrated, including its use for inter-continental classroom instruction and user training. Station 9.8 is one of the most oversubscribed and high-throughput stations at the Synchrotron Radiation Source, Daresbury, whereby awarded experimental time is limited, data collections last normally no longer than an hour, user changeover is normally every 24 h, and familiarity with the station systems can be low. Therefore time lost owing to technical failures on the station has a dramatic impact on productivity. To provide 24 h support, the application of a turnkey communication system has been implemented, and is described along with additional applications including its use for inter-continental classroom instruction, user training and remote participation

  10. System for selection of radiation source transfer trucks

    International Nuclear Information System (INIS)

    Tanimoto, Yoshinori; Ito, Kojiro.

    1970-01-01

    A device for selection of trucks each of which load and transfer a radiation source to an irradiation room above a water pool is installed at the end of a pair of rails fixed to the bottom of the pool. This device is equipped with a number of laterally shiftable rail pairs which may be brought into successive alignment with the fixed rails and is adapted to receive, carry and fix a truck on each rail pair. If one of said trucks is selected for irradiation in a desired irradiation room, the rail pair carrying this truck is shifted to align and couple with the fixed rail pair whereupon the truck is driven and transferred to a position on the fixed rails below the desired room and elevated thereinto. Accordingly, a plurality of trucks can optionally be shunted on a line of fixed rails without unloading the respective radiation sources. (Ohno, Y.)

  11. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  12. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  13. Starting material radiation source for Moessbauer investigations of tellurium compounds

    International Nuclear Information System (INIS)

    Alexandrov, A.J.; Grushko, J.S.; Makarov, E.F.; Mishin, K.Y.; Baltrunas, D.A.J.

    1977-01-01

    A method is described of preparing a radiation source for Mossbauer investigations of tellurium compounds manufactured on the basis of 5 MgO . Te 124 O 3 . 5 MgO . Te 124 O 3 is irradiated in a reactor by means of thermal neutrons, followed by annealing at a temperature ranging from 600 0 to 1,100 0 C for a period of from 5 to 10 hours

  14. Experiments planned to be made with the synchrotron radiation source

    International Nuclear Information System (INIS)

    Matz, W.

    1993-01-01

    For this working meeting, various research groups from the Land Sachsen and from the neighbouring countries Poland and the Czech Republic have been invited in order to present their materials research programmes or task-specific experiments intended to be carried out with the synchrotron radiation source to be installed in the near future. The proceedings volume in hand presents the discussion papers, which have been directly reproduced from the original foils. (orig.) [de

  15. Limitation of population's irradiation by natural sources of ionizing radiation

    International Nuclear Information System (INIS)

    Krisyuk, Eh.M.

    1989-01-01

    Review of works devoted to evaluating the human irradiation doses at the expense of the main sources of ionizing radiation, is given. It is shown that the human irradiation doses at the expense of DDP can be reduced 10 times and more. However to realize such measures it is necessary to study the efficiency and determine the cost of various protective activities as well as to develop the criteria of their realization necessity

  16. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  17. Postgraduate educational course in radiation protection and the safety of radiation sources. Standard syllabus

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the Postgraduate Educational Course in Radiation Protection and the Safety of Radiation Sources is to meet the needs of professionals at graduate level, or the equivalent, for initial training to acquire a sound basis in radiation protection and the safety of radiation sources. The course also aims to provide the necessary basic tools for those who will become trainers in radiation protection and in the safe use of radiation sources in their countries. It is designed to provide both theoretical and practical training in the multidisciplinary scientific and/or technical bases of international recommendations and standards on radiation protection and their implementation. The participants should have had a formal education to a level equivalent to a university degree in the physical, chemical or life sciences or engineering and should have been selected to work in the field of radiation protection and the safe use of radiation sources in their countries. The present revision of the Standard Syllabus takes into account the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), IAEA Safety Series No. 115 (1996) and recommendations of related Safety Guides, as well as experience gained from the Postgraduate Educational Course on Radiation Protection and Safety of Radiation Sources held in several regions in recent years. The general aim of the course, as mentioned, is the same. Some of the improvements in the present version are as follows: The learning objective of each part is specified. The prerequisites for each part are specified. The structure of the syllabus has been changed: the parts on Principles of Radiation Protection and on Regulatory Control were moved ahead of Dose Assessment and after Biological Effects of Radiation. The part on the interface with nuclear safety was dropped and a module on radiation protection in nuclear power plants has been included. A

  18. Regulatory control of radiation sources in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Daroy, Rosita R

    1996-12-31

    This paper is concerned with the radiation protection and safety infrastructure providing emphasis on the regulation and control of radiation sources in the Philippines. It deals with the experiences of the Philippine Nuclear Research Institute, as a regulatory body, in the regulation and control of radioactive materials in radiotherapy, nuclear medicine, industrial radiography, industrial gauges, industrial irradiators, and well logging. This paper includes an inventory of the sources and types of devices/equipment used by licensed users of radioactive materials in the Philippines as a contribution to the data base being prepared by the IAEA. The problems encountered by the regulatory body in the licensing and enforcement process, as well as the lessons learned from incidents involving radioactive materials are discussed. Plans for improving compliance to the regulations and enhancing the effectiveness of PNRI`s regulatory functions are presented. (author). Paper presented during the IAEA Regional (RCA) Workshop on System of Notification, Registration, Licensing, and Control of Radiation Sources and Installations, Jakarta, Indonesia, 24-28 April 1995. 6 refs., 2 figs., 12 tabs.

  19. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  20. Risks and hazards from conventional and radiation sources

    International Nuclear Information System (INIS)

    Iyer, P.S.; Ganguly, A.K.

    1978-01-01

    Beneficial uses of radioisotopes in medicine, industry, agriculture and research are discussed. In absence of adequate safety precautions, uses of radiation may also result in harmful biological effects or genetic effects. Radiation risks and hazards are evaluated by comparing with other risks and hazards which are routinely encountered. The risk of fatality per year by various causes in U.S.A. is given. It is stated with examples and observations that some of the routine habits and necessities and minor luxuries are more risky than radiation risks. Countrywide radiation safety program in India by the Department of Atomic Energy is described in brief. Data are given to show that the risks from radiation are much lower in comparison with many conventional sources. More efficient equipment such as image intensifier is recommended to help to reduce the patient dose. It is stated that caution has to be exercised while handling the X-ray machines which may be harmful not only to patients but to doctors also. As regards, nuclear medicine, it is mentioned that though it is a fast expanding speciality in India, the number of procedures carried out in various centres is small as compared to U.S.A. and France. Some instances are given to show the consequences of the ignorance of the radiation hazards in operating machines in X-ray and gamma ray beam therapy facilities. A survey made by DRP, BARC revealed that some research laboratories lacked basic radiation protection requirements in using X-ray crystallography or analytical equipment. (B.G.W.)

  1. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  2. Locating gamma radiation source by self collimating BGO detector system

    Energy Technology Data Exchange (ETDEWEB)

    Orion, I; Pernick, A; Ilzycer, D; Zafrir, H [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center; Shani, G [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    The need for airborne collimated gamma detector system to estimate the radiation released from a nuclear accident has been established. A BGO detector system has been developed as an array of separate seven cylindrical Bismuth Germanate scintillators, one central detector symmetrically surrounded by six detectors. In such an arrangement, each of the detectors reduced the exposure of other detectors in the array to a radiation incident from a possible specific spatial angle, around file array. This shielding property defined as `self-collimation`, differs the point source response function for each of the detectors. The BGO detector system has a high density and atomic number, and therefore provides efficient self-collimation. Using the response functions of the separate detectors enables locating point sources as well as the direction of a nuclear radioactive plume with satisfactory angular resolution, of about 10 degrees. The detector`s point source response, as function of the source direction, in a horizontal plane, has been predicted by analytical calculation, and was verified by Monte-Carlo simulation using the code EGS4. The detector`s response was tested in a laboratory-scale experiment for several gamma ray energies, and the experimental results validated the theoretical (analytical and Monte-Carlo) results. (authors).

  3. Fabrication of radiation sources for educational purposes from chemical fertilizers using compressing and forming method

    International Nuclear Information System (INIS)

    Kawano, Takao

    2008-01-01

    Chemical fertilizers contain potassium, which is composed of a small amount of naturally occurring potassium-40. The potassium-40 radionuclide emits beta and gamma radiation. Three brands of chemical fertilizer were used to fabricate disk-shaped radiation sources and the fabricated radiation sources were examined for applicability to an educational radiation course. In the examination, tests to determine dependence of count rate on distance, shielding thickness, and shielding materials were conducted using the radiation sources. Results showed that radiation sources fabricated from the three brands of chemical fertilizer were equivalent for explaining radiation characteristics, particularly those related to the dependence of radiation strength on distance and shielding thickness. The relation between shielding effect and mass density can be explained qualitatively. Thus, chemical fertilizer radiation sources can be a useful teaching aid for educational courses to better promote understanding of radiation characteristics and the principles of radiation protection. (author)

  4. The concept of recommended working life applied to radiation sources

    International Nuclear Information System (INIS)

    Lorch, E.A.

    1980-01-01

    Consideration is given to the background behind the Radiochemical Centre's decision to introduce values of recommended working life (RWL) of 5, 10 or 15 years for the majority of its radiation sources. Criteria used in assessing RWL included toxicity, half-life and total initial activity of the nuclide, source construction, typical application environments, experience of safety in use and test performance data. The introduction of the concept of RWL has meant that users are becoming aware of the need for regular inspection and assessment of sources, but it is emphasized that the RWL does not constitute a guarantee of performance. It represents an effort by the Radiochemical Centre to ensure the proper use of its products. (U.K.)

  5. Characterization of the radiation background at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Hall-Wilton, Richard J.; Bentley, Phillip M.; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.

    2016-01-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4 He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden. (paper)

  6. Reference design for a centralized spent sealed sources facility. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    1995-07-01

    To assist Member States in establishing facilities in which the most frequently occurring spent sealed sources can be safely conditioned, the IAEA has financed the development of a generic design for a Spent Sealed Sources Facility (SSS Facility). The purpose of this TECDOC is to provide enough general information about the functions and capabilities of the SSS Facility to enable the reader to understand what the facility can do to contribute towards the management of spent sealed sources without providing all the technical and/or design information available. Sufficient information is provided to enable the reader to judge how and to what extent such a facility can contribute to national radioactive waste management infrastructure. 2 refs, 5 figs, 1 tab

  7. Reference design for a centralized spent sealed sources facility. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    To assist Member States in establishing facilities in which the most frequently occurring spent sealed sources can be safely conditioned, the IAEA has financed the development of a generic design for a Spent Sealed Sources Facility (SSS Facility). The purpose of this TECDOC is to provide enough general information about the functions and capabilities of the SSS Facility to enable the reader to understand what the facility can do to contribute towards the management of spent sealed sources without providing all the technical and/or design information available. Sufficient information is provided to enable the reader to judge how and to what extent such a facility can contribute to national radioactive waste management infrastructure. 2 refs, 5 figs, 1 tab.

  8. Viking observations at the source region of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Bahnsen, A.; Jespersen, M.; Ungstrup, E.; Pedersen, B.M.; Eliasson, L.; Murphree, J.S.; Elphinstone, R.D.; Blomberg, L.; Holmgren, G.; Zanetti, L.J.

    1989-01-01

    The orbit of the Swedish satellite Viking was optimized for in situ observations of auroral particle acceleration and related phenomena. In a large number of the orbits, auroral kilometric radiation (AKR) was observed, and in approximately 35 orbits the satellite passed through AKR source regions as evidenced by very strong signals at the local electron cyclotron frequency f ce . These sources were found at the poleward edge of the auroral oval at altitudes, from 5,000 to 8,000 km, predominantly in the evening sector. The strong AKR signal has a sharp low-frequency cutoff at or very close to f ce in the source. In addition to AKR, strong broadband electrostatic noise is measured during the source crossings. Energetic (1-15 keV) electrons are always present at and around the AKR sources. Upward directed ion beams of several keV are closely correlated with the source as are strong and variable electric fields, indicating that a region of upward pointing electric field below the observation point is a necessary condition for AKR generation. The plasma density is measured by three independent experiments and it is generally found that the density is low across the whole auroral oval. For some source crossings the three methods agree and show a density depletion (but not always confined to the source region itself), but in many cases the three measurements do not yield consistent results. The magnetic projection of the satellite passes through auroral forms during the source crossings, and the strongest AKR events seem to be connected with kinks in an arc or more complicated structures

  9. An inverse source location algorithm for radiation portal monitor applications

    International Nuclear Information System (INIS)

    Miller, Karen A.; Charlton, William S.

    2010-01-01

    Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

  10. Safety issues in the handling of radiation sources in category IV gamma radiation facilities

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2002-01-01

    There is potential for incidents/accidents related to handling of radiation sources. This is increasing due to the fact that more number of plants that too with much larger levels of activity are now coming up. Such facilities produce very high levels of exposure rates during irradiation. A person accidentally present in the irradiation cell can receive a lethal dose within a very short time. Apart from safety requirements during operation and maintenance of these facilities, safety during loading and unloading of sources is important. Category IV type irradiators are the most common. Doubly encapsulated Co-60 slugs are employed to form the source pencils. These irradiators employ a water pool for safely storing the source pencils when irradiation of the products is not going on or when human access is needed into the irradiation cell for some maintenance or source loading/unloading operations. Safety during loading/unloading operations of source pencils is important. In design itself care needs to be taken such that all such operations are convenient and any incident will not lead to a situation where it becomes difficult to come out. Different situations, which can arise during handling of radiation sources and suggested designs to obviate such tight situations, are discussed. (Author)

  11. Risk perception in the process of working with radiation sources

    International Nuclear Information System (INIS)

    Carneiro, J.C.G.; Levy, D.; Sanches, M.P.; Rodrigues, D.L.; Sordi, G.M.A.A.

    2017-01-01

    This study discusses occupational risk under three distinct aspects, which are often interconnected or interdependent in the work environment. These are: environmental risks, human failures and equipment failures. The article addresses the potential exposure in the workplace, caused by the agent's physical radiation risk, resulting from handling with sources of ionizing radiation. Based on the history of accidents occurring in normal operations, the study summarizes the main accidents in various facilities and possible causes involving the three aspects of risk. In its final considerations, it presents the lessons learned and the measures to be taken with the intention of contributing to the prevention and mitigation of risks in the work environment. The analysis of accident cases and their causes provide valuable information to prevent the risk of similar accidents and contribute to the improvement of operational projects and procedures

  12. National system of notification, authorization and inspection for the control of radiation sources in Ghana

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2001-01-01

    The Radiation Protection Board (RPB) was established in 1993 in Ghana as the regulatory authority for radiation protection and safety of radiation sources; its functions are prescribed in the 1993 national radiation protection regulation. The report describes how the country's radiation protection and safety infrastructure have been established, including the RPB's organizational structure, with reference in particular to the main activities carried out by both the Regulatory Control Department and the Radiation and Waste Safety Department. It also briefly mentions the existing RPB human resources; the national system of notification, authorization and inspection of radiation sources; the inventory of radiation sources; and the management of disused radiation sources. Finally, the report identifies the two main problem areas regarding the regulatory control of radiation sources in the country. (author)

  13. Modular design of processing and storage facilities for small volumes of low and intermediate level radioactive waste including disused sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-06-15

    A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and to install and eventually operate those modules.

  14. Production of iridium-192 radiation sources: Indian Experience

    International Nuclear Information System (INIS)

    Sastry, K.V.S.; Kolhe, O.T.; Nagarja, P.S.; Paramr, Y.D.

    2002-01-01

    Board of Radiation and Isotope Technology (BRIT), a unit under the Department of Atomic Energy is fabricating and supplying Ir-192 industrial radiography sources for various models of radiography cameras for use in the industry for non-destructive testing. Basically these sources are fabricated by encapsulating the required quantity of the activity in stainless steel 316 L capsules using Tungsten Inert gas welding process and crimping/attaching to the respective pigtail assemblies of the radiography cameras. The inactive iridium pellets are irradiated in the DHRUVA reactor at a flux on 1.8 X 10 14 n/cm 2 /sec. The performance classification of these source encapsulation for various conditions of normal and accidental nature are tested by subjecting the prototype sources as per the standard laid down by the regulatory authority, Atomic Energy Regulatory Board, in India. The sources are fabricated as per the national and international standards. Activity of the sources varies from 37O GBq (10 Ci ) to 2.96 TBq (80 Ci ) source strength depending on the requirement of the user. The specific activity of the Ir-192 sources supplied is around 7.4 TBq/gm (200 Ci/gm ). Quality control /Assurance for the manufacture of the source begins from the procurement of the raw material and ends with the finished source. Ir- 192 in the form of -0.3 mm diameter (0.1 mm dia wire of Ir-25 % and Pt-75% sheathed in pure platinum of 0.1 mm thick) is being supplied for use in the treatment of cancer of cervix, tongue etc. by brachytherapy. This is supplied in lengths of 50 cm / 100 cm with 37 - 185 GBq/cm ( 1-5 mCi/cm) activity. Annually 925 TBq (25 kCi) of Ir-192 for industrial radiography and about 60 meters of wire for brachytherapy are being fabricated and supplied. Because of the quality of these sources BRIT not only caters to the Indian industry but also is able to export sources to the third world countries. (Author)

  15. Measurement of radiation skyshine with D-T neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  16. Characterization of a sealed Americium-Beryllium (AmBe) source by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Sommers, J.; Jimenez, M.; Adamic, M.; Giglio, J.; Carney, K.

    2009-01-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as 'age' since purification, actinide content, trace metal content and inter and intra source composition were determined. The 'age' since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the 'age' determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am-Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W. (author)

  17. Freeze drying method for preparing radiation source material

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.; Smith, P.K.

    1975-01-01

    A solution containing radioisotope and palladium values is atomized into an air flow entering a cryogenically cooled chamber where the solution is deposited on the chamber walls as a thin layer of frozen material. The solvent portion of the frozen material is sublimated into a cold trap by elevating the temperature within the chamber while withdrawing solvent vapors. The residual crystals are heated to provide a uniformly mixed powder of palladium metal and a refractory radioisotope compound. The powder is thereafter consolidated into a pellet and further shaped into rod, wire or sheet form for easy apportionment into individual radiation sources. (U.S.)

  18. Research Activities Using Indus-1 Synchrotron Radiation Source

    International Nuclear Information System (INIS)

    Lodha, G. S.; Deb, S. K.

    2010-01-01

    Indus-1 is an efficient SR source in the soft x-ray / vacuum ultra violet region of the electromagnetic spectrum. For Indus-1, the higher order energy contamination in soft x-ray region, heat load and radiation safety problems are also significantly low. At present, soft x-ray-VUV reflectivity, angle integrated and angle resolved photo electron spectroscopy (ARPES), photo physics and high resolution vacuum ultra violet spectroscopy, beamlines are operational. The paper presents some of the recent studies carried out using In-dus-1.

  19. Search begins for missing radiation sources in Republic of Georgia

    International Nuclear Information System (INIS)

    2002-01-01

    An international team assembled by the IAEA will begin a search today for two abandoned Strontium 90 generators in a ca. 550 sq. km area of Western Georgia. About 80 people will take part in the two-week search beginning on Monday, 10 June. Radiation experts for the IAEA, India, France, Turkey and the U.S. are also part of the team, which will set out on horseback, foot and by car. The second phase - an aerial and road survey covering different territory - is scheduled to begin in early September. The objective is to locate and recover other known or suspected orphaned radioactive sources in the country

  20. Radiation protection data sheet. Radiation protection data sheets for the use of radionuclides in unsealed sources

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    These radiation protection data sheet are devoted to responsible persons and employees of various laboratories or medical, pharmaceutical, university and industrial departments where radionuclides are handled as well as all the persons who attend to satisfy in this field. They contain the essential radiation protection data for the use of unsealed sources: physical characteristics, risk assessment, administrative procedures, recommendations, regulations and bibliography. This new series includes the following radionuclides: californium 252, curium 244, gallium 67, indium 113m, plutonium 238, plutonium 239, polonium 210, potassium 42, radium 226, thorium 232, uranium 238 and zinc 65. (O.M.)